1 /* 2 * Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 // no precompiled headers 26 #include "jvm_io.h" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/vmSymbols.hpp" 29 #include "gc/shared/collectedHeap.hpp" 30 #include "gc/shared/threadLocalAllocBuffer.inline.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/bytecodeHistogram.hpp" 33 #include "interpreter/zero/bytecodeInterpreter.inline.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "interpreter/interpreterRuntime.hpp" 36 #include "logging/log.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "memory/universe.hpp" 39 #include "oops/constantPool.inline.hpp" 40 #include "oops/cpCache.inline.hpp" 41 #include "oops/instanceKlass.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "oops/methodCounters.hpp" 45 #include "oops/objArrayKlass.hpp" 46 #include "oops/objArrayOop.inline.hpp" 47 #include "oops/oop.inline.hpp" 48 #include "oops/typeArrayOop.inline.hpp" 49 #include "prims/jvmtiExport.hpp" 50 #include "prims/jvmtiThreadState.hpp" 51 #include "runtime/atomic.hpp" 52 #include "runtime/frame.inline.hpp" 53 #include "runtime/handles.inline.hpp" 54 #include "runtime/interfaceSupport.inline.hpp" 55 #include "runtime/orderAccess.hpp" 56 #include "runtime/sharedRuntime.hpp" 57 #include "runtime/threadCritical.hpp" 58 #include "utilities/debug.hpp" 59 #include "utilities/exceptions.hpp" 60 #include "utilities/macros.hpp" 61 62 // no precompiled headers 63 64 /* 65 * USELABELS - If using GCC, then use labels for the opcode dispatching 66 * rather -then a switch statement. This improves performance because it 67 * gives us the opportunity to have the instructions that calculate the 68 * next opcode to jump to be intermixed with the rest of the instructions 69 * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro). 70 */ 71 #undef USELABELS 72 #ifdef __GNUC__ 73 /* 74 ASSERT signifies debugging. It is much easier to step thru bytecodes if we 75 don't use the computed goto approach. 76 */ 77 #ifndef ASSERT 78 #define USELABELS 79 #endif 80 #endif 81 82 #undef CASE 83 #ifdef USELABELS 84 #define CASE(opcode) opc ## opcode 85 #define DEFAULT opc_default 86 #else 87 #define CASE(opcode) case Bytecodes:: opcode 88 #define DEFAULT default 89 #endif 90 91 /* 92 * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next 93 * opcode before going back to the top of the while loop, rather then having 94 * the top of the while loop handle it. This provides a better opportunity 95 * for instruction scheduling. Some compilers just do this prefetch 96 * automatically. Some actually end up with worse performance if you 97 * force the prefetch. Solaris gcc seems to do better, but cc does worse. 98 */ 99 #undef PREFETCH_OPCCODE 100 #define PREFETCH_OPCCODE 101 102 /* 103 Interpreter safepoint: it is expected that the interpreter will have no live 104 handles of its own creation live at an interpreter safepoint. Therefore we 105 run a HandleMarkCleaner and trash all handles allocated in the call chain 106 since the JavaCalls::call_helper invocation that initiated the chain. 107 There really shouldn't be any handles remaining to trash but this is cheap 108 in relation to a safepoint. 109 */ 110 #define RETURN_SAFEPOINT \ 111 if (SafepointMechanism::should_process(THREAD)) { \ 112 HandleMarkCleaner __hmc(THREAD); \ 113 CALL_VM(SafepointMechanism::process_if_requested_with_exit_check(THREAD, true /* check asyncs */), \ 114 handle_exception); \ 115 } \ 116 117 /* 118 * VM_JAVA_ERROR - Macro for throwing a java exception from 119 * the interpreter loop. Should really be a CALL_VM but there 120 * is no entry point to do the transition to vm so we just 121 * do it by hand here. 122 */ 123 #define VM_JAVA_ERROR_NO_JUMP(name, msg) \ 124 DECACHE_STATE(); \ 125 SET_LAST_JAVA_FRAME(); \ 126 { \ 127 ThreadInVMfromJava trans(THREAD); \ 128 Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg); \ 129 } \ 130 RESET_LAST_JAVA_FRAME(); \ 131 CACHE_STATE(); 132 133 // Normal throw of a java error. 134 #define VM_JAVA_ERROR(name, msg) \ 135 VM_JAVA_ERROR_NO_JUMP(name, msg) \ 136 goto handle_exception; 137 138 #ifdef PRODUCT 139 #define DO_UPDATE_INSTRUCTION_COUNT(opcode) 140 #else 141 #define DO_UPDATE_INSTRUCTION_COUNT(opcode) \ 142 { \ 143 if (PrintBytecodeHistogram) { \ 144 BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++; \ 145 } \ 146 if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) { \ 147 BytecodeCounter::_counter_value++; \ 148 if (StopInterpreterAt == BytecodeCounter::_counter_value) { \ 149 os::breakpoint(); \ 150 } \ 151 if (TraceBytecodes) { \ 152 CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0, \ 153 topOfStack[Interpreter::expr_index_at(1)], \ 154 topOfStack[Interpreter::expr_index_at(2)]), \ 155 handle_exception); \ 156 } \ 157 } \ 158 } 159 #endif 160 161 #undef DEBUGGER_SINGLE_STEP_NOTIFY 162 #if INCLUDE_JVMTI 163 /* NOTE: (kbr) This macro must be called AFTER the PC has been 164 incremented. JvmtiExport::at_single_stepping_point() may cause a 165 breakpoint opcode to get inserted at the current PC to allow the 166 debugger to coalesce single-step events. 167 168 As a result if we call at_single_stepping_point() we refetch opcode 169 to get the current opcode. This will override any other prefetching 170 that might have occurred. 171 */ 172 #define DEBUGGER_SINGLE_STEP_NOTIFY() \ 173 { \ 174 if (JVMTI_ENABLED && JvmtiExport::should_post_single_step()) { \ 175 DECACHE_STATE(); \ 176 SET_LAST_JAVA_FRAME(); \ 177 ThreadInVMfromJava trans(THREAD); \ 178 JvmtiExport::at_single_stepping_point(THREAD, \ 179 istate->method(), \ 180 pc); \ 181 RESET_LAST_JAVA_FRAME(); \ 182 CACHE_STATE(); \ 183 if (THREAD->has_pending_popframe() && \ 184 !THREAD->pop_frame_in_process()) { \ 185 goto handle_Pop_Frame; \ 186 } \ 187 if (THREAD->jvmti_thread_state() && \ 188 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \ 189 goto handle_Early_Return; \ 190 } \ 191 opcode = *pc; \ 192 } \ 193 } 194 #else 195 #define DEBUGGER_SINGLE_STEP_NOTIFY() 196 #endif // INCLUDE_JVMTI 197 198 /* 199 * CONTINUE - Macro for executing the next opcode. 200 */ 201 #undef CONTINUE 202 #ifdef USELABELS 203 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an 204 // initialization (which is is the initialization of the table pointer...) 205 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode] 206 #define CONTINUE { \ 207 opcode = *pc; \ 208 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 209 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 210 DISPATCH(opcode); \ 211 } 212 #else 213 #ifdef PREFETCH_OPCCODE 214 #define CONTINUE { \ 215 opcode = *pc; \ 216 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 217 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 218 continue; \ 219 } 220 #else 221 #define CONTINUE { \ 222 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 223 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 224 continue; \ 225 } 226 #endif 227 #endif 228 229 230 #define UPDATE_PC(opsize) {pc += opsize; } 231 /* 232 * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack. 233 */ 234 #undef UPDATE_PC_AND_TOS 235 #define UPDATE_PC_AND_TOS(opsize, stack) \ 236 {pc += opsize; MORE_STACK(stack); } 237 238 /* 239 * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack, 240 * and executing the next opcode. It's somewhat similar to the combination 241 * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations. 242 */ 243 #undef UPDATE_PC_AND_TOS_AND_CONTINUE 244 #ifdef USELABELS 245 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \ 246 pc += opsize; opcode = *pc; MORE_STACK(stack); \ 247 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 248 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 249 DISPATCH(opcode); \ 250 } 251 252 #define UPDATE_PC_AND_CONTINUE(opsize) { \ 253 pc += opsize; opcode = *pc; \ 254 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 255 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 256 DISPATCH(opcode); \ 257 } 258 #else 259 #ifdef PREFETCH_OPCCODE 260 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \ 261 pc += opsize; opcode = *pc; MORE_STACK(stack); \ 262 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 263 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 264 goto do_continue; \ 265 } 266 267 #define UPDATE_PC_AND_CONTINUE(opsize) { \ 268 pc += opsize; opcode = *pc; \ 269 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 270 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 271 goto do_continue; \ 272 } 273 #else 274 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \ 275 pc += opsize; MORE_STACK(stack); \ 276 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 277 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 278 goto do_continue; \ 279 } 280 281 #define UPDATE_PC_AND_CONTINUE(opsize) { \ 282 pc += opsize; \ 283 DO_UPDATE_INSTRUCTION_COUNT(opcode); \ 284 DEBUGGER_SINGLE_STEP_NOTIFY(); \ 285 goto do_continue; \ 286 } 287 #endif /* PREFETCH_OPCCODE */ 288 #endif /* USELABELS */ 289 290 // About to call a new method, update the save the adjusted pc and return to frame manager 291 #define UPDATE_PC_AND_RETURN(opsize) \ 292 DECACHE_TOS(); \ 293 istate->set_bcp(pc+opsize); \ 294 return; 295 296 #define REWRITE_AT_PC(val) \ 297 *pc = val; 298 299 #define METHOD istate->method() 300 #define GET_METHOD_COUNTERS(res) 301 #define DO_BACKEDGE_CHECKS(skip, branch_pc) 302 303 /* 304 * For those opcodes that need to have a GC point on a backwards branch 305 */ 306 307 /* 308 * Macros for caching and flushing the interpreter state. Some local 309 * variables need to be flushed out to the frame before we do certain 310 * things (like pushing frames or becomming gc safe) and some need to 311 * be recached later (like after popping a frame). We could use one 312 * macro to cache or decache everything, but this would be less then 313 * optimal because we don't always need to cache or decache everything 314 * because some things we know are already cached or decached. 315 */ 316 #undef DECACHE_TOS 317 #undef CACHE_TOS 318 #undef CACHE_PREV_TOS 319 #define DECACHE_TOS() istate->set_stack(topOfStack); 320 321 #define CACHE_TOS() topOfStack = (intptr_t *)istate->stack(); 322 323 #undef DECACHE_PC 324 #undef CACHE_PC 325 #define DECACHE_PC() istate->set_bcp(pc); 326 #define CACHE_PC() pc = istate->bcp(); 327 #define CACHE_CP() cp = istate->constants(); 328 #define CACHE_LOCALS() locals = istate->locals(); 329 #undef CACHE_FRAME 330 #define CACHE_FRAME() 331 332 // BCI() returns the current bytecode-index. 333 #undef BCI 334 #define BCI() ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base())) 335 336 /* 337 * CHECK_NULL - Macro for throwing a NullPointerException if the object 338 * passed is a null ref. 339 * On some architectures/platforms it should be possible to do this implicitly 340 */ 341 #undef CHECK_NULL 342 #define CHECK_NULL(obj_) \ 343 if ((obj_) == NULL) { \ 344 VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL); \ 345 } \ 346 VERIFY_OOP(obj_) 347 348 #define VMdoubleConstZero() 0.0 349 #define VMdoubleConstOne() 1.0 350 #define VMlongConstZero() (max_jlong-max_jlong) 351 #define VMlongConstOne() ((max_jlong-max_jlong)+1) 352 353 /* 354 * Alignment 355 */ 356 #define VMalignWordUp(val) (((uintptr_t)(val) + 3) & ~3) 357 358 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod) 359 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS(); 360 361 // Reload interpreter state after calling the VM or a possible GC 362 #define CACHE_STATE() \ 363 CACHE_TOS(); \ 364 CACHE_PC(); \ 365 CACHE_CP(); \ 366 CACHE_LOCALS(); 367 368 // Call the VM with last java frame only. 369 #define CALL_VM_NAKED_LJF(func) \ 370 DECACHE_STATE(); \ 371 SET_LAST_JAVA_FRAME(); \ 372 func; \ 373 RESET_LAST_JAVA_FRAME(); \ 374 CACHE_STATE(); 375 376 // Call the VM. Don't check for pending exceptions. 377 #define CALL_VM_NOCHECK(func) \ 378 CALL_VM_NAKED_LJF(func) \ 379 if (THREAD->has_pending_popframe() && \ 380 !THREAD->pop_frame_in_process()) { \ 381 goto handle_Pop_Frame; \ 382 } \ 383 if (THREAD->jvmti_thread_state() && \ 384 THREAD->jvmti_thread_state()->is_earlyret_pending()) { \ 385 goto handle_Early_Return; \ 386 } 387 388 // Call the VM and check for pending exceptions 389 #define CALL_VM(func, label) { \ 390 CALL_VM_NOCHECK(func); \ 391 if (THREAD->has_pending_exception()) goto label; \ 392 } 393 394 #define MAYBE_POST_FIELD_ACCESS(obj) { \ 395 if (JVMTI_ENABLED) { \ 396 int* count_addr; \ 397 /* Check to see if a field modification watch has been set */ \ 398 /* before we take the time to call into the VM. */ \ 399 count_addr = (int*)JvmtiExport::get_field_access_count_addr(); \ 400 if (*count_addr > 0) { \ 401 oop target; \ 402 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) { \ 403 target = NULL; \ 404 } else { \ 405 target = obj; \ 406 } \ 407 CALL_VM(InterpreterRuntime::post_field_access(THREAD, \ 408 target, cache), \ 409 handle_exception); \ 410 } \ 411 } \ 412 } 413 414 #define MAYBE_POST_FIELD_MODIFICATION(obj) { \ 415 if (JVMTI_ENABLED) { \ 416 int* count_addr; \ 417 /* Check to see if a field modification watch has been set */ \ 418 /* before we take the time to call into the VM. */ \ 419 count_addr = (int*)JvmtiExport::get_field_modification_count_addr(); \ 420 if (*count_addr > 0) { \ 421 oop target; \ 422 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) { \ 423 target = NULL; \ 424 } else { \ 425 target = obj; \ 426 } \ 427 CALL_VM(InterpreterRuntime::post_field_modification(THREAD, \ 428 target, cache, \ 429 (jvalue*)STACK_SLOT(-1)), \ 430 handle_exception); \ 431 } \ 432 } \ 433 } 434 435 static inline int fast_get_type(TosState tos) { 436 switch (tos) { 437 case ztos: 438 case btos: return Bytecodes::_fast_bgetfield; 439 case ctos: return Bytecodes::_fast_cgetfield; 440 case stos: return Bytecodes::_fast_sgetfield; 441 case itos: return Bytecodes::_fast_igetfield; 442 case ltos: return Bytecodes::_fast_lgetfield; 443 case ftos: return Bytecodes::_fast_fgetfield; 444 case dtos: return Bytecodes::_fast_dgetfield; 445 case atos: return Bytecodes::_fast_agetfield; 446 default: 447 ShouldNotReachHere(); 448 return -1; 449 } 450 } 451 452 static inline int fast_put_type(TosState tos) { 453 switch (tos) { 454 case ztos: return Bytecodes::_fast_zputfield; 455 case btos: return Bytecodes::_fast_bputfield; 456 case ctos: return Bytecodes::_fast_cputfield; 457 case stos: return Bytecodes::_fast_sputfield; 458 case itos: return Bytecodes::_fast_iputfield; 459 case ltos: return Bytecodes::_fast_lputfield; 460 case ftos: return Bytecodes::_fast_fputfield; 461 case dtos: return Bytecodes::_fast_dputfield; 462 case atos: return Bytecodes::_fast_aputfield; 463 default: 464 ShouldNotReachHere(); 465 return -1; 466 } 467 } 468 469 /* 470 * BytecodeInterpreter::run(interpreterState istate) 471 * 472 * The real deal. This is where byte codes actually get interpreted. 