1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm_io.h" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "compiler/compilationPolicy.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "gc/shared/barrierSetNMethod.hpp" 36 #include "gc/shared/collectedHeap.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interpreterRuntime.hpp" 39 #include "interpreter/linkResolver.hpp" 40 #include "interpreter/templateTable.hpp" 41 #include "logging/log.hpp" 42 #include "memory/oopFactory.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "oops/constantPool.hpp" 46 #include "oops/cpCache.inline.hpp" 47 #include "oops/instanceKlass.inline.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/methodData.hpp" 50 #include "oops/objArrayKlass.hpp" 51 #include "oops/objArrayOop.inline.hpp" 52 #include "oops/oop.inline.hpp" 53 #include "oops/symbol.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/methodHandles.hpp" 56 #include "prims/nativeLookup.hpp" 57 #include "runtime/atomic.hpp" 58 #include "runtime/biasedLocking.hpp" 59 #include "runtime/deoptimization.hpp" 60 #include "runtime/fieldDescriptor.inline.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/icache.hpp" 64 #include "runtime/interfaceSupport.inline.hpp" 65 #include "runtime/java.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/jfieldIDWorkaround.hpp" 68 #include "runtime/osThread.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/stackWatermarkSet.hpp" 71 #include "runtime/stubRoutines.hpp" 72 #include "runtime/synchronizer.hpp" 73 #include "runtime/threadCritical.hpp" 74 #include "utilities/align.hpp" 75 #include "utilities/copy.hpp" 76 #include "utilities/events.hpp" 77 #ifdef COMPILER2 78 #include "opto/runtime.hpp" 79 #endif 80 81 // Helper class to access current interpreter state 82 class LastFrameAccessor : public StackObj { 83 frame _last_frame; 84 public: 85 LastFrameAccessor(JavaThread* current) { 86 assert(current == Thread::current(), "sanity"); 87 _last_frame = current->last_frame(); 88 } 89 bool is_interpreted_frame() const { return _last_frame.is_interpreted_frame(); } 90 Method* method() const { return _last_frame.interpreter_frame_method(); } 91 address bcp() const { return _last_frame.interpreter_frame_bcp(); } 92 int bci() const { return _last_frame.interpreter_frame_bci(); } 93 address mdp() const { return _last_frame.interpreter_frame_mdp(); } 94 95 void set_bcp(address bcp) { _last_frame.interpreter_frame_set_bcp(bcp); } 96 void set_mdp(address dp) { _last_frame.interpreter_frame_set_mdp(dp); } 97 98 // pass method to avoid calling unsafe bcp_to_method (partial fix 4926272) 99 Bytecodes::Code code() const { return Bytecodes::code_at(method(), bcp()); } 100 101 Bytecode bytecode() const { return Bytecode(method(), bcp()); } 102 int get_index_u1(Bytecodes::Code bc) const { return bytecode().get_index_u1(bc); } 103 int get_index_u2(Bytecodes::Code bc) const { return bytecode().get_index_u2(bc); } 104 int get_index_u2_cpcache(Bytecodes::Code bc) const 105 { return bytecode().get_index_u2_cpcache(bc); } 106 int get_index_u4(Bytecodes::Code bc) const { return bytecode().get_index_u4(bc); } 107 int number_of_dimensions() const { return bcp()[3]; } 108 ConstantPoolCacheEntry* cache_entry_at(int i) const 109 { return method()->constants()->cache()->entry_at(i); } 110 ConstantPoolCacheEntry* cache_entry() const { return cache_entry_at(Bytes::get_native_u2(bcp() + 1)); } 111 112 oop callee_receiver(Symbol* signature) { 113 return _last_frame.interpreter_callee_receiver(signature); 114 } 115 BasicObjectLock* monitor_begin() const { 116 return _last_frame.interpreter_frame_monitor_begin(); 117 } 118 BasicObjectLock* monitor_end() const { 119 return _last_frame.interpreter_frame_monitor_end(); 120 } 121 BasicObjectLock* next_monitor(BasicObjectLock* current) const { 122 return _last_frame.next_monitor_in_interpreter_frame(current); 123 } 124 125 frame& get_frame() { return _last_frame; } 126 }; 127 128 //------------------------------------------------------------------------------------------------------------------------ 129 // State accessors 130 131 void InterpreterRuntime::set_bcp_and_mdp(address bcp, JavaThread* current) { 132 LastFrameAccessor last_frame(current); 133 last_frame.set_bcp(bcp); 134 if (ProfileInterpreter) { 135 // ProfileTraps uses MDOs independently of ProfileInterpreter. 136 // That is why we must check both ProfileInterpreter and mdo != NULL. 137 MethodData* mdo = last_frame.method()->method_data(); 138 if (mdo != NULL) { 139 NEEDS_CLEANUP; 140 last_frame.set_mdp(mdo->bci_to_dp(last_frame.bci())); 141 } 142 } 143 } 144 145 //------------------------------------------------------------------------------------------------------------------------ 146 // Constants 147 148 149 JRT_ENTRY(void, InterpreterRuntime::ldc(JavaThread* current, bool wide)) 150 // access constant pool 151 LastFrameAccessor last_frame(current); 152 ConstantPool* pool = last_frame.method()->constants(); 153 int index = wide ? last_frame.get_index_u2(Bytecodes::_ldc_w) : last_frame.get_index_u1(Bytecodes::_ldc); 154 constantTag tag = pool->tag_at(index); 155 156 assert (tag.is_unresolved_klass() || tag.is_klass(), "wrong ldc call"); 157 Klass* klass = pool->klass_at(index, CHECK); 158 oop java_class = klass->java_mirror(); 159 current->set_vm_result(java_class); 160 JRT_END 161 162 JRT_ENTRY(void, InterpreterRuntime::resolve_ldc(JavaThread* current, Bytecodes::Code bytecode)) { 163 assert(bytecode == Bytecodes::_ldc || 164 bytecode == Bytecodes::_ldc_w || 165 bytecode == Bytecodes::_ldc2_w || 166 bytecode == Bytecodes::_fast_aldc || 167 bytecode == Bytecodes::_fast_aldc_w, "wrong bc"); 168 ResourceMark rm(current); 169 const bool is_fast_aldc = (bytecode == Bytecodes::_fast_aldc || 170 bytecode == Bytecodes::_fast_aldc_w); 171 LastFrameAccessor last_frame(current); 172 methodHandle m (current, last_frame.method()); 173 Bytecode_loadconstant ldc(m, last_frame.bci()); 174 175 // Double-check the size. (Condy can have any type.) 176 BasicType type = ldc.result_type(); 177 switch (type2size[type]) { 178 case 2: guarantee(bytecode == Bytecodes::_ldc2_w, ""); break; 179 case 1: guarantee(bytecode != Bytecodes::_ldc2_w, ""); break; 180 default: ShouldNotReachHere(); 181 } 182 183 // Resolve the constant. This does not do unboxing. 184 // But it does replace Universe::the_null_sentinel by null. 185 oop result = ldc.resolve_constant(CHECK); 186 assert(result != NULL || is_fast_aldc, "null result only valid for fast_aldc"); 187 188 #ifdef ASSERT 189 { 190 // The bytecode wrappers aren't GC-safe so construct a new one 191 Bytecode_loadconstant ldc2(m, last_frame.bci()); 192 int rindex = ldc2.cache_index(); 193 if (rindex < 0) 194 rindex = m->constants()->cp_to_object_index(ldc2.pool_index()); 195 if (rindex >= 0) { 196 oop coop = m->constants()->resolved_references()->obj_at(rindex); 197 oop roop = (result == NULL ? Universe::the_null_sentinel() : result); 198 assert(roop == coop, "expected result for assembly code"); 199 } 200 } 201 #endif 202 current->set_vm_result(result); 203 if (!is_fast_aldc) { 204 // Tell the interpreter how to unbox the primitive. 205 guarantee(java_lang_boxing_object::is_instance(result, type), ""); 206 int offset = java_lang_boxing_object::value_offset(type); 207 intptr_t flags = ((as_TosState(type) << ConstantPoolCacheEntry::tos_state_shift) 208 | (offset & ConstantPoolCacheEntry::field_index_mask)); 209 current->set_vm_result_2((Metadata*)flags); 210 } 211 } 212 JRT_END 213 214 215 //------------------------------------------------------------------------------------------------------------------------ 216 // Allocation 217 218 JRT_ENTRY(void, InterpreterRuntime::_new(JavaThread* current, ConstantPool* pool, int index)) 219 Klass* k = pool->klass_at(index, CHECK); 220 InstanceKlass* klass = InstanceKlass::cast(k); 221 222 // Make sure we are not instantiating an abstract klass 223 klass->check_valid_for_instantiation(true, CHECK); 224 225 // Make sure klass is initialized 226 klass->initialize(CHECK); 227 228 // At this point the class may not be fully initialized 229 // because of recursive initialization. If it is fully 230 // initialized & has_finalized is not set, we rewrite 231 // it into its fast version (Note: no locking is needed 232 // here since this is an atomic byte write and can be 233 // done more than once). 