1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "ci/bcEscapeAnalyzer.hpp" 28 #include "compiler/oopMap.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/c2/barrierSetC2.hpp" 31 #include "interpreter/interpreter.hpp" 32 #include "opto/callGenerator.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/convertnode.hpp" 36 #include "opto/escape.hpp" 37 #include "opto/locknode.hpp" 38 #include "opto/machnode.hpp" 39 #include "opto/matcher.hpp" 40 #include "opto/parse.hpp" 41 #include "opto/regalloc.hpp" 42 #include "opto/regmask.hpp" 43 #include "opto/rootnode.hpp" 44 #include "opto/runtime.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 #include "code/vmreg.hpp" 48 49 // Portions of code courtesy of Clifford Click 50 51 // Optimization - Graph Style 52 53 //============================================================================= 54 uint StartNode::size_of() const { return sizeof(*this); } 55 bool StartNode::cmp( const Node &n ) const 56 { return _domain == ((StartNode&)n)._domain; } 57 const Type *StartNode::bottom_type() const { return _domain; } 58 const Type* StartNode::Value(PhaseGVN* phase) const { return _domain; } 59 #ifndef PRODUCT 60 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);} 61 void StartNode::dump_compact_spec(outputStream *st) const { /* empty */ } 62 #endif 63 64 //------------------------------Ideal------------------------------------------ 65 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){ 66 return remove_dead_region(phase, can_reshape) ? this : nullptr; 67 } 68 69 //------------------------------calling_convention----------------------------- 70 void StartNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 71 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 72 } 73 74 //------------------------------Registers-------------------------------------- 75 const RegMask &StartNode::in_RegMask(uint) const { 76 return RegMask::Empty; 77 } 78 79 //------------------------------match------------------------------------------ 80 // Construct projections for incoming parameters, and their RegMask info 81 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) { 82 switch (proj->_con) { 83 case TypeFunc::Control: 84 case TypeFunc::I_O: 85 case TypeFunc::Memory: 86 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 87 case TypeFunc::FramePtr: 88 return new MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP); 89 case TypeFunc::ReturnAdr: 90 return new MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP); 91 case TypeFunc::Parms: 92 default: { 93 uint parm_num = proj->_con - TypeFunc::Parms; 94 const Type *t = _domain->field_at(proj->_con); 95 if (t->base() == Type::Half) // 2nd half of Longs and Doubles 96 return new ConNode(Type::TOP); 97 uint ideal_reg = t->ideal_reg(); 98 RegMask &rm = match->_calling_convention_mask[parm_num]; 99 return new MachProjNode(this,proj->_con,rm,ideal_reg); 100 } 101 } 102 return nullptr; 103 } 104 105 //------------------------------StartOSRNode---------------------------------- 106 // The method start node for an on stack replacement adapter 107 108 //------------------------------osr_domain----------------------------- 109 const TypeTuple *StartOSRNode::osr_domain() { 110 const Type **fields = TypeTuple::fields(2); 111 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // address of osr buffer 112 113 return TypeTuple::make(TypeFunc::Parms+1, fields); 114 } 115 116 //============================================================================= 117 const char * const ParmNode::names[TypeFunc::Parms+1] = { 118 "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms" 119 }; 120 121 #ifndef PRODUCT 122 void ParmNode::dump_spec(outputStream *st) const { 123 if( _con < TypeFunc::Parms ) { 124 st->print("%s", names[_con]); 125 } else { 126 st->print("Parm%d: ",_con-TypeFunc::Parms); 127 // Verbose and WizardMode dump bottom_type for all nodes 128 if( !Verbose && !WizardMode ) bottom_type()->dump_on(st); 129 } 130 } 131 132 void ParmNode::dump_compact_spec(outputStream *st) const { 133 if (_con < TypeFunc::Parms) { 134 st->print("%s", names[_con]); 135 } else { 136 st->print("%d:", _con-TypeFunc::Parms); 137 // unconditionally dump bottom_type 138 bottom_type()->dump_on(st); 139 } 140 } 141 142 // For a ParmNode, all immediate inputs and outputs are considered relevant 143 // both in compact and standard representation. 144 void ParmNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { 145 this->collect_nodes(in_rel, 1, false, false); 146 this->collect_nodes(out_rel, -1, false, false); 147 } 148 #endif 149 150 uint ParmNode::ideal_reg() const { 151 switch( _con ) { 152 case TypeFunc::Control : // fall through 153 case TypeFunc::I_O : // fall through 154 case TypeFunc::Memory : return 0; 155 case TypeFunc::FramePtr : // fall through 156 case TypeFunc::ReturnAdr: return Op_RegP; 157 default : assert( _con > TypeFunc::Parms, "" ); 158 // fall through 159 case TypeFunc::Parms : { 160 // Type of argument being passed 161 const Type *t = in(0)->as_Start()->_domain->field_at(_con); 162 return t->ideal_reg(); 163 } 164 } 165 ShouldNotReachHere(); 166 return 0; 167 } 168 169 //============================================================================= 170 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) { 171 init_req(TypeFunc::Control,cntrl); 172 init_req(TypeFunc::I_O,i_o); 173 init_req(TypeFunc::Memory,memory); 174 init_req(TypeFunc::FramePtr,frameptr); 175 init_req(TypeFunc::ReturnAdr,retadr); 176 } 177 178 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){ 179 return remove_dead_region(phase, can_reshape) ? this : nullptr; 180 } 181 182 const Type* ReturnNode::Value(PhaseGVN* phase) const { 183 return ( phase->type(in(TypeFunc::Control)) == Type::TOP) 184 ? Type::TOP 185 : Type::BOTTOM; 186 } 187 188 // Do we Match on this edge index or not? No edges on return nodes 189 uint ReturnNode::match_edge(uint idx) const { 190 return 0; 191 } 192 193 194 #ifndef PRODUCT 195 void ReturnNode::dump_req(outputStream *st) const { 196 // Dump the required inputs, enclosed in '(' and ')' 197 uint i; // Exit value of loop 198 for (i = 0; i < req(); i++) { // For all required inputs 199 if (i == TypeFunc::Parms) st->print("returns"); 200 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 201 else st->print("_ "); 202 } 203 } 204 #endif 205 206 //============================================================================= 207 RethrowNode::RethrowNode( 208 Node* cntrl, 209 Node* i_o, 210 Node* memory, 211 Node* frameptr, 212 Node* ret_adr, 213 Node* exception 214 ) : Node(TypeFunc::Parms + 1) { 215 init_req(TypeFunc::Control , cntrl ); 216 init_req(TypeFunc::I_O , i_o ); 217 init_req(TypeFunc::Memory , memory ); 218 init_req(TypeFunc::FramePtr , frameptr ); 219 init_req(TypeFunc::ReturnAdr, ret_adr); 220 init_req(TypeFunc::Parms , exception); 221 } 222 223 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){ 224 return remove_dead_region(phase, can_reshape) ? this : nullptr; 225 } 226 227 const Type* RethrowNode::Value(PhaseGVN* phase) const { 228 return (phase->type(in(TypeFunc::Control)) == Type::TOP) 229 ? Type::TOP 230 : Type::BOTTOM; 231 } 232 233 uint RethrowNode::match_edge(uint idx) const { 234 return 0; 235 } 236 237 #ifndef PRODUCT 238 void RethrowNode::dump_req(outputStream *st) const { 239 // Dump the required inputs, enclosed in '(' and ')' 240 uint i; // Exit value of loop 241 for (i = 0; i < req(); i++) { // For all required inputs 242 if (i == TypeFunc::Parms) st->print("exception"); 243 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 244 else st->print("_ "); 245 } 246 } 247 #endif 248 249 //============================================================================= 250 // Do we Match on this edge index or not? Match only target address & method 251 uint TailCallNode::match_edge(uint idx) const { 252 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 253 } 254 255 //============================================================================= 256 // Do we Match on this edge index or not? Match only target address & oop 257 uint TailJumpNode::match_edge(uint idx) const { 258 return TypeFunc::Parms <= idx && idx <= TypeFunc::Parms+1; 259 } 260 261 //============================================================================= 262 JVMState::JVMState(ciMethod* method, JVMState* caller) : 263 _method(method) { 264 assert(method != nullptr, "must be valid call site"); 265 _bci = InvocationEntryBci; 266 _reexecute = Reexecute_Undefined; 267 debug_only(_bci = -99); // random garbage value 268 debug_only(_map = (SafePointNode*)-1); 269 _caller = caller; 270 _depth = 1 + (caller == nullptr ? 0 : caller->depth()); 271 _locoff = TypeFunc::Parms; 272 _stkoff = _locoff + _method->max_locals(); 273 _monoff = _stkoff + _method->max_stack(); 274 _scloff = _monoff; 275 _endoff = _monoff; 276 _sp = 0; 277 } 278 JVMState::JVMState(int stack_size) : 279 _method(nullptr) { 280 _bci = InvocationEntryBci; 281 _reexecute = Reexecute_Undefined; 282 debug_only(_map = (SafePointNode*)-1); 283 _caller = nullptr; 284 _depth = 1; 285 _locoff = TypeFunc::Parms; 286 _stkoff = _locoff; 287 _monoff = _stkoff + stack_size; 288 _scloff = _monoff; 289 _endoff = _monoff; 290 _sp = 0; 291 } 292 293 //--------------------------------of_depth------------------------------------- 294 JVMState* JVMState::of_depth(int d) const { 295 const JVMState* jvmp = this; 296 assert(0 < d && (uint)d <= depth(), "oob"); 297 for (int skip = depth() - d; skip > 0; skip--) { 298 jvmp = jvmp->caller(); 299 } 300 assert(jvmp->depth() == (uint)d, "found the right one"); 301 return (JVMState*)jvmp; 302 } 303 304 //-----------------------------same_calls_as----------------------------------- 305 bool JVMState::same_calls_as(const JVMState* that) const { 306 if (this == that) return true; 307 if (this->depth() != that->depth()) return false; 308 const JVMState* p = this; 309 const JVMState* q = that; 310 for (;;) { 311 if (p->_method != q->_method) return false; 312 if (p->_method == nullptr) return true; // bci is irrelevant 313 if (p->_bci != q->_bci) return false; 314 if (p->_reexecute != q->_reexecute) return false; 315 p = p->caller(); 316 q = q->caller(); 317 if (p == q) return true; 318 assert(p != nullptr && q != nullptr, "depth check ensures we don't run off end"); 319 } 320 } 321 322 //------------------------------debug_start------------------------------------ 323 uint JVMState::debug_start() const { 324 debug_only(JVMState* jvmroot = of_depth(1)); 325 assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last"); 326 return of_depth(1)->locoff(); 327 } 328 329 //-------------------------------debug_end------------------------------------- 330 uint JVMState::debug_end() const { 331 debug_only(JVMState* jvmroot = of_depth(1)); 332 assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last"); 333 return endoff(); 334 } 335 336 //------------------------------debug_depth------------------------------------ 337 uint JVMState::debug_depth() const { 338 uint total = 0; 339 for (const JVMState* jvmp = this; jvmp != nullptr; jvmp = jvmp->caller()) { 340 total += jvmp->debug_size(); 341 } 342 return total; 343 } 344 345 #ifndef PRODUCT 346 347 //------------------------------format_helper---------------------------------- 348 // Given an allocation (a Chaitin object) and a Node decide if the Node carries 349 // any defined value or not. If it does, print out the register or constant. 