1 /* 2 * Copyright (c) 1999, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/unsafe.hpp" 54 #include "runtime/objectMonitor.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/macros.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 60 #if INCLUDE_JFR 61 #include "jfr/jfr.hpp" 62 #endif 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_supported(mh, is_virtual) && 84 !C->directive()->is_intrinsic_disabled(mh) && 85 !vmIntrinsics::is_disabled_by_flags(mh); 86 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 123 if (C->print_intrinsics() || C->print_inlining()) { 124 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 125 } 126 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 127 if (C->log()) { 128 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 129 vmIntrinsics::name_at(intrinsic_id()), 130 (is_virtual() ? " virtual='1'" : ""), 131 C->unique() - nodes); 132 } 133 // Push the result from the inlined method onto the stack. 134 kit.push_result(); 135 C->print_inlining_update(this); 136 return kit.transfer_exceptions_into_jvms(); 137 } 138 139 // The intrinsic bailed out 140 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 141 if (jvms->has_method()) { 142 // Not a root compile. 143 const char* msg; 144 if (callee->intrinsic_candidate()) { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 146 } else { 147 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 148 : "failed to inline (intrinsic), method not annotated"; 149 } 150 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 151 if (C->print_intrinsics() || C->print_inlining()) { 152 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 153 } 154 } else { 155 // Root compile 156 ResourceMark rm; 157 stringStream msg_stream; 158 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 159 vmIntrinsics::name_at(intrinsic_id()), 160 is_virtual() ? " (virtual)" : "", bci); 161 const char *msg = msg_stream.as_string(); 162 log_debug(jit, inlining)("%s", msg); 163 if (C->print_intrinsics() || C->print_inlining()) { 164 tty->print("%s", msg); 165 } 166 } 167 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 168 C->print_inlining_update(this); 169 170 return nullptr; 171 } 172 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 174 LibraryCallKit kit(jvms, this); 175 Compile* C = kit.C; 176 int nodes = C->unique(); 177 _last_predicate = predicate; 178 #ifndef PRODUCT 179 assert(is_predicated() && predicate < predicates_count(), "sanity"); 180 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 181 char buf[1000]; 182 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 183 tty->print_cr("Predicate for intrinsic %s", str); 184 } 185 #endif 186 ciMethod* callee = kit.callee(); 187 const int bci = kit.bci(); 188 189 Node* slow_ctl = kit.try_to_predicate(predicate); 190 if (!kit.failing()) { 191 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 192 : "(intrinsic, predicate)"; 193 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 194 if (C->print_intrinsics() || C->print_inlining()) { 195 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 196 } 197 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 198 if (C->log()) { 199 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 200 vmIntrinsics::name_at(intrinsic_id()), 201 (is_virtual() ? " virtual='1'" : ""), 202 C->unique() - nodes); 203 } 204 return slow_ctl; // Could be null if the check folds. 205 } 206 207 // The intrinsic bailed out 208 if (jvms->has_method()) { 209 // Not a root compile. 210 const char* msg = "failed to generate predicate for intrinsic"; 211 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 212 if (C->print_intrinsics() || C->print_inlining()) { 213 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 214 } 215 } else { 216 // Root compile 217 ResourceMark rm; 218 stringStream msg_stream; 219 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 220 vmIntrinsics::name_at(intrinsic_id()), 221 is_virtual() ? " (virtual)" : "", bci); 222 const char *msg = msg_stream.as_string(); 223 log_debug(jit, inlining)("%s", msg); 224 if (C->print_intrinsics() || C->print_inlining()) { 225 C->print_inlining_stream()->print("%s", msg); 226 } 227 } 228 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 229 return nullptr; 230 } 231 232 bool LibraryCallKit::try_to_inline(int predicate) { 233 // Handle symbolic names for otherwise undistinguished boolean switches: 234 const bool is_store = true; 235 const bool is_compress = true; 236 const bool is_static = true; 237 const bool is_volatile = true; 238 239 if (!jvms()->has_method()) { 240 // Root JVMState has a null method. 241 assert(map()->memory()->Opcode() == Op_Parm, ""); 242 // Insert the memory aliasing node 243 set_all_memory(reset_memory()); 244 } 245 assert(merged_memory(), ""); 246 247 switch (intrinsic_id()) { 248 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 249 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 250 case vmIntrinsics::_getClass: return inline_native_getClass(); 251 252 case vmIntrinsics::_ceil: 253 case vmIntrinsics::_floor: 254 case vmIntrinsics::_rint: 255 case vmIntrinsics::_dsin: 256 case vmIntrinsics::_dcos: 257 case vmIntrinsics::_dtan: 258 case vmIntrinsics::_dabs: 259 case vmIntrinsics::_fabs: 260 case vmIntrinsics::_iabs: 261 case vmIntrinsics::_labs: 262 case vmIntrinsics::_datan2: 263 case vmIntrinsics::_dsqrt: 264 case vmIntrinsics::_dexp: 265 case vmIntrinsics::_dlog: 266 case vmIntrinsics::_dlog10: 267 case vmIntrinsics::_dpow: 268 case vmIntrinsics::_dcopySign: 269 case vmIntrinsics::_fcopySign: 270 case vmIntrinsics::_dsignum: 271 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 272 273 case vmIntrinsics::_min: 274 case vmIntrinsics::_max: return inline_min_max(intrinsic_id()); 275 276 case vmIntrinsics::_notify: 277 case vmIntrinsics::_notifyAll: 278 return inline_notify(intrinsic_id()); 279 280 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 281 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 282 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 283 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 284 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 285 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 286 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 287 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 288 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 289 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 290 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 291 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 292 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 293 294 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 295 296 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 297 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 298 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 299 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 300 301 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 302 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 303 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 304 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 305 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 306 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 307 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 308 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 309 310 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 311 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 312 313 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 314 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 315 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 316 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 317 318 case vmIntrinsics::_compressStringC: 319 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 320 case vmIntrinsics::_inflateStringC: 321 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 322 323 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 324 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 325 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 326 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 327 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 328 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 329 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 330 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 331 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 332 333 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 334 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 335 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 336 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 337 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 338 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 339 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 340 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 341 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 342 343 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 344 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 345 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 346 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 347 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 348 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 349 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 350 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 351 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 352 353 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 354 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 355 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 356 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 357 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 358 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 359 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 360 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 361 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 362 363 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 369 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 370 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 371 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 372 373 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 374 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 375 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 376 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 377 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 378 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 379 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 380 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 381 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 382 383 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 384 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 385 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 386 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 387 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 388 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 389 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 390 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 391 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 392 393 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 394 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 395 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 396 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 397 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 398 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 399 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 400 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 401 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 402 403 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 404 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 405 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 406 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 407 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 408 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 409 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 410 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 411 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 412 413 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 414 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 418 419 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 420 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 421 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 422 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 423 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 424 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 425 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 426 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 427 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 428 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 429 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 430 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 431 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 432 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 433 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 434 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 435 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 436 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 437 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 438 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 439 440 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 441 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 442 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 443 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 444 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 445 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 446 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 452 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 453 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 454 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 455 456 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 457 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 460 461 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 462 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 466 467 case vmIntrinsics::_loadFence: 468 case vmIntrinsics::_storeFence: 469 case vmIntrinsics::_storeStoreFence: 470 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 471 472 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 473 474 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 475 476 #ifdef JFR_HAVE_INTRINSICS 477 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime"); 478 case vmIntrinsics::_getClassId: return inline_native_classID(); 479 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 480 #endif 481 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 482 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 483 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 484 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 485 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 486 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 487 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 488 case vmIntrinsics::_getLength: return inline_native_getLength(); 489 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 490 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 491 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 492 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 493 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 494 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 495 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 496 497 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 498 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 499 500 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 501 502 case vmIntrinsics::_isInstance: 503 case vmIntrinsics::_getModifiers: 504 case vmIntrinsics::_isInterface: 505 case vmIntrinsics::_isArray: 506 case vmIntrinsics::_isPrimitive: 507 case vmIntrinsics::_isHidden: 508 case vmIntrinsics::_getSuperclass: 509 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 510 511 case vmIntrinsics::_floatToRawIntBits: 512 case vmIntrinsics::_floatToIntBits: 513 case vmIntrinsics::_intBitsToFloat: 514 case vmIntrinsics::_doubleToRawLongBits: 515 case vmIntrinsics::_doubleToLongBits: 516 case vmIntrinsics::_longBitsToDouble: return inline_fp_conversions(intrinsic_id()); 517 518 case vmIntrinsics::_numberOfLeadingZeros_i: 519 case vmIntrinsics::_numberOfLeadingZeros_l: 520 case vmIntrinsics::_numberOfTrailingZeros_i: 521 case vmIntrinsics::_numberOfTrailingZeros_l: 522 case vmIntrinsics::_bitCount_i: 523 case vmIntrinsics::_bitCount_l: 524 case vmIntrinsics::_reverseBytes_i: 525 case vmIntrinsics::_reverseBytes_l: 526 case vmIntrinsics::_reverseBytes_s: 527 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 528 529 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 530 531 case vmIntrinsics::_Reference_get: return inline_reference_get(); 532 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 533 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 534 535 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 536 537 case vmIntrinsics::_aescrypt_encryptBlock: 538 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 539 540 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 541 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 542 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 543 544 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 545 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 546 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 547 548 case vmIntrinsics::_counterMode_AESCrypt: 549 return inline_counterMode_AESCrypt(intrinsic_id()); 550 551 case vmIntrinsics::_md5_implCompress: 552 case vmIntrinsics::_sha_implCompress: 553 case vmIntrinsics::_sha2_implCompress: 554 case vmIntrinsics::_sha5_implCompress: 555 case vmIntrinsics::_sha3_implCompress: 556 return inline_digestBase_implCompress(intrinsic_id()); 557 558 case vmIntrinsics::_digestBase_implCompressMB: 559 return inline_digestBase_implCompressMB(predicate); 560 561 case vmIntrinsics::_multiplyToLen: 562 return inline_multiplyToLen(); 563 564 case vmIntrinsics::_squareToLen: 565 return inline_squareToLen(); 566 567 case vmIntrinsics::_mulAdd: 568 return inline_mulAdd(); 569 570 case vmIntrinsics::_montgomeryMultiply: 571 return inline_montgomeryMultiply(); 572 case vmIntrinsics::_montgomerySquare: 573 return inline_montgomerySquare(); 574 575 case vmIntrinsics::_bigIntegerRightShiftWorker: 576 return inline_bigIntegerShift(true); 577 case vmIntrinsics::_bigIntegerLeftShiftWorker: 578 return inline_bigIntegerShift(false); 579 580 case vmIntrinsics::_vectorizedMismatch: 581 return inline_vectorizedMismatch(); 582 583 case vmIntrinsics::_ghash_processBlocks: 584 return inline_ghash_processBlocks(); 585 case vmIntrinsics::_base64_encodeBlock: 586 return inline_base64_encodeBlock(); 587 case vmIntrinsics::_base64_decodeBlock: 588 return inline_base64_decodeBlock(); 589 590 case vmIntrinsics::_encodeISOArray: 591 case vmIntrinsics::_encodeByteISOArray: 592 return inline_encodeISOArray(false); 593 case vmIntrinsics::_encodeAsciiArray: 594 return inline_encodeISOArray(true); 595 596 case vmIntrinsics::_updateCRC32: 597 return inline_updateCRC32(); 598 case vmIntrinsics::_updateBytesCRC32: 599 return inline_updateBytesCRC32(); 600 case vmIntrinsics::_updateByteBufferCRC32: 601 return inline_updateByteBufferCRC32(); 602 603 case vmIntrinsics::_updateBytesCRC32C: 604 return inline_updateBytesCRC32C(); 605 case vmIntrinsics::_updateDirectByteBufferCRC32C: 606 return inline_updateDirectByteBufferCRC32C(); 607 608 case vmIntrinsics::_updateBytesAdler32: 609 return inline_updateBytesAdler32(); 610 case vmIntrinsics::_updateByteBufferAdler32: 611 return inline_updateByteBufferAdler32(); 612 613 case vmIntrinsics::_profileBoolean: 614 return inline_profileBoolean(); 615 case vmIntrinsics::_isCompileConstant: 616 return inline_isCompileConstant(); 617 618 case vmIntrinsics::_hasNegatives: 619 return inline_hasNegatives(); 620 621 case vmIntrinsics::_fmaD: 622 case vmIntrinsics::_fmaF: 623 return inline_fma(intrinsic_id()); 624 625 case vmIntrinsics::_isDigit: 626 case vmIntrinsics::_isLowerCase: 627 case vmIntrinsics::_isUpperCase: 628 case vmIntrinsics::_isWhitespace: 629 return inline_character_compare(intrinsic_id()); 630 631 case vmIntrinsics::_maxF: 632 case vmIntrinsics::_minF: 633 case vmIntrinsics::_maxD: 634 case vmIntrinsics::_minD: 635 return inline_fp_min_max(intrinsic_id()); 636 637 case vmIntrinsics::_VectorUnaryOp: 638 return inline_vector_nary_operation(1); 639 case vmIntrinsics::_VectorBinaryOp: 640 return inline_vector_nary_operation(2); 641 case vmIntrinsics::_VectorTernaryOp: 642 return inline_vector_nary_operation(3); 643 case vmIntrinsics::_VectorBroadcastCoerced: 644 return inline_vector_broadcast_coerced(); 645 case vmIntrinsics::_VectorShuffleIota: 646 return inline_vector_shuffle_iota(); 647 case vmIntrinsics::_VectorMaskOp: 648 return inline_vector_mask_operation(); 649 case vmIntrinsics::_VectorShuffleToVector: 650 return inline_vector_shuffle_to_vector(); 651 case vmIntrinsics::_VectorLoadOp: 652 return inline_vector_mem_operation(/*is_store=*/false); 653 case vmIntrinsics::_VectorStoreOp: 654 return inline_vector_mem_operation(/*is_store=*/true); 655 case vmIntrinsics::_VectorGatherOp: 656 return inline_vector_gather_scatter(/*is_scatter*/ false); 657 case vmIntrinsics::_VectorScatterOp: 658 return inline_vector_gather_scatter(/*is_scatter*/ true); 659 case vmIntrinsics::_VectorReductionCoerced: 660 return inline_vector_reduction(); 661 case vmIntrinsics::_VectorTest: 662 return inline_vector_test(); 663 case vmIntrinsics::_VectorBlend: 664 return inline_vector_blend(); 665 case vmIntrinsics::_VectorRearrange: 666 return inline_vector_rearrange(); 667 case vmIntrinsics::_VectorCompare: 668 return inline_vector_compare(); 669 case vmIntrinsics::_VectorBroadcastInt: 670 return inline_vector_broadcast_int(); 671 case vmIntrinsics::_VectorConvert: 672 return inline_vector_convert(); 673 case vmIntrinsics::_VectorInsert: 674 return inline_vector_insert(); 675 case vmIntrinsics::_VectorExtract: 676 return inline_vector_extract(); 677 678 case vmIntrinsics::_getObjectSize: 679 return inline_getObjectSize(); 680 681 case vmIntrinsics::_blackhole: 682 return inline_blackhole(); 683 684 default: 685 // If you get here, it may be that someone has added a new intrinsic 686 // to the list in vmIntrinsics.hpp without implementing it here. 687 #ifndef PRODUCT 688 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 689 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 690 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 691 } 692 #endif 693 return false; 694 } 695 } 696 697 Node* LibraryCallKit::try_to_predicate(int predicate) { 698 if (!jvms()->has_method()) { 699 // Root JVMState has a null method. 700 assert(map()->memory()->Opcode() == Op_Parm, ""); 701 // Insert the memory aliasing node 702 set_all_memory(reset_memory()); 703 } 704 assert(merged_memory(), ""); 705 706 switch (intrinsic_id()) { 707 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 708 return inline_cipherBlockChaining_AESCrypt_predicate(false); 709 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 710 return inline_cipherBlockChaining_AESCrypt_predicate(true); 711 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 712 return inline_electronicCodeBook_AESCrypt_predicate(false); 713 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 714 return inline_electronicCodeBook_AESCrypt_predicate(true); 715 case vmIntrinsics::_counterMode_AESCrypt: 716 return inline_counterMode_AESCrypt_predicate(); 717 case vmIntrinsics::_digestBase_implCompressMB: 718 return inline_digestBase_implCompressMB_predicate(predicate); 719 720 default: 721 // If you get here, it may be that someone has added a new intrinsic 722 // to the list in vmIntrinsics.hpp without implementing it here. 723 #ifndef PRODUCT 724 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 725 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 726 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 727 } 728 #endif 729 Node* slow_ctl = control(); 730 set_control(top()); // No fast path instrinsic 731 return slow_ctl; 732 } 733 } 734 735 //------------------------------set_result------------------------------- 736 // Helper function for finishing intrinsics. 737 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 738 record_for_igvn(region); 739 set_control(_gvn.transform(region)); 740 set_result( _gvn.transform(value)); 741 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 742 } 743 744 //------------------------------generate_guard--------------------------- 745 // Helper function for generating guarded fast-slow graph structures. 746 // The given 'test', if true, guards a slow path. If the test fails 747 // then a fast path can be taken. (We generally hope it fails.) 748 // In all cases, GraphKit::control() is updated to the fast path. 749 // The returned value represents the control for the slow path. 750 // The return value is never 'top'; it is either a valid control 751 // or null if it is obvious that the slow path can never be taken. 752 // Also, if region and the slow control are not null, the slow edge 753 // is appended to the region. 754 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 755 if (stopped()) { 756 // Already short circuited. 757 return nullptr; 758 } 759 760 // Build an if node and its projections. 761 // If test is true we take the slow path, which we assume is uncommon. 762 if (_gvn.type(test) == TypeInt::ZERO) { 763 // The slow branch is never taken. No need to build this guard. 764 return nullptr; 765 } 766 767 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 768 769 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 770 if (if_slow == top()) { 771 // The slow branch is never taken. No need to build this guard. 772 return nullptr; 773 } 774 775 if (region != nullptr) 776 region->add_req(if_slow); 777 778 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 779 set_control(if_fast); 780 781 return if_slow; 782 } 783 784 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 785 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 786 } 787 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 788 return generate_guard(test, region, PROB_FAIR); 789 } 790 791 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 792 Node* *pos_index) { 793 if (stopped()) 794 return nullptr; // already stopped 795 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 796 return nullptr; // index is already adequately typed 797 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 798 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 799 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 800 if (is_neg != nullptr && pos_index != nullptr) { 801 // Emulate effect of Parse::adjust_map_after_if. 802 Node* ccast = new CastIINode(index, TypeInt::POS); 803 ccast->set_req(0, control()); 804 (*pos_index) = _gvn.transform(ccast); 805 } 806 return is_neg; 807 } 808 809 // Make sure that 'position' is a valid limit index, in [0..length]. 810 // There are two equivalent plans for checking this: 811 // A. (offset + copyLength) unsigned<= arrayLength 812 // B. offset <= (arrayLength - copyLength) 813 // We require that all of the values above, except for the sum and 814 // difference, are already known to be non-negative. 815 // Plan A is robust in the face of overflow, if offset and copyLength 816 // are both hugely positive. 817 // 818 // Plan B is less direct and intuitive, but it does not overflow at 819 // all, since the difference of two non-negatives is always 820 // representable. Whenever Java methods must perform the equivalent 821 // check they generally use Plan B instead of Plan A. 822 // For the moment we use Plan A. 823 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 824 Node* subseq_length, 825 Node* array_length, 826 RegionNode* region) { 827 if (stopped()) 828 return nullptr; // already stopped 829 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 830 if (zero_offset && subseq_length->eqv_uncast(array_length)) 831 return nullptr; // common case of whole-array copy 832 Node* last = subseq_length; 833 if (!zero_offset) // last += offset 834 last = _gvn.transform(new AddINode(last, offset)); 835 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 836 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 837 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 838 return is_over; 839 } 840 841 // Emit range checks for the given String.value byte array 842 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 843 if (stopped()) { 844 return; // already stopped 845 } 846 RegionNode* bailout = new RegionNode(1); 847 record_for_igvn(bailout); 848 if (char_count) { 849 // Convert char count to byte count 850 count = _gvn.transform(new LShiftINode(count, intcon(1))); 851 } 852 853 // Offset and count must not be negative 854 generate_negative_guard(offset, bailout); 855 generate_negative_guard(count, bailout); 856 // Offset + count must not exceed length of array 857 generate_limit_guard(offset, count, load_array_length(array), bailout); 858 859 if (bailout->req() > 1) { 860 PreserveJVMState pjvms(this); 861 set_control(_gvn.transform(bailout)); 862 uncommon_trap(Deoptimization::Reason_intrinsic, 863 Deoptimization::Action_maybe_recompile); 864 } 865 } 866 867 //--------------------------generate_current_thread-------------------- 868 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 869 ciKlass* thread_klass = env()->Thread_klass(); 870 const Type* thread_type = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 871 Node* thread = _gvn.transform(new ThreadLocalNode()); 872 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset())); 873 tls_output = thread; 874 Node* thread_obj_handle = LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 875 thread_obj_handle = _gvn.transform(thread_obj_handle); 876 return access_load(thread_obj_handle, thread_type, T_OBJECT, IN_NATIVE | C2_IMMUTABLE_MEMORY); 877 } 878 879 880 //------------------------------make_string_method_node------------------------ 881 // Helper method for String intrinsic functions. This version is called with 882 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 883 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 884 // containing the lengths of str1 and str2. 885 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 886 Node* result = nullptr; 887 switch (opcode) { 888 case Op_StrIndexOf: 889 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 890 str1_start, cnt1, str2_start, cnt2, ae); 891 break; 892 case Op_StrComp: 893 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 894 str1_start, cnt1, str2_start, cnt2, ae); 895 break; 896 case Op_StrEquals: 897 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 898 // Use the constant length if there is one because optimized match rule may exist. 899 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 900 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 901 break; 902 default: 903 ShouldNotReachHere(); 904 return nullptr; 905 } 906 907 // All these intrinsics have checks. 908 C->set_has_split_ifs(true); // Has chance for split-if optimization 909 clear_upper_avx(); 910 911 return _gvn.transform(result); 912 } 913 914 //------------------------------inline_string_compareTo------------------------ 915 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 916 Node* arg1 = argument(0); 917 Node* arg2 = argument(1); 918 919 arg1 = must_be_not_null(arg1, true); 920 arg2 = must_be_not_null(arg2, true); 921 922 // Get start addr and length of first argument 923 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 924 Node* arg1_cnt = load_array_length(arg1); 925 926 // Get start addr and length of second argument 927 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 928 Node* arg2_cnt = load_array_length(arg2); 929 930 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 931 set_result(result); 932 return true; 933 } 934 935 //------------------------------inline_string_equals------------------------ 936 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 937 Node* arg1 = argument(0); 938 Node* arg2 = argument(1); 939 940 // paths (plus control) merge 941 RegionNode* region = new RegionNode(3); 942 Node* phi = new PhiNode(region, TypeInt::BOOL); 943 944 if (!stopped()) { 945 946 arg1 = must_be_not_null(arg1, true); 947 arg2 = must_be_not_null(arg2, true); 948 949 // Get start addr and length of first argument 950 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 951 Node* arg1_cnt = load_array_length(arg1); 952 953 // Get start addr and length of second argument 954 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 955 Node* arg2_cnt = load_array_length(arg2); 956 957 // Check for arg1_cnt != arg2_cnt 958 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 959 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 960 Node* if_ne = generate_slow_guard(bol, nullptr); 961 if (if_ne != nullptr) { 962 phi->init_req(2, intcon(0)); 963 region->init_req(2, if_ne); 964 } 965 966 // Check for count == 0 is done by assembler code for StrEquals. 