234 // 235 // Note: In case of classes with has_finalized we don't 236 // rewrite since that saves us an extra check in 237 // the fast version which then would call the 238 // slow version anyway (and do a call back into 239 // Java). 240 // If we have a breakpoint, then we don't rewrite 241 // because the _breakpoint bytecode would be lost. 242 oop obj = klass->allocate_instance(CHECK); 243 current->set_vm_result(obj); 244 JRT_END 245 246 247 JRT_ENTRY(void, InterpreterRuntime::newarray(JavaThread* current, BasicType type, jint size)) 248 oop obj = oopFactory::new_typeArray(type, size, CHECK); 249 current->set_vm_result(obj); 250 JRT_END 251 252 253 JRT_ENTRY(void, InterpreterRuntime::anewarray(JavaThread* current, ConstantPool* pool, int index, jint size)) 254 Klass* klass = pool->klass_at(index, CHECK); 255 objArrayOop obj = oopFactory::new_objArray(klass, size, CHECK); 256 current->set_vm_result(obj); 257 JRT_END 258 259 260 JRT_ENTRY(void, InterpreterRuntime::multianewarray(JavaThread* current, jint* first_size_address)) 261 // We may want to pass in more arguments - could make this slightly faster 262 LastFrameAccessor last_frame(current); 263 ConstantPool* constants = last_frame.method()->constants(); 264 int i = last_frame.get_index_u2(Bytecodes::_multianewarray); 265 Klass* klass = constants->klass_at(i, CHECK); 266 int nof_dims = last_frame.number_of_dimensions(); 267 assert(klass->is_klass(), "not a class"); 268 assert(nof_dims >= 1, "multianewarray rank must be nonzero"); 269 270 // We must create an array of jints to pass to multi_allocate. 271 ResourceMark rm(current); 272 const int small_dims = 10; 273 jint dim_array[small_dims]; 274 jint *dims = &dim_array[0]; 275 if (nof_dims > small_dims) { 276 dims = (jint*) NEW_RESOURCE_ARRAY(jint, nof_dims); 277 } 278 for (int index = 0; index < nof_dims; index++) { 279 // offset from first_size_address is addressed as local[index] 280 int n = Interpreter::local_offset_in_bytes(index)/jintSize; 281 dims[index] = first_size_address[n]; 282 } 283 oop obj = ArrayKlass::cast(klass)->multi_allocate(nof_dims, dims, CHECK); 284 current->set_vm_result(obj); 285 JRT_END 286 287 288 JRT_ENTRY(void, InterpreterRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 289 assert(oopDesc::is_oop(obj), "must be a valid oop"); 290 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 291 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 292 JRT_END 293 294 295 // Quicken instance-of and check-cast bytecodes 296 JRT_ENTRY(void, InterpreterRuntime::quicken_io_cc(JavaThread* current)) 297 // Force resolving; quicken the bytecode 298 LastFrameAccessor last_frame(current); 299 int which = last_frame.get_index_u2(Bytecodes::_checkcast); 300 ConstantPool* cpool = last_frame.method()->constants(); 301 // We'd expect to assert that we're only here to quicken bytecodes, but in a multithreaded 302 // program we might have seen an unquick'd bytecode in the interpreter but have another 303 // thread quicken the bytecode before we get here. 304 // assert( cpool->tag_at(which).is_unresolved_klass(), "should only come here to quicken bytecodes" ); 305 Klass* klass = cpool->klass_at(which, CHECK); 306 current->set_vm_result_2(klass); 307 JRT_END 308 309 310 //------------------------------------------------------------------------------------------------------------------------ 311 // Exceptions 312 313 void InterpreterRuntime::note_trap_inner(JavaThread* current, int reason, 314 const methodHandle& trap_method, int trap_bci) { 315 if (trap_method.not_null()) { 316 MethodData* trap_mdo = trap_method->method_data(); 317 if (trap_mdo == NULL) { 318 ExceptionMark em(current); 319 JavaThread* THREAD = current; // For exception macros. 320 Method::build_interpreter_method_data(trap_method, THREAD); 321 if (HAS_PENDING_EXCEPTION) { 322 // Only metaspace OOM is expected. No Java code executed. 323 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), 324 "we expect only an OOM error here"); 325 CLEAR_PENDING_EXCEPTION; 326 } 327 trap_mdo = trap_method->method_data(); 328 // and fall through... 329 } 330 if (trap_mdo != NULL) { 331 // Update per-method count of trap events. The interpreter 332 // is updating the MDO to simulate the effect of compiler traps. 333 Deoptimization::update_method_data_from_interpreter(trap_mdo, trap_bci, reason); 334 } 335 } 336 } 337 338 // Assume the compiler is (or will be) interested in this event. 339 // If necessary, create an MDO to hold the information, and record it. 340 void InterpreterRuntime::note_trap(JavaThread* current, int reason) { 341 assert(ProfileTraps, "call me only if profiling"); 342 LastFrameAccessor last_frame(current); 343 methodHandle trap_method(current, last_frame.method()); 344 int trap_bci = trap_method->bci_from(last_frame.bcp()); 345 note_trap_inner(current, reason, trap_method, trap_bci); 346 } 347 348 static Handle get_preinitialized_exception(Klass* k, TRAPS) { 349 // get klass 350 InstanceKlass* klass = InstanceKlass::cast(k); 351 assert(klass->is_initialized(), 352 "this klass should have been initialized during VM initialization"); 353 // create instance - do not call constructor since we may have no 354 // (java) stack space left (should assert constructor is empty) 355 Handle exception; 356 oop exception_oop = klass->allocate_instance(CHECK_(exception)); 357 exception = Handle(THREAD, exception_oop); 358 if (StackTraceInThrowable) { 359 java_lang_Throwable::fill_in_stack_trace(exception); 360 } 361 return exception; 362 } 363 364 // Special handling for stack overflow: since we don't have any (java) stack 365 // space left we use the pre-allocated & pre-initialized StackOverflowError 366 // klass to create an stack overflow error instance. We do not call its 367 // constructor for the same reason (it is empty, anyway). 368 JRT_ENTRY(void, InterpreterRuntime::throw_StackOverflowError(JavaThread* current)) 369 Handle exception = get_preinitialized_exception( 370 vmClasses::StackOverflowError_klass(), 371 CHECK); 372 // Increment counter for hs_err file reporting 373 Atomic::inc(&Exceptions::_stack_overflow_errors); 374 THROW_HANDLE(exception); 375 JRT_END 376 377 JRT_ENTRY(void, InterpreterRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 378 Handle exception = get_preinitialized_exception( 379 vmClasses::StackOverflowError_klass(), 380 CHECK); 381 java_lang_Throwable::set_message(exception(), 382 Universe::delayed_stack_overflow_error_message()); 383 // Increment counter for hs_err file reporting 384 Atomic::inc(&Exceptions::_stack_overflow_errors); 385 THROW_HANDLE(exception); 386 JRT_END 387 388 JRT_ENTRY(void, InterpreterRuntime::create_exception(JavaThread* current, char* name, char* message)) 389 // lookup exception klass 390 TempNewSymbol s = SymbolTable::new_symbol(name); 391 if (ProfileTraps) { 392 if (s == vmSymbols::java_lang_ArithmeticException()) { 393 note_trap(current, Deoptimization::Reason_div0_check); 394 } else if (s == vmSymbols::java_lang_NullPointerException()) { 395 note_trap(current, Deoptimization::Reason_null_check); 396 } 397 } 398 // create exception 399 Handle exception = Exceptions::new_exception(current, s, message); 400 current->set_vm_result(exception()); 401 JRT_END 402 403 404 JRT_ENTRY(void, InterpreterRuntime::create_klass_exception(JavaThread* current, char* name, oopDesc* obj)) 405 // Produce the error message first because note_trap can safepoint 406 ResourceMark rm(current); 407 const char* klass_name = obj->klass()->external_name(); 408 // lookup exception klass 409 TempNewSymbol s = SymbolTable::new_symbol(name); 