1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compilerOracle.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compilerEvent.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 49 class AbstractLockNode; 50 class AddPNode; 51 class Block; 52 class Bundle; 53 class CallGenerator; 54 class CloneMap; 55 class ConnectionGraph; 56 class IdealGraphPrinter; 57 class InlineTree; 58 class Int_Array; 59 class Matcher; 60 class MachConstantNode; 61 class MachConstantBaseNode; 62 class MachNode; 63 class MachOper; 64 class MachSafePointNode; 65 class Node; 66 class Node_Array; 67 class Node_List; 68 class Node_Notes; 69 class NodeCloneInfo; 70 class OptoReg; 71 class PhaseCFG; 72 class PhaseGVN; 73 class PhaseIterGVN; 74 class PhaseRegAlloc; 75 class PhaseCCP; 76 class PhaseOutput; 77 class RootNode; 78 class relocInfo; 79 class Scope; 80 class StartNode; 81 class SafePointNode; 82 class JVMState; 83 class Type; 84 class TypeData; 85 class TypeInt; 86 class TypeInteger; 87 class TypePtr; 88 class TypeOopPtr; 89 class TypeFunc; 90 class TypeVect; 91 class Unique_Node_List; 92 class nmethod; 93 class Node_Stack; 94 struct Final_Reshape_Counts; 95 96 enum LoopOptsMode { 97 LoopOptsDefault, 98 LoopOptsNone, 99 LoopOptsMaxUnroll, 100 LoopOptsShenandoahExpand, 101 LoopOptsShenandoahPostExpand, 102 LoopOptsSkipSplitIf, 103 LoopOptsVerify 104 }; 105 106 typedef unsigned int node_idx_t; 107 class NodeCloneInfo { 108 private: 109 uint64_t _idx_clone_orig; 110 public: 111 112 void set_idx(node_idx_t idx) { 113 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 114 } 115 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 116 117 void set_gen(int generation) { 118 uint64_t g = (uint64_t)generation << 32; 119 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 120 } 121 int gen() const { return (int)(_idx_clone_orig >> 32); } 122 123 void set(uint64_t x) { _idx_clone_orig = x; } 124 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 125 uint64_t get() const { return _idx_clone_orig; } 126 127 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 128 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 129 130 void dump() const; 131 }; 132 133 class CloneMap { 134 friend class Compile; 135 private: 136 bool _debug; 137 Dict* _dict; 138 int _clone_idx; // current cloning iteration/generation in loop unroll 139 public: 140 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 141 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 142 Dict* dict() const { return _dict; } 143 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); } 144 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 145 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 146 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 147 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 148 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 149 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 150 int max_gen() const; 151 void clone(Node* old, Node* nnn, int gen); 152 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 153 void dump(node_idx_t key) const; 154 155 int clone_idx() const { return _clone_idx; } 156 void set_clone_idx(int x) { _clone_idx = x; } 157 bool is_debug() const { return _debug; } 158 void set_debug(bool debug) { _debug = debug; } 159 static const char* debug_option_name; 160 161 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 162 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 163 }; 164 165 //------------------------------Compile---------------------------------------- 166 // This class defines a top-level Compiler invocation. 167 168 class Compile : public Phase { 169 friend class VMStructs; 170 171 public: 172 // Fixed alias indexes. (See also MergeMemNode.) 173 enum { 174 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 175 AliasIdxBot = 2, // pseudo-index, aliases to everything 176 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 177 }; 178 179 // Variant of TraceTime(NULL, &_t_accumulator, CITime); 180 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 181 // then brackets are put into the log, with time stamps and node counts. 182 // (The time collection itself is always conditionalized on CITime.) 183 class TracePhase : public TraceTime { 184 private: 185 Compile* C; 186 CompileLog* _log; 187 const char* _phase_name; 188 bool _dolog; 189 public: 190 TracePhase(const char* name, elapsedTimer* accumulator); 191 ~TracePhase(); 192 }; 193 194 // Information per category of alias (memory slice) 195 class AliasType { 196 private: 197 friend class Compile; 198 199 int _index; // unique index, used with MergeMemNode 200 const TypePtr* _adr_type; // normalized address type 201 ciField* _field; // relevant instance field, or null if none 202 const Type* _element; // relevant array element type, or null if none 203 bool _is_rewritable; // false if the memory is write-once only 204 int _general_index; // if this is type is an instance, the general 205 // type that this is an instance of 206 207 void Init(int i, const TypePtr* at); 208 209 public: 210 int index() const { return _index; } 211 const TypePtr* adr_type() const { return _adr_type; } 212 ciField* field() const { return _field; } 213 const Type* element() const { return _element; } 214 bool is_rewritable() const { return _is_rewritable; } 215 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 216 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 217 218 void set_rewritable(bool z) { _is_rewritable = z; } 219 void set_field(ciField* f) { 220 assert(!_field,""); 221 _field = f; 222 if (f->is_final() || f->is_stable()) { 223 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 224 _is_rewritable = false; 225 } 226 } 227 void set_element(const Type* e) { 228 assert(_element == NULL, ""); 229 _element = e; 230 } 231 232 BasicType basic_type() const; 233 234 void print_on(outputStream* st) PRODUCT_RETURN; 235 }; 236 237 enum { 238 logAliasCacheSize = 6, 239 AliasCacheSize = (1<<logAliasCacheSize) 240 }; 241 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 242 enum { 243 trapHistLength = MethodData::_trap_hist_limit 244 }; 245 246 private: 247 // Fixed parameters to this compilation. 