1 /*
2 * Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 // no precompiled headers
26 #include "jvm_io.h"
27 #include "classfile/javaClasses.hpp"
28 #include "classfile/vmSymbols.hpp"
29 #include "gc/shared/collectedHeap.hpp"
30 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/bytecodeHistogram.hpp"
33 #include "interpreter/zero/bytecodeInterpreter.inline.hpp"
34 #include "interpreter/interpreter.hpp"
35 #include "interpreter/interpreterRuntime.hpp"
36 #include "logging/log.hpp"
37 #include "memory/resourceArea.hpp"
38 #include "memory/universe.hpp"
39 #include "oops/constantPool.inline.hpp"
40 #include "oops/cpCache.inline.hpp"
41 #include "oops/instanceKlass.inline.hpp"
42 #include "oops/klass.inline.hpp"
43 #include "oops/method.inline.hpp"
44 #include "oops/methodCounters.hpp"
45 #include "oops/objArrayKlass.hpp"
46 #include "oops/objArrayOop.inline.hpp"
47 #include "oops/oop.inline.hpp"
48 #include "oops/typeArrayOop.inline.hpp"
49 #include "prims/jvmtiExport.hpp"
50 #include "prims/jvmtiThreadState.hpp"
51 #include "runtime/atomic.hpp"
52 #include "runtime/frame.inline.hpp"
53 #include "runtime/handles.inline.hpp"
54 #include "runtime/interfaceSupport.inline.hpp"
55 #include "runtime/orderAccess.hpp"
56 #include "runtime/sharedRuntime.hpp"
57 #include "runtime/threadCritical.hpp"
58 #include "utilities/debug.hpp"
59 #include "utilities/exceptions.hpp"
60 #include "utilities/macros.hpp"
61
62 // no precompiled headers
63
64 /*
65 * USELABELS - If using GCC, then use labels for the opcode dispatching
66 * rather -then a switch statement. This improves performance because it
67 * gives us the opportunity to have the instructions that calculate the
68 * next opcode to jump to be intermixed with the rest of the instructions
69 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
70 */
71 #undef USELABELS
72 #ifdef __GNUC__
73 /*
74 ASSERT signifies debugging. It is much easier to step thru bytecodes if we
75 don't use the computed goto approach.
76 */
77 #ifndef ASSERT
78 #define USELABELS
79 #endif
80 #endif
81
82 #undef CASE
83 #ifdef USELABELS
84 #define CASE(opcode) opc ## opcode
85 #define DEFAULT opc_default
86 #else
87 #define CASE(opcode) case Bytecodes:: opcode
88 #define DEFAULT default
89 #endif
90
91 /*
92 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
93 * opcode before going back to the top of the while loop, rather then having
94 * the top of the while loop handle it. This provides a better opportunity
95 * for instruction scheduling. Some compilers just do this prefetch
96 * automatically. Some actually end up with worse performance if you
97 * force the prefetch. Solaris gcc seems to do better, but cc does worse.
98 */
99 #undef PREFETCH_OPCCODE
100 #define PREFETCH_OPCCODE
101
102 /*
103 Interpreter safepoint: it is expected that the interpreter will have no live
104 handles of its own creation live at an interpreter safepoint. Therefore we
105 run a HandleMarkCleaner and trash all handles allocated in the call chain
106 since the JavaCalls::call_helper invocation that initiated the chain.
107 There really shouldn't be any handles remaining to trash but this is cheap
108 in relation to a safepoint.
109 */
110 #define RETURN_SAFEPOINT \
111 if (SafepointMechanism::should_process(THREAD)) { \
112 HandleMarkCleaner __hmc(THREAD); \
113 CALL_VM(SafepointMechanism::process_if_requested_with_exit_check(THREAD, true /* check asyncs */), \
114 handle_exception); \
115 } \
116
117 /*
118 * VM_JAVA_ERROR - Macro for throwing a java exception from
119 * the interpreter loop. Should really be a CALL_VM but there
120 * is no entry point to do the transition to vm so we just
121 * do it by hand here.
122 */
123 #define VM_JAVA_ERROR_NO_JUMP(name, msg) \
124 DECACHE_STATE(); \
125 SET_LAST_JAVA_FRAME(); \
126 { \
127 ThreadInVMfromJava trans(THREAD); \
128 Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg); \
129 } \
130 RESET_LAST_JAVA_FRAME(); \
131 CACHE_STATE();
132
133 // Normal throw of a java error.
134 #define VM_JAVA_ERROR(name, msg) \
135 VM_JAVA_ERROR_NO_JUMP(name, msg) \
136 goto handle_exception;
137
138 #ifdef PRODUCT
139 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
140 #else
141 #define DO_UPDATE_INSTRUCTION_COUNT(opcode) \
142 { \
143 if (PrintBytecodeHistogram) { \
144 BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++; \
145 } \
146 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) { \
147 BytecodeCounter::_counter_value++; \
148 if (StopInterpreterAt == BytecodeCounter::_counter_value) { \
149 os::breakpoint(); \
150 } \
151 if (TraceBytecodes) { \
152 CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0, \
153 topOfStack[Interpreter::expr_index_at(1)], \
154 topOfStack[Interpreter::expr_index_at(2)]), \
155 handle_exception); \
156 } \
157 } \
158 }
159 #endif
160
161 #undef DEBUGGER_SINGLE_STEP_NOTIFY
162 #if INCLUDE_JVMTI
163 /* NOTE: (kbr) This macro must be called AFTER the PC has been
164 incremented. JvmtiExport::at_single_stepping_point() may cause a
165 breakpoint opcode to get inserted at the current PC to allow the
166 debugger to coalesce single-step events.
167
168 As a result if we call at_single_stepping_point() we refetch opcode
169 to get the current opcode. This will override any other prefetching
170 that might have occurred.
171 */
172 #define DEBUGGER_SINGLE_STEP_NOTIFY() \
173 { \
174 if (JVMTI_ENABLED && JvmtiExport::should_post_single_step()) { \
175 DECACHE_STATE(); \
176 SET_LAST_JAVA_FRAME(); \
177 ThreadInVMfromJava trans(THREAD); \
178 JvmtiExport::at_single_stepping_point(THREAD, \
179 istate->method(), \
180 pc); \
181 RESET_LAST_JAVA_FRAME(); \
182 CACHE_STATE(); \
183 if (THREAD->has_pending_popframe() && \
184 !THREAD->pop_frame_in_process()) { \
185 goto handle_Pop_Frame; \
186 } \
187 if (THREAD->jvmti_thread_state() && \
188 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
189 goto handle_Early_Return; \
190 } \
191 opcode = *pc; \
192 } \
193 }
194 #else
195 #define DEBUGGER_SINGLE_STEP_NOTIFY()
196 #endif // INCLUDE_JVMTI
197
198 /*
199 * CONTINUE - Macro for executing the next opcode.
200 */
201 #undef CONTINUE
202 #ifdef USELABELS
203 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
204 // initialization (which is is the initialization of the table pointer...)
205 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
206 #define CONTINUE { \
207 opcode = *pc; \
208 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
209 DEBUGGER_SINGLE_STEP_NOTIFY(); \
210 DISPATCH(opcode); \
211 }
212 #else
213 #ifdef PREFETCH_OPCCODE
214 #define CONTINUE { \
215 opcode = *pc; \
216 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
217 DEBUGGER_SINGLE_STEP_NOTIFY(); \
218 continue; \
219 }
220 #else
221 #define CONTINUE { \
222 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
223 DEBUGGER_SINGLE_STEP_NOTIFY(); \
224 continue; \
225 }
226 #endif
227 #endif
228
229
230 #define UPDATE_PC(opsize) {pc += opsize; }
231 /*
232 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
233 */
234 #undef UPDATE_PC_AND_TOS
235 #define UPDATE_PC_AND_TOS(opsize, stack) \
236 {pc += opsize; MORE_STACK(stack); }
237
238 /*
239 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
240 * and executing the next opcode. It's somewhat similar to the combination
241 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
242 */
243 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
244 #ifdef USELABELS
245 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
246 pc += opsize; opcode = *pc; MORE_STACK(stack); \
247 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
248 DEBUGGER_SINGLE_STEP_NOTIFY(); \
249 DISPATCH(opcode); \
250 }
251
252 #define UPDATE_PC_AND_CONTINUE(opsize) { \
253 pc += opsize; opcode = *pc; \
254 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
255 DEBUGGER_SINGLE_STEP_NOTIFY(); \
256 DISPATCH(opcode); \
257 }
258 #else
259 #ifdef PREFETCH_OPCCODE
260 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
261 pc += opsize; opcode = *pc; MORE_STACK(stack); \
262 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
263 DEBUGGER_SINGLE_STEP_NOTIFY(); \
264 goto do_continue; \
265 }
266
267 #define UPDATE_PC_AND_CONTINUE(opsize) { \
268 pc += opsize; opcode = *pc; \
269 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
270 DEBUGGER_SINGLE_STEP_NOTIFY(); \
271 goto do_continue; \
272 }
273 #else
274 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
275 pc += opsize; MORE_STACK(stack); \
276 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
277 DEBUGGER_SINGLE_STEP_NOTIFY(); \
278 goto do_continue; \
279 }
280
281 #define UPDATE_PC_AND_CONTINUE(opsize) { \
282 pc += opsize; \
283 DO_UPDATE_INSTRUCTION_COUNT(opcode); \
284 DEBUGGER_SINGLE_STEP_NOTIFY(); \
285 goto do_continue; \
286 }
287 #endif /* PREFETCH_OPCCODE */
288 #endif /* USELABELS */
289
290 // About to call a new method, update the save the adjusted pc and return to frame manager
291 #define UPDATE_PC_AND_RETURN(opsize) \
292 DECACHE_TOS(); \
293 istate->set_bcp(pc+opsize); \
294 return;
295
296 #define REWRITE_AT_PC(val) \
297 *pc = val;
298
299 #define METHOD istate->method()
300 #define GET_METHOD_COUNTERS(res)
301 #define DO_BACKEDGE_CHECKS(skip, branch_pc)
302
303 /*
304 * For those opcodes that need to have a GC point on a backwards branch
305 */
306
307 /*
308 * Macros for caching and flushing the interpreter state. Some local
309 * variables need to be flushed out to the frame before we do certain
310 * things (like pushing frames or becomming gc safe) and some need to
311 * be recached later (like after popping a frame). We could use one
312 * macro to cache or decache everything, but this would be less then
313 * optimal because we don't always need to cache or decache everything
314 * because some things we know are already cached or decached.
315 */
316 #undef DECACHE_TOS
317 #undef CACHE_TOS
318 #undef CACHE_PREV_TOS
319 #define DECACHE_TOS() istate->set_stack(topOfStack);
320
321 #define CACHE_TOS() topOfStack = (intptr_t *)istate->stack();
322
323 #undef DECACHE_PC
324 #undef CACHE_PC
325 #define DECACHE_PC() istate->set_bcp(pc);
326 #define CACHE_PC() pc = istate->bcp();
327 #define CACHE_CP() cp = istate->constants();
328 #define CACHE_LOCALS() locals = istate->locals();
329 #undef CACHE_FRAME
330 #define CACHE_FRAME()
331
332 // BCI() returns the current bytecode-index.
333 #undef BCI
334 #define BCI() ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
335
336 /*
337 * CHECK_NULL - Macro for throwing a NullPointerException if the object
338 * passed is a null ref.
339 * On some architectures/platforms it should be possible to do this implicitly
340 */
341 #undef CHECK_NULL
342 #define CHECK_NULL(obj_) \
343 if ((obj_) == NULL) { \
344 VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL); \
345 } \
346 VERIFY_OOP(obj_)
347
348 #define VMdoubleConstZero() 0.0
349 #define VMdoubleConstOne() 1.0
350 #define VMlongConstZero() (max_jlong-max_jlong)
351 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
352
353 /*
354 * Alignment
355 */
356 #define VMalignWordUp(val) (((uintptr_t)(val) + 3) & ~3)
357
358 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
359 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
360
361 // Reload interpreter state after calling the VM or a possible GC
362 #define CACHE_STATE() \
363 CACHE_TOS(); \
364 CACHE_PC(); \
365 CACHE_CP(); \
366 CACHE_LOCALS();
367
368 // Call the VM with last java frame only.
369 #define CALL_VM_NAKED_LJF(func) \
370 DECACHE_STATE(); \
371 SET_LAST_JAVA_FRAME(); \
372 func; \
373 RESET_LAST_JAVA_FRAME(); \
374 CACHE_STATE();
375
376 // Call the VM. Don't check for pending exceptions.
377 #define CALL_VM_NOCHECK(func) \
378 CALL_VM_NAKED_LJF(func) \
379 if (THREAD->has_pending_popframe() && \
380 !THREAD->pop_frame_in_process()) { \
381 goto handle_Pop_Frame; \
382 } \
383 if (THREAD->jvmti_thread_state() && \
384 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
385 goto handle_Early_Return; \
386 }
387
388 // Call the VM and check for pending exceptions
389 #define CALL_VM(func, label) { \
390 CALL_VM_NOCHECK(func); \
391 if (THREAD->has_pending_exception()) goto label; \
392 }
393
394 #define MAYBE_POST_FIELD_ACCESS(obj) { \
395 if (JVMTI_ENABLED) { \
396 int* count_addr; \
397 /* Check to see if a field modification watch has been set */ \
398 /* before we take the time to call into the VM. */ \
399 count_addr = (int*)JvmtiExport::get_field_access_count_addr(); \
400 if (*count_addr > 0) { \
401 oop target; \
402 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) { \
403 target = NULL; \
404 } else { \
405 target = obj; \
406 } \
407 CALL_VM(InterpreterRuntime::post_field_access(THREAD, \
408 target, cache), \
409 handle_exception); \
410 } \
411 } \
412 }
413
414 #define MAYBE_POST_FIELD_MODIFICATION(obj) { \
415 if (JVMTI_ENABLED) { \
416 int* count_addr; \
417 /* Check to see if a field modification watch has been set */ \
418 /* before we take the time to call into the VM. */ \
419 count_addr = (int*)JvmtiExport::get_field_modification_count_addr(); \
420 if (*count_addr > 0) { \
421 oop target; \
422 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) { \
423 target = NULL; \
424 } else { \
425 target = obj; \
426 } \
427 CALL_VM(InterpreterRuntime::post_field_modification(THREAD, \
428 target, cache, \
429 (jvalue*)STACK_SLOT(-1)), \
430 handle_exception); \
431 } \
432 } \
433 }
434
435 static inline int fast_get_type(TosState tos) {
436 switch (tos) {
437 case ztos:
438 case btos: return Bytecodes::_fast_bgetfield;
439 case ctos: return Bytecodes::_fast_cgetfield;
440 case stos: return Bytecodes::_fast_sgetfield;
441 case itos: return Bytecodes::_fast_igetfield;
442 case ltos: return Bytecodes::_fast_lgetfield;
443 case ftos: return Bytecodes::_fast_fgetfield;
444 case dtos: return Bytecodes::_fast_dgetfield;
445 case atos: return Bytecodes::_fast_agetfield;
446 default:
447 ShouldNotReachHere();
448 return -1;
449 }
450 }
451
452 static inline int fast_put_type(TosState tos) {
453 switch (tos) {
454 case ztos: return Bytecodes::_fast_zputfield;
455 case btos: return Bytecodes::_fast_bputfield;
456 case ctos: return Bytecodes::_fast_cputfield;
457 case stos: return Bytecodes::_fast_sputfield;
458 case itos: return Bytecodes::_fast_iputfield;
459 case ltos: return Bytecodes::_fast_lputfield;
460 case ftos: return Bytecodes::_fast_fputfield;
461 case dtos: return Bytecodes::_fast_dputfield;
462 case atos: return Bytecodes::_fast_aputfield;
463 default:
464 ShouldNotReachHere();
465 return -1;
466 }
467 }
468
469 /*
470 * BytecodeInterpreter::run(interpreterState istate)
471 *
472 * The real deal. This is where byte codes actually get interpreted.