410 if (ProfileTraps) { 411 note_trap(current, Deoptimization::Reason_class_check); 412 } 413 // create exception, with klass name as detail message 414 Handle exception = Exceptions::new_exception(current, s, klass_name); 415 current->set_vm_result(exception()); 416 JRT_END 417 418 JRT_ENTRY(void, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException(JavaThread* current, arrayOopDesc* a, jint index)) 419 // Produce the error message first because note_trap can safepoint 420 ResourceMark rm(current); 421 stringStream ss; 422 ss.print("Index %d out of bounds for length %d", index, a->length()); 423 424 if (ProfileTraps) { 425 note_trap(current, Deoptimization::Reason_range_check); 426 } 427 428 THROW_MSG(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), ss.as_string()); 429 JRT_END 430 431 JRT_ENTRY(void, InterpreterRuntime::throw_ClassCastException( 432 JavaThread* current, oopDesc* obj)) 433 434 // Produce the error message first because note_trap can safepoint 435 ResourceMark rm(current); 436 char* message = SharedRuntime::generate_class_cast_message( 437 current, obj->klass()); 438 439 if (ProfileTraps) { 440 note_trap(current, Deoptimization::Reason_class_check); 441 } 442 443 // create exception 444 THROW_MSG(vmSymbols::java_lang_ClassCastException(), message); 445 JRT_END 446 447 // exception_handler_for_exception(...) returns the continuation address, 448 // the exception oop (via TLS) and sets the bci/bcp for the continuation. 449 // The exception oop is returned to make sure it is preserved over GC (it 450 // is only on the stack if the exception was thrown explicitly via athrow). 451 // During this operation, the expression stack contains the values for the 452 // bci where the exception happened. If the exception was propagated back 453 // from a call, the expression stack contains the values for the bci at the 454 // invoke w/o arguments (i.e., as if one were inside the call). 455 JRT_ENTRY(address, InterpreterRuntime::exception_handler_for_exception(JavaThread* current, oopDesc* exception)) 456 // We get here after we have unwound from a callee throwing an exception 457 // into the interpreter. Any deferred stack processing is notified of 458 // the event via the StackWatermarkSet. 459 StackWatermarkSet::after_unwind(current); 460 461 LastFrameAccessor last_frame(current); 462 Handle h_exception(current, exception); 463 methodHandle h_method (current, last_frame.method()); 464 constantPoolHandle h_constants(current, h_method->constants()); 465 bool should_repeat; 466 int handler_bci; 467 int current_bci = last_frame.bci(); 468 469 if (current->frames_to_pop_failed_realloc() > 0) { 470 // Allocation of scalar replaced object used in this frame 471 // failed. Unconditionally pop the frame. 472 current->dec_frames_to_pop_failed_realloc(); 473 current->set_vm_result(h_exception()); 474 // If the method is synchronized we already unlocked the monitor 475 // during deoptimization so the interpreter needs to skip it when 476 // the frame is popped. 477 current->set_do_not_unlock_if_synchronized(true); 478 return Interpreter::remove_activation_entry(); 479 } 480 481 // Need to do this check first since when _do_not_unlock_if_synchronized 482 // is set, we don't want to trigger any classloading which may make calls 483 // into java, or surprisingly find a matching exception handler for bci 0 484 // since at this moment the method hasn't been "officially" entered yet. 485 if (current->do_not_unlock_if_synchronized()) { 486 ResourceMark rm; 487 assert(current_bci == 0, "bci isn't zero for do_not_unlock_if_synchronized"); 488 current->set_vm_result(exception); 489 return Interpreter::remove_activation_entry(); 490 } 491 492 do { 493 should_repeat = false; 494 495 // assertions 496 assert(h_exception.not_null(), "NULL exceptions should be handled by athrow"); 497 // Check that exception is a subclass of Throwable. 498 assert(h_exception->is_a(vmClasses::Throwable_klass()), 499 "Exception not subclass of Throwable"); 500 501 // tracing 502 if (log_is_enabled(Info, exceptions)) { 503 ResourceMark rm(current); 504 stringStream tempst; 505 tempst.print("interpreter method <%s>\n" 506 " at bci %d for thread " INTPTR_FORMAT " (%s)", 507 h_method->print_value_string(), current_bci, p2i(current), current->name()); 508 Exceptions::log_exception(h_exception, tempst.as_string()); 509 } 510 // Don't go paging in something which won't be used. 511 // else if (extable->length() == 0) { 512 // // disabled for now - interpreter is not using shortcut yet 513 // // (shortcut is not to call runtime if we have no exception handlers) 514 // // warning("performance bug: should not call runtime if method has no exception handlers"); 515 // } 516 // for AbortVMOnException flag 517 Exceptions::debug_check_abort(h_exception); 518 519 // exception handler lookup 520 Klass* klass = h_exception->klass(); 521 handler_bci = Method::fast_exception_handler_bci_for(h_method, klass, current_bci, THREAD); 522 if (HAS_PENDING_EXCEPTION) { 523 // We threw an exception while trying to find the exception handler. 524 // Transfer the new exception to the exception handle which will 525 // be set into thread local storage, and do another lookup for an 526 // exception handler for this exception, this time starting at the 527 // BCI of the exception handler which caused the exception to be 528 // thrown (bug 4307310). 529 h_exception = Handle(THREAD, PENDING_EXCEPTION); 530 CLEAR_PENDING_EXCEPTION; 531 if (handler_bci >= 0) { 532 current_bci = handler_bci; 533 should_repeat = true; 534 } 535 } 536 } while (should_repeat == true); 537 538 #if INCLUDE_JVMCI 539 if (EnableJVMCI && h_method->method_data() != NULL) { 540 ResourceMark rm(current); 541 ProfileData* pdata = h_method->method_data()->allocate_bci_to_data(current_bci, NULL); 542 if (pdata != NULL && pdata->is_BitData()) { 543 BitData* bit_data = (BitData*) pdata; 544 bit_data->set_exception_seen(); 545 } 546 } 547 #endif 548 549 // notify JVMTI of an exception throw; JVMTI will detect if this is a first 550 // time throw or a stack unwinding throw and accordingly notify the debugger 551 if (JvmtiExport::can_post_on_exceptions()) { 552 JvmtiExport::post_exception_throw(current, h_method(), last_frame.bcp(), h_exception()); 553 } 554 555 address continuation = NULL; 556 address handler_pc = NULL; 557 if (handler_bci < 0 || !current->stack_overflow_state()->reguard_stack((address) &continuation)) { 558 // Forward exception to callee (leaving bci/bcp untouched) because (a) no 559 // handler in this method, or (b) after a stack overflow there is not yet 560 // enough stack space available to reprotect the stack. 561 continuation = Interpreter::remove_activation_entry(); 562 #if COMPILER2_OR_JVMCI 563 // Count this for compilation purposes 564 h_method->interpreter_throwout_increment(THREAD); 565 #endif 566 } else { 567 // handler in this method => change bci/bcp to handler bci/bcp and continue there 568 handler_pc = h_method->code_base() + handler_bci; 569 #ifndef ZERO 570 set_bcp_and_mdp(handler_pc, current); 571 continuation = Interpreter::dispatch_table(vtos)[*handler_pc]; 572 #else 573 continuation = (address)(intptr_t) handler_bci; 574 #endif 575 } 576 577 // notify debugger of an exception catch 578 // (this is good for exceptions caught in native methods as well) 579 if (JvmtiExport::can_post_on_exceptions()) { 580 JvmtiExport::notice_unwind_due_to_exception(current, h_method(), handler_pc, h_exception(), (handler_pc != NULL)); 581 } 582 583 current->set_vm_result(h_exception()); 584 return continuation; 585 JRT_END 586 587 588 JRT_ENTRY(void, InterpreterRuntime::throw_pending_exception(JavaThread* current)) 589 assert(current->has_pending_exception(), "must only be called if there's an exception pending"); 590 // nothing to do - eventually we should remove this code entirely (see comments @ call sites) 591 JRT_END 592 593 594 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodError(JavaThread* current)) 595 THROW(vmSymbols::java_lang_AbstractMethodError()); 596 JRT_END 597 598 // This method is called from the "abstract_entry" of the interpreter. 