967 968 if (!stopped()) { 969 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 970 phi->init_req(1, equals); 971 region->init_req(1, control()); 972 } 973 } 974 975 // post merge 976 set_control(_gvn.transform(region)); 977 record_for_igvn(region); 978 979 set_result(_gvn.transform(phi)); 980 return true; 981 } 982 983 //------------------------------inline_array_equals---------------------------- 984 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 985 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 986 Node* arg1 = argument(0); 987 Node* arg2 = argument(1); 988 989 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 990 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 991 clear_upper_avx(); 992 993 return true; 994 } 995 996 //------------------------------inline_hasNegatives------------------------------ 997 bool LibraryCallKit::inline_hasNegatives() { 998 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 999 return false; 1000 } 1001 1002 assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters"); 1003 // no receiver since it is static method 1004 Node* ba = argument(0); 1005 Node* offset = argument(1); 1006 Node* len = argument(2); 1007 1008 ba = must_be_not_null(ba, true); 1009 1010 // Range checks 1011 generate_string_range_check(ba, offset, len, false); 1012 if (stopped()) { 1013 return true; 1014 } 1015 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1016 Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1017 set_result(_gvn.transform(result)); 1018 return true; 1019 } 1020 1021 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1022 Node* index = argument(0); 1023 Node* length = bt == T_INT ? argument(1) : argument(2); 1024 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1025 return false; 1026 } 1027 1028 // check that length is positive 1029 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1030 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1031 1032 { 1033 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1034 uncommon_trap(Deoptimization::Reason_intrinsic, 1035 Deoptimization::Action_make_not_entrant); 1036 } 1037 1038 if (stopped()) { 1039 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1040 return true; 1041 } 1042 1043 // length is now known postive, add a cast node to make this explicit 1044 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1045 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), bt); 1046 casted_length = _gvn.transform(casted_length); 1047 replace_in_map(length, casted_length); 1048 length = casted_length; 1049 1050 // Use an unsigned comparison for the range check itself 1051 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1052 BoolTest::mask btest = BoolTest::lt; 1053 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1054 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1055 _gvn.set_type(rc, rc->Value(&_gvn)); 1056 if (!rc_bool->is_Con()) { 1057 record_for_igvn(rc); 1058 } 1059 set_control(_gvn.transform(new IfTrueNode(rc))); 1060 { 1061 PreserveJVMState pjvms(this); 1062 set_control(_gvn.transform(new IfFalseNode(rc))); 1063 uncommon_trap(Deoptimization::Reason_range_check, 1064 Deoptimization::Action_make_not_entrant); 1065 } 1066 1067 if (stopped()) { 1068 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1069 return true; 1070 } 1071 1072 // index is now known to be >= 0 and < length, cast it 1073 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), bt); 1074 result = _gvn.transform(result); 1075 set_result(result); 1076 replace_in_map(index, result); 1077 return true; 1078 } 1079 1080 //------------------------------inline_string_indexOf------------------------ 1081 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1082 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1083 return false; 1084 } 1085 Node* src = argument(0); 1086 Node* tgt = argument(1); 1087 1088 // Make the merge point 1089 RegionNode* result_rgn = new RegionNode(4); 1090 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1091 1092 src = must_be_not_null(src, true); 1093 tgt = must_be_not_null(tgt, true); 1094 1095 // Get start addr and length of source string 1096 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1097 Node* src_count = load_array_length(src); 1098 1099 // Get start addr and length of substring 1100 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1101 Node* tgt_count = load_array_length(tgt); 1102 1103 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1104 // Divide src size by 2 if String is UTF16 encoded 1105 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1106 } 1107 if (ae == StrIntrinsicNode::UU) { 1108 // Divide substring size by 2 if String is UTF16 encoded 1109 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1110 } 1111 1112 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1113 if (result != nullptr) { 1114 result_phi->init_req(3, result); 1115 result_rgn->init_req(3, control()); 1116 } 1117 set_control(_gvn.transform(result_rgn)); 1118 record_for_igvn(result_rgn); 1119 set_result(_gvn.transform(result_phi)); 1120 1121 return true; 1122 } 1123 1124 //-----------------------------inline_string_indexOf----------------------- 1125 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1126 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1127 return false; 1128 } 1129 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1130 return false; 1131 } 1132 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1133 Node* src = argument(0); // byte[] 1134 Node* src_count = argument(1); // char count 1135 Node* tgt = argument(2); // byte[] 1136 Node* tgt_count = argument(3); // char count 1137 Node* from_index = argument(4); // char index 1138 1139 src = must_be_not_null(src, true); 1140 tgt = must_be_not_null(tgt, true); 1141 1142 // Multiply byte array index by 2 if String is UTF16 encoded 1143 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1144 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1145 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1146 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1147 1148 // Range checks 1149 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1150 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1151 if (stopped()) { 1152 return true; 1153 } 1154 1155 RegionNode* region = new RegionNode(5); 1156 Node* phi = new PhiNode(region, TypeInt::INT); 1157 1158 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1159 if (result != nullptr) { 1160 // The result is index relative to from_index if substring was found, -1 otherwise. 1161 // Generate code which will fold into cmove. 1162 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1163 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1164 1165 Node* if_lt = generate_slow_guard(bol, nullptr); 1166 if (if_lt != nullptr) { 1167 // result == -1 1168 phi->init_req(3, result); 1169 region->init_req(3, if_lt); 1170 } 1171 if (!stopped()) { 1172 result = _gvn.transform(new AddINode(result, from_index)); 1173 phi->init_req(4, result); 1174 region->init_req(4, control()); 1175 } 1176 } 1177 1178 set_control(_gvn.transform(region)); 1179 record_for_igvn(region); 1180 set_result(_gvn.transform(phi)); 1181 clear_upper_avx(); 1182 1183 return true; 1184 } 1185 1186 // Create StrIndexOfNode with fast path checks 1187 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1188 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1189 // Check for substr count > string count 1190 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1191 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1192 Node* if_gt = generate_slow_guard(bol, nullptr); 1193 if (if_gt != nullptr) { 1194 phi->init_req(1, intcon(-1)); 1195 region->init_req(1, if_gt); 1196 } 1197 if (!stopped()) { 1198 // Check for substr count == 0 1199 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1200 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1201 Node* if_zero = generate_slow_guard(bol, nullptr); 1202 if (if_zero != nullptr) { 1203 phi->init_req(2, intcon(0)); 1204 region->init_req(2, if_zero); 1205 } 1206 } 1207 if (!stopped()) { 1208 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1209 } 1210 return nullptr; 1211 } 1212 1213 //-----------------------------inline_string_indexOfChar----------------------- 1214 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1215 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1216 return false; 1217 } 1218 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1219 return false; 1220 } 1221 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1222 Node* src = argument(0); // byte[] 1223 Node* int_ch = argument(1); 1224 Node* from_index = argument(2); 1225 Node* max = argument(3); 1226 1227 src = must_be_not_null(src, true); 1228 1229 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1230 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1231 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1232 1233 // Range checks 1234 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1235 1236 // Check for int_ch >= 0 1237 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1238 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1239 { 1240 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1241 uncommon_trap(Deoptimization::Reason_intrinsic, 1242 Deoptimization::Action_maybe_recompile); 1243 } 1244 if (stopped()) { 1245 return true; 1246 } 1247 1248 RegionNode* region = new RegionNode(3); 1249 Node* phi = new PhiNode(region, TypeInt::INT); 1250 1251 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1252 C->set_has_split_ifs(true); // Has chance for split-if optimization 1253 _gvn.transform(result); 1254 1255 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1256 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1257 1258 Node* if_lt = generate_slow_guard(bol, nullptr); 1259 if (if_lt != nullptr) { 1260 // result == -1 1261 phi->init_req(2, result); 1262 region->init_req(2, if_lt); 1263 } 1264 if (!stopped()) { 1265 result = _gvn.transform(new AddINode(result, from_index)); 1266 phi->init_req(1, result); 1267 region->init_req(1, control()); 1268 } 1269 set_control(_gvn.transform(region)); 1270 record_for_igvn(region); 1271 set_result(_gvn.transform(phi)); 1272 1273 return true; 1274 } 1275 //---------------------------inline_string_copy--------------------- 1276 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1277 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1278 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1279 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1280 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1281 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1282 bool LibraryCallKit::inline_string_copy(bool compress) { 1283 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1284 return false; 1285 } 1286 int nargs = 5; // 2 oops, 3 ints 1287 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1288 1289 Node* src = argument(0); 1290 Node* src_offset = argument(1); 1291 Node* dst = argument(2); 1292 Node* dst_offset = argument(3); 1293 Node* length = argument(4); 1294 1295 // Check for allocation before we add nodes that would confuse 1296 // tightly_coupled_allocation() 1297 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1298 1299 // Figure out the size and type of the elements we will be copying. 1300 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1301 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1302 if (src_type == nullptr || dst_type == nullptr) { 1303 return false; 1304 } 1305 BasicType src_elem = src_type->klass()->as_array_klass()->element_type()->basic_type(); 1306 BasicType dst_elem = dst_type->klass()->as_array_klass()->element_type()->basic_type(); 1307 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1308 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1309 "Unsupported array types for inline_string_copy"); 1310 1311 src = must_be_not_null(src, true); 1312 dst = must_be_not_null(dst, true); 1313 1314 // Convert char[] offsets to byte[] offsets 1315 bool convert_src = (compress && src_elem == T_BYTE); 1316 bool convert_dst = (!compress && dst_elem == T_BYTE); 1317 if (convert_src) { 1318 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1319 } else if (convert_dst) { 1320 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1321 } 1322 1323 // Range checks 1324 generate_string_range_check(src, src_offset, length, convert_src); 1325 generate_string_range_check(dst, dst_offset, length, convert_dst); 1326 if (stopped()) { 1327 return true; 1328 } 1329 1330 Node* src_start = array_element_address(src, src_offset, src_elem); 1331 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1332 // 'src_start' points to src array + scaled offset 1333 // 'dst_start' points to dst array + scaled offset 1334 Node* count = nullptr; 1335 if (compress) { 1336 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1337 } else { 1338 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1339 } 1340 1341 if (alloc != nullptr) { 1342 if (alloc->maybe_set_complete(&_gvn)) { 1343 // "You break it, you buy it." 1344 InitializeNode* init = alloc->initialization(); 1345 assert(init->is_complete(), "we just did this"); 1346 init->set_complete_with_arraycopy(); 1347 assert(dst->is_CheckCastPP(), "sanity"); 1348 assert(dst->in(0)->in(0) == init, "dest pinned"); 1349 } 1350 // Do not let stores that initialize this object be reordered with 1351 // a subsequent store that would make this object accessible by 1352 // other threads. 1353 // Record what AllocateNode this StoreStore protects so that 1354 // escape analysis can go from the MemBarStoreStoreNode to the 1355 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1356 // based on the escape status of the AllocateNode. 1357 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1358 } 1359 if (compress) { 1360 set_result(_gvn.transform(count)); 1361 } 1362 clear_upper_avx(); 1363 1364 return true; 1365 } 1366 1367 #ifdef _LP64 1368 #define XTOP ,top() /*additional argument*/ 1369 #else //_LP64 1370 #define XTOP /*no additional argument*/ 1371 #endif //_LP64 1372 1373 //------------------------inline_string_toBytesU-------------------------- 1374 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1375 bool LibraryCallKit::inline_string_toBytesU() { 1376 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1377 return false; 1378 } 1379 // Get the arguments. 1380 Node* value = argument(0); 1381 Node* offset = argument(1); 1382 Node* length = argument(2); 1383 1384 Node* newcopy = nullptr; 1385 1386 // Set the original stack and the reexecute bit for the interpreter to reexecute 1387 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1388 { PreserveReexecuteState preexecs(this); 1389 jvms()->set_should_reexecute(true); 1390 1391 // Check if a null path was taken unconditionally. 1392 value = null_check(value); 1393 1394 RegionNode* bailout = new RegionNode(1); 1395 record_for_igvn(bailout); 1396 1397 // Range checks 1398 generate_negative_guard(offset, bailout); 1399 generate_negative_guard(length, bailout); 1400 generate_limit_guard(offset, length, load_array_length(value), bailout); 1401 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1402 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1403 1404 if (bailout->req() > 1) { 1405 PreserveJVMState pjvms(this); 1406 set_control(_gvn.transform(bailout)); 1407 uncommon_trap(Deoptimization::Reason_intrinsic, 1408 Deoptimization::Action_maybe_recompile); 1409 } 1410 if (stopped()) { 1411 return true; 1412 } 1413 1414 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1415 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1416 newcopy = new_array(klass_node, size, 0); // no arguments to push 1417 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1418 guarantee(alloc != nullptr, "created above"); 1419 1420 // Calculate starting addresses. 1421 Node* src_start = array_element_address(value, offset, T_CHAR); 1422 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1423 1424 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1425 const TypeInt* toffset = gvn().type(offset)->is_int(); 1426 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1427 1428 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1429 const char* copyfunc_name = "arraycopy"; 1430 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1431 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1432 OptoRuntime::fast_arraycopy_Type(), 1433 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1434 src_start, dst_start, ConvI2X(length) XTOP); 1435 // Do not let reads from the cloned object float above the arraycopy. 1436 if (alloc->maybe_set_complete(&_gvn)) { 1437 // "You break it, you buy it." 1438 InitializeNode* init = alloc->initialization(); 1439 assert(init->is_complete(), "we just did this"); 1440 init->set_complete_with_arraycopy(); 1441 assert(newcopy->is_CheckCastPP(), "sanity"); 1442 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1443 } 1444 // Do not let stores that initialize this object be reordered with 1445 // a subsequent store that would make this object accessible by 1446 // other threads. 1447 // Record what AllocateNode this StoreStore protects so that 1448 // escape analysis can go from the MemBarStoreStoreNode to the 1449 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1450 // based on the escape status of the AllocateNode. 1451 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1452 } // original reexecute is set back here 1453 1454 C->set_has_split_ifs(true); // Has chance for split-if optimization 1455 if (!stopped()) { 1456 set_result(newcopy); 1457 } 1458 clear_upper_avx(); 1459 1460 return true; 1461 } 1462 1463 //------------------------inline_string_getCharsU-------------------------- 1464 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1465 bool LibraryCallKit::inline_string_getCharsU() { 1466 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1467 return false; 1468 } 1469 1470 // Get the arguments. 1471 Node* src = argument(0); 1472 Node* src_begin = argument(1); 1473 Node* src_end = argument(2); // exclusive offset (i < src_end) 1474 Node* dst = argument(3); 1475 Node* dst_begin = argument(4); 1476 1477 // Check for allocation before we add nodes that would confuse 1478 // tightly_coupled_allocation() 1479 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1480 1481 // Check if a null path was taken unconditionally. 1482 src = null_check(src); 1483 dst = null_check(dst); 1484 if (stopped()) { 1485 return true; 1486 } 1487 1488 // Get length and convert char[] offset to byte[] offset 1489 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1490 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1491 1492 // Range checks 1493 generate_string_range_check(src, src_begin, length, true); 1494 generate_string_range_check(dst, dst_begin, length, false); 1495 if (stopped()) { 1496 return true; 1497 } 1498 1499 if (!stopped()) { 1500 // Calculate starting addresses. 1501 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1502 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1503 1504 // Check if array addresses are aligned to HeapWordSize 1505 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1506 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1507 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1508 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1509 1510 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1511 const char* copyfunc_name = "arraycopy"; 1512 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1513 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1514 OptoRuntime::fast_arraycopy_Type(), 1515 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1516 src_start, dst_start, ConvI2X(length) XTOP); 1517 // Do not let reads from the cloned object float above the arraycopy. 1518 if (alloc != nullptr) { 1519 if (alloc->maybe_set_complete(&_gvn)) { 1520 // "You break it, you buy it." 1521 InitializeNode* init = alloc->initialization(); 1522 assert(init->is_complete(), "we just did this"); 1523 init->set_complete_with_arraycopy(); 1524 assert(dst->is_CheckCastPP(), "sanity"); 1525 assert(dst->in(0)->in(0) == init, "dest pinned"); 1526 } 1527 // Do not let stores that initialize this object be reordered with 1528 // a subsequent store that would make this object accessible by 1529 // other threads. 1530 // Record what AllocateNode this StoreStore protects so that 1531 // escape analysis can go from the MemBarStoreStoreNode to the 1532 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1533 // based on the escape status of the AllocateNode. 1534 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1535 } else { 1536 insert_mem_bar(Op_MemBarCPUOrder); 1537 } 1538 } 1539 1540 C->set_has_split_ifs(true); // Has chance for split-if optimization 1541 return true; 1542 } 1543 1544 //----------------------inline_string_char_access---------------------------- 1545 // Store/Load char to/from byte[] array. 1546 // static void StringUTF16.putChar(byte[] val, int index, int c) 1547 // static char StringUTF16.getChar(byte[] val, int index) 1548 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1549 Node* value = argument(0); 1550 Node* index = argument(1); 1551 Node* ch = is_store ? argument(2) : nullptr; 1552 1553 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1554 // correctly requires matched array shapes. 1555 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1556 "sanity: byte[] and char[] bases agree"); 1557 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1558 "sanity: byte[] and char[] scales agree"); 1559 1560 // Bail when getChar over constants is requested: constant folding would 1561 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1562 // Java method would constant fold nicely instead. 1563 if (!is_store && value->is_Con() && index->is_Con()) { 1564 return false; 1565 } 1566 1567 // Save state and restore on bailout 1568 uint old_sp = sp(); 1569 SafePointNode* old_map = clone_map(); 1570 1571 value = must_be_not_null(value, true); 1572 1573 Node* adr = array_element_address(value, index, T_CHAR); 1574 if (adr->is_top()) { 1575 set_map(old_map); 1576 set_sp(old_sp); 1577 return false; 1578 } 1579 destruct_map_clone(old_map); 1580 if (is_store) { 1581 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1582 } else { 1583 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1584 set_result(ch); 1585 } 1586 return true; 1587 } 1588 1589 //--------------------------round_double_node-------------------------------- 1590 // Round a double node if necessary. 1591 Node* LibraryCallKit::round_double_node(Node* n) { 1592 if (Matcher::strict_fp_requires_explicit_rounding) { 1593 #ifdef IA32 1594 if (UseSSE < 2) { 1595 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1596 } 1597 #else 1598 Unimplemented(); 1599 #endif // IA32 1600 } 1601 return n; 1602 } 1603 1604 //------------------------------inline_math----------------------------------- 1605 // public static double Math.abs(double) 1606 // public static double Math.sqrt(double) 1607 // public static double Math.log(double) 1608 // public static double Math.log10(double) 1609 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1610 Node* arg = round_double_node(argument(0)); 1611 Node* n = nullptr; 1612 switch (id) { 1613 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1614 case vmIntrinsics::_dsqrt: n = new SqrtDNode(C, control(), arg); break; 1615 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1616 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1617 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1618 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1619 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1620 default: fatal_unexpected_iid(id); break; 1621 } 1622 set_result(_gvn.transform(n)); 1623 return true; 1624 } 1625 1626 //------------------------------inline_math----------------------------------- 1627 // public static float Math.abs(float) 1628 // public static int Math.abs(int) 1629 // public static long Math.abs(long) 1630 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1631 Node* arg = argument(0); 1632 Node* n = nullptr; 1633 switch (id) { 1634 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1635 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1636 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1637 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1638 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1639 default: fatal_unexpected_iid(id); break; 1640 } 1641 set_result(_gvn.transform(n)); 1642 return true; 1643 } 1644 1645 //------------------------------runtime_math----------------------------- 1646 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1647 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1648 "must be (DD)D or (D)D type"); 1649 1650 // Inputs 1651 Node* a = round_double_node(argument(0)); 1652 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1653 1654 const TypePtr* no_memory_effects = nullptr; 1655 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1656 no_memory_effects, 1657 a, top(), b, b ? top() : nullptr); 1658 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1659 #ifdef ASSERT 1660 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1661 assert(value_top == top(), "second value must be top"); 1662 #endif 1663 1664 set_result(value); 1665 return true; 1666 } 1667 1668 //------------------------------inline_math_pow----------------------------- 1669 bool LibraryCallKit::inline_math_pow() { 1670 Node* exp = round_double_node(argument(2)); 1671 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1672 if (d != nullptr) { 1673 if (d->getd() == 2.0) { 1674 // Special case: pow(x, 2.0) => x * x 1675 Node* base = round_double_node(argument(0)); 1676 set_result(_gvn.transform(new MulDNode(base, base))); 1677 return true; 1678 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1679 // Special case: pow(x, 0.5) => sqrt(x) 1680 Node* base = round_double_node(argument(0)); 1681 Node* zero = _gvn.zerocon(T_DOUBLE); 1682 1683 RegionNode* region = new RegionNode(3); 1684 Node* phi = new PhiNode(region, Type::DOUBLE); 1685 1686 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1687 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1688 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1689 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1690 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1691 1692 Node* if_pow = generate_slow_guard(test, nullptr); 1693 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1694 phi->init_req(1, value_sqrt); 1695 region->init_req(1, control()); 1696 1697 if (if_pow != nullptr) { 1698 set_control(if_pow); 1699 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1700 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1701 const TypePtr* no_memory_effects = nullptr; 1702 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1703 no_memory_effects, base, top(), exp, top()); 1704 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1705 #ifdef ASSERT 1706 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1707 assert(value_top == top(), "second value must be top"); 1708 #endif 1709 phi->init_req(2, value_pow); 1710 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1711 } 1712 1713 C->set_has_split_ifs(true); // Has chance for split-if optimization 1714 set_control(_gvn.transform(region)); 1715 record_for_igvn(region); 1716 set_result(_gvn.transform(phi)); 1717 1718 return true; 1719 } 1720 } 1721 1722 return StubRoutines::dpow() != nullptr ? 1723 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1724 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1725 } 1726 1727 //------------------------------inline_math_native----------------------------- 1728 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1729 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f) 1730 switch (id) { 1731 // These intrinsics are not properly supported on all hardware 1732 case vmIntrinsics::_dsin: 1733 return StubRoutines::dsin() != nullptr ? 1734 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1735 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin), "SIN"); 1736 case vmIntrinsics::_dcos: 1737 return StubRoutines::dcos() != nullptr ? 1738 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1739 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos), "COS"); 1740 case vmIntrinsics::_dtan: 1741 return StubRoutines::dtan() != nullptr ? 1742 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1743 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN"); 1744 case vmIntrinsics::_dlog: 1745 return StubRoutines::dlog() != nullptr ? 1746 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1747 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog), "LOG"); 1748 case vmIntrinsics::_dlog10: 1749 return StubRoutines::dlog10() != nullptr ? 1750 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1751 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10"); 1752 1753 // These intrinsics are supported on all hardware 1754 case vmIntrinsics::_ceil: 1755 case vmIntrinsics::_floor: 1756 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1757 case vmIntrinsics::_dsqrt: return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1758 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1759 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1760 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1761 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1762 1763 case vmIntrinsics::_dexp: 1764 return StubRoutines::dexp() != nullptr ? 1765 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1766 runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp), "EXP"); 1767 #undef FN_PTR 1768 1769 case vmIntrinsics::_dpow: return inline_math_pow(); 1770 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1771 case vmIntrinsics::_fcopySign: return inline_math(id); 1772 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1773 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1774 1775 // These intrinsics are not yet correctly implemented 1776 case vmIntrinsics::_datan2: 1777 return false; 1778 1779 default: 1780 fatal_unexpected_iid(id); 1781 return false; 1782 } 1783 } 1784 1785 static bool is_simple_name(Node* n) { 1786 return (n->req() == 1 // constant 1787 || (n->is_Type() && n->as_Type()->type()->singleton()) 1788 || n->is_Proj() // parameter or return value 1789 || n->is_Phi() // local of some sort 1790 ); 1791 } 1792 1793 //----------------------------inline_notify-----------------------------------* 1794 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1795 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1796 address func; 1797 if (id == vmIntrinsics::_notify) { 1798 func = OptoRuntime::monitor_notify_Java(); 1799 } else { 1800 func = OptoRuntime::monitor_notifyAll_Java(); 1801 } 1802 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1803 make_slow_call_ex(call, env()->Throwable_klass(), false); 1804 return true; 1805 } 1806 1807 1808 //----------------------------inline_min_max----------------------------------- 1809 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1810 set_result(generate_min_max(id, argument(0), argument(1))); 1811 return true; 1812 } 1813 1814 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1815 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1816 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1817 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1818 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1819 1820 { 1821 PreserveJVMState pjvms(this); 1822 PreserveReexecuteState preexecs(this); 1823 jvms()->set_should_reexecute(true); 1824 1825 set_control(slow_path); 1826 set_i_o(i_o()); 1827 1828 uncommon_trap(Deoptimization::Reason_intrinsic, 1829 Deoptimization::Action_none); 1830 } 1831 1832 set_control(fast_path); 1833 set_result(math); 1834 } 1835 1836 template <typename OverflowOp> 1837 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1838 typedef typename OverflowOp::MathOp MathOp; 1839 1840 MathOp* mathOp = new MathOp(arg1, arg2); 1841 Node* operation = _gvn.transform( mathOp ); 1842 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1843 inline_math_mathExact(operation, ofcheck); 1844 return true; 1845 } 1846 1847 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1848 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1849 } 1850 1851 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1852 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1853 } 1854 1855 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1856 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1857 } 1858 1859 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1860 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1861 } 1862 1863 bool LibraryCallKit::inline_math_negateExactI() { 1864 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1865 } 1866 1867 bool LibraryCallKit::inline_math_negateExactL() { 1868 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1869 } 1870 1871 bool LibraryCallKit::inline_math_multiplyExactI() { 1872 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1873 } 1874 1875 bool LibraryCallKit::inline_math_multiplyExactL() { 1876 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1877 } 1878 1879 bool LibraryCallKit::inline_math_multiplyHigh() { 1880 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1881 return true; 1882 } 1883 1884 Node* 1885 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1886 // These are the candidate return value: 1887 Node* xvalue = x0; 1888 Node* yvalue = y0; 1889 1890 if (xvalue == yvalue) { 1891 return xvalue; 1892 } 1893 1894 bool want_max = (id == vmIntrinsics::_max); 1895 1896 const TypeInt* txvalue = _gvn.type(xvalue)->isa_int(); 1897 const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int(); 1898 if (txvalue == NULL || tyvalue == NULL) return top(); 1899 // This is not really necessary, but it is consistent with a 1900 // hypothetical MaxINode::Value method: 1901 int widen = MAX2(txvalue->_widen, tyvalue->_widen); 1902 1903 // %%% This folding logic should (ideally) be in a different place. 