473 * Basically it's a big while loop that iterates until we return from
474 * the method passed in.
475 */
476
477 // Instantiate variants of the method for future linking.
478 template void BytecodeInterpreter::run<false, false>(interpreterState istate);
479 template void BytecodeInterpreter::run<false, true>(interpreterState istate);
480 template void BytecodeInterpreter::run< true, false>(interpreterState istate);
481 template void BytecodeInterpreter::run< true, true>(interpreterState istate);
482
483 template<bool JVMTI_ENABLED, bool REWRITE_BYTECODES>
484 void BytecodeInterpreter::run(interpreterState istate) {
485 intptr_t* topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
486 address pc = istate->bcp();
487 jubyte opcode;
488 intptr_t* locals = istate->locals();
489 ConstantPoolCache* cp = istate->constants(); // method()->constants()->cache()
490 #ifdef LOTS_OF_REGS
491 JavaThread* THREAD = istate->thread();
492 #else
493 #undef THREAD
494 #define THREAD istate->thread()
495 #endif
496
497 #ifdef ASSERT
498 assert(labs(istate->stack_base() - istate->stack_limit()) == (istate->method()->max_stack() + 1),
499 "Bad stack limit");
500 /* QQQ this should be a stack method so we don't know actual direction */
501 assert(topOfStack >= istate->stack_limit() && topOfStack < istate->stack_base(),
502 "Stack top out of range");
503
504 // Verify linkages.
505 interpreterState l = istate;
506 do {
507 assert(l == l->_self_link, "bad link");
508 l = l->_prev_link;
509 } while (l != NULL);
510 // Screwups with stack management usually cause us to overwrite istate
511 // save a copy so we can verify it.
512 interpreterState orig = istate;
513 #endif
514
515 #ifdef USELABELS
516 const static void* const opclabels_data[256] = {
517 /* 0x00 */ &&opc_nop, &&opc_aconst_null, &&opc_iconst_m1, &&opc_iconst_0,
518 /* 0x04 */ &&opc_iconst_1, &&opc_iconst_2, &&opc_iconst_3, &&opc_iconst_4,
519 /* 0x08 */ &&opc_iconst_5, &&opc_lconst_0, &&opc_lconst_1, &&opc_fconst_0,
520 /* 0x0C */ &&opc_fconst_1, &&opc_fconst_2, &&opc_dconst_0, &&opc_dconst_1,
521
522 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc, &&opc_ldc_w,
523 /* 0x14 */ &&opc_ldc2_w, &&opc_iload, &&opc_lload, &&opc_fload,
524 /* 0x18 */ &&opc_dload, &&opc_aload, &&opc_iload_0, &&opc_iload_1,
525 /* 0x1C */ &&opc_iload_2, &&opc_iload_3, &&opc_lload_0, &&opc_lload_1,
526
527 /* 0x20 */ &&opc_lload_2, &&opc_lload_3, &&opc_fload_0, &&opc_fload_1,
528 /* 0x24 */ &&opc_fload_2, &&opc_fload_3, &&opc_dload_0, &&opc_dload_1,
529 /* 0x28 */ &&opc_dload_2, &&opc_dload_3, &&opc_aload_0, &&opc_aload_1,
530 /* 0x2C */ &&opc_aload_2, &&opc_aload_3, &&opc_iaload, &&opc_laload,
531
532 /* 0x30 */ &&opc_faload, &&opc_daload, &&opc_aaload, &&opc_baload,
533 /* 0x34 */ &&opc_caload, &&opc_saload, &&opc_istore, &&opc_lstore,
534 /* 0x38 */ &&opc_fstore, &&opc_dstore, &&opc_astore, &&opc_istore_0,
535 /* 0x3C */ &&opc_istore_1, &&opc_istore_2, &&opc_istore_3, &&opc_lstore_0,
536
537 /* 0x40 */ &&opc_lstore_1, &&opc_lstore_2, &&opc_lstore_3, &&opc_fstore_0,
538 /* 0x44 */ &&opc_fstore_1, &&opc_fstore_2, &&opc_fstore_3, &&opc_dstore_0,
539 /* 0x48 */ &&opc_dstore_1, &&opc_dstore_2, &&opc_dstore_3, &&opc_astore_0,
540 /* 0x4C */ &&opc_astore_1, &&opc_astore_2, &&opc_astore_3, &&opc_iastore,
541
542 /* 0x50 */ &&opc_lastore, &&opc_fastore, &&opc_dastore, &&opc_aastore,
543 /* 0x54 */ &&opc_bastore, &&opc_castore, &&opc_sastore, &&opc_pop,
544 /* 0x58 */ &&opc_pop2, &&opc_dup, &&opc_dup_x1, &&opc_dup_x2,
545 /* 0x5C */ &&opc_dup2, &&opc_dup2_x1, &&opc_dup2_x2, &&opc_swap,
546
547 /* 0x60 */ &&opc_iadd, &&opc_ladd, &&opc_fadd, &&opc_dadd,
548 /* 0x64 */ &&opc_isub, &&opc_lsub, &&opc_fsub, &&opc_dsub,
549 /* 0x68 */ &&opc_imul, &&opc_lmul, &&opc_fmul, &&opc_dmul,
550 /* 0x6C */ &&opc_idiv, &&opc_ldiv, &&opc_fdiv, &&opc_ddiv,
551
552 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem, &&opc_drem,
553 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg, &&opc_dneg,
554 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr, &&opc_lshr,
555 /* 0x7C */ &&opc_iushr, &&opc_lushr, &&opc_iand, &&opc_land,
556
557 /* 0x80 */ &&opc_ior, &&opc_lor, &&opc_ixor, &&opc_lxor,
558 /* 0x84 */ &&opc_iinc, &&opc_i2l, &&opc_i2f, &&opc_i2d,
559 /* 0x88 */ &&opc_l2i, &&opc_l2f, &&opc_l2d, &&opc_f2i,
560 /* 0x8C */ &&opc_f2l, &&opc_f2d, &&opc_d2i, &&opc_d2l,
561
562 /* 0x90 */ &&opc_d2f, &&opc_i2b, &&opc_i2c, &&opc_i2s,
563 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl, &&opc_fcmpg, &&opc_dcmpl,
564 /* 0x98 */ &&opc_dcmpg, &&opc_ifeq, &&opc_ifne, &&opc_iflt,
565 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
566
567 /* 0xA0 */ &&opc_if_icmpne, &&opc_if_icmplt, &&opc_if_icmpge, &&opc_if_icmpgt,
568 /* 0xA4 */ &&opc_if_icmple, &&opc_if_acmpeq, &&opc_if_acmpne, &&opc_goto,
569 /* 0xA8 */ &&opc_jsr, &&opc_ret, &&opc_tableswitch, &&opc_lookupswitch,
570 /* 0xAC */ &&opc_ireturn, &&opc_lreturn, &&opc_freturn, &&opc_dreturn,
571
572 /* 0xB0 */ &&opc_areturn, &&opc_return, &&opc_getstatic, &&opc_putstatic,
573 /* 0xB4 */ &&opc_getfield, &&opc_putfield, &&opc_invokevirtual, &&opc_invokespecial,
574 /* 0xB8 */ &&opc_invokestatic, &&opc_invokeinterface, &&opc_invokedynamic, &&opc_new,
575 /* 0xBC */ &&opc_newarray, &&opc_anewarray, &&opc_arraylength, &&opc_athrow,
576
577 /* 0xC0 */ &&opc_checkcast, &&opc_instanceof, &&opc_monitorenter, &&opc_monitorexit,
578 /* 0xC4 */ &&opc_wide, &&opc_multianewarray, &&opc_ifnull, &&opc_ifnonnull,
579 /* 0xC8 */ &&opc_goto_w, &&opc_jsr_w, &&opc_breakpoint, &&opc_fast_agetfield,
580 /* 0xCC */ &&opc_fast_bgetfield,&&opc_fast_cgetfield, &&opc_fast_dgetfield, &&opc_fast_fgetfield,
581
582 /* 0xD0 */ &&opc_fast_igetfield,&&opc_fast_lgetfield, &&opc_fast_sgetfield, &&opc_fast_aputfield,
583 /* 0xD4 */ &&opc_fast_bputfield,&&opc_fast_zputfield, &&opc_fast_cputfield, &&opc_fast_dputfield,
584 /* 0xD8 */ &&opc_fast_fputfield,&&opc_fast_iputfield, &&opc_fast_lputfield, &&opc_fast_sputfield,
585 /* 0xDC */ &&opc_fast_aload_0, &&opc_fast_iaccess_0, &&opc_fast_aaccess_0, &&opc_fast_faccess_0,
586
587 /* 0xE0 */ &&opc_fast_iload, &&opc_fast_iload2, &&opc_fast_icaload, &&opc_fast_invokevfinal,
588 /* 0xE4 */ &&opc_default, &&opc_default, &&opc_fast_aldc, &&opc_fast_aldc_w,
589 /* 0xE8 */ &&opc_return_register_finalizer,
590 &&opc_invokehandle, &&opc_default, &&opc_default,
591 /* 0xEC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
592
593 /* 0xF0 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
594 /* 0xF4 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
595 /* 0xF8 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default,
596 /* 0xFC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default
597 };
598 uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
599 #endif /* USELABELS */
600
601 switch (istate->msg()) {
602 case initialize: {
603 ShouldNotCallThis();
604 return;
605 }
606 case method_entry: {
607 THREAD->set_do_not_unlock();
608
609 // Lock method if synchronized.
610 if (METHOD->is_synchronized()) {
611 // oop rcvr = locals[0].j.r;
612 oop rcvr;
613 if (METHOD->is_static()) {
614 rcvr = METHOD->constants()->pool_holder()->java_mirror();
615 } else {
616 rcvr = LOCALS_OBJECT(0);
617 VERIFY_OOP(rcvr);
618 }
619
620 // The initial monitor is ours for the taking.
621 // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
622 BasicObjectLock* mon = &istate->monitor_base()[-1];
623 mon->set_obj(rcvr);
624
625 assert(!UseBiasedLocking, "Not implemented");
626
627 // Traditional lightweight locking.
628 markWord displaced = rcvr->mark().set_unlocked();
629 mon->lock()->set_displaced_header(displaced);
630 bool call_vm = UseHeavyMonitors;
631 if (call_vm || rcvr->cas_set_mark(markWord::from_pointer(mon), displaced) != displaced) {
632 // Is it simple recursive case?
633 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
634 mon->lock()->set_displaced_header(markWord::from_pointer(NULL));
635 } else {
636 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
637 }
638 }
639 }
640 THREAD->clr_do_not_unlock();
641
642 // Notify jvmti.
643 // Whenever JVMTI puts a thread in interp_only_mode, method
644 // entry/exit events are sent for that thread to track stack depth.
645 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
646 CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
647 handle_exception);
648 }
649
650 goto run;
651 }
652
653 case popping_frame: {
654 // returned from a java call to pop the frame, restart the call
655 // clear the message so we don't confuse ourselves later
656 assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
657 istate->set_msg(no_request);
658 THREAD->clr_pop_frame_in_process();
659 goto run;
660 }
661
662 case method_resume: {
663 if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
664 // resume
665 os::breakpoint();
666 }
667 // returned from a java call, continue executing.
668 if (THREAD->has_pending_popframe() && !THREAD->pop_frame_in_process()) {
669 goto handle_Pop_Frame;
670 }
671 if (THREAD->jvmti_thread_state() &&
672 THREAD->jvmti_thread_state()->is_earlyret_pending()) {
673 goto handle_Early_Return;
674 }
675
676 if (THREAD->has_pending_exception()) goto handle_exception;
677 // Update the pc by the saved amount of the invoke bytecode size
678 UPDATE_PC(istate->bcp_advance());
679 goto run;
680 }
681
682 case deopt_resume2: {
683 // Returned from an opcode that will reexecute. Deopt was
684 // a result of a PopFrame request.
685 //
686 goto run;
687 }
688
689 case deopt_resume: {
690 // Returned from an opcode that has completed. The stack has
691 // the result all we need to do is skip across the bytecode
692 // and continue (assuming there is no exception pending)
693 //
694 // compute continuation length
695 //
696 // Note: it is possible to deopt at a return_register_finalizer opcode
697 // because this requires entering the vm to do the registering. While the
698 // opcode is complete we can't advance because there are no more opcodes
699 // much like trying to deopt at a poll return. In that has we simply
700 // get out of here
701 //
702 if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
703 // this will do the right thing even if an exception is pending.
704 goto handle_return;
705 }
706 UPDATE_PC(Bytecodes::length_at(METHOD, pc));
707 if (THREAD->has_pending_exception()) goto handle_exception;
708 goto run;
709 }
710 case got_monitors: {
711 // continue locking now that we have a monitor to use
712 // we expect to find newly allocated monitor at the "top" of the monitor stack.
713 oop lockee = STACK_OBJECT(-1);
714 VERIFY_OOP(lockee);
715 // derefing's lockee ought to provoke implicit null check
716 // find a free monitor
717 BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
718 assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
719 entry->set_obj(lockee);
720
721 assert(!UseBiasedLocking, "Not implemented");
722
723 // traditional lightweight locking
724 markWord displaced = lockee->mark().set_unlocked();
725 entry->lock()->set_displaced_header(displaced);
726 bool call_vm = UseHeavyMonitors;
727 if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) {
728 // Is it simple recursive case?
