1 /* 2 * Copyright (c) 2013, 2021, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "memory/allocation.hpp" 27 #include "memory/universe.hpp" 28 29 #include "gc/shared/gcArguments.hpp" 30 #include "gc/shared/gcTimer.hpp" 31 #include "gc/shared/gcTraceTime.inline.hpp" 32 #include "gc/shared/locationPrinter.inline.hpp" 33 #include "gc/shared/memAllocator.hpp" 34 #include "gc/shared/plab.hpp" 35 #include "gc/shared/slidingForwarding.hpp" 36 #include "gc/shared/tlab_globals.hpp" 37 38 #include "gc/shenandoah/shenandoahBarrierSet.hpp" 39 #include "gc/shenandoah/shenandoahClosures.inline.hpp" 40 #include "gc/shenandoah/shenandoahCollectionSet.hpp" 41 #include "gc/shenandoah/shenandoahCollectorPolicy.hpp" 42 #include "gc/shenandoah/shenandoahConcurrentMark.hpp" 43 #include "gc/shenandoah/shenandoahControlThread.hpp" 44 #include "gc/shenandoah/shenandoahFreeSet.hpp" 45 #include "gc/shenandoah/shenandoahPhaseTimings.hpp" 46 #include "gc/shenandoah/shenandoahHeap.inline.hpp" 47 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 48 #include "gc/shenandoah/shenandoahHeapRegionSet.hpp" 49 #include "gc/shenandoah/shenandoahInitLogger.hpp" 50 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 51 #include "gc/shenandoah/shenandoahMemoryPool.hpp" 52 #include "gc/shenandoah/shenandoahMetrics.hpp" 53 #include "gc/shenandoah/shenandoahMonitoringSupport.hpp" 54 #include "gc/shenandoah/shenandoahOopClosures.inline.hpp" 55 #include "gc/shenandoah/shenandoahPacer.inline.hpp" 56 #include "gc/shenandoah/shenandoahPadding.hpp" 57 #include "gc/shenandoah/shenandoahParallelCleaning.inline.hpp" 58 #include "gc/shenandoah/shenandoahReferenceProcessor.hpp" 59 #include "gc/shenandoah/shenandoahRootProcessor.inline.hpp" 60 #include "gc/shenandoah/shenandoahStringDedup.hpp" 61 #include "gc/shenandoah/shenandoahSTWMark.hpp" 62 #include "gc/shenandoah/shenandoahUtils.hpp" 63 #include "gc/shenandoah/shenandoahVerifier.hpp" 64 #include "gc/shenandoah/shenandoahCodeRoots.hpp" 65 #include "gc/shenandoah/shenandoahVMOperations.hpp" 66 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 67 #include "gc/shenandoah/shenandoahWorkerPolicy.hpp" 68 #include "gc/shenandoah/mode/shenandoahIUMode.hpp" 69 #include "gc/shenandoah/mode/shenandoahPassiveMode.hpp" 70 #include "gc/shenandoah/mode/shenandoahSATBMode.hpp" 71 #if INCLUDE_JFR 72 #include "gc/shenandoah/shenandoahJfrSupport.hpp" 73 #endif 74 75 #include "classfile/systemDictionary.hpp" 76 #include "memory/classLoaderMetaspace.hpp" 77 #include "memory/metaspaceUtils.hpp" 78 #include "oops/compressedOops.inline.hpp" 79 #include "prims/jvmtiTagMap.hpp" 80 #include "runtime/atomic.hpp" 81 #include "runtime/globals.hpp" 82 #include "runtime/interfaceSupport.inline.hpp" 83 #include "runtime/java.hpp" 84 #include "runtime/orderAccess.hpp" 85 #include "runtime/safepointMechanism.hpp" 86 #include "runtime/vmThread.hpp" 87 #include "services/mallocTracker.hpp" 88 #include "services/memTracker.hpp" 89 #include "utilities/events.hpp" 90 #include "utilities/powerOfTwo.hpp" 91 92 class ShenandoahPretouchHeapTask : public AbstractGangTask { 93 private: 94 ShenandoahRegionIterator _regions; 95 const size_t _page_size; 96 public: 97 ShenandoahPretouchHeapTask(size_t page_size) : 98 AbstractGangTask("Shenandoah Pretouch Heap"), 99 _page_size(page_size) {} 100 101 virtual void work(uint worker_id) { 102 ShenandoahHeapRegion* r = _regions.next(); 103 while (r != NULL) { 104 if (r->is_committed()) { 105 os::pretouch_memory(r->bottom(), r->end(), _page_size); 106 } 107 r = _regions.next(); 108 } 109 } 110 }; 111 112 class ShenandoahPretouchBitmapTask : public AbstractGangTask { 113 private: 114 ShenandoahRegionIterator _regions; 115 char* _bitmap_base; 116 const size_t _bitmap_size; 117 const size_t _page_size; 118 public: 119 ShenandoahPretouchBitmapTask(char* bitmap_base, size_t bitmap_size, size_t page_size) : 120 AbstractGangTask("Shenandoah Pretouch Bitmap"), 121 _bitmap_base(bitmap_base), 122 _bitmap_size(bitmap_size), 123 _page_size(page_size) {} 124 125 virtual void work(uint worker_id) { 126 ShenandoahHeapRegion* r = _regions.next(); 127 while (r != NULL) { 128 size_t start = r->index() * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 129 size_t end = (r->index() + 1) * ShenandoahHeapRegion::region_size_bytes() / MarkBitMap::heap_map_factor(); 130 assert (end <= _bitmap_size, "end is sane: " SIZE_FORMAT " < " SIZE_FORMAT, end, _bitmap_size); 131 132 if (r->is_committed()) { 133 os::pretouch_memory(_bitmap_base + start, _bitmap_base + end, _page_size); 134 } 135 136 r = _regions.next(); 137 } 138 } 139 }; 140 141 jint ShenandoahHeap::initialize() { 142 // 143 // Figure out heap sizing 144 // 145 146 size_t init_byte_size = InitialHeapSize; 147 size_t min_byte_size = MinHeapSize; 148 size_t max_byte_size = MaxHeapSize; 149 size_t heap_alignment = HeapAlignment; 150 151 size_t reg_size_bytes = ShenandoahHeapRegion::region_size_bytes(); 152 153 Universe::check_alignment(max_byte_size, reg_size_bytes, "Shenandoah heap"); 154 Universe::check_alignment(init_byte_size, reg_size_bytes, "Shenandoah heap"); 155 156 _num_regions = ShenandoahHeapRegion::region_count(); 157 assert(_num_regions == (max_byte_size / reg_size_bytes), 158 "Regions should cover entire heap exactly: " SIZE_FORMAT " != " SIZE_FORMAT "/" SIZE_FORMAT, 159 _num_regions, max_byte_size, reg_size_bytes); 160 161 // Now we know the number of regions, initialize the heuristics. 162 initialize_heuristics(); 163 164 size_t num_committed_regions = init_byte_size / reg_size_bytes; 165 num_committed_regions = MIN2(num_committed_regions, _num_regions); 166 assert(num_committed_regions <= _num_regions, "sanity"); 167 _initial_size = num_committed_regions * reg_size_bytes; 168 169 size_t num_min_regions = min_byte_size / reg_size_bytes; 170 num_min_regions = MIN2(num_min_regions, _num_regions); 171 assert(num_min_regions <= _num_regions, "sanity"); 172 _minimum_size = num_min_regions * reg_size_bytes; 173 174 // Default to max heap size. 175 _soft_max_size = _num_regions * reg_size_bytes; 176 177 _committed = _initial_size; 178 179 size_t heap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 180 size_t bitmap_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 181 size_t region_page_size = UseLargePages ? (size_t)os::large_page_size() : (size_t)os::vm_page_size(); 182 183 // 184 // Reserve and commit memory for heap 185 // 186 187 ReservedHeapSpace heap_rs = Universe::reserve_heap(max_byte_size, heap_alignment); 188 initialize_reserved_region(heap_rs); 189 _heap_region = MemRegion((HeapWord*)heap_rs.base(), heap_rs.size() / HeapWordSize); 190 _heap_region_special = heap_rs.special(); 191 192 assert((((size_t) base()) & ShenandoahHeapRegion::region_size_bytes_mask()) == 0, 193 "Misaligned heap: " PTR_FORMAT, p2i(base())); 194 195 #if SHENANDOAH_OPTIMIZED_MARKTASK 196 // The optimized ShenandoahMarkTask takes some bits away from the full object bits. 197 // Fail if we ever attempt to address more than we can. 198 if ((uintptr_t)heap_rs.end() >= ShenandoahMarkTask::max_addressable()) { 199 FormatBuffer<512> buf("Shenandoah reserved [" PTR_FORMAT ", " PTR_FORMAT") for the heap, \n" 200 "but max object address is " PTR_FORMAT ". Try to reduce heap size, or try other \n" 201 "VM options that allocate heap at lower addresses (HeapBaseMinAddress, AllocateHeapAt, etc).", 202 p2i(heap_rs.base()), p2i(heap_rs.end()), ShenandoahMarkTask::max_addressable()); 203 vm_exit_during_initialization("Fatal Error", buf); 204 } 205 #endif 206 207 ReservedSpace sh_rs = heap_rs.first_part(max_byte_size); 208 if (!_heap_region_special) { 209 os::commit_memory_or_exit(sh_rs.base(), _initial_size, heap_alignment, false, 210 "Cannot commit heap memory"); 211 } 212 213 // 214 // Reserve and commit memory for bitmap(s) 215 // 216 217 _bitmap_size = ShenandoahMarkBitMap::compute_size(heap_rs.size()); 218 _bitmap_size = align_up(_bitmap_size, bitmap_page_size); 219 220 size_t bitmap_bytes_per_region = reg_size_bytes / ShenandoahMarkBitMap::heap_map_factor(); 221 222 guarantee(bitmap_bytes_per_region != 0, 223 "Bitmap bytes per region should not be zero"); 224 guarantee(is_power_of_2(bitmap_bytes_per_region), 225 "Bitmap bytes per region should be power of two: " SIZE_FORMAT, bitmap_bytes_per_region); 226 227 if (bitmap_page_size > bitmap_bytes_per_region) { 228 _bitmap_regions_per_slice = bitmap_page_size / bitmap_bytes_per_region; 229 _bitmap_bytes_per_slice = bitmap_page_size; 230 } else { 231 _bitmap_regions_per_slice = 1; 232 _bitmap_bytes_per_slice = bitmap_bytes_per_region; 233 } 234 235 guarantee(_bitmap_regions_per_slice >= 1, 236 "Should have at least one region per slice: " SIZE_FORMAT, 237 _bitmap_regions_per_slice); 238 239 guarantee(((_bitmap_bytes_per_slice) % bitmap_page_size) == 0, 240 "Bitmap slices should be page-granular: bps = " SIZE_FORMAT ", page size = " SIZE_FORMAT, 241 _bitmap_bytes_per_slice, bitmap_page_size); 242 243 ReservedSpace bitmap(_bitmap_size, bitmap_page_size); 244 MemTracker::record_virtual_memory_type(bitmap.base(), mtGC); 245 _bitmap_region = MemRegion((HeapWord*) bitmap.base(), bitmap.size() / HeapWordSize); 246 _bitmap_region_special = bitmap.special(); 247 248 size_t bitmap_init_commit = _bitmap_bytes_per_slice * 249 align_up(num_committed_regions, _bitmap_regions_per_slice) / _bitmap_regions_per_slice; 250 bitmap_init_commit = MIN2(_bitmap_size, bitmap_init_commit); 251 if (!