473 * Basically it's a big while loop that iterates until we return from 474 * the method passed in. 475 */ 476 477 // Instantiate variants of the method for future linking. 478 template void BytecodeInterpreter::run<false, false>(interpreterState istate); 479 template void BytecodeInterpreter::run<false, true>(interpreterState istate); 480 template void BytecodeInterpreter::run< true, false>(interpreterState istate); 481 template void BytecodeInterpreter::run< true, true>(interpreterState istate); 482 483 template<bool JVMTI_ENABLED, bool REWRITE_BYTECODES> 484 void BytecodeInterpreter::run(interpreterState istate) { 485 intptr_t* topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */ 486 address pc = istate->bcp(); 487 jubyte opcode; 488 intptr_t* locals = istate->locals(); 489 ConstantPoolCache* cp = istate->constants(); // method()->constants()->cache() 490 #ifdef LOTS_OF_REGS 491 JavaThread* THREAD = istate->thread(); 492 #else 493 #undef THREAD 494 #define THREAD istate->thread() 495 #endif 496 497 #ifdef ASSERT 498 assert(labs(istate->stack_base() - istate->stack_limit()) == (istate->method()->max_stack() + 1), 499 "Bad stack limit"); 500 /* QQQ this should be a stack method so we don't know actual direction */ 501 assert(topOfStack >= istate->stack_limit() && topOfStack < istate->stack_base(), 502 "Stack top out of range"); 503 504 // Verify linkages. 505 interpreterState l = istate; 506 do { 507 assert(l == l->_self_link, "bad link"); 508 l = l->_prev_link; 509 } while (l != NULL); 510 // Screwups with stack management usually cause us to overwrite istate 511 // save a copy so we can verify it. 512 interpreterState orig = istate; 513 #endif 514 515 #ifdef USELABELS 516 const static void* const opclabels_data[256] = { 517 /* 0x00 */ &&opc_nop, &&opc_aconst_null, &&opc_iconst_m1, &&opc_iconst_0, 518 /* 0x04 */ &&opc_iconst_1, &&opc_iconst_2, &&opc_iconst_3, &&opc_iconst_4, 519 /* 0x08 */ &&opc_iconst_5, &&opc_lconst_0, &&opc_lconst_1, &&opc_fconst_0, 520 /* 0x0C */ &&opc_fconst_1, &&opc_fconst_2, &&opc_dconst_0, &&opc_dconst_1, 521 522 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc, &&opc_ldc_w, 523 /* 0x14 */ &&opc_ldc2_w, &&opc_iload, &&opc_lload, &&opc_fload, 524 /* 0x18 */ &&opc_dload, &&opc_aload, &&opc_iload_0, &&opc_iload_1, 525 /* 0x1C */ &&opc_iload_2, &&opc_iload_3, &&opc_lload_0, &&opc_lload_1, 526 527 /* 0x20 */ &&opc_lload_2, &&opc_lload_3, &&opc_fload_0, &&opc_fload_1, 528 /* 0x24 */ &&opc_fload_2, &&opc_fload_3, &&opc_dload_0, &&opc_dload_1, 529 /* 0x28 */ &&opc_dload_2, &&opc_dload_3, &&opc_aload_0, &&opc_aload_1, 530 /* 0x2C */ &&opc_aload_2, &&opc_aload_3, &&opc_iaload, &&opc_laload, 531 532 /* 0x30 */ &&opc_faload, &&opc_daload, &&opc_aaload, &&opc_baload, 533 /* 0x34 */ &&opc_caload, &&opc_saload, &&opc_istore, &&opc_lstore, 534 /* 0x38 */ &&opc_fstore, &&opc_dstore, &&opc_astore, &&opc_istore_0, 535 /* 0x3C */ &&opc_istore_1, &&opc_istore_2, &&opc_istore_3, &&opc_lstore_0, 536 537 /* 0x40 */ &&opc_lstore_1, &&opc_lstore_2, &&opc_lstore_3, &&opc_fstore_0, 538 /* 0x44 */ &&opc_fstore_1, &&opc_fstore_2, &&opc_fstore_3, &&opc_dstore_0, 539 /* 0x48 */ &&opc_dstore_1, &&opc_dstore_2, &&opc_dstore_3, &&opc_astore_0, 540 /* 0x4C */ &&opc_astore_1, &&opc_astore_2, &&opc_astore_3, &&opc_iastore, 541 542 /* 0x50 */ &&opc_lastore, &&opc_fastore, &&opc_dastore, &&opc_aastore, 543 /* 0x54 */ &&opc_bastore, &&opc_castore, &&opc_sastore, &&opc_pop, 544 /* 0x58 */ &&opc_pop2, &&opc_dup, &&opc_dup_x1, &&opc_dup_x2, 545 /* 0x5C */ &&opc_dup2, &&opc_dup2_x1, &&opc_dup2_x2, &&opc_swap, 546 547 /* 0x60 */ &&opc_iadd, &&opc_ladd, &&opc_fadd, &&opc_dadd, 548 /* 0x64 */ &&opc_isub, &&opc_lsub, &&opc_fsub, &&opc_dsub, 549 /* 0x68 */ &&opc_imul, &&opc_lmul, &&opc_fmul, &&opc_dmul, 550 /* 0x6C */ &&opc_idiv, &&opc_ldiv, &&opc_fdiv, &&opc_ddiv, 551 552 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem, &&opc_drem, 553 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg, &&opc_dneg, 554 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr, &&opc_lshr, 555 /* 0x7C */ &&opc_iushr, &&opc_lushr, &&opc_iand, &&opc_land, 556 557 /* 0x80 */ &&opc_ior, &&opc_lor, &&opc_ixor, &&opc_lxor, 558 /* 0x84 */ &&opc_iinc, &&opc_i2l, &&opc_i2f, &&opc_i2d, 559 /* 0x88 */ &&opc_l2i, &&opc_l2f, &&opc_l2d, &&opc_f2i, 560 /* 0x8C */ &&opc_f2l, &&opc_f2d, &&opc_d2i, &&opc_d2l, 561 562 /* 0x90 */ &&opc_d2f, &&opc_i2b, &&opc_i2c, &&opc_i2s, 563 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl, &&opc_fcmpg, &&opc_dcmpl, 564 /* 0x98 */ &&opc_dcmpg, &&opc_ifeq, &&opc_ifne, &&opc_iflt, 565 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq, 566 567 /* 0xA0 */ &&opc_if_icmpne, &&opc_if_icmplt, &&opc_if_icmpge, &&opc_if_icmpgt, 568 /* 0xA4 */ &&opc_if_icmple, &&opc_if_acmpeq, &&opc_if_acmpne, &&opc_goto, 569 /* 0xA8 */ &&opc_jsr, &&opc_ret, &&opc_tableswitch, &&opc_lookupswitch, 570 /* 0xAC */ &&opc_ireturn, &&opc_lreturn, &&opc_freturn, &&opc_dreturn, 571 572 /* 0xB0 */ &&opc_areturn, &&opc_return, &&opc_getstatic, &&opc_putstatic, 573 /* 0xB4 */ &&opc_getfield, &&opc_putfield, &&opc_invokevirtual, &&opc_invokespecial, 574 /* 0xB8 */ &&opc_invokestatic, &&opc_invokeinterface, &&opc_invokedynamic, &&opc_new, 575 /* 0xBC */ &&opc_newarray, &&opc_anewarray, &&opc_arraylength, &&opc_athrow, 576 577 /* 0xC0 */ &&opc_checkcast, &&opc_instanceof, &&opc_monitorenter, &&opc_monitorexit, 578 /* 0xC4 */ &&opc_wide, &&opc_multianewarray, &&opc_ifnull, &&opc_ifnonnull, 579 /* 0xC8 */ &&opc_goto_w, &&opc_jsr_w, &&opc_breakpoint, &&opc_fast_agetfield, 580 /* 0xCC */ &&opc_fast_bgetfield,&&opc_fast_cgetfield, &&opc_fast_dgetfield, &&opc_fast_fgetfield, 581 582 /* 0xD0 */ &&opc_fast_igetfield,&&opc_fast_lgetfield, &&opc_fast_sgetfield, &&opc_fast_aputfield, 583 /* 0xD4 */ &&opc_fast_bputfield,&&opc_fast_zputfield, &&opc_fast_cputfield, &&opc_fast_dputfield, 584 /* 0xD8 */ &&opc_fast_fputfield,&&opc_fast_iputfield, &&opc_fast_lputfield, &&opc_fast_sputfield, 585 /* 0xDC */ &&opc_fast_aload_0, &&opc_fast_iaccess_0, &&opc_fast_aaccess_0, &&opc_fast_faccess_0, 586 587 /* 0xE0 */ &&opc_fast_iload, &&opc_fast_iload2, &&opc_fast_icaload, &&opc_fast_invokevfinal, 588 /* 0xE4 */ &&opc_default, &&opc_default, &&opc_fast_aldc, &&opc_fast_aldc_w, 589 /* 0xE8 */ &&opc_return_register_finalizer, 590 &&opc_invokehandle, &&opc_default, &&opc_default, 591 /* 0xEC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default, 592 593 /* 0xF0 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default, 594 /* 0xF4 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default, 595 /* 0xF8 */ &&opc_default, &&opc_default, &&opc_default, &&opc_default, 596 /* 0xFC */ &&opc_default, &&opc_default, &&opc_default, &&opc_default 597 }; 598 uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0]; 599 #endif /* USELABELS */ 600 601 switch (istate->msg()) { 602 case initialize: { 603 ShouldNotCallThis(); 604 return; 605 } 606 case method_entry: { 607 THREAD->set_do_not_unlock(); 608 609 // Lock method if synchronized. 610 if (METHOD->is_synchronized()) { 611 // oop rcvr = locals[0].j.r; 612 oop rcvr; 613 if (METHOD->is_static()) { 614 rcvr = METHOD->constants()->pool_holder()->java_mirror(); 615 } else { 616 rcvr = LOCALS_OBJECT(0); 617 VERIFY_OOP(rcvr); 618 } 619 620 // The initial monitor is ours for the taking. 621 // Monitor not filled in frame manager any longer as this caused race condition with biased locking. 622 BasicObjectLock* mon = &istate->monitor_base()[-1]; 623 mon->set_obj(rcvr); 624 625 assert(!UseBiasedLocking, "Not implemented"); 626 627 // Traditional lightweight locking. 628 markWord displaced = rcvr->mark().set_unlocked(); 629 mon->lock()->set_displaced_header(displaced); 630 bool call_vm = UseHeavyMonitors; 631 if (call_vm || rcvr->cas_set_mark(markWord::from_pointer(mon), displaced) != displaced) { 632 // Is it simple recursive case? 633 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) { 634 mon->lock()->set_displaced_header(markWord::from_pointer(NULL)); 635 } else { 636 CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception); 637 } 638 } 639 } 640 THREAD->clr_do_not_unlock(); 641 642 // Notify jvmti. 643 // Whenever JVMTI puts a thread in interp_only_mode, method 644 // entry/exit events are sent for that thread to track stack depth. 645 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) { 646 CALL_VM(InterpreterRuntime::post_method_entry(THREAD), 647 handle_exception); 648 } 649 650 goto run; 651 } 652 653 case popping_frame: { 654 // returned from a java call to pop the frame, restart the call 655 // clear the message so we don't confuse ourselves later 656 assert(THREAD->pop_frame_in_process(), "wrong frame pop state"); 657 istate->set_msg(no_request); 658 THREAD->clr_pop_frame_in_process(); 659 goto run; 660 } 661 662 case method_resume: { 663 if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) { 664 // resume 665 os::breakpoint(); 666 } 667 // returned from a java call, continue executing. 668 if (THREAD->has_pending_popframe() && !THREAD->pop_frame_in_process()) { 669 goto handle_Pop_Frame; 670 } 671 if (THREAD->jvmti_thread_state() && 672 THREAD->jvmti_thread_state()->is_earlyret_pending()) { 673 goto handle_Early_Return; 674 } 675 676 if (THREAD->has_pending_exception()) goto handle_exception; 677 // Update the pc by the saved amount of the invoke bytecode size 678 UPDATE_PC(istate->bcp_advance()); 679 goto run; 680 } 681 682 case deopt_resume2: { 683 // Returned from an opcode that will reexecute. Deopt was 684 // a result of a PopFrame request. 685 // 686 goto run; 687 } 688 689 case deopt_resume: { 690 // Returned from an opcode that has completed. The stack has 691 // the result all we need to do is skip across the bytecode 692 // and continue (assuming there is no exception pending) 693 // 694 // compute continuation length 695 // 696 // Note: it is possible to deopt at a return_register_finalizer opcode 697 // because this requires entering the vm to do the registering. While the 698 // opcode is complete we can't advance because there are no more opcodes 699 // much like trying to deopt at a poll return. In that has we simply 700 // get out of here 701 // 702 if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) { 703 // this will do the right thing even if an exception is pending. 704 goto handle_return; 705 } 706 UPDATE_PC(Bytecodes::length_at(METHOD, pc)); 707 if (THREAD->has_pending_exception()) goto handle_exception; 708 goto run; 709 } 710 case got_monitors: { 711 // continue locking now that we have a monitor to use 712 // we expect to find newly allocated monitor at the "top" of the monitor stack. 713 oop lockee = STACK_OBJECT(-1); 714 VERIFY_OOP(lockee); 715 // derefing's lockee ought to provoke implicit null check 716 // find a free monitor 717 BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base(); 718 assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor"); 719 entry->set_obj(lockee); 720 721 assert(!UseBiasedLocking, "Not implemented"); 722 723 // traditional lightweight locking 724 markWord displaced = lockee->mark().set_unlocked(); 725 entry->lock()->set_displaced_header(displaced); 726 bool call_vm = UseHeavyMonitors; 727 if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) { 728 // Is it simple recursive case? 729 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) { 730 entry->lock()->set_displaced_header(markWord::from_pointer(NULL)); 731 } else { 732 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception); 733 } 734 } 735 UPDATE_PC_AND_TOS(1, -1); 736 goto run; 737 } 738 default: { 739 fatal("Unexpected message from frame manager"); 740 } 741 } 742 743 run: 744 745 DO_UPDATE_INSTRUCTION_COUNT(*pc) 746 DEBUGGER_SINGLE_STEP_NOTIFY(); 747 #ifdef PREFETCH_OPCCODE 748 opcode = *pc; /* prefetch first opcode */ 749 #endif 750 751 #ifndef USELABELS 752 while (1) 753 #endif 754 { 755 #ifndef PREFETCH_OPCCODE 756 opcode = *pc; 757 #endif 758 // Seems like this happens twice per opcode. At worst this is only 759 // need at entry to the loop. 760 // DEBUGGER_SINGLE_STEP_NOTIFY(); 761 /* Using this labels avoids double breakpoints when quickening and 762 * when returing from transition frames. 