1 /* 2 * Copyright (c) 2015, 2020, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP 26 #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP 27 28 #include "gc/shenandoah/shenandoahHeap.hpp" 29 30 #include "classfile/javaClasses.inline.hpp" 31 #include "gc/shared/markBitMap.inline.hpp" 32 #include "gc/shared/threadLocalAllocBuffer.inline.hpp" 33 #include "gc/shared/suspendibleThreadSet.hpp" 34 #include "gc/shared/tlab_globals.hpp" 35 #include "gc/shenandoah/shenandoahAsserts.hpp" 36 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" 37 #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp" 38 #include "gc/shenandoah/shenandoahForwarding.inline.hpp" 39 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 40 #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" 41 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 42 #include "gc/shenandoah/shenandoahControlThread.hpp" 43 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 44 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 45 #include "oops/compressedOops.inline.hpp" 46 #include "oops/oop.inline.hpp" 47 #include "runtime/atomic.hpp" 48 #include "runtime/prefetch.inline.hpp" 49 #include "runtime/thread.hpp" 50 #include "utilities/copy.hpp" 51 #include "utilities/globalDefinitions.hpp" 52 53 inline ShenandoahHeap* ShenandoahHeap::heap() { 54 return named_heap<ShenandoahHeap>(CollectedHeap::Shenandoah); 55 } 56 57 inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() { 58 size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed); 59 // get_region() provides the bounds-check and returns NULL on OOB. 60 return _heap->get_region(new_index - 1); 61 } 62 63 inline bool ShenandoahHeap::has_forwarded_objects() const { 64 return _gc_state.is_set(HAS_FORWARDED); 65 } 66 67 inline WorkGang* ShenandoahHeap::workers() const { 68 return _workers; 69 } 70 71 inline WorkGang* ShenandoahHeap::safepoint_workers() { 72 return _safepoint_workers; 73 } 74 75 inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const { 76 uintptr_t region_start = ((uintptr_t) addr); 77 uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift(); 78 assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr)); 79 return index; 80 } 81 82 inline ShenandoahHeapRegion* const ShenandoahHeap::heap_region_containing(const void* addr) const { 83 size_t index = heap_region_index_containing(addr); 84 ShenandoahHeapRegion* const result = get_region(index); 85 assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr)); 86 return result; 87 } 88 89 inline void ShenandoahHeap::enter_evacuation(Thread* t) { 90 _oom_evac_handler.enter_evacuation(t); 91 } 92 93 inline void ShenandoahHeap::leave_evacuation(Thread* t) { 94 _oom_evac_handler.leave_evacuation(t); 95 } 96 97 template <class T> 98 inline void ShenandoahHeap::update_with_forwarded(T* p) { 99 T o = RawAccess<>::oop_load(p); 100 if (!CompressedOops::is_null(o)) { 101 oop obj = CompressedOops::decode_not_null(o); 102 if (in_collection_set(obj)) { 103 // Corner case: when evacuation fails, there are objects in collection 104 // set that are not really forwarded. We can still go and try and update them 105 // (uselessly) to simplify the common path. 106 shenandoah_assert_forwarded_except(p, obj, cancelled_gc()); 107 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); 108 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc()); 109 110 // Unconditionally store the update: no concurrent updates expected. 111 RawAccess<IS_NOT_NULL>::oop_store(p, fwd); 112 } 113 } 114 } 115 116 template <class T> 117 inline void ShenandoahHeap::conc_update_with_forwarded(T* p) { 118 T o = RawAccess<>::oop_load(p); 119 if (!CompressedOops::is_null(o)) { 120 oop obj = CompressedOops::decode_not_null(o); 121 if (in_collection_set(obj)) { 122 // Corner case: when evacuation fails, there are objects in collection 123 // set that are not really forwarded. We can still go and try CAS-update them 124 // (uselessly) to simplify the common path. 125 shenandoah_assert_forwarded_except(p, obj, cancelled_gc()); 126 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); 127 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc()); 128 129 // Sanity check: we should not be updating the cset regions themselves, 130 // unless we are recovering from the evacuation failure. 