_bitmap_region_special) { 252 os::commit_memory_or_exit((char *) _bitmap_region.start(), bitmap_init_commit, bitmap_page_size, false, 253 "Cannot commit bitmap memory"); 254 } 255 256 _marking_context = new ShenandoahMarkingContext(_heap_region, _bitmap_region, _num_regions, _max_workers); 257 258 if (ShenandoahVerify) { 259 ReservedSpace verify_bitmap(_bitmap_size, bitmap_page_size); 260 if (!verify_bitmap.special()) { 261 os::commit_memory_or_exit(verify_bitmap.base(), verify_bitmap.size(), bitmap_page_size, false, 262 "Cannot commit verification bitmap memory"); 263 } 264 MemTracker::record_virtual_memory_type(verify_bitmap.base(), mtGC); 265 MemRegion verify_bitmap_region = MemRegion((HeapWord *) verify_bitmap.base(), verify_bitmap.size() / HeapWordSize); 266 _verification_bit_map.initialize(_heap_region, verify_bitmap_region); 267 _verifier = new ShenandoahVerifier(this, &_verification_bit_map); 268 } 269 270 // Reserve aux bitmap for use in object_iterate(). We don't commit it here. 271 ReservedSpace aux_bitmap(_bitmap_size, bitmap_page_size); 272 MemTracker::record_virtual_memory_type(aux_bitmap.base(), mtGC); 273 _aux_bitmap_region = MemRegion((HeapWord*) aux_bitmap.base(), aux_bitmap.size() / HeapWordSize); 274 _aux_bitmap_region_special = aux_bitmap.special(); 275 _aux_bit_map.initialize(_heap_region, _aux_bitmap_region); 276 277 // 278 // Create regions and region sets 279 // 280 size_t region_align = align_up(sizeof(ShenandoahHeapRegion), SHENANDOAH_CACHE_LINE_SIZE); 281 size_t region_storage_size = align_up(region_align * _num_regions, region_page_size); 282 region_storage_size = align_up(region_storage_size, os::vm_allocation_granularity()); 283 284 ReservedSpace region_storage(region_storage_size, region_page_size); 285 MemTracker::record_virtual_memory_type(region_storage.base(), mtGC); 286 if (!region_storage.special()) { 287 os::commit_memory_or_exit(region_storage.base(), region_storage_size, region_page_size, false, 288 "Cannot commit region memory"); 289 } 290 291 // Try to fit the collection set bitmap at lower addresses. This optimizes code generation for cset checks. 292 // Go up until a sensible limit (subject to encoding constraints) and try to reserve the space there. 293 // If not successful, bite a bullet and allocate at whatever address. 294 { 295 size_t cset_align = MAX2<size_t>(os::vm_page_size(), os::vm_allocation_granularity()); 296 size_t cset_size = align_up(((size_t) sh_rs.base() + sh_rs.size()) >> ShenandoahHeapRegion::region_size_bytes_shift(), cset_align); 297 298 uintptr_t min = round_up_power_of_2(cset_align); 299 uintptr_t max = (1u << 30u); 300 301 for (uintptr_t addr = min; addr <= max; addr <<= 1u) { 302 char* req_addr = (char*)addr; 303 assert(is_aligned(req_addr, cset_align), "Should be aligned"); 304 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size(), req_addr); 305 if (cset_rs.is_reserved()) { 306 assert(cset_rs.base() == req_addr, "Allocated where requested: " PTR_FORMAT ", " PTR_FORMAT, p2i(cset_rs.base()), addr); 307 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 308 break; 309 } 310 } 311 312 if (_collection_set == NULL) { 313 ReservedSpace cset_rs(cset_size, cset_align, os::vm_page_size()); 314 _collection_set = new ShenandoahCollectionSet(this, cset_rs, sh_rs.base()); 315 } 316 } 317 318 _regions = NEW_C_HEAP_ARRAY(ShenandoahHeapRegion*, _num_regions, mtGC); 319 _free_set = new ShenandoahFreeSet(this, _num_regions); 320 321 { 322 ShenandoahHeapLocker locker(lock()); 323 324 for (size_t i = 0; i < _num_regions; i++) { 325 HeapWord* start = (HeapWord*)sh_rs.base() + ShenandoahHeapRegion::region_size_words() * i; 326 bool is_committed = i < num_committed_regions; 327 void* loc = region_storage.base() + i * region_align; 328 329 ShenandoahHeapRegion* r = new (loc) ShenandoahHeapRegion(start, i, is_committed); 330 assert(is_aligned(r, SHENANDOAH_CACHE_LINE_SIZE), "Sanity"); 331 332 _marking_context->initialize_top_at_mark_start(r); 333 _regions[i] = r; 334 assert(!collection_set()->is_in(i), "New region should not be in collection set"); 335 } 336 337 // Initialize to complete 338 _marking_context->mark_complete(); 339 340 _free_set->rebuild(); 341 } 342 343 if (AlwaysPreTouch) { 344 // For NUMA, it is important to pre-touch the storage under bitmaps with worker threads, 345 // before initialize() below zeroes it with initializing thread. For any given region, 346 // we touch the region and the corresponding bitmaps from the same thread. 347 ShenandoahPushWorkerScope scope(workers(), _max_workers, false); 348 349 _pretouch_heap_page_size = heap_page_size; 350 _pretouch_bitmap_page_size = bitmap_page_size; 351 352 #ifdef LINUX 353 // UseTransparentHugePages would madvise that backing memory can be coalesced into huge 354 // pages. But, the kernel needs to know that every small page is used, in order to coalesce 355 // them into huge one. Therefore, we need to pretouch with smaller pages. 356 if (UseTransparentHugePages) { 357 _pretouch_heap_page_size = (size_t)os::vm_page_size(); 358 _pretouch_bitmap_page_size = (size_t)os::vm_page_size(); 359 } 360 #endif 361 362 // OS memory managers may want to coalesce back-to-back pages. Make their jobs 363 // simpler by pre-touching continuous spaces (heap and bitmap) separately. 364 365 ShenandoahPretouchBitmapTask bcl(bitmap.base(), _bitmap_size, _pretouch_bitmap_page_size); 366 _workers->run_task(&bcl); 367 368 ShenandoahPretouchHeapTask hcl(_pretouch_heap_page_size); 369 _workers->run_task(&hcl); 370 } 371 372 // 373 // Initialize the rest of GC subsystems 374 // 375 376 _liveness_cache = NEW_C_HEAP_ARRAY(ShenandoahLiveData*, _max_workers, mtGC); 377 for (uint worker = 0; worker < _max_workers; worker++) { 378 _liveness_cache[worker] = NEW_C_HEAP_ARRAY(ShenandoahLiveData, _num_regions, mtGC); 379 Copy::fill_to_bytes(_liveness_cache[worker], _num_regions * sizeof(ShenandoahLiveData)); 380 } 381 382 // There should probably be Shenandoah-specific options for these, 383 // just as there are G1-specific options. 384 { 385 ShenandoahSATBMarkQueueSet& satbqs = ShenandoahBarrierSet::satb_mark_queue_set(); 386 satbqs.set_process_completed_buffers_threshold(20); // G1SATBProcessCompletedThreshold 387 satbqs.set_buffer_enqueue_threshold_percentage(60); // G1SATBBufferEnqueueingThresholdPercent 388 } 389 390 _monitoring_support = new ShenandoahMonitoringSupport(this); 391 _phase_timings = new ShenandoahPhaseTimings(max_workers()); 392 ShenandoahCodeRoots::initialize(); 393 394 if (ShenandoahPacing) { 395 _pacer = new ShenandoahPacer(this); 396 _pacer->setup_for_idle(); 397 } else { 398 _pacer = NULL; 399 } 400 401 _control_thread = new ShenandoahControlThread(); 402 403 ShenandoahInitLogger::print(); 404 405 SlidingForwarding::initialize(_heap_region, ShenandoahHeapRegion::region_size_words()); 406 407 return JNI_OK; 408 } 409 410 void ShenandoahHeap::initialize_mode() { 411 if (ShenandoahGCMode != NULL) { 412 if (strcmp(ShenandoahGCMode, "satb") == 0) { 413 _gc_mode = new ShenandoahSATBMode(); 414 } else if (strcmp(ShenandoahGCMode, "iu") == 0) { 415 _gc_mode = new ShenandoahIUMode(); 416 } else if (strcmp(ShenandoahGCMode, "passive") == 0) { 417 _gc_mode = new ShenandoahPassiveMode(); 418 } else { 419 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option"); 420 } 421 } else { 422 vm_exit_during_initialization("Unknown -XX:ShenandoahGCMode option (null)"); 423 } 424 _gc_mode->initialize_flags(); 425 if (_gc_mode->is_diagnostic() && !UnlockDiagnosticVMOptions) { 426 vm_exit_during_initialization( 427 err_msg("GC mode \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 428 _gc_mode->name())); 429 } 430 if (_gc_mode->is_experimental() && !UnlockExperimentalVMOptions) { 431 vm_exit_during_initialization( 432 err_msg("GC mode \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 433 _gc_mode->name())); 434 } 435 } 436 437 void ShenandoahHeap::initialize_heuristics() { 438 assert(_gc_mode != NULL, "Must be initialized"); 439 _heuristics = _gc_mode->initialize_heuristics(); 440 441 if (_heuristics->is_diagnostic() && !UnlockDiagnosticVMOptions) { 442 vm_exit_during_initialization( 443 err_msg("Heuristics \"%s\" is diagnostic, and must be enabled via -XX:+UnlockDiagnosticVMOptions.", 444 _heuristics->name())); 445 } 446 if (_heuristics->is_experimental() && !UnlockExperimentalVMOptions) { 447 vm_exit_during_initialization( 448 err_msg("Heuristics \"%s\" is experimental, and must be enabled via -XX:+UnlockExperimentalVMOptions.", 449 _heuristics->name())); 450 } 451 } 452 453 #ifdef _MSC_VER 454 #pragma warning( push ) 455 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list 456 #endif 457 458 ShenandoahHeap::ShenandoahHeap(ShenandoahCollectorPolicy* policy) : 459 CollectedHeap(), 460 _initial_size(0), 461 _used(0), 462 _committed(0), 463 _bytes_allocated_since_gc_start(0), 464 _max_workers(MAX2(ConcGCThreads, ParallelGCThreads)), 465 _workers(NULL), 466 _safepoint_workers(NULL), 467 _heap_region_special(false), 468 _num_regions(0), 469 _regions(NULL), 470 _update_refs_iterator(this), 471 _control_thread(NULL), 472 _shenandoah_policy(policy), 473 _gc_mode(NULL), 474 _heuristics(NULL), 475 _free_set(NULL), 476 _pacer(NULL), 477 _verifier(NULL), 478 _phase_timings(NULL), 479 _monitoring_support(NULL), 480 _memory_pool(NULL), 481 _stw_memory_manager("Shenandoah Pauses"), 482 _cycle_memory_manager("Shenandoah Cycles"), 483 _gc_timer(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 484 _soft_ref_policy(), 485 _log_min_obj_alignment_in_bytes(LogMinObjAlignmentInBytes), 486 _ref_processor(new ShenandoahReferenceProcessor(MAX2(_max_workers, 1U))), 487 _marking_context(NULL), 488 _bitmap_size(0), 489 _bitmap_regions_per_slice(0), 490 _bitmap_bytes_per_slice(0), 491 _bitmap_region_special(false), 492 _aux_bitmap_region_special(false), 493 _liveness_cache(NULL), 494 _collection_set(NULL) 495 { 496 // Initialize GC mode early, so we can adjust barrier support 497 initialize_mode(); 498 BarrierSet::set_barrier_set(new ShenandoahBarrierSet(this)); 499 500 _max_workers = MAX2(_max_workers, 1U); 501 _workers = new ShenandoahWorkGang("Shenandoah GC Threads", _max_workers, 502 /* are_GC_task_threads */ true, 503 /* are_ConcurrentGC_threads */ true); 504 if (_workers == NULL) { 505 vm_exit_during_initialization("Failed necessary allocation."); 506 } else { 507 _workers->initialize_workers(); 508 } 509 510 if (ParallelGCThreads > 1) { 511 _safepoint_workers = new ShenandoahWorkGang("Safepoint Cleanup Thread", 512 ParallelGCThreads, 513 /* are_GC_task_threads */ false, 514 /* are_ConcurrentGC_threads */ false); 515 _safepoint_workers->initialize_workers(); 516 } 517 } 518 519 #ifdef _MSC_VER 520 #pragma warning( pop ) 521 #endif 522 523 class ShenandoahResetBitmapTask : public AbstractGangTask { 524 private: 525 ShenandoahRegionIterator _regions; 526 527 public: 528 ShenandoahResetBitmapTask() : 529 AbstractGangTask("Shenandoah Reset Bitmap") {} 530 531 void work(uint worker_id) { 532 ShenandoahHeapRegion* region = _regions.next(); 533 ShenandoahHeap* heap = ShenandoahHeap::heap(); 