1 /* 2 * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "gc/shared/tlab_globals.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/universe.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/arraycopynode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/cfgnode.hpp" 36 #include "opto/compile.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/intrinsicnode.hpp" 40 #include "opto/locknode.hpp" 41 #include "opto/loopnode.hpp" 42 #include "opto/macro.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/narrowptrnode.hpp" 45 #include "opto/node.hpp" 46 #include "opto/opaquenode.hpp" 47 #include "opto/phaseX.hpp" 48 #include "opto/rootnode.hpp" 49 #include "opto/runtime.hpp" 50 #include "opto/subnode.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "opto/type.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "utilities/macros.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #if INCLUDE_G1GC 58 #include "gc/g1/g1ThreadLocalData.hpp" 59 #endif // INCLUDE_G1GC 60 61 62 // 63 // Replace any references to "oldref" in inputs to "use" with "newref". 64 // Returns the number of replacements made. 65 // 66 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 67 int nreplacements = 0; 68 uint req = use->req(); 69 for (uint j = 0; j < use->len(); j++) { 70 Node *uin = use->in(j); 71 if (uin == oldref) { 72 if (j < req) 73 use->set_req(j, newref); 74 else 75 use->set_prec(j, newref); 76 nreplacements++; 77 } else if (j >= req && uin == NULL) { 78 break; 79 } 80 } 81 return nreplacements; 82 } 83 84 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) { 85 assert(old != NULL, "sanity"); 86 for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) { 87 Node* use = old->fast_out(i); 88 _igvn.rehash_node_delayed(use); 89 imax -= replace_input(use, old, target); 90 // back up iterator 91 --i; 92 } 93 assert(old->outcnt() == 0, "all uses must be deleted"); 94 } 95 96 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 97 Node* cmp; 98 if (mask != 0) { 99 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 100 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 101 } else { 102 cmp = word; 103 } 104 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 105 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 106 transform_later(iff); 107 108 // Fast path taken. 109 Node *fast_taken = transform_later(new IfFalseNode(iff)); 110 111 // Fast path not-taken, i.e. slow path 112 Node *slow_taken = transform_later(new IfTrueNode(iff)); 113 114 if (return_fast_path) { 115 region->init_req(edge, slow_taken); // Capture slow-control 116 return fast_taken; 117 } else { 118 region->init_req(edge, fast_taken); // Capture fast-control 119 return slow_taken; 120 } 121 } 122 123 //--------------------copy_predefined_input_for_runtime_call-------------------- 124 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 125 // Set fixed predefined input arguments 126 call->init_req( TypeFunc::Control, ctrl ); 127 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 128 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 129 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 130 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 131 } 132 133 //------------------------------make_slow_call--------------------------------- 134 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 135 address slow_call, const char* leaf_name, Node* slow_path, 136 Node* parm0, Node* parm1, Node* parm2) { 137 138 // Slow-path call 139 CallNode *call = leaf_name 140 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 141 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 142 143 // Slow path call has no side-effects, uses few values 144 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 145 if (parm0 != NULL) call->init_req(TypeFunc::Parms+0, parm0); 146 if (parm1 != NULL) call->init_req(TypeFunc::Parms+1, parm1); 147 if (parm2 != NULL) call->init_req(TypeFunc::Parms+2, parm2); 148 call->copy_call_debug_info(&_igvn, oldcall); 149 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 150 _igvn.replace_node(oldcall, call); 151 transform_later(call); 152 153 return call; 154 } 155 156 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 157 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 158 bs->eliminate_gc_barrier(this, p2x); 159 } 160 161 // Search for a memory operation for the specified memory slice. 162 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 163 Node *orig_mem = mem; 164 Node *alloc_mem = alloc->in(TypeFunc::Memory); 165 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 166 while (true) { 167 if (mem == alloc_mem || mem == start_mem ) { 168 return mem; // hit one of our sentinels 169 } else if (mem->is_MergeMem()) { 170 mem = mem->as_MergeMem()->memory_at(alias_idx); 171 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 172 Node *in = mem->in(0); 173 // we can safely skip over safepoints, calls, locks and membars because we 174 // already know that the object is safe to eliminate. 175 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 176 return in; 177 } else if (in->is_Call()) { 178 CallNode *call = in->as_Call(); 179 if (call->may_modify(tinst, phase)) { 180 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 181 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 182 return in; 183 } 184 } 185 mem = in->in(TypeFunc::Memory); 186 } else if (in->is_MemBar()) { 187 ArrayCopyNode* ac = NULL; 188 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 189 if (ac != NULL) { 190 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 191 return ac; 192 } 193 } 194 mem = in->in(TypeFunc::Memory); 195 } else { 196 #ifdef ASSERT 197 in->dump(); 198 mem->dump(); 199 assert(false, "unexpected projection"); 200 #endif 201 } 202 } else if (mem->is_Store()) { 203 const TypePtr* atype = mem->as_Store()->adr_type(); 204 int adr_idx = phase->C->get_alias_index(atype); 205 if (adr_idx == alias_idx) { 206 assert(atype->isa_oopptr(), "address type must be oopptr"); 207 int adr_offset = atype->offset(); 208 uint adr_iid = atype->is_oopptr()->instance_id(); 209 // Array elements references have the same alias_idx 210 // but different offset and different instance_id. 211 if (adr_offset == offset && adr_iid == alloc->_idx) { 212 return mem; 213 } 214 } else { 215 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 216 } 217 mem = mem->in(MemNode::Memory); 218 } else if (mem->is_ClearArray()) { 219 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 220 // Can not bypass initialization of the instance 221 // we are looking. 222 debug_only(intptr_t offset;) 223 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 224 InitializeNode* init = alloc->as_Allocate()->initialization(); 225 // We are looking for stored value, return Initialize node 226 // or memory edge from Allocate node. 227 if (init != NULL) { 228 return init; 229 } else { 230 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 231 } 232 } 233 // Otherwise skip it (the call updated 'mem' value). 234 } else if (mem->Opcode() == Op_SCMemProj) { 235 mem = mem->in(0); 236 Node* adr = NULL; 237 if (mem->is_LoadStore()) { 238 adr = mem->in(MemNode::Address); 239 } else { 240 assert(mem->Opcode() == Op_EncodeISOArray || 241 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 242 adr = mem->in(3); // Destination array 243 } 244 const TypePtr* atype = adr->bottom_type()->is_ptr(); 245 int adr_idx = phase->C->get_alias_index(atype); 246 if (adr_idx == alias_idx) { 247 DEBUG_ONLY(mem->dump();) 248 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 249 return NULL; 250 } 251 mem = mem->in(MemNode::Memory); 252 } else if (mem->Opcode() == Op_StrInflatedCopy) { 253 Node* adr = mem->in(3); // Destination array 254 const TypePtr* atype = adr->bottom_type()->is_ptr(); 255 int adr_idx = phase->C->get_alias_index(atype); 256 if (adr_idx == alias_idx) { 257 DEBUG_ONLY(mem->dump();) 258 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 259 return NULL; 260 } 261 mem = mem->in(MemNode::Memory); 262 } else { 263 return mem; 264 } 265 assert(mem != orig_mem, "dead memory loop"); 266 } 267 } 268 269 // Generate loads from source of the arraycopy for fields of 270 // destination needed at a deoptimization point 271 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 272 BasicType bt = ft; 273 const Type *type = ftype; 274 if (ft == T_NARROWOOP) { 275 bt = T_OBJECT; 276 type = ftype->make_oopptr(); 277 } 278 Node* res = NULL; 279 if (ac->is_clonebasic()) { 280 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 281 Node* base = ac->in(ArrayCopyNode::Src); 282 Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset))); 283 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 284 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 285 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 286 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 287 } else { 288 if (ac->modifies(offset, offset, &_igvn, true)) { 289 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 290 uint shift = exact_log2(type2aelembytes(bt)); 291 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 292 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 293 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 294 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 295 296 Node* adr = NULL; 297 const TypePtr* adr_type = NULL; 298 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 299 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 300 Node* base = ac->in(ArrayCopyNode::Src); 301 adr = _igvn.transform(new AddPNode(base, base, MakeConX(off))); 302 adr_type = _igvn.type(base)->is_ptr()->add_offset(off); 303 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 304 // Don't emit a new load from src if src == dst but try to get the value from memory instead 305 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc); 306 } 307 } else { 308 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 309 #ifdef _LP64 310 diff = _igvn.transform(new ConvI2LNode(diff)); 311 #endif 312 diff = _igvn.transform(new LShiftXNode(diff, intcon(shift))); 313 314 Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff)); 315 Node* base = ac->in(ArrayCopyNode::Src); 316 adr = _igvn.transform(new AddPNode(base, base, off)); 317 adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot); 318 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 319 // Non constant offset in the array: we can't statically 320 // determine the value 321 return NULL; 322 } 323 } 324 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 325 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 326 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 327 } 328 } 329 if (res != NULL) { 330 if (ftype->isa_narrowoop()) { 331 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 332 res = _igvn.transform(new EncodePNode(res, ftype)); 333 } 334 return res; 335 } 336 return NULL; 337 } 338 339 // 340 // Given a Memory Phi, compute a value Phi containing the values from stores 341 // on the input paths. 342 // Note: this function is recursive, its depth is limited by the "level" argument 343 // Returns the computed Phi, or NULL if it cannot compute it. 344 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 345 assert(mem->is_Phi(), "sanity"); 346 int alias_idx = C->get_alias_index(adr_t); 347 int offset = adr_t->offset(); 348 int instance_id = adr_t->instance_id(); 349 350 // Check if an appropriate value phi already exists. 351 Node* region = mem->in(0); 352 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 353 Node* phi = region->fast_out(k); 354 if (phi->is_Phi() && phi != mem && 355 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 356 return phi; 357 } 358 } 359 // Check if an appropriate new value phi already exists. 