763 */ 764 opcode_switch: 765 assert(istate == orig, "Corrupted istate"); 766 /* QQQ Hmm this has knowledge of direction, ought to be a stack method */ 767 assert(topOfStack >= istate->stack_limit(), "Stack overrun"); 768 assert(topOfStack < istate->stack_base(), "Stack underrun"); 769 770 #ifdef USELABELS 771 DISPATCH(opcode); 772 #else 773 switch (opcode) 774 #endif 775 { 776 CASE(_nop): 777 UPDATE_PC_AND_CONTINUE(1); 778 779 /* Push miscellaneous constants onto the stack. */ 780 781 CASE(_aconst_null): 782 SET_STACK_OBJECT(NULL, 0); 783 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 784 785 #undef OPC_CONST_n 786 #define OPC_CONST_n(opcode, const_type, value) \ 787 CASE(opcode): \ 788 SET_STACK_ ## const_type(value, 0); \ 789 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 790 791 OPC_CONST_n(_iconst_m1, INT, -1); 792 OPC_CONST_n(_iconst_0, INT, 0); 793 OPC_CONST_n(_iconst_1, INT, 1); 794 OPC_CONST_n(_iconst_2, INT, 2); 795 OPC_CONST_n(_iconst_3, INT, 3); 796 OPC_CONST_n(_iconst_4, INT, 4); 797 OPC_CONST_n(_iconst_5, INT, 5); 798 OPC_CONST_n(_fconst_0, FLOAT, 0.0); 799 OPC_CONST_n(_fconst_1, FLOAT, 1.0); 800 OPC_CONST_n(_fconst_2, FLOAT, 2.0); 801 802 #undef OPC_CONST2_n 803 #define OPC_CONST2_n(opcname, value, key, kind) \ 804 CASE(_##opcname): \ 805 { \ 806 SET_STACK_ ## kind(VM##key##Const##value(), 1); \ 807 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \ 808 } 809 OPC_CONST2_n(dconst_0, Zero, double, DOUBLE); 810 OPC_CONST2_n(dconst_1, One, double, DOUBLE); 811 OPC_CONST2_n(lconst_0, Zero, long, LONG); 812 OPC_CONST2_n(lconst_1, One, long, LONG); 813 814 /* Load constant from constant pool: */ 815 816 /* Push a 1-byte signed integer value onto the stack. */ 817 CASE(_bipush): 818 SET_STACK_INT((jbyte)(pc[1]), 0); 819 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1); 820 821 /* Push a 2-byte signed integer constant onto the stack. */ 822 CASE(_sipush): 823 SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0); 824 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1); 825 826 /* load from local variable */ 827 828 CASE(_aload): 829 VERIFY_OOP(LOCALS_OBJECT(pc[1])); 830 SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0); 831 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1); 832 833 CASE(_iload): 834 { 835 if (REWRITE_BYTECODES) { 836 // Attempt to rewrite iload, iload -> fast_iload2 837 // iload, caload -> fast_icaload 838 // Normal iloads will be rewritten to fast_iload to avoid checking again. 839 switch (*(pc + 2)) { 840 case Bytecodes::_fast_iload: 841 REWRITE_AT_PC(Bytecodes::_fast_iload2); 842 break; 843 case Bytecodes::_caload: 844 REWRITE_AT_PC(Bytecodes::_fast_icaload); 845 break; 846 case Bytecodes::_iload: 847 // Wait until rewritten to _fast_iload. 848 break; 849 default: 850 // Last iload in a (potential) series, don't check again. 851 REWRITE_AT_PC(Bytecodes::_fast_iload); 852 } 853 } 854 // Normal iload handling. 855 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0); 856 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1); 857 } 858 859 CASE(_fast_iload): 860 CASE(_fload): 861 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0); 862 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1); 863 864 CASE(_fast_iload2): 865 SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0); 866 SET_STACK_SLOT(LOCALS_SLOT(pc[3]), 1); 867 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2); 868 869 CASE(_lload): 870 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1); 871 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2); 872 873 CASE(_dload): 874 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1); 875 UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2); 876 877 #undef OPC_LOAD_n 878 #define OPC_LOAD_n(num) \ 879 CASE(_iload_##num): \ 880 CASE(_fload_##num): \ 881 SET_STACK_SLOT(LOCALS_SLOT(num), 0); \ 882 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \ 883 \ 884 CASE(_lload_##num): \ 885 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1); \ 886 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); \ 887 CASE(_dload_##num): \ 888 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1); \ 889 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 890 891 OPC_LOAD_n(0); 892 OPC_LOAD_n(1); 893 OPC_LOAD_n(2); 894 OPC_LOAD_n(3); 895 896 #undef OPC_ALOAD_n 897 #define OPC_ALOAD_n(num) \ 898 CASE(_aload_##num): { \ 899 oop obj = LOCALS_OBJECT(num); \ 900 VERIFY_OOP(obj); \ 901 SET_STACK_OBJECT(obj, 0); \ 902 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); \ 903 } 904 905 CASE(_aload_0): 906 { 907 /* Maybe rewrite if following bytecode is one of the supported _fast_Xgetfield bytecodes. */ 908 if (REWRITE_BYTECODES) { 909 switch (*(pc + 1)) { 910 case Bytecodes::_fast_agetfield: 911 REWRITE_AT_PC(Bytecodes::_fast_aaccess_0); 912 break; 913 case Bytecodes::_fast_fgetfield: 914 REWRITE_AT_PC(Bytecodes::_fast_faccess_0); 915 break; 916 case Bytecodes::_fast_igetfield: 917 REWRITE_AT_PC(Bytecodes::_fast_iaccess_0); 918 break; 919 case Bytecodes::_getfield: { 920 /* Otherwise, do nothing here, wait until it gets rewritten to _fast_Xgetfield. 921 * Unfortunately, this punishes volatile field access, because it never gets 922 * rewritten. */ 923 break; 924 } 925 default: 926 REWRITE_AT_PC(Bytecodes::_fast_aload_0); 927 break; 928 } 929 } 930 VERIFY_OOP(LOCALS_OBJECT(0)); 931 SET_STACK_OBJECT(LOCALS_OBJECT(0), 0); 932 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 933 } 934 935 OPC_ALOAD_n(1); 936 OPC_ALOAD_n(2); 937 OPC_ALOAD_n(3); 938 939 /* store to a local variable */ 940 941 CASE(_astore): 942 astore(topOfStack, -1, locals, pc[1]); 943 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1); 944 945 CASE(_istore): 946 CASE(_fstore): 947 SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]); 948 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1); 949 950 CASE(_lstore): 951 SET_LOCALS_LONG(STACK_LONG(-1), pc[1]); 952 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2); 953 954 CASE(_dstore): 955 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]); 956 UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2); 957 958 CASE(_wide): { 959 uint16_t reg = Bytes::get_Java_u2(pc + 2); 960 961 opcode = pc[1]; 962 963 // Wide and it's sub-bytecode are counted as separate instructions. If we 964 // don't account for this here, the bytecode trace skips the next bytecode. 965 DO_UPDATE_INSTRUCTION_COUNT(opcode); 966 967 switch(opcode) { 968 case Bytecodes::_aload: 969 VERIFY_OOP(LOCALS_OBJECT(reg)); 970 SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0); 971 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1); 972 973 case Bytecodes::_iload: 974 case Bytecodes::_fload: 975 SET_STACK_SLOT(LOCALS_SLOT(reg), 0); 976 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1); 977 978 case Bytecodes::_lload: 979 SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1); 980 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2); 981 982 case Bytecodes::_dload: 983 SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1); 984 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2); 985 986 case Bytecodes::_astore: 987 astore(topOfStack, -1, locals, reg); 988 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1); 989 990 case Bytecodes::_istore: 991 case Bytecodes::_fstore: 992 SET_LOCALS_SLOT(STACK_SLOT(-1), reg); 993 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1); 994 995 case Bytecodes::_lstore: 996 SET_LOCALS_LONG(STACK_LONG(-1), reg); 997 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2); 998 999 case Bytecodes::_dstore: 1000 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg); 1001 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2); 1002 1003 case Bytecodes::_iinc: { 1004 int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4); 1005 // Be nice to see what this generates.... QQQ 1006 SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg); 1007 UPDATE_PC_AND_CONTINUE(6); 1008 } 1009 case Bytecodes::_ret: 1010 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg)); 1011 UPDATE_PC_AND_CONTINUE(0); 1012 default: 1013 VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode"); 1014 } 1015 } 1016 1017 1018 #undef OPC_STORE_n 1019 #define OPC_STORE_n(num) \ 1020 CASE(_astore_##num): \ 1021 astore(topOfStack, -1, locals, num); \ 1022 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \ 1023 CASE(_istore_##num): \ 1024 CASE(_fstore_##num): \ 1025 SET_LOCALS_SLOT(STACK_SLOT(-1), num); \ 1026 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1027 1028 OPC_STORE_n(0); 1029 OPC_STORE_n(1); 1030 OPC_STORE_n(2); 1031 OPC_STORE_n(3); 1032 1033 #undef OPC_DSTORE_n 1034 #define OPC_DSTORE_n(num) \ 1035 CASE(_dstore_##num): \ 1036 SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num); \ 1037 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \ 1038 CASE(_lstore_##num): \ 1039 SET_LOCALS_LONG(STACK_LONG(-1), num); \ 1040 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); 1041 1042 OPC_DSTORE_n(0); 1043 OPC_DSTORE_n(1); 1044 OPC_DSTORE_n(2); 1045 OPC_DSTORE_n(3); 1046 1047 /* stack pop, dup, and insert opcodes */ 1048 1049 1050 CASE(_pop): /* Discard the top item on the stack */ 1051 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1052 1053 1054 CASE(_pop2): /* Discard the top 2 items on the stack */ 1055 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); 1056 1057 1058 CASE(_dup): /* Duplicate the top item on the stack */ 1059 dup(topOfStack); 1060 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1061 1062 CASE(_dup2): /* Duplicate the top 2 items on the stack */ 1063 dup2(topOfStack); 1064 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1065 1066 CASE(_dup_x1): /* insert top word two down */ 1067 dup_x1(topOfStack); 1068 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1069 1070 CASE(_dup_x2): /* insert top word three down */ 1071 dup_x2(topOfStack); 1072 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1073 1074 CASE(_dup2_x1): /* insert top 2 slots three down */ 1075 dup2_x1(topOfStack); 1076 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1077 1078 CASE(_dup2_x2): /* insert top 2 slots four down */ 1079 dup2_x2(topOfStack); 1080 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1081 1082 CASE(_swap): { /* swap top two elements on the stack */ 1083 swap(topOfStack); 1084 UPDATE_PC_AND_CONTINUE(1); 1085 } 1086 1087 /* Perform various binary integer operations */ 1088 1089 #undef OPC_INT_BINARY 1090 #define OPC_INT_BINARY(opcname, opname, test) \ 1091 CASE(_i##opcname): \ 1092 if (test && (STACK_INT(-1) == 0)) { \ 1093 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \ 1094 "/ by zero"); \ 1095 } \ 1096 SET_STACK_INT(VMint##opname(STACK_INT(-2), \ 1097 STACK_INT(-1)), \ 1098 -2); \ 1099 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \ 1100 CASE(_l##opcname): \ 1101 { \ 1102 if (test) { \ 1103 jlong l1 = STACK_LONG(-1); \ 1104 if (VMlongEqz(l1)) { \ 1105 VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \ 1106 "/ by long zero"); \ 1107 } \ 1108 } \ 1109 /* First long at (-1,-2) next long at (-3,-4) */ \ 1110 SET_STACK_LONG(VMlong##opname(STACK_LONG(-3), \ 1111 STACK_LONG(-1)), \ 1112 -3); \ 1113 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \ 1114 } 1115 1116 OPC_INT_BINARY(add, Add, 0); 1117 OPC_INT_BINARY(sub, Sub, 0); 1118 OPC_INT_BINARY(mul, Mul, 0); 1119 OPC_INT_BINARY(and, And, 0); 1120 OPC_INT_BINARY(or, Or, 0); 1121 OPC_INT_BINARY(xor, Xor, 0); 1122 OPC_INT_BINARY(div, Div, 1); 1123 OPC_INT_BINARY(rem, Rem, 1); 1124 1125 1126 /* Perform various binary floating number operations */ 1127 /* On some machine/platforms/compilers div zero check can be implicit */ 1128 1129 #undef OPC_FLOAT_BINARY 1130 #define OPC_FLOAT_BINARY(opcname, opname) \ 1131 CASE(_d##opcname): { \ 1132 SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3), \ 1133 STACK_DOUBLE(-1)), \ 1134 -3); \ 1135 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2); \ 1136 } \ 1137 CASE(_f##opcname): \ 1138 SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2), \ 1139 STACK_FLOAT(-1)), \ 1140 -2); \ 1141 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1142 1143 1144 OPC_FLOAT_BINARY(add, Add); 1145 OPC_FLOAT_BINARY(sub, Sub); 1146 OPC_FLOAT_BINARY(mul, Mul); 1147 OPC_FLOAT_BINARY(div, Div); 1148 OPC_FLOAT_BINARY(rem, Rem); 1149 1150 /* Shift operations 1151 * Shift left int and long: ishl, lshl 1152 * Logical shift right int and long w/zero extension: iushr, lushr 1153 * Arithmetic shift right int and long w/sign extension: ishr, lshr 1154 */ 1155 1156 #undef OPC_SHIFT_BINARY 1157 #define OPC_SHIFT_BINARY(opcname, opname) \ 1158 CASE(_i##opcname): \ 1159 SET_STACK_INT(VMint##opname(STACK_INT(-2), \ 1160 STACK_INT(-1)), \ 1161 -2); \ 1162 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \ 1163 CASE(_l##opcname): \ 1164 { \ 1165 SET_STACK_LONG(VMlong##opname(STACK_LONG(-2), \ 1166 STACK_INT(-1)), \ 1167 -2); \ 1168 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \ 1169 } 1170 1171 OPC_SHIFT_BINARY(shl, Shl); 1172 OPC_SHIFT_BINARY(shr, Shr); 1173 OPC_SHIFT_BINARY(ushr, Ushr); 1174 1175 /* Increment local variable by constant */ 1176 CASE(_iinc): 1177 { 1178 // locals[pc[1]].j.i += (jbyte)(pc[2]); 1179 SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]); 1180 UPDATE_PC_AND_CONTINUE(3); 1181 } 1182 1183 /* negate the value on the top of the stack */ 1184 1185 CASE(_ineg): 1186 SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1); 1187 UPDATE_PC_AND_CONTINUE(1); 1188 1189 CASE(_fneg): 1190 SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1); 1191 UPDATE_PC_AND_CONTINUE(1); 1192 1193 CASE(_lneg): 1194 { 1195 SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1); 1196 UPDATE_PC_AND_CONTINUE(1); 1197 } 1198 1199 CASE(_dneg): 1200 { 1201 SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1); 1202 UPDATE_PC_AND_CONTINUE(1); 1203 } 1204 1205 /* Conversion operations */ 1206 1207 CASE(_i2f): /* convert top of stack int to float */ 1208 SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1); 1209 UPDATE_PC_AND_CONTINUE(1); 1210 1211 CASE(_i2l): /* convert top of stack int to long */ 1212 { 1213 // this is ugly QQQ 1214 jlong r = VMint2Long(STACK_INT(-1)); 1215 MORE_STACK(-1); // Pop 1216 SET_STACK_LONG(r, 1); 1217 1218 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1219 } 1220 1221 CASE(_i2d): /* convert top of stack int to double */ 1222 { 1223 // this is ugly QQQ (why cast to jlong?? ) 1224 jdouble r = (jlong)STACK_INT(-1); 1225 MORE_STACK(-1); // Pop 1226 SET_STACK_DOUBLE(r, 1); 1227 1228 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1229 } 1230 1231 CASE(_l2i): /* convert top of stack long to int */ 1232 { 1233 jint r = VMlong2Int(STACK_LONG(-1)); 1234 MORE_STACK(-2); // Pop 1235 SET_STACK_INT(r, 0); 1236 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1237 } 1238 1239 CASE(_l2f): /* convert top of stack long to float */ 1240 { 1241 jlong r = STACK_LONG(-1); 1242 MORE_STACK(-2); // Pop 1243 SET_STACK_FLOAT(VMlong2Float(r), 0); 1244 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1245 } 1246 1247 CASE(_l2d): /* convert top of stack long to double */ 1248 { 1249 jlong r = STACK_LONG(-1); 1250 MORE_STACK(-2); // Pop 1251 SET_STACK_DOUBLE(VMlong2Double(r), 1); 1252 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1253 } 1254 1255 CASE(_f2i): /* Convert top of stack float