729 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
730 entry->lock()->set_displaced_header(markWord::from_pointer(NULL));
731 } else {
732 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
733 }
734 }
735 UPDATE_PC_AND_TOS(1, -1);
736 goto run;
737 }
738 default: {
739 fatal("Unexpected message from frame manager");
740 }
741 }
742
743 run:
744
745 DO_UPDATE_INSTRUCTION_COUNT(*pc)
746 DEBUGGER_SINGLE_STEP_NOTIFY();
747 #ifdef PREFETCH_OPCCODE
748 opcode = *pc; /* prefetch first opcode */
749 #endif
750
751 #ifndef USELABELS
752 while (1)
753 #endif
754 {
755 #ifndef PREFETCH_OPCCODE
756 opcode = *pc;
757 #endif
758 // Seems like this happens twice per opcode. At worst this is only
759 // need at entry to the loop.
760 // DEBUGGER_SINGLE_STEP_NOTIFY();
761 /* Using this labels avoids double breakpoints when quickening and
762 * when returing from transition frames.
763 */
764 opcode_switch:
765 assert(istate == orig, "Corrupted istate");
766 /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
767 assert(topOfStack >= istate->stack_limit(), "Stack overrun");
768 assert(topOfStack < istate->stack_base(), "Stack underrun");
769
770 #ifdef USELABELS
771 DISPATCH(opcode);
772 #else
773 switch (opcode)
774 #endif
775 {
776 CASE(_nop):
777 UPDATE_PC_AND_CONTINUE(1);
778
779 /* Push miscellaneous constants onto the stack. */
780
781 CASE(_aconst_null):
782 SET_STACK_OBJECT(NULL, 0);
783 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
784
785 #undef OPC_CONST_n
786 #define OPC_CONST_n(opcode, const_type, value) \
787 CASE(opcode): \
788 SET_STACK_ ## const_type(value, 0); \
789 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
790
791 OPC_CONST_n(_iconst_m1, INT, -1);
792 OPC_CONST_n(_iconst_0, INT, 0);
793 OPC_CONST_n(_iconst_1, INT, 1);
794 OPC_CONST_n(_iconst_2, INT, 2);
795 OPC_CONST_n(_iconst_3, INT, 3);
796 OPC_CONST_n(_iconst_4, INT, 4);
797 OPC_CONST_n(_iconst_5, INT, 5);
798 OPC_CONST_n(_fconst_0, FLOAT, 0.0);
799 OPC_CONST_n(_fconst_1, FLOAT, 1.0);
800 OPC_CONST_n(_fconst_2, FLOAT, 2.0);
801
802 #undef OPC_CONST2_n
803 #define OPC_CONST2_n(opcname, value, key, kind) \
804 CASE(_##opcname): \
805 { \
806 SET_STACK_ ## kind(VM##key##Const##value(), 1); \
807 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \
808 }
809 OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
810 OPC_CONST2_n(dconst_1, One, double, DOUBLE);
811 OPC_CONST2_n(lconst_0, Zero, long, LONG);
812 OPC_CONST2_n(lconst_1, One, long, LONG);
813
814 /* Load constant from constant pool: */
815
816 /* Push a 1-byte signed integer value onto the stack. */
817 CASE(_bipush):
818 SET_STACK_INT((jbyte)(pc[1]), 0);
819 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
820
821 /* Push a 2-byte signed integer constant onto the stack. */
822 CASE(_sipush):
823 SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
824 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
825
826 /* load from local variable */
827
828 CASE(_aload):
829 VERIFY_OOP(LOCALS_OBJECT(pc[1]));
830 SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
831 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
832
833 CASE(_iload):
834 {
835 if (REWRITE_BYTECODES) {
836 // Attempt to rewrite iload, iload -> fast_iload2
837 // iload, caload -> fast_icaload
838 // Normal iloads will be rewritten to fast_iload to avoid checking again.
839 switch (*(pc + 2)) {
840 case Bytecodes::_fast_iload:
841 REWRITE_AT_PC(Bytecodes::_fast_iload2);
842 break;
843 case Bytecodes::_caload:
844 REWRITE_AT_PC(Bytecodes::_fast_icaload);
845 break;
846 case Bytecodes::_iload:
847 // Wait until rewritten to _fast_iload.
848 break;
849 default:
850 // Last iload in a (potential) series, don't check again.
851 REWRITE_AT_PC(Bytecodes::_fast_iload);
852 }
853 }
854 // Normal iload handling.
855 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
856 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
857 }
858
859 CASE(_fast_iload):
860 CASE(_fload):
861 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
862 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
863
864 CASE(_fast_iload2):
865 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
866 SET_STACK_SLOT(LOCALS_SLOT(pc[3]), 1);
867 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
868
869 CASE(_lload):
870 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
871 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
872
873 CASE(_dload):
874 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
875 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
876
877 #undef OPC_LOAD_n
878 #define OPC_LOAD_n(num) \
879 CASE(_iload_##num): \
880 CASE(_fload_##num): \
881 SET_STACK_SLOT(LOCALS_SLOT(num), 0); \
882 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \
883 \
884 CASE(_lload_##num): \
885 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1); \
886 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \
887 CASE(_dload_##num): \
888 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1); \
889 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
890
891 OPC_LOAD_n(0);
892 OPC_LOAD_n(1);
893 OPC_LOAD_n(2);
894 OPC_LOAD_n(3);
895
896 #undef OPC_ALOAD_n
897 #define OPC_ALOAD_n(num) \
898 CASE(_aload_##num): { \
899 oop obj = LOCALS_OBJECT(num); \
900 VERIFY_OOP(obj); \
901 SET_STACK_OBJECT(obj, 0); \
902 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \
903 }
904
905 CASE(_aload_0):
906 {
907 /* Maybe rewrite if following bytecode is one of the supported _fast_Xgetfield bytecodes. */
908 if (REWRITE_BYTECODES) {
909 switch (*(pc + 1)) {
910 case Bytecodes::_fast_agetfield:
911 REWRITE_AT_PC(Bytecodes::_fast_aaccess_0);
912 break;
913 case Bytecodes::_fast_fgetfield:
914 REWRITE_AT_PC(Bytecodes::_fast_faccess_0);
915 break;
916 case Bytecodes::_fast_igetfield:
917 REWRITE_AT_PC(Bytecodes::_fast_iaccess_0);
918 break;
919 case Bytecodes::_getfield: {
920 /* Otherwise, do nothing here, wait until it gets rewritten to _fast_Xgetfield.
921 * Unfortunately, this punishes volatile field access, because it never gets
922 * rewritten. */
923 break;
924 }
925 default:
926 REWRITE_AT_PC(Bytecodes::_fast_aload_0);
927 break;
928 }
929 }
930 VERIFY_OOP(LOCALS_OBJECT(0));
931 SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
932 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
933 }
934
935 OPC_ALOAD_n(1);
936 OPC_ALOAD_n(2);
937 OPC_ALOAD_n(3);
938
939 /* store to a local variable */
940
941 CASE(_astore):
942 astore(topOfStack, -1, locals, pc[1]);
943 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
944
945 CASE(_istore):
946 CASE(_fstore):
947 SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
948 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
949
950 CASE(_lstore):
951 SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
952 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
953
954 CASE(_dstore):
955 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
956 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
957
958 CASE(_wide): {
959 uint16_t reg = Bytes::get_Java_u2(pc + 2);
960
961 opcode = pc[1];
962
963 // Wide and it's sub-bytecode are counted as separate instructions. If we
964 // don't account for this here, the bytecode trace skips the next bytecode.
965 DO_UPDATE_INSTRUCTION_COUNT(opcode);
966
967 switch(opcode) {
968 case Bytecodes::_aload:
969 VERIFY_OOP(LOCALS_OBJECT(reg));
970 SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
971 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
972
973 case Bytecodes::_iload:
974 case Bytecodes::_fload:
975 SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
976 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
977
978 case Bytecodes::_lload:
979 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
980 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
981
982 case Bytecodes::_dload:
983 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
984 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
985
986 case Bytecodes::_astore:
987 astore(topOfStack, -1, locals, reg);
988 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
989
990 case Bytecodes::_istore:
991 case Bytecodes::_fstore:
992 SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
993 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
994
995 case Bytecodes::_lstore:
996 SET_LOCALS_LONG(STACK_LONG(-1), reg);
997 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
998
999 case Bytecodes::_dstore:
1000 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1001 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1002
1003 case Bytecodes::_iinc: {
1004 int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1005 // Be nice to see what this generates.... QQQ
1006 SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1007 UPDATE_PC_AND_CONTINUE(6);
1008 }
1009 case Bytecodes::_ret:
1010 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1011 UPDATE_PC_AND_CONTINUE(0);
1012 default:
1013 VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1014 }
1015 }
1016
1017
1018 #undef OPC_STORE_n
1019 #define OPC_STORE_n(num) \
1020 CASE(_astore_##num): \
1021 astore(topOfStack, -1, locals, num); \
1022 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1023 CASE(_istore_##num): \
1024 CASE(_fstore_##num): \
1025 SET_LOCALS_SLOT(STACK_SLOT(-1), num); \
1026 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1027
1028 OPC_STORE_n(0);
1029 OPC_STORE_n(1);
1030 OPC_STORE_n(2);
1031 OPC_STORE_n(3);
1032
1033 #undef OPC_DSTORE_n
1034 #define OPC_DSTORE_n(num) \
1035 CASE(_dstore_##num): \
1036 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num); \
1037 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1038 CASE(_lstore_##num): \
1039 SET_LOCALS_LONG(STACK_LONG(-1), num); \
1040 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1041
1042 OPC_DSTORE_n(0);
1043 OPC_DSTORE_n(1);
1044 OPC_DSTORE_n(2);
1045 OPC_DSTORE_n(3);
1046
1047 /* stack pop, dup, and insert opcodes */
1048
1049
1050 CASE(_pop): /* Discard the top item on the stack */
1051 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1052
1053
1054 CASE(_pop2): /* Discard the top 2 items on the stack */
1055 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1056
1057
1058 CASE(_dup): /* Duplicate the top item on the stack */
1059 dup(topOfStack);
1060 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1061
1062 CASE(_dup2): /* Duplicate the top 2 items on the stack */
1063 dup2(topOfStack);
1064 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1065
1066 CASE(_dup_x1): /* insert top word two down */
1067 dup_x1(topOfStack);
1068 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1069
1070 CASE(_dup_x2): /* insert top word three down */
1071 dup_x2(topOfStack);
1072 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1073
1074 CASE(_dup2_x1): /* insert top 2 slots three down */
1075 dup2_x1(topOfStack);
1076 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1077
1078 CASE(_dup2_x2): /* insert top 2 slots four down */
1079 dup2_x2(topOfStack);
1080 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1081
1082 CASE(_swap): { /* swap top two elements on the stack */
1083 swap(topOfStack);
1084 UPDATE_PC_AND_CONTINUE(1);
1085 }
1086
1087 /* Perform various binary integer operations */
1088
1089 #undef OPC_INT_BINARY
1090 #define OPC_INT_BINARY(opcname, opname, test) \
1091 CASE(_i##opcname): \
1092 if (test && (STACK_INT(-1) == 0)) { \
1093 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1094 "/ by zero"); \
1095 } \
1096 SET_STACK_INT(VMint##opname(STACK_INT(-2), \
1097 STACK_INT(-1)), \
1098 -2); \
1099 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1100 CASE(_l##opcname): \
1101 { \
1102 if (test) { \
1103 jlong l1 = STACK_LONG(-1); \
1104 if (VMlongEqz(l1)) { \
1105 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1106 "/ by long zero"); \
1107 } \
1108 } \
1109 /* First long at (-1,-2) next long at (-3,-4) */ \
1110 SET_STACK_LONG(VMlong##opname(STACK_LONG(-3), \
1111 STACK_LONG(-1)), \
1112 -3); \
1113 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1114 }
1115
1116 OPC_INT_BINARY(add, Add, 0);
1117 OPC_INT_BINARY(sub, Sub, 0);
1118 OPC_INT_BINARY(mul, Mul, 0);
1119 OPC_INT_BINARY(and, And, 0);
1120 OPC_INT_BINARY(or, Or, 0);
1121 OPC_INT_BINARY(xor, Xor, 0);
1122 OPC_INT_BINARY(div, Div, 1);
1123 OPC_INT_BINARY(rem, Rem, 1);
1124
1125
1126 /* Perform various binary floating number operations */
1127 /* On some machine/platforms/compilers div zero check can be implicit */
1128
1129 #undef OPC_FLOAT_BINARY
1130 #define OPC_FLOAT_BINARY(opcname, opname) \
1131 CASE(_d##opcname): { \
1132 SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3), \
1133 STACK_DOUBLE(-1)), \
1134 -3); \
1135 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \
1136 } \
1137 CASE(_f##opcname): \
1138 SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2), \
1139 STACK_FLOAT(-1)), \
1140 -2); \
1141 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1142
1143
1144 OPC_FLOAT_BINARY(add, Add);
1145 OPC_FLOAT_BINARY(sub, Sub);
1146 OPC_FLOAT_BINARY(mul, Mul);
1147 OPC_FLOAT_BINARY(div, Div);
1148 OPC_FLOAT_BINARY(rem, Rem);
1149
1150 /* Shift operations
1151 * Shift left int and long: ishl, lshl
1152 * Logical shift right int and long w/zero extension: iushr, lushr
1153 * Arithmetic shift right int and long w/sign extension: ishr, lshr
1154 */
1155
1156 #undef OPC_SHIFT_BINARY
1157 #define OPC_SHIFT_BINARY(opcname, opname) \
1158 CASE(_i##opcname): \
1159 SET_STACK_INT(VMint##opname(STACK_INT(-2), \
1160 STACK_INT(-1)), \
1161 -2); \
1162 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1163 CASE(_l##opcname): \
1164 { \
1165 SET_STACK_LONG(VMlong##opname(STACK_LONG(-2), \
1166 STACK_INT(-1)), \
1167 -2); \
1168 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1169 }
1170
1171 OPC_SHIFT_BINARY(shl, Shl);
1172 OPC_SHIFT_BINARY(shr, Shr);
1173 OPC_SHIFT_BINARY(ushr, Ushr);
1174
1175 /* Increment local variable by constant */
1176 CASE(_iinc):
1177 {
1178 // locals[pc[1]].j.i += (jbyte)(pc[2]);
1179 SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1180 UPDATE_PC_AND_CONTINUE(3);
1181 }
1182
1183 /* negate the value on the top of the stack */
1184
1185 CASE(_ineg):
1186 SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1187 UPDATE_PC_AND_CONTINUE(1);
1188
1189 CASE(_fneg):