360 Node* new_phi = value_phis->find(mem->_idx); 361 if (new_phi != NULL) 362 return new_phi; 363 364 if (level <= 0) { 365 return NULL; // Give up: phi tree too deep 366 } 367 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 368 Node *alloc_mem = alloc->in(TypeFunc::Memory); 369 370 uint length = mem->req(); 371 GrowableArray <Node *> values(length, length, NULL); 372 373 // create a new Phi for the value 374 PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset); 375 transform_later(phi); 376 value_phis->push(phi, mem->_idx); 377 378 for (uint j = 1; j < length; j++) { 379 Node *in = mem->in(j); 380 if (in == NULL || in->is_top()) { 381 values.at_put(j, in); 382 } else { 383 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 384 if (val == start_mem || val == alloc_mem) { 385 // hit a sentinel, return appropriate 0 value 386 values.at_put(j, _igvn.zerocon(ft)); 387 continue; 388 } 389 if (val->is_Initialize()) { 390 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 391 } 392 if (val == NULL) { 393 return NULL; // can't find a value on this path 394 } 395 if (val == mem) { 396 values.at_put(j, mem); 397 } else if (val->is_Store()) { 398 Node* n = val->in(MemNode::ValueIn); 399 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 400 n = bs->step_over_gc_barrier(n); 401 if (is_subword_type(ft)) { 402 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 403 } 404 values.at_put(j, n); 405 } else if(val->is_Proj() && val->in(0) == alloc) { 406 values.at_put(j, _igvn.zerocon(ft)); 407 } else if (val->is_Phi()) { 408 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 409 if (val == NULL) { 410 return NULL; 411 } 412 values.at_put(j, val); 413 } else if (val->Opcode() == Op_SCMemProj) { 414 assert(val->in(0)->is_LoadStore() || 415 val->in(0)->Opcode() == Op_EncodeISOArray || 416 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 417 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 418 return NULL; 419 } else if (val->is_ArrayCopy()) { 420 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 421 if (res == NULL) { 422 return NULL; 423 } 424 values.at_put(j, res); 425 } else { 426 DEBUG_ONLY( val->dump(); ) 427 assert(false, "unknown node on this path"); 428 return NULL; // unknown node on this path 429 } 430 } 431 } 432 // Set Phi's inputs 433 for (uint j = 1; j < length; j++) { 434 if (values.at(j) == mem) { 435 phi->init_req(j, phi); 436 } else { 437 phi->init_req(j, values.at(j)); 438 } 439 } 440 return phi; 441 } 442 443 // Search the last value stored into the object's field. 444 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 445 assert(adr_t->is_known_instance_field(), "instance required"); 446 int instance_id = adr_t->instance_id(); 447 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 448 449 int alias_idx = C->get_alias_index(adr_t); 450 int offset = adr_t->offset(); 451 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 452 Node *alloc_ctrl = alloc->in(TypeFunc::Control); 453 Node *alloc_mem = alloc->in(TypeFunc::Memory); 454 VectorSet visited; 455 456 bool done = sfpt_mem == alloc_mem; 457 Node *mem = sfpt_mem; 458 while (!done) { 459 if (visited.test_set(mem->_idx)) { 460 return NULL; // found a loop, give up 461 } 462 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 463 if (mem == start_mem || mem == alloc_mem) { 464 done = true; // hit a sentinel, return appropriate 0 value 465 } else if (mem->is_Initialize()) { 466 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 467 if (mem == NULL) { 468 done = true; // Something go wrong. 469 } else if (mem->is_Store()) { 470 const TypePtr* atype = mem->as_Store()->adr_type(); 471 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 472 done = true; 473 } 474 } else if (mem->is_Store()) { 475 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 476 assert(atype != NULL, "address type must be oopptr"); 477 assert(C->get_alias_index(atype) == alias_idx && 478 atype->is_known_instance_field() && atype->offset() == offset && 479 atype->instance_id() == instance_id, "store is correct memory slice"); 480 done = true; 481 } else if (mem->is_Phi()) { 482 // try to find a phi's unique input 483 Node *unique_input = NULL; 484 Node *top = C->top(); 485 for (uint i = 1; i < mem->req(); i++) { 486 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 487 if (n == NULL || n == top || n == mem) { 488 continue; 489 } else if (unique_input == NULL) { 490 unique_input = n; 491 } else if (unique_input != n) { 492 unique_input = top; 493 break; 494 } 495 } 496 if (unique_input != NULL && unique_input != top) { 497 mem = unique_input; 498 } else { 499 done = true; 500 } 501 } else if (mem->is_ArrayCopy()) { 502 done = true; 503 } else { 504 DEBUG_ONLY( mem->dump(); ) 505 assert(false, "unexpected node"); 506 } 507 } 508 if (mem != NULL) { 509 if (mem == start_mem || mem == alloc_mem) { 510 // hit a sentinel, return appropriate 0 value 511 return _igvn.zerocon(ft); 512 } else if (mem->is_Store()) { 513 Node* n = mem->in(MemNode::ValueIn); 514 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 515 n = bs->step_over_gc_barrier(n); 516 return n; 517 } else if (mem->is_Phi()) { 518 // attempt to produce a Phi reflecting the values on the input paths of the Phi 519 Node_Stack value_phis(8); 520 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 521 if (phi != NULL) { 522 return phi; 523 } else { 524 // Kill all new Phis 525 while(value_phis.is_nonempty()) { 526 Node* n = value_phis.node(); 527 _igvn.replace_node(n, C->top()); 528 value_phis.pop(); 529 } 530 } 531 } else if (mem->is_ArrayCopy()) { 532 Node* ctl = mem->in(0); 533 Node* m = mem->in(TypeFunc::Memory); 534 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { 535 // pin the loads in the uncommon trap path 536 ctl = sfpt_ctl; 537 m = sfpt_mem; 538 } 539 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 540 } 541 } 542 // Something go wrong. 543 return NULL; 544 } 545 546 // Check the possibility of scalar replacement. 547 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 548 // Scan the uses of the allocation to check for anything that would 549 // prevent us from eliminating it. 550 NOT_PRODUCT( const char* fail_eliminate = NULL; ) 551 DEBUG_ONLY( Node* disq_node = NULL; ) 552 bool can_eliminate = true; 553 554 Node* res = alloc->result_cast(); 555 const TypeOopPtr* res_type = NULL; 556 if (res == NULL) { 557 // All users were eliminated. 558 } else if (!res->is_CheckCastPP()) { 559 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 560 can_eliminate = false; 561 } else { 562 res_type = _igvn.type(res)->isa_oopptr(); 563 if (res_type == NULL) { 564 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 565 can_eliminate = false; 566 } else if (res_type->isa_aryptr()) { 567 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 568 if (length < 0) { 569 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 570 can_eliminate = false; 571 } 572 } 573 } 574 575 if (can_eliminate && res != NULL) { 576 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 577 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); 578 j < jmax && can_eliminate; j++) { 579 Node* use = res->fast_out(j); 580 581 if (use->is_AddP()) { 582 const TypePtr* addp_type = _igvn.type(use)->is_ptr(); 583 int offset = addp_type->offset(); 584 585 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 586 NOT_PRODUCT(fail_eliminate = "Undefined field referrence";) 587 can_eliminate = false; 588 break; 589 } 590 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 591 k < kmax && can_eliminate; k++) { 592 Node* n = use->fast_out(k); 593 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n)) { 594 DEBUG_ONLY(disq_node = n;) 595 if (n->is_Load() || n->is_LoadStore()) { 596 NOT_PRODUCT(fail_eliminate = "Field load";) 597 } else { 598 NOT_PRODUCT(fail_eliminate = "Not store field referrence";) 599 } 600 can_eliminate = false; 601 } 602 } 603 } else if (use->is_ArrayCopy() && 604 (use->as_ArrayCopy()->is_clonebasic() || 605 use->as_ArrayCopy()->is_arraycopy_validated() || 606 use->as_ArrayCopy()->is_copyof_validated() || 607 use->as_ArrayCopy()->is_copyofrange_validated()) && 608 use->in(ArrayCopyNode::Dest) == res) { 609 // ok to eliminate 610 } else if (use->is_SafePoint()) { 611 SafePointNode* sfpt = use->as_SafePoint(); 612 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 613 // Object is passed as argument. 614 DEBUG_ONLY(disq_node = use;) 615 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 616 can_eliminate = false; 617 } 618 Node* sfptMem = sfpt->memory(); 619 if (sfptMem == NULL || sfptMem->is_top()) { 620 DEBUG_ONLY(disq_node = use;) 621 NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";) 622 can_eliminate = false; 623 } else { 624 safepoints.append_if_missing(sfpt); 625 } 626 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 627 if (use->is_Phi()) { 628 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 629 NOT_PRODUCT(fail_eliminate = "Object is return value";) 630 } else { 631 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 632 } 633 DEBUG_ONLY(disq_node = use;) 634 } else { 635 if (use->Opcode() == Op_Return) { 636 NOT_PRODUCT(fail_eliminate = "Object is return value";) 637 }else { 638 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 639 } 640 DEBUG_ONLY(disq_node = use;) 641 } 642 can_eliminate = false; 643 } 644 } 645 } 646 647 #ifndef PRODUCT 648 if (PrintEliminateAllocations) { 649 if (can_eliminate) { 650 tty->print("Scalar "); 651 if (res == NULL) 652 alloc->dump(); 653 else 654 res->dump(); 655 } else if (alloc->_is_scalar_replaceable) { 656 tty->print("NotScalar (%s)", fail_eliminate); 657 if (res == NULL) 658 alloc->dump(); 659 else 660 res->dump(); 661 #ifdef ASSERT 662 if (disq_node != NULL) { 663 tty->print(" >>>> "); 664 disq_node->dump(); 665 } 666 #endif /*ASSERT*/ 667 } 668 } 669 #endif 670 return can_eliminate; 671 } 672 673 // Do scalar replacement. 674 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 675 GrowableArray <SafePointNode *> safepoints_done; 676 677 ciKlass* klass = NULL; 678 ciInstanceKlass* iklass = NULL; 679 int nfields = 0; 680 int array_base = 0; 681 int element_size = 0; 682 BasicType basic_elem_type = T_ILLEGAL; 683 ciType* elem_type = NULL; 684 685 Node* res = alloc->result_cast(); 686 assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result"); 687 const TypeOopPtr* res_type = NULL; 688 if (res != NULL) { // Could be NULL when there are no users 689 res_type = _igvn.type(res)->isa_oopptr(); 690 } 691 692 if (res != NULL) { 693 klass = res_type->klass(); 694 if (res_type->isa_instptr()) { 695 // find the fields of the class which will be needed for safepoint debug information 696 assert(klass->is_instance_klass(), "must be an instance klass."); 697 iklass = klass->as_instance_klass(); 698 nfields = iklass->nof_nonstatic_fields(); 699 } else { 700 // find the array's elements which will be needed for safepoint debug information 701 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 702 assert(klass->is_array_klass() && nfields >= 0, "must be an array klass."); 703 elem_type = klass->as_array_klass()->element_type(); 704 basic_elem_type = elem_type->basic_type(); 705 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 706 element_size = type2aelembytes(basic_elem_type); 707 } 708 } 709 // 710 // Process the safepoint uses 711 // 712 while (safepoints.length() > 0) { 713 SafePointNode* sfpt = safepoints.pop(); 714 Node* mem = sfpt->memory(); 715 Node* ctl = sfpt->control(); 716 assert(sfpt->jvms() != NULL, "missed JVMS"); 717 // Fields of scalar objs are referenced only at the end 718 // of regular debuginfo at the last (youngest) JVMS. 719 // Record relative start index. 720 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 721 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, 722 #ifdef ASSERT 723 alloc, 724 #endif 725 first_ind, nfields); 726 sobj->init_req(0, C->root()); 727 transform_later(sobj); 728 729 // Scan object's fields adding an input to the safepoint for each field. 730 for (int j = 0; j < nfields; j++) { 731 intptr_t offset; 732 ciField* field = NULL; 733 if (iklass != NULL) { 734 field = iklass->nonstatic_field_at(j); 735 offset = field->offset(); 736 elem_type = field->type(); 737 basic_elem_type = field->layout_type(); 738 } else { 739 offset = array_base + j * (intptr_t)element_size; 740 } 741 742 const Type *field_type; 743 // The next code is taken from Parse::do_get_xxx(). 744 if (is_reference_type(basic_elem_type)) { 745 if (!elem_type->is_loaded()) { 746 field_type = TypeInstPtr::BOTTOM; 747 } else if (field != NULL && field->is_static_constant()) { 748 // This can happen if the constant oop is non-perm. 749 ciObject* con = field->constant_value().as_object(); 750 // Do not "join" in the previous type; it doesn't add value, 751 // and may yield a vacuous result if the field is of interface type. 752 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 753 assert(field_type != NULL, "field singleton type must be consistent"); 754 } else { 755 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 756 } 757 if (UseCompressedOops) { 758 field_type = field_type->make_narrowoop(); 759 basic_elem_type = T_NARROWOOP; 760 } 761 } else { 762 field_type = Type::get_const_basic_type(basic_elem_type); 763 } 764 765 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 766 767 Node *field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc); 768 if (field_val == NULL) { 769 // We weren't able to find a value for this field, 770 // give up on eliminating this allocation. 771 772 // Remove any extra entries we added to the safepoint. 