to int */ 1256 SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1); 1257 UPDATE_PC_AND_CONTINUE(1); 1258 1259 CASE(_f2l): /* convert top of stack float to long */ 1260 { 1261 jlong r = SharedRuntime::f2l(STACK_FLOAT(-1)); 1262 MORE_STACK(-1); // POP 1263 SET_STACK_LONG(r, 1); 1264 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1265 } 1266 1267 CASE(_f2d): /* convert top of stack float to double */ 1268 { 1269 jfloat f; 1270 jdouble r; 1271 f = STACK_FLOAT(-1); 1272 r = (jdouble) f; 1273 MORE_STACK(-1); // POP 1274 SET_STACK_DOUBLE(r, 1); 1275 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1276 } 1277 1278 CASE(_d2i): /* convert top of stack double to int */ 1279 { 1280 jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1)); 1281 MORE_STACK(-2); 1282 SET_STACK_INT(r1, 0); 1283 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1284 } 1285 1286 CASE(_d2f): /* convert top of stack double to float */ 1287 { 1288 jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1)); 1289 MORE_STACK(-2); 1290 SET_STACK_FLOAT(r1, 0); 1291 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1292 } 1293 1294 CASE(_d2l): /* convert top of stack double to long */ 1295 { 1296 jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1)); 1297 MORE_STACK(-2); 1298 SET_STACK_LONG(r1, 1); 1299 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2); 1300 } 1301 1302 CASE(_i2b): 1303 SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1); 1304 UPDATE_PC_AND_CONTINUE(1); 1305 1306 CASE(_i2c): 1307 SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1); 1308 UPDATE_PC_AND_CONTINUE(1); 1309 1310 CASE(_i2s): 1311 SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1); 1312 UPDATE_PC_AND_CONTINUE(1); 1313 1314 /* comparison operators */ 1315 1316 1317 #define COMPARISON_OP(name, comparison) \ 1318 CASE(_if_icmp##name): { \ 1319 int skip = (STACK_INT(-2) comparison STACK_INT(-1)) \ 1320 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \ 1321 address branch_pc = pc; \ 1322 UPDATE_PC_AND_TOS(skip, -2); \ 1323 DO_BACKEDGE_CHECKS(skip, branch_pc); \ 1324 CONTINUE; \ 1325 } \ 1326 CASE(_if##name): { \ 1327 int skip = (STACK_INT(-1) comparison 0) \ 1328 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \ 1329 address branch_pc = pc; \ 1330 UPDATE_PC_AND_TOS(skip, -1); \ 1331 DO_BACKEDGE_CHECKS(skip, branch_pc); \ 1332 CONTINUE; \ 1333 } 1334 1335 #define COMPARISON_OP2(name, comparison) \ 1336 COMPARISON_OP(name, comparison) \ 1337 CASE(_if_acmp##name): { \ 1338 int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1)) \ 1339 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \ 1340 address branch_pc = pc; \ 1341 UPDATE_PC_AND_TOS(skip, -2); \ 1342 DO_BACKEDGE_CHECKS(skip, branch_pc); \ 1343 CONTINUE; \ 1344 } 1345 1346 #define NULL_COMPARISON_NOT_OP(name) \ 1347 CASE(_if##name): { \ 1348 int skip = (!(STACK_OBJECT(-1) == NULL)) \ 1349 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \ 1350 address branch_pc = pc; \ 1351 UPDATE_PC_AND_TOS(skip, -1); \ 1352 DO_BACKEDGE_CHECKS(skip, branch_pc); \ 1353 CONTINUE; \ 1354 } 1355 1356 #define NULL_COMPARISON_OP(name) \ 1357 CASE(_if##name): { \ 1358 int skip = ((STACK_OBJECT(-1) == NULL)) \ 1359 ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3; \ 1360 address branch_pc = pc; \ 1361 UPDATE_PC_AND_TOS(skip, -1); \ 1362 DO_BACKEDGE_CHECKS(skip, branch_pc); \ 1363 CONTINUE; \ 1364 } 1365 COMPARISON_OP(lt, <); 1366 COMPARISON_OP(gt, >); 1367 COMPARISON_OP(le, <=); 1368 COMPARISON_OP(ge, >=); 1369 COMPARISON_OP2(eq, ==); /* include ref comparison */ 1370 COMPARISON_OP2(ne, !=); /* include ref comparison */ 1371 NULL_COMPARISON_OP(null); 1372 NULL_COMPARISON_NOT_OP(nonnull); 1373 1374 /* Goto pc at specified offset in switch table. */ 1375 1376 CASE(_tableswitch): { 1377 jint* lpc = (jint*)VMalignWordUp(pc+1); 1378 int32_t key = STACK_INT(-1); 1379 int32_t low = Bytes::get_Java_u4((address)&lpc[1]); 1380 int32_t high = Bytes::get_Java_u4((address)&lpc[2]); 1381 int32_t skip; 1382 key -= low; 1383 if (((uint32_t) key > (uint32_t)(high - low))) { 1384 skip = Bytes::get_Java_u4((address)&lpc[0]); 1385 } else { 1386 skip = Bytes::get_Java_u4((address)&lpc[key + 3]); 1387 } 1388 // Does this really need a full backedge check (osr)? 1389 address branch_pc = pc; 1390 UPDATE_PC_AND_TOS(skip, -1); 1391 DO_BACKEDGE_CHECKS(skip, branch_pc); 1392 CONTINUE; 1393 } 1394 1395 /* Goto pc whose table entry matches specified key. */ 1396 1397 CASE(_lookupswitch): { 1398 jint* lpc = (jint*)VMalignWordUp(pc+1); 1399 int32_t key = STACK_INT(-1); 1400 int32_t skip = Bytes::get_Java_u4((address) lpc); /* default amount */ 1401 int32_t npairs = Bytes::get_Java_u4((address) &lpc[1]); 1402 while (--npairs >= 0) { 1403 lpc += 2; 1404 if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) { 1405 skip = Bytes::get_Java_u4((address)&lpc[1]); 1406 break; 1407 } 1408 } 1409 address branch_pc = pc; 1410 UPDATE_PC_AND_TOS(skip, -1); 1411 DO_BACKEDGE_CHECKS(skip, branch_pc); 1412 CONTINUE; 1413 } 1414 1415 CASE(_fcmpl): 1416 CASE(_fcmpg): 1417 { 1418 SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2), 1419 STACK_FLOAT(-1), 1420 (opcode == Bytecodes::_fcmpl ? -1 : 1)), 1421 -2); 1422 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1423 } 1424 1425 CASE(_dcmpl): 1426 CASE(_dcmpg): 1427 { 1428 int r = VMdoubleCompare(STACK_DOUBLE(-3), 1429 STACK_DOUBLE(-1), 1430 (opcode == Bytecodes::_dcmpl ? -1 : 1)); 1431 MORE_STACK(-4); // Pop 1432 SET_STACK_INT(r, 0); 1433 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1434 } 1435 1436 CASE(_lcmp): 1437 { 1438 int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1)); 1439 MORE_STACK(-4); 1440 SET_STACK_INT(r, 0); 1441 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 1442 } 1443 1444 1445 /* Return from a method */ 1446 1447 CASE(_areturn): 1448 CASE(_ireturn): 1449 CASE(_freturn): 1450 CASE(_lreturn): 1451 CASE(_dreturn): 1452 CASE(_return): { 1453 // Allow a safepoint before returning to frame manager. 1454 RETURN_SAFEPOINT; 1455 goto handle_return; 1456 } 1457 1458 CASE(_return_register_finalizer): { 1459 oop rcvr = LOCALS_OBJECT(0); 1460 VERIFY_OOP(rcvr); 1461 if (rcvr->klass()->has_finalizer()) { 1462 CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception); 1463 } 1464 goto handle_return; 1465 } 1466 1467 /* Array access byte-codes */ 1468 1469 #define ARRAY_INDEX_CHECK(arrObj, index) \ 1470 /* Two integers, the additional message, and the null-terminator */ \ 1471 char message[2 * jintAsStringSize + 33]; \ 1472 CHECK_NULL(arrObj); \ 1473 if ((uint32_t)index >= (uint32_t)arrObj->length()) { \ 1474 jio_snprintf(message, sizeof(message), \ 1475 "Index %d out of bounds for length %d", \ 1476 index, arrObj->length()); \ 1477 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \ 1478 message); \ 1479 } 1480 1481 /* Every array access byte-code starts out like this */ 1482 // arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff); 1483 #define ARRAY_INTRO(arrayOff) \ 1484 arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff); \ 1485 jint index = STACK_INT(arrayOff + 1); \ 1486 ARRAY_INDEX_CHECK(arrObj, index) 1487 1488 /* 32-bit loads. These handle conversion from < 32-bit types */ 1489 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra) \ 1490 { \ 1491 ARRAY_INTRO(-2); \ 1492 (void)extra; \ 1493 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \ 1494 -2); \ 1495 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); \ 1496 } 1497 1498 /* 64-bit loads */ 1499 #define ARRAY_LOADTO64(T,T2, stackRes, extra) \ 1500 { \ 1501 ARRAY_INTRO(-2); \ 1502 SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \ 1503 (void)extra; \ 1504 UPDATE_PC_AND_CONTINUE(1); \ 1505 } 1506 1507 CASE(_iaload): 1508 ARRAY_LOADTO32(T_INT, jint, "%d", STACK_INT, 0); 1509 CASE(_faload): 1510 ARRAY_LOADTO32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0); 1511 CASE(_aaload): { 1512 ARRAY_INTRO(-2); 1513 SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2); 1514 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1515 } 1516 CASE(_baload): 1517 ARRAY_LOADTO32(T_BYTE, jbyte, "%d", STACK_INT, 0); 1518 CASE(_caload): 1519 ARRAY_LOADTO32(T_CHAR, jchar, "%d", STACK_INT, 0); 1520 CASE(_saload): 1521 ARRAY_LOADTO32(T_SHORT, jshort, "%d", STACK_INT, 0); 1522 CASE(_laload): 1523 ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0); 1524 CASE(_daload): 1525 ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0); 1526 1527 CASE(_fast_icaload): { 1528 // Custom fast access for iload,caload pair. 1529 arrayOop arrObj = (arrayOop) STACK_OBJECT(-1); 1530 jint index = LOCALS_INT(pc[1]); 1531 ARRAY_INDEX_CHECK(arrObj, index); 1532 SET_STACK_INT(*(jchar *)(((address) arrObj->base(T_CHAR)) + index * sizeof(jchar)), -1); 1533 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 0); 1534 } 1535 1536 /* 32-bit stores. These handle conversion to < 32-bit types */ 1537 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra) \ 1538 { \ 1539 ARRAY_INTRO(-3); \ 1540 (void)extra; \ 1541 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \ 1542 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3); \ 1543 } 1544 1545 /* 64-bit stores */ 1546 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra) \ 1547 { \ 1548 ARRAY_INTRO(-4); \ 1549 (void)extra; \ 1550 *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \ 1551 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4); \ 1552 } 1553 1554 CASE(_iastore): 1555 ARRAY_STOREFROM32(T_INT, jint, "%d", STACK_INT, 0); 1556 CASE(_fastore): 1557 ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f", STACK_FLOAT, 0); 1558 /* 1559 * This one looks different because of the assignability check 1560 */ 1561 CASE(_aastore): { 1562 oop rhsObject = STACK_OBJECT(-1); 1563 VERIFY_OOP(rhsObject); 1564 ARRAY_INTRO( -3); 1565 // arrObj, index are set 1566 if (rhsObject != NULL) { 1567 /* Check assignability of rhsObject into arrObj */ 1568 Klass* rhsKlass = rhsObject->klass(); // EBX (subclass) 1569 Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX 1570 // 1571 // Check for compatibilty. This check must not GC!! 1572 // Seems way more expensive now that we must dispatch 1573 // 1574 if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is... 1575 VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), ""); 1576 } 1577 } 1578 ((objArrayOop) arrObj)->obj_at_put(index, rhsObject); 1579 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3); 1580 } 1581 CASE(_bastore): { 1582 ARRAY_INTRO(-3); 1583 int item = STACK_INT(-1); 1584 // if it is a T_BOOLEAN array, mask the stored value to 0/1 1585 if (arrObj->klass() == Universe::boolArrayKlassObj()) { 1586 item &= 1; 1587 } else { 1588 assert(arrObj->klass() == Universe::byteArrayKlassObj(), 1589 "should be byte array otherwise"); 1590 } 1591 ((typeArrayOop)arrObj)->byte_at_put(index, item); 1592 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3); 1593 } 1594 CASE(_castore): 1595 ARRAY_STOREFROM32(T_CHAR, jchar, "%d", STACK_INT, 0); 1596 CASE(_sastore): 1597 ARRAY_STOREFROM32(T_SHORT, jshort, "%d", STACK_INT, 0); 1598 CASE(_lastore): 1599 ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0); 1600 CASE(_dastore): 1601 ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0); 1602 1603 CASE(_arraylength): 1604 { 1605 arrayOop ary = (arrayOop) STACK_OBJECT(-1); 1606 CHECK_NULL(ary); 1607 SET_STACK_INT(ary->length(), -1); 1608 UPDATE_PC_AND_CONTINUE(1); 1609 } 1610 1611 /* monitorenter and monitorexit for locking/unlocking an object */ 1612 1613 CASE(_monitorenter): { 1614 oop lockee = STACK_OBJECT(-1); 1615 // derefing's lockee ought to provoke implicit null check 1616 CHECK_NULL(lockee); 1617 // find a free monitor or one already allocated for this object 1618 // if we find a matching object then we need a new monitor 1619 // since this is recursive enter 1620 BasicObjectLock* limit = istate->monitor_base(); 1621 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base(); 1622 BasicObjectLock* entry = NULL; 1623 while (most_recent != limit ) { 1624 if (most_recent->obj() == NULL) entry = most_recent; 1625 else if (most_recent->obj() == lockee) break; 1626 most_recent++; 1627 } 1628 if (entry != NULL) { 1629 entry->set_obj(lockee); 1630 1631 assert(!UseBiasedLocking, "Not implemented"); 1632 1633 // traditional lightweight locking 1634 markWord displaced = lockee->mark().set_unlocked(); 1635 entry->lock()->set_displaced_header(displaced); 1636 bool call_vm = UseHeavyMonitors; 1637 if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) { 1638 // Is it simple recursive case? 1639 if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) { 1640 entry->lock()->set_displaced_header(markWord::from_pointer(NULL)); 1641 } else { 1642 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception); 1643 } 1644 } 1645 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1646 } else { 1647 istate->set_msg(more_monitors); 1648 UPDATE_PC_AND_RETURN(0); // Re-execute 1649 } 1650 } 1651 1652 CASE(_monitorexit): { 1653 oop lockee = STACK_OBJECT(-1); 1654 CHECK_NULL(lockee); 1655 // derefing's lockee ought to provoke implicit null check 1656 // find our monitor slot 1657 BasicObjectLock* limit = istate->monitor_base(); 1658 BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base(); 1659 while (most_recent != limit ) { 1660 if ((most_recent)->obj() == lockee) { 1661 BasicLock* lock = most_recent->lock(); 1662 markWord header = lock->displaced_header(); 1663 most_recent->set_obj(NULL); 1664 1665 assert(!UseBiasedLocking, "Not implemented"); 1666 1667 // If it isn't recursive we either must swap old header or call the runtime 1668 bool call_vm = UseHeavyMonitors; 1669 if (header.to_pointer() != NULL || call_vm) { 1670 markWord old_header = markWord::encode(lock); 1671 if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) { 1672 // restore object for the slow case 1673 most_recent->set_obj(lockee); 1674 InterpreterRuntime::monitorexit(most_recent); 1675 } 1676 } 1677 UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1); 1678 } 1679 most_recent++; 1680 } 1681 // Need to throw illegal monitor state exception 1682 CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception); 1683 ShouldNotReachHere(); 1684 } 1685 1686 /* All of the non-quick opcodes. */ 1687 1688 /* -Set clobbersCpIndex true if the quickened opcode clobbers the 1689 * constant pool index in the instruction. 