534 ShenandoahMarkingContext* const ctx = heap->marking_context(); 535 while (region != NULL) { 536 if (heap->is_bitmap_slice_committed(region)) { 537 ctx->clear_bitmap(region); 538 } 539 region = _regions.next(); 540 } 541 } 542 }; 543 544 void ShenandoahHeap::reset_mark_bitmap() { 545 assert_gc_workers(_workers->active_workers()); 546 mark_incomplete_marking_context(); 547 548 ShenandoahResetBitmapTask task; 549 _workers->run_task(&task); 550 } 551 552 void ShenandoahHeap::print_on(outputStream* st) const { 553 st->print_cr("Shenandoah Heap"); 554 st->print_cr(" " SIZE_FORMAT "%s max, " SIZE_FORMAT "%s soft max, " SIZE_FORMAT "%s committed, " SIZE_FORMAT "%s used", 555 byte_size_in_proper_unit(max_capacity()), proper_unit_for_byte_size(max_capacity()), 556 byte_size_in_proper_unit(soft_max_capacity()), proper_unit_for_byte_size(soft_max_capacity()), 557 byte_size_in_proper_unit(committed()), proper_unit_for_byte_size(committed()), 558 byte_size_in_proper_unit(used()), proper_unit_for_byte_size(used())); 559 st->print_cr(" " SIZE_FORMAT " x " SIZE_FORMAT"%s regions", 560 num_regions(), 561 byte_size_in_proper_unit(ShenandoahHeapRegion::region_size_bytes()), 562 proper_unit_for_byte_size(ShenandoahHeapRegion::region_size_bytes())); 563 564 st->print("Status: "); 565 if (has_forwarded_objects()) st->print("has forwarded objects, "); 566 if (is_concurrent_mark_in_progress()) st->print("marking, "); 567 if (is_evacuation_in_progress()) st->print("evacuating, "); 568 if (is_update_refs_in_progress()) st->print("updating refs, "); 569 if (is_degenerated_gc_in_progress()) st->print("degenerated gc, "); 570 if (is_full_gc_in_progress()) st->print("full gc, "); 571 if (is_full_gc_move_in_progress()) st->print("full gc move, "); 572 if (is_concurrent_weak_root_in_progress()) st->print("concurrent weak roots, "); 573 if (is_concurrent_strong_root_in_progress() && 574 !is_concurrent_weak_root_in_progress()) st->print("concurrent strong roots, "); 575 576 if (cancelled_gc()) { 577 st->print("cancelled"); 578 } else { 579 st->print("not cancelled"); 580 } 581 st->cr(); 582 583 st->print_cr("Reserved region:"); 584 st->print_cr(" - [" PTR_FORMAT ", " PTR_FORMAT ") ", 585 p2i(reserved_region().start()), 586 p2i(reserved_region().end())); 587 588 ShenandoahCollectionSet* cset = collection_set(); 589 st->print_cr("Collection set:"); 590 if (cset != NULL) { 591 st->print_cr(" - map (vanilla): " PTR_FORMAT, p2i(cset->map_address())); 592 st->print_cr(" - map (biased): " PTR_FORMAT, p2i(cset->biased_map_address())); 593 } else { 594 st->print_cr(" (NULL)"); 595 } 596 597 st->cr(); 598 MetaspaceUtils::print_on(st); 599 600 if (Verbose) { 601 st->cr(); 602 print_heap_regions_on(st); 603 } 604 } 605 606 class ShenandoahInitWorkerGCLABClosure : public ThreadClosure { 607 public: 608 void do_thread(Thread* thread) { 609 assert(thread != NULL, "Sanity"); 610 assert(thread->is_Worker_thread(), "Only worker thread expected"); 611 ShenandoahThreadLocalData::initialize_gclab(thread); 612 } 613 }; 614 615 void ShenandoahHeap::post_initialize() { 616 CollectedHeap::post_initialize(); 617 MutexLocker ml(Threads_lock); 618 619 ShenandoahInitWorkerGCLABClosure init_gclabs; 620 _workers->threads_do(&init_gclabs); 621 622 // gclab can not be initialized early during VM startup, as it can not determinate its max_size. 623 // Now, we will let WorkGang to initialize gclab when new worker is created. 624 _workers->set_initialize_gclab(); 625 if (_safepoint_workers != NULL) { 626 _safepoint_workers->threads_do(&init_gclabs); 627 _safepoint_workers->set_initialize_gclab(); 628 } 629 630 _heuristics->initialize(); 631 632 JFR_ONLY(ShenandoahJFRSupport::register_jfr_type_serializers()); 633 } 634 635 size_t ShenandoahHeap::used() const { 636 return Atomic::load(&_used); 637 } 638 639 size_t ShenandoahHeap::committed() const { 640 return Atomic::load(&_committed); 641 } 642 643 void ShenandoahHeap::increase_committed(size_t bytes) { 644 shenandoah_assert_heaplocked_or_safepoint(); 645 _committed += bytes; 646 } 647 648 void ShenandoahHeap::decrease_committed(size_t bytes) { 649 shenandoah_assert_heaplocked_or_safepoint(); 650 _committed -= bytes; 651 } 652 653 void ShenandoahHeap::increase_used(size_t bytes) { 654 Atomic::add(&_used, bytes, memory_order_relaxed); 655 } 656 657 void ShenandoahHeap::set_used(size_t bytes) { 658 Atomic::store(&_used, bytes); 659 } 660 661 void ShenandoahHeap::decrease_used(size_t bytes) { 662 assert(used() >= bytes, "never decrease heap size by more than we've left"); 663 Atomic::sub(&_used, bytes, memory_order_relaxed); 664 } 665 666 void ShenandoahHeap::increase_allocated(size_t bytes) { 667 Atomic::add(&_bytes_allocated_since_gc_start, bytes, memory_order_relaxed); 668 } 669 670 void ShenandoahHeap::notify_mutator_alloc_words(size_t words, bool waste) { 671 size_t bytes = words * HeapWordSize; 672 if (!waste) { 673 increase_used(bytes); 674 } 675 increase_allocated(bytes); 676 if (ShenandoahPacing) { 677 control_thread()->pacing_notify_alloc(words); 678 if (waste) { 679 pacer()->claim_for_alloc(words, true); 680 } 681 } 682 } 683 684 size_t ShenandoahHeap::capacity() const { 685 return committed(); 686 } 687 688 size_t ShenandoahHeap::max_capacity() const { 689 return _num_regions * ShenandoahHeapRegion::region_size_bytes(); 690 } 691 692 size_t ShenandoahHeap::soft_max_capacity() const { 693 size_t v = Atomic::load(&_soft_max_size); 694 assert(min_capacity() <= v && v <= max_capacity(), 695 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 696 min_capacity(), v, max_capacity()); 697 return v; 698 } 699 700 void ShenandoahHeap::set_soft_max_capacity(size_t v) { 701 assert(min_capacity() <= v && v <= max_capacity(), 702 "Should be in bounds: " SIZE_FORMAT " <= " SIZE_FORMAT " <= " SIZE_FORMAT, 703 min_capacity(), v, max_capacity()); 704 Atomic::store(&_soft_max_size, v); 705 } 706 707 size_t ShenandoahHeap::min_capacity() const { 708 return _minimum_size; 709 } 710 711 size_t ShenandoahHeap::initial_capacity() const { 712 return _initial_size; 713 } 714 715 bool ShenandoahHeap::is_in(const void* p) const { 716 HeapWord* heap_base = (HeapWord*) base(); 717 HeapWord* last_region_end = heap_base + ShenandoahHeapRegion::region_size_words() * num_regions(); 718 return p >= heap_base && p < last_region_end; 719 } 720 721 void ShenandoahHeap::op_uncommit(double shrink_before, size_t shrink_until) { 722 assert (ShenandoahUncommit, "should be enabled"); 723 724 // Application allocates from the beginning of the heap, and GC allocates at 725 // the end of it. It is more efficient to uncommit from the end, so that applications 726 // could enjoy the near committed regions. GC allocations are much less frequent, 727 // and therefore can accept the committing costs. 728 729 size_t count = 0; 730 for (size_t i = num_regions(); i > 0; i--) { // care about size_t underflow 731 ShenandoahHeapRegion* r = get_region(i - 1); 732 if (r->is_empty_committed() && (r->empty_time() < shrink_before)) { 733 ShenandoahHeapLocker locker(lock()); 734 if (r->is_empty_committed()) { 735 if (committed() < shrink_until + ShenandoahHeapRegion::region_size_bytes()) { 736 break; 737 } 738 739 r->make_uncommitted(); 740 count++; 741 } 742 } 743 SpinPause(); // allow allocators to take the lock 744 } 745 746 if (count > 0) { 747 control_thread()->notify_heap_changed(); 748 } 749 } 750 751 HeapWord* ShenandoahHeap::allocate_from_gclab_slow(Thread* thread, size_t size) { 752 // New object should fit the GCLAB size 753 size_t min_size = MAX2(size, PLAB::min_size()); 754 755 // Figure out size of new GCLAB, looking back at heuristics. Expand aggressively. 756 size_t new_size = ShenandoahThreadLocalData::gclab_size(thread) * 2; 757 new_size = MIN2(new_size, PLAB::max_size()); 758 new_size = MAX2(new_size, PLAB::min_size()); 759 760 // Record new heuristic value even if we take any shortcut. This captures 761 // the case when moderately-sized objects always take a shortcut. At some point, 762 // heuristics should catch up with them. 763 ShenandoahThreadLocalData::set_gclab_size(thread, new_size); 764 765 if (new_size < size) { 766 // New size still does not fit the object. Fall back to shared allocation. 767 // This avoids retiring perfectly good GCLABs, when we encounter a large object. 768 return NULL; 769 } 770 771 // Retire current GCLAB, and allocate a new one. 772 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 773 gclab->retire(); 774 775 size_t actual_size = 0; 776 HeapWord* gclab_buf = allocate_new_gclab(min_size, new_size, &actual_size); 777 if (gclab_buf == NULL) { 778 return NULL; 779 } 780 781 assert (size <= actual_size, "allocation should fit"); 782 783 if (ZeroTLAB) { 784 // ..and clear it. 785 Copy::zero_to_words(gclab_buf, actual_size); 786 } else { 787 // ...and zap just allocated object. 788 #ifdef ASSERT 789 // Skip mangling the space corresponding to the object header to 790 // ensure that the returned space is not considered parsable by 791 // any concurrent GC thread. 792 size_t hdr_size = oopDesc::header_size(); 793 Copy::fill_to_words(gclab_buf + hdr_size, actual_size - hdr_size, badHeapWordVal); 794 #endif // ASSERT 795 } 796 gclab->set_buf(gclab_buf, actual_size); 797 return gclab->allocate(size); 798 } 799 800 HeapWord* ShenandoahHeap::allocate_new_tlab(size_t min_size, 801 size_t requested_size, 802 size_t* actual_size) { 803 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_tlab(min_size, requested_size); 804 HeapWord* res = allocate_memory(req); 805 if (res != NULL) { 806 *actual_size = req.actual_size(); 807 } else { 808 *actual_size = 0; 809 } 810 return res; 811 } 812 813 HeapWord* ShenandoahHeap::allocate_new_gclab(size_t min_size, 814 size_t word_size, 815 size_t* actual_size) { 816 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_gclab(min_size, word_size); 817 HeapWord* res = allocate_memory(req); 818 if (res != NULL) { 819 *actual_size = req.actual_size(); 820 } else { 821 *actual_size = 0; 822 } 823 return res; 824 } 825 826 HeapWord* ShenandoahHeap::allocate_memory(ShenandoahAllocRequest& req) { 827 intptr_t pacer_epoch = 0; 828 bool in_new_region = false; 829 HeapWord* result = NULL; 830 831 if (req.is_mutator_alloc()) { 832 if (ShenandoahPacing) { 833 pacer()->pace_for_alloc(req.size()); 834 pacer_epoch = pacer()->epoch(); 835 } 836 837 if (!ShenandoahAllocFailureALot || !should_inject_alloc_failure()) { 838 result = allocate_memory_under_lock(req, in_new_region); 839 } 840 841 // Allocation failed, block until control thread reacted, then retry allocation. 