1190 SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1191 UPDATE_PC_AND_CONTINUE(1);
1192
1193 CASE(_lneg):
1194 {
1195 SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1196 UPDATE_PC_AND_CONTINUE(1);
1197 }
1198
1199 CASE(_dneg):
1200 {
1201 SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1202 UPDATE_PC_AND_CONTINUE(1);
1203 }
1204
1205 /* Conversion operations */
1206
1207 CASE(_i2f): /* convert top of stack int to float */
1208 SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1209 UPDATE_PC_AND_CONTINUE(1);
1210
1211 CASE(_i2l): /* convert top of stack int to long */
1212 {
1213 // this is ugly QQQ
1214 jlong r = VMint2Long(STACK_INT(-1));
1215 MORE_STACK(-1); // Pop
1216 SET_STACK_LONG(r, 1);
1217
1218 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1219 }
1220
1221 CASE(_i2d): /* convert top of stack int to double */
1222 {
1223 // this is ugly QQQ (why cast to jlong?? )
1224 jdouble r = (jlong)STACK_INT(-1);
1225 MORE_STACK(-1); // Pop
1226 SET_STACK_DOUBLE(r, 1);
1227
1228 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1229 }
1230
1231 CASE(_l2i): /* convert top of stack long to int */
1232 {
1233 jint r = VMlong2Int(STACK_LONG(-1));
1234 MORE_STACK(-2); // Pop
1235 SET_STACK_INT(r, 0);
1236 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1237 }
1238
1239 CASE(_l2f): /* convert top of stack long to float */
1240 {
1241 jlong r = STACK_LONG(-1);
1242 MORE_STACK(-2); // Pop
1243 SET_STACK_FLOAT(VMlong2Float(r), 0);
1244 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1245 }
1246
1247 CASE(_l2d): /* convert top of stack long to double */
1248 {
1249 jlong r = STACK_LONG(-1);
1250 MORE_STACK(-2); // Pop
1251 SET_STACK_DOUBLE(VMlong2Double(r), 1);
1252 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1253 }
1254
1255 CASE(_f2i): /* Convert top of stack float to int */
1256 SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1257 UPDATE_PC_AND_CONTINUE(1);
1258
1259 CASE(_f2l): /* convert top of stack float to long */
1260 {
1261 jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1262 MORE_STACK(-1); // POP
1263 SET_STACK_LONG(r, 1);
1264 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1265 }
1266
1267 CASE(_f2d): /* convert top of stack float to double */
1268 {
1269 jfloat f;
1270 jdouble r;
1271 f = STACK_FLOAT(-1);
1272 r = (jdouble) f;
1273 MORE_STACK(-1); // POP
1274 SET_STACK_DOUBLE(r, 1);
1275 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1276 }
1277
1278 CASE(_d2i): /* convert top of stack double to int */
1279 {
1280 jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1281 MORE_STACK(-2);
1282 SET_STACK_INT(r1, 0);
1283 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1284 }
1285
1286 CASE(_d2f): /* convert top of stack double to float */
1287 {
1288 jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1289 MORE_STACK(-2);
1290 SET_STACK_FLOAT(r1, 0);
1291 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1292 }
1293
1294 CASE(_d2l): /* convert top of stack double to long */
1295 {
1296 jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1297 MORE_STACK(-2);
1298 SET_STACK_LONG(r1, 1);
1299 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1300 }
1301
1302 CASE(_i2b):
1303 SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1304 UPDATE_PC_AND_CONTINUE(1);
1305
1306 CASE(_i2c):
1307 SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1308 UPDATE_PC_AND_CONTINUE(1);
1309
1310 CASE(_i2s):
1311 SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1312 UPDATE_PC_AND_CONTINUE(1);
1313
1314 /* comparison operators */
1315
1316
1317 #define COMPARISON_OP(name, comparison) \
1318 CASE(_if_icmp##name): { \
1319 int skip = (STACK_INT(-2) comparison STACK_INT(-1)) \
1320 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1321 address branch_pc = pc; \
1322 UPDATE_PC_AND_TOS(skip, -2); \
1323 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1324 CONTINUE; \
1325 } \
1326 CASE(_if##name): { \
1327 int skip = (STACK_INT(-1) comparison 0) \
1328 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1329 address branch_pc = pc; \
1330 UPDATE_PC_AND_TOS(skip, -1); \
1331 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1332 CONTINUE; \
1333 }
1334
1335 #define COMPARISON_OP2(name, comparison) \
1336 COMPARISON_OP(name, comparison) \
1337 CASE(_if_acmp##name): { \
1338 int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1)) \
1339 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1340 address branch_pc = pc; \
1341 UPDATE_PC_AND_TOS(skip, -2); \
1342 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1343 CONTINUE; \
1344 }
1345
1346 #define NULL_COMPARISON_NOT_OP(name) \
1347 CASE(_if##name): { \
1348 int skip = (!(STACK_OBJECT(-1) == NULL)) \
1349 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1350 address branch_pc = pc; \
1351 UPDATE_PC_AND_TOS(skip, -1); \
1352 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1353 CONTINUE; \
1354 }
1355
1356 #define NULL_COMPARISON_OP(name) \
1357 CASE(_if##name): { \
1358 int skip = ((STACK_OBJECT(-1) == NULL)) \
1359 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \
1360 address branch_pc = pc; \
1361 UPDATE_PC_AND_TOS(skip, -1); \
1362 DO_BACKEDGE_CHECKS(skip, branch_pc); \
1363 CONTINUE; \
1364 }
1365 COMPARISON_OP(lt, <);
1366 COMPARISON_OP(gt, >);
1367 COMPARISON_OP(le, <=);
1368 COMPARISON_OP(ge, >=);
1369 COMPARISON_OP2(eq, ==); /* include ref comparison */
1370 COMPARISON_OP2(ne, !=); /* include ref comparison */
1371 NULL_COMPARISON_OP(null);
1372 NULL_COMPARISON_NOT_OP(nonnull);
1373
1374 /* Goto pc at specified offset in switch table. */
1375
1376 CASE(_tableswitch): {
1377 jint* lpc = (jint*)VMalignWordUp(pc+1);
1378 int32_t key = STACK_INT(-1);
1379 int32_t low = Bytes::get_Java_u4((address)&lpc[1]);
1380 int32_t high = Bytes::get_Java_u4((address)&lpc[2]);
1381 int32_t skip;
1382 key -= low;
1383 if (((uint32_t) key > (uint32_t)(high - low))) {
1384 skip = Bytes::get_Java_u4((address)&lpc[0]);
1385 } else {
1386 skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1387 }
1388 // Does this really need a full backedge check (osr)?
1389 address branch_pc = pc;
1390 UPDATE_PC_AND_TOS(skip, -1);
1391 DO_BACKEDGE_CHECKS(skip, branch_pc);
1392 CONTINUE;
1393 }
1394
1395 /* Goto pc whose table entry matches specified key. */
1396
1397 CASE(_lookupswitch): {
1398 jint* lpc = (jint*)VMalignWordUp(pc+1);
1399 int32_t key = STACK_INT(-1);
1400 int32_t skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1401 int32_t npairs = Bytes::get_Java_u4((address) &lpc[1]);
1402 while (--npairs >= 0) {
1403 lpc += 2;
1404 if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1405 skip = Bytes::get_Java_u4((address)&lpc[1]);
1406 break;
1407 }
1408 }
1409 address branch_pc = pc;
1410 UPDATE_PC_AND_TOS(skip, -1);
1411 DO_BACKEDGE_CHECKS(skip, branch_pc);
1412 CONTINUE;
1413 }
1414
1415 CASE(_fcmpl):
1416 CASE(_fcmpg):
1417 {
1418 SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1419 STACK_FLOAT(-1),
1420 (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1421 -2);
1422 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1423 }
1424
1425 CASE(_dcmpl):
1426 CASE(_dcmpg):
1427 {
1428 int r = VMdoubleCompare(STACK_DOUBLE(-3),
1429 STACK_DOUBLE(-1),
1430 (opcode == Bytecodes::_dcmpl ? -1 : 1));
1431 MORE_STACK(-4); // Pop
1432 SET_STACK_INT(r, 0);
1433 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1434 }
1435
1436 CASE(_lcmp):
1437 {
1438 int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1439 MORE_STACK(-4);
1440 SET_STACK_INT(r, 0);
1441 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1442 }
1443
1444
1445 /* Return from a method */
1446
1447 CASE(_areturn):
1448 CASE(_ireturn):
1449 CASE(_freturn):
1450 CASE(_lreturn):
1451 CASE(_dreturn):
1452 CASE(_return): {
1453 // Allow a safepoint before returning to frame manager.
1454 RETURN_SAFEPOINT;
1455 goto handle_return;
1456 }
1457
1458 CASE(_return_register_finalizer): {
1459 oop rcvr = LOCALS_OBJECT(0);
1460 VERIFY_OOP(rcvr);
1461 if (rcvr->klass()->has_finalizer()) {
1462 CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1463 }
1464 goto handle_return;
1465 }
1466
1467 /* Array access byte-codes */
1468
1469 #define ARRAY_INDEX_CHECK(arrObj, index) \
1470 /* Two integers, the additional message, and the null-terminator */ \
1471 char message[2 * jintAsStringSize + 33]; \
1472 CHECK_NULL(arrObj); \
1473 if ((uint32_t)index >= (uint32_t)arrObj->length()) { \
1474 jio_snprintf(message, sizeof(message), \
1475 "Index %d out of bounds for length %d", \
1476 index, arrObj->length()); \
1477 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1478 message); \
1479 }
1480
1481 /* Every array access byte-code starts out like this */
1482 // arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1483 #define ARRAY_INTRO(arrayOff) \
1484 arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff); \
1485 jint index = STACK_INT(arrayOff + 1); \
1486 ARRAY_INDEX_CHECK(arrObj, index)
1487
1488 /* 32-bit loads. These handle conversion from < 32-bit types */
1489 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra) \
1490 { \
1491 ARRAY_INTRO(-2); \
1492 (void)extra; \
1493 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1494 -2); \
1495 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \
1496 }
1497
1498 /* 64-bit loads */
1499 #define ARRAY_LOADTO64(T,T2, stackRes, extra) \
1500 { \
1501 ARRAY_INTRO(-2); \
1502 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1503 (void)extra; \
1504 UPDATE_PC_AND_CONTINUE(1); \
1505 }
1506
1507 CASE(_iaload):
1508 ARRAY_LOADTO32(T_INT, jint, "%d", STACK_INT, 0);
1509 CASE(_faload):
1510 ARRAY_LOADTO32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0);
1511 CASE(_aaload): {
1512 ARRAY_INTRO(-2);
1513 SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1514 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1515 }
1516 CASE(_baload):
1517 ARRAY_LOADTO32(T_BYTE, jbyte, "%d", STACK_INT, 0);
1518 CASE(_caload):
1519 ARRAY_LOADTO32(T_CHAR, jchar, "%d", STACK_INT, 0);
1520 CASE(_saload):
1521 ARRAY_LOADTO32(T_SHORT, jshort, "%d", STACK_INT, 0);
1522 CASE(_laload):
1523 ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1524 CASE(_daload):
1525 ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1526
1527 CASE(_fast_icaload): {
1528 // Custom fast access for iload,caload pair.
1529 arrayOop arrObj = (arrayOop) STACK_OBJECT(-1);
1530 jint index = LOCALS_INT(pc[1]);
1531 ARRAY_INDEX_CHECK(arrObj, index);
1532 SET_STACK_INT(*(jchar *)(((address) arrObj->base(T_CHAR)) + index * sizeof(jchar)), -1);
1533 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 0);
1534 }
1535
1536 /* 32-bit stores. These handle conversion to < 32-bit types */
1537 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra) \
1538 { \
1539 ARRAY_INTRO(-3); \
1540 (void)extra; \
1541 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1542 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3); \
1543 }
1544
1545 /* 64-bit stores */
1546 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra) \
1547 { \
1548 ARRAY_INTRO(-4); \
1549 (void)extra; \
1550 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1551 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4); \
1552 }
1553
1554 CASE(_iastore):
1555 ARRAY_STOREFROM32(T_INT, jint, "%d", STACK_INT, 0);
1556 CASE(_fastore):
1557 ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0);
1558 /*
1559 * This one looks different because of the assignability check
1560 */
1561 CASE(_aastore): {
1562 oop rhsObject = STACK_OBJECT(-1);
1563 VERIFY_OOP(rhsObject);
1564 ARRAY_INTRO( -3);
1565 // arrObj, index are set
1566 if (rhsObject != NULL) {
1567 /* Check assignability of rhsObject into arrObj */
1568 Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1569 Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1570 //
1571 // Check for compatibilty. This check must not GC!!
1572 // Seems way more expensive now that we must dispatch
1573 //
1574 if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1575 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1576 }
1577 }
1578 ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1579 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1580 }
1581 CASE(_bastore): {
1582 ARRAY_INTRO(-3);
1583 int item = STACK_INT(-1);
1584 // if it is a T_BOOLEAN array, mask the stored value to 0/1
1585 if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1586 item &= 1;
1587 } else {
1588 assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1589 "should be byte array otherwise");
1590 }
1591 ((typeArrayOop)arrObj)->byte_at_put(index, item);
1592 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1593 }
1594 CASE(_castore):
1595 ARRAY_STOREFROM32(T_CHAR, jchar, "%d", STACK_INT, 0);
1596 CASE(_sastore):
1597 ARRAY_STOREFROM32(T_SHORT, jshort, "%d", STACK_INT, 0);
1598 CASE(_lastore):
1599 ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1600 CASE(_dastore):
1601 ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1602
1603 CASE(_arraylength):
1604 {
1605 arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1606 CHECK_NULL(ary);
1607 SET_STACK_INT(ary->length(), -1);
1608 UPDATE_PC_AND_CONTINUE(1);
1609 }
1610
1611 /* monitorenter and monitorexit for locking/unlocking an object */
1612
1613 CASE(_monitorenter): {
1614 oop lockee = STACK_OBJECT(-1);
1615 // derefing's lockee ought to provoke implicit null check
1616 CHECK_NULL(lockee);
1617 // find a free monitor or one already allocated for this object
1618 // if we find a matching object then we need a new monitor
1619 // since this is recursive enter
1620 BasicObjectLock* limit = istate->monitor_base();
1621 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1622 BasicObjectLock* entry = NULL;
1623 while (most_recent != limit ) {
1624 if (most_recent->obj() == NULL) entry = most_recent;
1625 else if (most_recent->obj() == lockee) break;
1626 most_recent++;
1627 }
1628 if (entry != NULL) {
1629 entry->set_obj(lockee);
1630
1631 assert(!UseBiasedLocking, "Not implemented");
1632
1633 // traditional lightweight locking
1634 markWord displaced = lockee->mark().set_unlocked();
1635 entry->lock()->set_displaced_header(displaced);
1636 bool call_vm = UseHeavyMonitors;
1637 if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) {
1638 // Is it simple recursive case?
1639 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
1640 entry->lock()->set_displaced_header(markWord::from_pointer(NULL));
1641 } else {
1642 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1643 }
1644 }
1645 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1646 } else {
1647 istate->set_msg(more_monitors);
1648 UPDATE_PC_AND_RETURN(0); // Re-execute
1649 }
1650 }
1651
1652 CASE(_monitorexit): {
1653 oop lockee = STACK_OBJECT(-1);
1654 CHECK_NULL(lockee);
1655 // derefing's lockee ought to provoke implicit null check
1656 // find our monitor slot
1657 BasicObjectLock* limit = istate->monitor_base();
1658 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1659 while (most_recent != limit ) {
1660 if ((most_recent)->obj() == lockee) {
1661 BasicLock* lock = most_recent->lock();
1662 markWord header = lock->displaced_header();
1663 most_recent->set_obj(NULL);
1664
1665 assert(!UseBiasedLocking, "Not implemented");
1666
1667 // If it isn't recursive we either must swap old header or call the runtime
1668 bool call_vm = UseHeavyMonitors;
1669 if (header.to_pointer() != NULL || call_vm) {
1670 markWord old_header = markWord::encode(lock);
1671 if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) {
1672 // restore object for the slow case
1673 most_recent->set_obj(lockee);
1674 InterpreterRuntime::monitorexit(most_recent);
1675 }
1676 }
1677 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1678 }
1679 most_recent++;
1680 }
1681 // Need to throw illegal monitor state exception
1682 CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1683 ShouldNotReachHere();
1684 }
1685
1686 /* All of the non-quick opcodes. */
1687
1688 /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1689 * constant pool index in the instruction.
1690 */
1691 CASE(_getfield):
1692 CASE(_getstatic):
1693 {
1694 u2 index;
1695 ConstantPoolCacheEntry* cache;
1696 index = Bytes::get_native_u2(pc+1);
1697
1698 // QQQ Need to make this as inlined as possible. Probably need to
1699 // split all the bytecode cases out so c++ compiler has a chance
1700 // for constant prop to fold everything possible away.
1701
1702 cache = cp->entry_at(index);
1703 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1704 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1705 handle_exception);
1706 cache = cp->entry_at(index);
1707 }
1708
1709 oop obj;
1710 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1711 Klass* k = cache->f1_as_klass();
1712 obj = k->java_mirror();
1713 MORE_STACK(1); // Assume single slot push
1714 } else {
1715 obj = STACK_OBJECT(-1);
1716 CHECK_NULL(obj);
1717 // Check if we can rewrite non-volatile _getfield to one of the _fast_Xgetfield.
1718 if (REWRITE_BYTECODES && !cache->is_volatile()) {
1719 // Rewrite current BC to _fast_Xgetfield.
1720 REWRITE_AT_PC(fast_get_type(cache->flag_state()));
1721 }
1722 }
1723
1724 MAYBE_POST_FIELD_ACCESS(obj);
1725
1726 //
1727 // Now store the result on the stack
1728 //
1729 TosState tos_type = cache->flag_state();
1730 int field_offset = cache->f2_as_index();
1731 if (cache->is_volatile()) {
1732 if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1733 OrderAccess::fence();
1734 }
1735 switch (tos_type) {
1736 case btos:
1737 case ztos:
1738 SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1739 break;
1740 case ctos:
1741 SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1742 break;
1743 case stos:
1744 SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1745 break;
1746 case itos:
1747 SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1748 break;
1749 case ftos:
1750 SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1751 break;
1752 case ltos:
1753 SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1754 MORE_STACK(1);
1755 break;
1756 case dtos:
1757 SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1758 MORE_STACK(1);
1759 break;
1760 case atos: {
1761 oop val = obj->obj_field_acquire(field_offset);
1762 VERIFY_OOP(val);
1763 SET_STACK_OBJECT(val, -1);
1764 break;
1765 }
1766 default:
1767 ShouldNotReachHere();
1768 }
1769 } else {
1770 switch (tos_type) {
1771 case btos:
1772 case ztos:
1773 SET_STACK_INT(obj->byte_field(field_offset), -1);
1774 break;
1775 case ctos:
1776 SET_STACK_INT(obj->char_field(field_offset), -1);
1777 break;
1778 case stos:
1779 SET_STACK_INT(obj->short_field(field_offset), -1);
1780 break;
1781 case itos:
1782 SET_STACK_INT(obj->int_field(field_offset), -1);
1783 break;
1784 case ftos:
1785 SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1786 break;
1787 case ltos:
1788 SET_STACK_LONG(obj->long_field(field_offset), 0);
1789 MORE_STACK(1);
1790 break;
1791 case dtos:
1792 SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1793 MORE_STACK(1);
1794 break;
1795 case atos: {
1796 oop val = obj->obj_field(field_offset);
1797 VERIFY_OOP(val);
1798 SET_STACK_OBJECT(val, -1);
1799 break;
1800 }
1801 default:
1802 ShouldNotReachHere();
1803 }
1804 }
1805
1806 UPDATE_PC_AND_CONTINUE(3);
1807 }
1808
1809 CASE(_putfield):
1810 CASE(_putstatic):
1811 {
1812 u2 index = Bytes::get_native_u2(pc+1);
1813 ConstantPoolCacheEntry* cache = cp->entry_at(index);
1814 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1815 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1816 handle_exception);
1817 cache = cp->entry_at(index);
1818 }
1819
1820 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1821 // out so c++ compiler has a chance for constant prop to fold everything possible away.
1822
1823 oop obj;
1824 int count;
1825 TosState tos_type = cache->flag_state();
1826
1827 count = -1;
1828 if (tos_type == ltos || tos_type == dtos) {
1829 --count;
1830 }
1831 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1832 Klass* k = cache->f1_as_klass();
1833 obj = k->java_mirror();
1834 } else {
1835 --count;
1836 obj = STACK_OBJECT(count);
1837 CHECK_NULL(obj);
1838
1839 // Check if we can rewrite non-volatile _putfield to one of the _fast_Xputfield.
1840 if (REWRITE_BYTECODES && !cache->is_volatile()) {
1841 // Rewrite current BC to _fast_Xputfield.
1842 REWRITE_AT_PC(fast_put_type(cache->flag_state()));
1843 }
1844 }
1845
1846 MAYBE_POST_FIELD_MODIFICATION(obj);
1847
1848 //
1849 // Now store the result
1850 //
1851 int field_offset = cache->f2_as_index();
1852 if (cache->is_volatile()) {
1853 switch (tos_type) {
1854 case ztos:
1855 obj->release_byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
1856 break;
1857 case btos:
1858 obj->release_byte_field_put(field_offset, STACK_INT(-1));
1859 break;
1860 case ctos:
1861 obj->release_char_field_put(field_offset, STACK_INT(-1));
1862 break;
1863 case stos:
1864 obj->release_short_field_put(field_offset, STACK_INT(-1));
1865 break;
1866 case itos:
1867 obj->release_int_field_put(field_offset, STACK_INT(-1));
1868 break;
1869 case ftos:
1870 obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1871 break;
1872 case ltos:
1873 obj->release_long_field_put(field_offset, STACK_LONG(-1));
1874 break;
1875 case dtos:
1876 obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1877 break;
1878 case atos: {
1879 oop val = STACK_OBJECT(-1);
1880 VERIFY_OOP(val);
1881 obj->release_obj_field_put(field_offset, val);
1882 break;
1883 }
1884 default:
1885 ShouldNotReachHere();
1886 }
1887 OrderAccess::storeload();
1888 } else {
1889 switch (tos_type) {
1890 case ztos:
1891 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
1892 break;
1893 case btos:
1894 obj->byte_field_put(field_offset, STACK_INT(-1));
1895 break;
1896 case ctos:
1897 obj->char_field_put(field_offset, STACK_INT(-1));
1898 break;
1899 case stos:
1900 obj->short_field_put(field_offset, STACK_INT(-1));
1901 break;
1902 case itos:
1903 obj->int_field_put(field_offset, STACK_INT(-1));
1904 break;
1905 case ftos:
1906 obj->float_field_put(field_offset, STACK_FLOAT(-1));
1907 break;
1908 case ltos:
1909 obj->long_field_put(field_offset, STACK_LONG(-1));
1910 break;
1911 case dtos:
1912 obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1913 break;
1914 case atos: {
1915 oop val = STACK_OBJECT(-1);
1916 VERIFY_OOP(val);
1917 obj->obj_field_put(field_offset, val);
1918 break;
1919 }
1920 default:
1921 ShouldNotReachHere();
1922 }
1923 }
1924
1925 UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1926 }
1927
1928 CASE(_new): {
1929 u2 index = Bytes::get_Java_u2(pc+1);
1930
1931 // Attempt TLAB allocation first.
1932 //
1933 // To do this, we need to make sure:
1934 // - klass is initialized
1935 // - klass can be fastpath allocated (e.g. does not have finalizer)
1936 // - TLAB accepts the allocation
1937 ConstantPool* constants = istate->method()->constants();
1938 if (UseTLAB && !constants->tag_at(index).is_unresolved_klass()) {
1939 Klass* entry = constants->resolved_klass_at(index);
1940 InstanceKlass* ik = InstanceKlass::cast(entry);
1941 if (ik->is_initialized() && ik->can_be_fastpath_allocated()) {
1942 size_t obj_size = ik->size_helper();
1943 HeapWord* result = THREAD->tlab().allocate(obj_size);
1944 if (result != NULL) {
1945 // Initialize object field block:
1946 // - if TLAB is pre-zeroed, we can skip this path
1947 // - in debug mode, ThreadLocalAllocBuffer::allocate mangles
1948 // this area, and we still need to initialize it
1949 if (DEBUG_ONLY(true ||) !ZeroTLAB) {
1950 size_t hdr_size = oopDesc::header_size();
1951 Copy::fill_to_words(result + hdr_size, obj_size - hdr_size, 0);
1952 }
1953
1954 oop obj = cast_to_oop(result);
1955
1956 // Initialize header
1957 assert(!UseBiasedLocking, "Not implemented");
1958 obj->set_mark(markWord::prototype());
1959 obj->set_klass_gap(0);
1960 obj->set_klass(ik);
1961
1962 // Must prevent reordering of stores for object initialization
1963 // with stores that publish the new object.
1964 OrderAccess::storestore();
1965 SET_STACK_OBJECT(obj, 0);
1966 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1967 }
1968 }
1969 }
1970 // Slow case allocation
1971 CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
1972 handle_exception);
1973 // Must prevent reordering of stores for object initialization
1974 // with stores that publish the new object.
1975 OrderAccess::storestore();
1976 SET_STACK_OBJECT(THREAD->vm_result(), 0);
1977 THREAD->set_vm_result(NULL);
1978 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1979 }
1980 CASE(_anewarray): {
1981 u2 index = Bytes::get_Java_u2(pc+1);
1982 jint size = STACK_INT(-1);
1983 CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
1984 handle_exception);
1985 // Must prevent reordering of stores for object initialization
1986 // with stores that publish the new object.
1987 OrderAccess::storestore();
1988 SET_STACK_OBJECT(THREAD->vm_result(), -1);
1989 THREAD->set_vm_result(NULL);
1990 UPDATE_PC_AND_CONTINUE(3);
1991 }
1992 CASE(_multianewarray): {
1993 jint dims = *(pc+3);
1994 jint size = STACK_INT(-1);
1995 // stack grows down, dimensions are up!
1996 jint *dimarray =
1997 (jint*)&topOfStack[dims * Interpreter::stackElementWords+
1998 Interpreter::stackElementWords-1];
1999 //adjust pointer to start of stack element
2000 CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2001 handle_exception);
2002 // Must prevent reordering of stores for object initialization
2003 // with stores that publish the new object.
2004 OrderAccess::storestore();
2005 SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2006 THREAD->set_vm_result(NULL);
2007 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2008 }
2009 CASE(_checkcast):
2010 if (STACK_OBJECT(-1) != NULL) {
2011 VERIFY_OOP(STACK_OBJECT(-1));
2012 u2 index = Bytes::get_Java_u2(pc+1);
2013 // Constant pool may have actual klass or unresolved klass. If it is
2014 // unresolved we must resolve it.
2015 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2016 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2017 }
2018 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2019 Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2020 //
2021 // Check for compatibilty. This check must not GC!!
2022 // Seems way more expensive now that we must dispatch.
2023 //
2024 if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2025 ResourceMark rm(THREAD);
2026 char* message = SharedRuntime::generate_class_cast_message(
2027 objKlass, klassOf);
2028 VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2029 }
2030 }
2031 UPDATE_PC_AND_CONTINUE(3);
2032
2033 CASE(_instanceof):
2034 if (STACK_OBJECT(-1) == NULL) {
2035 SET_STACK_INT(0, -1);
2036 } else {
2037 VERIFY_OOP(STACK_OBJECT(-1));
2038 u2 index = Bytes::get_Java_u2(pc+1);
2039 // Constant pool may have actual klass or unresolved klass. If it is
2040 // unresolved we must resolve it.
2041 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2042 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2043 }
2044 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2045 Klass* objKlass = STACK_OBJECT(-1)->klass();
2046 //
2047 // Check for compatibilty. This check must not GC!!
2048 // Seems way more expensive now that we must dispatch.
2049 //
2050 if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2051 SET_STACK_INT(1, -1);
2052 } else {
2053 SET_STACK_INT(0, -1);
2054 }
2055 }
2056 UPDATE_PC_AND_CONTINUE(3);
2057
2058 CASE(_ldc_w):
2059 CASE(_ldc):
2060 {
2061 u2 index;
2062 bool wide = false;
2063 int incr = 2; // frequent case
2064 if (opcode == Bytecodes::_ldc) {
2065 index = pc[1];
2066 } else {
2067 index = Bytes::get_Java_u2(pc+1);
2068 incr = 3;
2069 wide = true;
2070 }
2071
2072 ConstantPool* constants = METHOD->constants();
2073 switch (constants->tag_at(index).value()) {
2074 case JVM_CONSTANT_Integer:
2075 SET_STACK_INT(constants->int_at(index), 0);
2076 break;
2077
2078 case JVM_CONSTANT_Float:
2079 SET_STACK_FLOAT(constants->float_at(index), 0);
2080 break;
2081
2082 case JVM_CONSTANT_String:
2083 {
2084 oop result = constants->resolved_references()->obj_at(index);
2085 if (result == NULL) {
2086 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2087 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2088 THREAD->set_vm_result(NULL);
2089 } else {
2090 VERIFY_OOP(result);
2091 SET_STACK_OBJECT(result, 0);
2092 }
2093 break;
2094 }
2095
2096 case JVM_CONSTANT_Class:
2097 VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2098 SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2099 break;
2100
2101 case JVM_CONSTANT_UnresolvedClass:
2102 case JVM_CONSTANT_UnresolvedClassInError:
2103 CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2104 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2105 THREAD->set_vm_result(NULL);
2106 break;
2107
2108 case JVM_CONSTANT_Dynamic:
2109 case JVM_CONSTANT_DynamicInError:
2110 {
2111 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2112 oop result = THREAD->vm_result();
2113 VERIFY_OOP(result);
2114
2115 jvalue value;
2116 BasicType type = java_lang_boxing_object::get_value(result, &value);
2117 switch (type) {
2118 case T_FLOAT: SET_STACK_FLOAT(value.f, 0); break;
2119 case T_INT: SET_STACK_INT(value.i, 0); break;
2120 case T_SHORT: SET_STACK_INT(value.s, 0); break;
2121 case T_BYTE: SET_STACK_INT(value.b, 0); break;
2122 case T_CHAR: SET_STACK_INT(value.c, 0); break;
2123 case T_BOOLEAN: SET_STACK_INT(value.z, 0); break;
2124 default: ShouldNotReachHere();
2125 }
2126
2127 break;
2128 }
2129
2130 default: ShouldNotReachHere();
2131 }
2132 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2133 }
2134
2135 CASE(_ldc2_w):
2136 {
2137 u2 index = Bytes::get_Java_u2(pc+1);
2138
2139 ConstantPool* constants = METHOD->constants();
2140 switch (constants->tag_at(index).value()) {
2141
2142 case JVM_CONSTANT_Long:
2143 SET_STACK_LONG(constants->long_at(index), 1);
2144 break;
2145
2146 case JVM_CONSTANT_Double:
2147 SET_STACK_DOUBLE(constants->double_at(index), 1);
2148 break;
2149
2150 case JVM_CONSTANT_Dynamic:
2151 case JVM_CONSTANT_DynamicInError:
2152 {
2153 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2154 oop result = THREAD->vm_result();
2155 VERIFY_OOP(result);
2156
2157 jvalue value;
2158 BasicType type = java_lang_boxing_object::get_value(result, &value);
2159 switch (type) {
2160 case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break;
2161 case T_LONG: SET_STACK_LONG(value.j, 1); break;
2162 default: ShouldNotReachHere();
2163 }
2164
2165 break;
2166 }
2167
2168 default: ShouldNotReachHere();
2169 }
2170 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2171 }
2172
2173 CASE(_fast_aldc_w):
2174 CASE(_fast_aldc): {
2175 u2 index;
2176 int incr;
2177 if (opcode == Bytecodes::_fast_aldc) {
2178 index = pc[1];
2179 incr = 2;
2180 } else {
2181 index = Bytes::get_native_u2(pc+1);
2182 incr = 3;
2183 }
2184
2185 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2186 // This kind of CP cache entry does not need to match the flags byte, because
2187 // there is a 1-1 relation between bytecode type and CP entry type.
2188 ConstantPool* constants = METHOD->constants();
2189 oop result = constants->resolved_references()->obj_at(index);
2190 if (result == NULL) {
2191 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2192 handle_exception);
2193 result = THREAD->vm_result();
2194 }
2195 if (result == Universe::the_null_sentinel())
2196 result = NULL;
2197
2198 VERIFY_OOP(result);
2199 SET_STACK_OBJECT(result, 0);
2200 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2201 }
2202
2203 CASE(_invokedynamic): {
2204
2205 u4 index = Bytes::get_native_u4(pc+1);
2206 ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2207
2208 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2209 // This kind of CP cache entry does not need to match the flags byte, because
2210 // there is a 1-1 relation between bytecode type and CP entry type.
2211 if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2212 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2213 handle_exception);
2214 cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2215 }
2216
2217 Method* method = cache->f1_as_method();
2218 if (VerifyOops) method->verify();
2219
2220 if (cache->has_appendix()) {
2221 constantPoolHandle cp(THREAD, METHOD->constants());
2222 SET_STACK_OBJECT(cache->appendix_if_resolved(cp), 0);
2223 MORE_STACK(1);
2224 }
2225
2226 istate->set_msg(call_method);
2227 istate->set_callee(method);
2228 istate->set_callee_entry_point(method->from_interpreted_entry());
2229 istate->set_bcp_advance(5);
2230
2231 UPDATE_PC_AND_RETURN(0); // I'll be back...
2232 }
2233
2234 CASE(_invokehandle): {
2235
2236 u2 index = Bytes::get_native_u2(pc+1);
2237 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2238
2239 if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2240 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2241 handle_exception);
2242 cache = cp->entry_at(index);
2243 }
2244
2245 Method* method = cache->f1_as_method();
2246 if (VerifyOops) method->verify();
2247
2248 if (cache->has_appendix()) {
2249 constantPoolHandle cp(THREAD, METHOD->constants());
2250 SET_STACK_OBJECT(cache->appendix_if_resolved(cp), 0);
2251 MORE_STACK(1);
2252 }
2253
2254 istate->set_msg(call_method);
2255 istate->set_callee(method);
2256 istate->set_callee_entry_point(method->from_interpreted_entry());
2257 istate->set_bcp_advance(3);
2258
2259 UPDATE_PC_AND_RETURN(0); // I'll be back...
2260 }
2261
2262 CASE(_invokeinterface): {
2263 u2 index = Bytes::get_native_u2(pc+1);
2264
2265 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2266 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2267
2268 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2269 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2270 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2271 handle_exception);
2272 cache = cp->entry_at(index);
2273 }
2274
2275 istate->set_msg(call_method);
2276
2277 // Special case of invokeinterface called for virtual method of
2278 // java.lang.Object. See cpCache.cpp for details.
2279 Method* callee = NULL;
2280 if (cache->is_forced_virtual()) {
2281 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2282 if (cache->is_vfinal()) {
2283 callee = cache->f2_as_vfinal_method();
2284 } else {
2285 // Get receiver.
2286 int parms = cache->parameter_size();
2287 // Same comments as invokevirtual apply here.
2288 oop rcvr = STACK_OBJECT(-parms);
2289 VERIFY_OOP(rcvr);
2290 Klass* rcvrKlass = rcvr->klass();
2291 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2292 }
2293 } else if (cache->is_vfinal()) {
2294 // private interface method invocations
2295 //
2296 // Ensure receiver class actually implements
2297 // the resolved interface class. The link resolver
2298 // does this, but only for the first time this
2299 // interface is being called.
2300 int parms = cache->parameter_size();
2301 oop rcvr = STACK_OBJECT(-parms);
2302 CHECK_NULL(rcvr);
2303 Klass* recv_klass = rcvr->klass();
2304 Klass* resolved_klass = cache->f1_as_klass();
2305 if (!recv_klass->is_subtype_of(resolved_klass)) {
2306 ResourceMark rm(THREAD);
2307 char buf[200];
2308 jio_snprintf(buf, sizeof(buf), "Class %s does not implement the requested interface %s",
2309 recv_klass->external_name(),
2310 resolved_klass->external_name());
2311 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
2312 }
2313 callee = cache->f2_as_vfinal_method();
2314 }
2315 if (callee != NULL) {
2316 istate->set_callee(callee);
2317 istate->set_callee_entry_point(callee->from_interpreted_entry());
2318 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2319 istate->set_callee_entry_point(callee->interpreter_entry());
2320 }
2321 istate->set_bcp_advance(5);
2322 UPDATE_PC_AND_RETURN(0); // I'll be back...
2323 }
2324
2325 // this could definitely be cleaned up QQQ
2326 Method *interface_method = cache->f2_as_interface_method();
2327 InstanceKlass* iclass = interface_method->method_holder();
2328
2329 // get receiver
2330 int parms = cache->parameter_size();
2331 oop rcvr = STACK_OBJECT(-parms);
2332 CHECK_NULL(rcvr);
2333 InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2334
2335 // Receiver subtype check against resolved interface klass (REFC).
2336 {
2337 Klass* refc = cache->f1_as_klass();
2338 itableOffsetEntry* scan;
2339 for (scan = (itableOffsetEntry*) int2->start_of_itable();
2340 scan->interface_klass() != NULL;
2341 scan++) {
2342 if (scan->interface_klass() == refc) {
2343 break;
2344 }
2345 }
2346 // Check that the entry is non-null. A null entry means
2347 // that the receiver class doesn't implement the
2348 // interface, and wasn't the same as when the caller was
2349 // compiled.
2350 if (scan->interface_klass() == NULL) {
2351 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2352 }
2353 }
2354
2355 itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2356 int i;
2357 for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2358 if (ki->interface_klass() == iclass) break;
2359 }
2360 // If the interface isn't found, this class doesn't implement this
2361 // interface. The link resolver checks this but only for the first
2362 // time this interface is called.
2363 if (i == int2->itable_length()) {
2364 CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(THREAD, rcvr->klass(), iclass),
2365 handle_exception);
2366 }
2367 int mindex = interface_method->itable_index();
2368
2369 itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2370 callee = im[mindex].method();
2371 if (callee == NULL) {
2372 CALL_VM(InterpreterRuntime::throw_AbstractMethodErrorVerbose(THREAD, rcvr->klass(), interface_method),
2373 handle_exception);
2374 }
2375
2376 istate->set_callee(callee);
2377 istate->set_callee_entry_point(callee->from_interpreted_entry());
2378 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2379 istate->set_callee_entry_point(callee->interpreter_entry());
2380 }
2381 istate->set_bcp_advance(5);
2382 UPDATE_PC_AND_RETURN(0); // I'll be back...
2383 }
2384
2385 CASE(_invokevirtual):
2386 CASE(_invokespecial):
2387 CASE(_invokestatic): {
2388 u2 index = Bytes::get_native_u2(pc+1);
2389
2390 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2391 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2392 // out so c++ compiler has a chance for constant prop to fold everything possible away.
2393
2394 if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2395 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2396 handle_exception);
2397 cache = cp->entry_at(index);
2398 }
2399
2400 istate->set_msg(call_method);
2401 {
2402 Method* callee;
2403 if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2404 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2405 if (cache->is_vfinal()) {
2406 callee = cache->f2_as_vfinal_method();
2407 if (REWRITE_BYTECODES) {
2408 // Rewrite to _fast_invokevfinal.
2409 REWRITE_AT_PC(Bytecodes::_fast_invokevfinal);
2410 }
2411 } else {
2412 // get receiver
2413 int parms = cache->parameter_size();
2414 // this works but needs a resourcemark and seems to create a vtable on every call:
2415 // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2416 //
2417 // this fails with an assert
2418 // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2419 // but this works
2420 oop rcvr = STACK_OBJECT(-parms);
2421 VERIFY_OOP(rcvr);
2422 Klass* rcvrKlass = rcvr->klass();
2423 /*
2424 Executing this code in java.lang.String:
2425 public String(char value[]) {
2426 this.count = value.length;
2427 this.value = (char[])value.clone();
2428 }
2429
2430 a find on rcvr->klass() reports:
2431 {type array char}{type array class}
2432 - klass: {other class}
2433
2434 but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2435 because rcvr->klass()->is_instance_klass() == 0
2436 However it seems to have a vtable in the right location. Huh?
2437 Because vtables have the same offset for ArrayKlass and InstanceKlass.
2438 */
2439 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2440 }
2441 } else {
2442 if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2443 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2444 }
2445 callee = cache->f1_as_method();
2446 }
2447
2448 istate->set_callee(callee);
2449 istate->set_callee_entry_point(callee->from_interpreted_entry());
2450 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2451 istate->set_callee_entry_point(callee->interpreter_entry());
2452 }
2453 istate->set_bcp_advance(3);
2454 UPDATE_PC_AND_RETURN(0); // I'll be back...
2455 }
2456 }
2457
2458 /* Allocate memory for a new java object. */
2459
2460 CASE(_newarray): {
2461 BasicType atype = (BasicType) *(pc+1);
2462 jint size = STACK_INT(-1);
2463 CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2464 handle_exception);
2465 // Must prevent reordering of stores for object initialization
2466 // with stores that publish the new object.
2467 OrderAccess::storestore();
2468 SET_STACK_OBJECT(THREAD->vm_result(), -1);
2469 THREAD->set_vm_result(NULL);
2470
2471 UPDATE_PC_AND_CONTINUE(2);
2472 }
2473
2474 /* Throw an exception. */
2475
2476 CASE(_athrow): {
2477 oop except_oop = STACK_OBJECT(-1);
2478 CHECK_NULL(except_oop);
2479 // set pending_exception so we use common code
2480 THREAD->set_pending_exception(except_oop, NULL, 0);
2481 goto handle_exception;
2482 }
2483
2484 /* goto and jsr. They are exactly the same except jsr pushes
2485 * the address of the next instruction first.