1690 */ 1691 CASE(_getfield): 1692 CASE(_getstatic): 1693 { 1694 u2 index; 1695 ConstantPoolCacheEntry* cache; 1696 index = Bytes::get_native_u2(pc+1); 1697 1698 // QQQ Need to make this as inlined as possible. Probably need to 1699 // split all the bytecode cases out so c++ compiler has a chance 1700 // for constant prop to fold everything possible away. 1701 1702 cache = cp->entry_at(index); 1703 if (!cache->is_resolved((Bytecodes::Code)opcode)) { 1704 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode), 1705 handle_exception); 1706 cache = cp->entry_at(index); 1707 } 1708 1709 oop obj; 1710 if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) { 1711 Klass* k = cache->f1_as_klass(); 1712 obj = k->java_mirror(); 1713 MORE_STACK(1); // Assume single slot push 1714 } else { 1715 obj = STACK_OBJECT(-1); 1716 CHECK_NULL(obj); 1717 // Check if we can rewrite non-volatile _getfield to one of the _fast_Xgetfield. 1718 if (REWRITE_BYTECODES && !cache->is_volatile()) { 1719 // Rewrite current BC to _fast_Xgetfield. 1720 REWRITE_AT_PC(fast_get_type(cache->flag_state())); 1721 } 1722 } 1723 1724 MAYBE_POST_FIELD_ACCESS(obj); 1725 1726 // 1727 // Now store the result on the stack 1728 // 1729 TosState tos_type = cache->flag_state(); 1730 int field_offset = cache->f2_as_index(); 1731 if (cache->is_volatile()) { 1732 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 1733 OrderAccess::fence(); 1734 } 1735 switch (tos_type) { 1736 case btos: 1737 case ztos: 1738 SET_STACK_INT(obj->byte_field_acquire(field_offset), -1); 1739 break; 1740 case ctos: 1741 SET_STACK_INT(obj->char_field_acquire(field_offset), -1); 1742 break; 1743 case stos: 1744 SET_STACK_INT(obj->short_field_acquire(field_offset), -1); 1745 break; 1746 case itos: 1747 SET_STACK_INT(obj->int_field_acquire(field_offset), -1); 1748 break; 1749 case ftos: 1750 SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1); 1751 break; 1752 case ltos: 1753 SET_STACK_LONG(obj->long_field_acquire(field_offset), 0); 1754 MORE_STACK(1); 1755 break; 1756 case dtos: 1757 SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0); 1758 MORE_STACK(1); 1759 break; 1760 case atos: { 1761 oop val = obj->obj_field_acquire(field_offset); 1762 VERIFY_OOP(val); 1763 SET_STACK_OBJECT(val, -1); 1764 break; 1765 } 1766 default: 1767 ShouldNotReachHere(); 1768 } 1769 } else { 1770 switch (tos_type) { 1771 case btos: 1772 case ztos: 1773 SET_STACK_INT(obj->byte_field(field_offset), -1); 1774 break; 1775 case ctos: 1776 SET_STACK_INT(obj->char_field(field_offset), -1); 1777 break; 1778 case stos: 1779 SET_STACK_INT(obj->short_field(field_offset), -1); 1780 break; 1781 case itos: 1782 SET_STACK_INT(obj->int_field(field_offset), -1); 1783 break; 1784 case ftos: 1785 SET_STACK_FLOAT(obj->float_field(field_offset), -1); 1786 break; 1787 case ltos: 1788 SET_STACK_LONG(obj->long_field(field_offset), 0); 1789 MORE_STACK(1); 1790 break; 1791 case dtos: 1792 SET_STACK_DOUBLE(obj->double_field(field_offset), 0); 1793 MORE_STACK(1); 1794 break; 1795 case atos: { 1796 oop val = obj->obj_field(field_offset); 1797 VERIFY_OOP(val); 1798 SET_STACK_OBJECT(val, -1); 1799 break; 1800 } 1801 default: 1802 ShouldNotReachHere(); 1803 } 1804 } 1805 1806 UPDATE_PC_AND_CONTINUE(3); 1807 } 1808 1809 CASE(_putfield): 1810 CASE(_putstatic): 1811 { 1812 u2 index = Bytes::get_native_u2(pc+1); 1813 ConstantPoolCacheEntry* cache = cp->entry_at(index); 1814 if (!cache->is_resolved((Bytecodes::Code)opcode)) { 1815 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode), 1816 handle_exception); 1817 cache = cp->entry_at(index); 1818 } 1819 1820 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases 1821 // out so c++ compiler has a chance for constant prop to fold everything possible away. 1822 1823 oop obj; 1824 int count; 1825 TosState tos_type = cache->flag_state(); 1826 1827 count = -1; 1828 if (tos_type == ltos || tos_type == dtos) { 1829 --count; 1830 } 1831 if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) { 1832 Klass* k = cache->f1_as_klass(); 1833 obj = k->java_mirror(); 1834 } else { 1835 --count; 1836 obj = STACK_OBJECT(count); 1837 CHECK_NULL(obj); 1838 1839 // Check if we can rewrite non-volatile _putfield to one of the _fast_Xputfield. 1840 if (REWRITE_BYTECODES && !cache->is_volatile()) { 1841 // Rewrite current BC to _fast_Xputfield. 1842 REWRITE_AT_PC(fast_put_type(cache->flag_state())); 1843 } 1844 } 1845 1846 MAYBE_POST_FIELD_MODIFICATION(obj); 1847 1848 // 1849 // Now store the result 1850 // 1851 int field_offset = cache->f2_as_index(); 1852 if (cache->is_volatile()) { 1853 switch (tos_type) { 1854 case ztos: 1855 obj->release_byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB 1856 break; 1857 case btos: 1858 obj->release_byte_field_put(field_offset, STACK_INT(-1)); 1859 break; 1860 case ctos: 1861 obj->release_char_field_put(field_offset, STACK_INT(-1)); 1862 break; 1863 case stos: 1864 obj->release_short_field_put(field_offset, STACK_INT(-1)); 1865 break; 1866 case itos: 1867 obj->release_int_field_put(field_offset, STACK_INT(-1)); 1868 break; 1869 case ftos: 1870 obj->release_float_field_put(field_offset, STACK_FLOAT(-1)); 1871 break; 1872 case ltos: 1873 obj->release_long_field_put(field_offset, STACK_LONG(-1)); 1874 break; 1875 case dtos: 1876 obj->release_double_field_put(field_offset, STACK_DOUBLE(-1)); 1877 break; 1878 case atos: { 1879 oop val = STACK_OBJECT(-1); 1880 VERIFY_OOP(val); 1881 obj->release_obj_field_put(field_offset, val); 1882 break; 1883 } 1884 default: 1885 ShouldNotReachHere(); 1886 } 1887 OrderAccess::storeload(); 1888 } else { 1889 switch (tos_type) { 1890 case ztos: 1891 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB 1892 break; 1893 case btos: 1894 obj->byte_field_put(field_offset, STACK_INT(-1)); 1895 break; 1896 case ctos: 1897 obj->char_field_put(field_offset, STACK_INT(-1)); 1898 break; 1899 case stos: 1900 obj->short_field_put(field_offset, STACK_INT(-1)); 1901 break; 1902 case itos: 1903 obj->int_field_put(field_offset, STACK_INT(-1)); 1904 break; 1905 case ftos: 1906 obj->float_field_put(field_offset, STACK_FLOAT(-1)); 1907 break; 1908 case ltos: 1909 obj->long_field_put(field_offset, STACK_LONG(-1)); 1910 break; 1911 case dtos: 1912 obj->double_field_put(field_offset, STACK_DOUBLE(-1)); 1913 break; 1914 case atos: { 1915 oop val = STACK_OBJECT(-1); 1916 VERIFY_OOP(val); 1917 obj->obj_field_put(field_offset, val); 1918 break; 1919 } 1920 default: 1921 ShouldNotReachHere(); 1922 } 1923 } 1924 1925 UPDATE_PC_AND_TOS_AND_CONTINUE(3, count); 1926 } 1927 1928 CASE(_new): { 1929 u2 index = Bytes::get_Java_u2(pc+1); 1930 1931 // Attempt TLAB allocation first. 1932 // 1933 // To do this, we need to make sure: 1934 // - klass is initialized 1935 // - klass can be fastpath allocated (e.g. does not have finalizer) 1936 // - TLAB accepts the allocation 1937 ConstantPool* constants = istate->method()->constants(); 1938 if (UseTLAB && !constants->tag_at(index).is_unresolved_klass()) { 1939 Klass* entry = constants->resolved_klass_at(index); 1940 InstanceKlass* ik = InstanceKlass::cast(entry); 1941 if (ik->is_initialized() && ik->can_be_fastpath_allocated()) { 1942 size_t obj_size = ik->size_helper(); 1943 HeapWord* result = THREAD->tlab().allocate(obj_size); 1944 if (result != NULL) { 1945 // Initialize object field block: 1946 // - if TLAB is pre-zeroed, we can skip this path 1947 // - in debug mode, ThreadLocalAllocBuffer::allocate mangles 1948 // this area, and we still need to initialize it 1949 if (DEBUG_ONLY(true ||) !ZeroTLAB) { 1950 size_t hdr_size = oopDesc::header_size(); 1951 Copy::fill_to_words(result + hdr_size, obj_size - hdr_size, 0); 1952 } 1953 1954 oop obj = cast_to_oop(result); 1955 1956 // Initialize header 1957 assert(!UseBiasedLocking, "Not implemented"); 1958 obj->set_mark(markWord::prototype()); 1959 obj->set_klass_gap(0); 1960 obj->set_klass(ik); 1961 1962 // Must prevent reordering of stores for object initialization 1963 // with stores that publish the new object. 1964 OrderAccess::storestore(); 1965 SET_STACK_OBJECT(obj, 0); 1966 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1); 1967 } 1968 } 1969 } 1970 // Slow case allocation 1971 CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index), 1972 handle_exception); 1973 // Must prevent reordering of stores for object initialization 1974 // with stores that publish the new object. 1975 OrderAccess::storestore(); 1976 SET_STACK_OBJECT(THREAD->vm_result(), 0); 1977 THREAD->set_vm_result(NULL); 1978 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1); 1979 } 1980 CASE(_anewarray): { 1981 u2 index = Bytes::get_Java_u2(pc+1); 1982 jint size = STACK_INT(-1); 1983 CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size), 1984 handle_exception); 1985 // Must prevent reordering of stores for object initialization 1986 // with stores that publish the new object. 1987 OrderAccess::storestore(); 1988 SET_STACK_OBJECT(THREAD->vm_result(), -1); 1989 THREAD->set_vm_result(NULL); 1990 UPDATE_PC_AND_CONTINUE(3); 1991 } 1992 CASE(_multianewarray): { 1993 jint dims = *(pc+3); 1994 jint size = STACK_INT(-1); 1995 // stack grows down, dimensions are up! 1996 jint *dimarray = 1997 (jint*)&topOfStack[dims * Interpreter::stackElementWords+ 1998 Interpreter::stackElementWords-1]; 1999 //adjust pointer to start of stack element 2000 CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray), 2001 handle_exception); 2002 // Must prevent reordering of stores for object initialization 2003 // with stores that publish the new object. 2004 OrderAccess::storestore(); 2005 SET_STACK_OBJECT(THREAD->vm_result(), -dims); 2006 THREAD->set_vm_result(NULL); 2007 UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1)); 2008 } 2009 CASE(_checkcast): 2010 if (STACK_OBJECT(-1) != NULL) { 2011 VERIFY_OOP(STACK_OBJECT(-1)); 2012 u2 index = Bytes::get_Java_u2(pc+1); 2013 // Constant pool may have actual klass or unresolved klass. If it is 2014 // unresolved we must resolve it. 2015 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) { 2016 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception); 2017 } 2018 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index); 2019 Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx 2020 // 2021 // Check for compatibilty. This check must not GC!! 2022 // Seems way more expensive now that we must dispatch. 2023 // 2024 if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) { 2025 ResourceMark rm(THREAD); 2026 char* message = SharedRuntime::generate_class_cast_message( 2027 objKlass, klassOf); 2028 VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message); 2029 } 2030 } 2031 UPDATE_PC_AND_CONTINUE(3); 2032 2033 CASE(_instanceof): 2034 if (STACK_OBJECT(-1) == NULL) { 2035 SET_STACK_INT(0, -1); 2036 } else { 2037 VERIFY_OOP(STACK_OBJECT(-1)); 2038 u2 index = Bytes::get_Java_u2(pc+1); 2039 // Constant pool may have actual klass or unresolved klass. If it is 2040 // unresolved we must resolve it. 2041 if (METHOD->constants()->tag_at(index).is_unresolved_klass()) { 2042 CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception); 2043 } 2044 Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index); 2045 Klass* objKlass = STACK_OBJECT(-1)->klass(); 2046 // 2047 // Check for compatibilty. This check must not GC!! 2048 // Seems way more expensive now that we must dispatch. 2049 // 2050 if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) { 2051 SET_STACK_INT(1, -1); 2052 } else { 2053 SET_STACK_INT(0, -1); 2054 } 2055 } 2056 UPDATE_PC_AND_CONTINUE(3); 2057 2058 CASE(_ldc_w): 2059 CASE(_ldc): 2060 { 2061 u2 index; 2062 bool wide = false; 2063 int incr = 2; // frequent case 2064 if (opcode == Bytecodes::_ldc) { 2065 index = pc[1]; 2066 } else { 2067 index = Bytes::get_Java_u2(pc+1); 2068 incr = 3; 2069 wide = true; 2070 } 2071 2072 ConstantPool* constants = METHOD->constants(); 2073 switch (constants->tag_at(index).value()) { 2074 case JVM_CONSTANT_Integer: 2075 SET_STACK_INT(constants->int_at(index), 0); 2076 break; 2077 2078 case JVM_CONSTANT_Float: 2079 SET_STACK_FLOAT(constants->float_at(index), 0); 2080 break; 2081 2082 case JVM_CONSTANT_String: 2083 { 2084 oop result = constants->resolved_references()->obj_at(index); 2085 if (result == NULL) { 2086 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception); 2087 SET_STACK_OBJECT(THREAD->vm_result(), 0); 2088 THREAD->set_vm_result(NULL); 2089 } else { 2090 VERIFY_OOP(result); 2091 SET_STACK_OBJECT(result, 0); 2092 } 2093 break; 2094 } 2095 2096 case JVM_CONSTANT_Class: 2097 VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror()); 2098 SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0); 2099 break; 2100 2101 case JVM_CONSTANT_UnresolvedClass: 2102 case JVM_CONSTANT_UnresolvedClassInError: 2103 CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception); 2104 SET_STACK_OBJECT(THREAD->vm_result(), 0); 2105 THREAD->set_vm_result(NULL); 2106 break; 2107 2108 case JVM_CONSTANT_Dynamic: 2109 case JVM_CONSTANT_DynamicInError: 2110 { 2111 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception); 2112 oop result = THREAD->vm_result(); 2113 VERIFY_OOP(result); 2114 2115 jvalue value; 2116 BasicType type = java_lang_boxing_object::get_value(result, &value); 2117 switch (type) { 2118 case T_FLOAT: SET_STACK_FLOAT(value.f, 0); break; 2119 case T_INT: SET_STACK_INT(value.i, 0); break; 2120 case T_SHORT: SET_STACK_INT(value.s, 0); break; 2121 case T_BYTE: SET_STACK_INT(value.b, 0); break; 2122 case T_CHAR: SET_STACK_INT(value.c, 0); break; 2123 case T_BOOLEAN: SET_STACK_INT(value.z, 0); break; 2124 default: ShouldNotReachHere(); 2125 } 2126 2127 break; 2128 } 2129 2130 default: ShouldNotReachHere(); 2131 } 2132 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1); 2133 } 2134 2135 CASE(_ldc2_w): 2136 { 2137 u2 index = Bytes::get_Java_u2(pc+1); 2138 2139 ConstantPool* constants = METHOD->constants(); 2140 switch (constants->tag_at(index).value()) { 2141 2142 case JVM_CONSTANT_Long: 2143 SET_STACK_LONG(constants->long_at(index), 1); 2144 break; 2145 2146 case JVM_CONSTANT_Double: 2147 SET_STACK_DOUBLE(constants->double_at(index), 1); 2148 break; 2149 2150 case JVM_CONSTANT_Dynamic: 2151 case JVM_CONSTANT_DynamicInError: 2152 { 2153 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception); 2154 oop result = THREAD->vm_result(); 2155 VERIFY_OOP(result); 2156 2157 jvalue value; 2158 BasicType type = java_lang_boxing_object::get_value(result, &value); 2159 switch (type) { 2160 case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break; 2161 case T_LONG: SET_STACK_LONG(value.j, 1); break; 2162 default: ShouldNotReachHere(); 2163 } 2164 2165 break; 2166 } 2167 2168 default: ShouldNotReachHere(); 2169 } 2170 UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2); 2171 } 2172 2173 CASE(_fast_aldc_w): 2174 CASE(_fast_aldc): { 2175 u2 index; 2176 int incr; 2177 if (opcode == Bytecodes::_fast_aldc) { 2178 index = pc[1]; 2179 incr = 2; 2180 } else { 2181 index = Bytes::get_native_u2(pc+1); 2182 incr = 3; 2183 } 2184 2185 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.) 