599 // At that point, the arguments have already been removed from the stack 600 // and therefore we don't have the receiver object at our fingertips. (Though, 601 // on some platforms the receiver still resides in a register...). Thus, 602 // we have no choice but print an error message not containing the receiver 603 // type. 604 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorWithMethod(JavaThread* current, 605 Method* missingMethod)) 606 ResourceMark rm(current); 607 assert(missingMethod != NULL, "sanity"); 608 methodHandle m(current, missingMethod); 609 LinkResolver::throw_abstract_method_error(m, THREAD); 610 JRT_END 611 612 JRT_ENTRY(void, InterpreterRuntime::throw_AbstractMethodErrorVerbose(JavaThread* current, 613 Klass* recvKlass, 614 Method* missingMethod)) 615 ResourceMark rm(current); 616 methodHandle mh = methodHandle(current, missingMethod); 617 LinkResolver::throw_abstract_method_error(mh, recvKlass, THREAD); 618 JRT_END 619 620 621 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 622 THROW(vmSymbols::java_lang_IncompatibleClassChangeError()); 623 JRT_END 624 625 JRT_ENTRY(void, InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(JavaThread* current, 626 Klass* recvKlass, 627 Klass* interfaceKlass)) 628 ResourceMark rm(current); 629 char buf[1000]; 630 buf[0] = '\0'; 631 jio_snprintf(buf, sizeof(buf), 632 "Class %s does not implement the requested interface %s", 633 recvKlass ? recvKlass->external_name() : "NULL", 634 interfaceKlass ? interfaceKlass->external_name() : "NULL"); 635 THROW_MSG(vmSymbols::java_lang_IncompatibleClassChangeError(), buf); 636 JRT_END 637 638 JRT_ENTRY(void, InterpreterRuntime::throw_NullPointerException(JavaThread* current)) 639 THROW(vmSymbols::java_lang_NullPointerException()); 640 JRT_END 641 642 //------------------------------------------------------------------------------------------------------------------------ 643 // Fields 644 // 645 646 void InterpreterRuntime::resolve_get_put(JavaThread* current, Bytecodes::Code bytecode) { 647 // resolve field 648 fieldDescriptor info; 649 LastFrameAccessor last_frame(current); 650 constantPoolHandle pool(current, last_frame.method()->constants()); 651 methodHandle m(current, last_frame.method()); 652 bool is_put = (bytecode == Bytecodes::_putfield || bytecode == Bytecodes::_nofast_putfield || 653 bytecode == Bytecodes::_putstatic); 654 bool is_static = (bytecode == Bytecodes::_getstatic || bytecode == Bytecodes::_putstatic); 655 656 { 657 JvmtiHideSingleStepping jhss(current); 658 JavaThread* THREAD = current; // For exception macros. 659 LinkResolver::resolve_field_access(info, pool, last_frame.get_index_u2_cpcache(bytecode), 660 m, bytecode, CHECK); 661 } // end JvmtiHideSingleStepping 662 663 // check if link resolution caused cpCache to be updated 664 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 665 if (cp_cache_entry->is_resolved(bytecode)) return; 666 667 // compute auxiliary field attributes 668 TosState state = as_TosState(info.field_type()); 669 670 // Resolution of put instructions on final fields is delayed. That is required so that 671 // exceptions are thrown at the correct place (when the instruction is actually invoked). 672 // If we do not resolve an instruction in the current pass, leaving the put_code 673 // set to zero will cause the next put instruction to the same field to reresolve. 674 675 // Resolution of put instructions to final instance fields with invalid updates (i.e., 676 // to final instance fields with updates originating from a method different than <init>) 677 // is inhibited. A putfield instruction targeting an instance final field must throw 678 // an IllegalAccessError if the instruction is not in an instance 679 // initializer method <init>. If resolution were not inhibited, a putfield 680 // in an initializer method could be resolved in the initializer. Subsequent 681 // putfield instructions to the same field would then use cached information. 682 // As a result, those instructions would not pass through the VM. That is, 683 // checks in resolve_field_access() would not be executed for those instructions 684 // and the required IllegalAccessError would not be thrown. 685 // 686 // Also, we need to delay resolving getstatic and putstatic instructions until the 687 // class is initialized. This is required so that access to the static 688 // field will call the initialization function every time until the class 689 // is completely initialized ala. in 2.17.5 in JVM Specification. 690 InstanceKlass* klass = info.field_holder(); 691 bool uninitialized_static = is_static && !klass->is_initialized(); 692 bool has_initialized_final_update = info.field_holder()->major_version() >= 53 && 693 info.has_initialized_final_update(); 694 assert(!(has_initialized_final_update && !info.access_flags().is_final()), "Fields with initialized final updates must be final"); 695 696 Bytecodes::Code get_code = (Bytecodes::Code)0; 697 Bytecodes::Code put_code = (Bytecodes::Code)0; 698 if (!uninitialized_static) { 699 get_code = ((is_static) ? Bytecodes::_getstatic : Bytecodes::_getfield); 700 if ((is_put && !has_initialized_final_update) || !info.access_flags().is_final()) { 701 put_code = ((is_static) ? Bytecodes::_putstatic : Bytecodes::_putfield); 702 } 703 } 704 705 cp_cache_entry->set_field( 706 get_code, 707 put_code, 708 info.field_holder(), 709 info.index(), 710 info.offset(), 711 state, 712 info.access_flags().is_final(), 713 info.access_flags().is_volatile() 714 ); 715 } 716 717 718 //------------------------------------------------------------------------------------------------------------------------ 719 // Synchronization 720 // 721 // The interpreter's synchronization code is factored out so that it can 722 // be shared by method invocation and synchronized blocks. 723 //%note synchronization_3 724 725 //%note monitor_1 726 JRT_ENTRY_NO_ASYNC(void, InterpreterRuntime::monitorenter(JavaThread* current, BasicObjectLock* elem)) 727 if (!UseHeavyMonitors && UseFastLocking) { 728 // This is a hack to get around the limitation of registers in x86_32. We really 729 // send an oopDesc* instead of a BasicObjectLock*. 730 Handle h_obj(current, oop((reinterpret_cast<oopDesc*>(elem)))); 731 assert(Universe::heap()->is_in_or_null(h_obj()), 732 "must be NULL or an object"); 733 ObjectSynchronizer::enter(h_obj, NULL, current); 734 return; 735 } 736 #ifdef ASSERT 737 current->last_frame().interpreter_frame_verify_monitor(elem); 738 #endif 739 if (PrintBiasedLockingStatistics) { 740 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 741 } 742 Handle h_obj(current, elem->obj()); 743 assert(Universe::heap()->is_in_or_null(h_obj()), 744 "must be NULL or an object"); 745 ObjectSynchronizer::enter(h_obj, elem->lock(), current); 746 assert(Universe::heap()->is_in_or_null(elem->obj()), 747 "must be NULL or an object"); 748 #ifdef ASSERT 749 current->last_frame().interpreter_frame_verify_monitor(elem); 750 #endif 751 JRT_END 752 753 754 JRT_LEAF(void, InterpreterRuntime::monitorexit(BasicObjectLock* elem)) 755 oop obj = elem->obj(); 756 assert(Universe::heap()->is_in(obj), "must be an object"); 757 // The object could become unlocked through a JNI call, which we have no other checks for. 758 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 759 if (obj->is_unlocked()) { 760 if (CheckJNICalls) { 761 fatal("Object has been unlocked by JNI"); 762 } 763 return; 764 } 765 ObjectSynchronizer::exit(obj, elem->lock(), JavaThread::current()); 766 // Free entry. If it is not cleared, the exception handling code will try to unlock the monitor 767 // again at method exit or in the case of an exception. 