248 const int _compile_id; 249 const bool _subsume_loads; // Load can be matched as part of a larger op. 250 const bool _do_escape_analysis; // Do escape analysis. 251 const bool _install_code; // Install the code that was compiled 252 const bool _eliminate_boxing; // Do boxing elimination. 253 const bool _do_locks_coarsening; // Do locks coarsening 254 ciMethod* _method; // The method being compiled. 255 int _entry_bci; // entry bci for osr methods. 256 const TypeFunc* _tf; // My kind of signature 257 InlineTree* _ilt; // Ditto (temporary). 258 address _stub_function; // VM entry for stub being compiled, or NULL 259 const char* _stub_name; // Name of stub or adapter being compiled, or NULL 260 address _stub_entry_point; // Compile code entry for generated stub, or NULL 261 262 // Control of this compilation. 263 int _max_inline_size; // Max inline size for this compilation 264 int _freq_inline_size; // Max hot method inline size for this compilation 265 int _fixed_slots; // count of frame slots not allocated by the register 266 // allocator i.e. locks, original deopt pc, etc. 267 uintx _max_node_limit; // Max unique node count during a single compilation. 268 269 bool _post_loop_opts_phase; // Loop opts are finished. 270 271 int _major_progress; // Count of something big happening 272 bool _inlining_progress; // progress doing incremental inlining? 273 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 274 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 275 bool _has_loops; // True if the method _may_ have some loops 276 bool _has_split_ifs; // True if the method _may_ have some split-if 277 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 278 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 279 bool _has_boxed_value; // True if a boxed object is allocated 280 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 281 uint _max_vector_size; // Maximum size of generated vectors 282 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 283 uint _trap_hist[trapHistLength]; // Cumulative traps 284 bool _trap_can_recompile; // Have we emitted a recompiling trap? 285 uint _decompile_count; // Cumulative decompilation counts. 286 bool _do_inlining; // True if we intend to do inlining 287 bool _do_scheduling; // True if we intend to do scheduling 288 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 289 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 290 bool _use_cmove; // True if CMove should be used without profitability analysis 291 bool _age_code; // True if we need to profile code age (decrement the aging counter) 292 int _AliasLevel; // Locally-adjusted version of AliasLevel flag. 293 bool _print_assembly; // True if we should dump assembly code for this compilation 294 bool _print_inlining; // True if we should print inlining for this compilation 295 bool _print_intrinsics; // True if we should print intrinsics for this compilation 296 #ifndef PRODUCT 297 uint _igv_idx; // Counter for IGV node identifiers 298 bool _trace_opto_output; 299 bool _print_ideal; 300 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 301 #endif 302 bool _has_irreducible_loop; // Found irreducible loops 303 // JSR 292 304 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 305 RTMState _rtm_state; // State of Restricted Transactional Memory usage 306 int _loop_opts_cnt; // loop opts round 307 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 308 uint _stress_seed; // Seed for stress testing 309 310 // Compilation environment. 311 Arena _comp_arena; // Arena with lifetime equivalent to Compile 312 void* _barrier_set_state; // Potential GC barrier state for Compile 313 ciEnv* _env; // CI interface 314 DirectiveSet* _directive; // Compiler directive 315 CompileLog* _log; // from CompilerThread 316 const char* _failure_reason; // for record_failure/failing pattern 317 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 318 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 319 GrowableArray<Node*> _predicate_opaqs; // List of Opaque1 nodes for the loop predicates. 320 GrowableArray<Node*> _skeleton_predicate_opaqs; // List of Opaque4 nodes for the loop skeleton predicates. 321 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 322 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 323 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 324 ConnectionGraph* _congraph; 325 #ifndef PRODUCT 326 IdealGraphPrinter* _printer; 327 static IdealGraphPrinter* _debug_file_printer; 328 static IdealGraphPrinter* _debug_network_printer; 329 #endif 330 331 332 // Node management 333 uint _unique; // Counter for unique Node indices 334 VectorSet _dead_node_list; // Set of dead nodes 335 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 336 // So use this to keep count and make the call O(1). 337 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 338 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 339 340 debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode=<idx> 341 Arena _node_arena; // Arena for new-space Nodes 342 Arena _old_arena; // Arena for old-space Nodes, lifetime during xform 343 RootNode* _root; // Unique root of compilation, or NULL after bail-out. 344 Node* _top; // Unique top node. (Reset by various phases.) 345 346 Node* _immutable_memory; // Initial memory state 347 348 Node* _recent_alloc_obj; 349 Node* _recent_alloc_ctl; 350 351 // Constant table 352 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 353 354 355 // Blocked array of debugging and profiling information, 356 // tracked per node. 357 enum { _log2_node_notes_block_size = 8, 358 _node_notes_block_size = (1<<_log2_node_notes_block_size) 359 }; 360 GrowableArray<Node_Notes*>* _node_note_array; 361 Node_Notes* _default_node_notes; // default notes for new nodes 362 363 // After parsing and every bulk phase we hang onto the Root instruction. 