1904 // Some should be inside IfNode, and there to be a more reliable 1905 // transformation of ?: style patterns into cmoves. We also want 1906 // more powerful optimizations around cmove and min/max. 1907 1908 // Try to find a dominating comparison of these guys. 1909 // It can simplify the index computation for Arrays.copyOf 1910 // and similar uses of System.arraycopy. 1911 // First, compute the normalized version of CmpI(x, y). 1912 int cmp_op = Op_CmpI; 1913 Node* xkey = xvalue; 1914 Node* ykey = yvalue; 1915 Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey)); 1916 if (ideal_cmpxy->is_Cmp()) { 1917 // E.g., if we have CmpI(length - offset, count), 1918 // it might idealize to CmpI(length, count + offset) 1919 cmp_op = ideal_cmpxy->Opcode(); 1920 xkey = ideal_cmpxy->in(1); 1921 ykey = ideal_cmpxy->in(2); 1922 } 1923 1924 // Start by locating any relevant comparisons. 1925 Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey; 1926 Node* cmpxy = NULL; 1927 Node* cmpyx = NULL; 1928 for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) { 1929 Node* cmp = start_from->fast_out(k); 1930 if (cmp->outcnt() > 0 && // must have prior uses 1931 cmp->in(0) == NULL && // must be context-independent 1932 cmp->Opcode() == cmp_op) { // right kind of compare 1933 if (cmp->in(1) == xkey && cmp->in(2) == ykey) cmpxy = cmp; 1934 if (cmp->in(1) == ykey && cmp->in(2) == xkey) cmpyx = cmp; 1935 } 1936 } 1937 1938 const int NCMPS = 2; 1939 Node* cmps[NCMPS] = { cmpxy, cmpyx }; 1940 int cmpn; 1941 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 1942 if (cmps[cmpn] != NULL) break; // find a result 1943 } 1944 if (cmpn < NCMPS) { 1945 // Look for a dominating test that tells us the min and max. 1946 int depth = 0; // Limit search depth for speed 1947 Node* dom = control(); 1948 for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) { 1949 if (++depth >= 100) break; 1950 Node* ifproj = dom; 1951 if (!ifproj->is_Proj()) continue; 1952 Node* iff = ifproj->in(0); 1953 if (!iff->is_If()) continue; 1954 Node* bol = iff->in(1); 1955 if (!bol->is_Bool()) continue; 1956 Node* cmp = bol->in(1); 1957 if (cmp == NULL) continue; 1958 for (cmpn = 0; cmpn < NCMPS; cmpn++) 1959 if (cmps[cmpn] == cmp) break; 1960 if (cmpn == NCMPS) continue; 1961 BoolTest::mask btest = bol->as_Bool()->_test._test; 1962 if (ifproj->is_IfFalse()) btest = BoolTest(btest).negate(); 1963 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 1964 // At this point, we know that 'x btest y' is true. 1965 switch (btest) { 1966 case BoolTest::eq: 1967 // They are proven equal, so we can collapse the min/max. 1968 // Either value is the answer. Choose the simpler. 1969 if (is_simple_name(yvalue) && !is_simple_name(xvalue)) 1970 return yvalue; 1971 return xvalue; 1972 case BoolTest::lt: // x < y 1973 case BoolTest::le: // x <= y 1974 return (want_max ? yvalue : xvalue); 1975 case BoolTest::gt: // x > y 1976 case BoolTest::ge: // x >= y 1977 return (want_max ? xvalue : yvalue); 1978 default: 1979 break; 1980 } 1981 } 1982 } 1983 1984 // We failed to find a dominating test. 1985 // Let's pick a test that might GVN with prior tests. 1986 Node* best_bol = NULL; 1987 BoolTest::mask best_btest = BoolTest::illegal; 1988 for (cmpn = 0; cmpn < NCMPS; cmpn++) { 1989 Node* cmp = cmps[cmpn]; 1990 if (cmp == NULL) continue; 1991 for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) { 1992 Node* bol = cmp->fast_out(j); 1993 if (!bol->is_Bool()) continue; 1994 BoolTest::mask btest = bol->as_Bool()->_test._test; 1995 if (btest == BoolTest::eq || btest == BoolTest::ne) continue; 1996 if (cmp->in(1) == ykey) btest = BoolTest(btest).commute(); 1997 if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) { 1998 best_bol = bol->as_Bool(); 1999 best_btest = btest; 2000 } 2001 } 2002 } 2003 2004 Node* answer_if_true = NULL; 2005 Node* answer_if_false = NULL; 2006 switch (best_btest) { 2007 default: 2008 if (cmpxy == NULL) 2009 cmpxy = ideal_cmpxy; 2010 best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt)); 2011 // and fall through: 2012 case BoolTest::lt: // x < y 2013 case BoolTest::le: // x <= y 2014 answer_if_true = (want_max ? yvalue : xvalue); 2015 answer_if_false = (want_max ? xvalue : yvalue); 2016 break; 2017 case BoolTest::gt: // x > y 2018 case BoolTest::ge: // x >= y 2019 answer_if_true = (want_max ? xvalue : yvalue); 2020 answer_if_false = (want_max ? yvalue : xvalue); 2021 break; 2022 } 2023 2024 jint hi, lo; 2025 if (want_max) { 2026 // We can sharpen the minimum. 2027 hi = MAX2(txvalue->_hi, tyvalue->_hi); 2028 lo = MAX2(txvalue->_lo, tyvalue->_lo); 2029 } else { 2030 // We can sharpen the maximum. 2031 hi = MIN2(txvalue->_hi, tyvalue->_hi); 2032 lo = MIN2(txvalue->_lo, tyvalue->_lo); 2033 } 2034 2035 // Use a flow-free graph structure, to avoid creating excess control edges 2036 // which could hinder other optimizations. 2037 // Since Math.min/max is often used with arraycopy, we want 2038 // tightly_coupled_allocation to be able to see beyond min/max expressions. 2039 Node* cmov = CMoveNode::make(NULL, best_bol, 2040 answer_if_false, answer_if_true, 2041 TypeInt::make(lo, hi, widen)); 2042 2043 return _gvn.transform(cmov); 2044 2045 /* 2046 // This is not as desirable as it may seem, since Min and Max 2047 // nodes do not have a full set of optimizations. 2048 // And they would interfere, anyway, with 'if' optimizations 2049 // and with CMoveI canonical forms. 2050 switch (id) { 2051 case vmIntrinsics::_min: 2052 result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break; 2053 case vmIntrinsics::_max: 2054 result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break; 2055 default: 2056 ShouldNotReachHere(); 2057 } 2058 */ 2059 } 2060 2061 inline int 2062 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2063 const TypePtr* base_type = TypePtr::NULL_PTR; 2064 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2065 if (base_type == nullptr) { 2066 // Unknown type. 2067 return Type::AnyPtr; 2068 } else if (base_type == TypePtr::NULL_PTR) { 2069 // Since this is a null+long form, we have to switch to a rawptr. 2070 base = _gvn.transform(new CastX2PNode(offset)); 2071 offset = MakeConX(0); 2072 return Type::RawPtr; 2073 } else if (base_type->base() == Type::RawPtr) { 2074 return Type::RawPtr; 2075 } else if (base_type->isa_oopptr()) { 2076 // Base is never null => always a heap address. 2077 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2078 return Type::OopPtr; 2079 } 2080 // Offset is small => always a heap address. 2081 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2082 if (offset_type != nullptr && 2083 base_type->offset() == 0 && // (should always be?) 2084 offset_type->_lo >= 0 && 2085 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2086 return Type::OopPtr; 2087 } else if (type == T_OBJECT) { 2088 // off heap access to an oop doesn't make any sense. Has to be on 2089 // heap. 2090 return Type::OopPtr; 2091 } 2092 // Otherwise, it might either be oop+off or null+addr. 2093 return Type::AnyPtr; 2094 } else { 2095 // No information: 2096 return Type::AnyPtr; 2097 } 2098 } 2099 2100 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2101 Node* uncasted_base = base; 2102 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2103 if (kind == Type::RawPtr) { 2104 return basic_plus_adr(top(), uncasted_base, offset); 2105 } else if (kind == Type::AnyPtr) { 2106 assert(base == uncasted_base, "unexpected base change"); 2107 if (can_cast) { 2108 if (!_gvn.type(base)->speculative_maybe_null() && 2109 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2110 // According to profiling, this access is always on 2111 // heap. Casting the base to not null and thus avoiding membars 2112 // around the access should allow better optimizations 2113 Node* null_ctl = top(); 2114 base = null_check_oop(base, &null_ctl, true, true, true); 2115 assert(null_ctl->is_top(), "no null control here"); 2116 return basic_plus_adr(base, offset); 2117 } else if (_gvn.type(base)->speculative_always_null() && 2118 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2119 // According to profiling, this access is always off 2120 // heap. 2121 base = null_assert(base); 2122 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2123 offset = MakeConX(0); 2124 return basic_plus_adr(top(), raw_base, offset); 2125 } 2126 } 2127 // We don't know if it's an on heap or off heap access. Fall back 2128 // to raw memory access. 2129 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2130 return basic_plus_adr(top(), raw, offset); 2131 } else { 2132 assert(base == uncasted_base, "unexpected base change"); 2133 // We know it's an on heap access so base can't be null 2134 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2135 base = must_be_not_null(base, true); 2136 } 2137 return basic_plus_adr(base, offset); 2138 } 2139 } 2140 2141 //--------------------------inline_number_methods----------------------------- 2142 // inline int Integer.numberOfLeadingZeros(int) 2143 // inline int Long.numberOfLeadingZeros(long) 2144 // 2145 // inline int Integer.numberOfTrailingZeros(int) 2146 // inline int Long.numberOfTrailingZeros(long) 2147 // 2148 // inline int Integer.bitCount(int) 2149 // inline int Long.bitCount(long) 2150 // 2151 // inline char Character.reverseBytes(char) 2152 // inline short Short.reverseBytes(short) 2153 // inline int Integer.reverseBytes(int) 2154 // inline long Long.reverseBytes(long) 2155 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2156 Node* arg = argument(0); 2157 Node* n = nullptr; 2158 switch (id) { 2159 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2160 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2161 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2162 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2163 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2164 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2165 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2166 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2167 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2168 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2169 default: fatal_unexpected_iid(id); break; 2170 } 2171 set_result(_gvn.transform(n)); 2172 return true; 2173 } 2174 2175 //----------------------------inline_unsafe_access---------------------------- 2176 2177 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2178 // Attempt to infer a sharper value type from the offset and base type. 2179 ciKlass* sharpened_klass = nullptr; 2180 2181 // See if it is an instance field, with an object type. 2182 if (alias_type->field() != nullptr) { 2183 if (alias_type->field()->type()->is_klass()) { 2184 sharpened_klass = alias_type->field()->type()->as_klass(); 2185 } 2186 } 2187 2188 // See if it is a narrow oop array. 2189 if (adr_type->isa_aryptr()) { 2190 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2191 const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr(); 2192 if (elem_type != nullptr) { 2193 sharpened_klass = elem_type->klass(); 2194 } 2195 } 2196 } 2197 2198 // The sharpened class might be unloaded if there is no class loader 2199 // contraint in place. 2200 if (sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2201 const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass); 2202 2203 #ifndef PRODUCT 2204 if (C->print_intrinsics() || C->print_inlining()) { 2205 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2206 tty->print(" sharpened value: "); tjp->dump(); tty->cr(); 2207 } 2208 #endif 2209 // Sharpen the value type. 2210 return tjp; 2211 } 2212 return nullptr; 2213 } 2214 2215 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2216 switch (kind) { 2217 case Relaxed: 2218 return MO_UNORDERED; 2219 case Opaque: 2220 return MO_RELAXED; 2221 case Acquire: 2222 return MO_ACQUIRE; 2223 case Release: 2224 return MO_RELEASE; 2225 case Volatile: 2226 return MO_SEQ_CST; 2227 default: 2228 ShouldNotReachHere(); 2229 return 0; 2230 } 2231 } 2232 2233 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2234 if (callee()->is_static()) return false; // caller must have the capability! 2235 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2236 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2237 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2238 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2239 2240 if (is_reference_type(type)) { 2241 decorators |= ON_UNKNOWN_OOP_REF; 2242 } 2243 2244 if (unaligned) { 2245 decorators |= C2_UNALIGNED; 2246 } 2247 2248 #ifndef PRODUCT 2249 { 2250 ResourceMark rm; 2251 // Check the signatures. 2252 ciSignature* sig = callee()->signature(); 2253 #ifdef ASSERT 2254 if (!is_store) { 2255 // Object getReference(Object base, int/long offset), etc. 2256 BasicType rtype = sig->return_type()->basic_type(); 2257 assert(rtype == type, "getter must return the expected value"); 2258 assert(sig->count() == 2, "oop getter has 2 arguments"); 2259 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2260 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2261 } else { 2262 // void putReference(Object base, int/long offset, Object x), etc. 2263 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2264 assert(sig->count() == 3, "oop putter has 3 arguments"); 2265 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2266 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2267 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2268 assert(vtype == type, "putter must accept the expected value"); 2269 } 2270 #endif // ASSERT 2271 } 2272 #endif //PRODUCT 2273 2274 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2275 2276 Node* receiver = argument(0); // type: oop 2277 2278 // Build address expression. 2279 Node* heap_base_oop = top(); 2280 2281 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2282 Node* base = argument(1); // type: oop 2283 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2284 Node* offset = argument(2); // type: long 2285 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2286 // to be plain byte offsets, which are also the same as those accepted 2287 // by oopDesc::field_addr. 2288 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2289 "fieldOffset must be byte-scaled"); 2290 // 32-bit machines ignore the high half! 2291 offset = ConvL2X(offset); 2292 2293 // Save state and restore on bailout 2294 uint old_sp = sp(); 2295 SafePointNode* old_map = clone_map(); 2296 2297 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2298 2299 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2300 if (type != T_OBJECT) { 2301 decorators |= IN_NATIVE; // off-heap primitive access 2302 } else { 2303 set_map(old_map); 2304 set_sp(old_sp); 2305 return false; // off-heap oop accesses are not supported 2306 } 2307 } else { 2308 heap_base_oop = base; // on-heap or mixed access 2309 } 2310 2311 // Can base be null? Otherwise, always on-heap access. 2312 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2313 2314 if (!can_access_non_heap) { 2315 decorators |= IN_HEAP; 2316 } 2317 2318 Node* val = is_store ? argument(4) : nullptr; 2319 2320 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2321 if (adr_type == TypePtr::NULL_PTR) { 2322 set_map(old_map); 2323 set_sp(old_sp); 2324 return false; // off-heap access with zero address 2325 } 2326 2327 // Try to categorize the address. 2328 Compile::AliasType* alias_type = C->alias_type(adr_type); 2329 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2330 2331 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2332 alias_type->adr_type() == TypeAryPtr::RANGE) { 2333 set_map(old_map); 2334 set_sp(old_sp); 2335 return false; // not supported 2336 } 2337 2338 bool mismatched = false; 2339 BasicType bt = alias_type->basic_type(); 2340 if (bt != T_ILLEGAL) { 2341 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2342 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2343 // Alias type doesn't differentiate between byte[] and boolean[]). 2344 // Use address type to get the element type. 2345 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2346 } 2347 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2348 // accessing an array field with getReference is not a mismatch 2349 bt = T_OBJECT; 2350 } 2351 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2352 // Don't intrinsify mismatched object accesses 2353 set_map(old_map); 2354 set_sp(old_sp); 2355 return false; 2356 } 2357 mismatched = (bt != type); 2358 } else if (alias_type->adr_type()->isa_oopptr()) { 2359 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2360 } 2361 2362 destruct_map_clone(old_map); 2363 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2364 2365 if (mismatched) { 2366 decorators |= C2_MISMATCHED; 2367 } 2368 2369 // First guess at the value type. 2370 const Type *value_type = Type::get_const_basic_type(type); 2371 2372 // Figure out the memory ordering. 2373 decorators |= mo_decorator_for_access_kind(kind); 2374 2375 if (!is_store && type == T_OBJECT) { 2376 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2377 if (tjp != nullptr) { 2378 value_type = tjp; 2379 } 2380 } 2381 2382 receiver = null_check(receiver); 2383 if (stopped()) { 2384 return true; 2385 } 2386 // Heap pointers get a null-check from the interpreter, 2387 // as a courtesy. However, this is not guaranteed by Unsafe, 2388 // and it is not possible to fully distinguish unintended nulls 2389 // from intended ones in this API. 2390 2391 if (!is_store) { 2392 Node* p = nullptr; 2393 // Try to constant fold a load from a constant field 2394 ciField* field = alias_type->field(); 2395 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2396 // final or stable field 2397 p = make_constant_from_field(field, heap_base_oop); 2398 } 2399 2400 if (p == nullptr) { // Could not constant fold the load 2401 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2402 // Normalize the value returned by getBoolean in the following cases 2403 if (type == T_BOOLEAN && 2404 (mismatched || 2405 heap_base_oop == top() || // - heap_base_oop is null or 2406 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2407 // and the unsafe access is made to large offset 2408 // (i.e., larger than the maximum offset necessary for any 2409 // field access) 2410 ) { 2411 IdealKit ideal = IdealKit(this); 2412 #define __ ideal. 2413 IdealVariable normalized_result(ideal); 2414 __ declarations_done(); 2415 __ set(normalized_result, p); 2416 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2417 __ set(normalized_result, ideal.ConI(1)); 2418 ideal.end_if(); 2419 final_sync(ideal); 2420 p = __ value(normalized_result); 2421 #undef __ 2422 } 2423 } 2424 if (type == T_ADDRESS) { 2425 p = gvn().transform(new CastP2XNode(nullptr, p)); 2426 p = ConvX2UL(p); 2427 } 2428 // The load node has the control of the preceding MemBarCPUOrder. All 2429 // following nodes will have the control of the MemBarCPUOrder inserted at 2430 // the end of this method. So, pushing the load onto the stack at a later 2431 // point is fine. 2432 set_result(p); 2433 } else { 2434 if (bt == T_ADDRESS) { 2435 // Repackage the long as a pointer. 2436 val = ConvL2X(val); 2437 val = gvn().transform(new CastX2PNode(val)); 2438 } 2439 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2440 } 2441 2442 return true; 2443 } 2444 2445 //----------------------------inline_unsafe_load_store---------------------------- 2446 // This method serves a couple of different customers (depending on LoadStoreKind): 2447 // 2448 // LS_cmp_swap: 2449 // 2450 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2451 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2452 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2453 // 2454 // LS_cmp_swap_weak: 2455 // 2456 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2457 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2458 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2459 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2460 // 2461 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2462 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2463 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2464 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2465 // 2466 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2467 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2468 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2469 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2470 // 2471 // LS_cmp_exchange: 2472 // 2473 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2474 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2475 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2476 // 2477 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2478 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2479 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2480 // 2481 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2482 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2483 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2484 // 2485 // LS_get_add: 2486 // 2487 // int getAndAddInt( Object o, long offset, int delta) 2488 // long getAndAddLong(Object o, long offset, long delta) 2489 // 2490 // LS_get_set: 2491 // 2492 // int getAndSet(Object o, long offset, int newValue) 2493 // long getAndSet(Object o, long offset, long newValue) 2494 // Object getAndSet(Object o, long offset, Object newValue) 2495 // 2496 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2497 // This basic scheme here is the same as inline_unsafe_access, but 2498 // differs in enough details that combining them would make the code 2499 // overly confusing. (This is a true fact! I originally combined 2500 // them, but even I was confused by it!) As much code/comments as 2501 // possible are retained from inline_unsafe_access though to make 2502 // the correspondences clearer. - dl 2503 2504 if (callee()->is_static()) return false; // caller must have the capability! 2505 2506 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2507 decorators |= mo_decorator_for_access_kind(access_kind); 2508 2509 #ifndef PRODUCT 2510 BasicType rtype; 2511 { 2512 ResourceMark rm; 2513 // Check the signatures. 2514 ciSignature* sig = callee()->signature(); 2515 rtype = sig->return_type()->basic_type(); 2516 switch(kind) { 2517 case LS_get_add: 2518 case LS_get_set: { 2519 // Check the signatures. 2520 #ifdef ASSERT 2521 assert(rtype == type, "get and set must return the expected type"); 2522 assert(sig->count() == 3, "get and set has 3 arguments"); 2523 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2524 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2525 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2526 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2527 #endif // ASSERT 2528 break; 2529 } 2530 case LS_cmp_swap: 2531 case LS_cmp_swap_weak: { 2532 // Check the signatures. 2533 #ifdef ASSERT 2534 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2535 assert(sig->count() == 4, "CAS has 4 arguments"); 2536 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2537 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2538 #endif // ASSERT 2539 break; 2540 } 2541 case LS_cmp_exchange: { 2542 // Check the signatures. 2543 #ifdef ASSERT 2544 assert(rtype == type, "CAS must return the expected type"); 2545 assert(sig->count() == 4, "CAS has 4 arguments"); 2546 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2547 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2548 #endif // ASSERT 2549 break; 2550 } 2551 default: 2552 ShouldNotReachHere(); 2553 } 2554 } 2555 #endif //PRODUCT 2556 2557 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2558 2559 // Get arguments: 2560 Node* receiver = nullptr; 2561 Node* base = nullptr; 2562 Node* offset = nullptr; 2563 Node* oldval = nullptr; 2564 Node* newval = nullptr; 2565 switch(kind) { 2566 case LS_cmp_swap: 2567 case LS_cmp_swap_weak: 2568 case LS_cmp_exchange: { 2569 const bool two_slot_type = type2size[type] == 2; 2570 receiver = argument(0); // type: oop 2571 base = argument(1); // type: oop 2572 offset = argument(2); // type: long 2573 oldval = argument(4); // type: oop, int, or long 2574 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2575 break; 2576 } 2577 case LS_get_add: 2578 case LS_get_set: { 2579 receiver = argument(0); // type: oop 2580 base = argument(1); // type: oop 2581 offset = argument(2); // type: long 2582 oldval = nullptr; 2583 newval = argument(4); // type: oop, int, or long 2584 break; 2585 } 2586 default: 2587 ShouldNotReachHere(); 2588 } 2589 2590 // Build field offset expression. 2591 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2592 // to be plain byte offsets, which are also the same as those accepted 2593 // by oopDesc::field_addr. 2594 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2595 // 32-bit machines ignore the high half of long offsets 2596 offset = ConvL2X(offset); 2597 // Save state and restore on bailout 2598 uint old_sp = sp(); 2599 SafePointNode* old_map = clone_map(); 2600 Node* adr = make_unsafe_address(base, offset,type, false); 2601 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2602 2603 Compile::AliasType* alias_type = C->alias_type(adr_type); 2604 BasicType bt = alias_type->basic_type(); 2605 if (bt != T_ILLEGAL && 2606 (is_reference_type(bt) != (type == T_OBJECT))) { 2607 // Don't intrinsify mismatched object accesses. 2608 set_map(old_map); 2609 set_sp(old_sp); 2610 return false; 2611 } 2612 2613 destruct_map_clone(old_map); 2614 2615 // For CAS, unlike inline_unsafe_access, there seems no point in 2616 // trying to refine types. Just use the coarse types here. 2617 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2618 const Type *value_type = Type::get_const_basic_type(type); 2619 2620 switch (kind) { 2621 case LS_get_set: 2622 case LS_cmp_exchange: { 2623 if (type == T_OBJECT) { 2624 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2625 if (tjp != nullptr) { 2626 value_type = tjp; 2627 } 2628 } 2629 break; 2630 } 2631 case LS_cmp_swap: 2632 case LS_cmp_swap_weak: 2633 case LS_get_add: 2634 break; 2635 default: 2636 ShouldNotReachHere(); 2637 } 2638 2639 // Null check receiver. 2640 receiver = null_check(receiver); 2641 if (stopped()) { 2642 return true; 2643 } 2644 2645 int alias_idx = C->get_alias_index(adr_type); 2646 2647 if (is_reference_type(type)) { 2648 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2649 2650 // Transformation of a value which could be null pointer (CastPP #null) 2651 // could be delayed during Parse (for example, in adjust_map_after_if()). 2652 // Execute transformation here to avoid barrier generation in such case. 2653 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2654 newval = _gvn.makecon(TypePtr::NULL_PTR); 2655 2656 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2657 // Refine the value to a null constant, when it is known to be null 2658 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2659 } 2660 } 2661 2662 Node* result = nullptr; 2663 switch (kind) { 2664 case LS_cmp_exchange: { 2665 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2666 oldval, newval, value_type, type, decorators); 2667 break; 2668 } 2669 case LS_cmp_swap_weak: 2670 decorators |= C2_WEAK_CMPXCHG; 2671 case LS_cmp_swap: { 2672 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2673 oldval, newval, value_type, type, decorators); 2674 break; 2675 } 2676 case LS_get_set: { 2677 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2678 newval, value_type, type, decorators); 2679 break; 2680 } 2681 case LS_get_add: { 2682 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2683 newval, value_type, type, decorators); 2684 break; 2685 } 2686 default: 2687 ShouldNotReachHere(); 2688 } 2689 2690 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2691 set_result(result); 2692 return true; 2693 } 2694 2695 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2696 // Regardless of form, don't allow previous ld/st to move down, 2697 // then issue acquire, release, or volatile mem_bar. 2698 insert_mem_bar(Op_MemBarCPUOrder); 2699 switch(id) { 2700 case vmIntrinsics::_loadFence: 2701 insert_mem_bar(Op_LoadFence); 2702 return true; 2703 case vmIntrinsics::_storeFence: 2704 insert_mem_bar(Op_StoreFence); 2705 return true; 2706 case vmIntrinsics::_storeStoreFence: 2707 insert_mem_bar(Op_StoreStoreFence); 2708 return true; 2709 case vmIntrinsics::_fullFence: 2710 insert_mem_bar(Op_MemBarVolatile); 2711 return true; 2712 default: 2713 fatal_unexpected_iid(id); 2714 return false; 2715 } 2716 } 2717 2718 bool LibraryCallKit::inline_onspinwait() { 2719 insert_mem_bar(Op_OnSpinWait); 2720 return true; 2721 } 2722 2723 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2724 if (!kls->is_Con()) { 2725 return true; 2726 } 2727 const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr(); 2728 if (klsptr == nullptr) { 2729 return true; 2730 } 2731 ciInstanceKlass* ik = klsptr->klass()->as_instance_klass(); 2732 // don't need a guard for a klass that is already initialized 2733 return !ik->is_initialized(); 2734 } 2735 2736 //----------------------------inline_unsafe_writeback0------------------------- 2737 // public native void Unsafe.writeback0(long address) 2738 bool LibraryCallKit::inline_unsafe_writeback0() { 2739 if (!Matcher::has_match_rule(Op_CacheWB)) { 2740 return false; 2741 } 2742 #ifndef PRODUCT 2743 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2744 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2745 ciSignature* sig = callee()->signature(); 2746 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2747 #endif 2748 null_check_receiver(); // null-check, then ignore 2749 Node *addr = argument(1); 2750 addr = new CastX2PNode(addr); 2751 addr = _gvn.transform(addr); 2752 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2753 flush = _gvn.transform(flush); 2754 set_memory(flush, TypeRawPtr::BOTTOM); 2755 return true; 2756 } 2757 2758 //----------------------------inline_unsafe_writeback0------------------------- 2759 // public native void Unsafe.writeback0(long address) 2760 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2761 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2762 return false; 2763 } 2764 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2765 return false; 2766 } 2767 #ifndef PRODUCT 2768 assert(Matcher::has_match_rule(Op_CacheWB), 2769 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2770 : "found match rule for CacheWBPostSync but not CacheWB")); 2771 2772 #endif 2773 null_check_receiver(); // null-check, then ignore 2774 Node *sync; 2775 if (is_pre) { 2776 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2777 } else { 2778 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2779 } 2780 sync = _gvn.transform(sync); 2781 set_memory(sync, TypeRawPtr::BOTTOM); 2782 return true; 2783 } 2784 2785 //----------------------------inline_unsafe_allocate--------------------------- 2786 // public native Object Unsafe.allocateInstance(Class<?> cls); 2787 bool LibraryCallKit::inline_unsafe_allocate() { 2788 if (callee()->is_static()) return false; // caller must have the capability! 2789 2790 null_check_receiver(); // null-check, then ignore 2791 Node* cls = null_check(argument(1)); 2792 if (stopped()) return true; 2793 2794 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2795 kls = null_check(kls); 2796 if (stopped()) return true; // argument was like int.class 2797 2798 Node* test = nullptr; 2799 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2800 // Note: The argument might still be an illegal value like 2801 // Serializable.class or Object[].class. The runtime will handle it. 2802 // But we must make an explicit check for initialization. 2803 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2804 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2805 // can generate code to load it as unsigned byte. 2806 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2807 Node* bits = intcon(InstanceKlass::fully_initialized); 2808 test = _gvn.transform(new SubINode(inst, bits)); 2809 // The 'test' is non-zero if we need to take a slow path. 2810 } 2811 2812 Node* obj = new_instance(kls, test); 2813 set_result(obj); 2814 return true; 2815 } 2816 2817 //------------------------inline_native_time_funcs-------------- 2818 // inline code for System.currentTimeMillis() and System.nanoTime() 2819 // these have the same type and signature 2820 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2821 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2822 const TypePtr* no_memory_effects = nullptr; 2823 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2824 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2825 #ifdef ASSERT 2826 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2827 assert(value_top == top(), "second value must be top"); 2828 #endif 2829 set_result(value); 2830 return true; 2831 } 2832 2833 #ifdef JFR_HAVE_INTRINSICS 2834 2835 /** 2836 * if oop->klass != null 2837 * // normal class 2838 * epoch = _epoch_state ? 