768 elem->set_obj(NULL); 769 JRT_END 770 771 772 JRT_ENTRY(void, InterpreterRuntime::throw_illegal_monitor_state_exception(JavaThread* current)) 773 THROW(vmSymbols::java_lang_IllegalMonitorStateException()); 774 JRT_END 775 776 777 JRT_ENTRY(void, InterpreterRuntime::new_illegal_monitor_state_exception(JavaThread* current)) 778 // Returns an illegal exception to install into the current thread. The 779 // pending_exception flag is cleared so normal exception handling does not 780 // trigger. Any current installed exception will be overwritten. This 781 // method will be called during an exception unwind. 782 783 assert(!HAS_PENDING_EXCEPTION, "no pending exception"); 784 Handle exception(current, current->vm_result()); 785 assert(exception() != NULL, "vm result should be set"); 786 current->set_vm_result(NULL); // clear vm result before continuing (may cause memory leaks and assert failures) 787 if (!exception->is_a(vmClasses::ThreadDeath_klass())) { 788 exception = get_preinitialized_exception( 789 vmClasses::IllegalMonitorStateException_klass(), 790 CATCH); 791 } 792 current->set_vm_result(exception()); 793 JRT_END 794 795 796 //------------------------------------------------------------------------------------------------------------------------ 797 // Invokes 798 799 JRT_ENTRY(Bytecodes::Code, InterpreterRuntime::get_original_bytecode_at(JavaThread* current, Method* method, address bcp)) 800 return method->orig_bytecode_at(method->bci_from(bcp)); 801 JRT_END 802 803 JRT_ENTRY(void, InterpreterRuntime::set_original_bytecode_at(JavaThread* current, Method* method, address bcp, Bytecodes::Code new_code)) 804 method->set_orig_bytecode_at(method->bci_from(bcp), new_code); 805 JRT_END 806 807 JRT_ENTRY(void, InterpreterRuntime::_breakpoint(JavaThread* current, Method* method, address bcp)) 808 JvmtiExport::post_raw_breakpoint(current, method, bcp); 809 JRT_END 810 811 void InterpreterRuntime::resolve_invoke(JavaThread* current, Bytecodes::Code bytecode) { 812 LastFrameAccessor last_frame(current); 813 // extract receiver from the outgoing argument list if necessary 814 Handle receiver(current, NULL); 815 if (bytecode == Bytecodes::_invokevirtual || bytecode == Bytecodes::_invokeinterface || 816 bytecode == Bytecodes::_invokespecial) { 817 ResourceMark rm(current); 818 methodHandle m (current, last_frame.method()); 819 Bytecode_invoke call(m, last_frame.bci()); 820 Symbol* signature = call.signature(); 821 receiver = Handle(current, last_frame.callee_receiver(signature)); 822 823 assert(Universe::heap()->is_in_or_null(receiver()), 824 "sanity check"); 825 assert(receiver.is_null() || 826 !Universe::heap()->is_in(receiver->klass()), 827 "sanity check"); 828 } 829 830 // resolve method 831 CallInfo info; 832 constantPoolHandle pool(current, last_frame.method()->constants()); 833 834 methodHandle resolved_method; 835 836 { 837 JvmtiHideSingleStepping jhss(current); 838 JavaThread* THREAD = current; // For exception macros. 839 LinkResolver::resolve_invoke(info, receiver, pool, 840 last_frame.get_index_u2_cpcache(bytecode), bytecode, 841 CHECK); 842 if (JvmtiExport::can_hotswap_or_post_breakpoint() && info.resolved_method()->is_old()) { 843 resolved_method = methodHandle(current, info.resolved_method()->get_new_method()); 844 } else { 845 resolved_method = methodHandle(current, info.resolved_method()); 846 } 847 } // end JvmtiHideSingleStepping 848 849 // check if link resolution caused cpCache to be updated 850 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 851 if (cp_cache_entry->is_resolved(bytecode)) return; 852 853 #ifdef ASSERT 854 if (bytecode == Bytecodes::_invokeinterface) { 855 if (resolved_method->method_holder() == vmClasses::Object_klass()) { 856 // NOTE: THIS IS A FIX FOR A CORNER CASE in the JVM spec 857 // (see also CallInfo::set_interface for details) 858 assert(info.call_kind() == CallInfo::vtable_call || 859 info.call_kind() == CallInfo::direct_call, ""); 860 assert(resolved_method->is_final() || info.has_vtable_index(), 861 "should have been set already"); 862 } else if (!resolved_method->has_itable_index()) { 863 // Resolved something like CharSequence.toString. Use vtable not itable. 864 assert(info.call_kind() != CallInfo::itable_call, ""); 865 } else { 866 // Setup itable entry 867 assert(info.call_kind() == CallInfo::itable_call, ""); 868 int index = resolved_method->itable_index(); 869 assert(info.itable_index() == index, ""); 870 } 871 } else if (bytecode == Bytecodes::_invokespecial) { 872 assert(info.call_kind() == CallInfo::direct_call, "must be direct call"); 873 } else { 874 assert(info.call_kind() == CallInfo::direct_call || 875 info.call_kind() == CallInfo::vtable_call, ""); 876 } 877 #endif 878 // Get sender and only set cpCache entry to resolved if it is not an 879 // interface. The receiver for invokespecial calls within interface 880 // methods must be checked for every call. 881 InstanceKlass* sender = pool->pool_holder(); 882 883 switch (info.call_kind()) { 884 case CallInfo::direct_call: 885 cp_cache_entry->set_direct_call( 886 bytecode, 887 resolved_method, 888 sender->is_interface()); 889 break; 890 case CallInfo::vtable_call: 891 cp_cache_entry->set_vtable_call( 892 bytecode, 893 resolved_method, 894 info.vtable_index()); 895 break; 896 case CallInfo::itable_call: 897 cp_cache_entry->set_itable_call( 898 bytecode, 899 info.resolved_klass(), 900 resolved_method, 901 info.itable_index()); 902 break; 903 default: ShouldNotReachHere(); 904 } 905 } 906 907 908 // First time execution: Resolve symbols, create a permanent MethodType object. 909 void InterpreterRuntime::resolve_invokehandle(JavaThread* current) { 910 const Bytecodes::Code bytecode = Bytecodes::_invokehandle; 911 LastFrameAccessor last_frame(current); 912 913 // resolve method 914 CallInfo info; 915 constantPoolHandle pool(current, last_frame.method()->constants()); 916 { 917 JvmtiHideSingleStepping jhss(current); 918 JavaThread* THREAD = current; // For exception macros. 919 LinkResolver::resolve_invoke(info, Handle(), pool, 920 last_frame.get_index_u2_cpcache(bytecode), bytecode, 921 CHECK); 922 } // end JvmtiHideSingleStepping 923 924 ConstantPoolCacheEntry* cp_cache_entry = last_frame.cache_entry(); 925 cp_cache_entry->set_method_handle(pool, info); 926 } 927 928 // First time execution: Resolve symbols, create a permanent CallSite object. 929 void InterpreterRuntime::resolve_invokedynamic(JavaThread* current) { 930 LastFrameAccessor last_frame(current); 931 const Bytecodes::Code bytecode = Bytecodes::_invokedynamic; 932 933 // resolve method 934 CallInfo info; 935 constantPoolHandle pool(current, last_frame.method()->constants()); 936 int index = last_frame.get_index_u4(bytecode); 937 { 938 JvmtiHideSingleStepping jhss(current); 939 JavaThread* THREAD = current; // For exception macros. 940 LinkResolver::resolve_invoke(info, Handle(), pool, 941 index, bytecode, CHECK); 942 } // end JvmtiHideSingleStepping 943 944 ConstantPoolCacheEntry* cp_cache_entry = pool->invokedynamic_cp_cache_entry_at(index); 945 cp_cache_entry->set_dynamic_call(pool, info); 946 } 947 948 // This function is the interface to the assembly code. It returns the resolved 949 // cpCache entry. This doesn't safepoint, but the helper routines safepoint. 950 // This function will check for redefinition! 951 JRT_ENTRY(void, InterpreterRuntime::resolve_from_cache(JavaThread* current, Bytecodes::Code bytecode)) { 952 switch (bytecode) { 953 case Bytecodes::_getstatic: 954 case Bytecodes::_putstatic: 955 case Bytecodes::_getfield: 956 case Bytecodes::_putfield: 957 resolve_get_put(current, bytecode); 958 break; 959 case Bytecodes::_invokevirtual: 960 case Bytecodes::_invokespecial: 961 case Bytecodes::_invokestatic: 962 case Bytecodes::_invokeinterface: 963 resolve_invoke(current, bytecode); 964 break; 965 case Bytecodes::_invokehandle: 966 resolve_invokehandle(current); 967 break; 968 case Bytecodes::_invokedynamic: 969 resolve_invokedynamic(current); 970 break; 971 default: 972 fatal("unexpected bytecode: %s", Bytecodes::name(bytecode)); 973 break; 974 } 975 } 976 JRT_END 977 978 //------------------------------------------------------------------------------------------------------------------------ 979 // Miscellaneous 980 981 982 nmethod* InterpreterRuntime::frequency_counter_overflow(JavaThread* current, address branch_bcp) { 983 // Enable WXWrite: the function is called directly by interpreter. 