350 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) { 351 if (n == nullptr) { st->print(" null"); return; } 352 if (n->is_SafePointScalarObject()) { 353 // Scalar replacement. 354 SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject(); 355 scobjs->append_if_missing(spobj); 356 int sco_n = scobjs->find(spobj); 357 assert(sco_n >= 0, ""); 358 st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n); 359 return; 360 } 361 if (regalloc->node_regs_max_index() > 0 && 362 OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined 363 char buf[50]; 364 regalloc->dump_register(n,buf); 365 st->print(" %s%d]=%s",msg,i,buf); 366 } else { // No register, but might be constant 367 const Type *t = n->bottom_type(); 368 switch (t->base()) { 369 case Type::Int: 370 st->print(" %s%d]=#" INT32_FORMAT,msg,i,t->is_int()->get_con()); 371 break; 372 case Type::AnyPtr: 373 assert( t == TypePtr::NULL_PTR || n->in_dump(), "" ); 374 st->print(" %s%d]=#null",msg,i); 375 break; 376 case Type::AryPtr: 377 case Type::InstPtr: 378 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->isa_oopptr()->const_oop())); 379 break; 380 case Type::KlassPtr: 381 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_klassptr()->klass())); 382 break; 383 case Type::MetadataPtr: 384 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_metadataptr()->metadata())); 385 break; 386 case Type::NarrowOop: 387 st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,p2i(t->make_ptr()->isa_oopptr()->const_oop())); 388 break; 389 case Type::RawPtr: 390 st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,p2i(t->is_rawptr())); 391 break; 392 case Type::DoubleCon: 393 st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d); 394 break; 395 case Type::FloatCon: 396 st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f); 397 break; 398 case Type::Long: 399 st->print(" %s%d]=#" INT64_FORMAT,msg,i,(int64_t)(t->is_long()->get_con())); 400 break; 401 case Type::Half: 402 case Type::Top: 403 st->print(" %s%d]=_",msg,i); 404 break; 405 default: ShouldNotReachHere(); 406 } 407 } 408 } 409 410 //---------------------print_method_with_lineno-------------------------------- 411 void JVMState::print_method_with_lineno(outputStream* st, bool show_name) const { 412 if (show_name) _method->print_short_name(st); 413 414 int lineno = _method->line_number_from_bci(_bci); 415 if (lineno != -1) { 416 st->print(" @ bci:%d (line %d)", _bci, lineno); 417 } else { 418 st->print(" @ bci:%d", _bci); 419 } 420 } 421 422 //------------------------------format----------------------------------------- 423 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const { 424 st->print(" #"); 425 if (_method) { 426 print_method_with_lineno(st, true); 427 } else { 428 st->print_cr(" runtime stub "); 429 return; 430 } 431 if (n->is_MachSafePoint()) { 432 GrowableArray<SafePointScalarObjectNode*> scobjs; 433 MachSafePointNode *mcall = n->as_MachSafePoint(); 434 uint i; 435 // Print locals 436 for (i = 0; i < (uint)loc_size(); i++) 437 format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs); 438 // Print stack 439 for (i = 0; i < (uint)stk_size(); i++) { 440 if ((uint)(_stkoff + i) >= mcall->len()) 441 st->print(" oob "); 442 else 443 format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs); 444 } 445 for (i = 0; (int)i < nof_monitors(); i++) { 446 Node *box = mcall->monitor_box(this, i); 447 Node *obj = mcall->monitor_obj(this, i); 448 if (regalloc->node_regs_max_index() > 0 && 449 OptoReg::is_valid(regalloc->get_reg_first(box))) { 450 box = BoxLockNode::box_node(box); 451 format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs); 452 } else { 453 OptoReg::Name box_reg = BoxLockNode::reg(box); 454 st->print(" MON-BOX%d=%s+%d", 455 i, 456 OptoReg::regname(OptoReg::c_frame_pointer), 457 regalloc->reg2offset(box_reg)); 458 } 459 const char* obj_msg = "MON-OBJ["; 460 if (EliminateLocks) { 461 if (BoxLockNode::box_node(box)->is_eliminated()) 462 obj_msg = "MON-OBJ(LOCK ELIMINATED)["; 463 } 464 format_helper(regalloc, st, obj, obj_msg, i, &scobjs); 465 } 466 467 for (i = 0; i < (uint)scobjs.length(); i++) { 468 // Scalar replaced objects. 469 st->cr(); 470 st->print(" # ScObj" INT32_FORMAT " ", i); 471 SafePointScalarObjectNode* spobj = scobjs.at(i); 472 ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass(); 473 assert(cik->is_instance_klass() || 474 cik->is_array_klass(), "Not supported allocation."); 475 ciInstanceKlass *iklass = nullptr; 476 if (cik->is_instance_klass()) { 477 cik->print_name_on(st); 478 iklass = cik->as_instance_klass(); 479 } else if (cik->is_type_array_klass()) { 480 cik->as_array_klass()->base_element_type()->print_name_on(st); 481 st->print("[%d]", spobj->n_fields()); 482 } else if (cik->is_obj_array_klass()) { 483 ciKlass* cie = cik->as_obj_array_klass()->base_element_klass(); 484 if (cie->is_instance_klass()) { 485 cie->print_name_on(st); 486 } else if (cie->is_type_array_klass()) { 487 cie->as_array_klass()->base_element_type()->print_name_on(st); 488 } else { 489 ShouldNotReachHere(); 490 } 491 st->print("[%d]", spobj->n_fields()); 492 int ndim = cik->as_array_klass()->dimension() - 1; 493 while (ndim-- > 0) { 494 st->print("[]"); 495 } 496 } 497 st->print("={"); 498 uint nf = spobj->n_fields(); 499 if (nf > 0) { 500 uint first_ind = spobj->first_index(mcall->jvms()); 501 Node* fld_node = mcall->in(first_ind); 502 ciField* cifield; 503 if (iklass != nullptr) { 504 st->print(" ["); 505 cifield = iklass->nonstatic_field_at(0); 506 cifield->print_name_on(st); 507 format_helper(regalloc, st, fld_node, ":", 0, &scobjs); 508 } else { 509 format_helper(regalloc, st, fld_node, "[", 0, &scobjs); 510 } 511 for (uint j = 1; j < nf; j++) { 512 fld_node = mcall->in(first_ind+j); 513 if (iklass != nullptr) { 514 st->print(", ["); 515 cifield = iklass->nonstatic_field_at(j); 516 cifield->print_name_on(st); 517 format_helper(regalloc, st, fld_node, ":", j, &scobjs); 518 } else { 519 format_helper(regalloc, st, fld_node, ", [", j, &scobjs); 520 } 521 } 522 } 523 st->print(" }"); 524 } 525 } 526 st->cr(); 527 if (caller() != nullptr) caller()->format(regalloc, n, st); 528 } 529 530 531 void JVMState::dump_spec(outputStream *st) const { 532 if (_method != nullptr) { 533 bool printed = false; 534 if (!Verbose) { 535 // The JVMS dumps make really, really long lines. 536 // Take out the most boring parts, which are the package prefixes. 537 char buf[500]; 538 stringStream namest(buf, sizeof(buf)); 539 _method->print_short_name(&namest); 540 if (namest.count() < sizeof(buf)) { 541 const char* name = namest.base(); 542 if (name[0] == ' ') ++name; 543 const char* endcn = strchr(name, ':'); // end of class name 544 if (endcn == nullptr) endcn = strchr(name, '('); 545 if (endcn == nullptr) endcn = name + strlen(name); 546 while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/') 547 --endcn; 548 st->print(" %s", endcn); 549 printed = true; 550 } 551 } 552 print_method_with_lineno(st, !printed); 553 if(_reexecute == Reexecute_True) 554 st->print(" reexecute"); 555 } else { 556 st->print(" runtime stub"); 557 } 558 if (caller() != nullptr) caller()->dump_spec(st); 559 } 560 561 562 void JVMState::dump_on(outputStream* st) const { 563 bool print_map = _map && !((uintptr_t)_map & 1) && 564 ((caller() == nullptr) || (caller()->map() != _map)); 565 if (print_map) { 566 if (_map->len() > _map->req()) { // _map->has_exceptions() 567 Node* ex = _map->in(_map->req()); // _map->next_exception() 568 // skip the first one; it's already being printed 569 while (ex != nullptr && ex->len() > ex->req()) { 570 ex = ex->in(ex->req()); // ex->next_exception() 571 ex->dump(1); 572 } 573 } 574 _map->dump(Verbose ? 2 : 1); 575 } 576 if (caller() != nullptr) { 577 caller()->dump_on(st); 578 } 579 st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=", 580 depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false"); 581 if (_method == nullptr) { 582 st->print_cr("(none)"); 583 } else { 584 _method->print_name(st); 585 st->cr(); 586 if (bci() >= 0 && bci() < _method->code_size()) { 587 st->print(" bc: "); 588 _method->print_codes_on(bci(), bci()+1, st); 589 } 590 } 591 } 592 593 // Extra way to dump a jvms from the debugger, 594 // to avoid a bug with C++ member function calls. 595 void dump_jvms(JVMState* jvms) { 596 jvms->dump(); 597 } 598 #endif 599 600 //--------------------------clone_shallow-------------------------------------- 601 JVMState* JVMState::clone_shallow(Compile* C) const { 602 JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0); 603 n->set_bci(_bci); 604 n->_reexecute = _reexecute; 605 n->set_locoff(_locoff); 606 n->set_stkoff(_stkoff); 607 n->set_monoff(_monoff); 608 n->set_scloff(_scloff); 609 n->set_endoff(_endoff); 610 n->set_sp(_sp); 611 n->set_map(_map); 612 return n; 613 } 614 615 //---------------------------clone_deep---------------------------------------- 616 JVMState* JVMState::clone_deep(Compile* C) const { 617 JVMState* n = clone_shallow(C); 618 for (JVMState* p = n; p->_caller != nullptr; p = p->_caller) { 619 p->_caller = p->_caller->clone_shallow(C); 620 } 621 assert(n->depth() == depth(), "sanity"); 622 assert(n->debug_depth() == debug_depth(), "sanity"); 623 return n; 624 } 625 626 /** 627 * Reset map for all callers 628 */ 629 void JVMState::set_map_deep(SafePointNode* map) { 630 for (JVMState* p = this; p != nullptr; p = p->_caller) { 631 p->set_map(map); 632 } 633 } 634 635 // unlike set_map(), this is two-way setting. 