773 uint last = sfpt->req() - 1; 774 for (int k = 0; k < j; k++) { 775 sfpt->del_req(last--); 776 } 777 _igvn._worklist.push(sfpt); 778 // rollback processed safepoints 779 while (safepoints_done.length() > 0) { 780 SafePointNode* sfpt_done = safepoints_done.pop(); 781 // remove any extra entries we added to the safepoint 782 last = sfpt_done->req() - 1; 783 for (int k = 0; k < nfields; k++) { 784 sfpt_done->del_req(last--); 785 } 786 JVMState *jvms = sfpt_done->jvms(); 787 jvms->set_endoff(sfpt_done->req()); 788 // Now make a pass over the debug information replacing any references 789 // to SafePointScalarObjectNode with the allocated object. 790 int start = jvms->debug_start(); 791 int end = jvms->debug_end(); 792 for (int i = start; i < end; i++) { 793 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 794 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 795 if (scobj->first_index(jvms) == sfpt_done->req() && 796 scobj->n_fields() == (uint)nfields) { 797 assert(scobj->alloc() == alloc, "sanity"); 798 sfpt_done->set_req(i, res); 799 } 800 } 801 } 802 _igvn._worklist.push(sfpt_done); 803 } 804 #ifndef PRODUCT 805 if (PrintEliminateAllocations) { 806 if (field != NULL) { 807 tty->print("=== At SafePoint node %d can't find value of Field: ", 808 sfpt->_idx); 809 field->print(); 810 int field_idx = C->get_alias_index(field_addr_type); 811 tty->print(" (alias_idx=%d)", field_idx); 812 } else { // Array's element 813 tty->print("=== At SafePoint node %d can't find value of array element [%d]", 814 sfpt->_idx, j); 815 } 816 tty->print(", which prevents elimination of: "); 817 if (res == NULL) 818 alloc->dump(); 819 else 820 res->dump(); 821 } 822 #endif 823 return false; 824 } 825 if (UseCompressedOops && field_type->isa_narrowoop()) { 826 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 827 // to be able scalar replace the allocation. 828 if (field_val->is_EncodeP()) { 829 field_val = field_val->in(1); 830 } else { 831 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 832 } 833 } 834 sfpt->add_req(field_val); 835 } 836 JVMState *jvms = sfpt->jvms(); 837 jvms->set_endoff(sfpt->req()); 838 // Now make a pass over the debug information replacing any references 839 // to the allocated object with "sobj" 840 int start = jvms->debug_start(); 841 int end = jvms->debug_end(); 842 sfpt->replace_edges_in_range(res, sobj, start, end, &_igvn); 843 _igvn._worklist.push(sfpt); 844 safepoints_done.append_if_missing(sfpt); // keep it for rollback 845 } 846 return true; 847 } 848 849 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 850 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 851 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 852 if (ctl_proj != NULL) { 853 igvn.replace_node(ctl_proj, n->in(0)); 854 } 855 if (mem_proj != NULL) { 856 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 857 } 858 } 859 860 // Process users of eliminated allocation. 861 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) { 862 Node* res = alloc->result_cast(); 863 if (res != NULL) { 864 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 865 Node *use = res->last_out(j); 866 uint oc1 = res->outcnt(); 867 868 if (use->is_AddP()) { 869 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 870 Node *n = use->last_out(k); 871 uint oc2 = use->outcnt(); 872 if (n->is_Store()) { 873 #ifdef ASSERT 874 // Verify that there is no dependent MemBarVolatile nodes, 875 // they should be removed during IGVN, see MemBarNode::Ideal(). 876 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); 877 p < pmax; p++) { 878 Node* mb = n->fast_out(p); 879 assert(mb->is_Initialize() || !mb->is_MemBar() || 880 mb->req() <= MemBarNode::Precedent || 881 mb->in(MemBarNode::Precedent) != n, 882 "MemBarVolatile should be eliminated for non-escaping object"); 883 } 884 #endif 885 _igvn.replace_node(n, n->in(MemNode::Memory)); 886 } else { 887 eliminate_gc_barrier(n); 888 } 889 k -= (oc2 - use->outcnt()); 890 } 891 _igvn.remove_dead_node(use); 892 } else if (use->is_ArrayCopy()) { 893 // Disconnect ArrayCopy node 894 ArrayCopyNode* ac = use->as_ArrayCopy(); 895 if (ac->is_clonebasic()) { 896 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 897 disconnect_projections(ac, _igvn); 898 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 899 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 900 disconnect_projections(membar_before->as_MemBar(), _igvn); 901 if (membar_after->is_MemBar()) { 902 disconnect_projections(membar_after->as_MemBar(), _igvn); 903 } 904 } else { 905 assert(ac->is_arraycopy_validated() || 906 ac->is_copyof_validated() || 907 ac->is_copyofrange_validated(), "unsupported"); 908 CallProjections callprojs; 909 ac->extract_projections(&callprojs, true); 910 911 _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O)); 912 _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory)); 913 _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control)); 914 915 // Set control to top. IGVN will remove the remaining projections 916 ac->set_req(0, top()); 917 ac->replace_edge(res, top(), &_igvn); 918 919 // Disconnect src right away: it can help find new 920 // opportunities for allocation elimination 921 Node* src = ac->in(ArrayCopyNode::Src); 922 ac->replace_edge(src, top(), &_igvn); 923 // src can be top at this point if src and dest of the 924 // arraycopy were the same 925 if (src->outcnt() == 0 && !src->is_top()) { 926 _igvn.remove_dead_node(src); 927 } 928 } 929 _igvn._worklist.push(ac); 930 } else { 931 eliminate_gc_barrier(use); 932 } 933 j -= (oc1 - res->outcnt()); 934 } 935 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 936 _igvn.remove_dead_node(res); 937 } 938 939 // 940 // Process other users of allocation's projections 941 // 942 if (_callprojs.resproj != NULL && _callprojs.resproj->outcnt() != 0) { 943 // First disconnect stores captured by Initialize node. 944 // If Initialize node is eliminated first in the following code, 945 // it will kill such stores and DUIterator_Last will assert. 946 for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax); j < jmax; j++) { 947 Node* use = _callprojs.resproj->fast_out(j); 948 if (use->is_AddP()) { 949 // raw memory addresses used only by the initialization 950 _igvn.replace_node(use, C->top()); 951 --j; --jmax; 952 } 953 } 954 for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) { 955 Node* use = _callprojs.resproj->last_out(j); 956 uint oc1 = _callprojs.resproj->outcnt(); 957 if (use->is_Initialize()) { 958 // Eliminate Initialize node. 959 InitializeNode *init = use->as_Initialize(); 960 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 961 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 962 if (ctrl_proj != NULL) { 963 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 964 #ifdef ASSERT 965 // If the InitializeNode has no memory out, it will die, and tmp will become NULL 966 Node* tmp = init->in(TypeFunc::Control); 967 assert(tmp == NULL || tmp == _callprojs.fallthrough_catchproj, "allocation control projection"); 968 #endif 969 } 970 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 971 if (mem_proj != NULL) { 972 Node *mem = init->in(TypeFunc::Memory); 973 #ifdef ASSERT 974 if (mem->is_MergeMem()) { 975 assert(mem->in(TypeFunc::Memory) == _callprojs.fallthrough_memproj, "allocation memory projection"); 976 } else { 977 assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection"); 978 } 979 #endif 980 _igvn.replace_node(mem_proj, mem); 981 } 982 } else { 983 assert(false, "only Initialize or AddP expected"); 984 } 985 j -= (oc1 - _callprojs.resproj->outcnt()); 986 } 987 } 988 if (_callprojs.fallthrough_catchproj != NULL) { 989 _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control)); 990 } 991 if (_callprojs.fallthrough_memproj != NULL) { 992 _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory)); 993 } 994 if (_callprojs.catchall_memproj != NULL) { 995 _igvn.replace_node(_callprojs.catchall_memproj, C->top()); 996 } 997 if (_callprojs.fallthrough_ioproj != NULL) { 998 _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 999 } 1000 if (_callprojs.catchall_ioproj != NULL) { 1001 _igvn.replace_node(_callprojs.catchall_ioproj, C->top()); 1002 } 1003 if (_callprojs.catchall_catchproj != NULL) { 1004 _igvn.replace_node(_callprojs.catchall_catchproj, C->top()); 1005 } 1006 } 1007 1008 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1009 // If reallocation fails during deoptimization we'll pop all 1010 // interpreter frames for this compiled frame and that won't play 1011 // nice with JVMTI popframe. 1012 // We avoid this issue by eager reallocation when the popframe request 1013 // is received. 1014 if (!EliminateAllocations || !alloc->_is_non_escaping) { 1015 return false; 1016 } 1017 Node* klass = alloc->in(AllocateNode::KlassNode); 1018 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1019 Node* res = alloc->result_cast(); 1020 // Eliminate boxing allocations which are not used 1021 // regardless scalar replacable status. 1022 bool boxing_alloc = C->eliminate_boxing() && 1023 tklass->klass()->is_instance_klass() && 1024 tklass->klass()->as_instance_klass()->is_box_klass(); 1025 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) { 1026 return false; 1027 } 1028 1029 alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1030 1031 GrowableArray <SafePointNode *> safepoints; 1032 if (!can_eliminate_allocation(alloc, safepoints)) { 1033 return false; 1034 } 1035 1036 if (!alloc->_is_scalar_replaceable) { 1037 assert(res == NULL, "sanity"); 1038 // We can only eliminate allocation if all debug info references 1039 // are already replaced with SafePointScalarObject because 1040 // we can't search for a fields value without instance_id. 1041 if (safepoints.length() > 0) { 1042 return false; 1043 } 1044 } 1045 1046 if (!scalar_replacement(alloc, safepoints)) { 1047 return false; 1048 } 1049 1050 CompileLog* log = C->log(); 1051 if (log != NULL) { 1052 log->head("eliminate_allocation type='%d'", 1053 log->identify(tklass->klass())); 1054 JVMState* p = alloc->jvms(); 1055 while (p != NULL) { 1056 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1057 p = p->caller(); 1058 } 1059 log->tail("eliminate_allocation"); 1060 } 1061 1062 process_users_of_allocation(alloc); 1063 1064 #ifndef PRODUCT 1065 if (PrintEliminateAllocations) { 1066 if (alloc->is_AllocateArray()) 1067 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1068 else 1069 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1070 } 1071 #endif 1072 1073 return true; 1074 } 1075 1076 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1077 // EA should remove all uses of non-escaping boxing node. 1078 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) { 1079 return false; 1080 } 1081 1082 assert(boxing->result_cast() == NULL, "unexpected boxing node result"); 1083 1084 boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1085 1086 const TypeTuple* r = boxing->tf()->range(); 1087 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1088 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1089 assert(t != NULL, "sanity"); 1090 1091 CompileLog* log = C->log(); 1092 if (log != NULL) { 1093 log->head("eliminate_boxing type='%d'", 1094 log->identify(t->klass())); 1095 JVMState* p = boxing->jvms(); 1096 while (p != NULL) { 1097 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1098 p = p->caller(); 1099 } 1100 log->tail("eliminate_boxing"); 1101 } 1102 1103 process_users_of_allocation(boxing); 1104 1105 #ifndef PRODUCT 1106 if (PrintEliminateAllocations) { 1107 tty->print("++++ Eliminated: %d ", boxing->_idx); 1108 boxing->method()->print_short_name(tty); 1109 tty->cr(); 1110 } 1111 #endif 1112 1113 return true; 1114 } 1115 1116 //---------------------------set_eden_pointers------------------------- 1117 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) { 1118 if (UseTLAB) { // Private allocation: load from TLS 1119 Node* thread = transform_later(new ThreadLocalNode()); 1120 int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset()); 1121 int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset()); 1122 eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset); 1123 eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset); 1124 } else { // Shared allocation: load from globals 1125 CollectedHeap* ch = Universe::heap(); 1126 address top_adr = (address)ch->top_addr(); 1127 address end_adr = (address)ch->end_addr(); 1128 eden_top_adr = makecon(TypeRawPtr::make(top_adr)); 1129 eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr); 1130 } 1131 } 1132 1133 1134 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1135 Node* adr = basic_plus_adr(base, offset); 1136 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1137 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1138 transform_later(value); 1139 return value; 1140 } 1141 1142 1143 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1144 Node* adr = basic_plus_adr(base, offset); 1145 mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered); 1146 transform_later(mem); 1147 return mem; 1148 } 1149 1150 //============================================================================= 1151 // 1152 // A L L O C A T I O N 1153 // 1154 // Allocation attempts to be fast in the case of frequent small objects. 