842 // 843 // It might happen that one of the threads requesting allocation would unblock 844 // way later after GC happened, only to fail the second allocation, because 845 // other threads have already depleted the free storage. In this case, a better 846 // strategy is to try again, as long as GC makes progress. 847 // 848 // Then, we need to make sure the allocation was retried after at least one 849 // Full GC, which means we want to try more than ShenandoahFullGCThreshold times. 850 851 size_t tries = 0; 852 853 while (result == NULL && _progress_last_gc.is_set()) { 854 tries++; 855 control_thread()->handle_alloc_failure(req); 856 result = allocate_memory_under_lock(req, in_new_region); 857 } 858 859 while (result == NULL && tries <= ShenandoahFullGCThreshold) { 860 tries++; 861 control_thread()->handle_alloc_failure(req); 862 result = allocate_memory_under_lock(req, in_new_region); 863 } 864 865 } else { 866 assert(req.is_gc_alloc(), "Can only accept GC allocs here"); 867 result = allocate_memory_under_lock(req, in_new_region); 868 // Do not call handle_alloc_failure() here, because we cannot block. 869 // The allocation failure would be handled by the LRB slowpath with handle_alloc_failure_evac(). 870 } 871 872 if (in_new_region) { 873 control_thread()->notify_heap_changed(); 874 } 875 876 if (result != NULL) { 877 size_t requested = req.size(); 878 size_t actual = req.actual_size(); 879 880 assert (req.is_lab_alloc() || (requested == actual), 881 "Only LAB allocations are elastic: %s, requested = " SIZE_FORMAT ", actual = " SIZE_FORMAT, 882 ShenandoahAllocRequest::alloc_type_to_string(req.type()), requested, actual); 883 884 if (req.is_mutator_alloc()) { 885 notify_mutator_alloc_words(actual, false); 886 887 // If we requested more than we were granted, give the rest back to pacer. 888 // This only matters if we are in the same pacing epoch: do not try to unpace 889 // over the budget for the other phase. 890 if (ShenandoahPacing && (pacer_epoch > 0) && (requested > actual)) { 891 pacer()->unpace_for_alloc(pacer_epoch, requested - actual); 892 } 893 } else { 894 increase_used(actual*HeapWordSize); 895 } 896 } 897 898 return result; 899 } 900 901 HeapWord* ShenandoahHeap::allocate_memory_under_lock(ShenandoahAllocRequest& req, bool& in_new_region) { 902 ShenandoahHeapLocker locker(lock()); 903 return _free_set->allocate(req, in_new_region); 904 } 905 906 HeapWord* ShenandoahHeap::mem_allocate(size_t size, 907 bool* gc_overhead_limit_was_exceeded) { 908 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared(size); 909 return allocate_memory(req); 910 } 911 912 MetaWord* ShenandoahHeap::satisfy_failed_metadata_allocation(ClassLoaderData* loader_data, 913 size_t size, 914 Metaspace::MetadataType mdtype) { 915 MetaWord* result; 916 917 // Inform metaspace OOM to GC heuristics if class unloading is possible. 918 if (heuristics()->can_unload_classes()) { 919 ShenandoahHeuristics* h = heuristics(); 920 h->record_metaspace_oom(); 921 } 922 923 // Expand and retry allocation 924 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 925 if (result != NULL) { 926 return result; 927 } 928 929 // Start full GC 930 collect(GCCause::_metadata_GC_clear_soft_refs); 931 932 // Retry allocation 933 result = loader_data->metaspace_non_null()->allocate(size, mdtype); 934 if (result != NULL) { 935 return result; 936 } 937 938 // Expand and retry allocation 939 result = loader_data->metaspace_non_null()->expand_and_allocate(size, mdtype); 940 if (result != NULL) { 941 return result; 942 } 943 944 // Out of memory 945 return NULL; 946 } 947 948 class ShenandoahConcurrentEvacuateRegionObjectClosure : public ObjectClosure { 949 private: 950 ShenandoahHeap* const _heap; 951 Thread* const _thread; 952 public: 953 ShenandoahConcurrentEvacuateRegionObjectClosure(ShenandoahHeap* heap) : 954 _heap(heap), _thread(Thread::current()) {} 955 956 void do_object(oop p) { 957 shenandoah_assert_marked(NULL, p); 958 if (!ShenandoahForwarding::is_forwarded(p)) { 959 _heap->evacuate_object(p, _thread); 960 } 961 } 962 }; 963 964 class ShenandoahEvacuationTask : public AbstractGangTask { 965 private: 966 ShenandoahHeap* const _sh; 967 ShenandoahCollectionSet* const _cs; 968 bool _concurrent; 969 public: 970 ShenandoahEvacuationTask(ShenandoahHeap* sh, 971 ShenandoahCollectionSet* cs, 972 bool concurrent) : 973 AbstractGangTask("Shenandoah Evacuation"), 974 _sh(sh), 975 _cs(cs), 976 _concurrent(concurrent) 977 {} 978 979 void work(uint worker_id) { 980 if (_concurrent) { 981 ShenandoahConcurrentWorkerSession worker_session(worker_id); 982 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 983 ShenandoahEvacOOMScope oom_evac_scope; 984 do_work(); 985 } else { 986 ShenandoahParallelWorkerSession worker_session(worker_id); 987 ShenandoahEvacOOMScope oom_evac_scope; 988 do_work(); 989 } 990 } 991 992 private: 993 void do_work() { 994 ShenandoahConcurrentEvacuateRegionObjectClosure cl(_sh); 995 ShenandoahHeapRegion* r; 996 while ((r =_cs->claim_next()) != NULL) { 997 assert(r->has_live(), "Region " SIZE_FORMAT " should have been reclaimed early", r->index()); 998 _sh->marked_object_iterate(r, &cl); 999 1000 if (ShenandoahPacing) { 1001 _sh->pacer()->report_evac(r->used() >> LogHeapWordSize); 1002 } 1003 1004 if (_sh->check_cancelled_gc_and_yield(_concurrent)) { 1005 break; 1006 } 1007 } 1008 } 1009 }; 1010 1011 void ShenandoahHeap::evacuate_collection_set(bool concurrent) { 1012 ShenandoahEvacuationTask task(this, _collection_set, concurrent); 1013 workers()->run_task(&task); 1014 } 1015 1016 void ShenandoahHeap::trash_cset_regions() { 1017 ShenandoahHeapLocker locker(lock()); 1018 1019 ShenandoahCollectionSet* set = collection_set(); 1020 ShenandoahHeapRegion* r; 1021 set->clear_current_index(); 1022 while ((r = set->next()) != NULL) { 1023 r->make_trash(); 1024 } 1025 collection_set()->clear(); 1026 } 1027 1028 void ShenandoahHeap::print_heap_regions_on(outputStream* st) const { 1029 st->print_cr("Heap Regions:"); 1030 st->print_cr("Region state: EU=empty-uncommitted, EC=empty-committed, R=regular, H=humongous start, HP=pinned humongous start"); 1031 st->print_cr(" HC=humongous continuation, CS=collection set, TR=trash, P=pinned, CSP=pinned collection set"); 1032 st->print_cr("BTE=bottom/top/end, TAMS=top-at-mark-start"); 1033 st->print_cr("UWM=update watermark, U=used"); 1034 st->print_cr("T=TLAB allocs, G=GCLAB allocs"); 1035 st->print_cr("S=shared allocs, L=live data"); 1036 st->print_cr("CP=critical pins"); 1037 1038 for (size_t i = 0; i < num_regions(); i++) { 1039 get_region(i)->print_on(st); 1040 } 1041 } 1042 1043 void ShenandoahHeap::trash_humongous_region_at(ShenandoahHeapRegion* start) { 1044 assert(start->is_humongous_start(), "reclaim regions starting with the first one"); 1045 1046 oop humongous_obj = cast_to_oop(start->bottom()); 1047 size_t size = humongous_obj->size(); 1048 size_t required_regions = ShenandoahHeapRegion::required_regions(size * HeapWordSize); 1049 size_t index = start->index() + required_regions - 1; 1050 1051 assert(!start->has_live(), "liveness must be zero"); 1052 1053 for(size_t i = 0; i < required_regions; i++) { 1054 // Reclaim from tail. Otherwise, assertion fails when printing region to trace log, 1055 // as it expects that every region belongs to a humongous region starting with a humongous start region. 1056 ShenandoahHeapRegion* region = get_region(index --); 1057 1058 assert(region->is_humongous(), "expect correct humongous start or continuation"); 1059 assert(!region->is_cset(), "Humongous region should not be in collection set"); 1060 1061 region->make_trash_immediate(); 1062 } 1063 } 1064 1065 class ShenandoahCheckCleanGCLABClosure : public ThreadClosure { 1066 public: 1067 ShenandoahCheckCleanGCLABClosure() {} 1068 void do_thread(Thread* thread) { 1069 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1070 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name()); 1071 assert(gclab->words_remaining() == 0, "GCLAB should not need retirement"); 1072 } 1073 }; 1074 1075 class ShenandoahRetireGCLABClosure : public ThreadClosure { 1076 private: 1077 bool const _resize; 1078 public: 1079 ShenandoahRetireGCLABClosure(bool resize) : _resize(resize) {} 1080 void do_thread(Thread* thread) { 1081 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 1082 assert(gclab != NULL, "GCLAB should be initialized for %s", thread->name()); 1083 gclab->retire(); 1084 if (_resize && ShenandoahThreadLocalData::gclab_size(thread) > 0) { 1085 ShenandoahThreadLocalData::set_gclab_size(thread, 0); 1086 } 1087 } 1088 }; 1089 1090 void ShenandoahHeap::labs_make_parsable() { 1091 assert(UseTLAB, "Only call with UseTLAB"); 1092 1093 ShenandoahRetireGCLABClosure cl(false); 1094 1095 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1096 ThreadLocalAllocBuffer& tlab = t->tlab(); 1097 tlab.make_parsable(); 1098 cl.do_thread(t); 1099 } 1100 1101 workers()->threads_do(&cl); 1102 } 1103 1104 void ShenandoahHeap::tlabs_retire(bool resize) { 1105 assert(UseTLAB, "Only call with UseTLAB"); 1106 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1107 1108 ThreadLocalAllocStats stats; 1109 1110 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1111 ThreadLocalAllocBuffer& tlab = t->tlab(); 1112 tlab.retire(&stats); 1113 if (resize) { 1114 tlab.resize(); 1115 } 1116 } 1117 1118 stats.publish(); 1119 1120 #ifdef ASSERT 1121 ShenandoahCheckCleanGCLABClosure cl; 1122 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1123 cl.do_thread(t); 1124 } 1125 workers()->threads_do(&cl); 1126 #endif 1127 } 1128 1129 void ShenandoahHeap::gclabs_retire(bool resize) { 1130 assert(UseTLAB, "Only call with UseTLAB"); 1131 assert(!resize || ResizeTLAB, "Only call for resize when ResizeTLAB is enabled"); 1132 1133 ShenandoahRetireGCLABClosure cl(resize); 1134 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1135 cl.do_thread(t); 1136 } 1137 workers()->threads_do(&cl); 1138 1139 if (safepoint_workers() != NULL) { 1140 safepoint_workers()->threads_do(&cl); 1141 } 1142 } 1143 1144 // Returns size in bytes 1145 size_t ShenandoahHeap::unsafe_max_tlab_alloc(Thread *thread) const { 1146 if (ShenandoahElasticTLAB) { 1147 // With Elastic TLABs, return the max allowed size, and let the allocation path 1148 // figure out the safe size for current allocation. 1149 return ShenandoahHeapRegion::max_tlab_size_bytes(); 1150 } else { 1151 return MIN2(_free_set->unsafe_peek_free(), ShenandoahHeapRegion::max_tlab_size_bytes()); 1152 } 1153 } 1154 1155 size_t ShenandoahHeap::max_tlab_size() const { 1156 // Returns size in words 1157 return ShenandoahHeapRegion::max_tlab_size_words(); 1158 } 1159 1160 void ShenandoahHeap::collect(GCCause::Cause cause) { 1161 control_thread()->request_gc(cause); 1162 } 1163 1164 void ShenandoahHeap::do_full_collection(bool clear_all_soft_refs) { 1165 //assert(false, "Shouldn't need to do full collections"); 1166 } 1167 1168 HeapWord* ShenandoahHeap::block_start(const void* addr) const { 1169 ShenandoahHeapRegion* r = heap_region_containing(addr); 1170 if (r != NULL) { 1171 return r->block_start(addr); 1172 } 1173 return NULL; 1174 } 1175 1176 bool ShenandoahHeap::block_is_obj(const HeapWord* addr) const { 1177 ShenandoahHeapRegion* r = heap_region_containing(addr); 1178 return r->block_is_obj(addr); 1179 } 1180 1181 bool ShenandoahHeap::print_location(outputStream* st, void* addr) const { 1182 return BlockLocationPrinter<ShenandoahHeap>::print_location(st, addr); 1183 } 1184 1185 void ShenandoahHeap::prepare_for_verify() { 1186 if (SafepointSynchronize::is_at_safepoint() && UseTLAB) { 1187 labs_make_parsable(); 1188 } 1189 } 1190 1191 void ShenandoahHeap::gc_threads_do(ThreadClosure* tcl) const { 1192 tcl->do_thread(_control_thread); 1193 workers()->threads_do(tcl); 1194 if (_safepoint_workers != NULL) { 1195 _safepoint_workers->threads_do(tcl); 1196 } 1197 if (ShenandoahStringDedup::is_enabled()) { 1198 ShenandoahStringDedup::threads_do(tcl); 1199 } 1200 } 1201 1202 void ShenandoahHeap::print_tracing_info() const { 1203 LogTarget(Info, gc, stats) lt; 1204 if (lt.is_enabled()) { 1205 ResourceMark rm; 1206 LogStream ls(lt); 1207 1208 phase_timings()->print_global_on(&ls); 1209 1210 ls.cr(); 1211 ls.cr(); 1212 1213 shenandoah_policy()->print_gc_stats(&ls); 1214 1215 ls.cr(); 1216 ls.cr(); 1217 } 1218 } 1219 1220 void ShenandoahHeap::verify(VerifyOption vo) { 1221 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1222 if (ShenandoahVerify) { 1223 verifier()->verify_generic(vo); 1224 } else { 1225 // TODO: Consider allocating verification bitmaps on demand, 1226 // and turn this on unconditionally. 1227 } 1228 } 1229 } 1230 size_t ShenandoahHeap::tlab_capacity(Thread *thr) const { 1231 return _free_set->capacity(); 1232 } 1233 1234 class ObjectIterateScanRootClosure : public BasicOopIterateClosure { 1235 private: 1236 MarkBitMap* _bitmap; 1237 ShenandoahScanObjectStack* _oop_stack; 1238 ShenandoahHeap* const _heap; 1239 ShenandoahMarkingContext* const _marking_context; 1240 1241 template <class T> 1242 void do_oop_work(T* p) { 1243 T o = RawAccess<>::oop_load(p); 1244 if (!CompressedOops::is_null(o)) { 1245 oop obj = CompressedOops::decode_not_null(o); 1246 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1247 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1248 return; 1249 } 1250 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1251 1252 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1253 if (!_bitmap->is_marked(obj)) { 1254 _bitmap->mark(obj); 1255 _oop_stack->push(obj); 1256 } 1257 } 1258 } 1259 public: 1260 ObjectIterateScanRootClosure(MarkBitMap* bitmap, ShenandoahScanObjectStack* oop_stack) : 1261 _bitmap(bitmap), _oop_stack(oop_stack), _heap(ShenandoahHeap::heap()), 1262 _marking_context(_heap->marking_context()) {} 1263 void do_oop(oop* p) { do_oop_work(p); } 1264 void do_oop(narrowOop* p) { do_oop_work(p); } 1265 }; 1266 1267 /* 1268 * This is public API, used in preparation of object_iterate(). 1269 * Since we don't do linear scan of heap in object_iterate() (see comment below), we don't 1270 * need to make the heap parsable. For Shenandoah-internal linear heap scans that we can 1271 * control, we call SH::tlabs_retire, SH::gclabs_retire. 1272 */ 1273 void ShenandoahHeap::ensure_parsability(bool retire_tlabs) { 1274 // No-op. 1275 } 1276 1277 /* 1278 * Iterates objects in the heap. This is public API, used for, e.g., heap dumping. 1279 * 1280 * We cannot safely iterate objects by doing a linear scan at random points in time. Linear 1281 * scanning needs to deal with dead objects, which may have dead Klass* pointers (e.g. 1282 * calling oopDesc::size() would crash) or dangling reference fields (crashes) etc. Linear 1283 * scanning therefore depends on having a valid marking bitmap to support it. However, we only 1284 * have a valid marking bitmap after successful marking. In particular, we *don't* have a valid 1285 * marking bitmap during marking, after aborted marking or during/after cleanup (when we just 1286 * wiped the bitmap in preparation for next marking). 1287 * 1288 * For all those reasons, we implement object iteration as a single marking traversal, reporting 1289 * objects as we mark+traverse through the heap, starting from GC roots. JVMTI IterateThroughHeap 1290 * is allowed to report dead objects, but is not required to do so. 1291 */ 1292 void ShenandoahHeap::object_iterate(ObjectClosure* cl) { 1293 // Reset bitmap 1294 if (!prepare_aux_bitmap_for_iteration()) 1295 return; 1296 1297 ShenandoahScanObjectStack oop_stack; 1298 ObjectIterateScanRootClosure oops(&_aux_bit_map, &oop_stack); 1299 // Seed the stack with root scan 1300 scan_roots_for_iteration(&oop_stack, &oops); 1301 1302 // Work through the oop stack to traverse heap 1303 while (! oop_stack.is_empty()) { 1304 oop obj = oop_stack.pop(); 1305 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1306 shenandoah_assert_not_in_cset_except(NULL, obj, cancelled_gc()); 1307 cl->do_object(obj); 1308 obj->oop_iterate(&oops); 1309 } 1310 1311 assert(oop_stack.is_empty(), "should be empty"); 1312 // Reclaim bitmap 1313 reclaim_aux_bitmap_for_iteration(); 1314 } 1315 1316 bool ShenandoahHeap::prepare_aux_bitmap_for_iteration() { 1317 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1318 1319 if (!_aux_bitmap_region_special && !os::commit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size(), false)) { 1320 log_warning(gc)("Could not commit native memory for auxiliary marking bitmap for heap iteration"); 1321 return false; 1322 } 1323 // Reset bitmap 1324 _aux_bit_map.clear(); 1325 return true; 1326 } 1327 1328 void ShenandoahHeap::scan_roots_for_iteration(ShenandoahScanObjectStack* oop_stack, ObjectIterateScanRootClosure* oops) { 1329 // Process GC roots according to current GC cycle 1330 // This populates the work stack with initial objects 1331 // It is important to relinquish the associated locks before diving 1332 // into heap dumper 1333 ShenandoahHeapIterationRootScanner rp; 1334 rp.roots_do(oops); 1335 } 1336 1337 void ShenandoahHeap::reclaim_aux_bitmap_for_iteration() { 1338 if (!_aux_bitmap_region_special && !os::uncommit_memory((char*)_aux_bitmap_region.start(), _aux_bitmap_region.byte_size())) { 1339 log_warning(gc)("Could not uncommit native memory for auxiliary marking bitmap for heap iteration"); 1340 } 1341 } 1342 1343 // Closure for parallelly iterate objects 1344 class ShenandoahObjectIterateParScanClosure : public BasicOopIterateClosure { 1345 private: 1346 MarkBitMap* _bitmap; 1347 ShenandoahObjToScanQueue* _queue; 1348 ShenandoahHeap* const _heap; 1349 ShenandoahMarkingContext* const _marking_context; 1350 1351 template <class T> 1352 void do_oop_work(T* p) { 1353 T o = RawAccess<>::oop_load(p); 1354 if (!CompressedOops::is_null(o)) { 1355 oop obj = CompressedOops::decode_not_null(o); 1356 if (_heap->is_concurrent_weak_root_in_progress() && !_marking_context->is_marked(obj)) { 1357 // There may be dead oops in weak roots in concurrent root phase, do not touch them. 1358 return; 1359 } 1360 obj = ShenandoahBarrierSet::barrier_set()->load_reference_barrier(obj); 1361 1362 assert(oopDesc::is_oop(obj), "Must be a valid oop"); 1363 if (_bitmap->par_mark(obj)) { 1364 _queue->push(ShenandoahMarkTask(obj)); 1365 } 1366 } 1367 } 1368 public: 1369 ShenandoahObjectIterateParScanClosure(MarkBitMap* bitmap, ShenandoahObjToScanQueue* q) : 1370 _bitmap(bitmap), _queue(q), _heap(ShenandoahHeap::heap()), 1371 _marking_context(_heap->marking_context()) {} 1372 void do_oop(oop* p) { do_oop_work(p); } 1373 void do_oop(narrowOop* p) { do_oop_work(p); } 1374 }; 1375 1376 // Object iterator for parallel heap iteraion. 1377 // The root scanning phase happenes in construction as a preparation of 1378 // parallel marking queues. 1379 // Every worker processes it's own marking queue. work-stealing is used 1380 // to balance workload. 1381 class ShenandoahParallelObjectIterator : public ParallelObjectIteratorImpl { 1382 private: 1383 uint _num_workers; 1384 bool _init_ready; 1385 MarkBitMap* _aux_bit_map; 1386 ShenandoahHeap* _heap; 1387 ShenandoahScanObjectStack _roots_stack; // global roots stack 1388 ShenandoahObjToScanQueueSet* _task_queues; 1389 public: 1390 ShenandoahParallelObjectIterator(uint num_workers, MarkBitMap* bitmap) : 1391 _num_workers(num_workers), 1392 _init_ready(false), 1393 _aux_bit_map(bitmap), 1394 _heap(ShenandoahHeap::heap()) { 1395 // Initialize bitmap 1396 _init_ready = _heap->prepare_aux_bitmap_for_iteration(); 1397 if (!_init_ready) { 1398 return; 1399 } 1400 1401 ObjectIterateScanRootClosure oops(_aux_bit_map, &_roots_stack); 1402 _heap->scan_roots_for_iteration(&_roots_stack, &oops); 1403 1404 _init_ready = prepare_worker_queues(); 1405 } 1406 1407 ~ShenandoahParallelObjectIterator() { 1408 // Reclaim bitmap 1409 _heap->reclaim_aux_bitmap_for_iteration(); 1410 // Reclaim queue for workers 1411 if (_task_queues!