2 : 1 2839 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2840 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2841 * } 2842 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2843 * else 2844 * // primitive class 2845 * if oop->array_klass != null 2846 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2847 * else 2848 * id = LAST_TYPE_ID + 1 // void class path 2849 * if (!signaled) 2850 * signaled = true 2851 */ 2852 bool LibraryCallKit::inline_native_classID() { 2853 Node* cls = argument(0); 2854 2855 IdealKit ideal(this); 2856 #define __ ideal. 2857 IdealVariable result(ideal); __ declarations_done(); 2858 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2859 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2860 TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 2861 2862 2863 __ if_then(kls, BoolTest::ne, null()); { 2864 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2865 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2866 2867 Node* epoch_address = makecon(TypeRawPtr::make(Jfr::epoch_address())); 2868 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2869 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2870 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2871 mask = _gvn.transform(new OrLNode(mask, epoch)); 2872 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 2873 2874 float unlikely = PROB_UNLIKELY(0.999); 2875 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 2876 sync_kit(ideal); 2877 make_runtime_call(RC_LEAF, 2878 OptoRuntime::get_class_id_intrinsic_Type(), 2879 CAST_FROM_FN_PTR(address, Jfr::get_class_id_intrinsic), 2880 "get_class_id_intrinsic", 2881 TypePtr::BOTTOM, 2882 kls); 2883 ideal.sync_kit(this); 2884 } __ end_if(); 2885 2886 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 2887 } __ else_(); { 2888 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2889 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 2890 TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 2891 __ if_then(array_kls, BoolTest::ne, null()); { 2892 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2893 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2894 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 2895 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 2896 } __ else_(); { 2897 // void class case 2898 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 2899 } __ end_if(); 2900 2901 Node* signaled_flag_address = makecon(TypeRawPtr::make(Jfr::signal_address())); 2902 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 2903 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 2904 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 2905 } __ end_if(); 2906 } __ end_if(); 2907 2908 final_sync(ideal); 2909 set_result(ideal.value(result)); 2910 #undef __ 2911 return true; 2912 } 2913 2914 bool LibraryCallKit::inline_native_getEventWriter() { 2915 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 2916 2917 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, 2918 in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 2919 2920 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 2921 2922 Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) ); 2923 Node* test_jobj_eq_null = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) ); 2924 2925 IfNode* iff_jobj_null = 2926 create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN); 2927 2928 enum { _normal_path = 1, 2929 _null_path = 2, 2930 PATH_LIMIT }; 2931 2932 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 2933 PhiNode* result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 2934 2935 Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null)); 2936 result_rgn->init_req(_null_path, jobj_is_null); 2937 result_val->init_req(_null_path, null()); 2938 2939 Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null)); 2940 set_control(jobj_is_not_null); 2941 Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT, 2942 IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 2943 result_rgn->init_req(_normal_path, control()); 2944 result_val->init_req(_normal_path, res); 2945 2946 set_result(result_rgn, result_val); 2947 2948 return true; 2949 } 2950 2951 #endif // JFR_HAVE_INTRINSICS 2952 2953 //------------------------inline_native_currentThread------------------ 2954 bool LibraryCallKit::inline_native_currentThread() { 2955 Node* junk = nullptr; 2956 set_result(generate_current_thread(junk)); 2957 return true; 2958 } 2959 2960 //---------------------------load_mirror_from_klass---------------------------- 2961 // Given a klass oop, load its java mirror (a java.lang.Class oop). 2962 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 2963 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 2964 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 2965 // mirror = ((OopHandle)mirror)->resolve(); 2966 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 2967 } 2968 2969 //-----------------------load_klass_from_mirror_common------------------------- 2970 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 2971 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 2972 // and branch to the given path on the region. 2973 // If never_see_null, take an uncommon trap on null, so we can optimistically 2974 // compile for the non-null case. 2975 // If the region is null, force never_see_null = true. 2976 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 2977 bool never_see_null, 2978 RegionNode* region, 2979 int null_path, 2980 int offset) { 2981 if (region == nullptr) never_see_null = true; 2982 Node* p = basic_plus_adr(mirror, offset); 2983 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 2984 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 2985 Node* null_ctl = top(); 2986 kls = null_check_oop(kls, &null_ctl, never_see_null); 2987 if (region != nullptr) { 2988 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 2989 region->init_req(null_path, null_ctl); 2990 } else { 2991 assert(null_ctl == top(), "no loose ends"); 2992 } 2993 return kls; 2994 } 2995 2996 //--------------------(inline_native_Class_query helpers)--------------------- 2997 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 2998 // Fall through if (mods & mask) == bits, take the guard otherwise. 2999 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3000 // Branch around if the given klass has the given modifier bit set. 3001 // Like generate_guard, adds a new path onto the region. 3002 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3003 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3004 Node* mask = intcon(modifier_mask); 3005 Node* bits = intcon(modifier_bits); 3006 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3007 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3008 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3009 return generate_fair_guard(bol, region); 3010 } 3011 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3012 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3013 } 3014 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3015 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3016 } 3017 3018 //-------------------------inline_native_Class_query------------------- 3019 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3020 const Type* return_type = TypeInt::BOOL; 3021 Node* prim_return_value = top(); // what happens if it's a primitive class? 3022 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3023 bool expect_prim = false; // most of these guys expect to work on refs 3024 3025 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3026 3027 Node* mirror = argument(0); 3028 Node* obj = top(); 3029 3030 switch (id) { 3031 case vmIntrinsics::_isInstance: 3032 // nothing is an instance of a primitive type 3033 prim_return_value = intcon(0); 3034 obj = argument(1); 3035 break; 3036 case vmIntrinsics::_getModifiers: 3037 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3038 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3039 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3040 break; 3041 case vmIntrinsics::_isInterface: 3042 prim_return_value = intcon(0); 3043 break; 3044 case vmIntrinsics::_isArray: 3045 prim_return_value = intcon(0); 3046 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3047 break; 3048 case vmIntrinsics::_isPrimitive: 3049 prim_return_value = intcon(1); 3050 expect_prim = true; // obviously 3051 break; 3052 case vmIntrinsics::_isHidden: 3053 prim_return_value = intcon(0); 3054 break; 3055 case vmIntrinsics::_getSuperclass: 3056 prim_return_value = null(); 3057 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3058 break; 3059 case vmIntrinsics::_getClassAccessFlags: 3060 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3061 return_type = TypeInt::INT; // not bool! 6297094 3062 break; 3063 default: 3064 fatal_unexpected_iid(id); 3065 break; 3066 } 3067 3068 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3069 if (mirror_con == nullptr) return false; // cannot happen? 3070 3071 #ifndef PRODUCT 3072 if (C->print_intrinsics() || C->print_inlining()) { 3073 ciType* k = mirror_con->java_mirror_type(); 3074 if (k) { 3075 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3076 k->print_name(); 3077 tty->cr(); 3078 } 3079 } 3080 #endif 3081 3082 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3083 RegionNode* region = new RegionNode(PATH_LIMIT); 3084 record_for_igvn(region); 3085 PhiNode* phi = new PhiNode(region, return_type); 3086 3087 // The mirror will never be null of Reflection.getClassAccessFlags, however 3088 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3089 // if it is. See bug 4774291. 3090 3091 // For Reflection.getClassAccessFlags(), the null check occurs in 3092 // the wrong place; see inline_unsafe_access(), above, for a similar 3093 // situation. 3094 mirror = null_check(mirror); 3095 // If mirror or obj is dead, only null-path is taken. 3096 if (stopped()) return true; 3097 3098 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3099 3100 // Now load the mirror's klass metaobject, and null-check it. 3101 // Side-effects region with the control path if the klass is null. 3102 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3103 // If kls is null, we have a primitive mirror. 3104 phi->init_req(_prim_path, prim_return_value); 3105 if (stopped()) { set_result(region, phi); return true; } 3106 bool safe_for_replace = (region->in(_prim_path) == top()); 3107 3108 Node* p; // handy temp 3109 Node* null_ctl; 3110 3111 // Now that we have the non-null klass, we can perform the real query. 3112 // For constant classes, the query will constant-fold in LoadNode::Value. 3113 Node* query_value = top(); 3114 switch (id) { 3115 case vmIntrinsics::_isInstance: 3116 // nothing is an instance of a primitive type 3117 query_value = gen_instanceof(obj, kls, safe_for_replace); 3118 break; 3119 3120 case vmIntrinsics::_getModifiers: 3121 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3122 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3123 break; 3124 3125 case vmIntrinsics::_isInterface: 3126 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3127 if (generate_interface_guard(kls, region) != nullptr) 3128 // A guard was added. If the guard is taken, it was an interface. 3129 phi->add_req(intcon(1)); 3130 // If we fall through, it's a plain class. 3131 query_value = intcon(0); 3132 break; 3133 3134 case vmIntrinsics::_isArray: 3135 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3136 if (generate_array_guard(kls, region) != nullptr) 3137 // A guard was added. If the guard is taken, it was an array. 3138 phi->add_req(intcon(1)); 3139 // If we fall through, it's a plain class. 3140 query_value = intcon(0); 3141 break; 3142 3143 case vmIntrinsics::_isPrimitive: 3144 query_value = intcon(0); // "normal" path produces false 3145 break; 3146 3147 case vmIntrinsics::_isHidden: 3148 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3149 if (generate_hidden_class_guard(kls, region) != nullptr) 3150 // A guard was added. If the guard is taken, it was an hidden class. 3151 phi->add_req(intcon(1)); 3152 // If we fall through, it's a plain class. 3153 query_value = intcon(0); 3154 break; 3155 3156 3157 case vmIntrinsics::_getSuperclass: 3158 // The rules here are somewhat unfortunate, but we can still do better 3159 // with random logic than with a JNI call. 3160 // Interfaces store null or Object as _super, but must report null. 3161 // Arrays store an intermediate super as _super, but must report Object. 3162 // Other types can report the actual _super. 3163 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3164 if (generate_interface_guard(kls, region) != nullptr) 3165 // A guard was added. If the guard is taken, it was an interface. 3166 phi->add_req(null()); 3167 if (generate_array_guard(kls, region) != nullptr) 3168 // A guard was added. If the guard is taken, it was an array. 3169 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3170 // If we fall through, it's a plain class. Get its _super. 3171 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3172 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL)); 3173 null_ctl = top(); 3174 kls = null_check_oop(kls, &null_ctl); 3175 if (null_ctl != top()) { 3176 // If the guard is taken, Object.superClass is null (both klass and mirror). 3177 region->add_req(null_ctl); 3178 phi ->add_req(null()); 3179 } 3180 if (!stopped()) { 3181 query_value = load_mirror_from_klass(kls); 3182 } 3183 break; 3184 3185 case vmIntrinsics::_getClassAccessFlags: 3186 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3187 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3188 break; 3189 3190 default: 3191 fatal_unexpected_iid(id); 3192 break; 3193 } 3194 3195 // Fall-through is the normal case of a query to a real class. 3196 phi->init_req(1, query_value); 3197 region->init_req(1, control()); 3198 3199 C->set_has_split_ifs(true); // Has chance for split-if optimization 3200 set_result(region, phi); 3201 return true; 3202 } 3203 3204 //-------------------------inline_Class_cast------------------- 3205 bool LibraryCallKit::inline_Class_cast() { 3206 Node* mirror = argument(0); // Class 3207 Node* obj = argument(1); 3208 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3209 if (mirror_con == nullptr) { 3210 return false; // dead path (mirror->is_top()). 3211 } 3212 if (obj == nullptr || obj->is_top()) { 3213 return false; // dead path 3214 } 3215 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3216 3217 // First, see if Class.cast() can be folded statically. 3218 // java_mirror_type() returns non-null for compile-time Class constants. 3219 ciType* tm = mirror_con->java_mirror_type(); 3220 if (tm != nullptr && tm->is_klass() && 3221 tp != NULL && tp->klass() != NULL) { 3222 if (!tp->klass()->is_loaded()) { 3223 // Don't use intrinsic when class is not loaded. 3224 return false; 3225 } else { 3226 int static_res = C->static_subtype_check(tm->as_klass(), tp->klass()); 3227 if (static_res == Compile::SSC_always_true) { 3228 // isInstance() is true - fold the code. 3229 set_result(obj); 3230 return true; 3231 } else if (static_res == Compile::SSC_always_false) { 3232 // Don't use intrinsic, have to throw ClassCastException. 3233 // If the reference is null, the non-intrinsic bytecode will 3234 // be optimized appropriately. 3235 return false; 3236 } 3237 } 3238 } 3239 3240 // Bailout intrinsic and do normal inlining if exception path is frequent. 3241 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3242 return false; 3243 } 3244 3245 // Generate dynamic checks. 3246 // Class.cast() is java implementation of _checkcast bytecode. 3247 // Do checkcast (Parse::do_checkcast()) optimizations here. 3248 3249 mirror = null_check(mirror); 3250 // If mirror is dead, only null-path is taken. 3251 if (stopped()) { 3252 return true; 3253 } 3254 3255 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 3256 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3257 RegionNode* region = new RegionNode(PATH_LIMIT); 3258 record_for_igvn(region); 3259 3260 // Now load the mirror's klass metaobject, and null-check it. 3261 // If kls is null, we have a primitive mirror and 3262 // nothing is an instance of a primitive type. 3263 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3264 3265 Node* res = top(); 3266 if (!stopped()) { 3267 Node* bad_type_ctrl = top(); 3268 // Do checkcast optimizations. 3269 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3270 region->init_req(_bad_type_path, bad_type_ctrl); 3271 } 3272 if (region->in(_prim_path) != top() || 3273 region->in(_bad_type_path) != top()) { 3274 // Let Interpreter throw ClassCastException. 3275 PreserveJVMState pjvms(this); 3276 set_control(_gvn.transform(region)); 3277 uncommon_trap(Deoptimization::Reason_intrinsic, 3278 Deoptimization::Action_maybe_recompile); 3279 } 3280 if (!stopped()) { 3281 set_result(res); 3282 } 3283 return true; 3284 } 3285 3286 3287 //--------------------------inline_native_subtype_check------------------------ 3288 // This intrinsic takes the JNI calls out of the heart of 3289 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3290 bool LibraryCallKit::inline_native_subtype_check() { 3291 // Pull both arguments off the stack. 3292 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3293 args[0] = argument(0); 3294 args[1] = argument(1); 3295 Node* klasses[2]; // corresponding Klasses: superk, subk 3296 klasses[0] = klasses[1] = top(); 3297 3298 enum { 3299 // A full decision tree on {superc is prim, subc is prim}: 3300 _prim_0_path = 1, // {P,N} => false 3301 // {P,P} & superc!=subc => false 3302 _prim_same_path, // {P,P} & superc==subc => true 3303 _prim_1_path, // {N,P} => false 3304 _ref_subtype_path, // {N,N} & subtype check wins => true 3305 _both_ref_path, // {N,N} & subtype check loses => false 3306 PATH_LIMIT 3307 }; 3308 3309 RegionNode* region = new RegionNode(PATH_LIMIT); 3310 Node* phi = new PhiNode(region, TypeInt::BOOL); 3311 record_for_igvn(region); 3312 3313 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3314 const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL; 3315 int class_klass_offset = java_lang_Class::klass_offset(); 3316 3317 // First null-check both mirrors and load each mirror's klass metaobject. 3318 int which_arg; 3319 for (which_arg = 0; which_arg <= 1; which_arg++) { 3320 Node* arg = args[which_arg]; 3321 arg = null_check(arg); 3322 if (stopped()) break; 3323 args[which_arg] = arg; 3324 3325 Node* p = basic_plus_adr(arg, class_klass_offset); 3326 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 3327 klasses[which_arg] = _gvn.transform(kls); 3328 } 3329 3330 // Having loaded both klasses, test each for null. 3331 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3332 for (which_arg = 0; which_arg <= 1; which_arg++) { 3333 Node* kls = klasses[which_arg]; 3334 Node* null_ctl = top(); 3335 kls = null_check_oop(kls, &null_ctl, never_see_null); 3336 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3337 region->init_req(prim_path, null_ctl); 3338 if (stopped()) break; 3339 klasses[which_arg] = kls; 3340 } 3341 3342 if (!stopped()) { 3343 // now we have two reference types, in klasses[0..1] 3344 Node* subk = klasses[1]; // the argument to isAssignableFrom 3345 Node* superk = klasses[0]; // the receiver 3346 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3347 // now we have a successful reference subtype check 3348 region->set_req(_ref_subtype_path, control()); 3349 } 3350 3351 // If both operands are primitive (both klasses null), then 3352 // we must return true when they are identical primitives. 3353 // It is convenient to test this after the first null klass check. 3354 set_control(region->in(_prim_0_path)); // go back to first null check 3355 if (!stopped()) { 3356 // Since superc is primitive, make a guard for the superc==subc case. 3357 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3358 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3359 generate_guard(bol_eq, region, PROB_FAIR); 3360 if (region->req() == PATH_LIMIT+1) { 3361 // A guard was added. If the added guard is taken, superc==subc. 3362 region->swap_edges(PATH_LIMIT, _prim_same_path); 3363 region->del_req(PATH_LIMIT); 3364 } 3365 region->set_req(_prim_0_path, control()); // Not equal after all. 3366 } 3367 3368 // these are the only paths that produce 'true': 3369 phi->set_req(_prim_same_path, intcon(1)); 3370 phi->set_req(_ref_subtype_path, intcon(1)); 3371 3372 // pull together the cases: 3373 assert(region->req() == PATH_LIMIT, "sane region"); 3374 for (uint i = 1; i < region->req(); i++) { 3375 Node* ctl = region->in(i); 3376 if (ctl == nullptr || ctl == top()) { 3377 region->set_req(i, top()); 3378 phi ->set_req(i, top()); 3379 } else if (phi->in(i) == nullptr) { 3380 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3381 } 3382 } 3383 3384 set_control(_gvn.transform(region)); 3385 set_result(_gvn.transform(phi)); 3386 return true; 3387 } 3388 3389 //---------------------generate_array_guard_common------------------------ 3390 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3391 bool obj_array, bool not_array) { 3392 3393 if (stopped()) { 3394 return nullptr; 3395 } 3396 3397 // If obj_array/non_array==false/false: 3398 // Branch around if the given klass is in fact an array (either obj or prim). 3399 // If obj_array/non_array==false/true: 3400 // Branch around if the given klass is not an array klass of any kind. 3401 // If obj_array/non_array==true/true: 3402 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3403 // If obj_array/non_array==true/false: 3404 // Branch around if the kls is an oop array (Object[] or subtype) 3405 // 3406 // Like generate_guard, adds a new path onto the region. 3407 jint layout_con = 0; 3408 Node* layout_val = get_layout_helper(kls, layout_con); 3409 if (layout_val == nullptr) { 3410 bool query = (obj_array 3411 ? Klass::layout_helper_is_objArray(layout_con) 3412 : Klass::layout_helper_is_array(layout_con)); 3413 if (query == not_array) { 3414 return nullptr; // never a branch 3415 } else { // always a branch 3416 Node* always_branch = control(); 3417 if (region != nullptr) 3418 region->add_req(always_branch); 3419 set_control(top()); 3420 return always_branch; 3421 } 3422 } 3423 // Now test the correct condition. 3424 jint nval = (obj_array 3425 ? (jint)(Klass::_lh_array_tag_type_value 3426 << Klass::_lh_array_tag_shift) 3427 : Klass::_lh_neutral_value); 3428 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3429 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3430 // invert the test if we are looking for a non-array 3431 if (not_array) btest = BoolTest(btest).negate(); 3432 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3433 return generate_fair_guard(bol, region); 3434 } 3435 3436 3437 //-----------------------inline_native_newArray-------------------------- 3438 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3439 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3440 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3441 Node* mirror; 3442 Node* count_val; 3443 if (uninitialized) { 3444 mirror = argument(1); 3445 count_val = argument(2); 3446 } else { 3447 mirror = argument(0); 3448 count_val = argument(1); 3449 } 3450 3451 mirror = null_check(mirror); 3452 // If mirror or obj is dead, only null-path is taken. 3453 if (stopped()) return true; 3454 3455 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3456 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3457 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3458 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3459 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3460 3461 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3462 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 3463 result_reg, _slow_path); 3464 Node* normal_ctl = control(); 3465 Node* no_array_ctl = result_reg->in(_slow_path); 3466 3467 // Generate code for the slow case. We make a call to newArray(). 3468 set_control(no_array_ctl); 3469 if (!stopped()) { 3470 // Either the input type is void.class, or else the 3471 // array klass has not yet been cached. Either the 3472 // ensuing call will throw an exception, or else it 3473 // will cache the array klass for next time. 3474 PreserveJVMState pjvms(this); 3475 CallJavaNode* slow_call = nullptr; 3476 if (uninitialized) { 3477 // Generate optimized virtual call (holder class 'Unsafe' is final) 3478 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 3479 } else { 3480 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 3481 } 3482 Node* slow_result = set_results_for_java_call(slow_call); 3483 // this->control() comes from set_results_for_java_call 3484 result_reg->set_req(_slow_path, control()); 3485 result_val->set_req(_slow_path, slow_result); 3486 result_io ->set_req(_slow_path, i_o()); 3487 result_mem->set_req(_slow_path, reset_memory()); 3488 } 3489 3490 set_control(normal_ctl); 3491 if (!stopped()) { 3492 // Normal case: The array type has been cached in the java.lang.Class. 3493 // The following call works fine even if the array type is polymorphic. 3494 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3495 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 3496 result_reg->init_req(_normal_path, control()); 3497 result_val->init_req(_normal_path, obj); 3498 result_io ->init_req(_normal_path, i_o()); 3499 result_mem->init_req(_normal_path, reset_memory()); 3500 3501 if (uninitialized) { 3502 // Mark the allocation so that zeroing is skipped 3503 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 3504 alloc->maybe_set_complete(&_gvn); 3505 } 3506 } 3507 3508 // Return the combined state. 3509 set_i_o( _gvn.transform(result_io) ); 3510 set_all_memory( _gvn.transform(result_mem)); 3511 3512 C->set_has_split_ifs(true); // Has chance for split-if optimization 3513 set_result(result_reg, result_val); 3514 return true; 3515 } 3516 3517 //----------------------inline_native_getLength-------------------------- 3518 // public static native int java.lang.reflect.Array.getLength(Object array); 3519 bool LibraryCallKit::inline_native_getLength() { 3520 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3521 3522 Node* array = null_check(argument(0)); 3523 // If array is dead, only null-path is taken. 3524 if (stopped()) return true; 3525 3526 // Deoptimize if it is a non-array. 3527 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 3528 3529 if (non_array != nullptr) { 3530 PreserveJVMState pjvms(this); 3531 set_control(non_array); 3532 uncommon_trap(Deoptimization::Reason_intrinsic, 3533 Deoptimization::Action_maybe_recompile); 3534 } 3535 3536 // If control is dead, only non-array-path is taken. 3537 if (stopped()) return true; 3538 3539 // The works fine even if the array type is polymorphic. 3540 // It could be a dynamic mix of int[], boolean[], Object[], etc. 3541 Node* result = load_array_length(array); 3542 3543 C->set_has_split_ifs(true); // Has chance for split-if optimization 3544 set_result(result); 3545 return true; 3546 } 3547 3548 //------------------------inline_array_copyOf---------------------------- 3549 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 3550 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 3551 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 3552 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 3553 3554 // Get the arguments. 3555 Node* original = argument(0); 3556 Node* start = is_copyOfRange? argument(1): intcon(0); 3557 Node* end = is_copyOfRange? argument(2): argument(1); 3558 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 3559 3560 Node* newcopy = nullptr; 3561 3562 // Set the original stack and the reexecute bit for the interpreter to reexecute 3563 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 3564 { PreserveReexecuteState preexecs(this); 3565 jvms()->set_should_reexecute(true); 3566 3567 array_type_mirror = null_check(array_type_mirror); 3568 original = null_check(original); 3569 3570 // Check if a null path was taken unconditionally. 3571 if (stopped()) return true; 3572 3573 Node* orig_length = load_array_length(original); 3574 3575 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 3576 klass_node = null_check(klass_node); 3577 3578 RegionNode* bailout = new RegionNode(1); 3579 record_for_igvn(bailout); 3580 3581 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 3582 // Bail out if that is so. 3583 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 3584 if (not_objArray != nullptr) { 3585 // Improve the klass node's type from the new optimistic assumption: 3586 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 3587 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 3588 Node* cast = new CastPPNode(klass_node, akls); 3589 cast->init_req(0, control()); 3590 klass_node = _gvn.transform(cast); 3591 } 3592 3593 // Bail out if either start or end is negative. 3594 generate_negative_guard(start, bailout, &start); 3595 generate_negative_guard(end, bailout, &end); 3596 3597 Node* length = end; 3598 if (_gvn.type(start) != TypeInt::ZERO) { 3599 length = _gvn.transform(new SubINode(end, start)); 3600 } 3601 3602 // Bail out if length is negative. 3603 // Without this the new_array would throw 3604 // NegativeArraySizeException but IllegalArgumentException is what 3605 // should be thrown 3606 generate_negative_guard(length, bailout, &length); 3607 3608 if (bailout->req() > 1) { 3609 PreserveJVMState pjvms(this); 3610 set_control(_gvn.transform(bailout)); 3611 uncommon_trap(Deoptimization::Reason_intrinsic, 3612 Deoptimization::Action_maybe_recompile); 3613 } 3614 3615 if (!stopped()) { 3616 // How many elements will we copy from the original? 3617 // The answer is MinI(orig_length - start, length). 3618 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 3619 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 3620 3621 // Generate a direct call to the right arraycopy function(s). 3622 // We know the copy is disjoint but we might not know if the 3623 // oop stores need checking. 3624 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 3625 // This will fail a store-check if x contains any non-nulls. 3626 3627 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 3628 // loads/stores but it is legal only if we're sure the 3629 // Arrays.copyOf would succeed. So we need all input arguments 3630 // to the copyOf to be validated, including that the copy to the 3631 // new array won't trigger an ArrayStoreException. That subtype 3632 // check can be optimized if we know something on the type of 3633 // the input array from type speculation. 3634 if (_gvn.type(klass_node)->singleton()) { 3635 ciKlass* subk = _gvn.type(load_object_klass(original))->is_klassptr()->klass(); 3636 ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass(); 3637 3638 int test = C->static_subtype_check(superk, subk); 3639 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 3640 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 3641 if (t_original->speculative_type() != nullptr) { 3642 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 3643 } 3644 } 3645 } 3646 3647 bool validated = false; 3648 // Reason_class_check rather than Reason_intrinsic because we 3649 // want to intrinsify even if this traps. 3650 if (!too_many_traps(Deoptimization::Reason_class_check)) { 3651 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 3652 3653 if (not_subtype_ctrl != top()) { 3654 PreserveJVMState pjvms(this); 3655 set_control(not_subtype_ctrl); 3656 uncommon_trap(Deoptimization::Reason_class_check, 3657 Deoptimization::Action_make_not_entrant); 3658 assert(stopped(), "Should be stopped"); 3659 } 3660 validated = true; 3661 } 3662 3663 if (!stopped()) { 3664 newcopy = new_array(klass_node, length, 0); // no arguments to push 3665 3666 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 3667 load_object_klass(original), klass_node); 3668 if (!is_copyOfRange) { 3669 ac->set_copyof(validated); 3670 } else { 3671 ac->set_copyofrange(validated); 3672 } 3673 Node* n = _gvn.transform(ac); 3674 if (n == ac) { 3675 ac->connect_outputs(this); 3676 } else { 3677 assert(validated, "shouldn't transform if all arguments not validated"); 3678 set_all_memory(n); 3679 } 3680 } 3681 } 3682 } // original reexecute is set back here 3683 3684 C->set_has_split_ifs(true); // Has chance for split-if optimization 3685 if (!stopped()) { 3686 set_result(newcopy); 3687 } 3688 return true; 3689 } 3690 3691 3692 //----------------------generate_virtual_guard--------------------------- 3693 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 3694 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 3695 RegionNode* slow_region) { 3696 ciMethod* method = callee(); 3697 int vtable_index = method->vtable_index(); 3698 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3699 "bad index %d", vtable_index); 3700 // Get the Method* out of the appropriate vtable entry. 