364 // The RootNode instruction is where the whole program begins. It produces 365 // the initial Control and BOTTOM for everybody else. 366 367 // Type management 368 Arena _Compile_types; // Arena for all types 369 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 370 Dict* _type_dict; // Intern table 371 CloneMap _clone_map; // used for recording history of cloned nodes 372 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 373 ciMethod* _last_tf_m; // Cache for 374 const TypeFunc* _last_tf; // TypeFunc::make 375 AliasType** _alias_types; // List of alias types seen so far. 376 int _num_alias_types; // Logical length of _alias_types 377 int _max_alias_types; // Physical length of _alias_types 378 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 379 380 // Parsing, optimization 381 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 382 Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN 383 384 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 385 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 386 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 387 388 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 389 390 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 391 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 392 393 GrowableArray<RuntimeStub*> _native_invokers; 394 395 // Inlining may not happen in parse order which would make 396 // PrintInlining output confusing. Keep track of PrintInlining 397 // pieces in order. 398 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 399 private: 400 CallGenerator* _cg; 401 stringStream _ss; 402 static const size_t default_stream_buffer_size = 128; 403 404 public: 405 PrintInliningBuffer() 406 : _cg(NULL), _ss(default_stream_buffer_size) {} 407 408 stringStream* ss() { return &_ss; } 409 CallGenerator* cg() { return _cg; } 410 void set_cg(CallGenerator* cg) { _cg = cg; } 411 }; 412 413 stringStream* _print_inlining_stream; 414 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 415 int _print_inlining_idx; 416 char* _print_inlining_output; 417 418 // Only keep nodes in the expensive node list that need to be optimized 419 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 420 // Use for sorting expensive nodes to bring similar nodes together 421 static int cmp_expensive_nodes(Node** n1, Node** n2); 422 // Expensive nodes list already sorted? 423 bool expensive_nodes_sorted() const; 424 // Remove the speculative part of types and clean up the graph 425 void remove_speculative_types(PhaseIterGVN &igvn); 426 427 void* _replay_inline_data; // Pointer to data loaded from file 428 429 void print_inlining_stream_free(); 430 void print_inlining_init(); 431 void print_inlining_reinit(); 432 void print_inlining_commit(); 433 void print_inlining_push(); 434 PrintInliningBuffer* print_inlining_current(); 435 436 void log_late_inline_failure(CallGenerator* cg, const char* msg); 437 DEBUG_ONLY(bool _exception_backedge;) 438 439 public: 440 441 void* barrier_set_state() const { return _barrier_set_state; } 442 443 outputStream* print_inlining_stream() const { 444 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 445 return _print_inlining_stream; 446 } 447 448 void print_inlining_update(CallGenerator* cg); 449 void print_inlining_update_delayed(CallGenerator* cg); 450 void print_inlining_move_to(CallGenerator* cg); 451 void print_inlining_assert_ready(); 452 void print_inlining_reset(); 453 454 void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) { 455 stringStream ss; 456 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg); 457 print_inlining_stream()->print("%s", ss.as_string()); 458 } 459 460 #ifndef PRODUCT 461 IdealGraphPrinter* printer() { return _printer; } 462 #endif 463 464 void log_late_inline(CallGenerator* cg); 465 void log_inline_id(CallGenerator* cg); 466 void log_inline_failure(const char* msg); 467 468 void* replay_inline_data() const { return _replay_inline_data; } 469 470 // Dump inlining replay data to the stream. 471 void dump_inline_data(outputStream* out); 472 473 private: 474 // Matching, CFG layout, allocation, code generation 475 PhaseCFG* _cfg; // Results of CFG finding 476 int _java_calls; // Number of java calls in the method 477 int _inner_loops; // Number of inner loops in the method 478 Matcher* _matcher; // Engine to map ideal to machine instructions 479 PhaseRegAlloc* _regalloc; // Results of register allocation. 480 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 481 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 482 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 483 int _interpreter_frame_size; 484 485 PhaseOutput* _output; 486 487 public: 488 // Accessors 489 490 // The Compile instance currently active in this (compiler) thread. 491 static Compile* current() { 492 return (Compile*) ciEnv::current()->compiler_data(); 493 } 494 495 int interpreter_frame_size() const { return _interpreter_frame_size; } 496 497 PhaseOutput* output() const { return _output; } 498 void set_output(PhaseOutput* o) { _output = o; } 499 500 // ID for this compilation. Useful for setting breakpoints in the debugger. 501 int compile_id() const { return _compile_id; } 502 DirectiveSet* directive() const { return _directive; } 503 504 // Does this compilation allow instructions to subsume loads? User 505 // instructions that subsume a load may result in an unschedulable 506 // instruction sequence. 