= NULL) { 1412 for (uint i = 0; i < _num_workers; ++i) { 1413 ShenandoahObjToScanQueue* q = _task_queues->queue(i); 1414 if (q != NULL) { 1415 delete q; 1416 _task_queues->register_queue(i, NULL); 1417 } 1418 } 1419 delete _task_queues; 1420 _task_queues = NULL; 1421 } 1422 } 1423 1424 virtual void object_iterate(ObjectClosure* cl, uint worker_id) { 1425 if (_init_ready) { 1426 object_iterate_parallel(cl, worker_id, _task_queues); 1427 } 1428 } 1429 1430 private: 1431 // Divide global root_stack into worker queues 1432 bool prepare_worker_queues() { 1433 _task_queues = new ShenandoahObjToScanQueueSet((int) _num_workers); 1434 // Initialize queues for every workers 1435 for (uint i = 0; i < _num_workers; ++i) { 1436 ShenandoahObjToScanQueue* task_queue = new ShenandoahObjToScanQueue(); 1437 task_queue->initialize(); 1438 _task_queues->register_queue(i, task_queue); 1439 } 1440 // Divide roots among the workers. Assume that object referencing distribution 1441 // is related with root kind, use round-robin to make every worker have same chance 1442 // to process every kind of roots 1443 size_t roots_num = _roots_stack.size(); 1444 if (roots_num == 0) { 1445 // No work to do 1446 return false; 1447 } 1448 1449 for (uint j = 0; j < roots_num; j++) { 1450 uint stack_id = j % _num_workers; 1451 oop obj = _roots_stack.pop(); 1452 _task_queues->queue(stack_id)->push(ShenandoahMarkTask(obj)); 1453 } 1454 return true; 1455 } 1456 1457 void object_iterate_parallel(ObjectClosure* cl, 1458 uint worker_id, 1459 ShenandoahObjToScanQueueSet* queue_set) { 1460 assert(SafepointSynchronize::is_at_safepoint(), "safe iteration is only available during safepoints"); 1461 assert(queue_set != NULL, "task queue must not be NULL"); 1462 1463 ShenandoahObjToScanQueue* q = queue_set->queue(worker_id); 1464 assert(q != NULL, "object iterate queue must not be NULL"); 1465 1466 ShenandoahMarkTask t; 1467 ShenandoahObjectIterateParScanClosure oops(_aux_bit_map, q); 1468 1469 // Work through the queue to traverse heap. 1470 // Steal when there is no task in queue. 1471 while (q->pop(t) || queue_set->steal(worker_id, t)) { 1472 oop obj = t.obj(); 1473 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1474 cl->do_object(obj); 1475 obj->oop_iterate(&oops); 1476 } 1477 assert(q->is_empty(), "should be empty"); 1478 } 1479 }; 1480 1481 ParallelObjectIteratorImpl* ShenandoahHeap::parallel_object_iterator(uint workers) { 1482 return new ShenandoahParallelObjectIterator(workers, &_aux_bit_map); 1483 } 1484 1485 // Keep alive an object that was loaded with AS_NO_KEEPALIVE. 1486 void ShenandoahHeap::keep_alive(oop obj) { 1487 if (is_concurrent_mark_in_progress() && (obj != NULL)) { 1488 ShenandoahBarrierSet::barrier_set()->enqueue(obj); 1489 } 1490 } 1491 1492 void ShenandoahHeap::heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1493 for (size_t i = 0; i < num_regions(); i++) { 1494 ShenandoahHeapRegion* current = get_region(i); 1495 blk->heap_region_do(current); 1496 } 1497 } 1498 1499 class ShenandoahParallelHeapRegionTask : public AbstractGangTask { 1500 private: 1501 ShenandoahHeap* const _heap; 1502 ShenandoahHeapRegionClosure* const _blk; 1503 1504 shenandoah_padding(0); 1505 volatile size_t _index; 1506 shenandoah_padding(1); 1507 1508 public: 1509 ShenandoahParallelHeapRegionTask(ShenandoahHeapRegionClosure* blk) : 1510 AbstractGangTask("Shenandoah Parallel Region Operation"), 1511 _heap(ShenandoahHeap::heap()), _blk(blk), _index(0) {} 1512 1513 void work(uint worker_id) { 1514 ShenandoahParallelWorkerSession worker_session(worker_id); 1515 size_t stride = ShenandoahParallelRegionStride; 1516 1517 size_t max = _heap->num_regions(); 1518 while (Atomic::load(&_index) < max) { 1519 size_t cur = Atomic::fetch_and_add(&_index, stride, memory_order_relaxed); 1520 size_t start = cur; 1521 size_t end = MIN2(cur + stride, max); 1522 if (start >= max) break; 1523 1524 for (size_t i = cur; i < end; i++) { 1525 ShenandoahHeapRegion* current = _heap->get_region(i); 1526 _blk->heap_region_do(current); 1527 } 1528 } 1529 } 1530 }; 1531 1532 void ShenandoahHeap::parallel_heap_region_iterate(ShenandoahHeapRegionClosure* blk) const { 1533 assert(blk->is_thread_safe(), "Only thread-safe closures here"); 1534 if (num_regions() > ShenandoahParallelRegionStride) { 1535 ShenandoahParallelHeapRegionTask task(blk); 1536 workers()->run_task(&task); 1537 } else { 1538 heap_region_iterate(blk); 1539 } 1540 } 1541 1542 class ShenandoahInitMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1543 private: 1544 ShenandoahMarkingContext* const _ctx; 1545 public: 1546 ShenandoahInitMarkUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1547 1548 void heap_region_do(ShenandoahHeapRegion* r) { 1549 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1550 if (r->is_active()) { 1551 // Check if region needs updating its TAMS. We have updated it already during concurrent 1552 // reset, so it is very likely we don't need to do another write here. 1553 if (_ctx->top_at_mark_start(r) != r->top()) { 1554 _ctx->capture_top_at_mark_start(r); 1555 } 1556 } else { 1557 assert(_ctx->top_at_mark_start(r) == r->top(), 1558 "Region " SIZE_FORMAT " should already have correct TAMS", r->index()); 1559 } 1560 } 1561 1562 bool is_thread_safe() { return true; } 1563 }; 1564 1565 class ShenandoahRendezvousClosure : public HandshakeClosure { 1566 public: 1567 inline ShenandoahRendezvousClosure() : HandshakeClosure("ShenandoahRendezvous") {} 1568 inline void do_thread(Thread* thread) {} 1569 }; 1570 1571 void ShenandoahHeap::rendezvous_threads() { 1572 ShenandoahRendezvousClosure cl; 1573 Handshake::execute(&cl); 1574 } 1575 1576 void ShenandoahHeap::recycle_trash() { 1577 free_set()->recycle_trash(); 1578 } 1579 1580 class ShenandoahResetUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1581 private: 1582 ShenandoahMarkingContext* const _ctx; 1583 public: 1584 ShenandoahResetUpdateRegionStateClosure() : _ctx(ShenandoahHeap::heap()->marking_context()) {} 1585 1586 void heap_region_do(ShenandoahHeapRegion* r) { 1587 if (r->is_active()) { 1588 // Reset live data and set TAMS optimistically. We would recheck these under the pause 1589 // anyway to capture any updates that happened since now. 1590 r->clear_live_data(); 1591 _ctx->capture_top_at_mark_start(r); 1592 } 1593 } 1594 1595 bool is_thread_safe() { return true; } 1596 }; 1597 1598 void ShenandoahHeap::prepare_gc() { 1599 reset_mark_bitmap(); 1600 1601 ShenandoahResetUpdateRegionStateClosure cl; 1602 parallel_heap_region_iterate(&cl); 1603 } 1604 1605 class ShenandoahFinalMarkUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 1606 private: 1607 ShenandoahMarkingContext* const _ctx; 1608 ShenandoahHeapLock* const _lock; 1609 1610 public: 1611 ShenandoahFinalMarkUpdateRegionStateClosure() : 1612 _ctx(ShenandoahHeap::heap()->complete_marking_context()), _lock(ShenandoahHeap::heap()->lock()) {} 1613 1614 void heap_region_do(ShenandoahHeapRegion* r) { 1615 if (r->is_active()) { 1616 // All allocations past TAMS are implicitly live, adjust the region data. 1617 // Bitmaps/TAMS are swapped at this point, so we need to poll complete bitmap. 1618 HeapWord *tams = _ctx->top_at_mark_start(r); 1619 HeapWord *top = r->top(); 1620 if (top > tams) { 1621 r->increase_live_data_alloc_words(pointer_delta(top, tams)); 1622 } 1623 1624 // We are about to select the collection set, make sure it knows about 1625 // current pinning status. Also, this allows trashing more regions that 1626 // now have their pinning status dropped. 1627 if (r->is_pinned()) { 1628 if (r->pin_count() == 0) { 1629 ShenandoahHeapLocker locker(_lock); 1630 r->make_unpinned(); 1631 } 1632 } else { 1633 if (r->pin_count() > 0) { 1634 ShenandoahHeapLocker locker(_lock); 1635 r->make_pinned(); 1636 } 1637 } 1638 1639 // Remember limit for updating refs. It's guaranteed that we get no 1640 // from-space-refs written from here on. 1641 r->set_update_watermark_at_safepoint(r->top()); 1642 } else { 1643 assert(!r->has_live(), "Region " SIZE_FORMAT " should have no live data", r->index()); 1644 assert(_ctx->top_at_mark_start(r) == r->top(), 1645 "Region " SIZE_FORMAT " should have correct TAMS", r->index()); 1646 } 1647 } 1648 1649 bool is_thread_safe() { return true; } 1650 }; 1651 1652 void ShenandoahHeap::prepare_regions_and_collection_set(bool concurrent) { 1653 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 1654 { 1655 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_update_region_states : 1656 ShenandoahPhaseTimings::degen_gc_final_update_region_states); 1657 ShenandoahFinalMarkUpdateRegionStateClosure cl; 1658 parallel_heap_region_iterate(&cl); 1659 1660 assert_pinned_region_status(); 1661 } 1662 1663 { 1664 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::choose_cset : 1665 ShenandoahPhaseTimings::degen_gc_choose_cset); 1666 ShenandoahHeapLocker locker(lock()); 1667 _collection_set->clear(); 1668 heuristics()->choose_collection_set(_collection_set); 1669 } 1670 1671 { 1672 ShenandoahGCPhase phase(concurrent ? ShenandoahPhaseTimings::final_rebuild_freeset : 1673 ShenandoahPhaseTimings::degen_gc_final_rebuild_freeset); 1674 ShenandoahHeapLocker locker(lock()); 1675 _free_set->rebuild(); 1676 } 1677 } 1678 1679 void ShenandoahHeap::do_class_unloading() { 1680 _unloader.unload(); 1681 } 1682 1683 void ShenandoahHeap::stw_weak_refs(bool full_gc) { 1684 // Weak refs processing 1685 ShenandoahPhaseTimings::Phase phase = full_gc ? ShenandoahPhaseTimings::full_gc_weakrefs 1686 : ShenandoahPhaseTimings::degen_gc_weakrefs; 1687 ShenandoahTimingsTracker t(phase); 1688 ShenandoahGCWorkerPhase worker_phase(phase); 1689 ref_processor()->process_references(phase, workers(), false /* concurrent */); 1690 } 1691 1692 void ShenandoahHeap::prepare_update_heap_references(bool concurrent) { 1693 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "must be at safepoint"); 1694 1695 // Evacuation is over, no GCLABs are needed anymore. GCLABs are under URWM, so we need to 1696 // make them parsable for update code to work correctly. Plus, we can compute new sizes 1697 // for future GCLABs here. 1698 if (UseTLAB) { 1699 ShenandoahGCPhase phase(concurrent ? 