1155 // It breaks down like this: 1156 // 1157 // 1) Size in doublewords is computed. This is a constant for objects and 1158 // variable for most arrays. Doubleword units are used to avoid size 1159 // overflow of huge doubleword arrays. We need doublewords in the end for 1160 // rounding. 1161 // 1162 // 2) Size is checked for being 'too large'. Too-large allocations will go 1163 // the slow path into the VM. The slow path can throw any required 1164 // exceptions, and does all the special checks for very large arrays. The 1165 // size test can constant-fold away for objects. For objects with 1166 // finalizers it constant-folds the otherway: you always go slow with 1167 // finalizers. 1168 // 1169 // 3) If NOT using TLABs, this is the contended loop-back point. 1170 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1171 // 1172 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1173 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1174 // "size*8" we always enter the VM, where "largish" is a constant picked small 1175 // enough that there's always space between the eden max and 4Gig (old space is 1176 // there so it's quite large) and large enough that the cost of entering the VM 1177 // is dwarfed by the cost to initialize the space. 1178 // 1179 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1180 // down. If contended, repeat at step 3. If using TLABs normal-store 1181 // adjusted heap top back down; there is no contention. 1182 // 1183 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1184 // fields. 1185 // 1186 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1187 // oop flavor. 1188 // 1189 //============================================================================= 1190 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1191 // Allocations bigger than this always go the slow route. 1192 // This value must be small enough that allocation attempts that need to 1193 // trigger exceptions go the slow route. Also, it must be small enough so 1194 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1195 //=============================================================================j// 1196 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1197 // The allocator will coalesce int->oop copies away. See comment in 1198 // coalesce.cpp about how this works. It depends critically on the exact 1199 // code shape produced here, so if you are changing this code shape 1200 // make sure the GC info for the heap-top is correct in and around the 1201 // slow-path call. 1202 // 1203 1204 void PhaseMacroExpand::expand_allocate_common( 1205 AllocateNode* alloc, // allocation node to be expanded 1206 Node* length, // array length for an array allocation 1207 const TypeFunc* slow_call_type, // Type of slow call 1208 address slow_call_address // Address of slow call 1209 ) 1210 { 1211 Node* ctrl = alloc->in(TypeFunc::Control); 1212 Node* mem = alloc->in(TypeFunc::Memory); 1213 Node* i_o = alloc->in(TypeFunc::I_O); 1214 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1215 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1216 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1217 assert(ctrl != NULL, "must have control"); 1218 1219 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1220 // they will not be used if "always_slow" is set 1221 enum { slow_result_path = 1, fast_result_path = 2 }; 1222 Node *result_region = NULL; 1223 Node *result_phi_rawmem = NULL; 1224 Node *result_phi_rawoop = NULL; 1225 Node *result_phi_i_o = NULL; 1226 1227 // The initial slow comparison is a size check, the comparison 1228 // we want to do is a BoolTest::gt 1229 bool expand_fast_path = true; 1230 int tv = _igvn.find_int_con(initial_slow_test, -1); 1231 if (tv >= 0) { 1232 // InitialTest has constant result 1233 // 0 - can fit in TLAB 1234 // 1 - always too big or negative 1235 assert(tv <= 1, "0 or 1 if a constant"); 1236 expand_fast_path = (tv == 0); 1237 initial_slow_test = NULL; 1238 } else { 1239 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1240 } 1241 1242 if (C->env()->dtrace_alloc_probes() || 1243 (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) { 1244 // Force slow-path allocation 1245 expand_fast_path = false; 1246 initial_slow_test = NULL; 1247 } 1248 1249 bool allocation_has_use = (alloc->result_cast() != NULL); 1250 if (!allocation_has_use) { 1251 InitializeNode* init = alloc->initialization(); 1252 if (init != NULL) { 1253 init->remove(&_igvn); 1254 } 1255 if (expand_fast_path && (initial_slow_test == NULL)) { 1256 // Remove allocation node and return. 1257 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1258 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1259 #ifndef PRODUCT 1260 if (PrintEliminateAllocations) { 1261 tty->print("NotUsed "); 1262 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1263 if (res != NULL) { 1264 res->dump(); 1265 } else { 1266 alloc->dump(); 1267 } 1268 } 1269 #endif 1270 yank_alloc_node(alloc); 1271 return; 1272 } 1273 } 1274 1275 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1276 Node *slow_region = NULL; 1277 Node *toobig_false = ctrl; 1278 1279 // generate the initial test if necessary 1280 if (initial_slow_test != NULL ) { 1281 assert (expand_fast_path, "Only need test if there is a fast path"); 1282 slow_region = new RegionNode(3); 1283 1284 // Now make the initial failure test. Usually a too-big test but 1285 // might be a TRUE for finalizers or a fancy class check for 1286 // newInstance0. 1287 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1288 transform_later(toobig_iff); 1289 // Plug the failing-too-big test into the slow-path region 1290 Node *toobig_true = new IfTrueNode( toobig_iff ); 1291 transform_later(toobig_true); 1292 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1293 toobig_false = new IfFalseNode( toobig_iff ); 1294 transform_later(toobig_false); 1295 } else { 1296 // No initial test, just fall into next case 1297 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1298 toobig_false = ctrl; 1299 debug_only(slow_region = NodeSentinel); 1300 } 1301 1302 // If we are here there are several possibilities 1303 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1304 // no_initial_check means a constant allocation. 1305 // - If check always evaluates to false -> expand_fast_path is false (see above) 1306 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1307 // if !allocation_has_use the fast path is empty 1308 // if !allocation_has_use && no_initial_check 1309 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1310 // removed by yank_alloc_node above. 1311 1312 Node *slow_mem = mem; // save the current memory state for slow path 1313 // generate the fast allocation code unless we know that the initial test will always go slow 1314 if (expand_fast_path) { 1315 // Fast path modifies only raw memory. 1316 if (mem->is_MergeMem()) { 1317 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1318 } 1319 1320 // allocate the Region and Phi nodes for the result 1321 result_region = new RegionNode(3); 1322 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1323 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1324 1325 // Grab regular I/O before optional prefetch may change it. 1326 // Slow-path does no I/O so just set it to the original I/O. 1327 result_phi_i_o->init_req(slow_result_path, i_o); 1328 1329 // Name successful fast-path variables 1330 Node* fast_oop_ctrl; 1331 Node* fast_oop_rawmem; 1332 if (allocation_has_use) { 1333 Node* needgc_ctrl = NULL; 1334 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1335 1336 intx prefetch_lines = length != NULL ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1337 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1338 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1339 fast_oop_ctrl, fast_oop_rawmem, 1340 prefetch_lines); 1341 1342 if (initial_slow_test != NULL) { 1343 // This completes all paths into the slow merge point 1344 slow_region->init_req(need_gc_path, needgc_ctrl); 1345 transform_later(slow_region); 1346 } else { 1347 // No initial slow path needed! 1348 // Just fall from the need-GC path straight into the VM call. 1349 slow_region = needgc_ctrl; 1350 } 1351 1352 InitializeNode* init = alloc->initialization(); 1353 fast_oop_rawmem = initialize_object(alloc, 1354 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1355 klass_node, length, size_in_bytes); 1356 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1357 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1358 1359 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1360 } else { 1361 assert (initial_slow_test != NULL, "sanity"); 1362 fast_oop_ctrl = toobig_false; 1363 fast_oop_rawmem = mem; 1364 transform_later(slow_region); 1365 } 1366 1367 // Plug in the successful fast-path into the result merge point 1368 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1369 result_phi_i_o ->init_req(fast_result_path, i_o); 1370 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1371 } else { 1372 slow_region = ctrl; 1373 result_phi_i_o = i_o; // Rename it to use in the following code. 1374 } 1375 1376 // Generate slow-path call 1377 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1378 OptoRuntime::stub_name(slow_call_address), 1379 TypePtr::BOTTOM); 1380 call->init_req(TypeFunc::Control, slow_region); 1381 call->init_req(TypeFunc::I_O, top()); // does no i/o 1382 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1383 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1384 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1385 1386 call->init_req(TypeFunc::Parms+0, klass_node); 1387 if (length != NULL) { 1388 call->init_req(TypeFunc::Parms+1, length); 1389 } 1390 1391 // Copy debug information and adjust JVMState information, then replace 1392 // allocate node with the call 1393 call->copy_call_debug_info(&_igvn, alloc); 1394 if (expand_fast_path) { 1395 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1396 } else { 1397 // Hook i_o projection to avoid its elimination during allocation 1398 // replacement (when only a slow call is generated). 1399 call->set_req(TypeFunc::I_O, result_phi_i_o); 1400 } 1401 _igvn.replace_node(alloc, call); 1402 transform_later(call); 1403 1404 // Identify the output projections from the allocate node and 1405 // adjust any references to them. 1406 // The control and io projections look like: 1407 // 1408 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1409 // Allocate Catch 1410 // ^---Proj(io) <-------+ ^---CatchProj(io) 1411 // 1412 // We are interested in the CatchProj nodes. 1413 // 1414 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1415 1416 // An allocate node has separate memory projections for the uses on 1417 // the control and i_o paths. Replace the control memory projection with 1418 // result_phi_rawmem (unless we are only generating a slow call when 1419 // both memory projections are combined) 1420 if (expand_fast_path && _callprojs.fallthrough_memproj != NULL) { 1421 migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem); 1422 } 1423 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1424 // catchall_memproj so we end up with a call that has only 1 memory projection. 1425 if (_callprojs.catchall_memproj != NULL ) { 1426 if (_callprojs.fallthrough_memproj == NULL) { 1427 _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1428 transform_later(_callprojs.fallthrough_memproj); 1429 } 1430 migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj); 1431 _igvn.remove_dead_node(_callprojs.catchall_memproj); 1432 } 1433 1434 // An allocate node has separate i_o projections for the uses on the control 1435 // and i_o paths. Always replace the control i_o projection with result i_o 1436 // otherwise incoming i_o become dead when only a slow call is generated 1437 // (it is different from memory projections where both projections are 1438 // combined in such case). 1439 if (_callprojs.fallthrough_ioproj != NULL) { 1440 migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o); 1441 } 1442 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1443 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1444 if (_callprojs.catchall_ioproj != NULL ) { 1445 if (_callprojs.fallthrough_ioproj == NULL) { 1446 _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1447 transform_later(_callprojs.fallthrough_ioproj); 1448 } 1449 migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj); 1450 _igvn.remove_dead_node(_callprojs.catchall_ioproj); 1451 } 1452 1453 // if we generated only a slow call, we are done 1454 if (!expand_fast_path) { 1455 // Now we can unhook i_o. 1456 if (result_phi_i_o->outcnt() > 1) { 1457 call->set_req(TypeFunc::I_O, top()); 1458 } else { 1459 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1460 // Case of new array with negative size known during compilation. 1461 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1462 // following code since call to runtime will throw exception. 1463 // As result there will be no users of i_o after the call. 1464 // Leave i_o attached to this call to avoid problems in preceding graph. 1465 } 1466 return; 1467 } 1468 1469 if (_callprojs.fallthrough_catchproj != NULL) { 1470 ctrl = _callprojs.fallthrough_catchproj->clone(); 1471 transform_later(ctrl); 1472 _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region); 1473 } else { 1474 ctrl = top(); 1475 } 1476 Node *slow_result; 1477 if (_callprojs.resproj == NULL) { 1478 // no uses of the allocation result 1479 slow_result = top(); 1480 } else { 1481 slow_result = _callprojs.resproj->clone(); 1482 transform_later(slow_result); 1483 _igvn.replace_node(_callprojs.resproj, result_phi_rawoop); 1484 } 1485 1486 // Plug slow-path into result merge point 1487 result_region->init_req( slow_result_path, ctrl); 1488 transform_later(result_region); 1489 if (allocation_has_use) { 1490 result_phi_rawoop->init_req(slow_result_path, slow_result); 1491 transform_later(result_phi_rawoop); 1492 } 1493 result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj); 1494 transform_later(result_phi_rawmem); 1495 transform_later(result_phi_i_o); 1496 // This completes all paths into the result merge point 1497 } 1498 1499 // Remove alloc node that has no uses. 1500 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1501 Node* ctrl = alloc->in(TypeFunc::Control); 1502 Node* mem = alloc->in(TypeFunc::Memory); 1503 Node* i_o = alloc->in(TypeFunc::I_O); 1504 1505 alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1506 if (_callprojs.resproj != NULL) { 1507 for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) { 1508 Node* use = _callprojs.resproj->fast_out(i); 1509 use->isa_MemBar()->remove(&_igvn); 1510 --imax; 1511 --i; // back up iterator 1512 } 1513 assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted"); 1514 _igvn.remove_dead_node(_callprojs.resproj); 1515 } 1516 if (_callprojs.fallthrough_catchproj != NULL) { 1517 migrate_outs(_callprojs.fallthrough_catchproj, ctrl); 1518 _igvn.remove_dead_node(_callprojs.fallthrough_catchproj); 1519 } 1520 if (_callprojs.catchall_catchproj != NULL) { 1521 _igvn.rehash_node_delayed(_callprojs.catchall_catchproj); 1522 _callprojs.catchall_catchproj->set_req(0, top()); 1523 } 1524 if (_callprojs.fallthrough_proj != NULL) { 1525 Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out(); 1526 _igvn.remove_dead_node(catchnode); 1527 _igvn.remove_dead_node(_callprojs.fallthrough_proj); 1528 } 1529 if (_callprojs.fallthrough_memproj != NULL) { 1530 migrate_outs(_callprojs.fallthrough_memproj, mem); 1531 _igvn.remove_dead_node(_callprojs.fallthrough_memproj); 1532 } 1533 if (_callprojs.fallthrough_ioproj != NULL) { 1534 migrate_outs(_callprojs.fallthrough_ioproj, i_o); 1535 _igvn.remove_dead_node(_callprojs.fallthrough_ioproj); 1536 } 1537 if (_callprojs.catchall_memproj != NULL) { 1538 _igvn.rehash_node_delayed(_callprojs.catchall_memproj); 1539 _callprojs.catchall_memproj->set_req(0, top()); 1540 } 1541 if (_callprojs.catchall_ioproj != NULL) { 1542 _igvn.rehash_node_delayed(_callprojs.catchall_ioproj); 1543 _callprojs.catchall_ioproj->set_req(0, top()); 1544 } 1545 #ifndef PRODUCT 1546 if (PrintEliminateAllocations) { 1547 if (alloc->is_AllocateArray()) { 1548 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1549 } else { 1550 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1551 } 1552 } 1553 #endif 1554 _igvn.remove_dead_node(alloc); 1555 } 1556 1557 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1558 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1559 // If initialization is performed by an array copy, any required 1560 // MemBarStoreStore was already added. If the object does not 1561 // escape no need for a MemBarStoreStore. If the object does not 1562 // escape in its initializer and memory barrier (MemBarStoreStore or 1563 // stronger) is already added at exit of initializer, also no need 1564 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1565 // so that stores that initialize this object can't be reordered 1566 // with a subsequent store that makes this object accessible by 1567 // other threads. 1568 // Other threads include java threads and JVM internal threads 1569 // (for example concurrent GC threads). Current concurrent GC 1570 // implementation: G1 will not scan newly created object, 1571 // so it's safe to skip storestore barrier when allocation does 1572 // not escape. 1573 if (!alloc->does_not_escape_thread() && 1574 !alloc->is_allocation_MemBar_redundant() && 1575 (init == NULL || !init->is_complete_with_arraycopy())) { 1576 if (init == NULL || init->req() < InitializeNode::RawStores) { 1577 // No InitializeNode or no stores captured by zeroing 1578 // elimination. Simply add the MemBarStoreStore after object 1579 // initialization. 1580 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1581 transform_later(mb); 1582 1583 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1584 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1585 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1586 transform_later(fast_oop_ctrl); 1587 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1588 transform_later(fast_oop_rawmem); 1589 } else { 1590 // Add the MemBarStoreStore after the InitializeNode so that 1591 // all stores performing the initialization that were moved 1592 // before the InitializeNode happen before the storestore 1593 // barrier. 1594 1595 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1596 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1597 1598 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1599 transform_later(mb); 1600 1601 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1602 transform_later(ctrl); 1603 Node* mem = new ProjNode(init, TypeFunc::Memory); 1604 transform_later(mem); 1605 1606 // The MemBarStoreStore depends on control and memory coming 1607 // from the InitializeNode 1608 mb->init_req(TypeFunc::Memory, mem); 1609 mb->init_req(TypeFunc::Control, ctrl); 1610 1611 ctrl = new ProjNode(mb, TypeFunc::Control); 1612 transform_later(ctrl); 1613 mem = new ProjNode(mb, TypeFunc::Memory); 1614 transform_later(mem); 1615 1616 // All nodes that depended on the InitializeNode for control 1617 // and memory must now depend on the MemBarNode that itself 1618 // depends on the InitializeNode 1619 if (init_ctrl != NULL) { 1620 _igvn.replace_node(init_ctrl, ctrl); 1621 } 1622 if (init_mem != NULL) { 1623 _igvn.replace_node(init_mem, mem); 1624 } 1625 } 1626 } 1627 } 1628 1629 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1630 Node*& ctrl, Node*& rawmem) { 1631 if (C->env()->dtrace_extended_probes()) { 1632 // Slow-path call 1633 int size = TypeFunc::Parms + 2; 1634 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1635 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base), 1636 "dtrace_object_alloc", 1637 TypeRawPtr::BOTTOM); 1638 1639 // Get base of thread-local storage area 1640 Node* thread = new ThreadLocalNode(); 1641 transform_later(thread); 1642 1643 call->init_req(TypeFunc::Parms + 0, thread); 1644 call->init_req(TypeFunc::Parms + 1, oop); 1645 call->init_req(TypeFunc::Control, ctrl); 1646 call->init_req(TypeFunc::I_O , top()); // does no i/o 1647 call->init_req(TypeFunc::Memory , ctrl); 1648 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1649 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1650 transform_later(call); 1651 ctrl = new ProjNode(call, TypeFunc::Control); 1652 transform_later(ctrl); 1653 rawmem = new ProjNode(call, TypeFunc::Memory); 1654 transform_later(rawmem); 1655 } 1656 } 1657 1658 // Helper for PhaseMacroExpand::expand_allocate_common. 1659 // Initializes the newly-allocated storage. 1660 Node* 1661 PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1662 Node* control, Node* rawmem, Node* object, 1663 Node* klass_node, Node* length, 1664 Node* size_in_bytes) { 1665 InitializeNode* init = alloc->initialization(); 1666 // Store the klass & mark bits 1667 Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem); 1668 if (!mark_node->is_Con()) { 1669 transform_later(mark_node); 1670 } 1671 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1672 1673 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1674 int header_size = alloc->minimum_header_size(); // conservatively small 1675 1676 // Array length 1677 if (length != NULL) { // Arrays need length field 1678 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1679 // conservatively small header size: 1680 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1681 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); 1682 if (k->is_array_klass()) // we know the exact header size in most cases: 1683 header_size = Klass::layout_helper_header_size(k->layout_helper()); 1684 } 1685 1686 // Clear the object body, if necessary. 1687 if (init == NULL) { 1688 // The init has somehow disappeared; be cautious and clear everything. 1689 // 1690 // This can happen if a node is allocated but an uncommon trap occurs 1691 // immediately. In this case, the Initialize gets associated with the 1692 // trap, and may be placed in a different (outer) loop, if the Allocate 1693 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1694 // there can be two Allocates to one Initialize. The answer in all these 1695 // edge cases is safety first. It is always safe to clear immediately 1696 // within an Allocate, and then (maybe or maybe not) clear some more later. 1697 if (!(UseTLAB && ZeroTLAB)) { 1698 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1699 header_size, size_in_bytes, 1700 &_igvn); 1701 } 1702 } else { 1703 if (!init->is_complete()) { 1704 // Try to win by zeroing only what the init does not store. 1705 // We can also try to do some peephole optimizations, 1706 // such as combining some adjacent subword stores. 1707 rawmem = init->complete_stores(control, rawmem, object, 1708 header_size, size_in_bytes, &_igvn); 1709 } 1710 // We have no more use for this link, since the AllocateNode goes away: 1711 init->set_req(InitializeNode::RawAddress, top()); 1712 // (If we keep the link, it just confuses the register allocator, 1713 // who thinks he sees a real use of the address by the membar.) 1714 } 1715 1716 return rawmem; 1717 } 1718 1719 // Generate prefetch instructions for next allocations. 1720 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1721 Node*& contended_phi_rawmem, 1722 Node* old_eden_top, Node* new_eden_top, 1723 intx lines) { 1724 enum { fall_in_path = 1, pf_path = 2 }; 1725 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1726 // Generate prefetch allocation with watermark check. 1727 // As an allocation hits the watermark, we will prefetch starting 1728 // at a "distance" away from watermark. 