3701 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 3702 vtable_index*vtableEntry::size_in_bytes() + 3703 vtableEntry::method_offset_in_bytes(); 3704 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 3705 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3706 3707 // Compare the target method with the expected method (e.g., Object.hashCode). 3708 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 3709 3710 Node* native_call = makecon(native_call_addr); 3711 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 3712 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 3713 3714 return generate_slow_guard(test_native, slow_region); 3715 } 3716 3717 //-----------------------generate_method_call---------------------------- 3718 // Use generate_method_call to make a slow-call to the real 3719 // method if the fast path fails. An alternative would be to 3720 // use a stub like OptoRuntime::slow_arraycopy_Java. 3721 // This only works for expanding the current library call, 3722 // not another intrinsic. (E.g., don't use this for making an 3723 // arraycopy call inside of the copyOf intrinsic.) 3724 CallJavaNode* 3725 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 3726 // When compiling the intrinsic method itself, do not use this technique. 3727 guarantee(callee() != C->method(), "cannot make slow-call to self"); 3728 3729 ciMethod* method = callee(); 3730 // ensure the JVMS we have will be correct for this call 3731 guarantee(method_id == method->intrinsic_id(), "must match"); 3732 3733 const TypeFunc* tf = TypeFunc::make(method); 3734 if (res_not_null) { 3735 assert(tf->return_type() == T_OBJECT, ""); 3736 const TypeTuple* range = tf->range(); 3737 const Type** fields = TypeTuple::fields(range->cnt()); 3738 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 3739 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 3740 tf = TypeFunc::make(tf->domain(), new_range); 3741 } 3742 CallJavaNode* slow_call; 3743 if (is_static) { 3744 assert(!is_virtual, ""); 3745 slow_call = new CallStaticJavaNode(C, tf, 3746 SharedRuntime::get_resolve_static_call_stub(), method); 3747 } else if (is_virtual) { 3748 null_check_receiver(); 3749 int vtable_index = Method::invalid_vtable_index; 3750 if (UseInlineCaches) { 3751 // Suppress the vtable call 3752 } else { 3753 // hashCode and clone are not a miranda methods, 3754 // so the vtable index is fixed. 3755 // No need to use the linkResolver to get it. 3756 vtable_index = method->vtable_index(); 3757 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 3758 "bad index %d", vtable_index); 3759 } 3760 slow_call = new CallDynamicJavaNode(tf, 3761 SharedRuntime::get_resolve_virtual_call_stub(), 3762 method, vtable_index); 3763 } else { // neither virtual nor static: opt_virtual 3764 null_check_receiver(); 3765 slow_call = new CallStaticJavaNode(C, tf, 3766 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 3767 slow_call->set_optimized_virtual(true); 3768 } 3769 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 3770 // To be able to issue a direct call (optimized virtual or virtual) 3771 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 3772 // about the method being invoked should be attached to the call site to 3773 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 3774 slow_call->set_override_symbolic_info(true); 3775 } 3776 set_arguments_for_java_call(slow_call); 3777 set_edges_for_java_call(slow_call); 3778 return slow_call; 3779 } 3780 3781 3782 /** 3783 * Build special case code for calls to hashCode on an object. This call may 3784 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 3785 * slightly different code. 3786 */ 3787 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 3788 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 3789 assert(!(is_virtual && is_static), "either virtual, special, or static"); 3790 3791 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 3792 3793 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3794 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 3795 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3796 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3797 Node* obj = nullptr; 3798 if (!is_static) { 3799 // Check for hashing null object 3800 obj = null_check_receiver(); 3801 if (stopped()) return true; // unconditionally null 3802 result_reg->init_req(_null_path, top()); 3803 result_val->init_req(_null_path, top()); 3804 } else { 3805 // Do a null check, and return zero if null. 3806 // System.identityHashCode(null) == 0 3807 obj = argument(0); 3808 Node* null_ctl = top(); 3809 obj = null_check_oop(obj, &null_ctl); 3810 result_reg->init_req(_null_path, null_ctl); 3811 result_val->init_req(_null_path, _gvn.intcon(0)); 3812 } 3813 3814 // Unconditionally null? Then return right away. 3815 if (stopped()) { 3816 set_control( result_reg->in(_null_path)); 3817 if (!stopped()) 3818 set_result(result_val->in(_null_path)); 3819 return true; 3820 } 3821 3822 // We only go to the fast case code if we pass a number of guards. The 3823 // paths which do not pass are accumulated in the slow_region. 3824 RegionNode* slow_region = new RegionNode(1); 3825 record_for_igvn(slow_region); 3826 3827 // If this is a virtual call, we generate a funny guard. We pull out 3828 // the vtable entry corresponding to hashCode() from the target object. 3829 // If the target method which we are calling happens to be the native 3830 // Object hashCode() method, we pass the guard. We do not need this 3831 // guard for non-virtual calls -- the caller is known to be the native 3832 // Object hashCode(). 3833 if (is_virtual) { 3834 // After null check, get the object's klass. 3835 Node* obj_klass = load_object_klass(obj); 3836 generate_virtual_guard(obj_klass, slow_region); 3837 } 3838 3839 // Get the header out of the object, use LoadMarkNode when available 3840 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 3841 // The control of the load must be null. Otherwise, the load can move before 3842 // the null check after castPP removal. 3843 Node* no_ctrl = nullptr; 3844 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 3845 3846 // Test the header to see if it is safe to read w.r.t. locking. 3847 Node *lock_mask = _gvn.MakeConX(markWord::biased_lock_mask_in_place); 3848 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 3849 if (LockingMode == LM_LIGHTWEIGHT) { 3850 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 3851 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 3852 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 3853 3854 generate_slow_guard(test_monitor, slow_region); 3855 } else { 3856 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 3857 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 3858 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 3859 3860 generate_slow_guard(test_not_unlocked, slow_region); 3861 } 3862 3863 // Get the hash value and check to see that it has been properly assigned. 3864 // We depend on hash_mask being at most 32 bits and avoid the use of 3865 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 3866 // vm: see markWord.hpp. 3867 Node *hash_mask = _gvn.intcon(UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask); 3868 Node *hash_shift = _gvn.intcon(UseCompactObjectHeaders ? markWord::hash_shift_compact : markWord::hash_shift); 3869 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 3870 // This hack lets the hash bits live anywhere in the mark object now, as long 3871 // as the shift drops the relevant bits into the low 32 bits. Note that 3872 // Java spec says that HashCode is an int so there's no point in capturing 3873 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 3874 hshifted_header = ConvX2I(hshifted_header); 3875 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 3876 3877 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 3878 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 3879 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 3880 3881 generate_slow_guard(test_assigned, slow_region); 3882 3883 Node* init_mem = reset_memory(); 3884 // fill in the rest of the null path: 3885 result_io ->init_req(_null_path, i_o()); 3886 result_mem->init_req(_null_path, init_mem); 3887 3888 result_val->init_req(_fast_path, hash_val); 3889 result_reg->init_req(_fast_path, control()); 3890 result_io ->init_req(_fast_path, i_o()); 3891 result_mem->init_req(_fast_path, init_mem); 3892 3893 // Generate code for the slow case. We make a call to hashCode(). 3894 set_control(_gvn.transform(slow_region)); 3895 if (!stopped()) { 3896 // No need for PreserveJVMState, because we're using up the present state. 3897 set_all_memory(init_mem); 3898 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 3899 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 3900 Node* slow_result = set_results_for_java_call(slow_call); 3901 // this->control() comes from set_results_for_java_call 3902 result_reg->init_req(_slow_path, control()); 3903 result_val->init_req(_slow_path, slow_result); 3904 result_io ->set_req(_slow_path, i_o()); 3905 result_mem ->set_req(_slow_path, reset_memory()); 3906 } 3907 3908 // Return the combined state. 3909 set_i_o( _gvn.transform(result_io) ); 3910 set_all_memory( _gvn.transform(result_mem)); 3911 3912 set_result(result_reg, result_val); 3913 return true; 3914 } 3915 3916 //---------------------------inline_native_getClass---------------------------- 3917 // public final native Class<?> java.lang.Object.getClass(); 3918 // 3919 // Build special case code for calls to getClass on an object. 3920 bool LibraryCallKit::inline_native_getClass() { 3921 Node* obj = null_check_receiver(); 3922 if (stopped()) return true; 3923 set_result(load_mirror_from_klass(load_object_klass(obj))); 3924 return true; 3925 } 3926 3927 //-----------------inline_native_Reflection_getCallerClass--------------------- 3928 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 3929 // 3930 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 3931 // 3932 // NOTE: This code must perform the same logic as JVM_GetCallerClass 3933 // in that it must skip particular security frames and checks for 3934 // caller sensitive methods. 3935 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 3936 #ifndef PRODUCT 3937 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3938 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 3939 } 3940 #endif 3941 3942 if (!jvms()->has_method()) { 3943 #ifndef PRODUCT 3944 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3945 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 3946 } 3947 #endif 3948 return false; 3949 } 3950 3951 // Walk back up the JVM state to find the caller at the required 3952 // depth. 3953 JVMState* caller_jvms = jvms(); 3954 3955 // Cf. JVM_GetCallerClass 3956 // NOTE: Start the loop at depth 1 because the current JVM state does 3957 // not include the Reflection.getCallerClass() frame. 3958 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 3959 ciMethod* m = caller_jvms->method(); 3960 switch (n) { 3961 case 0: 3962 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 3963 break; 3964 case 1: 3965 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 3966 if (!m->caller_sensitive()) { 3967 #ifndef PRODUCT 3968 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3969 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 3970 } 3971 #endif 3972 return false; // bail-out; let JVM_GetCallerClass do the work 3973 } 3974 break; 3975 default: 3976 if (!m->is_ignored_by_security_stack_walk()) { 3977 // We have reached the desired frame; return the holder class. 3978 // Acquire method holder as java.lang.Class and push as constant. 3979 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 3980 ciInstance* caller_mirror = caller_klass->java_mirror(); 3981 set_result(makecon(TypeInstPtr::make(caller_mirror))); 3982 3983 #ifndef PRODUCT 3984 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 3985 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 3986 tty->print_cr(" JVM state at this point:"); 3987 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 3988 ciMethod* m = jvms()->of_depth(i)->method(); 3989 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 3990 } 3991 } 3992 #endif 3993 return true; 3994 } 3995 break; 3996 } 3997 } 3998 3999 #ifndef PRODUCT 4000 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4001 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4002 tty->print_cr(" JVM state at this point:"); 4003 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4004 ciMethod* m = jvms()->of_depth(i)->method(); 4005 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4006 } 4007 } 4008 #endif 4009 4010 return false; // bail-out; let JVM_GetCallerClass do the work 4011 } 4012 4013 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4014 Node* arg = argument(0); 4015 Node* result = nullptr; 4016 4017 switch (id) { 4018 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4019 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4020 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4021 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4022 4023 case vmIntrinsics::_doubleToLongBits: { 4024 // two paths (plus control) merge in a wood 4025 RegionNode *r = new RegionNode(3); 4026 Node *phi = new PhiNode(r, TypeLong::LONG); 4027 4028 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4029 // Build the boolean node 4030 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4031 4032 // Branch either way. 4033 // NaN case is less traveled, which makes all the difference. 4034 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4035 Node *opt_isnan = _gvn.transform(ifisnan); 4036 assert( opt_isnan->is_If(), "Expect an IfNode"); 4037 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4038 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4039 4040 set_control(iftrue); 4041 4042 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4043 Node *slow_result = longcon(nan_bits); // return NaN 4044 phi->init_req(1, _gvn.transform( slow_result )); 4045 r->init_req(1, iftrue); 4046 4047 // Else fall through 4048 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4049 set_control(iffalse); 4050 4051 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4052 r->init_req(2, iffalse); 4053 4054 // Post merge 4055 set_control(_gvn.transform(r)); 4056 record_for_igvn(r); 4057 4058 C->set_has_split_ifs(true); // Has chance for split-if optimization 4059 result = phi; 4060 assert(result->bottom_type()->isa_long(), "must be"); 4061 break; 4062 } 4063 4064 case vmIntrinsics::_floatToIntBits: { 4065 // two paths (plus control) merge in a wood 4066 RegionNode *r = new RegionNode(3); 4067 Node *phi = new PhiNode(r, TypeInt::INT); 4068 4069 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4070 // Build the boolean node 4071 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4072 4073 // Branch either way. 4074 // NaN case is less traveled, which makes all the difference. 4075 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4076 Node *opt_isnan = _gvn.transform(ifisnan); 4077 assert( opt_isnan->is_If(), "Expect an IfNode"); 4078 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4079 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4080 4081 set_control(iftrue); 4082 4083 static const jint nan_bits = 0x7fc00000; 4084 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4085 phi->init_req(1, _gvn.transform( slow_result )); 4086 r->init_req(1, iftrue); 4087 4088 // Else fall through 4089 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4090 set_control(iffalse); 4091 4092 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4093 r->init_req(2, iffalse); 4094 4095 // Post merge 4096 set_control(_gvn.transform(r)); 4097 record_for_igvn(r); 4098 4099 C->set_has_split_ifs(true); // Has chance for split-if optimization 4100 result = phi; 4101 assert(result->bottom_type()->isa_int(), "must be"); 4102 break; 4103 } 4104 4105 default: 4106 fatal_unexpected_iid(id); 4107 break; 4108 } 4109 set_result(_gvn.transform(result)); 4110 return true; 4111 } 4112 4113 //----------------------inline_unsafe_copyMemory------------------------- 4114 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4115 bool LibraryCallKit::inline_unsafe_copyMemory() { 4116 if (callee()->is_static()) return false; // caller must have the capability! 4117 null_check_receiver(); // null-check receiver 4118 if (stopped()) return true; 4119 4120 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4121 4122 Node* src_ptr = argument(1); // type: oop 4123 Node* src_off = ConvL2X(argument(2)); // type: long 4124 Node* dst_ptr = argument(4); // type: oop 4125 Node* dst_off = ConvL2X(argument(5)); // type: long 4126 Node* size = ConvL2X(argument(7)); // type: long 4127 4128 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4129 "fieldOffset must be byte-scaled"); 4130 4131 Node* src = make_unsafe_address(src_ptr, src_off); 4132 Node* dst = make_unsafe_address(dst_ptr, dst_off); 4133 4134 // Conservatively insert a memory barrier on all memory slices. 4135 // Do not let writes of the copy source or destination float below the copy. 4136 insert_mem_bar(Op_MemBarCPUOrder); 4137 4138 Node* thread = _gvn.transform(new ThreadLocalNode()); 4139 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4140 BasicType doing_unsafe_access_bt = T_BYTE; 4141 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4142 4143 // update volatile field 4144 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4145 4146 // Call it. Note that the length argument is not scaled. 4147 make_runtime_call(RC_LEAF|RC_NO_FP, 4148 OptoRuntime::fast_arraycopy_Type(), 4149 StubRoutines::unsafe_arraycopy(), 4150 "unsafe_arraycopy", 4151 TypeRawPtr::BOTTOM, 4152 src, dst, size XTOP); 4153 4154 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4155 4156 // Do not let reads of the copy destination float above the copy. 4157 insert_mem_bar(Op_MemBarCPUOrder); 4158 4159 return true; 4160 } 4161 4162 #undef XTOP 4163 4164 //------------------------clone_coping----------------------------------- 4165 // Helper function for inline_native_clone. 4166 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4167 assert(obj_size != nullptr, ""); 4168 Node* raw_obj = alloc_obj->in(1); 4169 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4170 4171 AllocateNode* alloc = nullptr; 4172 if (ReduceBulkZeroing) { 4173 // We will be completely responsible for initializing this object - 4174 // mark Initialize node as complete. 4175 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4176 // The object was just allocated - there should be no any stores! 4177 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 4178 // Mark as complete_with_arraycopy so that on AllocateNode 4179 // expansion, we know this AllocateNode is initialized by an array 4180 // copy and a StoreStore barrier exists after the array copy. 4181 alloc->initialization()->set_complete_with_arraycopy(); 4182 } 4183 4184 Node* size = _gvn.transform(obj_size); 4185 access_clone(obj, alloc_obj, size, is_array); 4186 4187 // Do not let reads from the cloned object float above the arraycopy. 4188 if (alloc != nullptr) { 4189 // Do not let stores that initialize this object be reordered with 4190 // a subsequent store that would make this object accessible by 4191 // other threads. 4192 // Record what AllocateNode this StoreStore protects so that 4193 // escape analysis can go from the MemBarStoreStoreNode to the 4194 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4195 // based on the escape status of the AllocateNode. 4196 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4197 } else { 4198 insert_mem_bar(Op_MemBarCPUOrder); 4199 } 4200 } 4201 4202 //------------------------inline_native_clone---------------------------- 4203 // protected native Object java.lang.Object.clone(); 4204 // 4205 // Here are the simple edge cases: 4206 // null receiver => normal trap 4207 // virtual and clone was overridden => slow path to out-of-line clone 4208 // not cloneable or finalizer => slow path to out-of-line Object.clone 4209 // 4210 // The general case has two steps, allocation and copying. 4211 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4212 // 4213 // Copying also has two cases, oop arrays and everything else. 4214 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4215 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4216 // 4217 // These steps fold up nicely if and when the cloned object's klass 4218 // can be sharply typed as an object array, a type array, or an instance. 4219 // 4220 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4221 PhiNode* result_val; 4222 4223 // Set the reexecute bit for the interpreter to reexecute 4224 // the bytecode that invokes Object.clone if deoptimization happens. 4225 { PreserveReexecuteState preexecs(this); 4226 jvms()->set_should_reexecute(true); 4227 4228 Node* obj = null_check_receiver(); 4229 if (stopped()) return true; 4230 4231 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4232 4233 // If we are going to clone an instance, we need its exact type to 4234 // know the number and types of fields to convert the clone to 4235 // loads/stores. Maybe a speculative type can help us. 4236 if (!obj_type->klass_is_exact() && 4237 obj_type->speculative_type() != nullptr && 4238 obj_type->speculative_type()->is_instance_klass()) { 4239 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4240 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4241 !spec_ik->has_injected_fields()) { 4242 ciKlass* k = obj_type->klass(); 4243 if (!k->is_instance_klass() || 4244 k->as_instance_klass()->is_interface() || 4245 k->as_instance_klass()->has_subklass()) { 4246 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4247 } 4248 } 4249 } 4250 4251 // Conservatively insert a memory barrier on all memory slices. 4252 // Do not let writes into the original float below the clone. 4253 insert_mem_bar(Op_MemBarCPUOrder); 4254 4255 // paths into result_reg: 4256 enum { 4257 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4258 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4259 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4260 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4261 PATH_LIMIT 4262 }; 4263 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4264 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4265 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4266 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4267 record_for_igvn(result_reg); 4268 4269 Node* obj_klass = load_object_klass(obj); 4270 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 4271 if (array_ctl != nullptr) { 4272 // It's an array. 4273 PreserveJVMState pjvms(this); 4274 set_control(array_ctl); 4275 Node* obj_length = load_array_length(obj); 4276 Node* obj_size = nullptr; 4277 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4278 4279 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4280 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 4281 // If it is an oop array, it requires very special treatment, 4282 // because gc barriers are required when accessing the array. 4283 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 4284 if (is_obja != nullptr) { 4285 PreserveJVMState pjvms2(this); 4286 set_control(is_obja); 4287 // Generate a direct call to the right arraycopy function(s). 4288 // Clones are always tightly coupled. 4289 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 4290 ac->set_clone_oop_array(); 4291 Node* n = _gvn.transform(ac); 4292 assert(n == ac, "cannot disappear"); 4293 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4294 4295 result_reg->init_req(_objArray_path, control()); 4296 result_val->init_req(_objArray_path, alloc_obj); 4297 result_i_o ->set_req(_objArray_path, i_o()); 4298 result_mem ->set_req(_objArray_path, reset_memory()); 4299 } 4300 } 4301 // Otherwise, there are no barriers to worry about. 4302 // (We can dispense with card marks if we know the allocation 4303 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4304 // causes the non-eden paths to take compensating steps to 4305 // simulate a fresh allocation, so that no further 4306 // card marks are required in compiled code to initialize 4307 // the object.) 4308 4309 if (!stopped()) { 4310 copy_to_clone(obj, alloc_obj, obj_size, true); 4311 4312 // Present the results of the copy. 4313 result_reg->init_req(_array_path, control()); 4314 result_val->init_req(_array_path, alloc_obj); 4315 result_i_o ->set_req(_array_path, i_o()); 4316 result_mem ->set_req(_array_path, reset_memory()); 4317 } 4318 } 4319 4320 // We only go to the instance fast case code if we pass a number of guards. 4321 // The paths which do not pass are accumulated in the slow_region. 4322 RegionNode* slow_region = new RegionNode(1); 4323 record_for_igvn(slow_region); 4324 if (!stopped()) { 4325 // It's an instance (we did array above). Make the slow-path tests. 4326 // If this is a virtual call, we generate a funny guard. We grab 4327 // the vtable entry corresponding to clone() from the target object. 4328 // If the target method which we are calling happens to be the 4329 // Object clone() method, we pass the guard. We do not need this 4330 // guard for non-virtual calls; the caller is known to be the native 4331 // Object clone(). 4332 if (is_virtual) { 4333 generate_virtual_guard(obj_klass, slow_region); 4334 } 4335 4336 // The object must be easily cloneable and must not have a finalizer. 4337 // Both of these conditions may be checked in a single test. 4338 // We could optimize the test further, but we don't care. 4339 generate_access_flags_guard(obj_klass, 4340 // Test both conditions: 4341 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4342 // Must be cloneable but not finalizer: 4343 JVM_ACC_IS_CLONEABLE_FAST, 4344 slow_region); 4345 } 4346 4347 if (!stopped()) { 4348 // It's an instance, and it passed the slow-path tests. 4349 PreserveJVMState pjvms(this); 4350 Node* obj_size = nullptr; 4351 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4352 // is reexecuted if deoptimization occurs and there could be problems when merging 4353 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4354 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 4355 4356 copy_to_clone(obj, alloc_obj, obj_size, false); 4357 4358 // Present the results of the slow call. 4359 result_reg->init_req(_instance_path, control()); 4360 result_val->init_req(_instance_path, alloc_obj); 4361 result_i_o ->set_req(_instance_path, i_o()); 4362 result_mem ->set_req(_instance_path, reset_memory()); 4363 } 4364 4365 // Generate code for the slow case. We make a call to clone(). 4366 set_control(_gvn.transform(slow_region)); 4367 if (!stopped()) { 4368 PreserveJVMState pjvms(this); 4369 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 4370 // We need to deoptimize on exception (see comment above) 4371 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4372 // this->control() comes from set_results_for_java_call 4373 result_reg->init_req(_slow_path, control()); 4374 result_val->init_req(_slow_path, slow_result); 4375 result_i_o ->set_req(_slow_path, i_o()); 4376 result_mem ->set_req(_slow_path, reset_memory()); 4377 } 4378 4379 // Return the combined state. 4380 set_control( _gvn.transform(result_reg)); 4381 set_i_o( _gvn.transform(result_i_o)); 4382 set_all_memory( _gvn.transform(result_mem)); 4383 } // original reexecute is set back here 4384 4385 set_result(_gvn.transform(result_val)); 4386 return true; 4387 } 4388 4389 // If we have a tightly coupled allocation, the arraycopy may take care 4390 // of the array initialization. If one of the guards we insert between 4391 // the allocation and the arraycopy causes a deoptimization, an 4392 // unitialized array will escape the compiled method. To prevent that 4393 // we set the JVM state for uncommon traps between the allocation and 4394 // the arraycopy to the state before the allocation so, in case of 4395 // deoptimization, we'll reexecute the allocation and the 4396 // initialization. 4397 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4398 if (alloc != nullptr) { 4399 ciMethod* trap_method = alloc->jvms()->method(); 4400 int trap_bci = alloc->jvms()->bci(); 4401 4402 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4403 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4404 // Make sure there's no store between the allocation and the 4405 // arraycopy otherwise visible side effects could be rexecuted 4406 // in case of deoptimization and cause incorrect execution. 4407 bool no_interfering_store = true; 4408 Node* mem = alloc->in(TypeFunc::Memory); 4409 if (mem->is_MergeMem()) { 4410 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4411 Node* n = mms.memory(); 4412 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4413 assert(n->is_Store(), "what else?"); 4414 no_interfering_store = false; 4415 break; 4416 } 4417 } 4418 } else { 4419 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4420 Node* n = mms.memory(); 4421 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4422 assert(n->is_Store(), "what else?"); 4423 no_interfering_store = false; 4424 break; 4425 } 4426 } 4427 } 4428 4429 if (no_interfering_store) { 4430 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 4431 4432 JVMState* saved_jvms = jvms(); 4433 saved_reexecute_sp = _reexecute_sp; 4434 4435 set_jvms(sfpt->jvms()); 4436 _reexecute_sp = jvms()->sp(); 4437 4438 return saved_jvms; 4439 } 4440 } 4441 } 4442 return nullptr; 4443 } 4444 4445 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 4446 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 4447 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 4448 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 4449 uint size = alloc->req(); 4450 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 4451 old_jvms->set_map(sfpt); 4452 for (uint i = 0; i < size; i++) { 4453 sfpt->init_req(i, alloc->in(i)); 4454 } 4455 // re-push array length for deoptimization 4456 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 4457 old_jvms->set_sp(old_jvms->sp()+1); 4458 old_jvms->set_monoff(old_jvms->monoff()+1); 4459 old_jvms->set_scloff(old_jvms->scloff()+1); 4460 old_jvms->set_endoff(old_jvms->endoff()+1); 4461 old_jvms->set_should_reexecute(true); 4462 4463 sfpt->set_i_o(map()->i_o()); 4464 sfpt->set_memory(map()->memory()); 4465 sfpt->set_control(map()->control()); 4466 return sfpt; 4467 } 4468 4469 // In case of a deoptimization, we restart execution at the 4470 // allocation, allocating a new array. We would leave an uninitialized 4471 // array in the heap that GCs wouldn't expect. Move the allocation 4472 // after the traps so we don't allocate the array if we 4473 // deoptimize. This is possible because tightly_coupled_allocation() 4474 // guarantees there's no observer of the allocated array at this point 4475 // and the control flow is simple enough. 4476 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 4477 int saved_reexecute_sp, uint new_idx) { 4478 if (saved_jvms_before_guards != nullptr && !stopped()) { 4479 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 4480 4481 assert(alloc != nullptr, "only with a tightly coupled allocation"); 4482 // restore JVM state to the state at the arraycopy 4483 saved_jvms_before_guards->map()->set_control(map()->control()); 4484 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 4485 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 4486 // If we've improved the types of some nodes (null check) while 4487 // emitting the guards, propagate them to the current state 4488 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 4489 set_jvms(saved_jvms_before_guards); 4490 _reexecute_sp = saved_reexecute_sp; 4491 4492 // Remove the allocation from above the guards 4493 CallProjections callprojs; 4494 alloc->extract_projections(&callprojs, true); 4495 InitializeNode* init = alloc->initialization(); 4496 Node* alloc_mem = alloc->in(TypeFunc::Memory); 4497 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 4498 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 4499 4500 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 4501 // the allocation (i.e. is only valid if the allocation succeeds): 4502 // 1) replace CastIINode with AllocateArrayNode's length here 4503 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 4504 // 4505 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 4506 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 4507 Node* init_control = init->proj_out(TypeFunc::Control); 4508 Node* alloc_length = alloc->Ideal_length(); 4509 #ifdef ASSERT 4510 Node* prev_cast = nullptr; 4511 #endif 4512 for (uint i = 0; i < init_control->outcnt(); i++) { 4513 Node* init_out = init_control->raw_out(i); 4514 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 4515 #ifdef ASSERT 4516 if (prev_cast == nullptr) { 4517 prev_cast = init_out; 4518 } else { 4519 if (prev_cast->cmp(*init_out) == false) { 4520 prev_cast->dump(); 4521 init_out->dump(); 4522 assert(false, "not equal CastIINode"); 4523 } 4524 } 4525 #endif 4526 C->gvn_replace_by(init_out, alloc_length); 4527 } 4528 } 4529 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 4530 4531 // move the allocation here (after the guards) 4532 _gvn.hash_delete(alloc); 4533 alloc->set_req(TypeFunc::Control, control()); 4534 alloc->set_req(TypeFunc::I_O, i_o()); 4535 Node *mem = reset_memory(); 4536 set_all_memory(mem); 4537 alloc->set_req(TypeFunc::Memory, mem); 4538 set_control(init->proj_out_or_null(TypeFunc::Control)); 4539 set_i_o(callprojs.fallthrough_ioproj); 4540 4541 // Update memory as done in GraphKit::set_output_for_allocation() 4542 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 4543 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 4544 if (ary_type->isa_aryptr() && length_type != nullptr) { 4545 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 4546 } 4547 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 4548 int elemidx = C->get_alias_index(telemref); 4549 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 4550 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 4551 4552 Node* allocx = _gvn.transform(alloc); 4553 assert(allocx == alloc, "where has the allocation gone?"); 4554 assert(dest->is_CheckCastPP(), "not an allocation result?"); 4555 4556 _gvn.hash_delete(dest); 4557 dest->set_req(0, control()); 4558 Node* destx = _gvn.transform(dest); 4559 assert(destx == dest, "where has the allocation result gone?"); 4560 4561 array_ideal_length(alloc, ary_type, true); 4562 } 4563 } 4564 4565 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 4566 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 4567 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 4568 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 4569 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 4570 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 4571 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 4572 JVMState* saved_jvms_before_guards) { 4573 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 4574 // There is at least one unrelated uncommon trap which needs to be replaced. 