1700 ShenandoahPhaseTimings::init_update_refs_manage_gclabs : 1701 ShenandoahPhaseTimings::degen_gc_init_update_refs_manage_gclabs); 1702 gclabs_retire(ResizeTLAB); 1703 } 1704 1705 _update_refs_iterator.reset(); 1706 } 1707 1708 void ShenandoahHeap::set_gc_state_all_threads(char state) { 1709 for (JavaThreadIteratorWithHandle jtiwh; JavaThread *t = jtiwh.next(); ) { 1710 ShenandoahThreadLocalData::set_gc_state(t, state); 1711 } 1712 } 1713 1714 void ShenandoahHeap::set_gc_state_mask(uint mask, bool value) { 1715 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Should really be Shenandoah safepoint"); 1716 _gc_state.set_cond(mask, value); 1717 set_gc_state_all_threads(_gc_state.raw_value()); 1718 } 1719 1720 void ShenandoahHeap::set_concurrent_mark_in_progress(bool in_progress) { 1721 assert(!has_forwarded_objects(), "Not expected before/after mark phase"); 1722 set_gc_state_mask(MARKING, in_progress); 1723 ShenandoahBarrierSet::satb_mark_queue_set().set_active_all_threads(in_progress, !in_progress); 1724 } 1725 1726 void ShenandoahHeap::set_evacuation_in_progress(bool in_progress) { 1727 assert(ShenandoahSafepoint::is_at_shenandoah_safepoint(), "Only call this at safepoint"); 1728 set_gc_state_mask(EVACUATION, in_progress); 1729 } 1730 1731 void ShenandoahHeap::set_concurrent_strong_root_in_progress(bool in_progress) { 1732 if (in_progress) { 1733 _concurrent_strong_root_in_progress.set(); 1734 } else { 1735 _concurrent_strong_root_in_progress.unset(); 1736 } 1737 } 1738 1739 void ShenandoahHeap::set_concurrent_weak_root_in_progress(bool cond) { 1740 set_gc_state_mask(WEAK_ROOTS, cond); 1741 } 1742 1743 GCTracer* ShenandoahHeap::tracer() { 1744 return shenandoah_policy()->tracer(); 1745 } 1746 1747 size_t ShenandoahHeap::tlab_used(Thread* thread) const { 1748 return _free_set->used(); 1749 } 1750 1751 bool ShenandoahHeap::try_cancel_gc() { 1752 jbyte prev = _cancelled_gc.cmpxchg(CANCELLED, CANCELLABLE); 1753 return prev == CANCELLABLE; 1754 } 1755 1756 void ShenandoahHeap::cancel_gc(GCCause::Cause cause) { 1757 if (try_cancel_gc()) { 1758 FormatBuffer<> msg("Cancelling GC: %s", GCCause::to_string(cause)); 1759 log_info(gc)("%s", msg.buffer()); 1760 Events::log(Thread::current(), "%s", msg.buffer()); 1761 } 1762 } 1763 1764 uint ShenandoahHeap::max_workers() { 1765 return _max_workers; 1766 } 1767 1768 void ShenandoahHeap::stop() { 1769 // The shutdown sequence should be able to terminate when GC is running. 1770 1771 // Step 0. Notify policy to disable event recording. 1772 _shenandoah_policy->record_shutdown(); 1773 1774 // Step 1. Notify control thread that we are in shutdown. 1775 // Note that we cannot do that with stop(), because stop() is blocking and waits for the actual shutdown. 1776 // Doing stop() here would wait for the normal GC cycle to complete, never falling through to cancel below. 1777 control_thread()->prepare_for_graceful_shutdown(); 1778 1779 // Step 2. Notify GC workers that we are cancelling GC. 1780 cancel_gc(GCCause::_shenandoah_stop_vm); 1781 1782 // Step 3. Wait until GC worker exits normally. 1783 control_thread()->stop(); 1784 } 1785 1786 void ShenandoahHeap::stw_unload_classes(bool full_gc) { 1787 if (!unload_classes()) return; 1788 // Unload classes and purge SystemDictionary. 1789 { 1790 ShenandoahPhaseTimings::Phase phase = full_gc ? 1791 ShenandoahPhaseTimings::full_gc_purge_class_unload : 1792 ShenandoahPhaseTimings::degen_gc_purge_class_unload; 1793 ShenandoahGCPhase gc_phase(phase); 1794 ShenandoahGCWorkerPhase worker_phase(phase); 1795 bool purged_class = SystemDictionary::do_unloading(gc_timer()); 1796 1797 ShenandoahIsAliveSelector is_alive; 1798 uint num_workers = _workers->active_workers(); 1799 ShenandoahClassUnloadingTask unlink_task(phase, is_alive.is_alive_closure(), num_workers, purged_class); 1800 _workers->run_task(&unlink_task); 1801 } 1802 1803 { 1804 ShenandoahGCPhase phase(full_gc ? 1805 ShenandoahPhaseTimings::full_gc_purge_cldg : 1806 ShenandoahPhaseTimings::degen_gc_purge_cldg); 1807 ClassLoaderDataGraph::purge(/*at_safepoint*/true); 1808 } 1809 // Resize and verify metaspace 1810 MetaspaceGC::compute_new_size(); 1811 DEBUG_ONLY(MetaspaceUtils::verify();) 1812 } 1813 1814 // Weak roots are either pre-evacuated (final mark) or updated (final updaterefs), 1815 // so they should not have forwarded oops. 1816 // However, we do need to "null" dead oops in the roots, if can not be done 1817 // in concurrent cycles. 1818 void ShenandoahHeap::stw_process_weak_roots(bool full_gc) { 1819 uint num_workers = _workers->active_workers(); 1820 ShenandoahPhaseTimings::Phase timing_phase = full_gc ? 1821 ShenandoahPhaseTimings::full_gc_purge_weak_par : 1822 ShenandoahPhaseTimings::degen_gc_purge_weak_par; 1823 ShenandoahGCPhase phase(timing_phase); 1824 ShenandoahGCWorkerPhase worker_phase(timing_phase); 1825 // Cleanup weak roots 1826 if (has_forwarded_objects()) { 1827 ShenandoahForwardedIsAliveClosure is_alive; 1828 ShenandoahUpdateRefsClosure keep_alive; 1829 ShenandoahParallelWeakRootsCleaningTask<ShenandoahForwardedIsAliveClosure, ShenandoahUpdateRefsClosure> 1830 cleaning_task(timing_phase, &is_alive, &keep_alive, num_workers); 1831 _workers->run_task(&cleaning_task); 1832 } else { 1833 ShenandoahIsAliveClosure is_alive; 1834 #ifdef ASSERT 1835 ShenandoahAssertNotForwardedClosure verify_cl; 1836 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, ShenandoahAssertNotForwardedClosure> 1837 cleaning_task(timing_phase, &is_alive, &verify_cl, num_workers); 1838 #else 1839 ShenandoahParallelWeakRootsCleaningTask<ShenandoahIsAliveClosure, DoNothingClosure> 1840 cleaning_task(timing_phase, &is_alive, &do_nothing_cl, num_workers); 1841 #endif 1842 _workers->run_task(&cleaning_task); 1843 } 1844 } 1845 1846 void ShenandoahHeap::parallel_cleaning(bool full_gc) { 1847 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1848 assert(is_stw_gc_in_progress(), "Only for Degenerated and Full GC"); 1849 ShenandoahGCPhase phase(full_gc ? 1850 ShenandoahPhaseTimings::full_gc_purge : 1851 ShenandoahPhaseTimings::degen_gc_purge); 1852 stw_weak_refs(full_gc); 1853 stw_process_weak_roots(full_gc); 1854 stw_unload_classes(full_gc); 1855 } 1856 1857 void ShenandoahHeap::set_has_forwarded_objects(bool cond) { 1858 set_gc_state_mask(HAS_FORWARDED, cond); 1859 } 1860 1861 void ShenandoahHeap::set_unload_classes(bool uc) { 1862 _unload_classes.set_cond(uc); 1863 } 1864 1865 bool ShenandoahHeap::unload_classes() const { 1866 return _unload_classes.is_set(); 1867 } 1868 1869 address ShenandoahHeap::in_cset_fast_test_addr() { 1870 ShenandoahHeap* heap = ShenandoahHeap::heap(); 1871 assert(heap->collection_set() != NULL, "Sanity"); 1872 return (address) heap->collection_set()->biased_map_address(); 1873 } 1874 1875 address ShenandoahHeap::cancelled_gc_addr() { 1876 return (address) ShenandoahHeap::heap()->_cancelled_gc.addr_of(); 1877 } 1878 1879 address ShenandoahHeap::gc_state_addr() { 1880 return (address) ShenandoahHeap::heap()->_gc_state.addr_of(); 1881 } 1882 1883 size_t ShenandoahHeap::bytes_allocated_since_gc_start() { 1884 return Atomic::load(&_bytes_allocated_since_gc_start); 1885 } 1886 1887 void ShenandoahHeap::reset_bytes_allocated_since_gc_start() { 1888 Atomic::store(&_bytes_allocated_since_gc_start, (size_t)0); 1889 } 1890 1891 void ShenandoahHeap::set_degenerated_gc_in_progress(bool in_progress) { 1892 _degenerated_gc_in_progress.set_cond(in_progress); 1893 } 1894 1895 void ShenandoahHeap::set_full_gc_in_progress(bool in_progress) { 1896 _full_gc_in_progress.set_cond(in_progress); 1897 } 1898 1899 void ShenandoahHeap::set_full_gc_move_in_progress(bool in_progress) { 1900 assert (is_full_gc_in_progress(), "should be"); 1901 _full_gc_move_in_progress.set_cond(in_progress); 1902 } 1903 1904 void ShenandoahHeap::set_update_refs_in_progress(bool in_progress) { 1905 set_gc_state_mask(UPDATEREFS, in_progress); 1906 } 1907 1908 void ShenandoahHeap::register_nmethod(nmethod* nm) { 1909 ShenandoahCodeRoots::register_nmethod(nm); 1910 } 1911 1912 void ShenandoahHeap::unregister_nmethod(nmethod* nm) { 1913 ShenandoahCodeRoots::unregister_nmethod(nm); 1914 } 1915 1916 void ShenandoahHeap::flush_nmethod(nmethod* nm) { 1917 ShenandoahCodeRoots::flush_nmethod(nm); 1918 } 1919 1920 oop ShenandoahHeap::pin_object(JavaThread* thr, oop o) { 1921 heap_region_containing(o)->record_pin(); 1922 return o; 1923 } 1924 1925 void ShenandoahHeap::unpin_object(JavaThread* thr, oop o) { 1926 ShenandoahHeapRegion* r = heap_region_containing(o); 1927 assert(r != NULL, "Sanity"); 1928 assert(r->pin_count() > 0, "Region " SIZE_FORMAT " should have non-zero pins", r->index()); 1929 r->record_unpin(); 1930 } 1931 1932 void ShenandoahHeap::sync_pinned_region_status() { 1933 ShenandoahHeapLocker locker(lock()); 1934 1935 for (size_t i = 0; i < num_regions(); i++) { 1936 ShenandoahHeapRegion *r = get_region(i); 1937 if (r->is_active()) { 1938 if (r->is_pinned()) { 1939 if (r->pin_count() == 0) { 1940 r->make_unpinned(); 1941 } 1942 } else { 1943 if (r->pin_count() > 0) { 1944 r->make_pinned(); 1945 } 1946 } 1947 } 1948 } 1949 1950 assert_pinned_region_status(); 1951 } 1952 1953 #ifdef ASSERT 1954 void ShenandoahHeap::assert_pinned_region_status() { 1955 for (size_t i = 0; i < num_regions(); i++) { 1956 ShenandoahHeapRegion* r = get_region(i); 1957 assert((r->is_pinned() && r->pin_count() > 0) || (!r->is_pinned() && r->pin_count() == 0), 1958 "Region " SIZE_FORMAT " pinning status is inconsistent", i); 1959 } 1960 } 1961 #endif 1962 1963 ConcurrentGCTimer* ShenandoahHeap::gc_timer() const { 1964 return _gc_timer; 1965 } 1966 1967 void ShenandoahHeap::prepare_concurrent_roots() { 1968 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1969 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1970 set_concurrent_strong_root_in_progress(!collection_set()->is_empty()); 1971 set_concurrent_weak_root_in_progress(true); 1972 if (unload_classes()) { 1973 _unloader.prepare(); 1974 } 1975 } 1976 1977 void ShenandoahHeap::finish_concurrent_roots() { 1978 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 1979 assert(!is_stw_gc_in_progress(), "Only concurrent GC"); 1980 if (unload_classes()) { 1981 _unloader.finish(); 1982 } 1983 } 1984 1985 #ifdef ASSERT 1986 void ShenandoahHeap::assert_gc_workers(uint nworkers) { 1987 assert(nworkers > 0 && nworkers <= max_workers(), "Sanity"); 1988 1989 if (ShenandoahSafepoint::is_at_shenandoah_safepoint()) { 1990 if (UseDynamicNumberOfGCThreads) { 1991 assert(nworkers <= ParallelGCThreads, "Cannot use more than it has"); 1992 } else { 1993 // Use ParallelGCThreads inside safepoints 