1729 1730 Node *pf_region = new RegionNode(3); 1731 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1732 TypeRawPtr::BOTTOM ); 1733 // I/O is used for Prefetch 1734 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1735 1736 Node *thread = new ThreadLocalNode(); 1737 transform_later(thread); 1738 1739 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1740 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1741 transform_later(eden_pf_adr); 1742 1743 Node *old_pf_wm = new LoadPNode(needgc_false, 1744 contended_phi_rawmem, eden_pf_adr, 1745 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1746 MemNode::unordered); 1747 transform_later(old_pf_wm); 1748 1749 // check against new_eden_top 1750 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1751 transform_later(need_pf_cmp); 1752 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1753 transform_later(need_pf_bol); 1754 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1755 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1756 transform_later(need_pf_iff); 1757 1758 // true node, add prefetchdistance 1759 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1760 transform_later(need_pf_true); 1761 1762 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1763 transform_later(need_pf_false); 1764 1765 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1766 _igvn.MakeConX(AllocatePrefetchDistance) ); 1767 transform_later(new_pf_wmt ); 1768 new_pf_wmt->set_req(0, need_pf_true); 1769 1770 Node *store_new_wmt = new StorePNode(need_pf_true, 1771 contended_phi_rawmem, eden_pf_adr, 1772 TypeRawPtr::BOTTOM, new_pf_wmt, 1773 MemNode::unordered); 1774 transform_later(store_new_wmt); 1775 1776 // adding prefetches 1777 pf_phi_abio->init_req( fall_in_path, i_o ); 1778 1779 Node *prefetch_adr; 1780 Node *prefetch; 1781 uint step_size = AllocatePrefetchStepSize; 1782 uint distance = 0; 1783 1784 for ( intx i = 0; i < lines; i++ ) { 1785 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 1786 _igvn.MakeConX(distance) ); 1787 transform_later(prefetch_adr); 1788 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1789 transform_later(prefetch); 1790 distance += step_size; 1791 i_o = prefetch; 1792 } 1793 pf_phi_abio->set_req( pf_path, i_o ); 1794 1795 pf_region->init_req( fall_in_path, need_pf_false ); 1796 pf_region->init_req( pf_path, need_pf_true ); 1797 1798 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 1799 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 1800 1801 transform_later(pf_region); 1802 transform_later(pf_phi_rawmem); 1803 transform_later(pf_phi_abio); 1804 1805 needgc_false = pf_region; 1806 contended_phi_rawmem = pf_phi_rawmem; 1807 i_o = pf_phi_abio; 1808 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 1809 // Insert a prefetch instruction for each allocation. 1810 // This code is used to generate 1 prefetch instruction per cache line. 1811 1812 // Generate several prefetch instructions. 1813 uint step_size = AllocatePrefetchStepSize; 1814 uint distance = AllocatePrefetchDistance; 1815 1816 // Next cache address. 1817 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 1818 _igvn.MakeConX(step_size + distance)); 1819 transform_later(cache_adr); 1820 cache_adr = new CastP2XNode(needgc_false, cache_adr); 1821 transform_later(cache_adr); 1822 // Address is aligned to execute prefetch to the beginning of cache line size 1823 // (it is important when BIS instruction is used on SPARC as prefetch). 1824 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 1825 cache_adr = new AndXNode(cache_adr, mask); 1826 transform_later(cache_adr); 1827 cache_adr = new CastX2PNode(cache_adr); 1828 transform_later(cache_adr); 1829 1830 // Prefetch 1831 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 1832 prefetch->set_req(0, needgc_false); 1833 transform_later(prefetch); 1834 contended_phi_rawmem = prefetch; 1835 Node *prefetch_adr; 1836 distance = step_size; 1837 for ( intx i = 1; i < lines; i++ ) { 1838 prefetch_adr = new AddPNode( cache_adr, cache_adr, 1839 _igvn.MakeConX(distance) ); 1840 transform_later(prefetch_adr); 1841 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 1842 transform_later(prefetch); 1843 distance += step_size; 1844 contended_phi_rawmem = prefetch; 1845 } 1846 } else if( AllocatePrefetchStyle > 0 ) { 1847 // Insert a prefetch for each allocation only on the fast-path 1848 Node *prefetch_adr; 1849 Node *prefetch; 1850 // Generate several prefetch instructions. 1851 uint step_size = AllocatePrefetchStepSize; 1852 uint distance = AllocatePrefetchDistance; 1853 for ( intx i = 0; i < lines; i++ ) { 1854 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 1855 _igvn.MakeConX(distance) ); 1856 transform_later(prefetch_adr); 1857 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1858 // Do not let it float too high, since if eden_top == eden_end, 1859 // both might be null. 1860 if( i == 0 ) { // Set control for first prefetch, next follows it 1861 prefetch->init_req(0, needgc_false); 1862 } 1863 transform_later(prefetch); 1864 distance += step_size; 1865 i_o = prefetch; 1866 } 1867 } 1868 return i_o; 1869 } 1870 1871 1872 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 1873 expand_allocate_common(alloc, NULL, 1874 OptoRuntime::new_instance_Type(), 1875 OptoRuntime::new_instance_Java()); 1876 } 1877 1878 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 1879 Node* length = alloc->in(AllocateNode::ALength); 1880 InitializeNode* init = alloc->initialization(); 1881 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1882 ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass(); 1883 address slow_call_address; // Address of slow call 1884 if (init != NULL && init->is_complete_with_arraycopy() && 1885 k->is_type_array_klass()) { 1886 // Don't zero type array during slow allocation in VM since 1887 // it will be initialized later by arraycopy in compiled code. 1888 slow_call_address = OptoRuntime::new_array_nozero_Java(); 1889 } else { 1890 slow_call_address = OptoRuntime::new_array_Java(); 1891 } 1892 expand_allocate_common(alloc, length, 1893 OptoRuntime::new_array_Type(), 1894 slow_call_address); 1895 } 1896 1897 //-------------------mark_eliminated_box---------------------------------- 1898 // 1899 // During EA obj may point to several objects but after few ideal graph 1900 // transformations (CCP) it may point to only one non escaping object 1901 // (but still using phi), corresponding locks and unlocks will be marked 1902 // for elimination. Later obj could be replaced with a new node (new phi) 1903 // and which does not have escape information. And later after some graph 1904 // reshape other locks and unlocks (which were not marked for elimination 1905 // before) are connected to this new obj (phi) but they still will not be 1906 // marked for elimination since new obj has no escape information. 1907 // Mark all associated (same box and obj) lock and unlock nodes for 1908 // elimination if some of them marked already. 1909 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) { 1910 if (oldbox->as_BoxLock()->is_eliminated()) { 1911 return; // This BoxLock node was processed already. 1912 } 1913 // New implementation (EliminateNestedLocks) has separate BoxLock 1914 // node for each locked region so mark all associated locks/unlocks as 1915 // eliminated even if different objects are referenced in one locked region 1916 // (for example, OSR compilation of nested loop inside locked scope). 1917 if (EliminateNestedLocks || 1918 oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj, NULL)) { 1919 // Box is used only in one lock region. Mark this box as eliminated. 1920 _igvn.hash_delete(oldbox); 1921 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value 1922 _igvn.hash_insert(oldbox); 1923 1924 for (uint i = 0; i < oldbox->outcnt(); i++) { 1925 Node* u = oldbox->raw_out(i); 1926 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 1927 AbstractLockNode* alock = u->as_AbstractLock(); 1928 // Check lock's box since box could be referenced by Lock's debug info. 1929 if (alock->box_node() == oldbox) { 1930 // Mark eliminated all related locks and unlocks. 1931 #ifdef ASSERT 1932 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 1933 #endif 1934 alock->set_non_esc_obj(); 1935 } 1936 } 1937 } 1938 return; 1939 } 1940 1941 // Create new "eliminated" BoxLock node and use it in monitor debug info 1942 // instead of oldbox for the same object. 1943 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 1944 1945 // Note: BoxLock node is marked eliminated only here and it is used 1946 // to indicate that all associated lock and unlock nodes are marked 1947 // for elimination. 1948 newbox->set_eliminated(); 1949 transform_later(newbox); 1950 1951 // Replace old box node with new box for all users of the same object. 1952 for (uint i = 0; i < oldbox->outcnt();) { 1953 bool next_edge = true; 1954 1955 Node* u = oldbox->raw_out(i); 1956 if (u->is_AbstractLock()) { 1957 AbstractLockNode* alock = u->as_AbstractLock(); 1958 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 1959 // Replace Box and mark eliminated all related locks and unlocks. 1960 #ifdef ASSERT 1961 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 1962 #endif 1963 alock->set_non_esc_obj(); 1964 _igvn.rehash_node_delayed(alock); 1965 alock->set_box_node(newbox); 1966 next_edge = false; 1967 } 1968 } 1969 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 1970 FastLockNode* flock = u->as_FastLock(); 1971 assert(flock->box_node() == oldbox, "sanity"); 1972 _igvn.rehash_node_delayed(flock); 1973 flock->set_box_node(newbox); 1974 next_edge = false; 1975 } 1976 1977 // Replace old box in monitor debug info. 1978 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 1979 SafePointNode* sfn = u->as_SafePoint(); 1980 JVMState* youngest_jvms = sfn->jvms(); 1981 int max_depth = youngest_jvms->depth(); 1982 for (int depth = 1; depth <= max_depth; depth++) { 1983 JVMState* jvms = youngest_jvms->of_depth(depth); 1984 int num_mon = jvms->nof_monitors(); 1985 // Loop over monitors 1986 for (int idx = 0; idx < num_mon; idx++) { 1987 Node* obj_node = sfn->monitor_obj(jvms, idx); 1988 Node* box_node = sfn->monitor_box(jvms, idx); 1989 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 1990 int j = jvms->monitor_box_offset(idx); 1991 _igvn.replace_input_of(u, j, newbox); 1992 next_edge = false; 1993 } 1994 } 1995 } 1996 } 1997 if (next_edge) i++; 1998 } 1999 } 2000 2001 //-----------------------mark_eliminated_locking_nodes----------------------- 2002 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2003 if (EliminateNestedLocks) { 2004 if (alock->is_nested()) { 2005 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2006 return; 2007 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2008 // Only Lock node has JVMState needed here. 2009 // Not that preceding claim is documented anywhere else. 2010 if (alock->jvms() != NULL) { 2011 if (alock->as_Lock()->is_nested_lock_region()) { 2012 // Mark eliminated related nested locks and unlocks. 2013 Node* obj = alock->obj_node(); 2014 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2015 assert(!box_node->is_eliminated(), "should not be marked yet"); 2016 // Note: BoxLock node is marked eliminated only here 2017 // and it is used to indicate that all associated lock 2018 // and unlock nodes are marked for elimination. 2019 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2020 for (uint i = 0; i < box_node->outcnt(); i++) { 2021 Node* u = box_node->raw_out(i); 2022 if (u->is_AbstractLock()) { 2023 alock = u->as_AbstractLock(); 2024 if (alock->box_node() == box_node) { 2025 // Verify that this Box is referenced only by related locks. 2026 assert(alock->obj_node()->eqv_uncast(obj), ""); 2027 // Mark all related locks and unlocks. 2028 #ifdef ASSERT 2029 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2030 #endif 2031 alock->set_nested(); 2032 } 2033 } 2034 } 2035 } else { 2036 #ifdef ASSERT 2037 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2038 if (C->log() != NULL) 2039 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2040 #endif 2041 } 2042 } 2043 return; 2044 } 2045 // Process locks for non escaping object 2046 assert(alock->is_non_esc_obj(), ""); 2047 } // EliminateNestedLocks 2048 2049 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2050 // Look for all locks of this object and mark them and 2051 // corresponding BoxLock nodes as eliminated. 2052 Node* obj = alock->obj_node(); 2053 for (uint j = 0; j < obj->outcnt(); j++) { 2054 Node* o = obj->raw_out(j); 2055 if (o->is_AbstractLock() && 2056 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2057 alock = o->as_AbstractLock(); 2058 Node* box = alock->box_node(); 2059 // Replace old box node with new eliminated box for all users 2060 // of the same object and mark related locks as eliminated. 2061 mark_eliminated_box(box, obj); 2062 } 2063 } 2064 } 2065 } 2066 2067 // we have determined that this lock/unlock can be eliminated, we simply 2068 // eliminate the node without expanding it. 2069 // 2070 // Note: The membar's associated with the lock/unlock are currently not 2071 // eliminated. This should be investigated as a future enhancement. 2072 // 2073 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2074 2075 if (!alock->is_eliminated()) { 2076 return false; 2077 } 2078 #ifdef ASSERT 2079 if (!alock->is_coarsened()) { 2080 // Check that new "eliminated" BoxLock node is created. 2081 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2082 assert(oldbox->is_eliminated(), "should be done already"); 2083 } 2084 #endif 2085 2086 alock->log_lock_optimization(C, "eliminate_lock"); 2087 2088 #ifndef PRODUCT 2089 if (PrintEliminateLocks) { 2090 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2091 } 2092 #endif 2093 2094 Node* mem = alock->in(TypeFunc::Memory); 2095 Node* ctrl = alock->in(TypeFunc::Control); 2096 guarantee(ctrl != NULL, "missing control projection, cannot replace_node() with NULL"); 2097 2098 alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2099 // There are 2 projections from the lock. The lock node will 2100 // be deleted when its last use is subsumed below. 2101 assert(alock->outcnt() == 2 && 2102 _callprojs.fallthrough_proj != NULL && 2103 _callprojs.fallthrough_memproj != NULL, 2104 "Unexpected projections from Lock/Unlock"); 2105 2106 Node* fallthroughproj = _callprojs.fallthrough_proj; 2107 Node* memproj_fallthrough = _callprojs.fallthrough_memproj; 2108 2109 // The memory projection from a lock/unlock is RawMem 2110 // The input to a Lock is merged memory, so extract its RawMem input 2111 // (unless the MergeMem has been optimized away.) 2112 if (alock->is_Lock()) { 2113 // Seach for MemBarAcquireLock node and delete it also. 2114 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2115 assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, ""); 2116 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2117 Node* memproj = membar->proj_out(TypeFunc::Memory); 2118 _igvn.replace_node(ctrlproj, fallthroughproj); 2119 _igvn.replace_node(memproj, memproj_fallthrough); 2120 2121 // Delete FastLock node also if this Lock node is unique user 2122 // (a loop peeling may clone a Lock node). 2123 Node* flock = alock->as_Lock()->fastlock_node(); 2124 if (flock->outcnt() == 1) { 2125 assert(flock->unique_out() == alock, "sanity"); 2126 _igvn.replace_node(flock, top()); 2127 } 2128 } 2129 2130 // Seach for MemBarReleaseLock node and delete it also. 2131 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2132 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2133 assert(membar->Opcode() == Op_MemBarReleaseLock && 2134 mem->is_Proj() && membar == mem->in(0), ""); 2135 _igvn.replace_node(fallthroughproj, ctrl); 2136 _igvn.replace_node(memproj_fallthrough, mem); 2137 fallthroughproj = ctrl; 2138 memproj_fallthrough = mem; 2139 ctrl = membar->in(TypeFunc::Control); 2140 mem = membar->in(TypeFunc::Memory); 2141 } 2142 2143 _igvn.replace_node(fallthroughproj, ctrl); 2144 _igvn.replace_node(memproj_fallthrough, mem); 2145 return true; 2146 } 2147 2148 2149 //------------------------------expand_lock_node---------------------- 2150 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2151 2152 Node* ctrl = lock->in(TypeFunc::Control); 2153 Node* mem = lock->in(TypeFunc::Memory); 2154 Node* obj = lock->obj_node(); 2155 Node* box = lock->box_node(); 2156 Node* flock = lock->fastlock_node(); 2157 2158 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2159 2160 // Make the merge point 2161 Node *region; 2162 Node *mem_phi; 2163 Node *slow_path; 2164 2165 if (UseOptoBiasInlining) { 2166 /* 2167 * See the full description in MacroAssembler::biased_locking_enter(). 2168 * 2169 * if( (mark_word & biased_lock_mask) == biased_lock_pattern ) { 2170 * // The object is biased. 2171 * proto_node = klass->prototype_header; 2172 * o_node = thread | proto_node; 2173 * x_node = o_node ^ mark_word; 2174 * if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ? 2175 * // Done. 2176 * } else { 2177 * if( (x_node & biased_lock_mask) != 0 ) { 2178 * // The klass's prototype header is no longer biased. 2179 * cas(&mark_word, mark_word, proto_node) 2180 * goto cas_lock; 2181 * } else { 2182 * // The klass's prototype header is still biased. 2183 * if( (x_node & epoch_mask) != 0 ) { // Expired epoch? 2184 * old = mark_word; 2185 * new = o_node; 2186 * } else { 2187 * // Different thread or anonymous biased. 2188 * old = mark_word & (epoch_mask | age_mask | biased_lock_mask); 2189 * new = thread | old; 2190 * } 2191 * // Try to rebias. 2192 * if( cas(&mark_word, old, new) == 0 ) { 2193 * // Done. 2194 * } else { 2195 * goto slow_path; // Failed. 2196 * } 2197 * } 2198 * } 2199 * } else { 2200 * // The object is not biased. 2201 * cas_lock: 2202 * if( FastLock(obj) == 0 ) { 2203 * // Done. 2204 * } else { 2205 * slow_path: 2206 * OptoRuntime::complete_monitor_locking_Java(obj); 2207 * } 2208 * } 2209 */ 2210 2211 region = new RegionNode(5); 2212 // create a Phi for the memory state 2213 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2214 2215 Node* fast_lock_region = new RegionNode(3); 2216 Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM); 2217 2218 // First, check mark word for the biased lock pattern. 2219 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2220 2221 // Get fast path - mark word has the biased lock pattern. 2222 ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node, 2223 markWord::biased_lock_mask_in_place, 2224 markWord::biased_lock_pattern, true); 2225 // fast_lock_region->in(1) is set to slow path. 2226 fast_lock_mem_phi->init_req(1, mem); 2227 2228 // Now check that the lock is biased to the current thread and has 2229 // the same epoch and bias as Klass::_prototype_header. 2230 2231 // Special-case a fresh allocation to avoid building nodes: 2232 Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn); 2233 if (klass_node == NULL) { 2234 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes()); 2235 klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr())); 2236 #ifdef _LP64 2237 if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) { 2238 assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity"); 2239 klass_node->in(1)->init_req(0, ctrl); 2240 } else 2241 #endif 2242 klass_node->init_req(0, ctrl); 2243 } 2244 Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type()); 2245 2246 Node* thread = transform_later(new ThreadLocalNode()); 2247 Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread)); 2248 Node* o_node = transform_later(new OrXNode(cast_thread, proto_node)); 2249 Node* x_node = transform_later(new XorXNode(o_node, mark_node)); 2250 2251 // Get slow path - mark word does NOT match the value. 2252 STATIC_ASSERT(markWord::age_mask_in_place <= INT_MAX); 2253 Node* not_biased_ctrl = opt_bits_test(ctrl, region, 3, x_node, 2254 (~(int)markWord::age_mask_in_place), 0); 2255 // region->in(3) is set to fast path - the object is biased to the current thread. 2256 mem_phi->init_req(3, mem); 2257 2258 2259 // Mark word does NOT match the value (thread | Klass::_prototype_header). 2260 2261 2262 // First, check biased pattern. 2263 // Get fast path - _prototype_header has the same biased lock pattern. 2264 ctrl = opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node, 2265 markWord::biased_lock_mask_in_place, 0, true); 2266 2267 not_biased_ctrl = fast_lock_region->in(2); // Slow path 2268 // fast_lock_region->in(2) - the prototype header is no longer biased 2269 // and we have to revoke the bias on this object. 2270 // We are going to try to reset the mark of this object to the prototype 2271 // value and fall through to the CAS-based locking scheme. 2272 Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 2273 Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr, 2274 proto_node, mark_node); 2275 transform_later(cas); 2276 Node* proj = transform_later(new SCMemProjNode(cas)); 2277 fast_lock_mem_phi->init_req(2, proj); 2278 2279 2280 // Second, check epoch bits. 2281 Node* rebiased_region = new RegionNode(3); 2282 Node* old_phi = new PhiNode( rebiased_region, TypeX_X); 2283 Node* new_phi = new PhiNode( rebiased_region, TypeX_X); 2284 2285 // Get slow path - mark word does NOT match epoch bits. 2286 Node* epoch_ctrl = opt_bits_test(ctrl, rebiased_region, 1, x_node, 2287 markWord::epoch_mask_in_place, 0); 2288 // The epoch of the current bias is not valid, attempt to rebias the object 2289 // toward the current thread. 2290 rebiased_region->init_req(2, epoch_ctrl); 2291 old_phi->init_req(2, mark_node); 2292 new_phi->init_req(2, o_node); 2293 2294 // rebiased_region->in(1) is set to fast path. 2295 // The epoch of the current bias is still valid but we know 2296 // nothing about the owner; it might be set or it might be clear. 2297 Node* cmask = MakeConX(markWord::biased_lock_mask_in_place | 2298 markWord::age_mask_in_place | 2299 markWord::epoch_mask_in_place); 2300 Node* old = transform_later(new AndXNode(mark_node, cmask)); 2301 cast_thread = transform_later(new CastP2XNode(ctrl, thread)); 2302 Node* new_mark = transform_later(new OrXNode(cast_thread, old)); 2303 old_phi->init_req(1, old); 2304 new_phi->init_req(1, new_mark); 2305 2306 transform_later(rebiased_region); 2307 transform_later(old_phi); 2308 transform_later(new_phi); 2309 2310 // Try to acquire the bias of the object using an atomic operation. 2311 // If this fails we will go in to the runtime to revoke the object's bias. 2312 cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi); 2313 transform_later(cas); 2314 proj = transform_later(new SCMemProjNode(cas)); 2315 2316 // Get slow path - Failed to CAS. 2317 not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0); 2318 mem_phi->init_req(4, proj); 2319 // region->in(4) is set to fast path - the object is rebiased to the current thread. 2320 2321 // Failed to CAS. 2322 slow_path = new RegionNode(3); 2323 Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM); 2324 2325 slow_path->init_req(1, not_biased_ctrl); // Capture slow-control 2326 slow_mem->init_req(1, proj); 2327 2328 // Call CAS-based locking scheme (FastLock node). 2329 2330 transform_later(fast_lock_region); 2331 transform_later(fast_lock_mem_phi); 2332 2333 // Get slow path - FastLock failed to lock the object. 2334 ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0); 2335 mem_phi->init_req(2, fast_lock_mem_phi); 2336 // region->in(2) is set to fast path - the object is locked to the current thread. 2337 2338 slow_path->init_req(2, ctrl); // Capture slow-control 2339 slow_mem->init_req(2, fast_lock_mem_phi); 2340 2341 transform_later(slow_path); 2342 transform_later(slow_mem); 2343 // Reset lock's memory edge. 2344 lock->set_req(TypeFunc::Memory, slow_mem); 2345 2346 } else { 2347 region = new RegionNode(3); 2348 // create a Phi for the memory state 2349 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2350 2351 // Optimize test; set region slot 2 2352 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2353 mem_phi->init_req(2, mem); 2354 } 2355 2356 // Make slow path call 2357 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2358 OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, 2359 obj, box, NULL); 2360 2361 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2362 2363 // Slow path can only throw asynchronous exceptions, which are always 2364 // de-opted. So the compiler thinks the slow-call can never throw an 2365 // exception. If it DOES throw an exception we would need the debug 2366 // info removed first (since if it throws there is no monitor). 2367 assert(_callprojs.fallthrough_ioproj == NULL && _callprojs.catchall_ioproj == NULL && 2368 _callprojs.catchall_memproj == NULL && _callprojs.catchall_catchproj == NULL, "Unexpected projection from Lock"); 2369 2370 // Capture slow path 2371 // disconnect fall-through projection from call and create a new one 2372 // hook up users of fall-through projection to region 2373 Node *slow_ctrl = _callprojs.fallthrough_proj->clone(); 2374 transform_later(slow_ctrl); 2375 _igvn.hash_delete(_callprojs.fallthrough_proj); 2376 _callprojs.fallthrough_proj->disconnect_inputs(C); 2377 region->init_req(1, slow_ctrl); 2378 // region inputs are now complete 2379 transform_later(region); 2380 _igvn.replace_node(_callprojs.fallthrough_proj, region); 2381 2382 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2383 mem_phi->init_req(1, memproj ); 2384 transform_later(mem_phi); 2385 _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi); 2386 } 2387 2388 //------------------------------expand_unlock_node---------------------- 2389 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2390 2391 Node* ctrl = unlock->in(TypeFunc::Control); 2392 Node* mem = unlock->in(TypeFunc::Memory); 2393 Node* obj = unlock->obj_node(); 2394 Node* box = unlock->box_node(); 2395 2396 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2397 2398 // No need for a null check on unlock 2399 2400 // Make the merge point 2401 Node *region; 2402 Node *mem_phi; 2403 2404 if (UseOptoBiasInlining) { 2405 // Check for biased locking unlock case, which is a no-op. 2406 // See the full description in MacroAssembler::biased_locking_exit(). 2407 region = new RegionNode(4); 2408 // create a Phi for the memory state 2409 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2410 mem_phi->init_req(3, mem); 2411 2412 Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type()); 2413 ctrl = opt_bits_test(ctrl, region, 3, mark_node, 2414 markWord::biased_lock_mask_in_place, 2415 markWord::biased_lock_pattern); 2416 } else { 2417 region = new RegionNode(3); 2418 // create a Phi for the memory state 2419 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2420 } 2421 2422 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2423 funlock = transform_later( funlock )->as_FastUnlock(); 2424 // Optimize test; set region slot 2 2425 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2426 Node *thread = transform_later(new ThreadLocalNode()); 2427 2428 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2429 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2430 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2431 2432 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2433 assert(_callprojs.fallthrough_ioproj == NULL && _callprojs.catchall_ioproj == NULL && 2434 _callprojs.catchall_memproj == NULL && _callprojs.catchall_catchproj == NULL, "Unexpected projection from Lock"); 2435 2436 // No exceptions for unlocking 2437 // Capture slow path 2438 // disconnect fall-through projection from call and create a new one 2439 // hook up users of fall-through projection to region 2440 Node *slow_ctrl = _callprojs.fallthrough_proj->clone(); 2441 transform_later(slow_ctrl); 2442 _igvn.hash_delete(_callprojs.fallthrough_proj); 2443 _callprojs.fallthrough_proj->disconnect_inputs(C); 2444 region->init_req(1, slow_ctrl); 2445 // region inputs are now complete 2446 transform_later(region); 2447 _igvn.replace_node(_callprojs.fallthrough_proj, region); 2448 2449 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2450 mem_phi->init_req(1, memproj ); 2451 mem_phi->init_req(2, mem); 2452 transform_later(mem_phi); 2453 _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi); 2454 } 2455 2456 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2457 assert(check->in(SubTypeCheckNode::Control) == NULL, "should be pinned"); 2458 Node* bol = check->unique_out(); 2459 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2460 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2461 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2462 2463 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2464 Node* iff = bol->last_out(i); 2465 assert(iff->is_If(), "where's the if?"); 2466 2467 if (iff->in(0)->is_top()) { 2468 _igvn.replace_input_of(iff, 1, C->top()); 2469 continue; 2470 } 2471 2472 Node* iftrue = iff->as_If()->proj_out(1); 2473 Node* iffalse = iff->as_If()->proj_out(0); 2474 Node* ctrl = iff->in(0); 2475 2476 Node* subklass = NULL; 2477 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2478 subklass = obj_or_subklass; 2479 } else { 2480 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2481 subklass = _igvn.transform(LoadKlassNode::make(_igvn, NULL, C->immutable_memory(), k_adr, TypeInstPtr::KLASS)); 2482 } 2483 2484 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, NULL, _igvn); 2485 2486 _igvn.replace_input_of(iff, 0, C->top()); 2487 _igvn.replace_node(iftrue, not_subtype_ctrl); 2488 _igvn.replace_node(iffalse, ctrl); 2489 } 2490 _igvn.replace_node(check, C->top()); 2491 } 2492 2493 //---------------------------eliminate_macro_nodes---------------------- 2494 // Eliminate scalar replaced allocations and associated locks. 2495 void PhaseMacroExpand::eliminate_macro_nodes() { 2496 if (C->macro_count() == 0) 2497 return; 2498 2499 // Before elimination may re-mark (change to Nested or NonEscObj) 2500 // all associated (same box and obj) lock and unlock nodes. 2501 int cnt = C->macro_count(); 2502 for (int i=0; i < cnt; i++) { 2503 Node *n = C->macro_node(i); 2504 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2505 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2506 } 2507 } 2508 // Re-marking may break consistency of Coarsened locks. 2509 if (!C->coarsened_locks_consistent()) { 2510 return; // recompile without Coarsened locks if broken 2511 } 2512 2513 // First, attempt to eliminate locks 2514 bool progress = true; 2515 while (progress) { 2516 progress = false; 2517 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2518 Node* n = C->macro_node(i - 1); 2519 bool success = false; 2520 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2521 if (n->is_AbstractLock()) { 2522 success = eliminate_locking_node(n->as_AbstractLock()); 2523 } 2524 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2525 progress = progress || success; 2526 } 2527 } 2528 // Next, attempt to eliminate allocations 2529 _has_locks = false; 2530 progress = true; 2531 while (progress) { 2532 progress = false; 2533 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2534 Node* n = C->macro_node(i - 1); 2535 bool success = false; 2536 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2537 switch (n->class_id()) { 2538 case Node::Class_Allocate: 2539 case Node::Class_AllocateArray: 2540 success = eliminate_allocate_node(n->as_Allocate()); 2541 break; 2542 case Node::Class_CallStaticJava: 2543 success = eliminate_boxing_node(n->as_CallStaticJava()); 2544 break; 2545 case Node::Class_Lock: 2546 case Node::Class_Unlock: 2547 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2548 _has_locks = true; 2549 break; 2550 case Node::Class_ArrayCopy: 2551 break; 2552 case Node::Class_OuterStripMinedLoop: 2553 break; 2554 case Node::Class_SubTypeCheck: 2555 break; 2556 case Node::Class_Opaque1: 2557 break; 2558 default: 2559 assert(n->Opcode() == Op_LoopLimit || 2560 n->Opcode() == Op_Opaque2 || 2561 n->Opcode() == Op_Opaque3 || 2562 n->Opcode() == Op_Opaque4 || 2563 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2564 "unknown node type in macro list"); 2565 } 2566 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2567 progress = progress || success; 2568 } 2569 } 2570 } 2571 2572 //------------------------------expand_macro_nodes---------------------- 2573 // Returns true if a failure occurred. 2574 bool PhaseMacroExpand::expand_macro_nodes() { 2575 // Last attempt to eliminate macro nodes. 2576 eliminate_macro_nodes(); 2577 if (C->failing()) return true; 2578 2579 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2580 bool progress = true; 2581 while (progress) { 2582 progress = false; 2583 for (int i = C->macro_count(); i > 0; i--) { 2584 Node* n = C->macro_node(i-1); 2585 bool success = false; 2586 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2587 if (n->Opcode() == Op_LoopLimit) { 2588 // Remove it from macro list and put on IGVN worklist to optimize. 2589 C->remove_macro_node(n); 2590 _igvn._worklist.push(n); 2591 success = true; 2592 } else if (n->Opcode() == Op_CallStaticJava) { 2593 // Remove it from macro list and put on IGVN worklist to optimize. 2594 C->remove_macro_node(n); 2595 _igvn._worklist.push(n); 2596 success = true; 2597 } else if (n->is_Opaque1() || n->Opcode() == Op_Opaque2) { 2598 _igvn.replace_node(n, n->in(1)); 2599 success = true; 2600 #if INCLUDE_RTM_OPT 2601 } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) { 2602 assert(C->profile_rtm(), "should be used only in rtm deoptimization code"); 2603 assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), ""); 2604 Node* cmp = n->unique_out(); 2605 #ifdef ASSERT 2606 // Validate graph. 2607 assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), ""); 2608 BoolNode* bol = cmp->unique_out()->as_Bool(); 2609 assert((bol->outcnt() == 1) && bol->unique_out()->is_If() && 2610 (bol->_test._test == BoolTest::ne), ""); 2611 IfNode* ifn = bol->unique_out()->as_If(); 2612 assert((ifn->outcnt() == 2) && 2613 ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, ""); 2614 #endif 2615 Node* repl = n->in(1); 2616 if (!_has_locks) { 2617 // Remove RTM state check if there are no locks in the code. 2618 // Replace input to compare the same value. 2619 repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1); 2620 } 2621 _igvn.replace_node(n, repl); 2622 success = true; 2623 #endif 2624 } else if (n->Opcode() == Op_Opaque4) { 2625 // With Opaque4 nodes, the expectation is that the test of input 1 2626 // is always equal to the constant value of input 2. So we can 2627 // remove the Opaque4 and replace it by input 2. In debug builds, 2628 // leave the non constant test in instead to sanity check that it 2629 // never fails (if it does, that subgraph was constructed so, at 2630 // runtime, a Halt node is executed). 2631 #ifdef ASSERT 2632 _igvn.replace_node(n, n->in(1)); 2633 #else 2634 _igvn.replace_node(n, n->in(2)); 2635 #endif 2636 success = true; 2637 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 2638 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 2639 C->remove_macro_node(n); 2640 success = true; 2641 } 2642 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 2643 progress = progress || success; 2644 } 2645 } 2646 2647 // Clean up the graph so we're less likely to hit the maximum node 2648 // limit 2649 _igvn.set_delay_transform(false); 2650 _igvn.optimize(); 2651 if (C->failing()) return true; 2652 _igvn.set_delay_transform(true); 2653 2654 2655 // Because we run IGVN after each expansion, some macro nodes may go 2656 // dead and be removed from the list as we iterate over it. Move 2657 // Allocate nodes (processed in a second pass) at the beginning of 2658 // the list and then iterate from the last element of the list until 2659 // an Allocate node is seen. This is robust to random deletion in 2660 // the list due to nodes going dead. 2661 C->sort_macro_nodes(); 2662 2663 // expand arraycopy "macro" nodes first 2664 // For ReduceBulkZeroing, we must first process all arraycopy nodes 2665 // before the allocate nodes are expanded. 2666 while (C->macro_count() > 0) { 2667 int macro_count = C->macro_count(); 2668 Node * n = C->macro_node(macro_count-1); 2669 assert(n->is_macro(), "only macro nodes expected here"); 2670 if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { 2671 // node is unreachable, so don't try to expand it 2672 C->remove_macro_node(n); 2673 continue; 2674 } 2675 if (n->is_Allocate()) { 2676 break; 2677 } 2678 // Make sure expansion will not cause node limit to be exceeded. 2679 // Worst case is a macro node gets expanded into about 200 nodes. 2680 // Allow 50% more for optimization. 2681 if (C->check_node_count(300, "out of nodes before macro expansion")) { 2682 return true; 2683 } 2684 2685 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2686 switch (n->class_id()) { 2687 case Node::Class_Lock: 2688 expand_lock_node(n->as_Lock()); 2689 break; 2690 case Node::Class_Unlock: 2691 expand_unlock_node(n->as_Unlock()); 2692 break; 2693 case Node::Class_ArrayCopy: 2694 expand_arraycopy_node(n->as_ArrayCopy()); 2695 break; 2696 case Node::Class_SubTypeCheck: 2697 expand_subtypecheck_node(n->as_SubTypeCheck()); 2698 break; 2699 default: 2700 assert(false, "unknown node type in macro list"); 2701 } 2702 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 2703 if (C->failing()) return true; 2704 2705 // Clean up the graph so we're less likely to hit the maximum node 2706 // limit 2707 _igvn.set_delay_transform(false); 2708 _igvn.optimize(); 2709 if (C->failing()) return true; 2710 _igvn.set_delay_transform(true); 2711 } 2712 2713 // All nodes except Allocate nodes are expanded now. There could be 2714 // new optimization opportunities (such as folding newly created 2715 // load from a just allocated object). Run IGVN. 2716 2717 // expand "macro" nodes 2718 // nodes are removed from the macro list as they are processed 2719 while (C->macro_count() > 0) { 2720 int macro_count = C->macro_count(); 2721 Node * n = C->macro_node(macro_count-1); 2722 assert(n->is_macro(), "only macro nodes expected here"); 2723 if (_igvn.type(n) == Type::TOP || (n->in(0) != NULL && n->in(0)->is_top())) { 2724 // node is unreachable, so don't try to expand it 2725 C->remove_macro_node(n); 2726 continue; 2727 } 2728 // Make sure expansion will not cause node limit to be exceeded. 2729 // Worst case is a macro node gets expanded into about 200 nodes. 2730 // Allow 50% more for optimization. 2731 if (C->check_node_count(300, "out of nodes before macro expansion")) { 2732 return true; 2733 } 2734 switch (n->class_id()) { 2735 case Node::Class_Allocate: 2736 expand_allocate(n->as_Allocate()); 2737 break; 2738 case Node::Class_AllocateArray: 2739 expand_allocate_array(n->as_AllocateArray()); 2740 break; 2741 default: 2742 assert(false, "unknown node type in macro list"); 2743 } 2744 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2745 if (C->failing()) return true; 2746 2747 // Clean up the graph so we're less likely to hit the maximum node 2748 // limit 2749 _igvn.set_delay_transform(false); 2750 _igvn.optimize(); 2751 if (C->failing()) return true; 2752 _igvn.set_delay_transform(true); 2753 } 2754 2755 _igvn.set_delay_transform(false); 2756 return false; 2757 }