636 void JVMState::bind_map(SafePointNode* map) { 637 set_map(map); 638 _map->set_jvms(this); 639 } 640 641 // Adapt offsets in in-array after adding or removing an edge. 642 // Prerequisite is that the JVMState is used by only one node. 643 void JVMState::adapt_position(int delta) { 644 for (JVMState* jvms = this; jvms != nullptr; jvms = jvms->caller()) { 645 jvms->set_locoff(jvms->locoff() + delta); 646 jvms->set_stkoff(jvms->stkoff() + delta); 647 jvms->set_monoff(jvms->monoff() + delta); 648 jvms->set_scloff(jvms->scloff() + delta); 649 jvms->set_endoff(jvms->endoff() + delta); 650 } 651 } 652 653 // Mirror the stack size calculation in the deopt code 654 // How much stack space would we need at this point in the program in 655 // case of deoptimization? 656 int JVMState::interpreter_frame_size() const { 657 const JVMState* jvms = this; 658 int size = 0; 659 int callee_parameters = 0; 660 int callee_locals = 0; 661 int extra_args = method()->max_stack() - stk_size(); 662 663 while (jvms != nullptr) { 664 int locks = jvms->nof_monitors(); 665 int temps = jvms->stk_size(); 666 bool is_top_frame = (jvms == this); 667 ciMethod* method = jvms->method(); 668 669 int frame_size = BytesPerWord * Interpreter::size_activation(method->max_stack(), 670 temps + callee_parameters, 671 extra_args, 672 locks, 673 callee_parameters, 674 callee_locals, 675 is_top_frame); 676 size += frame_size; 677 678 callee_parameters = method->size_of_parameters(); 679 callee_locals = method->max_locals(); 680 extra_args = 0; 681 jvms = jvms->caller(); 682 } 683 return size + Deoptimization::last_frame_adjust(0, callee_locals) * BytesPerWord; 684 } 685 686 //============================================================================= 687 bool CallNode::cmp( const Node &n ) const 688 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; } 689 #ifndef PRODUCT 690 void CallNode::dump_req(outputStream *st) const { 691 // Dump the required inputs, enclosed in '(' and ')' 692 uint i; // Exit value of loop 693 for (i = 0; i < req(); i++) { // For all required inputs 694 if (i == TypeFunc::Parms) st->print("("); 695 if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx); 696 else st->print("_ "); 697 } 698 st->print(")"); 699 } 700 701 void CallNode::dump_spec(outputStream *st) const { 702 st->print(" "); 703 if (tf() != nullptr) tf()->dump_on(st); 704 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 705 if (jvms() != nullptr) jvms()->dump_spec(st); 706 } 707 #endif 708 709 const Type *CallNode::bottom_type() const { return tf()->range(); } 710 const Type* CallNode::Value(PhaseGVN* phase) const { 711 if (phase->type(in(0)) == Type::TOP) return Type::TOP; 712 return tf()->range(); 713 } 714 715 //------------------------------calling_convention----------------------------- 716 void CallNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 717 // Use the standard compiler calling convention 718 SharedRuntime::java_calling_convention(sig_bt, parm_regs, argcnt); 719 } 720 721 722 //------------------------------match------------------------------------------ 723 // Construct projections for control, I/O, memory-fields, ..., and 724 // return result(s) along with their RegMask info 725 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) { 726 switch (proj->_con) { 727 case TypeFunc::Control: 728 case TypeFunc::I_O: 729 case TypeFunc::Memory: 730 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 731 732 case TypeFunc::Parms+1: // For LONG & DOUBLE returns 733 assert(tf()->range()->field_at(TypeFunc::Parms+1) == Type::HALF, ""); 734 // 2nd half of doubles and longs 735 return new MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad); 736 737 case TypeFunc::Parms: { // Normal returns 738 uint ideal_reg = tf()->range()->field_at(TypeFunc::Parms)->ideal_reg(); 739 OptoRegPair regs = Opcode() == Op_CallLeafVector 740 ? match->vector_return_value(ideal_reg) // Calls into assembly vector routine 741 : is_CallRuntime() 742 ? match->c_return_value(ideal_reg) // Calls into C runtime 743 : match-> return_value(ideal_reg); // Calls into compiled Java code 744 RegMask rm = RegMask(regs.first()); 745 746 if (Opcode() == Op_CallLeafVector) { 747 // If the return is in vector, compute appropriate regmask taking into account the whole range 748 if(ideal_reg >= Op_VecS && ideal_reg <= Op_VecZ) { 749 if(OptoReg::is_valid(regs.second())) { 750 for (OptoReg::Name r = regs.first(); r <= regs.second(); r = OptoReg::add(r, 1)) { 751 rm.Insert(r); 752 } 753 } 754 } 755 } 756 757 if( OptoReg::is_valid(regs.second()) ) 758 rm.Insert( regs.second() ); 759 return new MachProjNode(this,proj->_con,rm,ideal_reg); 760 } 761 762 case TypeFunc::ReturnAdr: 763 case TypeFunc::FramePtr: 764 default: 765 ShouldNotReachHere(); 766 } 767 return nullptr; 768 } 769 770 // Do we Match on this edge index or not? Match no edges 771 uint CallNode::match_edge(uint idx) const { 772 return 0; 773 } 774 775 // 776 // Determine whether the call could modify the field of the specified 777 // instance at the specified offset. 778 // 779 bool CallNode::may_modify(const TypeOopPtr *t_oop, PhaseTransform *phase) { 780 assert((t_oop != nullptr), "sanity"); 781 if (is_call_to_arraycopystub() && strcmp(_name, "unsafe_arraycopy") != 0) { 782 const TypeTuple* args = _tf->domain(); 783 Node* dest = nullptr; 784 // Stubs that can be called once an ArrayCopyNode is expanded have 785 // different signatures. Look for the second pointer argument, 786 // that is the destination of the copy. 787 for (uint i = TypeFunc::Parms, j = 0; i < args->cnt(); i++) { 788 if (args->field_at(i)->isa_ptr()) { 789 j++; 790 if (j == 2) { 791 dest = in(i); 792 break; 793 } 794 } 795 } 796 guarantee(dest != nullptr, "Call had only one ptr in, broken IR!"); 797 if (!dest->is_top() && may_modify_arraycopy_helper(phase->type(dest)->is_oopptr(), t_oop, phase)) { 798 return true; 799 } 800 return false; 801 } 802 if (t_oop->is_known_instance()) { 803 // The instance_id is set only for scalar-replaceable allocations which 804 // are not passed as arguments according to Escape Analysis. 805 return false; 806 } 807 if (t_oop->is_ptr_to_boxed_value()) { 808 ciKlass* boxing_klass = t_oop->klass(); 809 if (is_CallStaticJava() && as_CallStaticJava()->is_boxing_method()) { 810 // Skip unrelated boxing methods. 811 Node* proj = proj_out_or_null(TypeFunc::Parms); 812 if ((proj == nullptr) || (phase->type(proj)->is_instptr()->klass() != boxing_klass)) { 813 return false; 814 } 815 } 816 if (is_CallJava() && as_CallJava()->method() != nullptr) { 817 ciMethod* meth = as_CallJava()->method(); 818 if (meth->is_getter()) { 819 return false; 820 } 821 // May modify (by reflection) if an boxing object is passed 822 // as argument or returned. 823 Node* proj = returns_pointer() ? proj_out_or_null(TypeFunc::Parms) : nullptr; 824 if (proj != nullptr) { 825 const TypeInstPtr* inst_t = phase->type(proj)->isa_instptr(); 826 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 827 (inst_t->klass() == boxing_klass))) { 828 return true; 829 } 830 } 831 const TypeTuple* d = tf()->domain(); 832 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 833 const TypeInstPtr* inst_t = d->field_at(i)->isa_instptr(); 834 if ((inst_t != nullptr) && (!inst_t->klass_is_exact() || 835 (inst_t->klass() == boxing_klass))) { 836 return true; 837 } 838 } 839 return false; 840 } 841 } 842 return true; 843 } 844 845 // Does this call have a direct reference to n other than debug information? 846 bool CallNode::has_non_debug_use(Node *n) { 847 const TypeTuple * d = tf()->domain(); 848 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 849 Node *arg = in(i); 850 if (arg == n) { 851 return true; 852 } 853 } 854 return false; 855 } 856 857 // Returns the unique CheckCastPP of a call 858 // or 'this' if there are several CheckCastPP or unexpected uses 859 // or returns null if there is no one. 860 Node *CallNode::result_cast() { 861 Node *cast = nullptr; 862 863 Node *p = proj_out_or_null(TypeFunc::Parms); 864 if (p == nullptr) 865 return nullptr; 866 867 for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) { 868 Node *use = p->fast_out(i); 869 if (use->is_CheckCastPP()) { 870 if (cast != nullptr) { 871 return this; // more than 1 CheckCastPP 872 } 873 cast = use; 874 } else if (!use->is_Initialize() && 875 !use->is_AddP() && 876 use->Opcode() != Op_MemBarStoreStore) { 877 // Expected uses are restricted to a CheckCastPP, an Initialize 878 // node, a MemBarStoreStore (clone) and AddP nodes. If we 879 // encounter any other use (a Phi node can be seen in rare 880 // cases) return this to prevent incorrect optimizations. 881 return this; 882 } 883 } 884 return cast; 885 } 886 887 888 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj, bool do_asserts) { 889 projs->fallthrough_proj = nullptr; 890 projs->fallthrough_catchproj = nullptr; 891 projs->fallthrough_ioproj = nullptr; 892 projs->catchall_ioproj = nullptr; 893 projs->catchall_catchproj = nullptr; 894 projs->fallthrough_memproj = nullptr; 895 projs->catchall_memproj = nullptr; 896 projs->resproj = nullptr; 897 projs->exobj = nullptr; 898 899 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 900 ProjNode *pn = fast_out(i)->as_Proj(); 901 if (pn->outcnt() == 0) continue; 902 switch (pn->_con) { 903 case TypeFunc::Control: 904 { 905 // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj 906 projs->fallthrough_proj = pn; 907 const Node *cn = pn->unique_ctrl_out(); 908 if (cn != nullptr && cn->is_Catch()) { 909 ProjNode *cpn = nullptr; 910 for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) { 911 cpn = cn->fast_out(k)->as_Proj(); 912 assert(cpn->is_CatchProj(), "must be a CatchProjNode"); 913 if (cpn->_con == CatchProjNode::fall_through_index) 914 projs->fallthrough_catchproj = cpn; 915 else { 916 assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index."); 917 projs->catchall_catchproj = cpn; 918 } 919 } 920 } 921 break; 922 } 923 case TypeFunc::I_O: 924 if (pn->_is_io_use) 925 projs->catchall_ioproj = pn; 926 else 927 projs->fallthrough_ioproj = pn; 928 for (DUIterator j = pn->outs(); pn->has_out(j); j++) { 929 Node* e = pn->out(j); 930 if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) { 931 assert(projs->exobj == nullptr, "only one"); 932 projs->exobj = e; 933 } 934 } 935 break; 936 case TypeFunc::Memory: 937 if (pn->_is_io_use) 938 projs->catchall_memproj = pn; 939 else 940 projs->fallthrough_memproj = pn; 941 break; 942 case TypeFunc::Parms: 943 projs->resproj = pn; 944 break; 945 default: 946 assert(false, "unexpected projection from allocation node."); 947 } 948 } 949 950 // The resproj may not exist because the result could be ignored 951 // and the exception object may not exist if an exception handler 952 // swallows the exception but all the other must exist and be found. 