507 bool subsume_loads() const { return _subsume_loads; } 508 /** Do escape analysis. */ 509 bool do_escape_analysis() const { return _do_escape_analysis; } 510 /** Do boxing elimination. */ 511 bool eliminate_boxing() const { return _eliminate_boxing; } 512 /** Do aggressive boxing elimination. */ 513 bool aggressive_unboxing() const { return _eliminate_boxing && AggressiveUnboxing; } 514 bool should_install_code() const { return _install_code; } 515 /** Do locks coarsening. */ 516 bool do_locks_coarsening() const { return _do_locks_coarsening; } 517 518 // Other fixed compilation parameters. 519 ciMethod* method() const { return _method; } 520 int entry_bci() const { return _entry_bci; } 521 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 522 bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); } 523 const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; } 524 void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; } 525 InlineTree* ilt() const { return _ilt; } 526 address stub_function() const { return _stub_function; } 527 const char* stub_name() const { return _stub_name; } 528 address stub_entry_point() const { return _stub_entry_point; } 529 void set_stub_entry_point(address z) { _stub_entry_point = z; } 530 531 // Control of this compilation. 532 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 533 void set_fixed_slots(int n) { _fixed_slots = n; } 534 int major_progress() const { return _major_progress; } 535 void set_inlining_progress(bool z) { _inlining_progress = z; } 536 int inlining_progress() const { return _inlining_progress; } 537 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 538 int inlining_incrementally() const { return _inlining_incrementally; } 539 void set_do_cleanup(bool z) { _do_cleanup = z; } 540 int do_cleanup() const { return _do_cleanup; } 541 void set_major_progress() { _major_progress++; } 542 void restore_major_progress(int progress) { _major_progress += progress; } 543 void clear_major_progress() { _major_progress = 0; } 544 int max_inline_size() const { return _max_inline_size; } 545 void set_freq_inline_size(int n) { _freq_inline_size = n; } 546 int freq_inline_size() const { return _freq_inline_size; } 547 void set_max_inline_size(int n) { _max_inline_size = n; } 548 bool has_loops() const { return _has_loops; } 549 void set_has_loops(bool z) { _has_loops = z; } 550 bool has_split_ifs() const { return _has_split_ifs; } 551 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 552 bool has_unsafe_access() const { return _has_unsafe_access; } 553 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 554 bool has_stringbuilder() const { return _has_stringbuilder; } 555 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 556 bool has_boxed_value() const { return _has_boxed_value; } 557 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 558 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 559 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 560 uint max_vector_size() const { return _max_vector_size; } 561 void set_max_vector_size(uint s) { _max_vector_size = s; } 562 bool clear_upper_avx() const { return _clear_upper_avx; } 563 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 564 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 565 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 566 bool trap_can_recompile() const { return _trap_can_recompile; } 567 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 568 uint decompile_count() const { return _decompile_count; } 569 void set_decompile_count(uint c) { _decompile_count = c; } 570 bool allow_range_check_smearing() const; 571 bool do_inlining() const { return _do_inlining; } 572 void set_do_inlining(bool z) { _do_inlining = z; } 573 bool do_scheduling() const { return _do_scheduling; } 574 void set_do_scheduling(bool z) { _do_scheduling = z; } 575 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 576 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 577 bool do_vector_loop() const { return _do_vector_loop; } 578 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 579 bool use_cmove() const { return _use_cmove; } 580 void set_use_cmove(bool z) { _use_cmove = z; } 581 bool age_code() const { return _age_code; } 582 void set_age_code(bool z) { _age_code = z; } 583 int AliasLevel() const { return _AliasLevel; } 584 bool print_assembly() const { return _print_assembly; } 585 void set_print_assembly(bool z) { _print_assembly = z; } 586 bool print_inlining() const { return _print_inlining; } 587 void set_print_inlining(bool z) { _print_inlining = z; } 588 bool print_intrinsics() const { return _print_intrinsics; } 589 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 590 RTMState rtm_state() const { return _rtm_state; } 591 void set_rtm_state(RTMState s) { _rtm_state = s; } 592 bool use_rtm() const { return (_rtm_state & NoRTM) == 0; } 593 bool profile_rtm() const { return _rtm_state == ProfileRTM; } 594 uint max_node_limit() const { return (uint)_max_node_limit; } 595 void set_max_node_limit(uint n) { _max_node_limit = n; } 596 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 597 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 598 599 // check the CompilerOracle for special behaviours for this compile 600 bool method_has_option(enum CompileCommand option) { 601 return method() != NULL && method()->has_option(option); 602 } 603 604 #ifndef PRODUCT 605 uint next_igv_idx() { return _igv_idx++; } 606 bool trace_opto_output() const { return _trace_opto_output; } 607 bool print_ideal() const { return _print_ideal; } 608 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 609 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 610 int _in_dump_cnt; // Required for dumping ir nodes. 