1994 assert(nworkers == ParallelGCThreads, "Use ParallelGCThreads within safepoints"); 1995 } 1996 } else { 1997 if (UseDynamicNumberOfGCThreads) { 1998 assert(nworkers <= ConcGCThreads, "Cannot use more than it has"); 1999 } else { 2000 // Use ConcGCThreads outside safepoints 2001 assert(nworkers == ConcGCThreads, "Use ConcGCThreads outside safepoints"); 2002 } 2003 } 2004 } 2005 #endif 2006 2007 ShenandoahVerifier* ShenandoahHeap::verifier() { 2008 guarantee(ShenandoahVerify, "Should be enabled"); 2009 assert (_verifier != NULL, "sanity"); 2010 return _verifier; 2011 } 2012 2013 template<bool CONCURRENT> 2014 class ShenandoahUpdateHeapRefsTask : public AbstractGangTask { 2015 private: 2016 ShenandoahHeap* _heap; 2017 ShenandoahRegionIterator* _regions; 2018 public: 2019 ShenandoahUpdateHeapRefsTask(ShenandoahRegionIterator* regions) : 2020 AbstractGangTask("Shenandoah Update References"), 2021 _heap(ShenandoahHeap::heap()), 2022 _regions(regions) { 2023 } 2024 2025 void work(uint worker_id) { 2026 if (CONCURRENT) { 2027 ShenandoahConcurrentWorkerSession worker_session(worker_id); 2028 ShenandoahSuspendibleThreadSetJoiner stsj(ShenandoahSuspendibleWorkers); 2029 do_work<ShenandoahConcUpdateRefsClosure>(); 2030 } else { 2031 ShenandoahParallelWorkerSession worker_session(worker_id); 2032 do_work<ShenandoahSTWUpdateRefsClosure>(); 2033 } 2034 } 2035 2036 private: 2037 template<class T> 2038 void do_work() { 2039 T cl; 2040 ShenandoahHeapRegion* r = _regions->next(); 2041 ShenandoahMarkingContext* const ctx = _heap->complete_marking_context(); 2042 while (r != NULL) { 2043 HeapWord* update_watermark = r->get_update_watermark(); 2044 assert (update_watermark >= r->bottom(), "sanity"); 2045 if (r->is_active() && !r->is_cset()) { 2046 _heap->marked_object_oop_iterate(r, &cl, update_watermark); 2047 } 2048 if (ShenandoahPacing) { 2049 _heap->pacer()->report_updaterefs(pointer_delta(update_watermark, r->bottom())); 2050 } 2051 if (_heap->check_cancelled_gc_and_yield(CONCURRENT)) { 2052 return; 2053 } 2054 r = _regions->next(); 2055 } 2056 } 2057 }; 2058 2059 void ShenandoahHeap::update_heap_references(bool concurrent) { 2060 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2061 2062 if (concurrent) { 2063 ShenandoahUpdateHeapRefsTask<true> task(&_update_refs_iterator); 2064 workers()->run_task(&task); 2065 } else { 2066 ShenandoahUpdateHeapRefsTask<false> task(&_update_refs_iterator); 2067 workers()->run_task(&task); 2068 } 2069 } 2070 2071 2072 class ShenandoahFinalUpdateRefsUpdateRegionStateClosure : public ShenandoahHeapRegionClosure { 2073 private: 2074 ShenandoahHeapLock* const _lock; 2075 2076 public: 2077 ShenandoahFinalUpdateRefsUpdateRegionStateClosure() : _lock(ShenandoahHeap::heap()->lock()) {} 2078 2079 void heap_region_do(ShenandoahHeapRegion* r) { 2080 // Drop unnecessary "pinned" state from regions that does not have CP marks 2081 // anymore, as this would allow trashing them. 2082 2083 if (r->is_active()) { 2084 if (r->is_pinned()) { 2085 if (r->pin_count() == 0) { 2086 ShenandoahHeapLocker locker(_lock); 2087 r->make_unpinned(); 2088 } 2089 } else { 2090 if (r->pin_count() > 0) { 2091 ShenandoahHeapLocker locker(_lock); 2092 r->make_pinned(); 2093 } 2094 } 2095 } 2096 } 2097 2098 bool is_thread_safe() { return true; } 2099 }; 2100 2101 void ShenandoahHeap::update_heap_region_states(bool concurrent) { 2102 assert(SafepointSynchronize::is_at_safepoint(), "Must be at a safepoint"); 2103 assert(!is_full_gc_in_progress(), "Only for concurrent and degenerated GC"); 2104 2105 { 2106 ShenandoahGCPhase phase(concurrent ? 2107 ShenandoahPhaseTimings::final_update_refs_update_region_states : 2108 ShenandoahPhaseTimings::degen_gc_final_update_refs_update_region_states); 2109 ShenandoahFinalUpdateRefsUpdateRegionStateClosure cl; 2110 parallel_heap_region_iterate(&cl); 2111 2112 assert_pinned_region_status(); 2113 } 2114 2115 { 2116 ShenandoahGCPhase phase(concurrent ? 2117 ShenandoahPhaseTimings::final_update_refs_trash_cset : 2118 ShenandoahPhaseTimings::degen_gc_final_update_refs_trash_cset); 2119 trash_cset_regions(); 2120 } 2121 } 2122 2123 void ShenandoahHeap::rebuild_free_set(bool concurrent) { 2124 { 2125 ShenandoahGCPhase phase(concurrent ? 2126 ShenandoahPhaseTimings::final_update_refs_rebuild_freeset : 2127 ShenandoahPhaseTimings::degen_gc_final_update_refs_rebuild_freeset); 2128 ShenandoahHeapLocker locker(lock()); 2129 _free_set->rebuild(); 2130 } 2131 } 2132 2133 void ShenandoahHeap::print_extended_on(outputStream *st) const { 2134 print_on(st); 2135 st->cr(); 2136 print_heap_regions_on(st); 2137 } 2138 2139 bool ShenandoahHeap::is_bitmap_slice_committed(ShenandoahHeapRegion* r, bool skip_self) { 2140 size_t slice = r->index() / _bitmap_regions_per_slice; 2141 2142 size_t regions_from = _bitmap_regions_per_slice * slice; 2143 size_t regions_to = MIN2(num_regions(), _bitmap_regions_per_slice * (slice + 1)); 2144 for (size_t g = regions_from; g < regions_to; g++) { 2145 assert (g / _bitmap_regions_per_slice == slice, "same slice"); 2146 if (skip_self && g == r->index()) continue; 2147 if (get_region(g)->is_committed()) { 2148 return true; 2149 } 2150 } 2151 return false; 2152 } 2153 2154 bool ShenandoahHeap::commit_bitmap_slice(ShenandoahHeapRegion* r) { 2155 shenandoah_assert_heaplocked(); 2156 2157 // Bitmaps in special regions do not need commits 2158 if (_bitmap_region_special) { 2159 return true; 2160 } 2161 2162 if (is_bitmap_slice_committed(r, true)) { 2163 // Some other region from the group is already committed, meaning the bitmap 2164 // slice is already committed, we exit right away. 2165 return true; 2166 } 2167 2168 // Commit the bitmap slice: 2169 size_t slice = r->index() / _bitmap_regions_per_slice; 2170 size_t off = _bitmap_bytes_per_slice * slice; 2171 size_t len = _bitmap_bytes_per_slice; 2172 char* start = (char*) _bitmap_region.start() + off; 2173 2174 if (!os::commit_memory(start, len, false)) { 2175 return false; 2176 } 2177 2178 if (AlwaysPreTouch) { 2179 os::pretouch_memory(start, start + len, _pretouch_bitmap_page_size); 2180 } 2181 2182 return true; 2183 } 2184 2185 bool ShenandoahHeap::uncommit_bitmap_slice(ShenandoahHeapRegion *r) { 2186 shenandoah_assert_heaplocked(); 2187 2188 // Bitmaps in special regions do not need uncommits 2189 if (_bitmap_region_special) { 2190 return true; 2191 } 2192 2193 if (is_bitmap_slice_committed(r, true)) { 2194 // Some other region from the group is still committed, meaning the bitmap 2195 // slice is should stay committed, exit right away. 2196 return true; 2197 } 2198 2199 // Uncommit the bitmap slice: 2200 size_t slice = r->index() / _bitmap_regions_per_slice; 2201 size_t off = _bitmap_bytes_per_slice * slice; 2202 size_t len = _bitmap_bytes_per_slice; 2203 if (!os::uncommit_memory((char*)_bitmap_region.start() + off, len)) { 2204 return false; 2205 } 2206 return true; 2207 } 2208 2209 void ShenandoahHeap::safepoint_synchronize_begin() { 2210 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) { 2211 SuspendibleThreadSet::synchronize(); 2212 } 2213 } 2214 2215 void ShenandoahHeap::safepoint_synchronize_end() { 2216 if (ShenandoahSuspendibleWorkers || UseStringDeduplication) { 2217 SuspendibleThreadSet::desynchronize(); 2218 } 2219 } 2220 2221 void ShenandoahHeap::entry_uncommit(double shrink_before, size_t shrink_until) { 2222 static const char *msg = "Concurrent uncommit"; 2223 ShenandoahConcurrentPhase gc_phase(msg, ShenandoahPhaseTimings::conc_uncommit, true /* log_heap_usage */); 2224 EventMark em("%s", msg); 2225 2226 op_uncommit(shrink_before, shrink_until); 2227 } 2228 2229 void ShenandoahHeap::try_inject_alloc_failure() { 2230 if (ShenandoahAllocFailureALot && !cancelled_gc() && ((os::random() % 1000) > 950)) { 2231 _inject_alloc_failure.set(); 2232 os::naked_short_sleep(1); 2233 if (cancelled_gc()) { 2234 log_info(gc)("Allocation failure was successfully injected"); 2235 } 2236 } 2237 } 2238 2239 bool ShenandoahHeap::should_inject_alloc_failure() { 2240 return _inject_alloc_failure.is_set() && _inject_alloc_failure.try_unset(); 2241 } 2242 2243 void ShenandoahHeap::initialize_serviceability() { 2244 _memory_pool = new ShenandoahMemoryPool(this); 2245 _cycle_memory_manager.add_pool(_memory_pool); 2246 _stw_memory_manager.add_pool(_memory_pool); 2247 } 2248 2249 GrowableArray<GCMemoryManager*> ShenandoahHeap::memory_managers() { 2250 GrowableArray<GCMemoryManager*> memory_managers(2); 2251 memory_managers.append(&_cycle_memory_manager); 2252 memory_managers.append(&_stw_memory_manager); 2253 return memory_managers; 2254 } 2255 2256 GrowableArray<MemoryPool*> ShenandoahHeap::memory_pools() { 2257 GrowableArray<MemoryPool*> memory_pools(1); 2258 memory_pools.append(_memory_pool); 2259 return memory_pools; 2260 } 2261 2262 MemoryUsage ShenandoahHeap::memory_usage() { 2263 return _memory_pool->get_memory_usage(); 2264 } 2265 2266 ShenandoahRegionIterator::ShenandoahRegionIterator() : 2267 _heap(ShenandoahHeap::heap()), 2268 _index(0) {} 2269 2270 ShenandoahRegionIterator::ShenandoahRegionIterator(ShenandoahHeap* heap) : 2271 _heap(heap), 2272 _index(0) {} 2273 2274 void ShenandoahRegionIterator::reset() { 2275 _index = 0; 2276 } 2277 2278 bool ShenandoahRegionIterator::has_next() const { 2279 return _index < _heap->num_regions(); 2280 } 2281 2282 char ShenandoahHeap::gc_state() const { 2283 return _gc_state.raw_value(); 2284 } 2285 2286 ShenandoahLiveData* ShenandoahHeap::get_liveness_cache(uint worker_id) { 2287 #ifdef ASSERT 2288 assert(_liveness_cache != NULL, "sanity"); 2289 assert(worker_id < _max_workers, "sanity"); 2290 for (uint i = 0; i < num_regions(); i++) { 2291 assert(_liveness_cache[worker_id][i] == 0, "liveness cache should be empty"); 2292 } 2293 #endif 2294 return _liveness_cache[worker_id]; 2295 } 2296 2297 void ShenandoahHeap::flush_liveness_cache(uint worker_id) { 2298 assert(worker_id < _max_workers, "sanity"); 2299 assert(_liveness_cache != NULL, "sanity"); 2300 ShenandoahLiveData* ld = _liveness_cache[worker_id]; 2301 for (uint i = 0; i < num_regions(); i++) { 2302 ShenandoahLiveData live = ld[i]; 2303 if (live > 0) { 2304 ShenandoahHeapRegion* r = get_region(i); 2305 r->increase_live_data_gc_words(live); 2306 ld[i] = 0; 2307 } 2308 } 2309 } --- EOF ---