2486 */
2487
2488 CASE(_jsr): {
2489 /* push bytecode index on stack */
2490 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2491 MORE_STACK(1);
2492 /* FALL THROUGH */
2493 }
2494
2495 CASE(_goto):
2496 {
2497 int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2498 address branch_pc = pc;
2499 UPDATE_PC(offset);
2500 DO_BACKEDGE_CHECKS(offset, branch_pc);
2501 CONTINUE;
2502 }
2503
2504 CASE(_jsr_w): {
2505 /* push return address on the stack */
2506 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2507 MORE_STACK(1);
2508 /* FALL THROUGH */
2509 }
2510
2511 CASE(_goto_w):
2512 {
2513 int32_t offset = Bytes::get_Java_u4(pc + 1);
2514 address branch_pc = pc;
2515 UPDATE_PC(offset);
2516 DO_BACKEDGE_CHECKS(offset, branch_pc);
2517 CONTINUE;
2518 }
2519
2520 /* return from a jsr or jsr_w */
2521
2522 CASE(_ret): {
2523 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2524 UPDATE_PC_AND_CONTINUE(0);
2525 }
2526
2527 /* debugger breakpoint */
2528
2529 CASE(_breakpoint): {
2530 Bytecodes::Code original_bytecode;
2531 DECACHE_STATE();
2532 SET_LAST_JAVA_FRAME();
2533 original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2534 METHOD, pc);
2535 RESET_LAST_JAVA_FRAME();
2536 CACHE_STATE();
2537 if (THREAD->has_pending_exception()) goto handle_exception;
2538 CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2539 handle_exception);
2540
2541 opcode = (jubyte)original_bytecode;
2542 goto opcode_switch;
2543 }
2544
2545 CASE(_fast_agetfield): {
2546 u2 index = Bytes::get_native_u2(pc+1);
2547 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2548 int field_offset = cache->f2_as_index();
2549
2550 oop obj = STACK_OBJECT(-1);
2551 CHECK_NULL(obj);
2552
2553 MAYBE_POST_FIELD_ACCESS(obj);
2554
2555 VERIFY_OOP(obj->obj_field(field_offset));
2556 SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2557 UPDATE_PC_AND_CONTINUE(3);
2558 }
2559
2560 CASE(_fast_bgetfield): {
2561 u2 index = Bytes::get_native_u2(pc+1);
2562 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2563 int field_offset = cache->f2_as_index();
2564
2565 oop obj = STACK_OBJECT(-1);
2566 CHECK_NULL(obj);
2567
2568 MAYBE_POST_FIELD_ACCESS(obj);
2569
2570 SET_STACK_INT(obj->byte_field(field_offset), -1);
2571 UPDATE_PC_AND_CONTINUE(3);
2572 }
2573
2574 CASE(_fast_cgetfield): {
2575 u2 index = Bytes::get_native_u2(pc+1);
2576 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2577 int field_offset = cache->f2_as_index();
2578
2579 oop obj = STACK_OBJECT(-1);
2580 CHECK_NULL(obj);
2581
2582 MAYBE_POST_FIELD_ACCESS(obj);
2583
2584 SET_STACK_INT(obj->char_field(field_offset), -1);
2585 UPDATE_PC_AND_CONTINUE(3);
2586 }
2587
2588 CASE(_fast_dgetfield): {
2589 u2 index = Bytes::get_native_u2(pc+1);
2590 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2591 int field_offset = cache->f2_as_index();
2592
2593 oop obj = STACK_OBJECT(-1);
2594 CHECK_NULL(obj);
2595
2596 MAYBE_POST_FIELD_ACCESS(obj);
2597
2598 SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2599 MORE_STACK(1);
2600 UPDATE_PC_AND_CONTINUE(3);
2601 }
2602
2603 CASE(_fast_fgetfield): {
2604 u2 index = Bytes::get_native_u2(pc+1);
2605 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2606 int field_offset = cache->f2_as_index();
2607
2608 oop obj = STACK_OBJECT(-1);
2609 CHECK_NULL(obj);
2610
2611 MAYBE_POST_FIELD_ACCESS(obj);
2612
2613 SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2614 UPDATE_PC_AND_CONTINUE(3);
2615 }
2616
2617 CASE(_fast_igetfield): {
2618 u2 index = Bytes::get_native_u2(pc+1);
2619 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2620 int field_offset = cache->f2_as_index();
2621
2622 oop obj = STACK_OBJECT(-1);
2623 CHECK_NULL(obj);
2624
2625 MAYBE_POST_FIELD_ACCESS(obj);
2626
2627 SET_STACK_INT(obj->int_field(field_offset), -1);
2628 UPDATE_PC_AND_CONTINUE(3);
2629 }
2630
2631 CASE(_fast_lgetfield): {
2632 u2 index = Bytes::get_native_u2(pc+1);
2633 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2634 int field_offset = cache->f2_as_index();
2635
2636 oop obj = STACK_OBJECT(-1);
2637 CHECK_NULL(obj);
2638
2639 MAYBE_POST_FIELD_ACCESS(obj);
2640
2641 SET_STACK_LONG(obj->long_field(field_offset), 0);
2642 MORE_STACK(1);
2643 UPDATE_PC_AND_CONTINUE(3);
2644 }
2645
2646 CASE(_fast_sgetfield): {
2647 u2 index = Bytes::get_native_u2(pc+1);
2648 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2649 int field_offset = cache->f2_as_index();
2650
2651 oop obj = STACK_OBJECT(-1);
2652 CHECK_NULL(obj);
2653
2654 MAYBE_POST_FIELD_ACCESS(obj);
2655
2656 SET_STACK_INT(obj->short_field(field_offset), -1);
2657 UPDATE_PC_AND_CONTINUE(3);
2658 }
2659
2660 CASE(_fast_aputfield): {
2661 u2 index = Bytes::get_native_u2(pc+1);
2662 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2663
2664 oop obj = STACK_OBJECT(-2);
2665 CHECK_NULL(obj);
2666
2667 MAYBE_POST_FIELD_MODIFICATION(obj);
2668
2669 int field_offset = cache->f2_as_index();
2670 obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2671
2672 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2673 }
2674
2675 CASE(_fast_bputfield): {
2676 u2 index = Bytes::get_native_u2(pc+1);
2677 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2678
2679 oop obj = STACK_OBJECT(-2);
2680 CHECK_NULL(obj);
2681
2682 MAYBE_POST_FIELD_MODIFICATION(obj);
2683
2684 int field_offset = cache->f2_as_index();
2685 obj->byte_field_put(field_offset, STACK_INT(-1));
2686
2687 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2688 }
2689
2690 CASE(_fast_zputfield): {
2691 u2 index = Bytes::get_native_u2(pc+1);
2692 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2693
2694 oop obj = STACK_OBJECT(-2);
2695 CHECK_NULL(obj);
2696
2697 MAYBE_POST_FIELD_MODIFICATION(obj);
2698
2699 int field_offset = cache->f2_as_index();
2700 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
2701
2702 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2703 }
2704
2705 CASE(_fast_cputfield): {
2706 u2 index = Bytes::get_native_u2(pc+1);
2707 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2708
2709 oop obj = STACK_OBJECT(-2);
2710 CHECK_NULL(obj);
2711
2712 MAYBE_POST_FIELD_MODIFICATION(obj);
2713
2714 int field_offset = cache->f2_as_index();
2715 obj->char_field_put(field_offset, STACK_INT(-1));
2716
2717 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2718 }
2719
2720 CASE(_fast_dputfield): {
2721 u2 index = Bytes::get_native_u2(pc+1);
2722 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2723
2724 oop obj = STACK_OBJECT(-3);
2725 CHECK_NULL(obj);
2726
2727 MAYBE_POST_FIELD_MODIFICATION(obj);
2728
2729 int field_offset = cache->f2_as_index();
2730 obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2731
2732 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2733 }
2734
2735 CASE(_fast_fputfield): {
2736 u2 index = Bytes::get_native_u2(pc+1);
2737 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2738
2739 oop obj = STACK_OBJECT(-2);
2740 CHECK_NULL(obj);
2741
2742 MAYBE_POST_FIELD_MODIFICATION(obj);
2743
2744 int field_offset = cache->f2_as_index();
2745 obj->float_field_put(field_offset, STACK_FLOAT(-1));
2746
2747 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2748 }
2749
2750 CASE(_fast_iputfield): {
2751 u2 index = Bytes::get_native_u2(pc+1);
2752 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2753
2754 oop obj = STACK_OBJECT(-2);
2755 CHECK_NULL(obj);
2756
2757 MAYBE_POST_FIELD_MODIFICATION(obj);
2758
2759 int field_offset = cache->f2_as_index();
2760 obj->int_field_put(field_offset, STACK_INT(-1));
2761
2762 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2763 }
2764
2765 CASE(_fast_lputfield): {
2766 u2 index = Bytes::get_native_u2(pc+1);
2767 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2768
2769 oop obj = STACK_OBJECT(-3);
2770 CHECK_NULL(obj);
2771
2772 MAYBE_POST_FIELD_MODIFICATION(obj);
2773
2774 int field_offset = cache->f2_as_index();
2775 obj->long_field_put(field_offset, STACK_LONG(-1));
2776
2777 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2778 }
2779
2780 CASE(_fast_sputfield): {
2781 u2 index = Bytes::get_native_u2(pc+1);
2782 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2783
2784 oop obj = STACK_OBJECT(-2);
2785 CHECK_NULL(obj);
2786
2787 MAYBE_POST_FIELD_MODIFICATION(obj);
2788
2789 int field_offset = cache->f2_as_index();
2790 obj->short_field_put(field_offset, STACK_INT(-1));
2791
2792 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2793 }
2794
2795 CASE(_fast_aload_0): {
2796 oop obj = LOCALS_OBJECT(0);
2797 VERIFY_OOP(obj);
2798 SET_STACK_OBJECT(obj, 0);
2799 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
2800 }
2801
2802 CASE(_fast_aaccess_0): {
2803 u2 index = Bytes::get_native_u2(pc+2);
2804 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2805 int field_offset = cache->f2_as_index();
2806
2807 oop obj = LOCALS_OBJECT(0);
2808 CHECK_NULL(obj);
2809 VERIFY_OOP(obj);
2810
2811 MAYBE_POST_FIELD_ACCESS(obj);
2812
2813 VERIFY_OOP(obj->obj_field(field_offset));
2814 SET_STACK_OBJECT(obj->obj_field(field_offset), 0);
2815 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2816 }
2817
2818 CASE(_fast_iaccess_0): {
2819 u2 index = Bytes::get_native_u2(pc+2);
2820 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2821 int field_offset = cache->f2_as_index();
2822
2823 oop obj = LOCALS_OBJECT(0);
2824 CHECK_NULL(obj);
2825 VERIFY_OOP(obj);
2826
2827 MAYBE_POST_FIELD_ACCESS(obj);
2828
2829 SET_STACK_INT(obj->int_field(field_offset), 0);
2830 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2831 }
2832
2833 CASE(_fast_faccess_0): {
2834 u2 index = Bytes::get_native_u2(pc+2);
2835 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2836 int field_offset = cache->f2_as_index();
2837
2838 oop obj = LOCALS_OBJECT(0);
2839 CHECK_NULL(obj);
2840 VERIFY_OOP(obj);
2841
2842 MAYBE_POST_FIELD_ACCESS(obj);
2843
2844 SET_STACK_FLOAT(obj->float_field(field_offset), 0);
2845 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2846 }
2847
2848 CASE(_fast_invokevfinal): {
2849 u2 index = Bytes::get_native_u2(pc+1);
2850 ConstantPoolCacheEntry* cache = cp->entry_at(index);
2851
2852 assert(cache->is_resolved(Bytecodes::_invokevirtual), "Should be resolved before rewriting");
2853
2854 istate->set_msg(call_method);
2855
2856 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2857 Method* callee = cache->f2_as_vfinal_method();
2858 istate->set_callee(callee);
2859 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2860 istate->set_callee_entry_point(callee->interpreter_entry());
2861 } else {
2862 istate->set_callee_entry_point(callee->from_interpreted_entry());
2863 }
2864 istate->set_bcp_advance(3);
2865 UPDATE_PC_AND_RETURN(0);
2866 }
2867
2868 DEFAULT:
2869 fatal("Unimplemented opcode %d = %s", opcode,
2870 Bytecodes::name((Bytecodes::Code)opcode));
2871 goto finish;
2872
2873 } /* switch(opc) */
2874
2875
2876 #ifdef USELABELS
2877 check_for_exception:
2878 #endif
2879 {
2880 if (!THREAD->has_pending_exception()) {
2881 CONTINUE;
2882 }
2883 /* We will be gcsafe soon, so flush our state. */
2884 DECACHE_PC();
2885 goto handle_exception;
2886 }
2887 do_continue: ;
2888
2889 } /* while (1) interpreter loop */
2890
2891
2892 // An exception exists in the thread state see whether this activation can handle it
2893 handle_exception: {
2894
2895 HandleMarkCleaner __hmc(THREAD);
2896 Handle except_oop(THREAD, THREAD->pending_exception());
2897 // Prevent any subsequent HandleMarkCleaner in the VM
2898 // from freeing the except_oop handle.
2899 HandleMark __hm(THREAD);
2900
2901 THREAD->clear_pending_exception();
2902 assert(except_oop() != NULL, "No exception to process");
2903 intptr_t continuation_bci;
2904 // expression stack is emptied
2905 topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2906 CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2907 handle_exception);
2908
2909 except_oop = Handle(THREAD, THREAD->vm_result());
2910 THREAD->set_vm_result(NULL);
2911 if (continuation_bci >= 0) {
2912 // Place exception on top of stack
2913 SET_STACK_OBJECT(except_oop(), 0);
2914 MORE_STACK(1);
2915 pc = METHOD->code_base() + continuation_bci;
2916 if (log_is_enabled(Info, exceptions)) {
2917 ResourceMark rm(THREAD);
2918 stringStream tempst;
2919 tempst.print("interpreter method <%s>\n"
2920 " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2921 METHOD->print_value_string(),
2922 (int)(istate->bcp() - METHOD->code_base()),
2923 (int)continuation_bci, p2i(THREAD));
2924 Exceptions::log_exception(except_oop, tempst.as_string());
2925 }
2926 // for AbortVMOnException flag
2927 Exceptions::debug_check_abort(except_oop);
2928 goto run;
2929 }
2930 if (log_is_enabled(Info, exceptions)) {
2931 ResourceMark rm;
2932 stringStream tempst;
2933 tempst.print("interpreter method <%s>\n"
2934 " at bci %d, unwinding for thread " INTPTR_FORMAT,
2935 METHOD->print_value_string(),
2936 (int)(istate->bcp() - METHOD->code_base()),
2937 p2i(THREAD));
2938 Exceptions::log_exception(except_oop, tempst.as_string());
2939 }
2940 // for AbortVMOnException flag
2941 Exceptions::debug_check_abort(except_oop);
2942
2943 // No handler in this activation, unwind and try again
2944 THREAD->set_pending_exception(except_oop(), NULL, 0);
2945 goto handle_return;
2946 } // handle_exception:
2947
2948 // Return from an interpreter invocation with the result of the interpretation
2949 // on the top of the Java Stack (or a pending exception)
2950
2951 handle_Pop_Frame: {
2952
2953 // We don't really do anything special here except we must be aware
2954 // that we can get here without ever locking the method (if sync).
2955 // Also we skip the notification of the exit.
2956
2957 istate->set_msg(popping_frame);
2958 // Clear pending so while the pop is in process
2959 // we don't start another one if a call_vm is done.
2960 THREAD->clear_popframe_condition();
2961 // Let interpreter (only) see the we're in the process of popping a frame
2962 THREAD->set_pop_frame_in_process();
2963
2964 goto handle_return;
2965
2966 } // handle_Pop_Frame
2967
2968 // ForceEarlyReturn ends a method, and returns to the caller with a return value
2969 // given by the invoker of the early return.
2970 handle_Early_Return: {
2971
2972 istate->set_msg(early_return);
2973
2974 // Clear expression stack.
2975 topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2976
2977 JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2978
2979 // Push the value to be returned.