4575 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 4576 4577 JVMState* saved_jvms = jvms(); 4578 const int saved_reexecute_sp = _reexecute_sp; 4579 set_jvms(sfpt->jvms()); 4580 _reexecute_sp = jvms()->sp(); 4581 4582 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 4583 4584 // Restore state 4585 set_jvms(saved_jvms); 4586 _reexecute_sp = saved_reexecute_sp; 4587 } 4588 } 4589 4590 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 4591 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 4592 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 4593 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 4594 while (if_proj->is_IfProj()) { 4595 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 4596 if (uncommon_trap != nullptr) { 4597 create_new_uncommon_trap(uncommon_trap); 4598 } 4599 assert(if_proj->in(0)->is_If(), "must be If"); 4600 if_proj = if_proj->in(0)->in(0); 4601 } 4602 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 4603 "must have reached control projection of init node"); 4604 } 4605 4606 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 4607 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 4608 assert(trap_request != 0, "no valid UCT trap request"); 4609 PreserveJVMState pjvms(this); 4610 set_control(uncommon_trap_call->in(0)); 4611 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 4612 Deoptimization::trap_request_action(trap_request)); 4613 assert(stopped(), "Should be stopped"); 4614 _gvn.hash_delete(uncommon_trap_call); 4615 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 4616 } 4617 4618 //------------------------------inline_arraycopy----------------------- 4619 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 4620 // Object dest, int destPos, 4621 // int length); 4622 bool LibraryCallKit::inline_arraycopy() { 4623 // Get the arguments. 4624 Node* src = argument(0); // type: oop 4625 Node* src_offset = argument(1); // type: int 4626 Node* dest = argument(2); // type: oop 4627 Node* dest_offset = argument(3); // type: int 4628 Node* length = argument(4); // type: int 4629 4630 uint new_idx = C->unique(); 4631 4632 // Check for allocation before we add nodes that would confuse 4633 // tightly_coupled_allocation() 4634 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 4635 4636 int saved_reexecute_sp = -1; 4637 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 4638 // See arraycopy_restore_alloc_state() comment 4639 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 4640 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 4641 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 4642 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 4643 4644 // The following tests must be performed 4645 // (1) src and dest are arrays. 4646 // (2) src and dest arrays must have elements of the same BasicType 4647 // (3) src and dest must not be null. 4648 // (4) src_offset must not be negative. 4649 // (5) dest_offset must not be negative. 4650 // (6) length must not be negative. 4651 // (7) src_offset + length must not exceed length of src. 4652 // (8) dest_offset + length must not exceed length of dest. 4653 // (9) each element of an oop array must be assignable 4654 4655 // (3) src and dest must not be null. 4656 // always do this here because we need the JVM state for uncommon traps 4657 Node* null_ctl = top(); 4658 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 4659 assert(null_ctl->is_top(), "no null control here"); 4660 dest = null_check(dest, T_ARRAY); 4661 4662 if (!can_emit_guards) { 4663 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 4664 // guards but the arraycopy node could still take advantage of a 4665 // tightly allocated allocation. tightly_coupled_allocation() is 4666 // called again to make sure it takes the null check above into 4667 // account: the null check is mandatory and if it caused an 4668 // uncommon trap to be emitted then the allocation can't be 4669 // considered tightly coupled in this context. 4670 alloc = tightly_coupled_allocation(dest); 4671 } 4672 4673 bool validated = false; 4674 4675 const Type* src_type = _gvn.type(src); 4676 const Type* dest_type = _gvn.type(dest); 4677 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4678 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 4679 4680 // Do we have the type of src? 4681 bool has_src = (top_src != nullptr && top_src->klass() != nullptr); 4682 // Do we have the type of dest? 4683 bool has_dest = (top_dest != nullptr && top_dest->klass() != nullptr); 4684 // Is the type for src from speculation? 4685 bool src_spec = false; 4686 // Is the type for dest from speculation? 4687 bool dest_spec = false; 4688 4689 if ((!has_src || !has_dest) && can_emit_guards) { 4690 // We don't have sufficient type information, let's see if 4691 // speculative types can help. We need to have types for both src 4692 // and dest so that it pays off. 4693 4694 // Do we already have or could we have type information for src 4695 bool could_have_src = has_src; 4696 // Do we already have or could we have type information for dest 4697 bool could_have_dest = has_dest; 4698 4699 ciKlass* src_k = nullptr; 4700 if (!has_src) { 4701 src_k = src_type->speculative_type_not_null(); 4702 if (src_k != nullptr && src_k->is_array_klass()) { 4703 could_have_src = true; 4704 } 4705 } 4706 4707 ciKlass* dest_k = nullptr; 4708 if (!has_dest) { 4709 dest_k = dest_type->speculative_type_not_null(); 4710 if (dest_k != nullptr && dest_k->is_array_klass()) { 4711 could_have_dest = true; 4712 } 4713 } 4714 4715 if (could_have_src && could_have_dest) { 4716 // This is going to pay off so emit the required guards 4717 if (!has_src) { 4718 src = maybe_cast_profiled_obj(src, src_k, true); 4719 src_type = _gvn.type(src); 4720 top_src = src_type->isa_aryptr(); 4721 has_src = (top_src != nullptr && top_src->klass() != nullptr); 4722 src_spec = true; 4723 } 4724 if (!has_dest) { 4725 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4726 dest_type = _gvn.type(dest); 4727 top_dest = dest_type->isa_aryptr(); 4728 has_dest = (top_dest != nullptr && top_dest->klass() != nullptr); 4729 dest_spec = true; 4730 } 4731 } 4732 } 4733 4734 if (has_src && has_dest && can_emit_guards) { 4735 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4736 BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4737 if (is_reference_type(src_elem)) src_elem = T_OBJECT; 4738 if (is_reference_type(dest_elem)) dest_elem = T_OBJECT; 4739 4740 if (src_elem == dest_elem && src_elem == T_OBJECT) { 4741 // If both arrays are object arrays then having the exact types 4742 // for both will remove the need for a subtype check at runtime 4743 // before the call and may make it possible to pick a faster copy 4744 // routine (without a subtype check on every element) 4745 // Do we have the exact type of src? 4746 bool could_have_src = src_spec; 4747 // Do we have the exact type of dest? 4748 bool could_have_dest = dest_spec; 4749 ciKlass* src_k = top_src->klass(); 4750 ciKlass* dest_k = top_dest->klass(); 4751 if (!src_spec) { 4752 src_k = src_type->speculative_type_not_null(); 4753 if (src_k != nullptr && src_k->is_array_klass()) { 4754 could_have_src = true; 4755 } 4756 } 4757 if (!dest_spec) { 4758 dest_k = dest_type->speculative_type_not_null(); 4759 if (dest_k != nullptr && dest_k->is_array_klass()) { 4760 could_have_dest = true; 4761 } 4762 } 4763 if (could_have_src && could_have_dest) { 4764 // If we can have both exact types, emit the missing guards 4765 if (could_have_src && !src_spec) { 4766 src = maybe_cast_profiled_obj(src, src_k, true); 4767 } 4768 if (could_have_dest && !dest_spec) { 4769 dest = maybe_cast_profiled_obj(dest, dest_k, true); 4770 } 4771 } 4772 } 4773 } 4774 4775 ciMethod* trap_method = method(); 4776 int trap_bci = bci(); 4777 if (saved_jvms_before_guards != nullptr) { 4778 trap_method = alloc->jvms()->method(); 4779 trap_bci = alloc->jvms()->bci(); 4780 } 4781 4782 bool negative_length_guard_generated = false; 4783 4784 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4785 can_emit_guards && 4786 !src->is_top() && !dest->is_top()) { 4787 // validate arguments: enables transformation the ArrayCopyNode 4788 validated = true; 4789 4790 RegionNode* slow_region = new RegionNode(1); 4791 record_for_igvn(slow_region); 4792 4793 // (1) src and dest are arrays. 4794 generate_non_array_guard(load_object_klass(src), slow_region); 4795 generate_non_array_guard(load_object_klass(dest), slow_region); 4796 4797 // (2) src and dest arrays must have elements of the same BasicType 4798 // done at macro expansion or at Ideal transformation time 4799 4800 // (4) src_offset must not be negative. 4801 generate_negative_guard(src_offset, slow_region); 4802 4803 // (5) dest_offset must not be negative. 4804 generate_negative_guard(dest_offset, slow_region); 4805 4806 // (7) src_offset + length must not exceed length of src. 4807 generate_limit_guard(src_offset, length, 4808 load_array_length(src), 4809 slow_region); 4810 4811 // (8) dest_offset + length must not exceed length of dest. 4812 generate_limit_guard(dest_offset, length, 4813 load_array_length(dest), 4814 slow_region); 4815 4816 // (6) length must not be negative. 4817 // This is also checked in generate_arraycopy() during macro expansion, but 4818 // we also have to check it here for the case where the ArrayCopyNode will 4819 // be eliminated by Escape Analysis. 4820 if (EliminateAllocations) { 4821 generate_negative_guard(length, slow_region); 4822 negative_length_guard_generated = true; 4823 } 4824 4825 // (9) each element of an oop array must be assignable 4826 Node* dest_klass = load_object_klass(dest); 4827 if (src != dest) { 4828 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 4829 4830 if (not_subtype_ctrl != top()) { 4831 PreserveJVMState pjvms(this); 4832 set_control(not_subtype_ctrl); 4833 uncommon_trap(Deoptimization::Reason_intrinsic, 4834 Deoptimization::Action_make_not_entrant); 4835 assert(stopped(), "Should be stopped"); 4836 } 4837 } 4838 { 4839 PreserveJVMState pjvms(this); 4840 set_control(_gvn.transform(slow_region)); 4841 uncommon_trap(Deoptimization::Reason_intrinsic, 4842 Deoptimization::Action_make_not_entrant); 4843 assert(stopped(), "Should be stopped"); 4844 } 4845 4846 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 4847 const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass()); 4848 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 4849 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 4850 } 4851 4852 if (stopped()) { 4853 return true; 4854 } 4855 4856 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 4857 // Create LoadRange and LoadKlass nodes for use during macro expansion here 4858 // so the compiler has a chance to eliminate them: during macro expansion, 4859 // we have to set their control (CastPP nodes are eliminated). 4860 load_object_klass(src), load_object_klass(dest), 4861 load_array_length(src), load_array_length(dest)); 4862 4863 ac->set_arraycopy(validated); 4864 4865 Node* n = _gvn.transform(ac); 4866 if (n == ac) { 4867 ac->connect_outputs(this); 4868 } else { 4869 assert(validated, "shouldn't transform if all arguments not validated"); 4870 set_all_memory(n); 4871 } 4872 clear_upper_avx(); 4873 4874 4875 return true; 4876 } 4877 4878 4879 // Helper function which determines if an arraycopy immediately follows 4880 // an allocation, with no intervening tests or other escapes for the object. 4881 AllocateArrayNode* 4882 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 4883 if (stopped()) return nullptr; // no fast path 4884 if (C->AliasLevel() == 0) return nullptr; // no MergeMems around 4885 4886 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 4887 if (alloc == nullptr) return nullptr; 4888 4889 Node* rawmem = memory(Compile::AliasIdxRaw); 4890 // Is the allocation's memory state untouched? 4891 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 4892 // Bail out if there have been raw-memory effects since the allocation. 4893 // (Example: There might have been a call or safepoint.) 4894 return nullptr; 4895 } 4896 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 4897 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 4898 return nullptr; 4899 } 4900 4901 // There must be no unexpected observers of this allocation. 4902 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 4903 Node* obs = ptr->fast_out(i); 4904 if (obs != this->map()) { 4905 return nullptr; 4906 } 4907 } 4908 4909 // This arraycopy must unconditionally follow the allocation of the ptr. 4910 Node* alloc_ctl = ptr->in(0); 4911 Node* ctl = control(); 4912 while (ctl != alloc_ctl) { 4913 // There may be guards which feed into the slow_region. 4914 // Any other control flow means that we might not get a chance 4915 // to finish initializing the allocated object. 4916 // Various low-level checks bottom out in uncommon traps. These 4917 // are considered safe since we've already checked above that 4918 // there is no unexpected observer of this allocation. 4919 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 4920 assert(ctl->in(0)->is_If(), "must be If"); 4921 ctl = ctl->in(0)->in(0); 4922 } else { 4923 return nullptr; 4924 } 4925 } 4926 4927 // If we get this far, we have an allocation which immediately 4928 // precedes the arraycopy, and we can take over zeroing the new object. 4929 // The arraycopy will finish the initialization, and provide 4930 // a new control state to which we will anchor the destination pointer. 4931 4932 return alloc; 4933 } 4934 4935 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 4936 if (node->is_IfProj()) { 4937 Node* other_proj = node->as_IfProj()->other_if_proj(); 4938 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 4939 Node* obs = other_proj->fast_out(j); 4940 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 4941 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 4942 return obs->as_CallStaticJava(); 4943 } 4944 } 4945 } 4946 return nullptr; 4947 } 4948 4949 //-------------inline_encodeISOArray----------------------------------- 4950 // encode char[] to byte[] in ISO_8859_1 or ASCII 4951 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 4952 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 4953 // no receiver since it is static method 4954 Node *src = argument(0); 4955 Node *src_offset = argument(1); 4956 Node *dst = argument(2); 4957 Node *dst_offset = argument(3); 4958 Node *length = argument(4); 4959 4960 src = must_be_not_null(src, true); 4961 dst = must_be_not_null(dst, true); 4962 4963 const Type* src_type = src->Value(&_gvn); 4964 const Type* dst_type = dst->Value(&_gvn); 4965 const TypeAryPtr* top_src = src_type->isa_aryptr(); 4966 const TypeAryPtr* top_dest = dst_type->isa_aryptr(); 4967 if (top_src == NULL || top_src->klass() == NULL || 4968 top_dest == NULL || top_dest->klass() == NULL) { 4969 // failed array check 4970 return false; 4971 } 4972 4973 // Figure out the size and type of the elements we will be copying. 4974 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 4975 BasicType dst_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type(); 4976 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 4977 return false; 4978 } 4979 4980 Node* src_start = array_element_address(src, src_offset, T_CHAR); 4981 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 4982 // 'src_start' points to src array + scaled offset 4983 // 'dst_start' points to dst array + scaled offset 4984 4985 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 4986 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 4987 enc = _gvn.transform(enc); 4988 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 4989 set_memory(res_mem, mtype); 4990 set_result(enc); 4991 clear_upper_avx(); 4992 4993 return true; 4994 } 4995 4996 //-------------inline_multiplyToLen----------------------------------- 4997 bool LibraryCallKit::inline_multiplyToLen() { 4998 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 4999 5000 address stubAddr = StubRoutines::multiplyToLen(); 5001 if (stubAddr == nullptr) { 5002 return false; // Intrinsic's stub is not implemented on this platform 5003 } 5004 const char* stubName = "multiplyToLen"; 5005 5006 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5007 5008 // no receiver because it is a static method 5009 Node* x = argument(0); 5010 Node* xlen = argument(1); 5011 Node* y = argument(2); 5012 Node* ylen = argument(3); 5013 Node* z = argument(4); 5014 5015 x = must_be_not_null(x, true); 5016 y = must_be_not_null(y, true); 5017 5018 const Type* x_type = x->Value(&_gvn); 5019 const Type* y_type = y->Value(&_gvn); 5020 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5021 const TypeAryPtr* top_y = y_type->isa_aryptr(); 5022 if (top_x == NULL || top_x->klass() == NULL || 5023 top_y == NULL || top_y->klass() == NULL) { 5024 // failed array check 5025 return false; 5026 } 5027 5028 BasicType x_elem = top_x->klass()->as_array_klass()->element_type()->basic_type(); 5029 BasicType y_elem = top_y->klass()->as_array_klass()->element_type()->basic_type(); 5030 if (x_elem != T_INT || y_elem != T_INT) { 5031 return false; 5032 } 5033 5034 // Set the original stack and the reexecute bit for the interpreter to reexecute 5035 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5036 // on the return from z array allocation in runtime. 5037 { PreserveReexecuteState preexecs(this); 5038 jvms()->set_should_reexecute(true); 5039 5040 Node* x_start = array_element_address(x, intcon(0), x_elem); 5041 Node* y_start = array_element_address(y, intcon(0), y_elem); 5042 // 'x_start' points to x array + scaled xlen 5043 // 'y_start' points to y array + scaled ylen 5044 5045 // Allocate the result array 5046 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5047 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5048 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5049 5050 IdealKit ideal(this); 5051 5052 #define __ ideal. 5053 Node* one = __ ConI(1); 5054 Node* zero = __ ConI(0); 5055 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5056 __ set(need_alloc, zero); 5057 __ set(z_alloc, z); 5058 __ if_then(z, BoolTest::eq, null()); { 5059 __ increment (need_alloc, one); 5060 } __ else_(); { 5061 // Update graphKit memory and control from IdealKit. 5062 sync_kit(ideal); 5063 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5064 cast->init_req(0, control()); 5065 _gvn.set_type(cast, cast->bottom_type()); 5066 C->record_for_igvn(cast); 5067 5068 Node* zlen_arg = load_array_length(cast); 5069 // Update IdealKit memory and control from graphKit. 5070 __ sync_kit(this); 5071 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5072 __ increment (need_alloc, one); 5073 } __ end_if(); 5074 } __ end_if(); 5075 5076 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5077 // Update graphKit memory and control from IdealKit. 5078 sync_kit(ideal); 5079 Node * narr = new_array(klass_node, zlen, 1); 5080 // Update IdealKit memory and control from graphKit. 5081 __ sync_kit(this); 5082 __ set(z_alloc, narr); 5083 } __ end_if(); 5084 5085 sync_kit(ideal); 5086 z = __ value(z_alloc); 5087 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5088 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5089 // Final sync IdealKit and GraphKit. 5090 final_sync(ideal); 5091 #undef __ 5092 5093 Node* z_start = array_element_address(z, intcon(0), T_INT); 5094 5095 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5096 OptoRuntime::multiplyToLen_Type(), 5097 stubAddr, stubName, TypePtr::BOTTOM, 5098 x_start, xlen, y_start, ylen, z_start, zlen); 5099 } // original reexecute is set back here 5100 5101 C->set_has_split_ifs(true); // Has chance for split-if optimization 5102 set_result(z); 5103 return true; 5104 } 5105 5106 //-------------inline_squareToLen------------------------------------ 5107 bool LibraryCallKit::inline_squareToLen() { 5108 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5109 5110 address stubAddr = StubRoutines::squareToLen(); 5111 if (stubAddr == nullptr) { 5112 return false; // Intrinsic's stub is not implemented on this platform 5113 } 5114 const char* stubName = "squareToLen"; 5115 5116 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5117 5118 Node* x = argument(0); 5119 Node* len = argument(1); 5120 Node* z = argument(2); 5121 Node* zlen = argument(3); 5122 5123 x = must_be_not_null(x, true); 5124 z = must_be_not_null(z, true); 5125 5126 const Type* x_type = x->Value(&_gvn); 5127 const Type* z_type = z->Value(&_gvn); 5128 const TypeAryPtr* top_x = x_type->isa_aryptr(); 5129 const TypeAryPtr* top_z = z_type->isa_aryptr(); 5130 if (top_x == NULL || top_x->klass() == NULL || 5131 top_z == NULL || top_z->klass() == NULL) { 5132 // failed array check 5133 return false; 5134 } 5135 5136 BasicType x_elem = top_x->klass()->as_array_klass()->element_type()->basic_type(); 5137 BasicType z_elem = top_z->klass()->as_array_klass()->element_type()->basic_type(); 5138 if (x_elem != T_INT || z_elem != T_INT) { 5139 return false; 5140 } 5141 5142 5143 Node* x_start = array_element_address(x, intcon(0), x_elem); 5144 Node* z_start = array_element_address(z, intcon(0), z_elem); 5145 5146 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5147 OptoRuntime::squareToLen_Type(), 5148 stubAddr, stubName, TypePtr::BOTTOM, 5149 x_start, len, z_start, zlen); 5150 5151 set_result(z); 5152 return true; 5153 } 5154 5155 //-------------inline_mulAdd------------------------------------------ 5156 bool LibraryCallKit::inline_mulAdd() { 5157 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5158 5159 address stubAddr = StubRoutines::mulAdd(); 5160 if (stubAddr == nullptr) { 5161 return false; // Intrinsic's stub is not implemented on this platform 5162 } 5163 const char* stubName = "mulAdd"; 5164 5165 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5166 5167 Node* out = argument(0); 5168 Node* in = argument(1); 5169 Node* offset = argument(2); 5170 Node* len = argument(3); 5171 Node* k = argument(4); 5172 5173 out = must_be_not_null(out, true); 5174 5175 const Type* out_type = out->Value(&_gvn); 5176 const Type* in_type = in->Value(&_gvn); 5177 const TypeAryPtr* top_out = out_type->isa_aryptr(); 5178 const TypeAryPtr* top_in = in_type->isa_aryptr(); 5179 if (top_out == NULL || top_out->klass() == NULL || 5180 top_in == NULL || top_in->klass() == NULL) { 5181 // failed array check 5182 return false; 5183 } 5184 5185 BasicType out_elem = top_out->klass()->as_array_klass()->element_type()->basic_type(); 5186 BasicType in_elem = top_in->klass()->as_array_klass()->element_type()->basic_type(); 5187 if (out_elem != T_INT || in_elem != T_INT) { 5188 return false; 5189 } 5190 5191 Node* outlen = load_array_length(out); 5192 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5193 Node* out_start = array_element_address(out, intcon(0), out_elem); 5194 Node* in_start = array_element_address(in, intcon(0), in_elem); 5195 5196 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5197 OptoRuntime::mulAdd_Type(), 5198 stubAddr, stubName, TypePtr::BOTTOM, 5199 out_start,in_start, new_offset, len, k); 5200 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5201 set_result(result); 5202 return true; 5203 } 5204 5205 //-------------inline_montgomeryMultiply----------------------------------- 5206 bool LibraryCallKit::inline_montgomeryMultiply() { 5207 address stubAddr = StubRoutines::montgomeryMultiply(); 5208 if (stubAddr == nullptr) { 5209 return false; // Intrinsic's stub is not implemented on this platform 5210 } 5211 5212 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5213 const char* stubName = "montgomery_multiply"; 5214 5215 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5216 5217 Node* a = argument(0); 5218 Node* b = argument(1); 5219 Node* n = argument(2); 5220 Node* len = argument(3); 5221 Node* inv = argument(4); 5222 Node* m = argument(6); 5223 5224 const Type* a_type = a->Value(&_gvn); 5225 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5226 const Type* b_type = b->Value(&_gvn); 5227 const TypeAryPtr* top_b = b_type->isa_aryptr(); 5228 const Type* n_type = a->Value(&_gvn); 5229 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5230 const Type* m_type = a->Value(&_gvn); 5231 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5232 if (top_a == NULL || top_a->klass() == NULL || 5233 top_b == NULL || top_b->klass() == NULL || 5234 top_n == NULL || top_n->klass() == NULL || 5235 top_m == NULL || top_m->klass() == NULL) { 5236 // failed array check 5237 return false; 5238 } 5239 5240 BasicType a_elem = top_a->klass()->as_array_klass()->element_type()->basic_type(); 5241 BasicType b_elem = top_b->klass()->as_array_klass()->element_type()->basic_type(); 5242 BasicType n_elem = top_n->klass()->as_array_klass()->element_type()->basic_type(); 5243 BasicType m_elem = top_m->klass()->as_array_klass()->element_type()->basic_type(); 5244 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5245 return false; 5246 } 5247 5248 // Make the call 5249 { 5250 Node* a_start = array_element_address(a, intcon(0), a_elem); 5251 Node* b_start = array_element_address(b, intcon(0), b_elem); 5252 Node* n_start = array_element_address(n, intcon(0), n_elem); 5253 Node* m_start = array_element_address(m, intcon(0), m_elem); 5254 5255 Node* call = make_runtime_call(RC_LEAF, 5256 OptoRuntime::montgomeryMultiply_Type(), 5257 stubAddr, stubName, TypePtr::BOTTOM, 5258 a_start, b_start, n_start, len, inv, top(), 5259 m_start); 5260 set_result(m); 5261 } 5262 5263 return true; 5264 } 5265 5266 bool LibraryCallKit::inline_montgomerySquare() { 5267 address stubAddr = StubRoutines::montgomerySquare(); 5268 if (stubAddr == nullptr) { 5269 return false; // Intrinsic's stub is not implemented on this platform 5270 } 5271 5272 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5273 const char* stubName = "montgomery_square"; 5274 5275 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5276 5277 Node* a = argument(0); 5278 Node* n = argument(1); 5279 Node* len = argument(2); 5280 Node* inv = argument(3); 5281 Node* m = argument(5); 5282 5283 const Type* a_type = a->Value(&_gvn); 5284 const TypeAryPtr* top_a = a_type->isa_aryptr(); 5285 const Type* n_type = a->Value(&_gvn); 5286 const TypeAryPtr* top_n = n_type->isa_aryptr(); 5287 const Type* m_type = a->Value(&_gvn); 5288 const TypeAryPtr* top_m = m_type->isa_aryptr(); 5289 if (top_a == NULL || top_a->klass() == NULL || 5290 top_n == NULL || top_n->klass() == NULL || 5291 top_m == NULL || top_m->klass() == NULL) { 5292 // failed array check 5293 return false; 5294 } 5295 5296 BasicType a_elem = top_a->klass()->as_array_klass()->element_type()->basic_type(); 5297 BasicType n_elem = top_n->klass()->as_array_klass()->element_type()->basic_type(); 5298 BasicType m_elem = top_m->klass()->as_array_klass()->element_type()->basic_type(); 5299 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5300 return false; 5301 } 5302 5303 // Make the call 5304 { 5305 Node* a_start = array_element_address(a, intcon(0), a_elem); 5306 Node* n_start = array_element_address(n, intcon(0), n_elem); 5307 Node* m_start = array_element_address(m, intcon(0), m_elem); 5308 5309 Node* call = make_runtime_call(RC_LEAF, 5310 OptoRuntime::montgomerySquare_Type(), 5311 stubAddr, stubName, TypePtr::BOTTOM, 5312 a_start, n_start, len, inv, top(), 5313 m_start); 5314 set_result(m); 5315 } 5316 5317 return true; 5318 } 5319 5320 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5321 address stubAddr = nullptr; 5322 const char* stubName = nullptr; 5323 5324 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5325 if (stubAddr == nullptr) { 5326 return false; // Intrinsic's stub is not implemented on this platform 5327 } 5328 5329 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5330 5331 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5332 5333 Node* newArr = argument(0); 5334 Node* oldArr = argument(1); 5335 Node* newIdx = argument(2); 5336 Node* shiftCount = argument(3); 5337 Node* numIter = argument(4); 5338 5339 const Type* newArr_type = newArr->Value(&_gvn); 5340 const TypeAryPtr* top_newArr = newArr_type->isa_aryptr(); 5341 const Type* oldArr_type = oldArr->Value(&_gvn); 5342 const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr(); 5343 if (top_newArr == NULL || top_newArr->klass() == NULL || top_oldArr == NULL 5344 || top_oldArr->klass() == NULL) { 5345 return false; 5346 } 5347 5348 BasicType newArr_elem = top_newArr->klass()->as_array_klass()->element_type()->basic_type(); 5349 BasicType oldArr_elem = top_oldArr->klass()->as_array_klass()->element_type()->basic_type(); 5350 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5351 return false; 5352 } 5353 5354 // Make the call 5355 { 5356 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5357 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5358 5359 Node* call = make_runtime_call(RC_LEAF, 5360 OptoRuntime::bigIntegerShift_Type(), 5361 stubAddr, 5362 stubName, 5363 TypePtr::BOTTOM, 5364 newArr_start, 5365 oldArr_start, 5366 newIdx, 5367 shiftCount, 5368 numIter); 5369 } 5370 5371 return true; 5372 } 5373 5374 //-------------inline_vectorizedMismatch------------------------------ 5375 bool LibraryCallKit::inline_vectorizedMismatch() { 5376 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 5377 5378 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5379 Node* obja = argument(0); // Object 5380 Node* aoffset = argument(1); // long 5381 Node* objb = argument(3); // Object 5382 Node* boffset = argument(4); // long 5383 Node* length = argument(6); // int 5384 Node* scale = argument(7); // int 5385 5386 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 5387 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 5388 if (obja_t == NULL || obja_t->klass() == NULL || 5389 objb_t == NULL || objb_t->klass() == NULL || 5390 scale == top()) { 5391 return false; // failed input validation 5392 } 5393 5394 Node* obja_adr = make_unsafe_address(obja, aoffset); 5395 Node* objb_adr = make_unsafe_address(objb, boffset); 5396 5397 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 5398 // 5399 // inline_limit = ArrayOperationPartialInlineSize / element_size; 5400 // if (length <= inline_limit) { 5401 // inline_path: 5402 // vmask = VectorMaskGen length 5403 // vload1 = LoadVectorMasked obja, vmask 5404 // vload2 = LoadVectorMasked objb, vmask 5405 // result1 = VectorCmpMasked vload1, vload2, vmask 5406 // } else { 5407 // call_stub_path: 5408 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 5409 // } 5410 // exit_block: 5411 // return Phi(result1, result2); 5412 // 5413 enum { inline_path = 1, // input is small enough to process it all at once 5414 stub_path = 2, // input is too large; call into the VM 5415 PATH_LIMIT = 3 5416 }; 5417 5418 Node* exit_block = new RegionNode(PATH_LIMIT); 5419 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 5420 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 5421 5422 Node* call_stub_path = control(); 5423 5424 BasicType elem_bt = T_ILLEGAL; 5425 5426 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 5427 if (scale_t->is_con()) { 5428 switch (scale_t->get_con()) { 5429 case 0: elem_bt = T_BYTE; break; 5430 case 1: elem_bt = T_SHORT; break; 5431 case 2: elem_bt = T_INT; break; 5432 case 3: elem_bt = T_LONG; break; 5433 5434 default: elem_bt = T_ILLEGAL; break; // not supported 5435 } 5436 } 5437 5438 int inline_limit = 0; 5439 bool do_partial_inline = false; 5440 5441 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 5442 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 5443 do_partial_inline = inline_limit >= 16; 5444 } 5445 5446 if (do_partial_inline) { 5447 assert(elem_bt != T_ILLEGAL, "sanity"); 5448 5449 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 5450 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 5451 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 5452 5453 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 5454 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 5455 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 5456 5457 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 5458 5459 if (!stopped()) { 5460 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 5461 5462 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 5463 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 5464 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 5465 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 5466 5467 Node* vmask = _gvn.transform(new VectorMaskGenNode(ConvI2X(casted_length), TypeVect::VECTMASK, elem_bt)); 5468 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 5469 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 5470 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 5471 5472 exit_block->init_req(inline_path, control()); 5473 memory_phi->init_req(inline_path, map()->memory()); 5474 result_phi->init_req(inline_path, result); 5475 5476 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 5477 clear_upper_avx(); 5478 } 5479 } 5480 } 5481 5482 if (call_stub_path != nullptr) { 5483 set_control(call_stub_path); 5484 5485 Node* call = make_runtime_call(RC_LEAF, 5486 OptoRuntime::vectorizedMismatch_Type(), 5487 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 5488 obja_adr, objb_adr, length, scale); 5489 5490 exit_block->init_req(stub_path, control()); 5491 memory_phi->init_req(stub_path, map()->memory()); 5492 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 5493 } 5494 5495 exit_block = _gvn.transform(exit_block); 5496 memory_phi = _gvn.transform(memory_phi); 5497 result_phi = _gvn.transform(result_phi); 5498 5499 set_control(exit_block); 5500 set_all_memory(memory_phi); 5501 set_result(result_phi); 5502 5503 return true; 5504 } 5505 5506 /** 5507 * Calculate CRC32 for byte. 5508 * int java.util.zip.CRC32.update(int crc, int b) 5509 */ 5510 bool LibraryCallKit::inline_updateCRC32() { 5511 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5512 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 5513 // no receiver since it is static method 5514 Node* crc = argument(0); // type: int 5515 Node* b = argument(1); // type: int 5516 5517 /* 5518 * int c = ~ crc; 5519 * b = timesXtoThe32[(b ^ c) & 0xFF]; 5520 * b = b ^ (c >>> 8); 5521 * crc = ~b; 5522 */ 5523 5524 Node* M1 = intcon(-1); 5525 crc = _gvn.transform(new XorINode(crc, M1)); 5526 Node* result = _gvn.transform(new XorINode(crc, b)); 5527 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 5528 5529 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 5530 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 5531 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 5532 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 5533 5534 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 5535 result = _gvn.transform(new XorINode(crc, result)); 5536 result = _gvn.transform(new XorINode(result, M1)); 5537 set_result(result); 5538 return true; 5539 } 5540 5541 /** 5542 * Calculate CRC32 for byte[] array. 