131 shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || cancelled_gc()); 132 133 // Either we succeed in updating the reference, or something else gets in our way. 134 // We don't care if that is another concurrent GC update, or another mutator update. 135 atomic_update_oop(fwd, p, obj); 136 } 137 } 138 } 139 140 // Atomic updates of heap location. This is only expected to work with updating the same 141 // logical object with its forwardee. The reason why we need stronger-than-relaxed memory 142 // ordering has to do with coordination with GC barriers and mutator accesses. 143 // 144 // In essence, stronger CAS access is required to maintain the transitive chains that mutator 145 // accesses build by themselves. To illustrate this point, consider the following example. 146 // 147 // Suppose "o" is the object that has a field "x" and the reference to "o" is stored 148 // to field at "addr", which happens to be Java volatile field. Normally, the accesses to volatile 149 // field at "addr" would be matched with release/acquire barriers. This changes when GC moves 150 // the object under mutator feet. 151 // 152 // Thread 1 (Java) 153 // // --- previous access starts here 154 // ... 155 // T1.1: store(&o.x, 1, mo_relaxed) 156 // T1.2: store(&addr, o, mo_release) // volatile store 157 // 158 // // --- new access starts here 159 // // LRB: copy and install the new copy to fwdptr 160 // T1.3: var copy = copy(o) 161 // T1.4: cas(&fwd, t, copy, mo_release) // pointer-mediated publication 162 // <access continues> 163 // 164 // Thread 2 (GC updater) 165 // T2.1: var f = load(&fwd, mo_{consume|acquire}) // pointer-mediated acquisition 166 // T2.2: cas(&addr, o, f, mo_release) // this method 167 // 168 // Thread 3 (Java) 169 // T3.1: var o = load(&addr, mo_acquire) // volatile read 170 // T3.2: if (o != null) 171 // T3.3: var r = load(&o.x, mo_relaxed) 172 // 173 // r is guaranteed to contain "1". 174 // 175 // Without GC involvement, there is synchronizes-with edge from T1.2 to T3.1, 176 // which guarantees this. With GC involvement, when LRB copies the object and 177 // another thread updates the reference to it, we need to have the transitive edge 178 // from T1.4 to T2.1 (that one is guaranteed by forwarding accesses), plus the edge 179 // from T2.2 to T3.1 (which is brought by this CAS). 180 // 181 // Note that we do not need to "acquire" in these methods, because we do not read the 182 // failure witnesses contents on any path, and "release" is enough. 183 // 184 185 inline void ShenandoahHeap::atomic_update_oop(oop update, oop* addr, oop compare) { 186 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 187 Atomic::cmpxchg(addr, compare, update, memory_order_release); 188 } 189 190 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, narrowOop compare) { 191 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 192 narrowOop u = CompressedOops::encode(update); 193 Atomic::cmpxchg(addr, compare, u, memory_order_release); 194 } 195 196 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, oop compare) { 197 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 198 narrowOop c = CompressedOops::encode(compare); 199 narrowOop u = CompressedOops::encode(update); 200 Atomic::cmpxchg(addr, c, u, memory_order_release); 201 } 202 203 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, oop* addr, oop compare) { 204 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 205 return (oop) Atomic::cmpxchg(addr, compare, update, memory_order_release) == compare; 206 } 207 208 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, narrowOop compare) { 209 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 210 narrowOop u = CompressedOops::encode(update); 211 return (narrowOop) Atomic::cmpxchg(addr, compare, u, memory_order_release) == compare; 212 } 213 214 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, oop compare) { 215 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 216 narrowOop c = CompressedOops::encode(compare); 217 narrowOop u = CompressedOops::encode(update); 218 return CompressedOops::decode(Atomic::cmpxchg(addr, c, u, memory_order_release)) == compare; 219 } 220 221 // The memory ordering discussion above does not apply for methods that store NULLs: 222 // then, there is no transitive reads in mutator (as we see NULLs), and we can do 223 // relaxed memory ordering there. 