984 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 985 986 // frequency_counter_overflow_inner can throw async exception. 987 nmethod* nm = frequency_counter_overflow_inner(current, branch_bcp); 988 assert(branch_bcp != NULL || nm == NULL, "always returns null for non OSR requests"); 989 if (branch_bcp != NULL && nm != NULL) { 990 // This was a successful request for an OSR nmethod. Because 991 // frequency_counter_overflow_inner ends with a safepoint check, 992 // nm could have been unloaded so look it up again. It's unsafe 993 // to examine nm directly since it might have been freed and used 994 // for something else. 995 LastFrameAccessor last_frame(current); 996 Method* method = last_frame.method(); 997 int bci = method->bci_from(last_frame.bcp()); 998 nm = method->lookup_osr_nmethod_for(bci, CompLevel_none, false); 999 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 1000 if (nm != NULL && bs_nm != NULL) { 1001 // in case the transition passed a safepoint we need to barrier this again 1002 if (!bs_nm->nmethod_osr_entry_barrier(nm)) { 1003 nm = NULL; 1004 } 1005 } 1006 } 1007 if (nm != NULL && current->is_interp_only_mode()) { 1008 // Normally we never get an nm if is_interp_only_mode() is true, because 1009 // policy()->event has a check for this and won't compile the method when 1010 // true. However, it's possible for is_interp_only_mode() to become true 1011 // during the compilation. We don't want to return the nm in that case 1012 // because we want to continue to execute interpreted. 1013 nm = NULL; 1014 } 1015 #ifndef PRODUCT 1016 if (TraceOnStackReplacement) { 1017 if (nm != NULL) { 1018 tty->print("OSR entry @ pc: " INTPTR_FORMAT ": ", p2i(nm->osr_entry())); 1019 nm->print(); 1020 } 1021 } 1022 #endif 1023 return nm; 1024 } 1025 1026 JRT_ENTRY(nmethod*, 1027 InterpreterRuntime::frequency_counter_overflow_inner(JavaThread* current, address branch_bcp)) 1028 // use UnlockFlagSaver to clear and restore the _do_not_unlock_if_synchronized 1029 // flag, in case this method triggers classloading which will call into Java. 1030 UnlockFlagSaver fs(current); 1031 1032 LastFrameAccessor last_frame(current); 1033 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1034 methodHandle method(current, last_frame.method()); 1035 const int branch_bci = branch_bcp != NULL ? method->bci_from(branch_bcp) : InvocationEntryBci; 1036 const int bci = branch_bcp != NULL ? method->bci_from(last_frame.bcp()) : InvocationEntryBci; 1037 1038 nmethod* osr_nm = CompilationPolicy::event(method, method, branch_bci, bci, CompLevel_none, NULL, CHECK_NULL); 1039 1040 BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod(); 1041 if (osr_nm != NULL && bs_nm != NULL) { 1042 if (!bs_nm->nmethod_osr_entry_barrier(osr_nm)) { 1043 osr_nm = NULL; 1044 } 1045 } 1046 1047 if (osr_nm != NULL) { 1048 // We may need to do on-stack replacement which requires that no 1049 // monitors in the activation are biased because their 1050 // BasicObjectLocks will need to migrate during OSR. Force 1051 // unbiasing of all monitors in the activation now (even though 1052 // the OSR nmethod might be invalidated) because we don't have a 1053 // safepoint opportunity later once the migration begins. 1054 if (UseBiasedLocking) { 1055 ResourceMark rm; 1056 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1057 for( BasicObjectLock *kptr = last_frame.monitor_end(); 1058 kptr < last_frame.monitor_begin(); 1059 kptr = last_frame.next_monitor(kptr) ) { 1060 if( kptr->obj() != NULL ) { 1061 objects_to_revoke->append(Handle(current, kptr->obj())); 1062 } 1063 } 1064 BiasedLocking::revoke(objects_to_revoke, current); 1065 } 1066 } 1067 return osr_nm; 1068 JRT_END 1069 1070 JRT_LEAF(jint, InterpreterRuntime::bcp_to_di(Method* method, address cur_bcp)) 1071 assert(ProfileInterpreter, "must be profiling interpreter"); 1072 int bci = method->bci_from(cur_bcp); 1073 MethodData* mdo = method->method_data(); 1074 if (mdo == NULL) return 0; 1075 return mdo->bci_to_di(bci); 1076 JRT_END 1077 1078 #ifdef ASSERT 1079 JRT_LEAF(void, InterpreterRuntime::verify_mdp(Method* method, address bcp, address mdp)) 1080 assert(ProfileInterpreter, "must be profiling interpreter"); 1081 1082 MethodData* mdo = method->method_data(); 1083 assert(mdo != NULL, "must not be null"); 1084 1085 int bci = method->bci_from(bcp); 1086 1087 address mdp2 = mdo->bci_to_dp(bci); 1088 if (mdp != mdp2) { 1089 ResourceMark rm; 1090 tty->print_cr("FAILED verify : actual mdp %p expected mdp %p @ bci %d", mdp, mdp2, bci); 1091 int current_di = mdo->dp_to_di(mdp); 1092 int expected_di = mdo->dp_to_di(mdp2); 1093 tty->print_cr(" actual di %d expected di %d", current_di, expected_di); 1094 int expected_approx_bci = mdo->data_at(expected_di)->bci(); 1095 int approx_bci = -1; 1096 if (current_di >= 0) { 1097 approx_bci = mdo->data_at(current_di)->bci(); 1098 } 1099 tty->print_cr(" actual bci is %d expected bci %d", approx_bci, expected_approx_bci); 1100 mdo->print_on(tty); 1101 method->print_codes(); 1102 } 1103 assert(mdp == mdp2, "wrong mdp"); 1104 JRT_END 1105 #endif // ASSERT 1106 1107 JRT_ENTRY(void, InterpreterRuntime::update_mdp_for_ret(JavaThread* current, int return_bci)) 1108 assert(ProfileInterpreter, "must be profiling interpreter"); 1109 ResourceMark rm(current); 1110 LastFrameAccessor last_frame(current); 1111 assert(last_frame.is_interpreted_frame(), "must come from interpreter"); 1112 MethodData* h_mdo = last_frame.method()->method_data(); 1113 1114 // Grab a lock to ensure atomic access to setting the return bci and 1115 // the displacement. This can block and GC, invalidating all naked oops. 1116 MutexLocker ml(RetData_lock); 1117 1118 // ProfileData is essentially a wrapper around a derived oop, so we 1119 // need to take the lock before making any ProfileData structures. 1120 ProfileData* data = h_mdo->data_at(h_mdo->dp_to_di(last_frame.mdp())); 1121 guarantee(data != NULL, "profile data must be valid"); 1122 RetData* rdata = data->as_RetData(); 1123 address new_mdp = rdata->fixup_ret(return_bci, h_mdo); 1124 last_frame.set_mdp(new_mdp); 1125 JRT_END 1126 1127 JRT_ENTRY(MethodCounters*, InterpreterRuntime::build_method_counters(JavaThread* current, Method* m)) 1128 return Method::build_method_counters(current, m); 1129 JRT_END 1130 1131 1132 JRT_ENTRY(void, InterpreterRuntime::at_safepoint(JavaThread* current)) 1133 // We used to need an explict preserve_arguments here for invoke bytecodes. However, 1134 // stack traversal automatically takes care of preserving arguments for invoke, so 1135 // this is no longer needed. 1136 1137 // JRT_END does an implicit safepoint check, hence we are guaranteed to block 1138 // if this is called during a safepoint 1139 1140 if (JvmtiExport::should_post_single_step()) { 1141 // This function is called by the interpreter when single stepping. Such single 1142 // stepping could unwind a frame. Then, it is important that we process any frames 1143 // that we might return into. 1144 StackWatermarkSet::before_unwind(current); 1145 1146 // We are called during regular safepoints and when the VM is 1147 // single stepping. If any thread is marked for single stepping, 1148 // then we may have JVMTI work to do. 1149 LastFrameAccessor last_frame(current); 1150 JvmtiExport::at_single_stepping_point(current, last_frame.method(), last_frame.bcp()); 1151 } 1152 JRT_END 1153 1154 JRT_LEAF(void, InterpreterRuntime::at_unwind(JavaThread* current)) 1155 // This function is called by the interpreter when the return poll found a reason 1156 // to call the VM. The reason could be that we are returning into a not yet safe 1157 // to access frame. We handle that below. 