953 assert(projs->fallthrough_proj != nullptr, "must be found"); 954 do_asserts = do_asserts && !Compile::current()->inlining_incrementally(); 955 assert(!do_asserts || projs->fallthrough_catchproj != nullptr, "must be found"); 956 assert(!do_asserts || projs->fallthrough_memproj != nullptr, "must be found"); 957 assert(!do_asserts || projs->fallthrough_ioproj != nullptr, "must be found"); 958 assert(!do_asserts || projs->catchall_catchproj != nullptr, "must be found"); 959 if (separate_io_proj) { 960 assert(!do_asserts || projs->catchall_memproj != nullptr, "must be found"); 961 assert(!do_asserts || projs->catchall_ioproj != nullptr, "must be found"); 962 } 963 } 964 965 Node* CallNode::Ideal(PhaseGVN* phase, bool can_reshape) { 966 #ifdef ASSERT 967 // Validate attached generator 968 CallGenerator* cg = generator(); 969 if (cg != nullptr) { 970 assert(is_CallStaticJava() && cg->is_mh_late_inline() || 971 is_CallDynamicJava() && cg->is_virtual_late_inline(), "mismatch"); 972 } 973 #endif // ASSERT 974 return SafePointNode::Ideal(phase, can_reshape); 975 } 976 977 bool CallNode::is_call_to_arraycopystub() const { 978 if (_name != nullptr && strstr(_name, "arraycopy") != 0) { 979 return true; 980 } 981 return false; 982 } 983 984 //============================================================================= 985 uint CallJavaNode::size_of() const { return sizeof(*this); } 986 bool CallJavaNode::cmp( const Node &n ) const { 987 CallJavaNode &call = (CallJavaNode&)n; 988 return CallNode::cmp(call) && _method == call._method && 989 _override_symbolic_info == call._override_symbolic_info; 990 } 991 992 void CallJavaNode::copy_call_debug_info(PhaseIterGVN* phase, SafePointNode* sfpt) { 993 // Copy debug information and adjust JVMState information 994 uint old_dbg_start = sfpt->is_Call() ? sfpt->as_Call()->tf()->domain()->cnt() : (uint)TypeFunc::Parms+1; 995 uint new_dbg_start = tf()->domain()->cnt(); 996 int jvms_adj = new_dbg_start - old_dbg_start; 997 assert (new_dbg_start == req(), "argument count mismatch"); 998 Compile* C = phase->C; 999 1000 // SafePointScalarObject node could be referenced several times in debug info. 1001 // Use Dict to record cloned nodes. 1002 Dict* sosn_map = new Dict(cmpkey,hashkey); 1003 for (uint i = old_dbg_start; i < sfpt->req(); i++) { 1004 Node* old_in = sfpt->in(i); 1005 // Clone old SafePointScalarObjectNodes, adjusting their field contents. 1006 if (old_in != nullptr && old_in->is_SafePointScalarObject()) { 1007 SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject(); 1008 bool new_node; 1009 Node* new_in = old_sosn->clone(sosn_map, new_node); 1010 if (new_node) { // New node? 1011 new_in->set_req(0, C->root()); // reset control edge 1012 new_in = phase->transform(new_in); // Register new node. 1013 } 1014 old_in = new_in; 1015 } 1016 add_req(old_in); 1017 } 1018 1019 // JVMS may be shared so clone it before we modify it 1020 set_jvms(sfpt->jvms() != nullptr ? sfpt->jvms()->clone_deep(C) : nullptr); 1021 for (JVMState *jvms = this->jvms(); jvms != nullptr; jvms = jvms->caller()) { 1022 jvms->set_map(this); 1023 jvms->set_locoff(jvms->locoff()+jvms_adj); 1024 jvms->set_stkoff(jvms->stkoff()+jvms_adj); 1025 jvms->set_monoff(jvms->monoff()+jvms_adj); 1026 jvms->set_scloff(jvms->scloff()+jvms_adj); 1027 jvms->set_endoff(jvms->endoff()+jvms_adj); 1028 } 1029 } 1030 1031 #ifdef ASSERT 1032 bool CallJavaNode::validate_symbolic_info() const { 1033 if (method() == nullptr) { 1034 return true; // call into runtime or uncommon trap 1035 } 1036 ciMethod* symbolic_info = jvms()->method()->get_method_at_bci(jvms()->bci()); 1037 ciMethod* callee = method(); 1038 if (symbolic_info->is_method_handle_intrinsic() && !callee->is_method_handle_intrinsic()) { 1039 assert(override_symbolic_info(), "should be set"); 1040 } 1041 assert(ciMethod::is_consistent_info(symbolic_info, callee), "inconsistent info"); 1042 return true; 1043 } 1044 #endif 1045 1046 #ifndef PRODUCT 1047 void CallJavaNode::dump_spec(outputStream* st) const { 1048 if( _method ) _method->print_short_name(st); 1049 CallNode::dump_spec(st); 1050 } 1051 1052 void CallJavaNode::dump_compact_spec(outputStream* st) const { 1053 if (_method) { 1054 _method->print_short_name(st); 1055 } else { 1056 st->print("<?>"); 1057 } 1058 } 1059 #endif 1060 1061 //============================================================================= 1062 uint CallStaticJavaNode::size_of() const { return sizeof(*this); } 1063 bool CallStaticJavaNode::cmp( const Node &n ) const { 1064 CallStaticJavaNode &call = (CallStaticJavaNode&)n; 1065 return CallJavaNode::cmp(call); 1066 } 1067 1068 Node* CallStaticJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1069 CallGenerator* cg = generator(); 1070 if (can_reshape && cg != nullptr) { 1071 assert(IncrementalInlineMH, "required"); 1072 assert(cg->call_node() == this, "mismatch"); 1073 assert(cg->is_mh_late_inline(), "not virtual"); 1074 1075 // Check whether this MH handle call becomes a candidate for inlining. 1076 ciMethod* callee = cg->method(); 1077 vmIntrinsics::ID iid = callee->intrinsic_id(); 1078 if (iid == vmIntrinsics::_invokeBasic) { 1079 if (in(TypeFunc::Parms)->Opcode() == Op_ConP) { 1080 phase->C->prepend_late_inline(cg); 1081 set_generator(nullptr); 1082 } 1083 } else if (iid == vmIntrinsics::_linkToNative) { 1084 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP /* NEP */ 1085 && in(TypeFunc::Parms + 1)->Opcode() == Op_ConL /* address */) { 1086 phase->C->prepend_late_inline(cg); 1087 set_generator(NULL); 1088 } 1089 } else { 1090 assert(callee->has_member_arg(), "wrong type of call?"); 1091 if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) { 1092 phase->C->prepend_late_inline(cg); 1093 set_generator(nullptr); 1094 } 1095 } 1096 } 1097 return CallNode::Ideal(phase, can_reshape); 1098 } 1099 1100 //----------------------------uncommon_trap_request---------------------------- 1101 // If this is an uncommon trap, return the request code, else zero. 1102 int CallStaticJavaNode::uncommon_trap_request() const { 1103 if (_name != nullptr && !strcmp(_name, "uncommon_trap")) { 1104 return extract_uncommon_trap_request(this); 1105 } 1106 return 0; 1107 } 1108 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) { 1109 #ifndef PRODUCT 1110 if (!(call->req() > TypeFunc::Parms && 1111 call->in(TypeFunc::Parms) != nullptr && 1112 call->in(TypeFunc::Parms)->is_Con() && 1113 call->in(TypeFunc::Parms)->bottom_type()->isa_int())) { 1114 assert(in_dump() != 0, "OK if dumping"); 1115 tty->print("[bad uncommon trap]"); 1116 return 0; 1117 } 1118 #endif 1119 return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con(); 1120 } 1121 1122 #ifndef PRODUCT 1123 void CallStaticJavaNode::dump_spec(outputStream *st) const { 1124 st->print("# Static "); 1125 if (_name != nullptr) { 1126 st->print("%s", _name); 1127 int trap_req = uncommon_trap_request(); 1128 if (trap_req != 0) { 1129 char buf[100]; 1130 st->print("(%s)", 1131 Deoptimization::format_trap_request(buf, sizeof(buf), 1132 trap_req)); 1133 } 1134 st->print(" "); 1135 } 1136 CallJavaNode::dump_spec(st); 1137 } 1138 1139 void CallStaticJavaNode::dump_compact_spec(outputStream* st) const { 1140 if (_method) { 1141 _method->print_short_name(st); 1142 } else if (_name) { 1143 st->print("%s", _name); 1144 } else { 1145 st->print("<?>"); 1146 } 1147 } 1148 #endif 1149 1150 //============================================================================= 1151 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); } 1152 bool CallDynamicJavaNode::cmp( const Node &n ) const { 1153 CallDynamicJavaNode &call = (CallDynamicJavaNode&)n; 1154 return CallJavaNode::cmp(call); 1155 } 1156 1157 Node* CallDynamicJavaNode::Ideal(PhaseGVN* phase, bool can_reshape) { 1158 CallGenerator* cg = generator(); 1159 if (can_reshape && cg != nullptr) { 1160 assert(IncrementalInlineVirtual, "required"); 1161 assert(cg->call_node() == this, "mismatch"); 1162 assert(cg->is_virtual_late_inline(), "not virtual"); 1163 1164 // Recover symbolic info for method resolution. 1165 ciMethod* caller = jvms()->method(); 1166 ciBytecodeStream iter(caller); 1167 iter.force_bci(jvms()->bci()); 1168 1169 bool not_used1; 1170 ciSignature* not_used2; 1171 ciMethod* orig_callee = iter.get_method(not_used1, ¬_used2); // callee in the bytecode 1172 ciKlass* holder = iter.get_declared_method_holder(); 1173 if (orig_callee->is_method_handle_intrinsic()) { 1174 assert(_override_symbolic_info, "required"); 1175 orig_callee = method(); 1176 holder = method()->holder(); 1177 } 1178 1179 ciInstanceKlass* klass = ciEnv::get_instance_klass_for_declared_method_holder(holder); 1180 1181 Node* receiver_node = in(TypeFunc::Parms); 1182 const TypeOopPtr* receiver_type = phase->type(receiver_node)->isa_oopptr(); 1183 1184 int not_used3; 1185 bool call_does_dispatch; 1186 ciMethod* callee = phase->C->optimize_virtual_call(caller, klass, holder, orig_callee, receiver_type, true /*is_virtual*/, 1187 call_does_dispatch, not_used3); // out-parameters 1188 if (!call_does_dispatch) { 1189 // Register for late inlining. 1190 cg->set_callee_method(callee); 1191 phase->C->prepend_late_inline(cg); // MH late inlining prepends to the list, so do the same 1192 set_generator(nullptr); 1193 } 1194 } 1195 return CallNode::Ideal(phase, can_reshape); 1196 } 1197 1198 #ifndef PRODUCT 1199 void CallDynamicJavaNode::dump_spec(outputStream *st) const { 1200 st->print("# Dynamic "); 1201 CallJavaNode::dump_spec(st); 1202 } 1203 #endif 1204 1205 //============================================================================= 1206 uint CallRuntimeNode::size_of() const { return sizeof(*this); } 1207 bool CallRuntimeNode::cmp( const Node &n ) const { 1208 CallRuntimeNode &call = (CallRuntimeNode&)n; 1209 return CallNode::cmp(call) && !strcmp(_name,call._name); 1210 } 1211 #ifndef PRODUCT 1212 void CallRuntimeNode::dump_spec(outputStream *st) const { 1213 st->print("# "); 1214 st->print("%s", _name); 1215 CallNode::dump_spec(st); 1216 } 1217 #endif 1218 uint CallLeafVectorNode::size_of() const { return sizeof(*this); } 1219 bool CallLeafVectorNode::cmp( const Node &n ) const { 1220 CallLeafVectorNode &call = (CallLeafVectorNode&)n; 1221 return CallLeafNode::cmp(call) && _num_bits == call._num_bits; 1222 } 1223 1224 //============================================================================= 1225 uint CallNativeNode::size_of() const { return sizeof(*this); } 1226 bool CallNativeNode::cmp( const Node &n ) const { 1227 CallNativeNode &call = (CallNativeNode&)n; 1228 return CallNode::cmp(call) && !strcmp(_name,call._name) 1229 && _arg_regs == call._arg_regs && _ret_regs == call._ret_regs; 1230 } 1231 Node* CallNativeNode::match(const ProjNode *proj, const Matcher *matcher) { 1232 switch (proj->_con) { 1233 case TypeFunc::Control: 1234 case TypeFunc::I_O: 1235 case TypeFunc::Memory: 1236 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 1237 case TypeFunc::ReturnAdr: 1238 case TypeFunc::FramePtr: 1239 ShouldNotReachHere(); 1240 case TypeFunc::Parms: { 1241 const Type* field_at_con = tf()->range()->field_at(proj->_con); 1242 const BasicType bt = field_at_con->basic_type(); 1243 OptoReg::Name optoreg = OptoReg::as_OptoReg(_ret_regs.at(proj->_con - TypeFunc::Parms)); 1244 OptoRegPair regs; 1245 if (bt == T_DOUBLE || bt == T_LONG) { 1246 regs.set2(optoreg); 1247 } else { 1248 regs.set1(optoreg); 1249 } 1250 RegMask rm = RegMask(regs.first()); 1251 if(OptoReg::is_valid(regs.second())) 1252 rm.Insert(regs.second()); 1253 return new MachProjNode(this, proj->_con, rm, field_at_con->ideal_reg()); 1254 } 1255 case TypeFunc::Parms + 1: { 1256 assert(tf()->range()->field_at(proj->_con) == Type::HALF, "Expected HALF"); 1257 assert(_ret_regs.at(proj->_con - TypeFunc::Parms) == VMRegImpl::Bad(), "Unexpected register for Type::HALF"); 1258 // 2nd half of doubles and longs 1259 return new MachProjNode(this, proj->_con, RegMask::Empty, (uint) OptoReg::Bad); 1260 } 1261 default: 1262 ShouldNotReachHere(); 1263 } 1264 return nullptr; 1265 } 1266 #ifndef PRODUCT 1267 void CallNativeNode::print_regs(const GrowableArray<VMReg>& regs, outputStream* st) { 1268 st->print("{ "); 1269 for (int i = 0; i < regs.length(); i++) { 1270 regs.at(i)->print_on(st); 1271 if (i < regs.length() - 1) { 1272 st->print(", "); 1273 } 1274 } 1275 st->print(" } "); 1276 } 1277 1278 void CallNativeNode::dump_spec(outputStream *st) const { 1279 st->print("# "); 1280 st->print("%s ", _name); 1281 st->print("_arg_regs: "); 1282 print_regs(_arg_regs, st); 1283 st->print("_ret_regs: "); 1284 print_regs(_ret_regs, st); 1285 CallNode::dump_spec(st); 1286 } 1287 #endif 1288 1289 //------------------------------calling_convention----------------------------- 1290 void CallRuntimeNode::calling_convention(BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt) const { 1291 SharedRuntime::c_calling_convention(sig_bt, parm_regs, /*regs2=*/nullptr, argcnt); 1292 } 1293 1294 void CallLeafVectorNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1295 #ifdef ASSERT 1296 assert(tf()->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1297 "return vector size must match"); 1298 const TypeTuple* d = tf()->domain(); 1299 for (uint i = TypeFunc::Parms; i < d->cnt(); i++) { 1300 Node* arg = in(i); 1301 assert(arg->bottom_type()->is_vect()->length_in_bytes() * BitsPerByte == _num_bits, 1302 "vector argument size must match"); 1303 } 1304 #endif 1305 1306 SharedRuntime::vector_calling_convention(parm_regs, _num_bits, argcnt); 1307 } 1308 1309 void CallNativeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const { 1310 assert((tf()->domain()->cnt() - TypeFunc::Parms) == argcnt, "arg counts must match!"); 1311 #ifdef ASSERT 1312 for (uint i = 0; i < argcnt; i++) { 1313 assert(tf()->domain()->field_at(TypeFunc::Parms + i)->basic_type() == sig_bt[i], "types must match!"); 1314 } 1315 #endif 1316 for (uint i = 0; i < argcnt; i++) { 1317 switch (sig_bt[i]) { 1318 case T_BOOLEAN: 1319 case T_CHAR: 1320 case T_BYTE: 1321 case T_SHORT: 1322 case T_INT: 1323 case T_FLOAT: 1324 parm_regs[i].set1(_arg_regs.at(i)); 1325 break; 1326 case T_LONG: 1327 case T_DOUBLE: 1328 assert((i + 1) < argcnt && sig_bt[i + 1] == T_VOID, "expecting half"); 1329 parm_regs[i].set2(_arg_regs.at(i)); 1330 break; 1331 case T_VOID: // Halves of longs and doubles 1332 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 1333 assert(_arg_regs.at(i) == VMRegImpl::Bad(), "expecting bad reg"); 1334 parm_regs[i].set_bad(); 1335 break; 1336 default: 1337 ShouldNotReachHere(); 1338 break; 1339 } 1340 } 1341 } 1342 1343 //============================================================================= 1344 //------------------------------calling_convention----------------------------- 1345 1346 1347 //============================================================================= 1348 #ifndef PRODUCT 1349 void CallLeafNode::dump_spec(outputStream *st) const { 1350 st->print("# "); 1351 st->print("%s", _name); 1352 CallNode::dump_spec(st); 1353 } 1354 #endif 1355 1356 //============================================================================= 1357 1358 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) { 1359 assert(verify_jvms(jvms), "jvms must match"); 1360 int loc = jvms->locoff() + idx; 1361 if (in(loc)->is_top() && idx > 0 && !c->is_top() ) { 1362 // If current local idx is top then local idx - 1 could 1363 // be a long/double that needs to be killed since top could 1364 // represent the 2nd half ofthe long/double. 1365 uint ideal = in(loc -1)->ideal_reg(); 1366 if (ideal == Op_RegD || ideal == Op_RegL) { 1367 // set other (low index) half to top 1368 set_req(loc - 1, in(loc)); 1369 } 1370 } 1371 set_req(loc, c); 1372 } 1373 1374 uint SafePointNode::size_of() const { return sizeof(*this); } 1375 bool SafePointNode::cmp( const Node &n ) const { 1376 return (&n == this); // Always fail except on self 1377 } 1378 1379 //-------------------------set_next_exception---------------------------------- 1380 void SafePointNode::set_next_exception(SafePointNode* n) { 1381 assert(n == nullptr || n->Opcode() == Op_SafePoint, "correct value for next_exception"); 1382 if (len() == req()) { 1383 if (n != nullptr) add_prec(n); 1384 } else { 1385 set_prec(req(), n); 1386 } 1387 } 1388 1389 1390 //----------------------------next_exception----------------------------------- 1391 SafePointNode* SafePointNode::next_exception() const { 1392 if (len() == req()) { 1393 return nullptr; 1394 } else { 1395 Node* n = in(req()); 1396 assert(n == nullptr || n->Opcode() == Op_SafePoint, "no other uses of prec edges"); 1397 return (SafePointNode*) n; 1398 } 1399 } 1400 1401 1402 //------------------------------Ideal------------------------------------------ 1403 // Skip over any collapsed Regions 1404 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1405 assert(_jvms == nullptr || ((uintptr_t)_jvms->map() & 1) || _jvms->map() == this, "inconsistent JVMState"); 1406 return remove_dead_region(phase, can_reshape) ? this : nullptr; 1407 } 1408 1409 //------------------------------Identity--------------------------------------- 1410 // Remove obviously duplicate safepoints 1411 Node* SafePointNode::Identity(PhaseGVN* phase) { 1412 1413 // If you have back to back safepoints, remove one 1414 if (in(TypeFunc::Control)->is_SafePoint()) { 1415 Node* out_c = unique_ctrl_out(); 1416 // This can be the safepoint of an outer strip mined loop if the inner loop's backedge was removed. Replacing the 1417 // outer loop's safepoint could confuse removal of the outer loop. 1418 if (out_c != nullptr && !out_c->is_OuterStripMinedLoopEnd()) { 1419 return in(TypeFunc::Control); 1420 } 1421 } 1422 1423 // Transforming long counted loops requires a safepoint node. Do not 1424 // eliminate a safepoint until loop opts are over. 1425 if (in(0)->is_Proj() && !phase->C->major_progress()) { 1426 Node *n0 = in(0)->in(0); 1427 // Check if he is a call projection (except Leaf Call) 1428 if( n0->is_Catch() ) { 1429 n0 = n0->in(0)->in(0); 1430 assert( n0->is_Call(), "expect a call here" ); 1431 } 1432 if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) { 1433 // Don't remove a safepoint belonging to an OuterStripMinedLoopEndNode. 1434 // If the loop dies, they will be removed together. 1435 if (has_out_with(Op_OuterStripMinedLoopEnd)) { 1436 return this; 1437 } 1438 // Useless Safepoint, so remove it 1439 return in(TypeFunc::Control); 1440 } 1441 } 1442 1443 return this; 1444 } 1445 1446 //------------------------------Value------------------------------------------ 1447 const Type* SafePointNode::Value(PhaseGVN* phase) const { 1448 if (phase->type(in(0)) == Type::TOP) { 1449 return Type::TOP; 1450 } 1451 if (in(0) == this) { 1452 return Type::TOP; // Dead infinite loop 1453 } 1454 return Type::CONTROL; 1455 } 1456 1457 #ifndef PRODUCT 1458 void SafePointNode::dump_spec(outputStream *st) const { 1459 st->print(" SafePoint "); 1460 _replaced_nodes.dump(st); 1461 } 1462 1463 // The related nodes of a SafepointNode are all data inputs, excluding the 1464 // control boundary, as well as all outputs till level 2 (to include projection 1465 // nodes and targets). In compact mode, just include inputs till level 1 and 1466 // outputs as before. 1467 void SafePointNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { 1468 if (compact) { 1469 this->collect_nodes(in_rel, 1, false, false); 1470 } else { 1471 this->collect_nodes_in_all_data(in_rel, false); 1472 } 1473 this->collect_nodes(out_rel, -2, false, false); 1474 } 1475 #endif 1476 1477 const RegMask &SafePointNode::in_RegMask(uint idx) const { 1478 if( idx < TypeFunc::Parms ) return RegMask::Empty; 1479 // Values outside the domain represent debug info 1480 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1481 } 1482 const RegMask &SafePointNode::out_RegMask() const { 1483 return RegMask::Empty; 1484 } 1485 1486 1487 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) { 1488 assert((int)grow_by > 0, "sanity"); 1489 int monoff = jvms->monoff(); 1490 int scloff = jvms->scloff(); 1491 int endoff = jvms->endoff(); 1492 assert(endoff == (int)req(), "no other states or debug info after me"); 1493 Node* top = Compile::current()->top(); 1494 for (uint i = 0; i < grow_by; i++) { 1495 ins_req(monoff, top); 1496 } 1497 jvms->set_monoff(monoff + grow_by); 1498 jvms->set_scloff(scloff + grow_by); 1499 jvms->set_endoff(endoff + grow_by); 1500 } 1501 1502 void SafePointNode::push_monitor(const FastLockNode *lock) { 1503 // Add a LockNode, which points to both the original BoxLockNode (the 1504 // stack space for the monitor) and the Object being locked. 1505 const int MonitorEdges = 2; 1506 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1507 assert(req() == jvms()->endoff(), "correct sizing"); 1508 int nextmon = jvms()->scloff(); 1509 if (GenerateSynchronizationCode) { 1510 ins_req(nextmon, lock->box_node()); 1511 ins_req(nextmon+1, lock->obj_node()); 1512 } else { 1513 Node* top = Compile::current()->top(); 1514 ins_req(nextmon, top); 1515 ins_req(nextmon, top); 1516 } 1517 jvms()->set_scloff(nextmon + MonitorEdges); 1518 jvms()->set_endoff(req()); 1519 } 1520 1521 void SafePointNode::pop_monitor() { 1522 // Delete last monitor from debug info 1523 debug_only(int num_before_pop = jvms()->nof_monitors()); 1524 const int MonitorEdges = 2; 1525 assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges"); 1526 int scloff = jvms()->scloff(); 1527 int endoff = jvms()->endoff(); 1528 int new_scloff = scloff - MonitorEdges; 1529 int new_endoff = endoff - MonitorEdges; 1530 jvms()->set_scloff(new_scloff); 1531 jvms()->set_endoff(new_endoff); 1532 while (scloff > new_scloff) del_req_ordered(--scloff); 1533 assert(jvms()->nof_monitors() == num_before_pop-1, ""); 1534 } 1535 1536 Node *SafePointNode::peek_monitor_box() const { 1537 int mon = jvms()->nof_monitors() - 1; 1538 assert(mon >= 0, "must have a monitor"); 1539 return monitor_box(jvms(), mon); 1540 } 1541 1542 Node *SafePointNode::peek_monitor_obj() const { 1543 int mon = jvms()->nof_monitors() - 1; 1544 assert(mon >= 0, "must have a monitor"); 1545 return monitor_obj(jvms(), mon); 1546 } 1547 1548 // Do we Match on this edge index or not? Match no edges 1549 uint SafePointNode::match_edge(uint idx) const { 1550 return (TypeFunc::Parms == idx); 1551 } 1552 1553 void SafePointNode::disconnect_from_root(PhaseIterGVN *igvn) { 1554 assert(Opcode() == Op_SafePoint, "only value for safepoint in loops"); 1555 int nb = igvn->C->root()->find_prec_edge(this); 1556 if (nb != -1) { 1557 igvn->C->root()->rm_prec(nb); 1558 } 1559 } 1560 1561 //============== SafePointScalarObjectNode ============== 1562 1563 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp, 1564 #ifdef ASSERT 1565 Node* alloc, 1566 #endif 1567 uint first_index, 1568 uint n_fields, 1569 bool is_auto_box) : 1570 TypeNode(tp, 1), // 1 control input -- seems required. Get from root. 1571 _first_index(first_index), 1572 _n_fields(n_fields), 1573 _is_auto_box(is_auto_box) 1574 #ifdef ASSERT 1575 , _alloc(alloc) 1576 #endif 1577 { 1578 #ifdef ASSERT 1579 if (!alloc->is_Allocate() 1580 && !(alloc->Opcode() == Op_VectorBox) 1581 && (!alloc->is_CallStaticJava() || !alloc->as_CallStaticJava()->is_boxing_method())) { 1582 alloc->dump(); 1583 assert(false, "unexpected call node"); 1584 } 1585 #endif 1586 init_class_id(Class_SafePointScalarObject); 1587 } 1588 1589 // Do not allow value-numbering for SafePointScalarObject node. 1590 uint SafePointScalarObjectNode::hash() const { return NO_HASH; } 1591 bool SafePointScalarObjectNode::cmp( const Node &n ) const { 1592 return (&n == this); // Always fail except on self 1593 } 1594 1595 uint SafePointScalarObjectNode::ideal_reg() const { 1596 return 0; // No matching to machine instruction 1597 } 1598 1599 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const { 1600 return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]); 1601 } 1602 1603 const RegMask &SafePointScalarObjectNode::out_RegMask() const { 1604 return RegMask::Empty; 1605 } 1606 1607 uint SafePointScalarObjectNode::match_edge(uint idx) const { 1608 return 0; 1609 } 1610 1611 SafePointScalarObjectNode* 1612 SafePointScalarObjectNode::clone(Dict* sosn_map, bool& new_node) const { 1613 void* cached = (*sosn_map)[(void*)this]; 1614 if (cached != nullptr) { 1615 new_node = false; 1616 return (SafePointScalarObjectNode*)cached; 1617 } 1618 new_node = true; 1619 SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone(); 1620 sosn_map->Insert((void*)this, (void*)res); 1621 return res; 1622 } 1623 1624 1625 #ifndef PRODUCT 1626 void SafePointScalarObjectNode::dump_spec(outputStream *st) const { 1627 st->print(" # fields@[%d..%d]", first_index(), 1628 first_index() + n_fields() - 1); 1629 } 1630 1631 #endif 1632 1633 //============================================================================= 1634 uint AllocateNode::size_of() const { return sizeof(*this); } 1635 1636 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype, 1637 Node *ctrl, Node *mem, Node *abio, 1638 Node *size, Node *klass_node, Node *initial_test) 1639 : CallNode(atype, nullptr, TypeRawPtr::BOTTOM) 1640 { 1641 init_class_id(Class_Allocate); 1642 init_flags(Flag_is_macro); 1643 _is_scalar_replaceable = false; 1644 _is_non_escaping = false; 1645 _is_allocation_MemBar_redundant = false; 1646 Node *topnode = C->top(); 1647 1648 init_req( TypeFunc::Control , ctrl ); 1649 init_req( TypeFunc::I_O , abio ); 1650 init_req( TypeFunc::Memory , mem ); 1651 init_req( TypeFunc::ReturnAdr, topnode ); 1652 init_req( TypeFunc::FramePtr , topnode ); 1653 init_req( AllocSize , size); 1654 init_req( KlassNode , klass_node); 1655 init_req( InitialTest , initial_test); 1656 init_req( ALength , topnode); 1657 init_req( ValidLengthTest , topnode); 1658 C->add_macro_node(this); 1659 } 1660 1661 void AllocateNode::compute_MemBar_redundancy(ciMethod* initializer) 1662 { 1663 assert(initializer != nullptr && 1664 initializer->is_initializer() && 1665 !initializer->is_static(), 1666 "unexpected initializer method"); 1667 BCEscapeAnalyzer* analyzer = initializer->get_bcea(); 1668 if (analyzer == nullptr) { 1669 return; 1670 } 1671 1672 // Allocation node is first parameter in its initializer 1673 if (analyzer->is_arg_stack(0) || analyzer->is_arg_local(0)) { 1674 _is_allocation_MemBar_redundant = true; 1675 } 1676 } 1677 Node *AllocateNode::make_ideal_mark(PhaseGVN *phase, Node* obj, Node* control, Node* mem) { 1678 Node* mark_node = nullptr; 1679 // For now only enable fast locking for non-array types 1680 if ((UseBiasedLocking && Opcode() == Op_Allocate) || UseCompactObjectHeaders) { 1681 Node* klass_node = in(AllocateNode::KlassNode); 1682 Node* proto_adr = phase->transform(new AddPNode(klass_node, klass_node, phase->MakeConX(in_bytes(Klass::prototype_header_offset())))); 1683 mark_node = LoadNode::make(*phase, control, mem, proto_adr, TypeRawPtr::BOTTOM, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 1684 } else { 1685 // For now only enable fast locking for non-array types 1686 mark_node = phase->MakeConX(markWord::prototype().value()); 1687 } 1688 return mark_node; 1689 } 1690 1691 // Retrieve the length from the AllocateArrayNode. Narrow the type with a 1692 // CastII, if appropriate. If we are not allowed to create new nodes, and 1693 // a CastII is appropriate, return null. 1694 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) { 1695 Node *length = in(AllocateNode::ALength); 1696 assert(length != nullptr, "length is not null"); 1697 1698 const TypeInt* length_type = phase->find_int_type(length); 1699 const TypeAryPtr* ary_type = oop_type->isa_aryptr(); 1700 1701 if (ary_type != nullptr && length_type != nullptr) { 1702 const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type); 1703 if (narrow_length_type != length_type) { 1704 // Assert one of: 1705 // - the narrow_length is 0 1706 // - the narrow_length is not wider than length 1707 assert(narrow_length_type == TypeInt::ZERO || 1708 length_type->is_con() && narrow_length_type->is_con() && 1709 (narrow_length_type->_hi <= length_type->_lo) || 1710 (narrow_length_type->_hi <= length_type->_hi && 1711 narrow_length_type->_lo >= length_type->_lo), 1712 "narrow type must be narrower than length type"); 1713 1714 // Return null if new nodes are not allowed 1715 if (!allow_new_nodes) { 1716 return nullptr; 1717 } 1718 // Create a cast which is control dependent on the initialization to 1719 // propagate the fact that the array length must be positive. 1720 InitializeNode* init = initialization(); 1721 if (init != nullptr) { 1722 length = new CastIINode(length, narrow_length_type); 1723 length->set_req(TypeFunc::Control, init->proj_out_or_null(TypeFunc::Control)); 1724 } 1725 } 1726 } 1727 1728 return length; 1729 } 1730 1731 //============================================================================= 1732 uint LockNode::size_of() const { return sizeof(*this); } 1733 1734 // Redundant lock elimination 1735 // 1736 // There are various patterns of locking where we release and 1737 // immediately reacquire a lock in a piece of code where no operations 1738 // occur in between that would be observable. In those cases we can 1739 // skip releasing and reacquiring the lock without violating any 1740 // fairness requirements. Doing this around a loop could cause a lock 1741 // to be held for a very long time so we concentrate on non-looping 1742 // control flow. We also require that the operations are fully 1743 // redundant meaning that we don't introduce new lock operations on 1744 // some paths so to be able to eliminate it on others ala PRE. This 1745 // would probably require some more extensive graph manipulation to 1746 // guarantee that the memory edges were all handled correctly. 1747 // 1748 // Assuming p is a simple predicate which can't trap in any way and s 1749 // is a synchronized method consider this code: 1750 // 1751 // s(); 1752 // if (p) 1753 // s(); 1754 // else 1755 // s(); 1756 // s(); 1757 // 1758 // 1. The unlocks of the first call to s can be eliminated if the 1759 // locks inside the then and else branches are eliminated. 1760 // 1761 // 2. The unlocks of the then and else branches can be eliminated if 1762 // the lock of the final call to s is eliminated. 1763 // 1764 // Either of these cases subsumes the simple case of sequential control flow 1765 // 1766 // Addtionally we can eliminate versions without the else case: 1767 // 1768 // s(); 1769 // if (p) 1770 // s(); 1771 // s(); 1772 // 1773 // 3. In this case we eliminate the unlock of the first s, the lock 1774 // and unlock in the then case and the lock in the final s. 1775 // 1776 // Note also that in all these cases the then/else pieces don't have 1777 // to be trivial as long as they begin and end with synchronization 1778 // operations. 1779 // 1780 // s(); 1781 // if (p) 1782 // s(); 1783 // f(); 1784 // s(); 1785 // s(); 1786 // 1787 // The code will work properly for this case, leaving in the unlock 1788 // before the call to f and the relock after it. 1789 // 1790 // A potentially interesting case which isn't handled here is when the 1791 // locking is partially redundant. 1792 // 1793 // s(); 1794 // if (p) 1795 // s(); 1796 // 1797 // This could be eliminated putting unlocking on the else case and 1798 // eliminating the first unlock and the lock in the then side. 1799 // Alternatively the unlock could be moved out of the then side so it 1800 // was after the merge and the first unlock and second lock 1801 // eliminated. This might require less manipulation of the memory 1802 // state to get correct. 1803 // 1804 // Additionally we might allow work between a unlock and lock before 1805 // giving up eliminating the locks. The current code disallows any 1806 // conditional control flow between these operations. A formulation 1807 // similar to partial redundancy elimination computing the 1808 // availability of unlocking and the anticipatability of locking at a 1809 // program point would allow detection of fully redundant locking with 1810 // some amount of work in between. I'm not sure how often I really 1811 // think that would occur though. Most of the cases I've seen 1812 // indicate it's likely non-trivial work would occur in between. 1813 // There may be other more complicated constructs where we could 1814 // eliminate locking but I haven't seen any others appear as hot or 1815 // interesting. 1816 // 1817 // Locking and unlocking have a canonical form in ideal that looks 1818 // roughly like this: 1819 // 1820 // <obj> 1821 // | \\------+ 1822 // | \ \ 1823 // | BoxLock \ 1824 // | | | \ 1825 // | | \ \ 1826 // | | FastLock 1827 // | | / 1828 // | | / 1829 // | | | 1830 // 1831 // Lock 1832 // | 1833 // Proj #0 1834 // | 1835 // MembarAcquire 1836 // | 1837 // Proj #0 1838 // 1839 // MembarRelease 1840 // | 1841 // Proj #0 1842 // | 1843 // Unlock 1844 // | 1845 // Proj #0 1846 // 1847 // 1848 // This code proceeds by processing Lock nodes during PhaseIterGVN 1849 // and searching back through its control for the proper code 1850 // patterns. Once it finds a set of lock and unlock operations to 1851 // eliminate they are marked as eliminatable which causes the 1852 // expansion of the Lock and Unlock macro nodes to make the operation a NOP 1853 // 1854 //============================================================================= 1855 1856 // 1857 // Utility function to skip over uninteresting control nodes. Nodes skipped are: 1858 // - copy regions. (These may not have been optimized away yet.) 1859 // - eliminated locking nodes 1860 // 1861 static Node *next_control(Node *ctrl) { 1862 if (ctrl == nullptr) 1863 return nullptr; 1864 while (1) { 1865 if (ctrl->is_Region()) { 1866 RegionNode *r = ctrl->as_Region(); 1867 Node *n = r->is_copy(); 1868 if (n == nullptr) 1869 break; // hit a region, return it 1870 else 1871 ctrl = n; 1872 } else if (ctrl->is_Proj()) { 1873 Node *in0 = ctrl->in(0); 1874 if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) { 1875 ctrl = in0->in(0); 1876 } else { 1877 break; 1878 } 1879 } else { 1880 break; // found an interesting control 1881 } 1882 } 1883 return ctrl; 1884 } 1885 // 1886 // Given a control, see if it's the control projection of an Unlock which 1887 // operating on the same object as lock. 1888 // 1889 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock, 1890 GrowableArray<AbstractLockNode*> &lock_ops) { 1891 ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : nullptr; 1892 if (ctrl_proj != nullptr && ctrl_proj->_con == TypeFunc::Control) { 1893 Node *n = ctrl_proj->in(0); 1894 if (n != nullptr && n->is_Unlock()) { 1895 UnlockNode *unlock = n->as_Unlock(); 1896 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1897 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 1898 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 1899 if (lock_obj->eqv_uncast(unlock_obj) && 1900 BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) && 1901 !unlock->is_eliminated()) { 1902 lock_ops.append(unlock); 1903 return true; 1904 } 1905 } 1906 } 1907 return false; 1908 } 1909 1910 // 1911 // Find the lock matching an unlock. Returns null if a safepoint 1912 // or complicated control is encountered first. 1913 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) { 1914 LockNode *lock_result = nullptr; 1915 // find the matching lock, or an intervening safepoint 1916 Node *ctrl = next_control(unlock->in(0)); 1917 while (1) { 1918 assert(ctrl != nullptr, "invalid control graph"); 1919 assert(!ctrl->is_Start(), "missing lock for unlock"); 1920 if (ctrl->is_top()) break; // dead control path 1921 if (ctrl->is_Proj()) ctrl = ctrl->in(0); 1922 if (ctrl->is_SafePoint()) { 1923 break; // found a safepoint (may be the lock we are searching for) 1924 } else if (ctrl->is_Region()) { 1925 // Check for a simple diamond pattern. Punt on anything more complicated 1926 if (ctrl->req() == 3 && ctrl->in(1) != nullptr && ctrl->in(2) != nullptr) { 1927 Node *in1 = next_control(ctrl->in(1)); 1928 Node *in2 = next_control(ctrl->in(2)); 1929 if (((in1->is_IfTrue() && in2->is_IfFalse()) || 1930 (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) { 1931 ctrl = next_control(in1->in(0)->in(0)); 1932 } else { 1933 break; 1934 } 1935 } else { 1936 break; 1937 } 1938 } else { 1939 ctrl = next_control(ctrl->in(0)); // keep searching 1940 } 1941 } 1942 if (ctrl->is_Lock()) { 1943 LockNode *lock = ctrl->as_Lock(); 1944 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1945 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 1946 Node* unlock_obj = bs->step_over_gc_barrier(unlock->obj_node()); 1947 if (lock_obj->eqv_uncast(unlock_obj) && 1948 BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) { 1949 lock_result = lock; 1950 } 1951 } 1952 return lock_result; 1953 } 1954 1955 // This code corresponds to case 3 above. 1956 1957 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock, 1958 GrowableArray<AbstractLockNode*> &lock_ops) { 1959 Node* if_node = node->in(0); 1960 bool if_true = node->is_IfTrue(); 1961 1962 if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) { 1963 Node *lock_ctrl = next_control(if_node->in(0)); 1964 if (find_matching_unlock(lock_ctrl, lock, lock_ops)) { 1965 Node* lock1_node = nullptr; 1966 ProjNode* proj = if_node->as_If()->proj_out(!if_true); 1967 if (if_true) { 1968 if (proj->is_IfFalse() && proj->outcnt() == 1) { 1969 lock1_node = proj->unique_out(); 1970 } 1971 } else { 1972 if (proj->is_IfTrue() && proj->outcnt() == 1) { 1973 lock1_node = proj->unique_out(); 1974 } 1975 } 1976 if (lock1_node != nullptr && lock1_node->is_Lock()) { 1977 LockNode *lock1 = lock1_node->as_Lock(); 1978 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1979 Node* lock_obj = bs->step_over_gc_barrier(lock->obj_node()); 1980 Node* lock1_obj = bs->step_over_gc_barrier(lock1->obj_node()); 1981 if (lock_obj->eqv_uncast(lock1_obj) && 1982 BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) && 1983 !lock1->is_eliminated()) { 1984 lock_ops.append(lock1); 1985 return true; 1986 } 1987 } 1988 } 1989 } 1990 1991 lock_ops.trunc_to(0); 1992 return false; 1993 } 1994 1995 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock, 1996 GrowableArray<AbstractLockNode*> &lock_ops) { 1997 // check each control merging at this point for a matching unlock. 1998 // in(0) should be self edge so skip it. 1999 for (int i = 1; i < (int)region->req(); i++) { 2000 Node *in_node = next_control(region->in(i)); 2001 if (in_node != nullptr) { 2002 if (find_matching_unlock(in_node, lock, lock_ops)) { 2003 // found a match so keep on checking. 2004 continue; 2005 } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) { 2006 continue; 2007 } 2008 2009 // If we fall through to here then it was some kind of node we 2010 // don't understand or there wasn't a matching unlock, so give 2011 // up trying to merge locks. 2012 lock_ops.trunc_to(0); 2013 return false; 2014 } 2015 } 2016 return true; 2017 2018 } 2019 2020 const char* AbstractLockNode::_kind_names[] = {"Regular", "NonEscObj", "Coarsened", "Nested"}; 2021 2022 const char * AbstractLockNode::kind_as_string() const { 2023 return _kind_names[_kind]; 2024 } 2025 2026 #ifndef PRODUCT 2027 // 2028 // Create a counter which counts the number of times this lock is acquired 2029 // 2030 void AbstractLockNode::create_lock_counter(JVMState* state) { 2031 _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter); 2032 } 2033 2034 void AbstractLockNode::set_eliminated_lock_counter() { 2035 if (_counter) { 2036 // Update the counter to indicate that this lock was eliminated. 2037 // The counter update code will stay around even though the 2038 // optimizer will eliminate the lock operation itself. 2039 _counter->set_tag(NamedCounter::EliminatedLockCounter); 2040 } 2041 } 2042 2043 void AbstractLockNode::dump_spec(outputStream* st) const { 2044 st->print("%s ", _kind_names[_kind]); 2045 CallNode::dump_spec(st); 2046 } 2047 2048 void AbstractLockNode::dump_compact_spec(outputStream* st) const { 2049 st->print("%s", _kind_names[_kind]); 2050 } 2051 2052 // The related set of lock nodes includes the control boundary. 2053 void AbstractLockNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const { 2054 if (compact) { 2055 this->collect_nodes(in_rel, 1, false, false); 2056 } else { 2057 this->collect_nodes_in_all_data(in_rel, true); 2058 } 2059 this->collect_nodes(out_rel, -2, false, false); 2060 } 2061 #endif 2062 2063 //============================================================================= 2064 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2065 2066 // perform any generic optimizations first (returns 'this' or null) 2067 Node *result = SafePointNode::Ideal(phase, can_reshape); 2068 if (result != nullptr) return result; 2069 // Don't bother trying to transform a dead node 2070 if (in(0) && in(0)->is_top()) return nullptr; 2071 2072 // Now see if we can optimize away this lock. We don't actually 2073 // remove the locking here, we simply set the _eliminate flag which 2074 // prevents macro expansion from expanding the lock. Since we don't 2075 // modify the graph, the value returned from this function is the 2076 // one computed above. 