2186 // This kind of CP cache entry does not need to match the flags byte, because 2187 // there is a 1-1 relation between bytecode type and CP entry type. 2188 ConstantPool* constants = METHOD->constants(); 2189 oop result = constants->resolved_references()->obj_at(index); 2190 if (result == NULL) { 2191 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), 2192 handle_exception); 2193 result = THREAD->vm_result(); 2194 } 2195 if (result == Universe::the_null_sentinel()) 2196 result = NULL; 2197 2198 VERIFY_OOP(result); 2199 SET_STACK_OBJECT(result, 0); 2200 UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1); 2201 } 2202 2203 CASE(_invokedynamic): { 2204 2205 u4 index = Bytes::get_native_u4(pc+1); 2206 ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index); 2207 2208 // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.) 2209 // This kind of CP cache entry does not need to match the flags byte, because 2210 // there is a 1-1 relation between bytecode type and CP entry type. 2211 if (! cache->is_resolved((Bytecodes::Code) opcode)) { 2212 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode), 2213 handle_exception); 2214 cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index); 2215 } 2216 2217 Method* method = cache->f1_as_method(); 2218 if (VerifyOops) method->verify(); 2219 2220 if (cache->has_appendix()) { 2221 constantPoolHandle cp(THREAD, METHOD->constants()); 2222 SET_STACK_OBJECT(cache->appendix_if_resolved(cp), 0); 2223 MORE_STACK(1); 2224 } 2225 2226 istate->set_msg(call_method); 2227 istate->set_callee(method); 2228 istate->set_callee_entry_point(method->from_interpreted_entry()); 2229 istate->set_bcp_advance(5); 2230 2231 UPDATE_PC_AND_RETURN(0); // I'll be back... 2232 } 2233 2234 CASE(_invokehandle): { 2235 2236 u2 index = Bytes::get_native_u2(pc+1); 2237 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2238 2239 if (! cache->is_resolved((Bytecodes::Code) opcode)) { 2240 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode), 2241 handle_exception); 2242 cache = cp->entry_at(index); 2243 } 2244 2245 Method* method = cache->f1_as_method(); 2246 if (VerifyOops) method->verify(); 2247 2248 if (cache->has_appendix()) { 2249 constantPoolHandle cp(THREAD, METHOD->constants()); 2250 SET_STACK_OBJECT(cache->appendix_if_resolved(cp), 0); 2251 MORE_STACK(1); 2252 } 2253 2254 istate->set_msg(call_method); 2255 istate->set_callee(method); 2256 istate->set_callee_entry_point(method->from_interpreted_entry()); 2257 istate->set_bcp_advance(3); 2258 2259 UPDATE_PC_AND_RETURN(0); // I'll be back... 2260 } 2261 2262 CASE(_invokeinterface): { 2263 u2 index = Bytes::get_native_u2(pc+1); 2264 2265 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases 2266 // out so c++ compiler has a chance for constant prop to fold everything possible away. 2267 2268 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2269 if (!cache->is_resolved((Bytecodes::Code)opcode)) { 2270 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode), 2271 handle_exception); 2272 cache = cp->entry_at(index); 2273 } 2274 2275 istate->set_msg(call_method); 2276 2277 // Special case of invokeinterface called for virtual method of 2278 // java.lang.Object. See cpCache.cpp for details. 2279 Method* callee = NULL; 2280 if (cache->is_forced_virtual()) { 2281 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size()))); 2282 if (cache->is_vfinal()) { 2283 callee = cache->f2_as_vfinal_method(); 2284 } else { 2285 // Get receiver. 2286 int parms = cache->parameter_size(); 2287 // Same comments as invokevirtual apply here. 2288 oop rcvr = STACK_OBJECT(-parms); 2289 VERIFY_OOP(rcvr); 2290 Klass* rcvrKlass = rcvr->klass(); 2291 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index()); 2292 } 2293 } else if (cache->is_vfinal()) { 2294 // private interface method invocations 2295 // 2296 // Ensure receiver class actually implements 2297 // the resolved interface class. The link resolver 2298 // does this, but only for the first time this 2299 // interface is being called. 2300 int parms = cache->parameter_size(); 2301 oop rcvr = STACK_OBJECT(-parms); 2302 CHECK_NULL(rcvr); 2303 Klass* recv_klass = rcvr->klass(); 2304 Klass* resolved_klass = cache->f1_as_klass(); 2305 if (!recv_klass->is_subtype_of(resolved_klass)) { 2306 ResourceMark rm(THREAD); 2307 char buf[200]; 2308 jio_snprintf(buf, sizeof(buf), "Class %s does not implement the requested interface %s", 2309 recv_klass->external_name(), 2310 resolved_klass->external_name()); 2311 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), buf); 2312 } 2313 callee = cache->f2_as_vfinal_method(); 2314 } 2315 if (callee != NULL) { 2316 istate->set_callee(callee); 2317 istate->set_callee_entry_point(callee->from_interpreted_entry()); 2318 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) { 2319 istate->set_callee_entry_point(callee->interpreter_entry()); 2320 } 2321 istate->set_bcp_advance(5); 2322 UPDATE_PC_AND_RETURN(0); // I'll be back... 2323 } 2324 2325 // this could definitely be cleaned up QQQ 2326 Method *interface_method = cache->f2_as_interface_method(); 2327 InstanceKlass* iclass = interface_method->method_holder(); 2328 2329 // get receiver 2330 int parms = cache->parameter_size(); 2331 oop rcvr = STACK_OBJECT(-parms); 2332 CHECK_NULL(rcvr); 2333 InstanceKlass* int2 = (InstanceKlass*) rcvr->klass(); 2334 2335 // Receiver subtype check against resolved interface klass (REFC). 2336 { 2337 Klass* refc = cache->f1_as_klass(); 2338 itableOffsetEntry* scan; 2339 for (scan = (itableOffsetEntry*) int2->start_of_itable(); 2340 scan->interface_klass() != NULL; 2341 scan++) { 2342 if (scan->interface_klass() == refc) { 2343 break; 2344 } 2345 } 2346 // Check that the entry is non-null. A null entry means 2347 // that the receiver class doesn't implement the 2348 // interface, and wasn't the same as when the caller was 2349 // compiled. 2350 if (scan->interface_klass() == NULL) { 2351 VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), ""); 2352 } 2353 } 2354 2355 itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable(); 2356 int i; 2357 for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) { 2358 if (ki->interface_klass() == iclass) break; 2359 } 2360 // If the interface isn't found, this class doesn't implement this 2361 // interface. The link resolver checks this but only for the first 2362 // time this interface is called. 2363 if (i == int2->itable_length()) { 2364 CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(THREAD, rcvr->klass(), iclass), 2365 handle_exception); 2366 } 2367 int mindex = interface_method->itable_index(); 2368 2369 itableMethodEntry* im = ki->first_method_entry(rcvr->klass()); 2370 callee = im[mindex].method(); 2371 if (callee == NULL) { 2372 CALL_VM(InterpreterRuntime::throw_AbstractMethodErrorVerbose(THREAD, rcvr->klass(), interface_method), 2373 handle_exception); 2374 } 2375 2376 istate->set_callee(callee); 2377 istate->set_callee_entry_point(callee->from_interpreted_entry()); 2378 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) { 2379 istate->set_callee_entry_point(callee->interpreter_entry()); 2380 } 2381 istate->set_bcp_advance(5); 2382 UPDATE_PC_AND_RETURN(0); // I'll be back... 2383 } 2384 2385 CASE(_invokevirtual): 2386 CASE(_invokespecial): 2387 CASE(_invokestatic): { 2388 u2 index = Bytes::get_native_u2(pc+1); 2389 2390 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2391 // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases 2392 // out so c++ compiler has a chance for constant prop to fold everything possible away. 2393 2394 if (!cache->is_resolved((Bytecodes::Code)opcode)) { 2395 CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode), 2396 handle_exception); 2397 cache = cp->entry_at(index); 2398 } 2399 2400 istate->set_msg(call_method); 2401 { 2402 Method* callee; 2403 if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) { 2404 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size()))); 2405 if (cache->is_vfinal()) { 2406 callee = cache->f2_as_vfinal_method(); 2407 if (REWRITE_BYTECODES) { 2408 // Rewrite to _fast_invokevfinal. 2409 REWRITE_AT_PC(Bytecodes::_fast_invokevfinal); 2410 } 2411 } else { 2412 // get receiver 2413 int parms = cache->parameter_size(); 2414 // this works but needs a resourcemark and seems to create a vtable on every call: 2415 // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index()); 2416 // 2417 // this fails with an assert 2418 // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass()); 2419 // but this works 2420 oop rcvr = STACK_OBJECT(-parms); 2421 VERIFY_OOP(rcvr); 2422 Klass* rcvrKlass = rcvr->klass(); 2423 /* 2424 Executing this code in java.lang.String: 2425 public String(char value[]) { 2426 this.count = value.length; 2427 this.value = (char[])value.clone(); 2428 } 2429 2430 a find on rcvr->klass() reports: 2431 {type array char}{type array class} 2432 - klass: {other class} 2433 2434 but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure 2435 because rcvr->klass()->is_instance_klass() == 0 2436 However it seems to have a vtable in the right location. Huh? 2437 Because vtables have the same offset for ArrayKlass and InstanceKlass. 2438 */ 2439 callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index()); 2440 } 2441 } else { 2442 if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) { 2443 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size()))); 2444 } 2445 callee = cache->f1_as_method(); 2446 } 2447 2448 istate->set_callee(callee); 2449 istate->set_callee_entry_point(callee->from_interpreted_entry()); 2450 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) { 2451 istate->set_callee_entry_point(callee->interpreter_entry()); 2452 } 2453 istate->set_bcp_advance(3); 2454 UPDATE_PC_AND_RETURN(0); // I'll be back... 2455 } 2456 } 2457 2458 /* Allocate memory for a new java object. */ 2459 2460 CASE(_newarray): { 2461 BasicType atype = (BasicType) *(pc+1); 2462 jint size = STACK_INT(-1); 2463 CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size), 2464 handle_exception); 2465 // Must prevent reordering of stores for object initialization 2466 // with stores that publish the new object. 2467 OrderAccess::storestore(); 2468 SET_STACK_OBJECT(THREAD->vm_result(), -1); 2469 THREAD->set_vm_result(NULL); 2470 2471 UPDATE_PC_AND_CONTINUE(2); 2472 } 2473 2474 /* Throw an exception. */ 2475 2476 CASE(_athrow): { 2477 oop except_oop = STACK_OBJECT(-1); 2478 CHECK_NULL(except_oop); 2479 // set pending_exception so we use common code 2480 THREAD->set_pending_exception(except_oop, NULL, 0); 2481 goto handle_exception; 2482 } 2483 2484 /* goto and jsr. They are exactly the same except jsr pushes 2485 * the address of the next instruction first. 2486 */ 2487 2488 CASE(_jsr): { 2489 /* push bytecode index on stack */ 2490 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0); 2491 MORE_STACK(1); 2492 /* FALL THROUGH */ 2493 } 2494 2495 CASE(_goto): 2496 { 2497 int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1); 2498 address branch_pc = pc; 2499 UPDATE_PC(offset); 2500 DO_BACKEDGE_CHECKS(offset, branch_pc); 2501 CONTINUE; 2502 } 2503 2504 CASE(_jsr_w): { 2505 /* push return address on the stack */ 2506 SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0); 2507 MORE_STACK(1); 2508 /* FALL THROUGH */ 2509 } 2510 2511 CASE(_goto_w): 2512 { 2513 int32_t offset = Bytes::get_Java_u4(pc + 1); 2514 address branch_pc = pc; 2515 UPDATE_PC(offset); 2516 DO_BACKEDGE_CHECKS(offset, branch_pc); 2517 CONTINUE; 2518 } 2519 2520 /* return from a jsr or jsr_w */ 2521 2522 CASE(_ret): { 2523 pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1])); 2524 UPDATE_PC_AND_CONTINUE(0); 2525 } 2526 2527 /* debugger breakpoint */ 2528 2529 CASE(_breakpoint): { 2530 Bytecodes::Code original_bytecode; 2531 DECACHE_STATE(); 2532 SET_LAST_JAVA_FRAME(); 2533 original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD, 2534 METHOD, pc); 2535 RESET_LAST_JAVA_FRAME(); 2536 CACHE_STATE(); 2537 if (THREAD->has_pending_exception()) goto handle_exception; 2538 CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc), 2539 handle_exception); 2540 2541 opcode = (jubyte)original_bytecode; 2542 goto opcode_switch; 2543 } 2544 2545 CASE(_fast_agetfield): { 2546 u2 index = Bytes::get_native_u2(pc+1); 2547 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2548 int field_offset = cache->f2_as_index(); 2549 2550 oop obj = STACK_OBJECT(-1); 2551 CHECK_NULL(obj); 2552 2553 MAYBE_POST_FIELD_ACCESS(obj); 2554 2555 VERIFY_OOP(obj->obj_field(field_offset)); 2556 SET_STACK_OBJECT(obj->obj_field(field_offset), -1); 2557 UPDATE_PC_AND_CONTINUE(3); 2558 } 2559 2560 CASE(_fast_bgetfield): { 2561 u2 index = Bytes::get_native_u2(pc+1); 2562 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2563 int field_offset = cache->f2_as_index(); 2564 2565 oop obj = STACK_OBJECT(-1); 2566 CHECK_NULL(obj); 2567 2568 MAYBE_POST_FIELD_ACCESS(obj); 2569 2570 SET_STACK_INT(obj->byte_field(field_offset), -1); 