224 225 inline void ShenandoahHeap::atomic_clear_oop(oop* addr, oop compare) { 226 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 227 Atomic::cmpxchg(addr, compare, oop(), memory_order_relaxed); 228 } 229 230 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, oop compare) { 231 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 232 narrowOop cmp = CompressedOops::encode(compare); 233 Atomic::cmpxchg(addr, cmp, narrowOop(), memory_order_relaxed); 234 } 235 236 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, narrowOop compare) { 237 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 238 Atomic::cmpxchg(addr, compare, narrowOop(), memory_order_relaxed); 239 } 240 241 inline bool ShenandoahHeap::cancelled_gc() const { 242 return _cancelled_gc.get() == CANCELLED; 243 } 244 245 inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) { 246 if (sts_active && ShenandoahSuspendibleWorkers && !cancelled_gc()) { 247 if (SuspendibleThreadSet::should_yield()) { 248 SuspendibleThreadSet::yield(); 249 } 250 } 251 return cancelled_gc(); 252 } 253 254 inline void ShenandoahHeap::clear_cancelled_gc() { 255 _cancelled_gc.set(CANCELLABLE); 256 _oom_evac_handler.clear(); 257 } 258 259 inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) { 260 assert(UseTLAB, "TLABs should be enabled"); 261 262 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 263 if (gclab == NULL) { 264 assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), 265 "Performance: thread should have GCLAB: %s", thread->name()); 266 // No GCLABs in this thread, fallback to shared allocation 267 return NULL; 268 } 269 HeapWord* obj = gclab->allocate(size); 270 if (obj != NULL) { 271 return obj; 272 } 273 // Otherwise... 274 return allocate_from_gclab_slow(thread, size); 275 } 276 277 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 278 if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { 279 // This thread went through the OOM during evac protocol and it is safe to return 280 // the forward pointer. It must not attempt to evacuate any more. 281 return ShenandoahBarrierSet::resolve_forwarded(p); 282 } 283 284 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 285 286 size_t size = p->size(); 287 288 assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects"); 289 290 bool alloc_from_gclab = true; 291 HeapWord* copy = NULL; 292 293 #ifdef ASSERT 294 if (ShenandoahOOMDuringEvacALot && 295 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 296 copy = NULL; 297 } else { 298 #endif 299 if (UseTLAB) { 300 copy = allocate_from_gclab(thread, size); 301 } 302 if (copy == NULL) { 303 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); 304 copy = allocate_memory(req); 305 alloc_from_gclab = false; 306 } 307 #ifdef ASSERT 308 } 309 #endif 310 311 if (copy == NULL) { 312 control_thread()->handle_alloc_failure_evac(size); 313 314 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 315 316 return ShenandoahBarrierSet::resolve_forwarded(p); 317 } 318 319 // Copy the object: 320 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 321 322 // Try to install the new forwarding pointer. 323 oop copy_val = cast_to_oop(copy); 324 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 325 if (result == copy_val) { 326 // Successfully evacuated. Our copy is now the public one! 327 shenandoah_assert_correct(NULL, copy_val); 328 return copy_val; 329 } else { 330 // Failed to evacuate. We need to deal with the object that is left behind. Since this 331 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 332 // But if it happens to contain references to evacuated regions, those references would 333 // not get updated for this stale copy during this cycle, and we will crash while scanning 334 // it the next cycle. 