1158 // Note that this path does not check for single stepping, because we do not want 1159 // to single step when unwinding frames for an exception being thrown. Instead, 1160 // such single stepping code will use the safepoint table, which will use the 1161 // InterpreterRuntime::at_safepoint callback. 1162 StackWatermarkSet::before_unwind(current); 1163 JRT_END 1164 1165 JRT_ENTRY(void, InterpreterRuntime::post_field_access(JavaThread* current, oopDesc* obj, 1166 ConstantPoolCacheEntry *cp_entry)) 1167 1168 // check the access_flags for the field in the klass 1169 1170 InstanceKlass* ik = InstanceKlass::cast(cp_entry->f1_as_klass()); 1171 int index = cp_entry->field_index(); 1172 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_ACCESS_WATCHED) == 0) return; 1173 1174 bool is_static = (obj == NULL); 1175 HandleMark hm(current); 1176 1177 Handle h_obj; 1178 if (!is_static) { 1179 // non-static field accessors have an object, but we need a handle 1180 h_obj = Handle(current, obj); 1181 } 1182 InstanceKlass* cp_entry_f1 = InstanceKlass::cast(cp_entry->f1_as_klass()); 1183 jfieldID fid = jfieldIDWorkaround::to_jfieldID(cp_entry_f1, cp_entry->f2_as_index(), is_static); 1184 LastFrameAccessor last_frame(current); 1185 JvmtiExport::post_field_access(current, last_frame.method(), last_frame.bcp(), cp_entry_f1, h_obj, fid); 1186 JRT_END 1187 1188 JRT_ENTRY(void, InterpreterRuntime::post_field_modification(JavaThread* current, oopDesc* obj, 1189 ConstantPoolCacheEntry *cp_entry, jvalue *value)) 1190 1191 Klass* k = cp_entry->f1_as_klass(); 1192 1193 // check the access_flags for the field in the klass 1194 InstanceKlass* ik = InstanceKlass::cast(k); 1195 int index = cp_entry->field_index(); 1196 // bail out if field modifications are not watched 1197 if ((ik->field_access_flags(index) & JVM_ACC_FIELD_MODIFICATION_WATCHED) == 0) return; 1198 1199 char sig_type = '\0'; 1200 1201 switch(cp_entry->flag_state()) { 1202 case btos: sig_type = JVM_SIGNATURE_BYTE; break; 1203 case ztos: sig_type = JVM_SIGNATURE_BOOLEAN; break; 1204 case ctos: sig_type = JVM_SIGNATURE_CHAR; break; 1205 case stos: sig_type = JVM_SIGNATURE_SHORT; break; 1206 case itos: sig_type = JVM_SIGNATURE_INT; break; 1207 case ftos: sig_type = JVM_SIGNATURE_FLOAT; break; 1208 case atos: sig_type = JVM_SIGNATURE_CLASS; break; 1209 case ltos: sig_type = JVM_SIGNATURE_LONG; break; 1210 case dtos: sig_type = JVM_SIGNATURE_DOUBLE; break; 1211 default: ShouldNotReachHere(); return; 1212 } 1213 bool is_static = (obj == NULL); 1214 1215 HandleMark hm(current); 1216 jfieldID fid = jfieldIDWorkaround::to_jfieldID(ik, cp_entry->f2_as_index(), is_static); 1217 jvalue fvalue; 1218 #ifdef _LP64 1219 fvalue = *value; 1220 #else 1221 // Long/double values are stored unaligned and also noncontiguously with 1222 // tagged stacks. We can't just do a simple assignment even in the non- 1223 // J/D cases because a C++ compiler is allowed to assume that a jvalue is 1224 // 8-byte aligned, and interpreter stack slots are only 4-byte aligned. 1225 // We assume that the two halves of longs/doubles are stored in interpreter 1226 // stack slots in platform-endian order. 1227 jlong_accessor u; 1228 jint* newval = (jint*)value; 1229 u.words[0] = newval[0]; 1230 u.words[1] = newval[Interpreter::stackElementWords]; // skip if tag 1231 fvalue.j = u.long_value; 1232 #endif // _LP64 1233 1234 Handle h_obj; 1235 if (!is_static) { 1236 // non-static field accessors have an object, but we need a handle 1237 h_obj = Handle(current, obj); 1238 } 1239 1240 LastFrameAccessor last_frame(current); 1241 JvmtiExport::post_raw_field_modification(current, last_frame.method(), last_frame.bcp(), ik, h_obj, 1242 fid, sig_type, &fvalue); 1243 JRT_END 1244 1245 JRT_ENTRY(void, InterpreterRuntime::post_method_entry(JavaThread* current)) 1246 LastFrameAccessor last_frame(current); 1247 JvmtiExport::post_method_entry(current, last_frame.method(), last_frame.get_frame()); 1248 JRT_END 1249 1250 1251 // This is a JRT_BLOCK_ENTRY because we have to stash away the return oop 1252 // before transitioning to VM, and restore it after transitioning back 1253 // to Java. The return oop at the top-of-stack, is not walked by the GC. 1254 JRT_BLOCK_ENTRY(void, InterpreterRuntime::post_method_exit(JavaThread* current)) 1255 LastFrameAccessor last_frame(current); 1256 JvmtiExport::post_method_exit(current, last_frame.method(), last_frame.get_frame()); 1257 JRT_END 1258 1259 JRT_LEAF(int, InterpreterRuntime::interpreter_contains(address pc)) 1260 { 1261 return (Interpreter::contains(pc) ? 1 : 0); 1262 } 1263 JRT_END 1264 1265 1266 // Implementation of SignatureHandlerLibrary 1267 1268 #ifndef SHARING_FAST_NATIVE_FINGERPRINTS 1269 // Dummy definition (else normalization method is defined in CPU 1270 // dependant code) 1271 uint64_t InterpreterRuntime::normalize_fast_native_fingerprint(uint64_t fingerprint) { 1272 return fingerprint; 1273 } 1274 #endif 1275 1276 address SignatureHandlerLibrary::set_handler_blob() { 1277 BufferBlob* handler_blob = BufferBlob::create("native signature handlers", blob_size); 1278 if (handler_blob == NULL) { 1279 return NULL; 1280 } 1281 address handler = handler_blob->code_begin(); 1282 _handler_blob = handler_blob; 1283 _handler = handler; 1284 return handler; 1285 } 1286 1287 void SignatureHandlerLibrary::initialize() { 1288 if (_fingerprints != NULL) { 1289 return; 1290 } 1291 if (set_handler_blob() == NULL) { 1292 vm_exit_out_of_memory(blob_size, OOM_MALLOC_ERROR, "native signature handlers"); 1293 } 1294 1295 BufferBlob* bb = BufferBlob::create("Signature Handler Temp Buffer", 1296 SignatureHandlerLibrary::buffer_size); 1297 _buffer = bb->code_begin(); 1298 1299 _fingerprints = new(ResourceObj::C_HEAP, mtCode)GrowableArray<uint64_t>(32, mtCode); 1300 _handlers = new(ResourceObj::C_HEAP, mtCode)GrowableArray<address>(32, mtCode); 1301 } 1302 1303 address SignatureHandlerLibrary::set_handler(CodeBuffer* buffer) { 1304 address handler = _handler; 1305 int insts_size = buffer->pure_insts_size(); 1306 if (handler + insts_size > _handler_blob->code_end()) { 1307 // get a new handler blob 1308 handler = set_handler_blob(); 1309 } 1310 if (handler != NULL) { 1311 memcpy(handler, buffer->insts_begin(), insts_size); 1312 pd_set_handler(handler); 1313 ICache::invalidate_range(handler, insts_size); 1314 _handler = handler + insts_size; 1315 } 1316 return handler; 1317 } 1318 1319 void SignatureHandlerLibrary::add(const methodHandle& method) { 1320 if (method->signature_handler() == NULL) { 1321 // use slow signature handler if we can't do better 1322 int handler_index = -1; 1323 // check if we can use customized (fast) signature handler 1324 if (UseFastSignatureHandlers && method->size_of_parameters() <= Fingerprinter::fp_max_size_of_parameters) { 1325 // use customized signature handler 1326 MutexLocker mu(SignatureHandlerLibrary_lock); 1327 // make sure data structure is initialized 1328 initialize(); 1329 // lookup method signature's fingerprint 1330 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1331 // allow CPU dependant code to optimize the fingerprints for the fast handler 1332 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1333 handler_index = _fingerprints->find(fingerprint); 1334 // create handler if necessary 1335 if (handler_index < 0) { 1336 ResourceMark rm; 1337 ptrdiff_t align_offset = align_up(_buffer, CodeEntryAlignment) - (address)_buffer; 1338 CodeBuffer buffer((address)(_buffer + align_offset), 1339 SignatureHandlerLibrary::buffer_size - align_offset); 1340 InterpreterRuntime::SignatureHandlerGenerator(method, &buffer).generate(fingerprint); 1341 // copy into code heap 1342 address handler = set_handler(&buffer); 1343 if (handler == NULL) { 1344 // use slow signature handler (without memorizing it in the fingerprints) 1345 } else { 1346 // debugging suppport 1347 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1348 ttyLocker ttyl; 1349 tty->cr(); 1350 