2571 UPDATE_PC_AND_CONTINUE(3); 2572 } 2573 2574 CASE(_fast_cgetfield): { 2575 u2 index = Bytes::get_native_u2(pc+1); 2576 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2577 int field_offset = cache->f2_as_index(); 2578 2579 oop obj = STACK_OBJECT(-1); 2580 CHECK_NULL(obj); 2581 2582 MAYBE_POST_FIELD_ACCESS(obj); 2583 2584 SET_STACK_INT(obj->char_field(field_offset), -1); 2585 UPDATE_PC_AND_CONTINUE(3); 2586 } 2587 2588 CASE(_fast_dgetfield): { 2589 u2 index = Bytes::get_native_u2(pc+1); 2590 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2591 int field_offset = cache->f2_as_index(); 2592 2593 oop obj = STACK_OBJECT(-1); 2594 CHECK_NULL(obj); 2595 2596 MAYBE_POST_FIELD_ACCESS(obj); 2597 2598 SET_STACK_DOUBLE(obj->double_field(field_offset), 0); 2599 MORE_STACK(1); 2600 UPDATE_PC_AND_CONTINUE(3); 2601 } 2602 2603 CASE(_fast_fgetfield): { 2604 u2 index = Bytes::get_native_u2(pc+1); 2605 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2606 int field_offset = cache->f2_as_index(); 2607 2608 oop obj = STACK_OBJECT(-1); 2609 CHECK_NULL(obj); 2610 2611 MAYBE_POST_FIELD_ACCESS(obj); 2612 2613 SET_STACK_FLOAT(obj->float_field(field_offset), -1); 2614 UPDATE_PC_AND_CONTINUE(3); 2615 } 2616 2617 CASE(_fast_igetfield): { 2618 u2 index = Bytes::get_native_u2(pc+1); 2619 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2620 int field_offset = cache->f2_as_index(); 2621 2622 oop obj = STACK_OBJECT(-1); 2623 CHECK_NULL(obj); 2624 2625 MAYBE_POST_FIELD_ACCESS(obj); 2626 2627 SET_STACK_INT(obj->int_field(field_offset), -1); 2628 UPDATE_PC_AND_CONTINUE(3); 2629 } 2630 2631 CASE(_fast_lgetfield): { 2632 u2 index = Bytes::get_native_u2(pc+1); 2633 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2634 int field_offset = cache->f2_as_index(); 2635 2636 oop obj = STACK_OBJECT(-1); 2637 CHECK_NULL(obj); 2638 2639 MAYBE_POST_FIELD_ACCESS(obj); 2640 2641 SET_STACK_LONG(obj->long_field(field_offset), 0); 2642 MORE_STACK(1); 2643 UPDATE_PC_AND_CONTINUE(3); 2644 } 2645 2646 CASE(_fast_sgetfield): { 2647 u2 index = Bytes::get_native_u2(pc+1); 2648 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2649 int field_offset = cache->f2_as_index(); 2650 2651 oop obj = STACK_OBJECT(-1); 2652 CHECK_NULL(obj); 2653 2654 MAYBE_POST_FIELD_ACCESS(obj); 2655 2656 SET_STACK_INT(obj->short_field(field_offset), -1); 2657 UPDATE_PC_AND_CONTINUE(3); 2658 } 2659 2660 CASE(_fast_aputfield): { 2661 u2 index = Bytes::get_native_u2(pc+1); 2662 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2663 2664 oop obj = STACK_OBJECT(-2); 2665 CHECK_NULL(obj); 2666 2667 MAYBE_POST_FIELD_MODIFICATION(obj); 2668 2669 int field_offset = cache->f2_as_index(); 2670 obj->obj_field_put(field_offset, STACK_OBJECT(-1)); 2671 2672 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2673 } 2674 2675 CASE(_fast_bputfield): { 2676 u2 index = Bytes::get_native_u2(pc+1); 2677 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2678 2679 oop obj = STACK_OBJECT(-2); 2680 CHECK_NULL(obj); 2681 2682 MAYBE_POST_FIELD_MODIFICATION(obj); 2683 2684 int field_offset = cache->f2_as_index(); 2685 obj->byte_field_put(field_offset, STACK_INT(-1)); 2686 2687 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2688 } 2689 2690 CASE(_fast_zputfield): { 2691 u2 index = Bytes::get_native_u2(pc+1); 2692 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2693 2694 oop obj = STACK_OBJECT(-2); 2695 CHECK_NULL(obj); 2696 2697 MAYBE_POST_FIELD_MODIFICATION(obj); 2698 2699 int field_offset = cache->f2_as_index(); 2700 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB 2701 2702 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2703 } 2704 2705 CASE(_fast_cputfield): { 2706 u2 index = Bytes::get_native_u2(pc+1); 2707 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2708 2709 oop obj = STACK_OBJECT(-2); 2710 CHECK_NULL(obj); 2711 2712 MAYBE_POST_FIELD_MODIFICATION(obj); 2713 2714 int field_offset = cache->f2_as_index(); 2715 obj->char_field_put(field_offset, STACK_INT(-1)); 2716 2717 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2718 } 2719 2720 CASE(_fast_dputfield): { 2721 u2 index = Bytes::get_native_u2(pc+1); 2722 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2723 2724 oop obj = STACK_OBJECT(-3); 2725 CHECK_NULL(obj); 2726 2727 MAYBE_POST_FIELD_MODIFICATION(obj); 2728 2729 int field_offset = cache->f2_as_index(); 2730 obj->double_field_put(field_offset, STACK_DOUBLE(-1)); 2731 2732 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3); 2733 } 2734 2735 CASE(_fast_fputfield): { 2736 u2 index = Bytes::get_native_u2(pc+1); 2737 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2738 2739 oop obj = STACK_OBJECT(-2); 2740 CHECK_NULL(obj); 2741 2742 MAYBE_POST_FIELD_MODIFICATION(obj); 2743 2744 int field_offset = cache->f2_as_index(); 2745 obj->float_field_put(field_offset, STACK_FLOAT(-1)); 2746 2747 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2748 } 2749 2750 CASE(_fast_iputfield): { 2751 u2 index = Bytes::get_native_u2(pc+1); 2752 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2753 2754 oop obj = STACK_OBJECT(-2); 2755 CHECK_NULL(obj); 2756 2757 MAYBE_POST_FIELD_MODIFICATION(obj); 2758 2759 int field_offset = cache->f2_as_index(); 2760 obj->int_field_put(field_offset, STACK_INT(-1)); 2761 2762 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2763 } 2764 2765 CASE(_fast_lputfield): { 2766 u2 index = Bytes::get_native_u2(pc+1); 2767 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2768 2769 oop obj = STACK_OBJECT(-3); 2770 CHECK_NULL(obj); 2771 2772 MAYBE_POST_FIELD_MODIFICATION(obj); 2773 2774 int field_offset = cache->f2_as_index(); 2775 obj->long_field_put(field_offset, STACK_LONG(-1)); 2776 2777 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3); 2778 } 2779 2780 CASE(_fast_sputfield): { 2781 u2 index = Bytes::get_native_u2(pc+1); 2782 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2783 2784 oop obj = STACK_OBJECT(-2); 2785 CHECK_NULL(obj); 2786 2787 MAYBE_POST_FIELD_MODIFICATION(obj); 2788 2789 int field_offset = cache->f2_as_index(); 2790 obj->short_field_put(field_offset, STACK_INT(-1)); 2791 2792 UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2); 2793 } 2794 2795 CASE(_fast_aload_0): { 2796 oop obj = LOCALS_OBJECT(0); 2797 VERIFY_OOP(obj); 2798 SET_STACK_OBJECT(obj, 0); 2799 UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1); 2800 } 2801 2802 CASE(_fast_aaccess_0): { 2803 u2 index = Bytes::get_native_u2(pc+2); 2804 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2805 int field_offset = cache->f2_as_index(); 2806 2807 oop obj = LOCALS_OBJECT(0); 2808 CHECK_NULL(obj); 2809 VERIFY_OOP(obj); 2810 2811 MAYBE_POST_FIELD_ACCESS(obj); 2812 2813 VERIFY_OOP(obj->obj_field(field_offset)); 2814 SET_STACK_OBJECT(obj->obj_field(field_offset), 0); 2815 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1); 2816 } 2817 2818 CASE(_fast_iaccess_0): { 2819 u2 index = Bytes::get_native_u2(pc+2); 2820 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2821 int field_offset = cache->f2_as_index(); 2822 2823 oop obj = LOCALS_OBJECT(0); 2824 CHECK_NULL(obj); 2825 VERIFY_OOP(obj); 2826 2827 MAYBE_POST_FIELD_ACCESS(obj); 2828 2829 SET_STACK_INT(obj->int_field(field_offset), 0); 2830 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1); 2831 } 2832 2833 CASE(_fast_faccess_0): { 2834 u2 index = Bytes::get_native_u2(pc+2); 2835 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2836 int field_offset = cache->f2_as_index(); 2837 2838 oop obj = LOCALS_OBJECT(0); 2839 CHECK_NULL(obj); 2840 VERIFY_OOP(obj); 2841 2842 MAYBE_POST_FIELD_ACCESS(obj); 2843 2844 SET_STACK_FLOAT(obj->float_field(field_offset), 0); 2845 UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1); 2846 } 2847 2848 CASE(_fast_invokevfinal): { 2849 u2 index = Bytes::get_native_u2(pc+1); 2850 ConstantPoolCacheEntry* cache = cp->entry_at(index); 2851 2852 assert(cache->is_resolved(Bytecodes::_invokevirtual), "Should be resolved before rewriting"); 2853 2854 istate->set_msg(call_method); 2855 2856 CHECK_NULL(STACK_OBJECT(-(cache->parameter_size()))); 2857 Method* callee = cache->f2_as_vfinal_method(); 2858 istate->set_callee(callee); 2859 if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) { 2860 istate->set_callee_entry_point(callee->interpreter_entry()); 2861 } else { 2862 istate->set_callee_entry_point(callee->from_interpreted_entry()); 2863 } 2864 istate->set_bcp_advance(3); 2865 UPDATE_PC_AND_RETURN(0); 2866 } 2867 2868 DEFAULT: 2869 fatal("Unimplemented opcode %d = %s", opcode, 2870 Bytecodes::name((Bytecodes::Code)opcode)); 2871 goto finish; 2872 2873 } /* switch(opc) */ 2874 2875 2876 #ifdef USELABELS 2877 check_for_exception: 2878 #endif 2879 { 2880 if (!THREAD->has_pending_exception()) { 2881 CONTINUE; 2882 } 2883 /* We will be gcsafe soon, so flush our state. */ 2884 DECACHE_PC(); 2885 goto handle_exception; 2886 } 2887 do_continue: ; 2888 2889 } /* while (1) interpreter loop */ 2890 2891 2892 // An exception exists in the thread state see whether this activation can handle it 2893 handle_exception: { 2894 2895 HandleMarkCleaner __hmc(THREAD); 2896 Handle except_oop(THREAD, THREAD->pending_exception()); 2897 // Prevent any subsequent HandleMarkCleaner in the VM 2898 // from freeing the except_oop handle. 2899 HandleMark __hm(THREAD); 2900 2901 THREAD->clear_pending_exception(); 2902 assert(except_oop() != NULL, "No exception to process"); 2903 intptr_t continuation_bci; 2904 // expression stack is emptied 2905 topOfStack = istate->stack_base() - Interpreter::stackElementWords; 2906 CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()), 2907 handle_exception); 2908 2909 except_oop = Handle(THREAD, THREAD->vm_result()); 2910 THREAD->set_vm_result(NULL); 2911 if (continuation_bci >= 0) { 2912 // Place exception on top of stack 2913 SET_STACK_OBJECT(except_oop(), 0); 2914 MORE_STACK(1); 2915 pc = METHOD->code_base() + continuation_bci; 2916 if (log_is_enabled(Info, exceptions)) { 2917 ResourceMark rm(THREAD); 2918 stringStream tempst; 2919 tempst.print("interpreter method <%s>\n" 2920 " at bci %d, continuing at %d for thread " INTPTR_FORMAT, 2921 METHOD->print_value_string(), 2922 (int)(istate->bcp() - METHOD->code_base()), 2923 (int)continuation_bci, p2i(THREAD)); 2924 Exceptions::log_exception(except_oop, tempst.as_string()); 2925 } 2926 // for AbortVMOnException flag 2927 Exceptions::debug_check_abort(except_oop); 2928 goto run; 2929 } 2930 if (log_is_enabled(Info, exceptions)) { 2931 ResourceMark rm; 2932 stringStream tempst; 2933 tempst.print("interpreter method <%s>\n" 2934 " at bci %d, unwinding for thread " INTPTR_FORMAT, 2935 METHOD->print_value_string(), 2936 (int)(istate->bcp() - METHOD->code_base()), 2937 p2i(THREAD)); 2938 Exceptions::log_exception(except_oop, tempst.as_string()); 2939 } 2940 // for AbortVMOnException flag 2941 Exceptions::debug_check_abort(except_oop); 2942 2943 // No handler in this activation, unwind and try again 2944 THREAD->set_pending_exception(except_oop(), NULL, 0); 2945 goto handle_return; 2946 } // handle_exception: 2947 2948 // Return from an interpreter invocation with the result of the interpretation 2949 // on the top of the Java Stack (or a pending exception) 2950 2951 handle_Pop_Frame: { 2952 2953 // We don't really do anything special here except we must be aware 2954 // that we can get here without ever locking the method (if sync). 2955 // Also we skip the notification of the exit. 2956 2957 istate->set_msg(popping_frame); 2958 // Clear pending so while the pop is in process 2959 // we don't start another one if a call_vm is done. 2960 THREAD->clear_popframe_condition(); 2961 // Let interpreter (only) see the we're in the process of popping a frame 2962 THREAD->set_pop_frame_in_process(); 2963 2964 goto handle_return; 2965 2966 } // handle_Pop_Frame 2967 2968 // ForceEarlyReturn ends a method, and returns to the caller with a return value 2969 // given by the invoker of the early return. 2970 handle_Early_Return: { 2971 2972 istate->set_msg(early_return); 2973 2974 // Clear expression stack. 2975 topOfStack = istate->stack_base() - Interpreter::stackElementWords; 2976 2977 JvmtiThreadState *ts = THREAD->jvmti_thread_state(); 2978 2979 // Push the value to be returned. 2980 switch (istate->method()->result_type()) { 2981 case T_BOOLEAN: 2982 case T_SHORT: 2983 case T_BYTE: 2984 case T_CHAR: 2985 case T_INT: 2986 SET_STACK_INT(ts->earlyret_value().i, 0); 2987 MORE_STACK(1); 2988 break; 2989 case T_LONG: 2990 SET_STACK_LONG(ts->earlyret_value().j, 1); 2991 MORE_STACK(2); 2992 break; 2993 case T_FLOAT: 2994 SET_STACK_FLOAT(ts->earlyret_value().f, 0); 2995 MORE_STACK(1); 2996 break; 2997 case T_DOUBLE: 2998 SET_STACK_DOUBLE(ts->earlyret_value().d, 1); 2999 MORE_STACK(2); 3000 break; 3001 case T_ARRAY: 3002 case T_OBJECT: 3003 SET_STACK_OBJECT(ts->earlyret_oop(), 0); 3004 MORE_STACK(1); 3005 break; 3006 default: 3007 ShouldNotReachHere(); 3008 } 3009 3010 ts->clr_earlyret_value(); 3011 ts->set_earlyret_oop(NULL); 3012 ts->clr_earlyret_pending(); 3013 3014 // Fall through to handle_return. 3015 3016 } // handle_Early_Return 3017 3018 handle_return: { 3019 // A storestore barrier is required to order initialization of 3020 // final fields with publishing the reference to the object that 3021 // holds the field. Without the barrier the value of final fields 3022 // can be observed to change. 3023 OrderAccess::storestore(); 3024 3025 DECACHE_STATE(); 3026 3027 bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return; 3028 bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame; 3029 Handle original_exception(THREAD, THREAD->pending_exception()); 3030 Handle illegal_state_oop(THREAD, NULL); 3031 3032 // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner 3033 // in any following VM entries from freeing our live handles, but illegal_state_oop 3034 // isn't really allocated yet and so doesn't become live until later and 3035 // in unpredicatable places. Instead we must protect the places where we enter the 3036 // VM. It would be much simpler (and safer) if we could allocate a real handle with 3037 // a NULL oop in it and then overwrite the oop later as needed. This isn't 3038 // unfortunately isn't possible. 