335 // 336 // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next 337 // object will overwrite this stale copy, or the filler object on LAB retirement will 338 // do this. For non-GCLAB allocations, we have no way to retract the allocation, and 339 // have to explicitly overwrite the copy with the filler object. With that overwrite, 340 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 341 if (alloc_from_gclab) { 342 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 343 } else { 344 fill_with_object(copy, size); 345 shenandoah_assert_correct(NULL, copy_val); 346 } 347 shenandoah_assert_correct(NULL, result); 348 return result; 349 } 350 } 351 352 inline bool ShenandoahHeap::requires_marking(const void* entry) const { 353 oop obj = cast_to_oop(entry); 354 return !_marking_context->is_marked_strong(obj); 355 } 356 357 inline bool ShenandoahHeap::in_collection_set(oop p) const { 358 assert(collection_set() != NULL, "Sanity"); 359 return collection_set()->is_in(p); 360 } 361 362 inline bool ShenandoahHeap::in_collection_set_loc(void* p) const { 363 assert(collection_set() != NULL, "Sanity"); 364 return collection_set()->is_in_loc(p); 365 } 366 367 inline bool ShenandoahHeap::is_stable() const { 368 return _gc_state.is_clear(); 369 } 370 371 inline bool ShenandoahHeap::is_idle() const { 372 return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS); 373 } 374 375 inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const { 376 return _gc_state.is_set(MARKING); 377 } 378 379 inline bool ShenandoahHeap::is_evacuation_in_progress() const { 380 return _gc_state.is_set(EVACUATION); 381 } 382 383 inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const { 384 return _gc_state.is_set(mask); 385 } 386 387 inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const { 388 return _degenerated_gc_in_progress.is_set(); 389 } 390 391 inline bool ShenandoahHeap::is_full_gc_in_progress() const { 392 return _full_gc_in_progress.is_set(); 393 } 394 395 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const { 396 return _full_gc_move_in_progress.is_set(); 397 } 398 399 inline bool ShenandoahHeap::is_update_refs_in_progress() const { 400 return _gc_state.is_set(UPDATEREFS); 401 } 402 403 inline bool ShenandoahHeap::is_stw_gc_in_progress() const { 404 return is_full_gc_in_progress() || is_degenerated_gc_in_progress(); 405 } 406 407 inline bool ShenandoahHeap::is_concurrent_strong_root_in_progress() const { 408 return _concurrent_strong_root_in_progress.is_set(); 409 } 410 411 inline bool ShenandoahHeap::is_concurrent_weak_root_in_progress() const { 412 return _gc_state.is_set(WEAK_ROOTS); 413 } 414 415 template<class T> 416 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) { 417 marked_object_iterate(region, cl, region->top()); 418 } 419 420 template<class T> 421 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) { 422 assert(! region->is_humongous_continuation(), "no humongous continuation regions here"); 423 424 ShenandoahMarkingContext* const ctx = complete_marking_context(); 425 assert(ctx->is_complete(), "sanity"); 426 427 HeapWord* tams = ctx->top_at_mark_start(region); 428 429 size_t skip_bitmap_delta = 1; 430 HeapWord* start = region->bottom(); 431 HeapWord* end = MIN2(tams, region->end()); 432 433 // Step 1. Scan below the TAMS based on bitmap data. 434 HeapWord* limit_bitmap = MIN2(limit, tams); 435 436 // Try to scan the initial candidate. If the candidate is above the TAMS, it would 437 // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2. 438 HeapWord* cb = ctx->get_next_marked_addr(start, end); 439 440 intx dist = ShenandoahMarkScanPrefetch; 441 if (dist > 0) { 442 // Batched scan that prefetches the oop data, anticipating the access to 443 // either header, oop field, or forwarding pointer. Not that we cannot 444 // touch anything in oop, while it still being prefetched to get enough 445 // time for prefetch to work. This is why we try to scan the bitmap linearly, 446 // disregarding the object size. However, since we know forwarding pointer 447 // preceeds the object, we can skip over it. Once we cannot trust the bitmap, 448 // there is no point for prefetching the oop contents, as oop->size() will 449 // touch it prematurely. 