611 #endif 612 bool has_irreducible_loop() const { return _has_irreducible_loop; } 613 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 614 615 // JSR 292 616 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 617 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 618 619 Ticks _latest_stage_start_counter; 620 621 void begin_method(int level = 1) { 622 #ifndef PRODUCT 623 if (_method != NULL && should_print(level)) { 624 _printer->begin_method(); 625 } 626 #endif 627 C->_latest_stage_start_counter.stamp(); 628 } 629 630 bool should_print(int level = 1) { 631 #ifndef PRODUCT 632 if (PrintIdealGraphLevel < 0) { // disabled by the user 633 return false; 634 } 635 636 bool need = directive()->IGVPrintLevelOption >= level; 637 if (need && !_printer) { 638 _printer = IdealGraphPrinter::printer(); 639 assert(_printer != NULL, "_printer is NULL when we need it!"); 640 _printer->set_compile(this); 641 } 642 return need; 643 #else 644 return false; 645 #endif 646 } 647 648 void print_method(CompilerPhaseType cpt, const char *name, int level = 1); 649 void print_method(CompilerPhaseType cpt, int level = 1, int idx = 0); 650 void print_method(CompilerPhaseType cpt, Node* n, int level = 3); 651 652 #ifndef PRODUCT 653 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 654 void igv_print_method_to_network(const char* phase_name = "Debug"); 655 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 656 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 657 #endif 658 659 void end_method(int level = 1); 660 661 int macro_count() const { return _macro_nodes.length(); } 662 int predicate_count() const { return _predicate_opaqs.length(); } 663 int skeleton_predicate_count() const { return _skeleton_predicate_opaqs.length(); } 664 int expensive_count() const { return _expensive_nodes.length(); } 665 int coarsened_count() const { return _coarsened_locks.length(); } 666 667 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 668 Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs.at(idx); } 669 Node* skeleton_predicate_opaque4_node(int idx) const { return _skeleton_predicate_opaqs.at(idx); } 670 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 671 672 ConnectionGraph* congraph() { return _congraph;} 673 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 674 void add_macro_node(Node * n) { 675 //assert(n->is_macro(), "must be a macro node"); 676 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 677 _macro_nodes.append(n); 678 } 679 void remove_macro_node(Node* n) { 680 // this function may be called twice for a node so we can only remove it 681 // if it's still existing. 682 _macro_nodes.remove_if_existing(n); 683 // remove from _predicate_opaqs list also if it is there 684 if (predicate_count() > 0) { 685 _predicate_opaqs.remove_if_existing(n); 686 } 687 // Remove from coarsened locks list if present 688 if (coarsened_count() > 0) { 689 remove_coarsened_lock(n); 690 } 691 } 692 void add_expensive_node(Node* n); 693 void remove_expensive_node(Node* n) { 694 _expensive_nodes.remove_if_existing(n); 695 } 696 void add_predicate_opaq(Node* n) { 697 assert(!_predicate_opaqs.contains(n), "duplicate entry in predicate opaque1"); 698 assert(_macro_nodes.contains(n), "should have already been in macro list"); 699 _predicate_opaqs.append(n); 700 } 701 void add_skeleton_predicate_opaq(Node* n) { 702 assert(!_skeleton_predicate_opaqs.contains(n), "duplicate entry in skeleton predicate opaque4 list"); 703 _skeleton_predicate_opaqs.append(n); 704 } 705 void remove_skeleton_predicate_opaq(Node* n) { 706 if (skeleton_predicate_count() > 0) { 707 _skeleton_predicate_opaqs.remove_if_existing(n); 708 } 709 } 710 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 711 void remove_coarsened_lock(Node* n); 712 bool coarsened_locks_consistent(); 713 714 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 715 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 716 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 717 718 void record_for_post_loop_opts_igvn(Node* n); 719 void remove_from_post_loop_opts_igvn(Node* n); 720 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 721 722 void sort_macro_nodes(); 723 724 // remove the opaque nodes that protect the predicates so that the unused checks and 725 // uncommon traps will be eliminated from the graph. 726 void cleanup_loop_predicates(PhaseIterGVN &igvn); 727 bool is_predicate_opaq(Node* n) { 728 return _predicate_opaqs.contains(n); 729 } 730 731 // Are there candidate expensive nodes for optimization? 732 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 733 // Check whether n1 and n2 are similar 734 static int cmp_expensive_nodes(Node* n1, Node* n2); 735 // Sort expensive nodes to locate similar expensive nodes 736 void sort_expensive_nodes(); 737 738 // Compilation environment. 739 Arena* comp_arena() { return &_comp_arena; } 740 ciEnv* env() const { return _env; } 741 CompileLog* log() const { return _log; } 742 bool failing() const { return _env->failing() || _failure_reason != NULL; } 743 const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; } 744 745 bool failure_reason_is(const char* r) const { 746 return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0); 747 } 748 749 void record_failure(const char* reason); 750 void record_method_not_compilable(const char* reason) { 751 env()->record_method_not_compilable(reason); 752 // Record failure reason. 