5543 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 5544 */ 5545 bool LibraryCallKit::inline_updateBytesCRC32() { 5546 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5547 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5548 // no receiver since it is static method 5549 Node* crc = argument(0); // type: int 5550 Node* src = argument(1); // type: oop 5551 Node* offset = argument(2); // type: int 5552 Node* length = argument(3); // type: int 5553 5554 const Type* src_type = src->Value(&_gvn); 5555 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5556 if (top_src == NULL || top_src->klass() == NULL) { 5557 // failed array check 5558 return false; 5559 } 5560 5561 // Figure out the size and type of the elements we will be copying. 5562 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 5563 if (src_elem != T_BYTE) { 5564 return false; 5565 } 5566 5567 // 'src_start' points to src array + scaled offset 5568 src = must_be_not_null(src, true); 5569 Node* src_start = array_element_address(src, offset, src_elem); 5570 5571 // We assume that range check is done by caller. 5572 // TODO: generate range check (offset+length < src.length) in debug VM. 5573 5574 // Call the stub. 5575 address stubAddr = StubRoutines::updateBytesCRC32(); 5576 const char *stubName = "updateBytesCRC32"; 5577 5578 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5579 stubAddr, stubName, TypePtr::BOTTOM, 5580 crc, src_start, length); 5581 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5582 set_result(result); 5583 return true; 5584 } 5585 5586 /** 5587 * Calculate CRC32 for ByteBuffer. 5588 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 5589 */ 5590 bool LibraryCallKit::inline_updateByteBufferCRC32() { 5591 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 5592 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5593 // no receiver since it is static method 5594 Node* crc = argument(0); // type: int 5595 Node* src = argument(1); // type: long 5596 Node* offset = argument(3); // type: int 5597 Node* length = argument(4); // type: int 5598 5599 src = ConvL2X(src); // adjust Java long to machine word 5600 Node* base = _gvn.transform(new CastX2PNode(src)); 5601 offset = ConvI2X(offset); 5602 5603 // 'src_start' points to src array + scaled offset 5604 Node* src_start = basic_plus_adr(top(), base, offset); 5605 5606 // Call the stub. 5607 address stubAddr = StubRoutines::updateBytesCRC32(); 5608 const char *stubName = "updateBytesCRC32"; 5609 5610 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 5611 stubAddr, stubName, TypePtr::BOTTOM, 5612 crc, src_start, length); 5613 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5614 set_result(result); 5615 return true; 5616 } 5617 5618 //------------------------------get_table_from_crc32c_class----------------------- 5619 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 5620 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 5621 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 5622 5623 return table; 5624 } 5625 5626 //------------------------------inline_updateBytesCRC32C----------------------- 5627 // 5628 // Calculate CRC32C for byte[] array. 5629 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 5630 // 5631 bool LibraryCallKit::inline_updateBytesCRC32C() { 5632 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5633 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5634 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5635 // no receiver since it is a static method 5636 Node* crc = argument(0); // type: int 5637 Node* src = argument(1); // type: oop 5638 Node* offset = argument(2); // type: int 5639 Node* end = argument(3); // type: int 5640 5641 Node* length = _gvn.transform(new SubINode(end, offset)); 5642 5643 const Type* src_type = src->Value(&_gvn); 5644 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5645 if (top_src == NULL || top_src->klass() == NULL) { 5646 // failed array check 5647 return false; 5648 } 5649 5650 // Figure out the size and type of the elements we will be copying. 5651 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 5652 if (src_elem != T_BYTE) { 5653 return false; 5654 } 5655 5656 // 'src_start' points to src array + scaled offset 5657 src = must_be_not_null(src, true); 5658 Node* src_start = array_element_address(src, offset, src_elem); 5659 5660 // static final int[] byteTable in class CRC32C 5661 Node* table = get_table_from_crc32c_class(callee()->holder()); 5662 table = must_be_not_null(table, true); 5663 Node* table_start = array_element_address(table, intcon(0), T_INT); 5664 5665 // We assume that range check is done by caller. 5666 // TODO: generate range check (offset+length < src.length) in debug VM. 5667 5668 // Call the stub. 5669 address stubAddr = StubRoutines::updateBytesCRC32C(); 5670 const char *stubName = "updateBytesCRC32C"; 5671 5672 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5673 stubAddr, stubName, TypePtr::BOTTOM, 5674 crc, src_start, length, table_start); 5675 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5676 set_result(result); 5677 return true; 5678 } 5679 5680 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 5681 // 5682 // Calculate CRC32C for DirectByteBuffer. 5683 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 5684 // 5685 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 5686 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 5687 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 5688 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 5689 // no receiver since it is a static method 5690 Node* crc = argument(0); // type: int 5691 Node* src = argument(1); // type: long 5692 Node* offset = argument(3); // type: int 5693 Node* end = argument(4); // type: int 5694 5695 Node* length = _gvn.transform(new SubINode(end, offset)); 5696 5697 src = ConvL2X(src); // adjust Java long to machine word 5698 Node* base = _gvn.transform(new CastX2PNode(src)); 5699 offset = ConvI2X(offset); 5700 5701 // 'src_start' points to src array + scaled offset 5702 Node* src_start = basic_plus_adr(top(), base, offset); 5703 5704 // static final int[] byteTable in class CRC32C 5705 Node* table = get_table_from_crc32c_class(callee()->holder()); 5706 table = must_be_not_null(table, true); 5707 Node* table_start = array_element_address(table, intcon(0), T_INT); 5708 5709 // Call the stub. 5710 address stubAddr = StubRoutines::updateBytesCRC32C(); 5711 const char *stubName = "updateBytesCRC32C"; 5712 5713 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 5714 stubAddr, stubName, TypePtr::BOTTOM, 5715 crc, src_start, length, table_start); 5716 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5717 set_result(result); 5718 return true; 5719 } 5720 5721 //------------------------------inline_updateBytesAdler32---------------------- 5722 // 5723 // Calculate Adler32 checksum for byte[] array. 5724 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 5725 // 5726 bool LibraryCallKit::inline_updateBytesAdler32() { 5727 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5728 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 5729 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5730 // no receiver since it is static method 5731 Node* crc = argument(0); // type: int 5732 Node* src = argument(1); // type: oop 5733 Node* offset = argument(2); // type: int 5734 Node* length = argument(3); // type: int 5735 5736 const Type* src_type = src->Value(&_gvn); 5737 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5738 if (top_src == NULL || top_src->klass() == NULL) { 5739 // failed array check 5740 return false; 5741 } 5742 5743 // Figure out the size and type of the elements we will be copying. 5744 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 5745 if (src_elem != T_BYTE) { 5746 return false; 5747 } 5748 5749 // 'src_start' points to src array + scaled offset 5750 Node* src_start = array_element_address(src, offset, src_elem); 5751 5752 // We assume that range check is done by caller. 5753 // TODO: generate range check (offset+length < src.length) in debug VM. 5754 5755 // Call the stub. 5756 address stubAddr = StubRoutines::updateBytesAdler32(); 5757 const char *stubName = "updateBytesAdler32"; 5758 5759 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5760 stubAddr, stubName, TypePtr::BOTTOM, 5761 crc, src_start, length); 5762 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5763 set_result(result); 5764 return true; 5765 } 5766 5767 //------------------------------inline_updateByteBufferAdler32--------------- 5768 // 5769 // Calculate Adler32 checksum for DirectByteBuffer. 5770 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 5771 // 5772 bool LibraryCallKit::inline_updateByteBufferAdler32() { 5773 assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one 5774 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 5775 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 5776 // no receiver since it is static method 5777 Node* crc = argument(0); // type: int 5778 Node* src = argument(1); // type: long 5779 Node* offset = argument(3); // type: int 5780 Node* length = argument(4); // type: int 5781 5782 src = ConvL2X(src); // adjust Java long to machine word 5783 Node* base = _gvn.transform(new CastX2PNode(src)); 5784 offset = ConvI2X(offset); 5785 5786 // 'src_start' points to src array + scaled offset 5787 Node* src_start = basic_plus_adr(top(), base, offset); 5788 5789 // Call the stub. 5790 address stubAddr = StubRoutines::updateBytesAdler32(); 5791 const char *stubName = "updateBytesAdler32"; 5792 5793 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 5794 stubAddr, stubName, TypePtr::BOTTOM, 5795 crc, src_start, length); 5796 5797 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5798 set_result(result); 5799 return true; 5800 } 5801 5802 //----------------------------inline_reference_get---------------------------- 5803 // public T java.lang.ref.Reference.get(); 5804 bool LibraryCallKit::inline_reference_get() { 5805 const int referent_offset = java_lang_ref_Reference::referent_offset(); 5806 5807 // Get the argument: 5808 Node* reference_obj = null_check_receiver(); 5809 if (stopped()) return true; 5810 5811 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 5812 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 5813 decorators, /*is_static*/ false, nullptr); 5814 if (result == nullptr) return false; 5815 5816 // Add memory barrier to prevent commoning reads from this field 5817 // across safepoint since GC can change its value. 5818 insert_mem_bar(Op_MemBarCPUOrder); 5819 5820 set_result(result); 5821 return true; 5822 } 5823 5824 //----------------------------inline_reference_refersTo0---------------------------- 5825 // bool java.lang.ref.Reference.refersTo0(); 5826 // bool java.lang.ref.PhantomReference.refersTo0(); 5827 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 5828 // Get arguments: 5829 Node* reference_obj = null_check_receiver(); 5830 Node* other_obj = argument(1); 5831 if (stopped()) return true; 5832 5833 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 5834 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 5835 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 5836 decorators, /*is_static*/ false, nullptr); 5837 if (referent == nullptr) return false; 5838 5839 // Add memory barrier to prevent commoning reads from this field 5840 // across safepoint since GC can change its value. 5841 insert_mem_bar(Op_MemBarCPUOrder); 5842 5843 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 5844 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 5845 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 5846 5847 RegionNode* region = new RegionNode(3); 5848 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 5849 5850 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 5851 region->init_req(1, if_true); 5852 phi->init_req(1, intcon(1)); 5853 5854 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 5855 region->init_req(2, if_false); 5856 phi->init_req(2, intcon(0)); 5857 5858 set_control(_gvn.transform(region)); 5859 record_for_igvn(region); 5860 set_result(_gvn.transform(phi)); 5861 return true; 5862 } 5863 5864 5865 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 5866 DecoratorSet decorators = IN_HEAP, bool is_static = false, 5867 ciInstanceKlass* fromKls = NULL) { 5868 if (fromKls == nullptr) { 5869 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5870 assert(tinst != nullptr, "obj is null"); 5871 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5872 fromKls = tinst->klass()->as_instance_klass(); 5873 } else { 5874 assert(is_static, "only for static field access"); 5875 } 5876 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5877 ciSymbol::make(fieldTypeString), 5878 is_static); 5879 5880 assert (field != NULL, "undefined field"); 5881 if (field == nullptr) return (Node *) nullptr; 5882 5883 if (is_static) { 5884 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5885 fromObj = makecon(tip); 5886 } 5887 5888 // Next code copied from Parse::do_get_xxx(): 5889 5890 // Compute address and memory type. 5891 int offset = field->offset_in_bytes(); 5892 bool is_vol = field->is_volatile(); 5893 ciType* field_klass = field->type(); 5894 assert(field_klass->is_loaded(), "should be loaded"); 5895 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 5896 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5897 BasicType bt = field->layout_type(); 5898 5899 // Build the resultant type of the load 5900 const Type *type; 5901 if (bt == T_OBJECT) { 5902 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 5903 } else { 5904 type = Type::get_const_basic_type(bt); 5905 } 5906 5907 if (is_vol) { 5908 decorators |= MO_SEQ_CST; 5909 } 5910 5911 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 5912 } 5913 5914 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 5915 bool is_exact = true, bool is_static = false, 5916 ciInstanceKlass * fromKls = NULL) { 5917 if (fromKls == nullptr) { 5918 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 5919 assert(tinst != nullptr, "obj is null"); 5920 assert(tinst->klass()->is_loaded(), "obj is not loaded"); 5921 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 5922 fromKls = tinst->klass()->as_instance_klass(); 5923 } 5924 else { 5925 assert(is_static, "only for static field access"); 5926 } 5927 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 5928 ciSymbol::make(fieldTypeString), 5929 is_static); 5930 5931 assert(field != nullptr, "undefined field"); 5932 assert(!field->is_volatile(), "not defined for volatile fields"); 5933 5934 if (is_static) { 5935 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 5936 fromObj = makecon(tip); 5937 } 5938 5939 // Next code copied from Parse::do_get_xxx(): 5940 5941 // Compute address and memory type. 5942 int offset = field->offset_in_bytes(); 5943 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 5944 5945 return adr; 5946 } 5947 5948 //------------------------------inline_aescrypt_Block----------------------- 5949 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 5950 address stubAddr = nullptr; 5951 const char *stubName; 5952 assert(UseAES, "need AES instruction support"); 5953 5954 switch(id) { 5955 case vmIntrinsics::_aescrypt_encryptBlock: 5956 stubAddr = StubRoutines::aescrypt_encryptBlock(); 5957 stubName = "aescrypt_encryptBlock"; 5958 break; 5959 case vmIntrinsics::_aescrypt_decryptBlock: 5960 stubAddr = StubRoutines::aescrypt_decryptBlock(); 5961 stubName = "aescrypt_decryptBlock"; 5962 break; 5963 default: 5964 break; 5965 } 5966 if (stubAddr == nullptr) return false; 5967 5968 Node* aescrypt_object = argument(0); 5969 Node* src = argument(1); 5970 Node* src_offset = argument(2); 5971 Node* dest = argument(3); 5972 Node* dest_offset = argument(4); 5973 5974 src = must_be_not_null(src, true); 5975 dest = must_be_not_null(dest, true); 5976 5977 // (1) src and dest are arrays. 5978 const Type* src_type = src->Value(&_gvn); 5979 const Type* dest_type = dest->Value(&_gvn); 5980 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5981 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5982 assert (top_src != NULL && top_src->klass() != NULL && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 5983 5984 // for the quick and dirty code we will skip all the checks. 5985 // we are just trying to get the call to be generated. 5986 Node* src_start = src; 5987 Node* dest_start = dest; 5988 if (src_offset != nullptr || dest_offset != nullptr) { 5989 assert(src_offset != nullptr && dest_offset != nullptr, ""); 5990 src_start = array_element_address(src, src_offset, T_BYTE); 5991 dest_start = array_element_address(dest, dest_offset, T_BYTE); 5992 } 5993 5994 // now need to get the start of its expanded key array 5995 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 5996 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 5997 if (k_start == nullptr) return false; 5998 5999 // Call the stub. 6000 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6001 stubAddr, stubName, TypePtr::BOTTOM, 6002 src_start, dest_start, k_start); 6003 6004 return true; 6005 } 6006 6007 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6008 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6009 address stubAddr = nullptr; 6010 const char *stubName = nullptr; 6011 6012 assert(UseAES, "need AES instruction support"); 6013 6014 switch(id) { 6015 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6016 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6017 stubName = "cipherBlockChaining_encryptAESCrypt"; 6018 break; 6019 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6020 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6021 stubName = "cipherBlockChaining_decryptAESCrypt"; 6022 break; 6023 default: 6024 break; 6025 } 6026 if (stubAddr == nullptr) return false; 6027 6028 Node* cipherBlockChaining_object = argument(0); 6029 Node* src = argument(1); 6030 Node* src_offset = argument(2); 6031 Node* len = argument(3); 6032 Node* dest = argument(4); 6033 Node* dest_offset = argument(5); 6034 6035 src = must_be_not_null(src, false); 6036 dest = must_be_not_null(dest, false); 6037 6038 // (1) src and dest are arrays. 6039 const Type* src_type = src->Value(&_gvn); 6040 const Type* dest_type = dest->Value(&_gvn); 6041 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6042 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6043 assert (top_src != NULL && top_src->klass() != NULL 6044 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6045 6046 // checks are the responsibility of the caller 6047 Node* src_start = src; 6048 Node* dest_start = dest; 6049 if (src_offset != nullptr || dest_offset != nullptr) { 6050 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6051 src_start = array_element_address(src, src_offset, T_BYTE); 6052 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6053 } 6054 6055 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6056 // (because of the predicated logic executed earlier). 6057 // so we cast it here safely. 6058 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6059 6060 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6061 if (embeddedCipherObj == nullptr) return false; 6062 6063 // cast it to what we know it will be at runtime 6064 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6065 assert(tinst != nullptr, "CBC obj is null"); 6066 assert(tinst->klass()->is_loaded(), "CBC obj is not loaded"); 6067 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6068 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6069 6070 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6071 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6072 const TypeOopPtr* xtype = aklass->as_instance_type(); 6073 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6074 aescrypt_object = _gvn.transform(aescrypt_object); 6075 6076 // we need to get the start of the aescrypt_object's expanded key array 6077 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6078 if (k_start == nullptr) return false; 6079 6080 // similarly, get the start address of the r vector 6081 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6082 if (objRvec == nullptr) return false; 6083 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6084 6085 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6086 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6087 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6088 stubAddr, stubName, TypePtr::BOTTOM, 6089 src_start, dest_start, k_start, r_start, len); 6090 6091 // return cipher length (int) 6092 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6093 set_result(retvalue); 6094 return true; 6095 } 6096 6097 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6098 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6099 address stubAddr = nullptr; 6100 const char *stubName = nullptr; 6101 6102 assert(UseAES, "need AES instruction support"); 6103 6104 switch (id) { 6105 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6106 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6107 stubName = "electronicCodeBook_encryptAESCrypt"; 6108 break; 6109 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6110 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6111 stubName = "electronicCodeBook_decryptAESCrypt"; 6112 break; 6113 default: 6114 break; 6115 } 6116 6117 if (stubAddr == nullptr) return false; 6118 6119 Node* electronicCodeBook_object = argument(0); 6120 Node* src = argument(1); 6121 Node* src_offset = argument(2); 6122 Node* len = argument(3); 6123 Node* dest = argument(4); 6124 Node* dest_offset = argument(5); 6125 6126 // (1) src and dest are arrays. 6127 const Type* src_type = src->Value(&_gvn); 6128 const Type* dest_type = dest->Value(&_gvn); 6129 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6130 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6131 assert(top_src != NULL && top_src->klass() != NULL 6132 && top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6133 6134 // checks are the responsibility of the caller 6135 Node* src_start = src; 6136 Node* dest_start = dest; 6137 if (src_offset != nullptr || dest_offset != nullptr) { 6138 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6139 src_start = array_element_address(src, src_offset, T_BYTE); 6140 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6141 } 6142 6143 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6144 // (because of the predicated logic executed earlier). 6145 // so we cast it here safely. 6146 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6147 6148 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6149 if (embeddedCipherObj == nullptr) return false; 6150 6151 // cast it to what we know it will be at runtime 6152 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6153 assert(tinst != nullptr, "ECB obj is null"); 6154 assert(tinst->klass()->is_loaded(), "ECB obj is not loaded"); 6155 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6156 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6157 6158 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6159 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6160 const TypeOopPtr* xtype = aklass->as_instance_type(); 6161 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6162 aescrypt_object = _gvn.transform(aescrypt_object); 6163 6164 // we need to get the start of the aescrypt_object's expanded key array 6165 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6166 if (k_start == nullptr) return false; 6167 6168 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6169 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6170 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6171 stubAddr, stubName, TypePtr::BOTTOM, 6172 src_start, dest_start, k_start, len); 6173 6174 // return cipher length (int) 6175 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6176 set_result(retvalue); 6177 return true; 6178 } 6179 6180 //------------------------------inline_counterMode_AESCrypt----------------------- 6181 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6182 assert(UseAES, "need AES instruction support"); 6183 if (!UseAESCTRIntrinsics) return false; 6184 6185 address stubAddr = nullptr; 6186 const char *stubName = nullptr; 6187 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6188 stubAddr = StubRoutines::counterMode_AESCrypt(); 6189 stubName = "counterMode_AESCrypt"; 6190 } 6191 if (stubAddr == nullptr) return false; 6192 6193 Node* counterMode_object = argument(0); 6194 Node* src = argument(1); 6195 Node* src_offset = argument(2); 6196 Node* len = argument(3); 6197 Node* dest = argument(4); 6198 Node* dest_offset = argument(5); 6199 6200 // (1) src and dest are arrays. 6201 const Type* src_type = src->Value(&_gvn); 6202 const Type* dest_type = dest->Value(&_gvn); 6203 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6204 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6205 assert(top_src != NULL && top_src->klass() != NULL && 6206 top_dest != NULL && top_dest->klass() != NULL, "args are strange"); 6207 6208 // checks are the responsibility of the caller 6209 Node* src_start = src; 6210 Node* dest_start = dest; 6211 if (src_offset != nullptr || dest_offset != nullptr) { 6212 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6213 src_start = array_element_address(src, src_offset, T_BYTE); 6214 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6215 } 6216 6217 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6218 // (because of the predicated logic executed earlier). 6219 // so we cast it here safely. 6220 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6221 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6222 if (embeddedCipherObj == nullptr) return false; 6223 // cast it to what we know it will be at runtime 6224 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6225 assert(tinst != nullptr, "CTR obj is null"); 6226 assert(tinst->klass()->is_loaded(), "CTR obj is not loaded"); 6227 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6228 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6229 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6230 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6231 const TypeOopPtr* xtype = aklass->as_instance_type(); 6232 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6233 aescrypt_object = _gvn.transform(aescrypt_object); 6234 // we need to get the start of the aescrypt_object's expanded key array 6235 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6236 if (k_start == nullptr) return false; 6237 // similarly, get the start address of the r vector 6238 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 6239 if (obj_counter == nullptr) return false; 6240 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6241 6242 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 6243 if (saved_encCounter == nullptr) return false; 6244 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6245 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6246 6247 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6248 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6249 OptoRuntime::counterMode_aescrypt_Type(), 6250 stubAddr, stubName, TypePtr::BOTTOM, 6251 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6252 6253 // return cipher length (int) 6254 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6255 set_result(retvalue); 6256 return true; 6257 } 6258 6259 //------------------------------get_key_start_from_aescrypt_object----------------------- 6260 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6261 #if defined(PPC64) || defined(S390) 6262 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6263 // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6264 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6265 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6266 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 6267 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 6268 if (objSessionK == nullptr) { 6269 return (Node *) nullptr; 6270 } 6271 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 6272 #else 6273 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 6274 #endif // PPC64 6275 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 6276 if (objAESCryptKey == nullptr) return (Node *) nullptr; 6277 6278 // now have the array, need to get the start address of the K array 6279 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6280 return k_start; 6281 } 6282 6283 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6284 // Return node representing slow path of predicate check. 6285 // the pseudo code we want to emulate with this predicate is: 6286 // for encryption: 6287 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6288 // for decryption: 6289 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6290 // note cipher==plain is more conservative than the original java code but that's OK 6291 // 6292 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6293 // The receiver was checked for null already. 6294 Node* objCBC = argument(0); 6295 6296 Node* src = argument(1); 6297 Node* dest = argument(4); 6298 6299 // Load embeddedCipher field of CipherBlockChaining object. 6300 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6301 6302 // get AESCrypt klass for instanceOf check 6303 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6304 // will have same classloader as CipherBlockChaining object 6305 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6306 assert(tinst != nullptr, "CBCobj is null"); 6307 assert(tinst->klass()->is_loaded(), "CBCobj is not loaded"); 6308 6309 // we want to do an instanceof comparison against the AESCrypt class 6310 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6311 if (!klass_AESCrypt->is_loaded()) { 6312 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6313 Node* ctrl = control(); 6314 set_control(top()); // no regular fast path 6315 return ctrl; 6316 } 6317 6318 src = must_be_not_null(src, true); 6319 dest = must_be_not_null(dest, true); 6320 6321 // Resolve oops to stable for CmpP below. 6322 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6323 6324 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6325 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6326 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6327 6328 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 6329 6330 // for encryption, we are done 6331 if (!decrypting) 6332 return instof_false; // even if it is null 6333 6334 // for decryption, we need to add a further check to avoid 6335 // taking the intrinsic path when cipher and plain are the same 6336 // see the original java code for why. 6337 RegionNode* region = new RegionNode(3); 6338 region->init_req(1, instof_false); 6339 6340 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6341 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6342 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 6343 region->init_req(2, src_dest_conjoint); 6344 6345 record_for_igvn(region); 6346 return _gvn.transform(region); 6347 } 6348 6349 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6350 // Return node representing slow path of predicate check. 6351 // the pseudo code we want to emulate with this predicate is: 6352 // for encryption: 6353 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6354 // for decryption: 6355 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6356 // note cipher==plain is more conservative than the original java code but that's OK 6357 // 6358 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6359 // The receiver was checked for null already. 6360 Node* objECB = argument(0); 6361 6362 // Load embeddedCipher field of ElectronicCodeBook object. 6363 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6364 6365 // get AESCrypt klass for instanceOf check 6366 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6367 // will have same classloader as ElectronicCodeBook object 6368 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6369 assert(tinst != nullptr, "ECBobj is null"); 6370 assert(tinst->klass()->is_loaded(), "ECBobj is not loaded"); 6371 6372 // we want to do an instanceof comparison against the AESCrypt class 6373 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6374 if (!klass_AESCrypt->is_loaded()) { 6375 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6376 Node* ctrl = control(); 6377 set_control(top()); // no regular fast path 6378 return ctrl; 6379 } 6380 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6381 6382 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6383 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6384 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6385 6386 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 6387 6388 // for encryption, we are done 6389 if (!decrypting) 6390 return instof_false; // even if it is null 6391 6392 // for decryption, we need to add a further check to avoid 6393 // taking the intrinsic path when cipher and plain are the same 6394 // see the original java code for why. 6395 RegionNode* region = new RegionNode(3); 6396 region->init_req(1, instof_false); 6397 Node* src = argument(1); 6398 Node* dest = argument(4); 6399 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6400 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6401 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 6402 region->init_req(2, src_dest_conjoint); 6403 6404 record_for_igvn(region); 6405 return _gvn.transform(region); 6406 } 6407 6408 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6409 // Return node representing slow path of predicate check. 6410 // the pseudo code we want to emulate with this predicate is: 6411 // for encryption: 6412 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6413 // for decryption: 6414 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6415 // note cipher==plain is more conservative than the original java code but that's OK 6416 // 6417 6418 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 6419 // The receiver was checked for null already. 6420 Node* objCTR = argument(0); 6421 6422 // Load embeddedCipher field of CipherBlockChaining object. 6423 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6424 6425 // get AESCrypt klass for instanceOf check 6426 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6427 // will have same classloader as CipherBlockChaining object 6428 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 6429 assert(tinst != nullptr, "CTRobj is null"); 6430 assert(tinst->klass()->is_loaded(), "CTRobj is not loaded"); 6431 6432 // we want to do an instanceof comparison against the AESCrypt class 6433 ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6434 if (!klass_AESCrypt->is_loaded()) { 6435 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6436 Node* ctrl = control(); 6437 set_control(top()); // no regular fast path 6438 return ctrl; 6439 } 6440 6441 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6442 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6443 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6444 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6445 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 6446 6447 return instof_false; // even if it is null 6448 } 6449 6450 //------------------------------inline_ghash_processBlocks 6451 bool LibraryCallKit::inline_ghash_processBlocks() { 6452 address stubAddr; 6453 const char *stubName; 6454 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 6455 6456 stubAddr = StubRoutines::ghash_processBlocks(); 6457 stubName = "ghash_processBlocks"; 6458 6459 Node* data = argument(0); 6460 Node* offset = argument(1); 6461 Node* len = argument(2); 6462 Node* state = argument(3); 6463 Node* subkeyH = argument(4); 6464 6465 state = must_be_not_null(state, true); 6466 subkeyH = must_be_not_null(subkeyH, true); 6467 data = must_be_not_null(data, true); 6468 6469 Node* state_start = array_element_address(state, intcon(0), T_LONG); 6470 assert(state_start, "state is null"); 6471 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 6472 assert(subkeyH_start, "subkeyH is null"); 6473 Node* data_start = array_element_address(data, offset, T_BYTE); 6474 assert(data_start, "data is null"); 6475 6476 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 6477 OptoRuntime::ghash_processBlocks_Type(), 6478 stubAddr, stubName, TypePtr::BOTTOM, 6479 state_start, subkeyH_start, data_start, len); 6480 return true; 6481 } 6482 6483 bool LibraryCallKit::inline_base64_encodeBlock() { 6484 address stubAddr; 6485 const char *stubName; 6486 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 6487 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 6488 stubAddr = StubRoutines::base64_encodeBlock(); 6489 stubName = "encodeBlock"; 6490 6491 if (!stubAddr) return false; 6492 Node* base64obj = argument(0); 6493 Node* src = argument(1); 6494 Node* offset = argument(2); 6495 Node* len = argument(3); 6496 Node* dest = argument(4); 6497 Node* dp = argument(5); 6498 Node* isURL = argument(6); 6499 6500 src = must_be_not_null(src, true); 6501 dest = must_be_not_null(dest, true); 6502 6503 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 6504 assert(src_start, "source array is null"); 6505 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 6506 assert(dest_start, "destination array is null"); 6507 6508 Node* base64 = make_runtime_call(RC_LEAF, 6509 OptoRuntime::base64_encodeBlock_Type(), 6510 stubAddr, stubName, TypePtr::BOTTOM, 6511 src_start, offset, len, dest_start, dp, isURL); 6512 return true; 6513 } 6514 6515 bool LibraryCallKit::inline_base64_decodeBlock() { 6516 address stubAddr; 6517 const char *stubName; 6518 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 6519 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 6520 stubAddr = StubRoutines::base64_decodeBlock(); 6521 stubName = "decodeBlock"; 6522 6523 if (!stubAddr) return false; 6524 Node* base64obj = argument(0); 6525 Node* src = argument(1); 6526 Node* src_offset = argument(2); 6527 Node* len = argument(3); 6528 Node* dest = argument(4); 6529 Node* dest_offset = argument(5); 6530 Node* isURL = argument(6); 6531 Node* isMIME = argument(7); 6532 6533 src = must_be_not_null(src, true); 6534 dest = must_be_not_null(dest, true); 6535 6536 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 6537 assert(src_start, "source array is null"); 6538 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 6539 assert(dest_start, "destination array is null"); 6540 6541 Node* call = make_runtime_call(RC_LEAF, 6542 OptoRuntime::base64_decodeBlock_Type(), 6543 stubAddr, stubName, TypePtr::BOTTOM, 6544 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 6545 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6546 set_result(result); 6547 return true; 6548 } 6549 6550 //------------------------------inline_digestBase_implCompress----------------------- 6551 // 6552 // Calculate MD5 for single-block byte[] array. 6553 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 6554 // 6555 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 6556 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 6557 // 6558 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 6559 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 6560 // 6561 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 6562 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 6563 // 6564 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 6565 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 6566 // 6567 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 6568 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 6569 6570 Node* digestBase_obj = argument(0); 6571 Node* src = argument(1); // type oop 6572 Node* ofs = argument(2); // type int 6573 6574 const Type* src_type = src->Value(&_gvn); 6575 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6576 if (top_src == NULL || top_src->klass() == NULL) { 6577 // failed array check 6578 return false; 6579 } 6580 // Figure out the size and type of the elements we will be copying. 6581 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 6582 if (src_elem != T_BYTE) { 6583 return false; 6584 } 6585 // 'src_start' points to src array + offset 6586 src = must_be_not_null(src, true); 6587 Node* src_start = array_element_address(src, ofs, src_elem); 6588 Node* state = nullptr; 6589 Node* digest_length = nullptr; 6590 address stubAddr; 6591 const char *stubName; 6592 6593 switch(id) { 6594 case vmIntrinsics::_md5_implCompress: 6595 assert(UseMD5Intrinsics, "need MD5 instruction support"); 6596 state = get_state_from_digest_object(digestBase_obj, T_INT); 6597 stubAddr = StubRoutines::md5_implCompress(); 6598 stubName = "md5_implCompress"; 6599 break; 6600 case vmIntrinsics::_sha_implCompress: 6601 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 6602 state = get_state_from_digest_object(digestBase_obj, T_INT); 6603 stubAddr = StubRoutines::sha1_implCompress(); 6604 stubName = "sha1_implCompress"; 6605 break; 6606 case vmIntrinsics::_sha2_implCompress: 6607 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 6608 state = get_state_from_digest_object(digestBase_obj, T_INT); 6609 stubAddr = StubRoutines::sha256_implCompress(); 6610 stubName = "sha256_implCompress"; 6611 break; 6612 case vmIntrinsics::_sha5_implCompress: 6613 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 6614 state = get_state_from_digest_object(digestBase_obj, T_LONG); 6615 stubAddr = StubRoutines::sha512_implCompress(); 6616 stubName = "sha512_implCompress"; 6617 break; 6618 case vmIntrinsics::_sha3_implCompress: 6619 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 6620 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 6621 stubAddr = StubRoutines::sha3_implCompress(); 6622 stubName = "sha3_implCompress"; 6623 digest_length = get_digest_length_from_digest_object(digestBase_obj); 6624 if (digest_length == nullptr) return false; 6625 break; 6626 default: 6627 fatal_unexpected_iid(id); 6628 return false; 6629 } 6630 if (state == nullptr) return false; 6631 6632 assert(stubAddr != nullptr, "Stub is generated"); 6633 if (stubAddr == nullptr) return false; 6634 6635 // Call the stub. 6636 Node* call; 6637 if (digest_length == nullptr) { 6638 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 6639 stubAddr, stubName, TypePtr::BOTTOM, 6640 src_start, state); 6641 } else { 6642 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 6643 stubAddr, stubName, TypePtr::BOTTOM, 6644 src_start, state, digest_length); 6645 } 6646 6647 return true; 6648 } 6649 6650 //------------------------------inline_digestBase_implCompressMB----------------------- 6651 // 6652 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 6653 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 6654 // 6655 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 6656 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 6657 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 6658 assert((uint)predicate < 5, "sanity"); 6659 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 6660 6661 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 6662 Node* src = argument(1); // byte[] array 6663 Node* ofs = argument(2); // type int 6664 Node* limit = argument(3); // type int 6665 6666 const Type* src_type = src->Value(&_gvn); 6667 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6668 if (top_src == NULL || top_src->klass() == NULL) { 6669 // failed array check 6670 return false; 6671 } 6672 // Figure out the size and type of the elements we will be copying. 6673 BasicType src_elem = top_src->klass()->as_array_klass()->element_type()->basic_type(); 6674 if (src_elem != T_BYTE) { 6675 return false; 6676 } 6677 // 'src_start' points to src array + offset 6678 src = must_be_not_null(src, false); 6679 Node* src_start = array_element_address(src, ofs, src_elem); 6680 6681 const char* klass_digestBase_name = nullptr; 6682 const char* stub_name = nullptr; 6683 address stub_addr = nullptr; 6684 BasicType elem_type = T_INT; 6685 6686 switch (predicate) { 6687 case 0: 6688 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 6689 klass_digestBase_name = "sun/security/provider/MD5"; 6690 stub_name = "md5_implCompressMB"; 6691 stub_addr = StubRoutines::md5_implCompressMB(); 6692 } 6693 break; 6694 case 1: 6695 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 6696 klass_digestBase_name = "sun/security/provider/SHA"; 6697 stub_name = "sha1_implCompressMB"; 6698 stub_addr = StubRoutines::sha1_implCompressMB(); 6699 } 6700 break; 6701 case 2: 6702 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 6703 klass_digestBase_name = "sun/security/provider/SHA2"; 6704 stub_name = "sha256_implCompressMB"; 6705 stub_addr = StubRoutines::sha256_implCompressMB(); 6706 } 6707 break; 6708 case 3: 6709 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 6710 klass_digestBase_name = "sun/security/provider/SHA5"; 6711 stub_name = "sha512_implCompressMB"; 6712 stub_addr = StubRoutines::sha512_implCompressMB(); 6713 elem_type = T_LONG; 6714 } 6715 break; 6716 case 4: 6717 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 6718 klass_digestBase_name = "sun/security/provider/SHA3"; 6719 stub_name = "sha3_implCompressMB"; 6720 stub_addr = StubRoutines::sha3_implCompressMB(); 6721 elem_type = T_BYTE; 6722 } 6723 break; 6724 default: 6725 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 6726 } 6727 if (klass_digestBase_name != nullptr) { 6728 assert(stub_addr != nullptr, "Stub is generated"); 6729 if (stub_addr == nullptr) return false; 6730 6731 // get DigestBase klass to lookup for SHA klass 6732 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 6733 assert(tinst != nullptr, "digestBase_obj is not instance???"); 6734 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6735 6736 ciKlass* klass_digestBase = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 6737 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 6738 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 6739 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 6740 } 6741 return false; 6742 } 6743 6744 //------------------------------inline_digestBase_implCompressMB----------------------- 6745 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 6746 BasicType elem_type, address stubAddr, const char *stubName, 6747 Node* src_start, Node* ofs, Node* limit) { 6748 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 6749 const TypeOopPtr* xtype = aklass->as_instance_type(); 6750 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 6751 digest_obj = _gvn.transform(digest_obj); 6752 6753 Node* state = get_state_from_digest_object(digest_obj, elem_type); 6754 if (state == nullptr) return false; 6755 6756 Node* digest_length = nullptr; 6757 if (strcmp("sha3_implCompressMB", stubName) == 0) { 6758 digest_length = get_digest_length_from_digest_object(digest_obj); 6759 if (digest_length == nullptr) return false; 6760 } 6761 6762 // Call the stub. 6763 Node* call; 6764 if (digest_length == nullptr) { 6765 call = make_runtime_call(RC_LEAF|RC_NO_FP, 6766 OptoRuntime::digestBase_implCompressMB_Type(false), 6767 stubAddr, stubName, TypePtr::BOTTOM, 6768 src_start, state, ofs, limit); 6769 } else { 6770 call = make_runtime_call(RC_LEAF|RC_NO_FP, 6771 OptoRuntime::digestBase_implCompressMB_Type(true), 6772 stubAddr, stubName, TypePtr::BOTTOM, 6773 src_start, state, digest_length, ofs, limit); 6774 } 6775 6776 // return ofs (int) 6777 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6778 set_result(result); 6779 6780 return true; 6781 } 6782 6783 //------------------------------get_state_from_digest_object----------------------- 6784 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 6785 const char* state_type; 6786 switch (elem_type) { 6787 case T_BYTE: state_type = "[B"; break; 6788 case T_INT: state_type = "[I"; break; 6789 case T_LONG: state_type = "[J"; break; 6790 default: ShouldNotReachHere(); 6791 } 6792 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 6793 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 6794 if (digest_state == nullptr) return (Node *) nullptr; 6795 6796 // now have the array, need to get the start address of the state array 6797 Node* state = array_element_address(digest_state, intcon(0), elem_type); 6798 return state; 6799 } 6800 6801 //------------------------------get_digest_length_from_sha3_object---------------------------------- 6802 Node * LibraryCallKit::get_digest_length_from_digest_object(Node *digest_object) { 6803 Node* digest_length = load_field_from_object(digest_object, "digestLength", "I"); 6804 assert (digest_length != nullptr, "sanity"); 6805 return digest_length; 6806 } 6807 6808 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 6809 // Return node representing slow path of predicate check. 6810 // the pseudo code we want to emulate with this predicate is: 6811 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 6812 // 6813 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 6814 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 6815 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 6816 assert((uint)predicate < 5, "sanity"); 6817 6818 // The receiver was checked for null already. 6819 Node* digestBaseObj = argument(0); 6820 6821 // get DigestBase klass for instanceOf check 6822 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 6823 assert(tinst != nullptr, "digestBaseObj is null"); 6824 assert(tinst->klass()->is_loaded(), "DigestBase is not loaded"); 6825 6826 const char* klass_name = nullptr; 6827 switch (predicate) { 6828 case 0: 6829 if (UseMD5Intrinsics) { 6830 // we want to do an instanceof comparison against the MD5 class 6831 klass_name = "sun/security/provider/MD5"; 6832 } 6833 break; 6834 case 1: 6835 if (UseSHA1Intrinsics) { 6836 // we want to do an instanceof comparison against the SHA class 6837 klass_name = "sun/security/provider/SHA"; 6838 } 6839 break; 6840 case 2: 6841 if (UseSHA256Intrinsics) { 6842 // we want to do an instanceof comparison against the SHA2 class 6843 klass_name = "sun/security/provider/SHA2"; 6844 } 6845 break; 6846 case 3: 6847 if (UseSHA512Intrinsics) { 6848 // we want to do an instanceof comparison against the SHA5 class 6849 klass_name = "sun/security/provider/SHA5"; 6850 } 6851 break; 6852 case 4: 6853 if (UseSHA3Intrinsics) { 6854 // we want to do an instanceof comparison against the SHA3 class 6855 klass_name = "sun/security/provider/SHA3"; 6856 } 6857 break; 6858 default: 6859 fatal("unknown SHA intrinsic predicate: %d", predicate); 6860 } 6861 6862 ciKlass* klass = nullptr; 6863 if (klass_name != nullptr) { 6864 klass = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_name)); 6865 } 6866 if ((klass == nullptr) || !klass->is_loaded()) { 6867 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 6868 Node* ctrl = control(); 6869 set_control(top()); // no intrinsic path 6870 return ctrl; 6871 } 6872 ciInstanceKlass* instklass = klass->as_instance_klass(); 6873 6874 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 6875 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6876 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6877 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 6878 6879 return instof_false; // even if it is null 6880 } 6881 6882 //-------------inline_fma----------------------------------- 6883 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 6884 Node *a = nullptr; 6885 Node *b = nullptr; 6886 Node *c = nullptr; 6887 Node* result = nullptr; 6888 switch (id) { 6889 case vmIntrinsics::_fmaD: 6890 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 6891 // no receiver since it is static method 6892 a = round_double_node(argument(0)); 6893 b = round_double_node(argument(2)); 6894 c = round_double_node(argument(4)); 6895 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 6896 break; 6897 case vmIntrinsics::_fmaF: 6898 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 6899 a = argument(0); 6900 b = argument(1); 6901 c = argument(2); 6902 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 6903 break; 6904 default: 6905 fatal_unexpected_iid(id); break; 6906 } 6907 set_result(result); 6908 return true; 6909 } 6910 6911 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 6912 // argument(0) is receiver 6913 Node* codePoint = argument(1); 6914 Node* n = nullptr; 6915 6916 switch (id) { 6917 case vmIntrinsics::_isDigit : 6918 n = new DigitNode(control(), codePoint); 6919 break; 6920 case vmIntrinsics::_isLowerCase : 6921 n = new LowerCaseNode(control(), codePoint); 6922 break; 6923 case vmIntrinsics::_isUpperCase : 6924 n = new UpperCaseNode(control(), codePoint); 6925 break; 6926 case vmIntrinsics::_isWhitespace : 6927 n = new WhitespaceNode(control(), codePoint); 6928 break; 6929 default: 6930 fatal_unexpected_iid(id); 6931 } 6932 6933 set_result(_gvn.transform(n)); 6934 return true; 6935 } 6936 6937 //------------------------------inline_fp_min_max------------------------------ 6938 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 6939 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 6940 6941 // The intrinsic should be used only when the API branches aren't predictable, 6942 // the last one performing the most important comparison. The following heuristic 6943 // uses the branch statistics to eventually bail out if necessary. 6944 6945 ciMethodData *md = callee()->method_data(); 6946 6947 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 6948 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 6949 6950 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 6951 // Bail out if the call-site didn't contribute enough to the statistics. 6952 return false; 6953 } 6954 6955 uint taken = 0, not_taken = 0; 6956 6957 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 6958 if (p->is_BranchData()) { 6959 taken = ((ciBranchData*)p)->taken(); 6960 not_taken = ((ciBranchData*)p)->not_taken(); 6961 } 6962 } 6963 6964 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 6965 balance = balance < 0 ? -balance : balance; 6966 if ( balance > 0.2 ) { 6967 // Bail out if the most important branch is predictable enough. 6968 return false; 6969 } 6970 } 6971 */ 6972 6973 Node *a = nullptr; 6974 Node *b = nullptr; 6975 Node *n = nullptr; 6976 switch (id) { 6977 case vmIntrinsics::_maxF: 6978 case vmIntrinsics::_minF: 6979 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 6980 a = argument(0); 6981 b = argument(1); 6982 break; 6983 case vmIntrinsics::_maxD: 6984 case vmIntrinsics::_minD: 6985 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 6986 a = round_double_node(argument(0)); 6987 b = round_double_node(argument(2)); 6988 break; 6989 default: 6990 fatal_unexpected_iid(id); 6991 break; 6992 } 6993 switch (id) { 6994 case vmIntrinsics::_maxF: n = new MaxFNode(a, b); break; 6995 case vmIntrinsics::_minF: n = new MinFNode(a, b); break; 6996 case vmIntrinsics::_maxD: n = new MaxDNode(a, b); break; 6997 case vmIntrinsics::_minD: n = new MinDNode(a, b); break; 6998 default: fatal_unexpected_iid(id); break; 6999 } 7000 set_result(_gvn.transform(n)); 7001 return true; 7002 } 7003 7004 bool LibraryCallKit::inline_profileBoolean() { 7005 Node* counts = argument(1); 7006 const TypeAryPtr* ary = nullptr; 7007 ciArray* aobj = nullptr; 7008 if (counts->is_Con() 7009 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 7010 && (aobj = ary->const_oop()->as_array()) != nullptr 7011 && (aobj->length() == 2)) { 7012 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7013 jint false_cnt = aobj->element_value(0).as_int(); 7014 jint true_cnt = aobj->element_value(1).as_int(); 7015 7016 if (C->log() != nullptr) { 7017 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7018 false_cnt, true_cnt); 7019 } 7020 7021 if (false_cnt + true_cnt == 0) { 7022 // According to profile, never executed. 7023 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7024 Deoptimization::Action_reinterpret); 7025 return true; 7026 } 7027 7028 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 7029 // is a number of each value occurrences. 7030 Node* result = argument(0); 7031 if (false_cnt == 0 || true_cnt == 0) { 7032 // According to profile, one value has been never seen. 7033 int expected_val = (false_cnt == 0) ? 1 : 0; 7034 7035 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 7036 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7037 7038 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 7039 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 7040 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 7041 7042 { // Slow path: uncommon trap for never seen value and then reexecute 7043 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 7044 // the value has been seen at least once. 7045 PreserveJVMState pjvms(this); 7046 PreserveReexecuteState preexecs(this); 7047 jvms()->set_should_reexecute(true); 7048 7049 set_control(slow_path); 7050 set_i_o(i_o()); 7051 7052 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7053 Deoptimization::Action_reinterpret); 7054 } 7055 // The guard for never seen value enables sharpening of the result and 7056 // returning a constant. It allows to eliminate branches on the same value 7057 // later on. 7058 set_control(fast_path); 7059 result = intcon(expected_val); 7060 } 7061 // Stop profiling. 7062 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 7063 // By replacing method body with profile data (represented as ProfileBooleanNode 7064 // on IR level) we effectively disable profiling. 7065 // It enables full speed execution once optimized code is generated. 7066 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 7067 C->record_for_igvn(profile); 7068 set_result(profile); 7069 return true; 7070 } else { 7071 // Continue profiling. 7072 // Profile data isn't available at the moment. So, execute method's bytecode version. 7073 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 7074 // is compiled and counters aren't available since corresponding MethodHandle 7075 // isn't a compile-time constant. 7076 return false; 7077 } 7078 } 7079 7080 bool LibraryCallKit::inline_isCompileConstant() { 7081 Node* n = argument(0); 7082 set_result(n->is_Con() ? intcon(1) : intcon(0)); 7083 return true; 7084 } 7085 7086 //------------------------------- inline_getObjectSize -------------------------------------- 7087 // 7088 // Calculate the runtime size of the object/array. 7089 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 7090 // 7091 bool LibraryCallKit::inline_getObjectSize() { 7092 Node* obj = argument(3); 7093 Node* klass_node = load_object_klass(obj); 7094 7095 jint layout_con = Klass::_lh_neutral_value; 7096 Node* layout_val = get_layout_helper(klass_node, layout_con); 7097 int layout_is_con = (layout_val == nullptr); 7098 7099 if (layout_is_con) { 7100 // Layout helper is constant, can figure out things at compile time. 7101 7102 if (Klass::layout_helper_is_instance(layout_con)) { 7103 // Instance case: layout_con contains the size itself. 7104 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 7105 set_result(size); 7106 } else { 7107 // Array case: size is round(header + element_size*arraylength). 7108 // Since arraylength is different for every array instance, we have to 7109 // compute the whole thing at runtime. 7110 7111 Node* arr_length = load_array_length(obj); 7112 7113 int round_mask = MinObjAlignmentInBytes - 1; 7114 int hsize = Klass::layout_helper_header_size(layout_con); 7115 int eshift = Klass::layout_helper_log2_element_size(layout_con); 7116 7117 if ((round_mask & ~right_n_bits(eshift)) == 0) { 7118 round_mask = 0; // strength-reduce it if it goes away completely 7119 } 7120 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 7121 Node* header_size = intcon(hsize + round_mask); 7122 7123 Node* lengthx = ConvI2X(arr_length); 7124 Node* headerx = ConvI2X(header_size); 7125 7126 Node* abody = lengthx; 7127 if (eshift != 0) { 7128 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 7129 } 7130 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 7131 if (round_mask != 0) { 7132 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 7133 } 7134 size = ConvX2L(size); 7135 set_result(size); 7136 } 7137 } else { 7138 // Layout helper is not constant, need to test for array-ness at runtime. 7139 7140 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 7141 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 7142 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 7143 record_for_igvn(result_reg); 7144 7145 Node* array_ctl = generate_array_guard(klass_node, nullptr); 7146 if (array_ctl != nullptr) { 7147 // Array case: size is round(header + element_size*arraylength). 7148 // Since arraylength is different for every array instance, we have to 7149 // compute the whole thing at runtime. 7150 7151 PreserveJVMState pjvms(this); 7152 set_control(array_ctl); 7153 Node* arr_length = load_array_length(obj); 7154 7155 int round_mask = MinObjAlignmentInBytes - 1; 7156 Node* mask = intcon(round_mask); 7157 7158 Node* hss = intcon(Klass::_lh_header_size_shift); 7159 Node* hsm = intcon(Klass::_lh_header_size_mask); 7160 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 7161 header_size = _gvn.transform(new AndINode(header_size, hsm)); 7162 header_size = _gvn.transform(new AddINode(header_size, mask)); 7163 7164 // There is no need to mask or shift this value. 7165 // The semantics of LShiftINode include an implicit mask to 0x1F. 7166 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 7167 Node* elem_shift = layout_val; 7168 7169 Node* lengthx = ConvI2X(arr_length); 7170 Node* headerx = ConvI2X(header_size); 7171 7172 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 7173 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 7174 if (round_mask != 0) { 7175 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 7176 } 7177 size = ConvX2L(size); 7178 7179 result_reg->init_req(_array_path, control()); 7180 result_val->init_req(_array_path, size); 7181 } 7182 7183 if (!stopped()) { 7184 // Instance case: the layout helper gives us instance size almost directly, 7185 // but we need to mask out the _lh_instance_slow_path_bit. 7186 Node* size = ConvI2X(layout_val); 7187 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 7188 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 7189 size = _gvn.transform(new AndXNode(size, mask)); 7190 size = ConvX2L(size); 7191 7192 result_reg->init_req(_instance_path, control()); 7193 result_val->init_req(_instance_path, size); 7194 } 7195 7196 set_result(result_reg, result_val); 7197 } 7198 7199 return true; 7200 } 7201 7202 //------------------------------- inline_blackhole -------------------------------------- 7203 // 7204 // Make sure all arguments to this node are alive. 7205 // This matches methods that were requested to be blackholed through compile commands. 7206 // 7207 bool LibraryCallKit::inline_blackhole() { 7208 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 7209 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 7210 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 7211 7212 // Blackhole node pinches only the control, not memory. This allows 7213 // the blackhole to be pinned in the loop that computes blackholed 7214 // values, but have no other side effects, like breaking the optimizations 7215 // across the blackhole. 7216 7217 Node* bh = _gvn.transform(new BlackholeNode(control())); 7218 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 7219 7220 // Bind call arguments as blackhole arguments to keep them alive 7221 uint nargs = callee()->arg_size(); 7222 for (uint i = 0; i < nargs; i++) { 7223 bh->add_req(argument(i)); 7224 } 7225 7226 return true; 7227 }