3039 3040 if (THREAD->has_pending_exception()) { 3041 THREAD->clear_pending_exception(); 3042 } 3043 3044 // 3045 // As far as we are concerned we have returned. If we have a pending exception 3046 // that will be returned as this invocation's result. However if we get any 3047 // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions 3048 // will be our final result (i.e. monitor exception trumps a pending exception). 3049 // 3050 3051 // If we never locked the method (or really passed the point where we would have), 3052 // there is no need to unlock it (or look for other monitors), since that 3053 // could not have happened. 3054 3055 if (THREAD->do_not_unlock()) { 3056 3057 // Never locked, reset the flag now because obviously any caller must 3058 // have passed their point of locking for us to have gotten here. 3059 3060 THREAD->clr_do_not_unlock(); 3061 } else { 3062 // At this point we consider that we have returned. We now check that the 3063 // locks were properly block structured. If we find that they were not 3064 // used properly we will return with an illegal monitor exception. 3065 // The exception is checked by the caller not the callee since this 3066 // checking is considered to be part of the invocation and therefore 3067 // in the callers scope (JVM spec 8.13). 3068 // 3069 // Another weird thing to watch for is if the method was locked 3070 // recursively and then not exited properly. This means we must 3071 // examine all the entries in reverse time(and stack) order and 3072 // unlock as we find them. If we find the method monitor before 3073 // we are at the initial entry then we should throw an exception. 3074 // It is not clear the template based interpreter does this 3075 // correctly 3076 3077 BasicObjectLock* base = istate->monitor_base(); 3078 BasicObjectLock* end = (BasicObjectLock*) istate->stack_base(); 3079 bool method_unlock_needed = METHOD->is_synchronized(); 3080 // We know the initial monitor was used for the method don't check that 3081 // slot in the loop 3082 if (method_unlock_needed) base--; 3083 3084 // Check all the monitors to see they are unlocked. Install exception if found to be locked. 3085 while (end < base) { 3086 oop lockee = end->obj(); 3087 if (lockee != NULL) { 3088 BasicLock* lock = end->lock(); 3089 markWord header = lock->displaced_header(); 3090 end->set_obj(NULL); 3091 3092 assert(!UseBiasedLocking, "Not implemented"); 3093 3094 // If it isn't recursive we either must swap old header or call the runtime 3095 if (header.to_pointer() != NULL) { 3096 markWord old_header = markWord::encode(lock); 3097 if (lockee->cas_set_mark(header, old_header) != old_header) { 3098 // restore object for the slow case 3099 end->set_obj(lockee); 3100 InterpreterRuntime::monitorexit(end); 3101 } 3102 } 3103 3104 // One error is plenty 3105 if (illegal_state_oop() == NULL && !suppress_error) { 3106 { 3107 // Prevent any HandleMarkCleaner from freeing our live handles 3108 HandleMark __hm(THREAD); 3109 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD)); 3110 } 3111 assert(THREAD->has_pending_exception(), "Lost our exception!"); 3112 illegal_state_oop = Handle(THREAD, THREAD->pending_exception()); 3113 THREAD->clear_pending_exception(); 3114 } 3115 } 3116 end++; 3117 } 3118 // Unlock the method if needed 3119 if (method_unlock_needed) { 3120 if (base->obj() == NULL) { 3121 // The method is already unlocked this is not good. 3122 if (illegal_state_oop() == NULL && !suppress_error) { 3123 { 3124 // Prevent any HandleMarkCleaner from freeing our live handles 3125 HandleMark __hm(THREAD); 3126 CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD)); 3127 } 3128 assert(THREAD->has_pending_exception(), "Lost our exception!"); 3129 illegal_state_oop = Handle(THREAD, THREAD->pending_exception()); 3130 THREAD->clear_pending_exception(); 3131 } 3132 } else { 3133 // 3134 // The initial monitor is always used for the method 3135 // However if that slot is no longer the oop for the method it was unlocked 3136 // and reused by something that wasn't unlocked! 3137 // 3138 // deopt can come in with rcvr dead because c2 knows 3139 // its value is preserved in the monitor. So we can't use locals[0] at all 3140 // and must use first monitor slot. 3141 // 3142 oop rcvr = base->obj(); 3143 if (rcvr == NULL) { 3144 if (!suppress_error) { 3145 VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), ""); 3146 illegal_state_oop = Handle(THREAD, THREAD->pending_exception()); 3147 THREAD->clear_pending_exception(); 3148 } 3149 } else if (UseHeavyMonitors) { 3150 InterpreterRuntime::monitorexit(base); 3151 if (THREAD->has_pending_exception()) { 3152 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception()); 3153 THREAD->clear_pending_exception(); 3154 } 3155 } else { 3156 BasicLock* lock = base->lock(); 3157 markWord header = lock->displaced_header(); 3158 base->set_obj(NULL); 3159 3160 assert(!UseBiasedLocking, "Not implemented"); 3161 3162 // If it isn't recursive we either must swap old header or call the runtime 3163 if (header.to_pointer() != NULL) { 3164 markWord old_header = markWord::encode(lock); 3165 if (rcvr->cas_set_mark(header, old_header) != old_header) { 3166 // restore object for the slow case 3167 base->set_obj(rcvr); 3168 InterpreterRuntime::monitorexit(base); 3169 if (THREAD->has_pending_exception()) { 3170 if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception()); 3171 THREAD->clear_pending_exception(); 3172 } 3173 } 3174 } 3175 } 3176 } 3177 } 3178 } 3179 // Clear the do_not_unlock flag now. 3180 THREAD->clr_do_not_unlock(); 3181 3182 // 3183 // Notify jvmti/jvmdi 3184 // 3185 // NOTE: we do not notify a method_exit if we have a pending exception, 3186 // including an exception we generate for unlocking checks. In the former 3187 // case, JVMDI has already been notified by our call for the exception handler 3188 // and in both cases as far as JVMDI is concerned we have already returned. 3189 // If we notify it again JVMDI will be all confused about how many frames 3190 // are still on the stack (4340444). 3191 // 3192 // NOTE Further! It turns out the the JVMTI spec in fact expects to see 3193 // method_exit events whenever we leave an activation unless it was done 3194 // for popframe. This is nothing like jvmdi. However we are passing the 3195 // tests at the moment (apparently because they are jvmdi based) so rather 3196 // than change this code and possibly fail tests we will leave it alone 3197 // (with this note) in anticipation of changing the vm and the tests 3198 // simultaneously. 3199 3200 suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL; 3201 3202 // Whenever JVMTI puts a thread in interp_only_mode, method 3203 // entry/exit events are sent for that thread to track stack depth. 3204 3205 if (JVMTI_ENABLED && !suppress_exit_event && THREAD->is_interp_only_mode()) { 3206 // Prevent any HandleMarkCleaner from freeing our live handles 3207 HandleMark __hm(THREAD); 3208 CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD)); 3209 } 3210 3211 // 3212 // See if we are returning any exception 3213 // A pending exception that was pending prior to a possible popping frame 3214 // overrides the popping frame. 3215 // 3216 assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed"); 3217 if (illegal_state_oop() != NULL || original_exception() != NULL) { 3218 // Inform the frame manager we have no result. 3219 istate->set_msg(throwing_exception); 3220 if (illegal_state_oop() != NULL) 3221 THREAD->set_pending_exception(illegal_state_oop(), NULL, 0); 3222 else 3223 THREAD->set_pending_exception(original_exception(), NULL, 0); 3224 UPDATE_PC_AND_RETURN(0); 3225 } 3226 3227 if (istate->msg() == popping_frame) { 3228 // Make it simpler on the assembly code and set the message for the frame pop. 3229 // returns 3230 if (istate->prev() == NULL) { 3231 // We must be returning to a deoptimized frame (because popframe only happens between 3232 // two interpreted frames). We need to save the current arguments in C heap so that 3233 // the deoptimized frame when it restarts can copy the arguments to its expression 3234 // stack and re-execute the call. We also have to notify deoptimization that this 3235 // has occurred and to pick the preserved args copy them to the deoptimized frame's 3236 // java expression stack. Yuck. 3237 // 3238 THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize), 3239 LOCALS_SLOT(METHOD->size_of_parameters() - 1)); 3240 THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit); 3241 } 3242 } else { 3243 istate->set_msg(return_from_method); 3244 } 3245 3246 // Normal return 3247 // Advance the pc and return to frame manager 3248 UPDATE_PC_AND_RETURN(1); 3249 } /* handle_return: */ 3250 3251 // This is really a fatal error return 3252 3253 finish: 3254 DECACHE_TOS(); 3255 DECACHE_PC(); 3256 3257 return; 3258 } 3259 3260 // This constructor should only be used to contruct the object to signal 3261 // interpreter initialization. All other instances should be created by 3262 // the frame manager. 3263 BytecodeInterpreter::BytecodeInterpreter(messages msg) { 3264 if (msg != initialize) ShouldNotReachHere(); 3265 _msg = msg; 3266 _self_link = this; 3267 _prev_link = NULL; 3268 } 3269 3270 void BytecodeInterpreter::astore(intptr_t* tos, int stack_offset, 3271 intptr_t* locals, int locals_offset) { 3272 intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)]; 3273 locals[Interpreter::local_index_at(-locals_offset)] = value; 3274 } 3275 3276 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset, 3277 int to_offset) { 3278 tos[Interpreter::expr_index_at(-to_offset)] = 3279 (intptr_t)tos[Interpreter::expr_index_at(-from_offset)]; 3280 } 3281 3282 void BytecodeInterpreter::dup(intptr_t *tos) { 3283 copy_stack_slot(tos, -1, 0); 3284 } 3285 3286 void BytecodeInterpreter::dup2(intptr_t *tos) { 3287 copy_stack_slot(tos, -2, 0); 3288 copy_stack_slot(tos, -1, 1); 3289 } 3290 3291 void BytecodeInterpreter::dup_x1(intptr_t *tos) { 3292 /* insert top word two down */ 3293 copy_stack_slot(tos, -1, 0); 3294 copy_stack_slot(tos, -2, -1); 3295 copy_stack_slot(tos, 0, -2); 3296 } 3297 3298 void BytecodeInterpreter::dup_x2(intptr_t *tos) { 3299 /* insert top word three down */ 3300 copy_stack_slot(tos, -1, 0); 3301 copy_stack_slot(tos, -2, -1); 3302 copy_stack_slot(tos, -3, -2); 3303 copy_stack_slot(tos, 0, -3); 3304 } 3305 void BytecodeInterpreter::dup2_x1(intptr_t *tos) { 3306 /* insert top 2 slots three down */ 3307 copy_stack_slot(tos, -1, 1); 3308 copy_stack_slot(tos, -2, 0); 3309 copy_stack_slot(tos, -3, -1); 3310 copy_stack_slot(tos, 1, -2); 3311 copy_stack_slot(tos, 0, -3); 3312 } 3313 void BytecodeInterpreter::dup2_x2(intptr_t *tos) { 3314 /* insert top 2 slots four down */ 3315 copy_stack_slot(tos, -1, 1); 3316 copy_stack_slot(tos, -2, 0); 3317 copy_stack_slot(tos, -3, -1); 3318 copy_stack_slot(tos, -4, -2); 3319 copy_stack_slot(tos, 1, -3); 3320 copy_stack_slot(tos, 0, -4); 3321 } 3322 3323 3324 void BytecodeInterpreter::swap(intptr_t *tos) { 3325 // swap top two elements 3326 intptr_t val = tos[Interpreter::expr_index_at(1)]; 3327 // Copy -2 entry to -1 3328 copy_stack_slot(tos, -2, -1); 3329 // Store saved -1 entry into -2 3330 tos[Interpreter::expr_index_at(2)] = val; 3331 } 3332 // -------------------------------------------------------------------------------- 3333 // Non-product code 3334 #ifndef PRODUCT 3335 3336 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) { 3337 switch (msg) { 3338 case BytecodeInterpreter::no_request: return("no_request"); 3339 case BytecodeInterpreter::initialize: return("initialize"); 3340 // status message to C++ interpreter 3341 case BytecodeInterpreter::method_entry: return("method_entry"); 3342 case BytecodeInterpreter::method_resume: return("method_resume"); 3343 case BytecodeInterpreter::got_monitors: return("got_monitors"); 3344 case BytecodeInterpreter::rethrow_exception: return("rethrow_exception"); 3345 // requests to frame manager from C++ interpreter 3346 case BytecodeInterpreter::call_method: return("call_method"); 3347 case BytecodeInterpreter::return_from_method: return("return_from_method"); 3348 case BytecodeInterpreter::more_monitors: return("more_monitors"); 3349 case BytecodeInterpreter::throwing_exception: return("throwing_exception"); 3350 case BytecodeInterpreter::popping_frame: return("popping_frame"); 3351 case BytecodeInterpreter::do_osr: return("do_osr"); 3352 // deopt 3353 case BytecodeInterpreter::deopt_resume: return("deopt_resume"); 3354 case BytecodeInterpreter::deopt_resume2: return("deopt_resume2"); 3355 default: return("BAD MSG"); 3356 } 3357 } 3358 void 3359 BytecodeInterpreter::print() { 3360 tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread); 3361 tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp); 3362 tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals); 3363 tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants); 3364 { 3365 ResourceMark rm; 3366 char *method_name = _method->name_and_sig_as_C_string(); 3367 tty->print_cr("method: " INTPTR_FORMAT "[ %s ]", (uintptr_t) this->_method, method_name); 3368 } 3369 tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack); 3370 tty->print_cr("msg: %s", C_msg(this->_msg)); 3371 tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee); 3372 tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point); 3373 tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance); 3374 tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf); 3375 tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry); 3376 tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link); 3377 tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp)); 3378 tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base); 3379 tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit); 3380 tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base); 3381 tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link); 3382 } 3383 3384 extern "C" { 3385 void PI(uintptr_t arg) { 3386 ((BytecodeInterpreter*)arg)->print(); 3387 } 3388 } 3389 #endif // PRODUCT