2980 switch (istate->method()->result_type()) {
2981 case T_BOOLEAN:
2982 case T_SHORT:
2983 case T_BYTE:
2984 case T_CHAR:
2985 case T_INT:
2986 SET_STACK_INT(ts->earlyret_value().i, 0);
2987 MORE_STACK(1);
2988 break;
2989 case T_LONG:
2990 SET_STACK_LONG(ts->earlyret_value().j, 1);
2991 MORE_STACK(2);
2992 break;
2993 case T_FLOAT:
2994 SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2995 MORE_STACK(1);
2996 break;
2997 case T_DOUBLE:
2998 SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2999 MORE_STACK(2);
3000 break;
3001 case T_ARRAY:
3002 case T_OBJECT:
3003 SET_STACK_OBJECT(ts->earlyret_oop(), 0);
3004 MORE_STACK(1);
3005 break;
3006 default:
3007 ShouldNotReachHere();
3008 }
3009
3010 ts->clr_earlyret_value();
3011 ts->set_earlyret_oop(NULL);
3012 ts->clr_earlyret_pending();
3013
3014 // Fall through to handle_return.
3015
3016 } // handle_Early_Return
3017
3018 handle_return: {
3019 // A storestore barrier is required to order initialization of
3020 // final fields with publishing the reference to the object that
3021 // holds the field. Without the barrier the value of final fields
3022 // can be observed to change.
3023 OrderAccess::storestore();
3024
3025 DECACHE_STATE();
3026
3027 bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
3028 bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
3029 Handle original_exception(THREAD, THREAD->pending_exception());
3030 Handle illegal_state_oop(THREAD, NULL);
3031
3032 // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
3033 // in any following VM entries from freeing our live handles, but illegal_state_oop
3034 // isn't really allocated yet and so doesn't become live until later and
3035 // in unpredicatable places. Instead we must protect the places where we enter the
3036 // VM. It would be much simpler (and safer) if we could allocate a real handle with
3037 // a NULL oop in it and then overwrite the oop later as needed. This isn't
3038 // unfortunately isn't possible.
3039
3040 if (THREAD->has_pending_exception()) {
3041 THREAD->clear_pending_exception();
3042 }
3043
3044 //
3045 // As far as we are concerned we have returned. If we have a pending exception
3046 // that will be returned as this invocation's result. However if we get any
3047 // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
3048 // will be our final result (i.e. monitor exception trumps a pending exception).
3049 //
3050
3051 // If we never locked the method (or really passed the point where we would have),
3052 // there is no need to unlock it (or look for other monitors), since that
3053 // could not have happened.
3054
3055 if (THREAD->do_not_unlock()) {
3056
3057 // Never locked, reset the flag now because obviously any caller must
3058 // have passed their point of locking for us to have gotten here.
3059
3060 THREAD->clr_do_not_unlock();
3061 } else {
3062 // At this point we consider that we have returned. We now check that the
3063 // locks were properly block structured. If we find that they were not
3064 // used properly we will return with an illegal monitor exception.
3065 // The exception is checked by the caller not the callee since this
3066 // checking is considered to be part of the invocation and therefore
3067 // in the callers scope (JVM spec 8.13).
3068 //
3069 // Another weird thing to watch for is if the method was locked
3070 // recursively and then not exited properly. This means we must
3071 // examine all the entries in reverse time(and stack) order and
3072 // unlock as we find them. If we find the method monitor before
3073 // we are at the initial entry then we should throw an exception.
3074 // It is not clear the template based interpreter does this
3075 // correctly
3076
3077 BasicObjectLock* base = istate->monitor_base();
3078 BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3079 bool method_unlock_needed = METHOD->is_synchronized();
3080 // We know the initial monitor was used for the method don't check that
3081 // slot in the loop
3082 if (method_unlock_needed) base--;
3083
3084 // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3085 while (end < base) {
3086 oop lockee = end->obj();
3087 if (lockee != NULL) {
3088 BasicLock* lock = end->lock();
3089 markWord header = lock->displaced_header();
3090 end->set_obj(NULL);
3091
3092 assert(!UseBiasedLocking, "Not implemented");
3093
3094 // If it isn't recursive we either must swap old header or call the runtime
3095 if (header.to_pointer() != NULL) {
3096 markWord old_header = markWord::encode(lock);
3097 if (lockee->cas_set_mark(header, old_header) != old_header) {
3098 // restore object for the slow case
3099 end->set_obj(lockee);
3100 InterpreterRuntime::monitorexit(end);
3101 }
3102 }
3103
3104 // One error is plenty
3105 if (illegal_state_oop() == NULL && !suppress_error) {
3106 {
3107 // Prevent any HandleMarkCleaner from freeing our live handles
3108 HandleMark __hm(THREAD);
3109 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3110 }
3111 assert(THREAD->has_pending_exception(), "Lost our exception!");
3112 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3113 THREAD->clear_pending_exception();
3114 }
3115 }
3116 end++;
3117 }
3118 // Unlock the method if needed
3119 if (method_unlock_needed) {
3120 if (base->obj() == NULL) {
3121 // The method is already unlocked this is not good.
3122 if (illegal_state_oop() == NULL && !suppress_error) {
3123 {
3124 // Prevent any HandleMarkCleaner from freeing our live handles
3125 HandleMark __hm(THREAD);
3126 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3127 }
3128 assert(THREAD->has_pending_exception(), "Lost our exception!");
3129 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3130 THREAD->clear_pending_exception();
3131 }
3132 } else {
3133 //
3134 // The initial monitor is always used for the method
3135 // However if that slot is no longer the oop for the method it was unlocked
3136 // and reused by something that wasn't unlocked!
3137 //
3138 // deopt can come in with rcvr dead because c2 knows
3139 // its value is preserved in the monitor. So we can't use locals[0] at all
3140 // and must use first monitor slot.
3141 //
3142 oop rcvr = base->obj();
3143 if (rcvr == NULL) {
3144 if (!suppress_error) {
3145 VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
3146 illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3147 THREAD->clear_pending_exception();
3148 }
3149 } else if (UseHeavyMonitors) {
3150 InterpreterRuntime::monitorexit(base);
3151 if (THREAD->has_pending_exception()) {
3152 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3153 THREAD->clear_pending_exception();
3154 }
3155 } else {
3156 BasicLock* lock = base->lock();
3157 markWord header = lock->displaced_header();
3158 base->set_obj(NULL);
3159
3160 assert(!UseBiasedLocking, "Not implemented");
3161
3162 // If it isn't recursive we either must swap old header or call the runtime
3163 if (header.to_pointer() != NULL) {
3164 markWord old_header = markWord::encode(lock);
3165 if (rcvr->cas_set_mark(header, old_header) != old_header) {
3166 // restore object for the slow case
3167 base->set_obj(rcvr);
3168 InterpreterRuntime::monitorexit(base);
3169 if (THREAD->has_pending_exception()) {
3170 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3171 THREAD->clear_pending_exception();
3172 }
3173 }
3174 }
3175 }
3176 }
3177 }
3178 }
3179 // Clear the do_not_unlock flag now.
3180 THREAD->clr_do_not_unlock();
3181
3182 //
3183 // Notify jvmti/jvmdi
3184 //
3185 // NOTE: we do not notify a method_exit if we have a pending exception,
3186 // including an exception we generate for unlocking checks. In the former
3187 // case, JVMDI has already been notified by our call for the exception handler
3188 // and in both cases as far as JVMDI is concerned we have already returned.
3189 // If we notify it again JVMDI will be all confused about how many frames
3190 // are still on the stack (4340444).
3191 //
3192 // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3193 // method_exit events whenever we leave an activation unless it was done
3194 // for popframe. This is nothing like jvmdi. However we are passing the
3195 // tests at the moment (apparently because they are jvmdi based) so rather
3196 // than change this code and possibly fail tests we will leave it alone
3197 // (with this note) in anticipation of changing the vm and the tests
3198 // simultaneously.
3199
3200 suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3201
3202 // Whenever JVMTI puts a thread in interp_only_mode, method
3203 // entry/exit events are sent for that thread to track stack depth.
3204
3205 if (JVMTI_ENABLED && !suppress_exit_event && THREAD->is_interp_only_mode()) {
3206 // Prevent any HandleMarkCleaner from freeing our live handles
3207 HandleMark __hm(THREAD);
3208 CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3209 }
3210
3211 //
3212 // See if we are returning any exception
3213 // A pending exception that was pending prior to a possible popping frame
3214 // overrides the popping frame.
3215 //
3216 assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3217 if (illegal_state_oop() != NULL || original_exception() != NULL) {
3218 // Inform the frame manager we have no result.
3219 istate->set_msg(throwing_exception);
3220 if (illegal_state_oop() != NULL)
3221 THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3222 else
3223 THREAD->set_pending_exception(original_exception(), NULL, 0);
3224 UPDATE_PC_AND_RETURN(0);
3225 }
3226
3227 if (istate->msg() == popping_frame) {
3228 // Make it simpler on the assembly code and set the message for the frame pop.
3229 // returns
3230 if (istate->prev() == NULL) {
3231 // We must be returning to a deoptimized frame (because popframe only happens between
3232 // two interpreted frames). We need to save the current arguments in C heap so that
3233 // the deoptimized frame when it restarts can copy the arguments to its expression
3234 // stack and re-execute the call. We also have to notify deoptimization that this
3235 // has occurred and to pick the preserved args copy them to the deoptimized frame's
3236 // java expression stack. Yuck.
3237 //
3238 THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3239 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3240 THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3241 }
3242 } else {
3243 istate->set_msg(return_from_method);
3244 }
3245
3246 // Normal return
3247 // Advance the pc and return to frame manager
3248 UPDATE_PC_AND_RETURN(1);
3249 } /* handle_return: */
3250
3251 // This is really a fatal error return
3252
3253 finish:
3254 DECACHE_TOS();
3255 DECACHE_PC();
3256
3257 return;
3258 }
3259
3260 // This constructor should only be used to contruct the object to signal
3261 // interpreter initialization. All other instances should be created by
3262 // the frame manager.
3263 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3264 if (msg != initialize) ShouldNotReachHere();
3265 _msg = msg;
3266 _self_link = this;
3267 _prev_link = NULL;
3268 }
3269
3270 void BytecodeInterpreter::astore(intptr_t* tos, int stack_offset,
3271 intptr_t* locals, int locals_offset) {
3272 intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3273 locals[Interpreter::local_index_at(-locals_offset)] = value;
3274 }
3275
3276 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3277 int to_offset) {
3278 tos[Interpreter::expr_index_at(-to_offset)] =
3279 (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3280 }
3281
3282 void BytecodeInterpreter::dup(intptr_t *tos) {
3283 copy_stack_slot(tos, -1, 0);
3284 }
3285
3286 void BytecodeInterpreter::dup2(intptr_t *tos) {
3287 copy_stack_slot(tos, -2, 0);
3288 copy_stack_slot(tos, -1, 1);
3289 }
3290
3291 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3292 /* insert top word two down */
3293 copy_stack_slot(tos, -1, 0);
3294 copy_stack_slot(tos, -2, -1);
3295 copy_stack_slot(tos, 0, -2);
3296 }
3297
3298 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3299 /* insert top word three down */
3300 copy_stack_slot(tos, -1, 0);
3301 copy_stack_slot(tos, -2, -1);
3302 copy_stack_slot(tos, -3, -2);
3303 copy_stack_slot(tos, 0, -3);
3304 }
3305 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3306 /* insert top 2 slots three down */
3307 copy_stack_slot(tos, -1, 1);
3308 copy_stack_slot(tos, -2, 0);
3309 copy_stack_slot(tos, -3, -1);
3310 copy_stack_slot(tos, 1, -2);
3311 copy_stack_slot(tos, 0, -3);
3312 }
3313 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3314 /* insert top 2 slots four down */
3315 copy_stack_slot(tos, -1, 1);
3316 copy_stack_slot(tos, -2, 0);
3317 copy_stack_slot(tos, -3, -1);
3318 copy_stack_slot(tos, -4, -2);
3319 copy_stack_slot(tos, 1, -3);
3320 copy_stack_slot(tos, 0, -4);
3321 }
3322
3323
3324 void BytecodeInterpreter::swap(intptr_t *tos) {
3325 // swap top two elements
3326 intptr_t val = tos[Interpreter::expr_index_at(1)];
3327 // Copy -2 entry to -1
3328 copy_stack_slot(tos, -2, -1);
3329 // Store saved -1 entry into -2
3330 tos[Interpreter::expr_index_at(2)] = val;
3331 }
3332 // --------------------------------------------------------------------------------
3333 // Non-product code
3334 #ifndef PRODUCT
3335
3336 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3337 switch (msg) {
3338 case BytecodeInterpreter::no_request: return("no_request");
3339 case BytecodeInterpreter::initialize: return("initialize");
3340 // status message to C++ interpreter
3341 case BytecodeInterpreter::method_entry: return("method_entry");
3342 case BytecodeInterpreter::method_resume: return("method_resume");
3343 case BytecodeInterpreter::got_monitors: return("got_monitors");
3344 case BytecodeInterpreter::rethrow_exception: return("rethrow_exception");
3345 // requests to frame manager from C++ interpreter
3346 case BytecodeInterpreter::call_method: return("call_method");
3347 case BytecodeInterpreter::return_from_method: return("return_from_method");
3348 case BytecodeInterpreter::more_monitors: return("more_monitors");
3349 case BytecodeInterpreter::throwing_exception: return("throwing_exception");
3350 case BytecodeInterpreter::popping_frame: return("popping_frame");
3351 case BytecodeInterpreter::do_osr: return("do_osr");
3352 // deopt
3353 case BytecodeInterpreter::deopt_resume: return("deopt_resume");
3354 case BytecodeInterpreter::deopt_resume2: return("deopt_resume2");
3355 default: return("BAD MSG");
3356 }
3357 }
3358 void
3359 BytecodeInterpreter::print() {
3360 tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3361 tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3362 tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3363 tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3364 {
3365 ResourceMark rm;
3366 char *method_name = _method->name_and_sig_as_C_string();
3367 tty->print_cr("method: " INTPTR_FORMAT "[ %s ]", (uintptr_t) this->_method, method_name);
3368 }
3369 tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3370 tty->print_cr("msg: %s", C_msg(this->_msg));
3371 tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3372 tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3373 tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3374 tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3375 tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3376 tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3377 tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3378 tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3379 tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3380 tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3381 tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3382 }
3383
3384 extern "C" {
3385 void PI(uintptr_t arg) {
3386 ((BytecodeInterpreter*)arg)->print();
3387 }
3388 }
3389 #endif // PRODUCT