753 record_failure(reason); 754 } 755 bool check_node_count(uint margin, const char* reason) { 756 if (live_nodes() + margin > max_node_limit()) { 757 record_method_not_compilable(reason); 758 return true; 759 } else { 760 return false; 761 } 762 } 763 764 // Node management 765 uint unique() const { return _unique; } 766 uint next_unique() { return _unique++; } 767 void set_unique(uint i) { _unique = i; } 768 static int debug_idx() { return debug_only(_debug_idx)+0; } 769 static void set_debug_idx(int i) { debug_only(_debug_idx = i); } 770 Arena* node_arena() { return &_node_arena; } 771 Arena* old_arena() { return &_old_arena; } 772 RootNode* root() const { return _root; } 773 void set_root(RootNode* r) { _root = r; } 774 StartNode* start() const; // (Derived from root.) 775 void init_start(StartNode* s); 776 Node* immutable_memory(); 777 778 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 779 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 780 void set_recent_alloc(Node* ctl, Node* obj) { 781 _recent_alloc_ctl = ctl; 782 _recent_alloc_obj = obj; 783 } 784 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 785 _dead_node_count++; 786 } 787 void reset_dead_node_list() { _dead_node_list.reset(); 788 _dead_node_count = 0; 789 } 790 uint live_nodes() const { 791 int val = _unique - _dead_node_count; 792 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 793 return (uint) val; 794 } 795 #ifdef ASSERT 796 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 797 bool phase_optimize_finished() const { return _phase_optimize_finished; } 798 uint count_live_nodes_by_graph_walk(); 799 void print_missing_nodes(); 800 #endif 801 802 // Record modified nodes to check that they are put on IGVN worklist 803 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 804 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 805 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 806 807 MachConstantBaseNode* mach_constant_base_node(); 808 bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; } 809 // Generated by adlc, true if CallNode requires MachConstantBase. 810 bool needs_deep_clone_jvms(); 811 812 // Handy undefined Node 813 Node* top() const { return _top; } 814 815 // these are used by guys who need to know about creation and transformation of top: 816 Node* cached_top_node() { return _top; } 817 void set_cached_top_node(Node* tn); 818 819 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 820 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 821 Node_Notes* default_node_notes() const { return _default_node_notes; } 822 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 823 824 Node_Notes* node_notes_at(int idx) { 825 return locate_node_notes(_node_note_array, idx, false); 826 } 827 inline bool set_node_notes_at(int idx, Node_Notes* value); 828 829 // Copy notes from source to dest, if they exist. 830 // Overwrite dest only if source provides something. 831 // Return true if information was moved. 832 bool copy_node_notes_to(Node* dest, Node* source); 833 834 // Workhorse function to sort out the blocked Node_Notes array: 835 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 836 int idx, bool can_grow = false); 837 838 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 839 840 // Type management 841 Arena* type_arena() { return _type_arena; } 842 Dict* type_dict() { return _type_dict; } 843 size_t type_last_size() { return _type_last_size; } 844 int num_alias_types() { return _num_alias_types; } 845 846 void init_type_arena() { _type_arena = &_Compile_types; } 847 void set_type_arena(Arena* a) { _type_arena = a; } 848 void set_type_dict(Dict* d) { _type_dict = d; } 849 void set_type_last_size(size_t sz) { _type_last_size = sz; } 850 851 const TypeFunc* last_tf(ciMethod* m) { 852 return (m == _last_tf_m) ? _last_tf : NULL; 853 } 854 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 855 assert(m != NULL || tf == NULL, ""); 856 _last_tf_m = m; 857 _last_tf = tf; 858 } 859 860 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 861 AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); } 862 bool have_alias_type(const TypePtr* adr_type); 863 AliasType* alias_type(ciField* field); 864 865 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 866 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 867 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 868 869 // Building nodes 870 void rethrow_exceptions(JVMState* jvms); 871 void return_values(JVMState* jvms); 872 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 873 874 // Decide how to build a call. 875 // The profile factor is a discount to apply to this site's interp. profile. 876 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 877 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL, 878 bool allow_intrinsics = true); 879 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 880 return should_delay_string_inlining(call_method, jvms) || 881 should_delay_boxing_inlining(call_method, jvms) || 882 should_delay_vector_inlining(call_method, jvms); 883 } 884 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 885 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 886 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 887 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 888 889 // Helper functions to identify inlining potential at call-site 890 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 891 ciKlass* holder, ciMethod* callee, 892 const TypeOopPtr* receiver_type, bool is_virtual, 893 bool &call_does_dispatch, int &vtable_index, 894 bool check_access = true); 895 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 896 ciMethod* callee, const TypeOopPtr* receiver_type, 897 bool check_access = true); 898 899 // Report if there were too many traps at a current method and bci. 900 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 901 // If there is no MDO at all, report no trap unless told to assume it. 902 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 903 // This version, unspecific to a particular bci, asks if 904 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 905 bool too_many_traps(Deoptimization::DeoptReason reason, 906 // Privately used parameter for logging: 907 ciMethodData* logmd = NULL); 908 // Report if there were too many recompiles at a method and bci. 909 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 910 // Report if there were too many traps or recompiles at a method and bci. 911 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 912 return too_many_traps(method, bci, reason) || 913 too_many_recompiles(method, bci, reason); 914 } 915 // Return a bitset with the reasons where deoptimization is allowed, 916 // i.e., where there were not too many uncommon traps. 917 int _allowed_reasons; 918 int allowed_deopt_reasons() { return _allowed_reasons; } 919 void set_allowed_deopt_reasons(); 920 921 // Parsing, optimization 922 PhaseGVN* initial_gvn() { return _initial_gvn; } 923 Unique_Node_List* for_igvn() { return _for_igvn; } 924 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List. 925 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 926 void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } 927 928 // Replace n by nn using initial_gvn, calling hash_delete and 929 // record_for_igvn as needed. 930 void gvn_replace_by(Node* n, Node* nn); 931 932 933 void identify_useful_nodes(Unique_Node_List &useful); 934 void update_dead_node_list(Unique_Node_List &useful); 935 void disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist); 936 937 void remove_useless_node(Node* dead); 938 939 // Record this CallGenerator for inlining at the end of parsing. 940 void add_late_inline(CallGenerator* cg) { 941 _late_inlines.insert_before(_late_inlines_pos, cg); 942 _late_inlines_pos++; 943 } 944 945 void prepend_late_inline(CallGenerator* cg) { 946 _late_inlines.insert_before(0, cg); 947 } 948 949 void add_string_late_inline(CallGenerator* cg) { 950 _string_late_inlines.push(cg); 951 } 952 953 void add_boxing_late_inline(CallGenerator* cg) { 954 _boxing_late_inlines.push(cg); 955 } 956 957 void add_vector_reboxing_late_inline(CallGenerator* cg) { 958 _vector_reboxing_late_inlines.push(cg); 959 } 960 961 void add_native_invoker(RuntimeStub* stub); 962 963 const GrowableArray<RuntimeStub*> native_invokers() const { return _native_invokers; } 964 965 void remove_useless_nodes (GrowableArray<Node*>& node_list, Unique_Node_List &useful); 966 967 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 968 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 969 970 void remove_useless_coarsened_locks(Unique_Node_List& useful); 971 972 void process_print_inlining(); 973 void dump_print_inlining(); 974 975 bool over_inlining_cutoff() const { 976 if (!inlining_incrementally()) { 977 return unique() > (uint)NodeCountInliningCutoff; 978 } else { 979 // Give some room for incremental inlining algorithm to "breathe" 980 // and avoid thrashing when live node count is close to the limit. 981 // Keep in mind that live_nodes() isn't accurate during inlining until 982 // dead node elimination step happens (see Compile::inline_incrementally). 983 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 984 } 985 } 986 987 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 988 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 989 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 990 991 bool inline_incrementally_one(); 992 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 993 void inline_incrementally(PhaseIterGVN& igvn); 994 void inline_string_calls(bool parse_time); 995 void inline_boxing_calls(PhaseIterGVN& igvn); 996 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 997 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 998 999 void inline_vector_reboxing_calls(); 1000 bool has_vbox_nodes(); 1001 1002 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1003 1004 // Matching, CFG layout, allocation, code generation 1005 PhaseCFG* cfg() { return _cfg; } 1006 bool has_java_calls() const { return _java_calls > 0; } 1007 int java_calls() const { return _java_calls; } 1008 int inner_loops() const { return _inner_loops; } 1009 Matcher* matcher() { return _matcher; } 1010 PhaseRegAlloc* regalloc() { return _regalloc; } 1011 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1012 Arena* indexSet_arena() { return _indexSet_arena; } 1013 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1014 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1015 1016 void update_interpreter_frame_size(int size) { 1017 if (_interpreter_frame_size < size) { 1018 _interpreter_frame_size = size; 1019 } 1020 } 1021 1022 void set_matcher(Matcher* m) { _matcher = m; } 1023 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1024 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1025 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1026 1027 void set_java_calls(int z) { _java_calls = z; } 1028 void set_inner_loops(int z) { _inner_loops = z; } 1029 1030 Dependencies* dependencies() { return env()->dependencies(); } 1031 1032 // Major entry point. Given a Scope, compile the associated method. 1033 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1034 // replacement, entry_bci indicates the bytecode for which to compile a 1035 // continuation. 1036 Compile(ciEnv* ci_env, ciMethod* target, 1037 int entry_bci, bool subsume_loads, bool do_escape_analysis, 1038 bool eliminate_boxing, bool do_locks_coarsening, 1039 bool install_code, DirectiveSet* directive); 1040 1041 // Second major entry point. From the TypeFunc signature, generate code 1042 // to pass arguments from the Java calling convention to the C calling 1043 // convention. 1044 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1045 address stub_function, const char *stub_name, 1046 int is_fancy_jump, bool pass_tls, 1047 bool return_pc, DirectiveSet* directive); 1048 1049 // Are we compiling a method? 1050 bool has_method() { return method() != NULL; } 1051 1052 // Maybe print some information about this compile. 1053 void print_compile_messages(); 1054 1055 // Final graph reshaping, a post-pass after the regular optimizer is done. 1056 bool final_graph_reshaping(); 1057 1058 // returns true if adr is completely contained in the given alias category 1059 bool must_alias(const TypePtr* adr, int alias_idx); 1060 1061 // returns true if adr overlaps with the given alias category 1062 bool can_alias(const TypePtr* adr, int alias_idx); 1063 1064 // Stack slots that may be unused by the calling convention but must 1065 // otherwise be preserved. On Intel this includes the return address. 1066 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1067 uint in_preserve_stack_slots() { 1068 return SharedRuntime::in_preserve_stack_slots(); 1069 } 1070 1071 // "Top of Stack" slots that may be unused by the calling convention but must 1072 // otherwise be preserved. 1073 // On Intel these are not necessary and the value can be zero. 1074 static uint out_preserve_stack_slots() { 1075 return SharedRuntime::out_preserve_stack_slots(); 1076 } 1077 1078 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1079 // for calls to C. Supports the var-args backing area for register parms. 1080 uint varargs_C_out_slots_killed() const; 1081 1082 // Number of Stack Slots consumed by a synchronization entry 1083 int sync_stack_slots() const; 1084 1085 // Compute the name of old_SP. See <arch>.ad for frame layout. 1086 OptoReg::Name compute_old_SP(); 1087 1088 private: 1089 // Phase control: 1090 void Init(int aliaslevel); // Prepare for a single compilation 1091 int Inline_Warm(); // Find more inlining work. 1092 void Finish_Warm(); // Give up on further inlines. 1093 void Optimize(); // Given a graph, optimize it 1094 void Code_Gen(); // Generate code from a graph 1095 1096 // Management of the AliasType table. 1097 void grow_alias_types(); 1098 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1099 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1100 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1101 1102 void verify_top(Node*) const PRODUCT_RETURN; 1103 1104 // Intrinsic setup. 1105 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1106 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1107 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1108 void register_intrinsic(CallGenerator* cg); // update fn 1109 1110 #ifndef PRODUCT 1111 static juint _intrinsic_hist_count[]; 1112 static jubyte _intrinsic_hist_flags[]; 1113 #endif 1114 // Function calls made by the public function final_graph_reshaping. 1115 // No need to be made public as they are not called elsewhere. 1116 void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc); 1117 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop); 1118 void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ); 1119 void eliminate_redundant_card_marks(Node* n); 1120 1121 // Logic cone optimization. 1122 void optimize_logic_cones(PhaseIterGVN &igvn); 1123 void collect_logic_cone_roots(Unique_Node_List& list); 1124 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1125 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1126 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1127 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1128 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1129 void check_no_dead_use() const NOT_DEBUG_RETURN; 1130 1131 public: 1132 1133 // Note: Histogram array size is about 1 Kb. 1134 enum { // flag bits: 1135 _intrinsic_worked = 1, // succeeded at least once 1136 _intrinsic_failed = 2, // tried it but it failed 1137 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1138 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1139 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1140 }; 1141 // Update histogram. Return boolean if this is a first-time occurrence. 1142 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1143 bool is_virtual, int flags) PRODUCT_RETURN0; 1144 static void print_intrinsic_statistics() PRODUCT_RETURN; 1145 1146 // Graph verification code 1147 // Walk the node list, verifying that there is a one-to-one 1148 // correspondence between Use-Def edges and Def-Use edges 1149 // The option no_dead_code enables stronger checks that the 1150 // graph is strongly connected from root in both directions. 1151 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1152 1153 // End-of-run dumps. 1154 static void print_statistics() PRODUCT_RETURN; 1155 1156 // Verify ADLC assumptions during startup 1157 static void adlc_verification() PRODUCT_RETURN; 1158 1159 // Definitions of pd methods 1160 static void pd_compiler2_init(); 1161 1162 // Static parse-time type checking logic for gen_subtype_check: 1163 enum { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1164 int static_subtype_check(ciKlass* superk, ciKlass* subk); 1165 1166 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1167 // Optional control dependency (for example, on range check) 1168 Node* ctrl = NULL); 1169 1170 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1171 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1172 1173 // Auxiliary methods for randomized fuzzing/stressing 1174 int random(); 1175 bool randomized_select(int count); 1176 1177 // supporting clone_map 1178 CloneMap& clone_map(); 1179 void set_clone_map(Dict* d); 1180 1181 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1182 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1183 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1184 1185 #ifdef IA32 1186 private: 1187 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1188 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1189 1190 // Remember if this compilation changes hardware mode to 24-bit precision. 1191 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1192 _select_24_bit_instr = selection; 1193 _in_24_bit_fp_mode = mode; 1194 } 1195 1196 public: 1197 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1198 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1199 #endif // IA32 1200 #ifdef ASSERT 1201 bool _type_verify_symmetry; 1202 void set_exception_backedge() { _exception_backedge = true; } 1203 bool has_exception_backedge() const { return _exception_backedge; } 1204 #endif 1205 1206 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1207 BasicType bt); 1208 1209 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1210 }; 1211 1212 #endif // SHARE_OPTO_COMPILE_HPP