2077 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 2078 // 2079 // If we are locking an non-escaped object, the lock/unlock is unnecessary 2080 // 2081 ConnectionGraph *cgr = phase->C->congraph(); 2082 if (cgr != nullptr && cgr->not_global_escape(obj_node())) { 2083 assert(!is_eliminated() || is_coarsened(), "sanity"); 2084 // The lock could be marked eliminated by lock coarsening 2085 // code during first IGVN before EA. Replace coarsened flag 2086 // to eliminate all associated locks/unlocks. 2087 #ifdef ASSERT 2088 this->log_lock_optimization(phase->C,"eliminate_lock_set_non_esc1"); 2089 #endif 2090 this->set_non_esc_obj(); 2091 return result; 2092 } 2093 2094 if (!phase->C->do_locks_coarsening()) { 2095 return result; // Compiling without locks coarsening 2096 } 2097 // 2098 // Try lock coarsening 2099 // 2100 PhaseIterGVN* iter = phase->is_IterGVN(); 2101 if (iter != nullptr && !is_eliminated()) { 2102 2103 GrowableArray<AbstractLockNode*> lock_ops; 2104 2105 Node *ctrl = next_control(in(0)); 2106 2107 // now search back for a matching Unlock 2108 if (find_matching_unlock(ctrl, this, lock_ops)) { 2109 // found an unlock directly preceding this lock. This is the 2110 // case of single unlock directly control dependent on a 2111 // single lock which is the trivial version of case 1 or 2. 2112 } else if (ctrl->is_Region() ) { 2113 if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) { 2114 // found lock preceded by multiple unlocks along all paths 2115 // joining at this point which is case 3 in description above. 2116 } 2117 } else { 2118 // see if this lock comes from either half of an if and the 2119 // predecessors merges unlocks and the other half of the if 2120 // performs a lock. 2121 if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) { 2122 // found unlock splitting to an if with locks on both branches. 2123 } 2124 } 2125 2126 if (lock_ops.length() > 0) { 2127 // add ourselves to the list of locks to be eliminated. 2128 lock_ops.append(this); 2129 2130 #ifndef PRODUCT 2131 if (PrintEliminateLocks) { 2132 int locks = 0; 2133 int unlocks = 0; 2134 if (Verbose) { 2135 tty->print_cr("=== Locks coarsening ==="); 2136 } 2137 for (int i = 0; i < lock_ops.length(); i++) { 2138 AbstractLockNode* lock = lock_ops.at(i); 2139 if (lock->Opcode() == Op_Lock) 2140 locks++; 2141 else 2142 unlocks++; 2143 if (Verbose) { 2144 tty->print(" %d: ", i); 2145 lock->dump(); 2146 } 2147 } 2148 tty->print_cr("=== Coarsened %d unlocks and %d locks", unlocks, locks); 2149 } 2150 #endif 2151 2152 // for each of the identified locks, mark them 2153 // as eliminatable 2154 for (int i = 0; i < lock_ops.length(); i++) { 2155 AbstractLockNode* lock = lock_ops.at(i); 2156 2157 // Mark it eliminated by coarsening and update any counters 2158 #ifdef ASSERT 2159 lock->log_lock_optimization(phase->C, "eliminate_lock_set_coarsened"); 2160 #endif 2161 lock->set_coarsened(); 2162 } 2163 // Record this coarsened group. 2164 phase->C->add_coarsened_locks(lock_ops); 2165 } else if (ctrl->is_Region() && 2166 iter->_worklist.member(ctrl)) { 2167 // We weren't able to find any opportunities but the region this 2168 // lock is control dependent on hasn't been processed yet so put 2169 // this lock back on the worklist so we can check again once any 2170 // region simplification has occurred. 2171 iter->_worklist.push(this); 2172 } 2173 } 2174 } 2175 2176 return result; 2177 } 2178 2179 //============================================================================= 2180 bool LockNode::is_nested_lock_region() { 2181 return is_nested_lock_region(nullptr); 2182 } 2183 2184 // p is used for access to compilation log; no logging if null 2185 bool LockNode::is_nested_lock_region(Compile * c) { 2186 BoxLockNode* box = box_node()->as_BoxLock(); 2187 int stk_slot = box->stack_slot(); 2188 if (stk_slot <= 0) { 2189 #ifdef ASSERT 2190 this->log_lock_optimization(c, "eliminate_lock_INLR_1"); 2191 #endif 2192 return false; // External lock or it is not Box (Phi node). 2193 } 2194 2195 // Ignore complex cases: merged locks or multiple locks. 2196 Node* obj = obj_node(); 2197 LockNode* unique_lock = nullptr; 2198 Node* bad_lock = nullptr; 2199 if (!box->is_simple_lock_region(&unique_lock, obj, &bad_lock)) { 2200 #ifdef ASSERT 2201 this->log_lock_optimization(c, "eliminate_lock_INLR_2a", bad_lock); 2202 #endif 2203 return false; 2204 } 2205 if (unique_lock != this) { 2206 #ifdef ASSERT 2207 this->log_lock_optimization(c, "eliminate_lock_INLR_2b", (unique_lock != nullptr ? unique_lock : bad_lock)); 2208 if (PrintEliminateLocks && Verbose) { 2209 tty->print_cr("=============== unique_lock != this ============"); 2210 tty->print(" this: "); 2211 this->dump(); 2212 tty->print(" box: "); 2213 box->dump(); 2214 tty->print(" obj: "); 2215 obj->dump(); 2216 if (unique_lock != nullptr) { 2217 tty->print(" unique_lock: "); 2218 unique_lock->dump(); 2219 } 2220 if (bad_lock != nullptr) { 2221 tty->print(" bad_lock: "); 2222 bad_lock->dump(); 2223 } 2224 tty->print_cr("==============="); 2225 } 2226 #endif 2227 return false; 2228 } 2229 2230 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2231 obj = bs->step_over_gc_barrier(obj); 2232 // Look for external lock for the same object. 2233 SafePointNode* sfn = this->as_SafePoint(); 2234 JVMState* youngest_jvms = sfn->jvms(); 2235 int max_depth = youngest_jvms->depth(); 2236 for (int depth = 1; depth <= max_depth; depth++) { 2237 JVMState* jvms = youngest_jvms->of_depth(depth); 2238 int num_mon = jvms->nof_monitors(); 2239 // Loop over monitors 2240 for (int idx = 0; idx < num_mon; idx++) { 2241 Node* obj_node = sfn->monitor_obj(jvms, idx); 2242 obj_node = bs->step_over_gc_barrier(obj_node); 2243 BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock(); 2244 if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) { 2245 return true; 2246 } 2247 } 2248 } 2249 #ifdef ASSERT 2250 this->log_lock_optimization(c, "eliminate_lock_INLR_3"); 2251 #endif 2252 return false; 2253 } 2254 2255 //============================================================================= 2256 uint UnlockNode::size_of() const { return sizeof(*this); } 2257 2258 //============================================================================= 2259 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2260 2261 // perform any generic optimizations first (returns 'this' or null) 2262 Node *result = SafePointNode::Ideal(phase, can_reshape); 2263 if (result != nullptr) return result; 2264 // Don't bother trying to transform a dead node 2265 if (in(0) && in(0)->is_top()) return nullptr; 2266 2267 // Now see if we can optimize away this unlock. We don't actually 2268 // remove the unlocking here, we simply set the _eliminate flag which 2269 // prevents macro expansion from expanding the unlock. Since we don't 2270 // modify the graph, the value returned from this function is the 2271 // one computed above. 2272 // Escape state is defined after Parse phase. 2273 if (can_reshape && EliminateLocks && !is_non_esc_obj()) { 2274 // 2275 // If we are unlocking an non-escaped object, the lock/unlock is unnecessary. 2276 // 2277 ConnectionGraph *cgr = phase->C->congraph(); 2278 if (cgr != nullptr && cgr->not_global_escape(obj_node())) { 2279 assert(!is_eliminated() || is_coarsened(), "sanity"); 2280 // The lock could be marked eliminated by lock coarsening 2281 // code during first IGVN before EA. Replace coarsened flag 2282 // to eliminate all associated locks/unlocks. 2283 #ifdef ASSERT 2284 this->log_lock_optimization(phase->C, "eliminate_lock_set_non_esc2"); 2285 #endif 2286 this->set_non_esc_obj(); 2287 } 2288 } 2289 return result; 2290 } 2291 2292 void AbstractLockNode::log_lock_optimization(Compile *C, const char * tag, Node* bad_lock) const { 2293 if (C == nullptr) { 2294 return; 2295 } 2296 CompileLog* log = C->log(); 2297 if (log != nullptr) { 2298 Node* box = box_node(); 2299 Node* obj = obj_node(); 2300 int box_id = box != nullptr ? box->_idx : -1; 2301 int obj_id = obj != nullptr ? obj->_idx : -1; 2302 2303 log->begin_head("%s compile_id='%d' lock_id='%d' class='%s' kind='%s' box_id='%d' obj_id='%d' bad_id='%d'", 2304 tag, C->compile_id(), this->_idx, 2305 is_Unlock() ? "unlock" : is_Lock() ? "lock" : "?", 2306 kind_as_string(), box_id, obj_id, (bad_lock != nullptr ? bad_lock->_idx : -1)); 2307 log->stamp(); 2308 log->end_head(); 2309 JVMState* p = is_Unlock() ? (as_Unlock()->dbg_jvms()) : jvms(); 2310 while (p != nullptr) { 2311 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 2312 p = p->caller(); 2313 } 2314 log->tail(tag); 2315 } 2316 } 2317 2318 bool CallNode::may_modify_arraycopy_helper(const TypeOopPtr* dest_t, const TypeOopPtr *t_oop, PhaseTransform *phase) { 2319 if (dest_t->is_known_instance() && t_oop->is_known_instance()) { 2320 return dest_t->instance_id() == t_oop->instance_id(); 2321 } 2322 2323 if (dest_t->isa_instptr() && !dest_t->klass()->equals(phase->C->env()->Object_klass())) { 2324 // clone 2325 if (t_oop->isa_aryptr()) { 2326 return false; 2327 } 2328 if (!t_oop->isa_instptr()) { 2329 return true; 2330 } 2331 if (dest_t->klass()->is_subtype_of(t_oop->klass()) || t_oop->klass()->is_subtype_of(dest_t->klass())) { 2332 return true; 2333 } 2334 // unrelated 2335 return false; 2336 } 2337 2338 if (dest_t->isa_aryptr()) { 2339 // arraycopy or array clone 2340 if (t_oop->isa_instptr()) { 2341 return false; 2342 } 2343 if (!t_oop->isa_aryptr()) { 2344 return true; 2345 } 2346 2347 const Type* elem = dest_t->is_aryptr()->elem(); 2348 if (elem == Type::BOTTOM) { 2349 // An array but we don't know what elements are 2350 return true; 2351 } 2352 2353 dest_t = dest_t->add_offset(Type::OffsetBot)->is_oopptr(); 2354 uint dest_alias = phase->C->get_alias_index(dest_t); 2355 uint t_oop_alias = phase->C->get_alias_index(t_oop); 2356 2357 return dest_alias == t_oop_alias; 2358 } 2359 2360 return true; 2361 }