tty->print_cr("argument handler #%d for: %s %s (fingerprint = " UINT64_FORMAT ", %d bytes generated)", 1351 _handlers->length(), 1352 (method->is_static() ? "static" : "receiver"), 1353 method->name_and_sig_as_C_string(), 1354 fingerprint, 1355 buffer.insts_size()); 1356 if (buffer.insts_size() > 0) { 1357 Disassembler::decode(handler, handler + buffer.insts_size()); 1358 } 1359 #ifndef PRODUCT 1360 address rh_begin = Interpreter::result_handler(method()->result_type()); 1361 if (CodeCache::contains(rh_begin)) { 1362 // else it might be special platform dependent values 1363 tty->print_cr(" --- associated result handler ---"); 1364 address rh_end = rh_begin; 1365 while (*(int*)rh_end != 0) { 1366 rh_end += sizeof(int); 1367 } 1368 Disassembler::decode(rh_begin, rh_end); 1369 } else { 1370 tty->print_cr(" associated result handler: " PTR_FORMAT, p2i(rh_begin)); 1371 } 1372 #endif 1373 } 1374 // add handler to library 1375 _fingerprints->append(fingerprint); 1376 _handlers->append(handler); 1377 // set handler index 1378 assert(_fingerprints->length() == _handlers->length(), "sanity check"); 1379 handler_index = _fingerprints->length() - 1; 1380 } 1381 } 1382 // Set handler under SignatureHandlerLibrary_lock 1383 if (handler_index < 0) { 1384 // use generic signature handler 1385 method->set_signature_handler(Interpreter::slow_signature_handler()); 1386 } else { 1387 // set handler 1388 method->set_signature_handler(_handlers->at(handler_index)); 1389 } 1390 } else { 1391 DEBUG_ONLY(JavaThread::current()->check_possible_safepoint()); 1392 // use generic signature handler 1393 method->set_signature_handler(Interpreter::slow_signature_handler()); 1394 } 1395 } 1396 #ifdef ASSERT 1397 int handler_index = -1; 1398 int fingerprint_index = -2; 1399 { 1400 // '_handlers' and '_fingerprints' are 'GrowableArray's and are NOT synchronized 1401 // in any way if accessed from multiple threads. To avoid races with another 1402 // thread which may change the arrays in the above, mutex protected block, we 1403 // have to protect this read access here with the same mutex as well! 1404 MutexLocker mu(SignatureHandlerLibrary_lock); 1405 if (_handlers != NULL) { 1406 handler_index = _handlers->find(method->signature_handler()); 1407 uint64_t fingerprint = Fingerprinter(method).fingerprint(); 1408 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1409 fingerprint_index = _fingerprints->find(fingerprint); 1410 } 1411 } 1412 assert(method->signature_handler() == Interpreter::slow_signature_handler() || 1413 handler_index == fingerprint_index, "sanity check"); 1414 #endif // ASSERT 1415 } 1416 1417 void SignatureHandlerLibrary::add(uint64_t fingerprint, address handler) { 1418 int handler_index = -1; 1419 // use customized signature handler 1420 MutexLocker mu(SignatureHandlerLibrary_lock); 1421 // make sure data structure is initialized 1422 initialize(); 1423 fingerprint = InterpreterRuntime::normalize_fast_native_fingerprint(fingerprint); 1424 handler_index = _fingerprints->find(fingerprint); 1425 // create handler if necessary 1426 if (handler_index < 0) { 1427 if (PrintSignatureHandlers && (handler != Interpreter::slow_signature_handler())) { 1428 tty->cr(); 1429 tty->print_cr("argument handler #%d at " PTR_FORMAT " for fingerprint " UINT64_FORMAT, 1430 _handlers->length(), 1431 p2i(handler), 1432 fingerprint); 1433 } 1434 _fingerprints->append(fingerprint); 1435 _handlers->append(handler); 1436 } else { 1437 if (PrintSignatureHandlers) { 1438 tty->cr(); 1439 tty->print_cr("duplicate argument handler #%d for fingerprint " UINT64_FORMAT "(old: " PTR_FORMAT ", new : " PTR_FORMAT ")", 1440 _handlers->length(), 1441 fingerprint, 1442 p2i(_handlers->at(handler_index)), 1443 p2i(handler)); 1444 } 1445 } 1446 } 1447 1448 1449 BufferBlob* SignatureHandlerLibrary::_handler_blob = NULL; 1450 address SignatureHandlerLibrary::_handler = NULL; 1451 GrowableArray<uint64_t>* SignatureHandlerLibrary::_fingerprints = NULL; 1452 GrowableArray<address>* SignatureHandlerLibrary::_handlers = NULL; 1453 address SignatureHandlerLibrary::_buffer = NULL; 1454 1455 1456 JRT_ENTRY(void, InterpreterRuntime::prepare_native_call(JavaThread* current, Method* method)) 1457 methodHandle m(current, method); 1458 assert(m->is_native(), "sanity check"); 1459 // lookup native function entry point if it doesn't exist 1460 if (!m->has_native_function()) { 1461 NativeLookup::lookup(m, CHECK); 1462 } 1463 // make sure signature handler is installed 1464 SignatureHandlerLibrary::add(m); 1465 // The interpreter entry point checks the signature handler first, 1466 // before trying to fetch the native entry point and klass mirror. 1467 // We must set the signature handler last, so that multiple processors 1468 // preparing the same method will be sure to see non-null entry & mirror. 1469 JRT_END 1470 1471 #if defined(IA32) || defined(AMD64) || defined(ARM) 1472 JRT_LEAF(void, InterpreterRuntime::popframe_move_outgoing_args(JavaThread* current, void* src_address, void* dest_address)) 1473 if (src_address == dest_address) { 1474 return; 1475 } 1476 ResourceMark rm; 1477 LastFrameAccessor last_frame(current); 1478 assert(last_frame.is_interpreted_frame(), ""); 1479 jint bci = last_frame.bci(); 1480 methodHandle mh(current, last_frame.method()); 1481 Bytecode_invoke invoke(mh, bci); 1482 ArgumentSizeComputer asc(invoke.signature()); 1483 int size_of_arguments = (asc.size() + (invoke.has_receiver() ? 1 : 0)); // receiver 1484 Copy::conjoint_jbytes(src_address, dest_address, 1485 size_of_arguments * Interpreter::stackElementSize); 1486 JRT_END 1487 #endif 1488 1489 #if INCLUDE_JVMTI 1490 // This is a support of the JVMTI PopFrame interface. 1491 // Make sure it is an invokestatic of a polymorphic intrinsic that has a member_name argument 1492 // and return it as a vm_result so that it can be reloaded in the list of invokestatic parameters. 1493 // The member_name argument is a saved reference (in local#0) to the member_name. 1494 // For backward compatibility with some JDK versions (7, 8) it can also be a direct method handle. 1495 // FIXME: remove DMH case after j.l.i.InvokerBytecodeGenerator code shape is updated. 1496 JRT_ENTRY(void, InterpreterRuntime::member_name_arg_or_null(JavaThread* current, address member_name, 1497 Method* method, address bcp)) 1498 Bytecodes::Code code = Bytecodes::code_at(method, bcp); 1499 if (code != Bytecodes::_invokestatic) { 1500 return; 1501 } 1502 ConstantPool* cpool = method->constants(); 1503 int cp_index = Bytes::get_native_u2(bcp + 1) + ConstantPool::CPCACHE_INDEX_TAG; 1504 Symbol* cname = cpool->klass_name_at(cpool->klass_ref_index_at(cp_index)); 1505 Symbol* mname = cpool->name_ref_at(cp_index); 1506 1507 if (MethodHandles::has_member_arg(cname, mname)) { 1508 oop member_name_oop = cast_to_oop(member_name); 1509 if (java_lang_invoke_DirectMethodHandle::is_instance(member_name_oop)) { 1510 // FIXME: remove after j.l.i.InvokerBytecodeGenerator code shape is updated. 1511 member_name_oop = java_lang_invoke_DirectMethodHandle::member(member_name_oop); 1512 } 1513 current->set_vm_result(member_name_oop); 1514 } else { 1515 current->set_vm_result(NULL); 1516 } 1517 JRT_END 1518 #endif // INCLUDE_JVMTI 1519 1520 #ifndef PRODUCT 1521 // This must be a JRT_LEAF function because the interpreter must save registers on x86 to 1522 // call this, which changes rsp and makes the interpreter's expression stack not walkable. 1523 // The generated code still uses call_VM because that will set up the frame pointer for 1524 // bcp and method. 1525 JRT_LEAF(intptr_t, InterpreterRuntime::trace_bytecode(JavaThread* current, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2)) 1526 LastFrameAccessor last_frame(current); 1527 assert(last_frame.is_interpreted_frame(), "must be an interpreted frame"); 1528 methodHandle mh(current, last_frame.method()); 1529 BytecodeTracer::trace(mh, last_frame.bcp(), tos, tos2); 1530 return preserve_this_value; 1531 JRT_END 1532 #endif // !PRODUCT