450 451 // No variable-length arrays in standard C++, have enough slots to fit 452 // the prefetch distance. 453 static const int SLOT_COUNT = 256; 454 guarantee(dist <= SLOT_COUNT, "adjust slot count"); 455 HeapWord* slots[SLOT_COUNT]; 456 457 int avail; 458 do { 459 avail = 0; 460 for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) { 461 Prefetch::read(cb, oopDesc::mark_offset_in_bytes()); 462 slots[avail++] = cb; 463 cb += skip_bitmap_delta; 464 if (cb < limit_bitmap) { 465 cb = ctx->get_next_marked_addr(cb, limit_bitmap); 466 } 467 } 468 469 for (int c = 0; c < avail; c++) { 470 assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams)); 471 assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit)); 472 oop obj = cast_to_oop(slots[c]); 473 assert(oopDesc::is_oop(obj), "sanity"); 474 assert(ctx->is_marked(obj), "object expected to be marked"); 475 cl->do_object(obj); 476 } 477 } while (avail > 0); 478 } else { 479 while (cb < limit_bitmap) { 480 assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams)); 481 assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit)); 482 oop obj = cast_to_oop(cb); 483 assert(oopDesc::is_oop(obj), "sanity"); 484 assert(ctx->is_marked(obj), "object expected to be marked"); 485 cl->do_object(obj); 486 cb += skip_bitmap_delta; 487 if (cb < limit_bitmap) { 488 cb = ctx->get_next_marked_addr(cb, limit_bitmap); 489 } 490 } 491 } 492 493 // Step 2. Accurate size-based traversal, happens past the TAMS. 494 // This restarts the scan at TAMS, which makes sure we traverse all objects, 495 // regardless of what happened at Step 1. 496 HeapWord* cs = tams; 497 while (cs < limit) { 498 assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams)); 499 assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit)); 500 oop obj = cast_to_oop(cs); 501 assert(oopDesc::is_oop(obj), "sanity"); 502 assert(ctx->is_marked(obj), "object expected to be marked"); 503 int size = obj->size(); 504 cl->do_object(obj); 505 cs += size; 506 } 507 } 508 509 template <class T> 510 class ShenandoahObjectToOopClosure : public ObjectClosure { 511 T* _cl; 512 public: 513 ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {} 514 515 void do_object(oop obj) { 516 obj->oop_iterate(_cl); 517 } 518 }; 519 520 template <class T> 521 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure { 522 T* _cl; 523 MemRegion _bounds; 524 public: 525 ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) : 526 _cl(cl), _bounds(bottom, top) {} 527 528 void do_object(oop obj) { 529 obj->oop_iterate(_cl, _bounds); 530 } 531 }; 532 533 template<class T> 534 inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) { 535 if (region->is_humongous()) { 536 HeapWord* bottom = region->bottom(); 537 if (top > bottom) { 538 region = region->humongous_start_region(); 539 ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top); 540 marked_object_iterate(region, &objs); 541 } 542 } else { 543 ShenandoahObjectToOopClosure<T> objs(cl); 544 marked_object_iterate(region, &objs, top); 545 } 546 } 547 548 inline ShenandoahHeapRegion* const ShenandoahHeap::get_region(size_t region_idx) const { 549 if (region_idx < _num_regions) { 550 return _regions[region_idx]; 551 } else { 552 return NULL; 553 } 554 } 555 556 inline void ShenandoahHeap::mark_complete_marking_context() { 557 _marking_context->mark_complete(); 558 } 559 560 inline void ShenandoahHeap::mark_incomplete_marking_context() { 561 _marking_context->mark_incomplete(); 562 } 563 564 inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const { 565 assert (_marking_context->is_complete()," sanity"); 566 return _marking_context; 567 } 568 569 inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const { 570 return _marking_context; 571 } 572 573 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP