1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "compiler/compileLog.hpp" 28 #include "gc/shared/barrierSet.hpp" 29 #include "gc/shared/c2/barrierSetC2.hpp" 30 #include "gc/shared/tlab_globals.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "opto/addnode.hpp" 35 #include "opto/arraycopynode.hpp" 36 #include "opto/cfgnode.hpp" 37 #include "opto/regalloc.hpp" 38 #include "opto/compile.hpp" 39 #include "opto/connode.hpp" 40 #include "opto/convertnode.hpp" 41 #include "opto/loopnode.hpp" 42 #include "opto/machnode.hpp" 43 #include "opto/matcher.hpp" 44 #include "opto/memnode.hpp" 45 #include "opto/mulnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/phaseX.hpp" 48 #include "opto/regmask.hpp" 49 #include "opto/rootnode.hpp" 50 #include "opto/vectornode.hpp" 51 #include "utilities/align.hpp" 52 #include "utilities/copy.hpp" 53 #include "utilities/macros.hpp" 54 #include "utilities/powerOfTwo.hpp" 55 #include "utilities/vmError.hpp" 56 57 // Portions of code courtesy of Clifford Click 58 59 // Optimization - Graph Style 60 61 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 62 63 //============================================================================= 64 uint MemNode::size_of() const { return sizeof(*this); } 65 66 const TypePtr *MemNode::adr_type() const { 67 Node* adr = in(Address); 68 if (adr == nullptr) return nullptr; // node is dead 69 const TypePtr* cross_check = nullptr; 70 DEBUG_ONLY(cross_check = _adr_type); 71 return calculate_adr_type(adr->bottom_type(), cross_check); 72 } 73 74 bool MemNode::check_if_adr_maybe_raw(Node* adr) { 75 if (adr != nullptr) { 76 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { 77 return true; 78 } 79 } 80 return false; 81 } 82 83 #ifndef PRODUCT 84 void MemNode::dump_spec(outputStream *st) const { 85 if (in(Address) == nullptr) return; // node is dead 86 #ifndef ASSERT 87 // fake the missing field 88 const TypePtr* _adr_type = nullptr; 89 if (in(Address) != nullptr) 90 _adr_type = in(Address)->bottom_type()->isa_ptr(); 91 #endif 92 dump_adr_type(this, _adr_type, st); 93 94 Compile* C = Compile::current(); 95 if (C->alias_type(_adr_type)->is_volatile()) { 96 st->print(" Volatile!"); 97 } 98 if (_unaligned_access) { 99 st->print(" unaligned"); 100 } 101 if (_mismatched_access) { 102 st->print(" mismatched"); 103 } 104 if (_unsafe_access) { 105 st->print(" unsafe"); 106 } 107 } 108 109 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 110 st->print(" @"); 111 if (adr_type == nullptr) { 112 st->print("null"); 113 } else { 114 adr_type->dump_on(st); 115 Compile* C = Compile::current(); 116 Compile::AliasType* atp = nullptr; 117 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 118 if (atp == nullptr) 119 st->print(", idx=?\?;"); 120 else if (atp->index() == Compile::AliasIdxBot) 121 st->print(", idx=Bot;"); 122 else if (atp->index() == Compile::AliasIdxTop) 123 st->print(", idx=Top;"); 124 else if (atp->index() == Compile::AliasIdxRaw) 125 st->print(", idx=Raw;"); 126 else { 127 ciField* field = atp->field(); 128 if (field) { 129 st->print(", name="); 130 field->print_name_on(st); 131 } 132 st->print(", idx=%d;", atp->index()); 133 } 134 } 135 } 136 137 extern void print_alias_types(); 138 139 #endif 140 141 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 142 assert((t_oop != nullptr), "sanity"); 143 bool is_instance = t_oop->is_known_instance_field(); 144 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 145 (load != nullptr) && load->is_Load() && 146 (phase->is_IterGVN() != nullptr); 147 if (!(is_instance || is_boxed_value_load)) 148 return mchain; // don't try to optimize non-instance types 149 uint instance_id = t_oop->instance_id(); 150 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); 151 Node *prev = nullptr; 152 Node *result = mchain; 153 while (prev != result) { 154 prev = result; 155 if (result == start_mem) 156 break; // hit one of our sentinels 157 // skip over a call which does not affect this memory slice 158 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 159 Node *proj_in = result->in(0); 160 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 161 break; // hit one of our sentinels 162 } else if (proj_in->is_Call()) { 163 // ArrayCopyNodes processed here as well 164 CallNode *call = proj_in->as_Call(); 165 if (!call->may_modify(t_oop, phase)) { // returns false for instances 166 result = call->in(TypeFunc::Memory); 167 } 168 } else if (proj_in->is_Initialize()) { 169 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 170 // Stop if this is the initialization for the object instance which 171 // contains this memory slice, otherwise skip over it. 172 if ((alloc == nullptr) || (alloc->_idx == instance_id)) { 173 break; 174 } 175 if (is_instance) { 176 result = proj_in->in(TypeFunc::Memory); 177 } else if (is_boxed_value_load) { 178 Node* klass = alloc->in(AllocateNode::KlassNode); 179 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 180 if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) { 181 result = proj_in->in(TypeFunc::Memory); // not related allocation 182 } 183 } 184 } else if (proj_in->is_MemBar()) { 185 ArrayCopyNode* ac = nullptr; 186 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { 187 break; 188 } 189 result = proj_in->in(TypeFunc::Memory); 190 } else { 191 assert(false, "unexpected projection"); 192 } 193 } else if (result->is_ClearArray()) { 194 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 195 // Can not bypass initialization of the instance 196 // we are looking for. 197 break; 198 } 199 // Otherwise skip it (the call updated 'result' value). 200 } else if (result->is_MergeMem()) { 201 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty); 202 } 203 } 204 return result; 205 } 206 207 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 208 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 209 if (t_oop == nullptr) 210 return mchain; // don't try to optimize non-oop types 211 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 212 bool is_instance = t_oop->is_known_instance_field(); 213 PhaseIterGVN *igvn = phase->is_IterGVN(); 214 if (is_instance && igvn != nullptr && result->is_Phi()) { 215 PhiNode *mphi = result->as_Phi(); 216 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 217 const TypePtr *t = mphi->adr_type(); 218 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM || 219 (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() && 220 t->is_oopptr()->cast_to_exactness(true) 221 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 222 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) { 223 // clone the Phi with our address type 224 result = mphi->split_out_instance(t_adr, igvn); 225 } else { 226 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 227 } 228 } 229 return result; 230 } 231 232 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 233 uint alias_idx = phase->C->get_alias_index(tp); 234 Node *mem = mmem; 235 #ifdef ASSERT 236 { 237 // Check that current type is consistent with the alias index used during graph construction 238 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 239 bool consistent = adr_check == nullptr || adr_check->empty() || 240 phase->C->must_alias(adr_check, alias_idx ); 241 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 242 if( !consistent && adr_check != nullptr && !adr_check->empty() && 243 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 244 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 245 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 246 adr_check->offset() == oopDesc::klass_offset_in_bytes() || 247 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 248 // don't assert if it is dead code. 249 consistent = true; 250 } 251 if( !consistent ) { 252 st->print("alias_idx==%d, adr_check==", alias_idx); 253 if( adr_check == nullptr ) { 254 st->print("null"); 255 } else { 256 adr_check->dump(); 257 } 258 st->cr(); 259 print_alias_types(); 260 assert(consistent, "adr_check must match alias idx"); 261 } 262 } 263 #endif 264 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 265 // means an array I have not precisely typed yet. Do not do any 266 // alias stuff with it any time soon. 267 const TypeOopPtr *toop = tp->isa_oopptr(); 268 if( tp->base() != Type::AnyPtr && 269 !(toop && 270 toop->klass() != NULL && 271 toop->klass()->is_java_lang_Object() && 272 toop->offset() == Type::OffsetBot) ) { 273 // compress paths and change unreachable cycles to TOP 274 // If not, we can update the input infinitely along a MergeMem cycle 275 // Equivalent code in PhiNode::Ideal 276 Node* m = phase->transform(mmem); 277 // If transformed to a MergeMem, get the desired slice 278 // Otherwise the returned node represents memory for every slice 279 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 280 // Update input if it is progress over what we have now 281 } 282 return mem; 283 } 284 285 //--------------------------Ideal_common--------------------------------------- 286 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 287 // Unhook non-raw memories from complete (macro-expanded) initializations. 288 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 289 // If our control input is a dead region, kill all below the region 290 Node *ctl = in(MemNode::Control); 291 if (ctl && remove_dead_region(phase, can_reshape)) 292 return this; 293 ctl = in(MemNode::Control); 294 // Don't bother trying to transform a dead node 295 if (ctl && ctl->is_top()) return NodeSentinel; 296 297 PhaseIterGVN *igvn = phase->is_IterGVN(); 298 // Wait if control on the worklist. 299 if (ctl && can_reshape && igvn != nullptr) { 300 Node* bol = nullptr; 301 Node* cmp = nullptr; 302 if (ctl->in(0)->is_If()) { 303 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 304 bol = ctl->in(0)->in(1); 305 if (bol->is_Bool()) 306 cmp = ctl->in(0)->in(1)->in(1); 307 } 308 if (igvn->_worklist.member(ctl) || 309 (bol != nullptr && igvn->_worklist.member(bol)) || 310 (cmp != nullptr && igvn->_worklist.member(cmp)) ) { 311 // This control path may be dead. 312 // Delay this memory node transformation until the control is processed. 313 igvn->_worklist.push(this); 314 return NodeSentinel; // caller will return null 315 } 316 } 317 // Ignore if memory is dead, or self-loop 318 Node *mem = in(MemNode::Memory); 319 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null 320 assert(mem != this, "dead loop in MemNode::Ideal"); 321 322 if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) { 323 // This memory slice may be dead. 324 // Delay this mem node transformation until the memory is processed. 325 igvn->_worklist.push(this); 326 return NodeSentinel; // caller will return null 327 } 328 329 Node *address = in(MemNode::Address); 330 const Type *t_adr = phase->type(address); 331 if (t_adr == Type::TOP) return NodeSentinel; // caller will return null 332 333 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { 334 // Unsafe off-heap access with zero address. Remove access and other control users 335 // to not confuse optimizations and add a HaltNode to fail if this is ever executed. 336 assert(ctl != nullptr, "unsafe accesses should be control dependent"); 337 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { 338 Node* u = ctl->fast_out(i); 339 if (u != ctl) { 340 igvn->rehash_node_delayed(u); 341 int nb = u->replace_edge(ctl, phase->C->top(), igvn); 342 --i, imax -= nb; 343 } 344 } 345 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); 346 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); 347 phase->C->root()->add_req(halt); 348 return this; 349 } 350 351 if (can_reshape && igvn != nullptr && 352 (igvn->_worklist.member(address) || 353 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { 354 // The address's base and type may change when the address is processed. 355 // Delay this mem node transformation until the address is processed. 356 igvn->_worklist.push(this); 357 return NodeSentinel; // caller will return null 358 } 359 360 // Do NOT remove or optimize the next lines: ensure a new alias index 361 // is allocated for an oop pointer type before Escape Analysis. 362 // Note: C++ will not remove it since the call has side effect. 363 if (t_adr->isa_oopptr()) { 364 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 365 } 366 367 Node* base = nullptr; 368 if (address->is_AddP()) { 369 base = address->in(AddPNode::Base); 370 } 371 if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 372 !t_adr->isa_rawptr()) { 373 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 374 // Skip this node optimization if its address has TOP base. 375 return NodeSentinel; // caller will return null 376 } 377 378 // Avoid independent memory operations 379 Node* old_mem = mem; 380 381 // The code which unhooks non-raw memories from complete (macro-expanded) 382 // initializations was removed. After macro-expansion all stores catched 383 // by Initialize node became raw stores and there is no information 384 // which memory slices they modify. So it is unsafe to move any memory 385 // operation above these stores. Also in most cases hooked non-raw memories 386 // were already unhooked by using information from detect_ptr_independence() 387 // and find_previous_store(). 388 389 if (mem->is_MergeMem()) { 390 MergeMemNode* mmem = mem->as_MergeMem(); 391 const TypePtr *tp = t_adr->is_ptr(); 392 393 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 394 } 395 396 if (mem != old_mem) { 397 set_req(MemNode::Memory, mem); 398 if (can_reshape && old_mem->outcnt() == 0 && igvn != NULL) { 399 igvn->_worklist.push(old_mem); 400 } 401 if (phase->type(mem) == Type::TOP) return NodeSentinel; 402 return this; 403 } 404 405 // let the subclass continue analyzing... 406 return nullptr; 407 } 408 409 // Helper function for proving some simple control dominations. 410 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 411 // Already assumes that 'dom' is available at 'sub', and that 'sub' 412 // is not a constant (dominated by the method's StartNode). 413 // Used by MemNode::find_previous_store to prove that the 414 // control input of a memory operation predates (dominates) 415 // an allocation it wants to look past. 416 bool MemNode::all_controls_dominate(Node* dom, Node* sub) { 417 if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) 418 return false; // Conservative answer for dead code 419 420 // Check 'dom'. Skip Proj and CatchProj nodes. 421 dom = dom->find_exact_control(dom); 422 if (dom == nullptr || dom->is_top()) 423 return false; // Conservative answer for dead code 424 425 if (dom == sub) { 426 // For the case when, for example, 'sub' is Initialize and the original 427 // 'dom' is Proj node of the 'sub'. 428 return false; 429 } 430 431 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) 432 return true; 433 434 // 'dom' dominates 'sub' if its control edge and control edges 435 // of all its inputs dominate or equal to sub's control edge. 436 437 // Currently 'sub' is either Allocate, Initialize or Start nodes. 438 // Or Region for the check in LoadNode::Ideal(); 439 // 'sub' should have sub->in(0) != nullptr. 440 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 441 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 442 443 // Get control edge of 'sub'. 444 Node* orig_sub = sub; 445 sub = sub->find_exact_control(sub->in(0)); 446 if (sub == nullptr || sub->is_top()) 447 return false; // Conservative answer for dead code 448 449 assert(sub->is_CFG(), "expecting control"); 450 451 if (sub == dom) 452 return true; 453 454 if (sub->is_Start() || sub->is_Root()) 455 return false; 456 457 { 458 // Check all control edges of 'dom'. 459 460 ResourceMark rm; 461 Node_List nlist; 462 Unique_Node_List dom_list; 463 464 dom_list.push(dom); 465 bool only_dominating_controls = false; 466 467 for (uint next = 0; next < dom_list.size(); next++) { 468 Node* n = dom_list.at(next); 469 if (n == orig_sub) 470 return false; // One of dom's inputs dominated by sub. 471 if (!n->is_CFG() && n->pinned()) { 472 // Check only own control edge for pinned non-control nodes. 473 n = n->find_exact_control(n->in(0)); 474 if (n == nullptr || n->is_top()) 475 return false; // Conservative answer for dead code 476 assert(n->is_CFG(), "expecting control"); 477 dom_list.push(n); 478 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 479 only_dominating_controls = true; 480 } else if (n->is_CFG()) { 481 if (n->dominates(sub, nlist)) 482 only_dominating_controls = true; 483 else 484 return false; 485 } else { 486 // First, own control edge. 487 Node* m = n->find_exact_control(n->in(0)); 488 if (m != nullptr) { 489 if (m->is_top()) 490 return false; // Conservative answer for dead code 491 dom_list.push(m); 492 } 493 // Now, the rest of edges. 494 uint cnt = n->req(); 495 for (uint i = 1; i < cnt; i++) { 496 m = n->find_exact_control(n->in(i)); 497 if (m == nullptr || m->is_top()) 498 continue; 499 dom_list.push(m); 500 } 501 } 502 } 503 return only_dominating_controls; 504 } 505 } 506 507 //---------------------detect_ptr_independence--------------------------------- 508 // Used by MemNode::find_previous_store to prove that two base 509 // pointers are never equal. 510 // The pointers are accompanied by their associated allocations, 511 // if any, which have been previously discovered by the caller. 512 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 513 Node* p2, AllocateNode* a2, 514 PhaseTransform* phase) { 515 // Attempt to prove that these two pointers cannot be aliased. 516 // They may both manifestly be allocations, and they should differ. 517 // Or, if they are not both allocations, they can be distinct constants. 518 // Otherwise, one is an allocation and the other a pre-existing value. 519 if (a1 == nullptr && a2 == nullptr) { // neither an allocation 520 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 521 } else if (a1 != nullptr && a2 != nullptr) { // both allocations 522 return (a1 != a2); 523 } else if (a1 != nullptr) { // one allocation a1 524 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 525 return all_controls_dominate(p2, a1); 526 } else { //(a2 != null) // one allocation a2 527 return all_controls_dominate(p1, a2); 528 } 529 return false; 530 } 531 532 533 // Find an arraycopy ac that produces the memory state represented by parameter mem. 534 // Return ac if 535 // (a) can_see_stored_value=true and ac must have set the value for this load or if 536 // (b) can_see_stored_value=false and ac could have set the value for this load or if 537 // (c) can_see_stored_value=false and ac cannot have set the value for this load. 538 // In case (c) change the parameter mem to the memory input of ac to skip it 539 // when searching stored value. 540 // Otherwise return null. 541 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 542 ArrayCopyNode* ac = find_array_copy_clone(phase, ld_alloc, mem); 543 if (ac != nullptr) { 544 Node* ld_addp = in(MemNode::Address); 545 Node* src = ac->in(ArrayCopyNode::Src); 546 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); 547 548 // This is a load from a cloned array. The corresponding arraycopy ac must 549 // have set the value for the load and we can return ac but only if the load 550 // is known to be within bounds. This is checked below. 551 if (ary_t != nullptr && ld_addp->is_AddP()) { 552 Node* ld_offs = ld_addp->in(AddPNode::Offset); 553 BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); 554 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); 555 jlong elemsize = type2aelembytes(ary_elem); 556 557 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 558 const TypeInt* sizetype = ary_t->size(); 559 560 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { 561 // The load is known to be within bounds. It receives its value from ac. 562 return ac; 563 } 564 // The load is known to be out-of-bounds. 565 } 566 // The load could be out-of-bounds. It must not be hoisted but must remain 567 // dependent on the runtime range check. This is achieved by returning null. 568 } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) { 569 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 570 571 if (ac->is_arraycopy_validated() || 572 ac->is_copyof_validated() || 573 ac->is_copyofrange_validated()) { 574 Node* ld_addp = in(MemNode::Address); 575 if (ld_addp->is_AddP()) { 576 Node* ld_base = ld_addp->in(AddPNode::Address); 577 Node* ld_offs = ld_addp->in(AddPNode::Offset); 578 579 Node* dest = ac->in(ArrayCopyNode::Dest); 580 581 if (dest == ld_base) { 582 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 583 assert(!ld_offs_t->empty(), "dead reference should be checked already"); 584 // Take into account vector or unsafe access size 585 jlong ld_size_in_bytes = (jlong)memory_size(); 586 jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1; 587 offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM 588 if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) { 589 return ac; 590 } 591 if (!can_see_stored_value) { 592 mem = ac->in(TypeFunc::Memory); 593 return ac; 594 } 595 } 596 } 597 } 598 } 599 return nullptr; 600 } 601 602 ArrayCopyNode* MemNode::find_array_copy_clone(PhaseTransform* phase, Node* ld_alloc, Node* mem) const { 603 if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 604 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 605 if (ld_alloc != nullptr) { 606 // Check if there is an array copy for a clone 607 Node* mb = mem->in(0); 608 ArrayCopyNode* ac = nullptr; 609 if (mb->in(0) != nullptr && mb->in(0)->is_Proj() && 610 mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) { 611 ac = mb->in(0)->in(0)->as_ArrayCopy(); 612 } else { 613 // Step over GC barrier when ReduceInitialCardMarks is disabled 614 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 615 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); 616 617 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 618 ac = control_proj_ac->in(0)->as_ArrayCopy(); 619 } 620 } 621 622 if (ac != nullptr && ac->is_clonebasic()) { 623 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase); 624 if (alloc != nullptr && alloc == ld_alloc) { 625 return ac; 626 } 627 } 628 } 629 } 630 return nullptr; 631 } 632 633 // The logic for reordering loads and stores uses four steps: 634 // (a) Walk carefully past stores and initializations which we 635 // can prove are independent of this load. 636 // (b) Observe that the next memory state makes an exact match 637 // with self (load or store), and locate the relevant store. 638 // (c) Ensure that, if we were to wire self directly to the store, 639 // the optimizer would fold it up somehow. 640 // (d) Do the rewiring, and return, depending on some other part of 641 // the optimizer to fold up the load. 642 // This routine handles steps (a) and (b). Steps (c) and (d) are 643 // specific to loads and stores, so they are handled by the callers. 644 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 645 // 646 Node* MemNode::find_previous_store(PhaseTransform* phase) { 647 Node* ctrl = in(MemNode::Control); 648 Node* adr = in(MemNode::Address); 649 intptr_t offset = 0; 650 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 651 AllocateNode* alloc = AllocateNode::Ideal_allocation(base, phase); 652 653 if (offset == Type::OffsetBot) 654 return nullptr; // cannot unalias unless there are precise offsets 655 656 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); 657 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 658 659 intptr_t size_in_bytes = memory_size(); 660 661 Node* mem = in(MemNode::Memory); // start searching here... 662 663 int cnt = 50; // Cycle limiter 664 for (;;) { // While we can dance past unrelated stores... 665 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 666 667 Node* prev = mem; 668 if (mem->is_Store()) { 669 Node* st_adr = mem->in(MemNode::Address); 670 intptr_t st_offset = 0; 671 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 672 if (st_base == nullptr) 673 break; // inscrutable pointer 674 675 // For raw accesses it's not enough to prove that constant offsets don't intersect. 676 // We need the bases to be the equal in order for the offset check to make sense. 677 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { 678 break; 679 } 680 681 if (st_offset != offset && st_offset != Type::OffsetBot) { 682 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 683 assert(mem->as_Store()->memory_size() <= MAX_STORE, ""); 684 if (st_offset >= offset + size_in_bytes || 685 st_offset <= offset - MAX_STORE || 686 st_offset <= offset - mem->as_Store()->memory_size()) { 687 // Success: The offsets are provably independent. 688 // (You may ask, why not just test st_offset != offset and be done? 689 // The answer is that stores of different sizes can co-exist 690 // in the same sequence of RawMem effects. We sometimes initialize 691 // a whole 'tile' of array elements with a single jint or jlong.) 692 mem = mem->in(MemNode::Memory); 693 continue; // (a) advance through independent store memory 694 } 695 } 696 if (st_base != base && 697 detect_ptr_independence(base, alloc, 698 st_base, 699 AllocateNode::Ideal_allocation(st_base, phase), 700 phase)) { 701 // Success: The bases are provably independent. 702 mem = mem->in(MemNode::Memory); 703 continue; // (a) advance through independent store memory 704 } 705 706 // (b) At this point, if the bases or offsets do not agree, we lose, 707 // since we have not managed to prove 'this' and 'mem' independent. 708 if (st_base == base && st_offset == offset) { 709 return mem; // let caller handle steps (c), (d) 710 } 711 712 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 713 InitializeNode* st_init = mem->in(0)->as_Initialize(); 714 AllocateNode* st_alloc = st_init->allocation(); 715 if (st_alloc == nullptr) 716 break; // something degenerated 717 bool known_identical = false; 718 bool known_independent = false; 719 if (alloc == st_alloc) 720 known_identical = true; 721 else if (alloc != nullptr) 722 known_independent = true; 723 else if (all_controls_dominate(this, st_alloc)) 724 known_independent = true; 725 726 if (known_independent) { 727 // The bases are provably independent: Either they are 728 // manifestly distinct allocations, or else the control 729 // of this load dominates the store's allocation. 730 int alias_idx = phase->C->get_alias_index(adr_type()); 731 if (alias_idx == Compile::AliasIdxRaw) { 732 mem = st_alloc->in(TypeFunc::Memory); 733 } else { 734 mem = st_init->memory(alias_idx); 735 } 736 continue; // (a) advance through independent store memory 737 } 738 739 // (b) at this point, if we are not looking at a store initializing 740 // the same allocation we are loading from, we lose. 741 if (known_identical) { 742 // From caller, can_see_stored_value will consult find_captured_store. 743 return mem; // let caller handle steps (c), (d) 744 } 745 746 } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) { 747 if (prev != mem) { 748 // Found an arraycopy but it doesn't affect that load 749 continue; 750 } 751 // Found an arraycopy that may affect that load 752 return mem; 753 } else if (addr_t != nullptr && addr_t->is_known_instance_field()) { 754 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 755 if (mem->is_Proj() && mem->in(0)->is_Call()) { 756 // ArrayCopyNodes processed here as well. 757 CallNode *call = mem->in(0)->as_Call(); 758 if (!call->may_modify(addr_t, phase)) { 759 mem = call->in(TypeFunc::Memory); 760 continue; // (a) advance through independent call memory 761 } 762 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 763 ArrayCopyNode* ac = nullptr; 764 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { 765 break; 766 } 767 mem = mem->in(0)->in(TypeFunc::Memory); 768 continue; // (a) advance through independent MemBar memory 769 } else if (mem->is_ClearArray()) { 770 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 771 // (the call updated 'mem' value) 772 continue; // (a) advance through independent allocation memory 773 } else { 774 // Can not bypass initialization of the instance 775 // we are looking for. 776 return mem; 777 } 778 } else if (mem->is_MergeMem()) { 779 int alias_idx = phase->C->get_alias_index(adr_type()); 780 mem = mem->as_MergeMem()->memory_at(alias_idx); 781 continue; // (a) advance through independent MergeMem memory 782 } 783 } 784 785 // Unless there is an explicit 'continue', we must bail out here, 786 // because 'mem' is an inscrutable memory state (e.g., a call). 787 break; 788 } 789 790 return nullptr; // bail out 791 } 792 793 //----------------------calculate_adr_type------------------------------------- 794 // Helper function. Notices when the given type of address hits top or bottom. 795 // Also, asserts a cross-check of the type against the expected address type. 796 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 797 if (t == Type::TOP) return nullptr; // does not touch memory any more? 798 #ifdef ASSERT 799 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = nullptr; 800 #endif 801 const TypePtr* tp = t->isa_ptr(); 802 if (tp == nullptr) { 803 assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 804 return TypePtr::BOTTOM; // touches lots of memory 805 } else { 806 #ifdef ASSERT 807 // %%%% [phh] We don't check the alias index if cross_check is 808 // TypeRawPtr::BOTTOM. Needs to be investigated. 809 if (cross_check != nullptr && 810 cross_check != TypePtr::BOTTOM && 811 cross_check != TypeRawPtr::BOTTOM) { 812 // Recheck the alias index, to see if it has changed (due to a bug). 813 Compile* C = Compile::current(); 814 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 815 "must stay in the original alias category"); 816 // The type of the address must be contained in the adr_type, 817 // disregarding "null"-ness. 818 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 819 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 820 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 821 "real address must not escape from expected memory type"); 822 } 823 #endif 824 return tp; 825 } 826 } 827 828 //============================================================================= 829 // Should LoadNode::Ideal() attempt to remove control edges? 830 bool LoadNode::can_remove_control() const { 831 return !has_pinned_control_dependency(); 832 } 833 uint LoadNode::size_of() const { return sizeof(*this); } 834 bool LoadNode::cmp( const Node &n ) const 835 { return !Type::cmp( _type, ((LoadNode&)n)._type ); } 836 const Type *LoadNode::bottom_type() const { return _type; } 837 uint LoadNode::ideal_reg() const { 838 return _type->ideal_reg(); 839 } 840 841 #ifndef PRODUCT 842 void LoadNode::dump_spec(outputStream *st) const { 843 MemNode::dump_spec(st); 844 if( !Verbose && !WizardMode ) { 845 // standard dump does this in Verbose and WizardMode 846 st->print(" #"); _type->dump_on(st); 847 } 848 if (!depends_only_on_test()) { 849 st->print(" (does not depend only on test, "); 850 if (control_dependency() == UnknownControl) { 851 st->print("unknown control"); 852 } else if (control_dependency() == Pinned) { 853 st->print("pinned"); 854 } else if (adr_type() == TypeRawPtr::BOTTOM) { 855 st->print("raw access"); 856 } else { 857 st->print("unknown reason"); 858 } 859 st->print(")"); 860 } 861 } 862 #endif 863 864 #ifdef ASSERT 865 //----------------------------is_immutable_value------------------------------- 866 // Helper function to allow a raw load without control edge for some cases 867 bool LoadNode::is_immutable_value(Node* adr) { 868 return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 869 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal && 870 (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) == 871 in_bytes(JavaThread::osthread_offset()) || 872 adr->in(AddPNode::Offset)->find_intptr_t_con(-1) == 873 in_bytes(JavaThread::threadObj_offset()))); 874 } 875 #endif 876 877 //----------------------------LoadNode::make----------------------------------- 878 // Polymorphic factory method: 879 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo, 880 ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { 881 Compile* C = gvn.C; 882 883 // sanity check the alias category against the created node type 884 assert(!(adr_type->isa_oopptr() && 885 adr_type->offset() == oopDesc::klass_offset_in_bytes()), 886 "use LoadKlassNode instead"); 887 assert(!(adr_type->isa_aryptr() && 888 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 889 "use LoadRangeNode instead"); 890 // Check control edge of raw loads 891 assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 892 // oop will be recorded in oop map if load crosses safepoint 893 rt->isa_oopptr() || is_immutable_value(adr), 894 "raw memory operations should have control edge"); 895 LoadNode* load = nullptr; 896 switch (bt) { 897 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 898 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 899 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 900 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 901 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 902 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break; 903 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 904 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic_access); break; 905 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 906 case T_OBJECT: 907 #ifdef _LP64 908 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 909 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 910 } else 911 #endif 912 { 913 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 914 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); 915 } 916 break; 917 default: 918 ShouldNotReachHere(); 919 break; 920 } 921 assert(load != nullptr, "LoadNode should have been created"); 922 if (unaligned) { 923 load->set_unaligned_access(); 924 } 925 if (mismatched) { 926 load->set_mismatched_access(); 927 } 928 if (unsafe) { 929 load->set_unsafe_access(); 930 } 931 load->set_barrier_data(barrier_data); 932 if (load->Opcode() == Op_LoadN) { 933 Node* ld = gvn.transform(load); 934 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 935 } 936 937 return load; 938 } 939 940 //------------------------------hash------------------------------------------- 941 uint LoadNode::hash() const { 942 // unroll addition of interesting fields 943 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 944 } 945 946 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 947 if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) { 948 bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile(); 949 bool is_stable_ary = FoldStableValues && 950 (tp != nullptr) && (tp->isa_aryptr() != nullptr) && 951 tp->isa_aryptr()->is_stable(); 952 953 return (eliminate_boxing && non_volatile) || is_stable_ary; 954 } 955 956 return false; 957 } 958 959 // Is the value loaded previously stored by an arraycopy? If so return 960 // a load node that reads from the source array so we may be able to 961 // optimize out the ArrayCopy node later. 962 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { 963 Node* ld_adr = in(MemNode::Address); 964 intptr_t ld_off = 0; 965 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 966 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 967 if (ac != nullptr) { 968 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 969 970 Node* mem = ac->in(TypeFunc::Memory); 971 Node* ctl = ac->in(0); 972 Node* src = ac->in(ArrayCopyNode::Src); 973 974 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { 975 return nullptr; 976 } 977 978 LoadNode* ld = clone()->as_Load(); 979 Node* addp = in(MemNode::Address)->clone(); 980 if (ac->as_ArrayCopy()->is_clonebasic()) { 981 assert(ld_alloc != nullptr, "need an alloc"); 982 assert(addp->is_AddP(), "address must be addp"); 983 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 984 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 985 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 986 addp->set_req(AddPNode::Base, src); 987 addp->set_req(AddPNode::Address, src); 988 } else { 989 assert(ac->as_ArrayCopy()->is_arraycopy_validated() || 990 ac->as_ArrayCopy()->is_copyof_validated() || 991 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); 992 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 993 addp->set_req(AddPNode::Base, src); 994 addp->set_req(AddPNode::Address, src); 995 996 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 997 BasicType ary_elem = ary_t->klass()->as_array_klass()->element_type()->basic_type(); 998 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 999 uint shift = exact_log2(type2aelembytes(ary_elem)); 1000 1001 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 1002 #ifdef _LP64 1003 diff = phase->transform(new ConvI2LNode(diff)); 1004 #endif 1005 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 1006 1007 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 1008 addp->set_req(AddPNode::Offset, offset); 1009 } 1010 addp = phase->transform(addp); 1011 #ifdef ASSERT 1012 const TypePtr* adr_type = phase->type(addp)->is_ptr(); 1013 ld->_adr_type = adr_type; 1014 #endif 1015 ld->set_req(MemNode::Address, addp); 1016 ld->set_req(0, ctl); 1017 ld->set_req(MemNode::Memory, mem); 1018 // load depends on the tests that validate the arraycopy 1019 ld->_control_dependency = UnknownControl; 1020 return ld; 1021 } 1022 return nullptr; 1023 } 1024 1025 1026 //---------------------------can_see_stored_value------------------------------ 1027 // This routine exists to make sure this set of tests is done the same 1028 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 1029 // will change the graph shape in a way which makes memory alive twice at the 1030 // same time (uses the Oracle model of aliasing), then some 1031 // LoadXNode::Identity will fold things back to the equivalence-class model 1032 // of aliasing. 1033 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const { 1034 Node* ld_adr = in(MemNode::Address); 1035 intptr_t ld_off = 0; 1036 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); 1037 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base, phase); 1038 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 1039 Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr; 1040 // This is more general than load from boxing objects. 1041 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 1042 uint alias_idx = atp->index(); 1043 Node* result = nullptr; 1044 Node* current = st; 1045 // Skip through chains of MemBarNodes checking the MergeMems for 1046 // new states for the slice of this load. Stop once any other 1047 // kind of node is encountered. Loads from final memory can skip 1048 // through any kind of MemBar but normal loads shouldn't skip 1049 // through MemBarAcquire since the could allow them to move out of 1050 // a synchronized region. It is not safe to step over MemBarCPUOrder, 1051 // because alias info above them may be inaccurate (e.g., due to 1052 // mixed/mismatched unsafe accesses). 1053 bool is_final_mem = !atp->is_rewritable(); 1054 while (current->is_Proj()) { 1055 int opc = current->in(0)->Opcode(); 1056 if ((is_final_mem && (opc == Op_MemBarAcquire || 1057 opc == Op_MemBarAcquireLock || 1058 opc == Op_LoadFence)) || 1059 opc == Op_MemBarRelease || 1060 opc == Op_StoreFence || 1061 opc == Op_MemBarReleaseLock || 1062 opc == Op_MemBarStoreStore || 1063 opc == Op_StoreStoreFence) { 1064 Node* mem = current->in(0)->in(TypeFunc::Memory); 1065 if (mem->is_MergeMem()) { 1066 MergeMemNode* merge = mem->as_MergeMem(); 1067 Node* new_st = merge->memory_at(alias_idx); 1068 if (new_st == merge->base_memory()) { 1069 // Keep searching 1070 current = new_st; 1071 continue; 1072 } 1073 // Save the new memory state for the slice and fall through 1074 // to exit. 1075 result = new_st; 1076 } 1077 } 1078 break; 1079 } 1080 if (result != nullptr) { 1081 st = result; 1082 } 1083 } 1084 1085 // Loop around twice in the case Load -> Initialize -> Store. 1086 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 1087 for (int trip = 0; trip <= 1; trip++) { 1088 1089 if (st->is_Store()) { 1090 Node* st_adr = st->in(MemNode::Address); 1091 if (st_adr != ld_adr) { 1092 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). 1093 intptr_t st_off = 0; 1094 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); 1095 if (ld_base == nullptr) return nullptr; 1096 if (st_base == nullptr) return nullptr; 1097 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr; 1098 if (ld_off != st_off) return nullptr; 1099 if (ld_off == Type::OffsetBot) return nullptr; 1100 // Same base, same offset. 1101 // Possible improvement for arrays: check index value instead of absolute offset. 1102 1103 // At this point we have proven something like this setup: 1104 // B = << base >> 1105 // L = LoadQ(AddP(Check/CastPP(B), #Off)) 1106 // S = StoreQ(AddP( B , #Off), V) 1107 // (Actually, we haven't yet proven the Q's are the same.) 1108 // In other words, we are loading from a casted version of 1109 // the same pointer-and-offset that we stored to. 1110 // Casted version may carry a dependency and it is respected. 1111 // Thus, we are able to replace L by V. 1112 } 1113 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1114 if (store_Opcode() != st->Opcode()) { 1115 return nullptr; 1116 } 1117 // LoadVector/StoreVector needs additional check to ensure the types match. 1118 if (store_Opcode() == Op_StoreVector) { 1119 const TypeVect* in_vt = st->as_StoreVector()->vect_type(); 1120 const TypeVect* out_vt = as_LoadVector()->vect_type(); 1121 if (in_vt != out_vt) { 1122 return nullptr; 1123 } 1124 } 1125 return st->in(MemNode::ValueIn); 1126 } 1127 1128 // A load from a freshly-created object always returns zero. 1129 // (This can happen after LoadNode::Ideal resets the load's memory input 1130 // to find_captured_store, which returned InitializeNode::zero_memory.) 1131 if (st->is_Proj() && st->in(0)->is_Allocate() && 1132 (st->in(0) == ld_alloc) && 1133 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1134 // return a zero value for the load's basic type 1135 // (This is one of the few places where a generic PhaseTransform 1136 // can create new nodes. Think of it as lazily manifesting 1137 // virtually pre-existing constants.) 1138 if (memory_type() != T_VOID) { 1139 if (ReduceBulkZeroing || find_array_copy_clone(phase, ld_alloc, in(MemNode::Memory)) == nullptr) { 1140 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an 1141 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done 1142 // by the ArrayCopyNode. 1143 return phase->zerocon(memory_type()); 1144 } 1145 } else { 1146 // TODO: materialize all-zero vector constant 1147 assert(!isa_Load() || as_Load()->type()->isa_vect(), ""); 1148 } 1149 } 1150 1151 // A load from an initialization barrier can match a captured store. 1152 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1153 InitializeNode* init = st->in(0)->as_Initialize(); 1154 AllocateNode* alloc = init->allocation(); 1155 if ((alloc != nullptr) && (alloc == ld_alloc)) { 1156 // examine a captured store value 1157 st = init->find_captured_store(ld_off, memory_size(), phase); 1158 if (st != nullptr) { 1159 continue; // take one more trip around 1160 } 1161 } 1162 } 1163 1164 // Load boxed value from result of valueOf() call is input parameter. 1165 if (this->is_Load() && ld_adr->is_AddP() && 1166 (tp != nullptr) && tp->is_ptr_to_boxed_value()) { 1167 intptr_t ignore = 0; 1168 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1169 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1170 base = bs->step_over_gc_barrier(base); 1171 if (base != nullptr && base->is_Proj() && 1172 base->as_Proj()->_con == TypeFunc::Parms && 1173 base->in(0)->is_CallStaticJava() && 1174 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1175 return base->in(0)->in(TypeFunc::Parms); 1176 } 1177 } 1178 1179 break; 1180 } 1181 1182 return nullptr; 1183 } 1184 1185 //----------------------is_instance_field_load_with_local_phi------------------ 1186 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1187 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1188 in(Address)->is_AddP() ) { 1189 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1190 // Only instances and boxed values. 1191 if( t_oop != nullptr && 1192 (t_oop->is_ptr_to_boxed_value() || 1193 t_oop->is_known_instance_field()) && 1194 t_oop->offset() != Type::OffsetBot && 1195 t_oop->offset() != Type::OffsetTop) { 1196 return true; 1197 } 1198 } 1199 return false; 1200 } 1201 1202 //------------------------------Identity--------------------------------------- 1203 // Loads are identity if previous store is to same address 1204 Node* LoadNode::Identity(PhaseGVN* phase) { 1205 // If the previous store-maker is the right kind of Store, and the store is 1206 // to the same address, then we are equal to the value stored. 1207 Node* mem = in(Memory); 1208 Node* value = can_see_stored_value(mem, phase); 1209 if( value ) { 1210 // byte, short & char stores truncate naturally. 1211 // A load has to load the truncated value which requires 1212 // some sort of masking operation and that requires an 1213 // Ideal call instead of an Identity call. 1214 if (memory_size() < BytesPerInt) { 1215 // If the input to the store does not fit with the load's result type, 1216 // it must be truncated via an Ideal call. 1217 if (!phase->type(value)->higher_equal(phase->type(this))) 1218 return this; 1219 } 1220 // (This works even when value is a Con, but LoadNode::Value 1221 // usually runs first, producing the singleton type of the Con.) 1222 if (!has_pinned_control_dependency() || value->is_Con()) { 1223 return value; 1224 } else { 1225 return this; 1226 } 1227 } 1228 1229 if (has_pinned_control_dependency()) { 1230 return this; 1231 } 1232 // Search for an existing data phi which was generated before for the same 1233 // instance's field to avoid infinite generation of phis in a loop. 1234 Node *region = mem->in(0); 1235 if (is_instance_field_load_with_local_phi(region)) { 1236 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1237 int this_index = phase->C->get_alias_index(addr_t); 1238 int this_offset = addr_t->offset(); 1239 int this_iid = addr_t->instance_id(); 1240 if (!addr_t->is_known_instance() && 1241 addr_t->is_ptr_to_boxed_value()) { 1242 // Use _idx of address base (could be Phi node) for boxed values. 1243 intptr_t ignore = 0; 1244 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1245 if (base == nullptr) { 1246 return this; 1247 } 1248 this_iid = base->_idx; 1249 } 1250 const Type* this_type = bottom_type(); 1251 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1252 Node* phi = region->fast_out(i); 1253 if (phi->is_Phi() && phi != mem && 1254 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { 1255 return phi; 1256 } 1257 } 1258 } 1259 1260 return this; 1261 } 1262 1263 // Construct an equivalent unsigned load. 1264 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { 1265 BasicType bt = T_ILLEGAL; 1266 const Type* rt = nullptr; 1267 switch (Opcode()) { 1268 case Op_LoadUB: return this; 1269 case Op_LoadUS: return this; 1270 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; 1271 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; 1272 default: 1273 assert(false, "no unsigned variant: %s", Name()); 1274 return nullptr; 1275 } 1276 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1277 raw_adr_type(), rt, bt, _mo, _control_dependency, 1278 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1279 } 1280 1281 // Construct an equivalent signed load. 1282 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { 1283 BasicType bt = T_ILLEGAL; 1284 const Type* rt = nullptr; 1285 switch (Opcode()) { 1286 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; 1287 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; 1288 case Op_LoadB: // fall through 1289 case Op_LoadS: // fall through 1290 case Op_LoadI: // fall through 1291 case Op_LoadL: return this; 1292 default: 1293 assert(false, "no signed variant: %s", Name()); 1294 return nullptr; 1295 } 1296 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1297 raw_adr_type(), rt, bt, _mo, _control_dependency, 1298 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1299 } 1300 1301 bool LoadNode::has_reinterpret_variant(const Type* rt) { 1302 BasicType bt = rt->basic_type(); 1303 switch (Opcode()) { 1304 case Op_LoadI: return (bt == T_FLOAT); 1305 case Op_LoadL: return (bt == T_DOUBLE); 1306 case Op_LoadF: return (bt == T_INT); 1307 case Op_LoadD: return (bt == T_LONG); 1308 1309 default: return false; 1310 } 1311 } 1312 1313 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { 1314 BasicType bt = rt->basic_type(); 1315 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1316 bool is_mismatched = is_mismatched_access(); 1317 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1318 if (raw_type == nullptr) { 1319 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1320 } 1321 const int op = Opcode(); 1322 bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) || 1323 (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access()); 1324 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1325 raw_adr_type(), rt, bt, _mo, _control_dependency, 1326 require_atomic_access, is_unaligned_access(), is_mismatched); 1327 } 1328 1329 bool StoreNode::has_reinterpret_variant(const Type* vt) { 1330 BasicType bt = vt->basic_type(); 1331 switch (Opcode()) { 1332 case Op_StoreI: return (bt == T_FLOAT); 1333 case Op_StoreL: return (bt == T_DOUBLE); 1334 case Op_StoreF: return (bt == T_INT); 1335 case Op_StoreD: return (bt == T_LONG); 1336 1337 default: return false; 1338 } 1339 } 1340 1341 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { 1342 BasicType bt = vt->basic_type(); 1343 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1344 const int op = Opcode(); 1345 bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) || 1346 (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access()); 1347 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1348 raw_adr_type(), val, bt, _mo, require_atomic_access); 1349 1350 bool is_mismatched = is_mismatched_access(); 1351 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1352 if (raw_type == nullptr) { 1353 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1354 } 1355 if (is_mismatched) { 1356 st->set_mismatched_access(); 1357 } 1358 return st; 1359 } 1360 1361 // We're loading from an object which has autobox behaviour. 1362 // If this object is result of a valueOf call we'll have a phi 1363 // merging a newly allocated object and a load from the cache. 1364 // We want to replace this load with the original incoming 1365 // argument to the valueOf call. 1366 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { 1367 assert(igvn->C->eliminate_boxing(), "sanity"); 1368 intptr_t ignore = 0; 1369 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); 1370 if ((base == nullptr) || base->is_Phi()) { 1371 // Push the loads from the phi that comes from valueOf up 1372 // through it to allow elimination of the loads and the recovery 1373 // of the original value. It is done in split_through_phi(). 1374 return nullptr; 1375 } else if (base->is_Load() || 1376 (base->is_DecodeN() && base->in(1)->is_Load())) { 1377 // Eliminate the load of boxed value for integer types from the cache 1378 // array by deriving the value from the index into the array. 1379 // Capture the offset of the load and then reverse the computation. 1380 1381 // Get LoadN node which loads a boxing object from 'cache' array. 1382 if (base->is_DecodeN()) { 1383 base = base->in(1); 1384 } 1385 if (!base->in(Address)->is_AddP()) { 1386 return nullptr; // Complex address 1387 } 1388 AddPNode* address = base->in(Address)->as_AddP(); 1389 Node* cache_base = address->in(AddPNode::Base); 1390 if ((cache_base != nullptr) && cache_base->is_DecodeN()) { 1391 // Get ConP node which is static 'cache' field. 1392 cache_base = cache_base->in(1); 1393 } 1394 if ((cache_base != nullptr) && cache_base->is_Con()) { 1395 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1396 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1397 Node* elements[4]; 1398 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1399 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1400 if (count > 0 && elements[0]->is_Con() && 1401 (count == 1 || 1402 (count == 2 && elements[1]->Opcode() == Op_LShiftX && 1403 elements[1]->in(2) == igvn->intcon(shift)))) { 1404 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1405 // Fetch the box object cache[0] at the base of the array and get its value 1406 ciInstance* box = array->obj_at(0)->as_instance(); 1407 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1408 assert(ik->is_box_klass(), "sanity"); 1409 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1410 if (ik->nof_nonstatic_fields() == 1) { 1411 // This should be true nonstatic_field_at requires calling 1412 // nof_nonstatic_fields so check it anyway 1413 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1414 BasicType bt = c.basic_type(); 1415 // Only integer types have boxing cache. 1416 assert(bt == T_BOOLEAN || bt == T_CHAR || 1417 bt == T_BYTE || bt == T_SHORT || 1418 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1419 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1420 if (cache_low != (int)cache_low) { 1421 return nullptr; // should not happen since cache is array indexed by value 1422 } 1423 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1424 if (offset != (int)offset) { 1425 return nullptr; // should not happen since cache is array indexed by value 1426 } 1427 // Add up all the offsets making of the address of the load 1428 Node* result = elements[0]; 1429 for (int i = 1; i < count; i++) { 1430 result = igvn->transform(new AddXNode(result, elements[i])); 1431 } 1432 // Remove the constant offset from the address and then 1433 result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset))); 1434 // remove the scaling of the offset to recover the original index. 1435 if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) { 1436 // Peel the shift off directly but wrap it in a dummy node 1437 // since Ideal can't return existing nodes 1438 igvn->_worklist.push(result); // remove dead node later 1439 result = new RShiftXNode(result->in(1), igvn->intcon(0)); 1440 } else if (result->is_Add() && result->in(2)->is_Con() && 1441 result->in(1)->Opcode() == Op_LShiftX && 1442 result->in(1)->in(2) == igvn->intcon(shift)) { 1443 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1444 // but for boxing cache access we know that X<<Z will not overflow 1445 // (there is range check) so we do this optimizatrion by hand here. 1446 igvn->_worklist.push(result); // remove dead node later 1447 Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift)); 1448 result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con)); 1449 } else { 1450 result = new RShiftXNode(result, igvn->intcon(shift)); 1451 } 1452 #ifdef _LP64 1453 if (bt != T_LONG) { 1454 result = new ConvL2INode(igvn->transform(result)); 1455 } 1456 #else 1457 if (bt == T_LONG) { 1458 result = new ConvI2LNode(igvn->transform(result)); 1459 } 1460 #endif 1461 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1462 // Need to preserve unboxing load type if it is unsigned. 1463 switch(this->Opcode()) { 1464 case Op_LoadUB: 1465 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); 1466 break; 1467 case Op_LoadUS: 1468 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); 1469 break; 1470 } 1471 return result; 1472 } 1473 } 1474 } 1475 } 1476 } 1477 return nullptr; 1478 } 1479 1480 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1481 Node* region = phi->in(0); 1482 if (region == nullptr) { 1483 return false; // Wait stable graph 1484 } 1485 uint cnt = phi->req(); 1486 for (uint i = 1; i < cnt; i++) { 1487 Node* rc = region->in(i); 1488 if (rc == nullptr || phase->type(rc) == Type::TOP) 1489 return false; // Wait stable graph 1490 Node* in = phi->in(i); 1491 if (in == nullptr || phase->type(in) == Type::TOP) 1492 return false; // Wait stable graph 1493 } 1494 return true; 1495 } 1496 //------------------------------split_through_phi------------------------------ 1497 // Split instance or boxed field load through Phi. 1498 Node* LoadNode::split_through_phi(PhaseGVN* phase) { 1499 if (req() > 3) { 1500 assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs"); 1501 // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account 1502 return nullptr; 1503 } 1504 Node* mem = in(Memory); 1505 Node* address = in(Address); 1506 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1507 1508 assert((t_oop != nullptr) && 1509 (t_oop->is_known_instance_field() || 1510 t_oop->is_ptr_to_boxed_value()), "invalide conditions"); 1511 1512 Compile* C = phase->C; 1513 intptr_t ignore = 0; 1514 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1515 bool base_is_phi = (base != nullptr) && base->is_Phi(); 1516 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1517 (base != nullptr) && (base == address->in(AddPNode::Base)) && 1518 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1519 1520 if (!((mem->is_Phi() || base_is_phi) && 1521 (load_boxed_values || t_oop->is_known_instance_field()))) { 1522 return nullptr; // memory is not Phi 1523 } 1524 1525 if (mem->is_Phi()) { 1526 if (!stable_phi(mem->as_Phi(), phase)) { 1527 return nullptr; // Wait stable graph 1528 } 1529 uint cnt = mem->req(); 1530 // Check for loop invariant memory. 1531 if (cnt == 3) { 1532 for (uint i = 1; i < cnt; i++) { 1533 Node* in = mem->in(i); 1534 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1535 if (m == mem) { 1536 if (i == 1) { 1537 // if the first edge was a loop, check second edge too. 1538 // If both are replaceable - we are in an infinite loop 1539 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); 1540 if (n == mem) { 1541 break; 1542 } 1543 } 1544 set_req(Memory, mem->in(cnt - i)); 1545 return this; // made change 1546 } 1547 } 1548 } 1549 } 1550 if (base_is_phi) { 1551 if (!stable_phi(base->as_Phi(), phase)) { 1552 return nullptr; // Wait stable graph 1553 } 1554 uint cnt = base->req(); 1555 // Check for loop invariant memory. 1556 if (cnt == 3) { 1557 for (uint i = 1; i < cnt; i++) { 1558 if (base->in(i) == base) { 1559 return nullptr; // Wait stable graph 1560 } 1561 } 1562 } 1563 } 1564 1565 // Split through Phi (see original code in loopopts.cpp). 1566 assert(C->have_alias_type(t_oop), "instance should have alias type"); 1567 1568 // Do nothing here if Identity will find a value 1569 // (to avoid infinite chain of value phis generation). 1570 if (this != Identity(phase)) { 1571 return nullptr; 1572 } 1573 1574 // Select Region to split through. 1575 Node* region; 1576 if (!base_is_phi) { 1577 assert(mem->is_Phi(), "sanity"); 1578 region = mem->in(0); 1579 // Skip if the region dominates some control edge of the address. 1580 if (!MemNode::all_controls_dominate(address, region)) 1581 return nullptr; 1582 } else if (!mem->is_Phi()) { 1583 assert(base_is_phi, "sanity"); 1584 region = base->in(0); 1585 // Skip if the region dominates some control edge of the memory. 1586 if (!MemNode::all_controls_dominate(mem, region)) 1587 return nullptr; 1588 } else if (base->in(0) != mem->in(0)) { 1589 assert(base_is_phi && mem->is_Phi(), "sanity"); 1590 if (MemNode::all_controls_dominate(mem, base->in(0))) { 1591 region = base->in(0); 1592 } else if (MemNode::all_controls_dominate(address, mem->in(0))) { 1593 region = mem->in(0); 1594 } else { 1595 return nullptr; // complex graph 1596 } 1597 } else { 1598 assert(base->in(0) == mem->in(0), "sanity"); 1599 region = mem->in(0); 1600 } 1601 1602 const Type* this_type = this->bottom_type(); 1603 int this_index = C->get_alias_index(t_oop); 1604 int this_offset = t_oop->offset(); 1605 int this_iid = t_oop->instance_id(); 1606 if (!t_oop->is_known_instance() && load_boxed_values) { 1607 // Use _idx of address base for boxed values. 1608 this_iid = base->_idx; 1609 } 1610 PhaseIterGVN* igvn = phase->is_IterGVN(); 1611 Node* phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset); 1612 for (uint i = 1; i < region->req(); i++) { 1613 Node* x; 1614 Node* the_clone = nullptr; 1615 Node* in = region->in(i); 1616 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && 1617 in != nullptr && in->is_OuterStripMinedLoop()) { 1618 // No node should go in the outer strip mined loop 1619 in = in->in(LoopNode::EntryControl); 1620 } 1621 if (in == nullptr || in == C->top()) { 1622 x = C->top(); // Dead path? Use a dead data op 1623 } else { 1624 x = this->clone(); // Else clone up the data op 1625 the_clone = x; // Remember for possible deletion. 1626 // Alter data node to use pre-phi inputs 1627 if (this->in(0) == region) { 1628 x->set_req(0, in); 1629 } else { 1630 x->set_req(0, nullptr); 1631 } 1632 if (mem->is_Phi() && (mem->in(0) == region)) { 1633 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1634 } 1635 if (address->is_Phi() && address->in(0) == region) { 1636 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1637 } 1638 if (base_is_phi && (base->in(0) == region)) { 1639 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1640 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1641 x->set_req(Address, adr_x); 1642 } 1643 } 1644 // Check for a 'win' on some paths 1645 const Type *t = x->Value(igvn); 1646 1647 bool singleton = t->singleton(); 1648 1649 // See comments in PhaseIdealLoop::split_thru_phi(). 1650 if (singleton && t == Type::TOP) { 1651 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1652 } 1653 1654 if (singleton) { 1655 x = igvn->makecon(t); 1656 } else { 1657 // We now call Identity to try to simplify the cloned node. 1658 // Note that some Identity methods call phase->type(this). 1659 // Make sure that the type array is big enough for 1660 // our new node, even though we may throw the node away. 1661 // (This tweaking with igvn only works because x is a new node.) 1662 igvn->set_type(x, t); 1663 // If x is a TypeNode, capture any more-precise type permanently into Node 1664 // otherwise it will be not updated during igvn->transform since 1665 // igvn->type(x) is set to x->Value() already. 1666 x->raise_bottom_type(t); 1667 Node* y = x->Identity(igvn); 1668 if (y != x) { 1669 x = y; 1670 } else { 1671 y = igvn->hash_find_insert(x); 1672 if (y) { 1673 x = y; 1674 } else { 1675 // Else x is a new node we are keeping 1676 // We do not need register_new_node_with_optimizer 1677 // because set_type has already been called. 1678 igvn->_worklist.push(x); 1679 } 1680 } 1681 } 1682 if (x != the_clone && the_clone != nullptr) { 1683 igvn->remove_dead_node(the_clone); 1684 } 1685 phi->set_req(i, x); 1686 } 1687 // Record Phi 1688 igvn->register_new_node_with_optimizer(phi); 1689 return phi; 1690 } 1691 1692 AllocateNode* LoadNode::is_new_object_mark_load(PhaseGVN *phase) const { 1693 if (Opcode() == Op_LoadX) { 1694 Node* address = in(MemNode::Address); 1695 AllocateNode* alloc = AllocateNode::Ideal_allocation(address, phase); 1696 Node* mem = in(MemNode::Memory); 1697 if (alloc != nullptr && mem->is_Proj() && 1698 mem->in(0) != nullptr && 1699 mem->in(0) == alloc->initialization() && 1700 alloc->initialization()->proj_out_or_null(0) != nullptr) { 1701 return alloc; 1702 } 1703 } 1704 return nullptr; 1705 } 1706 1707 1708 //------------------------------Ideal------------------------------------------ 1709 // If the load is from Field memory and the pointer is non-null, it might be possible to 1710 // zero out the control input. 1711 // If the offset is constant and the base is an object allocation, 1712 // try to hook me up to the exact initializing store. 1713 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1714 if (has_pinned_control_dependency()) { 1715 return nullptr; 1716 } 1717 Node* p = MemNode::Ideal_common(phase, can_reshape); 1718 if (p) return (p == NodeSentinel) ? nullptr : p; 1719 1720 Node* ctrl = in(MemNode::Control); 1721 Node* address = in(MemNode::Address); 1722 bool progress = false; 1723 1724 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && 1725 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); 1726 1727 // Skip up past a SafePoint control. Cannot do this for Stores because 1728 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1729 if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint && 1730 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && 1731 !addr_mark && 1732 (depends_only_on_test() || has_unknown_control_dependency())) { 1733 ctrl = ctrl->in(0); 1734 set_req(MemNode::Control,ctrl); 1735 progress = true; 1736 } 1737 1738 intptr_t ignore = 0; 1739 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1740 if (base != nullptr 1741 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1742 // Check for useless control edge in some common special cases 1743 if (in(MemNode::Control) != nullptr 1744 && can_remove_control() 1745 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1746 && all_controls_dominate(base, phase->C->start())) { 1747 // A method-invariant, non-null address (constant or 'this' argument). 1748 set_req(MemNode::Control, nullptr); 1749 progress = true; 1750 } 1751 } 1752 1753 Node* mem = in(MemNode::Memory); 1754 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1755 1756 if (can_reshape && (addr_t != nullptr)) { 1757 // try to optimize our memory input 1758 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1759 if (opt_mem != mem) { 1760 set_req_X(MemNode::Memory, opt_mem, phase); 1761 if (phase->type( opt_mem ) == Type::TOP) return nullptr; 1762 return this; 1763 } 1764 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1765 if ((t_oop != nullptr) && 1766 (t_oop->is_known_instance_field() || 1767 t_oop->is_ptr_to_boxed_value())) { 1768 PhaseIterGVN *igvn = phase->is_IterGVN(); 1769 assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true"); 1770 if (igvn->_worklist.member(opt_mem)) { 1771 // Delay this transformation until memory Phi is processed. 1772 igvn->_worklist.push(this); 1773 return nullptr; 1774 } 1775 // Split instance field load through Phi. 1776 Node* result = split_through_phi(phase); 1777 if (result != nullptr) return result; 1778 1779 if (t_oop->is_ptr_to_boxed_value()) { 1780 Node* result = eliminate_autobox(igvn); 1781 if (result != nullptr) return result; 1782 } 1783 } 1784 } 1785 1786 // Is there a dominating load that loads the same value? Leave 1787 // anything that is not a load of a field/array element (like 1788 // barriers etc.) alone 1789 if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) { 1790 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1791 Node *use = mem->fast_out(i); 1792 if (use != this && 1793 use->Opcode() == Opcode() && 1794 use->in(0) != nullptr && 1795 use->in(0) != in(0) && 1796 use->in(Address) == in(Address)) { 1797 Node* ctl = in(0); 1798 for (int i = 0; i < 10 && ctl != nullptr; i++) { 1799 ctl = IfNode::up_one_dom(ctl); 1800 if (ctl == use->in(0)) { 1801 set_req(0, use->in(0)); 1802 return this; 1803 } 1804 } 1805 } 1806 } 1807 } 1808 1809 // Check for prior store with a different base or offset; make Load 1810 // independent. Skip through any number of them. Bail out if the stores 1811 // are in an endless dead cycle and report no progress. This is a key 1812 // transform for Reflection. However, if after skipping through the Stores 1813 // we can't then fold up against a prior store do NOT do the transform as 1814 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1815 // array memory alive twice: once for the hoisted Load and again after the 1816 // bypassed Store. This situation only works if EVERYBODY who does 1817 // anti-dependence work knows how to bypass. I.e. we need all 1818 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1819 // the alias index stuff. So instead, peek through Stores and IFF we can 1820 // fold up, do so. 1821 Node* prev_mem = find_previous_store(phase); 1822 if (prev_mem != nullptr) { 1823 Node* value = can_see_arraycopy_value(prev_mem, phase); 1824 if (value != nullptr) { 1825 return value; 1826 } 1827 } 1828 // Steps (a), (b): Walk past independent stores to find an exact match. 1829 if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) { 1830 // (c) See if we can fold up on the spot, but don't fold up here. 1831 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1832 // just return a prior value, which is done by Identity calls. 1833 if (can_see_stored_value(prev_mem, phase)) { 1834 // Make ready for step (d): 1835 set_req_X(MemNode::Memory, prev_mem, phase); 1836 return this; 1837 } 1838 } 1839 1840 AllocateNode* alloc = is_new_object_mark_load(phase); 1841 if (alloc != NULL && alloc->Opcode() == Op_Allocate && UseBiasedLocking) { 1842 InitializeNode* init = alloc->initialization(); 1843 Node* control = init->proj_out(0); 1844 return alloc->make_ideal_mark(phase, address, control, mem); 1845 } 1846 1847 return progress ? this : nullptr; 1848 } 1849 1850 // Helper to recognize certain Klass fields which are invariant across 1851 // some group of array types (e.g., int[] or all T[] where T < Object). 1852 const Type* 1853 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 1854 ciKlass* klass) const { 1855 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { 1856 // The field is Klass::_modifier_flags. Return its (constant) value. 1857 // (Folds up the 2nd indirection in aClassConstant.getModifiers().) 1858 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); 1859 return TypeInt::make(klass->modifier_flags()); 1860 } 1861 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 1862 // The field is Klass::_access_flags. Return its (constant) value. 1863 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1864 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); 1865 return TypeInt::make(klass->access_flags()); 1866 } 1867 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 1868 // The field is Klass::_layout_helper. Return its constant value if known. 1869 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); 1870 return TypeInt::make(klass->layout_helper()); 1871 } 1872 1873 // No match. 1874 return nullptr; 1875 } 1876 1877 //------------------------------Value----------------------------------------- 1878 const Type* LoadNode::Value(PhaseGVN* phase) const { 1879 // Either input is TOP ==> the result is TOP 1880 Node* mem = in(MemNode::Memory); 1881 const Type *t1 = phase->type(mem); 1882 if (t1 == Type::TOP) return Type::TOP; 1883 Node* adr = in(MemNode::Address); 1884 const TypePtr* tp = phase->type(adr)->isa_ptr(); 1885 if (tp == nullptr || tp->empty()) return Type::TOP; 1886 int off = tp->offset(); 1887 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 1888 Compile* C = phase->C; 1889 1890 // Try to guess loaded type from pointer type 1891 if (tp->isa_aryptr()) { 1892 const TypeAryPtr* ary = tp->is_aryptr(); 1893 const Type* t = ary->elem(); 1894 1895 // Determine whether the reference is beyond the header or not, by comparing 1896 // the offset against the offset of the start of the array's data. 1897 // Different array types begin at slightly different offsets (12 vs. 16). 1898 // We choose T_BYTE as an example base type that is least restrictive 1899 // as to alignment, which will therefore produce the smallest 1900 // possible base offset. 1901 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1902 const bool off_beyond_header = (off >= min_base_off); 1903 1904 // Try to constant-fold a stable array element. 1905 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { 1906 // Make sure the reference is not into the header and the offset is constant 1907 ciObject* aobj = ary->const_oop(); 1908 if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 1909 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); 1910 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, 1911 stable_dimension, 1912 memory_type(), is_unsigned()); 1913 if (con_type != nullptr) { 1914 return con_type; 1915 } 1916 } 1917 } 1918 1919 // Don't do this for integer types. There is only potential profit if 1920 // the element type t is lower than _type; that is, for int types, if _type is 1921 // more restrictive than t. This only happens here if one is short and the other 1922 // char (both 16 bits), and in those cases we've made an intentional decision 1923 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 1924 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 1925 // 1926 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 1927 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 1928 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 1929 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 1930 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 1931 // In fact, that could have been the original type of p1, and p1 could have 1932 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 1933 // expression (LShiftL quux 3) independently optimized to the constant 8. 1934 if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr) 1935 && (_type->isa_vect() == nullptr) 1936 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 1937 // t might actually be lower than _type, if _type is a unique 1938 // concrete subclass of abstract class t. 1939 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? 1940 const Type* jt = t->join_speculative(_type); 1941 // In any case, do not allow the join, per se, to empty out the type. 1942 if (jt->empty() && !t->empty()) { 1943 // This can happen if a interface-typed array narrows to a class type. 1944 jt = _type; 1945 } 1946 #ifdef ASSERT 1947 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 1948 // The pointers in the autobox arrays are always non-null 1949 Node* base = adr->in(AddPNode::Base); 1950 if ((base != nullptr) && base->is_DecodeN()) { 1951 // Get LoadN node which loads IntegerCache.cache field 1952 base = base->in(1); 1953 } 1954 if ((base != nullptr) && base->is_Con()) { 1955 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 1956 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1957 // It could be narrow oop 1958 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 1959 } 1960 } 1961 } 1962 #endif 1963 return jt; 1964 } 1965 } 1966 } else if (tp->base() == Type::InstPtr) { 1967 assert( off != Type::OffsetBot || 1968 // arrays can be cast to Objects 1969 tp->is_oopptr()->klass()->is_java_lang_Object() || 1970 // unsafe field access may not have a constant offset 1971 C->has_unsafe_access(), 1972 "Field accesses must be precise" ); 1973 // For oop loads, we expect the _type to be precise. 1974 1975 // Optimize loads from constant fields. 1976 const TypeInstPtr* tinst = tp->is_instptr(); 1977 ciObject* const_oop = tinst->const_oop(); 1978 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) { 1979 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); 1980 if (con_type != nullptr) { 1981 return con_type; 1982 } 1983 } 1984 } else if (tp->base() == Type::KlassPtr) { 1985 assert( off != Type::OffsetBot || 1986 // arrays can be cast to Objects 1987 tp->is_klassptr()->klass()->is_java_lang_Object() || 1988 // also allow array-loading from the primary supertype 1989 // array during subtype checks 1990 Opcode() == Op_LoadKlass, 1991 "Field accesses must be precise" ); 1992 // For klass/static loads, we expect the _type to be precise 1993 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { 1994 /* With mirrors being an indirect in the Klass* 1995 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) 1996 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). 1997 * 1998 * So check the type and klass of the node before the LoadP. 1999 */ 2000 Node* adr2 = adr->in(MemNode::Address); 2001 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2002 if (tkls != nullptr && !StressReflectiveCode) { 2003 ciKlass* klass = tkls->klass(); 2004 if (klass->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 2005 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2006 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2007 return TypeInstPtr::make(klass->java_mirror()); 2008 } 2009 } 2010 } 2011 2012 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2013 if (tkls != nullptr && !StressReflectiveCode) { 2014 ciKlass* klass = tkls->klass(); 2015 if (klass->is_loaded() && tkls->klass_is_exact()) { 2016 // We are loading a field from a Klass metaobject whose identity 2017 // is known at compile time (the type is "exact" or "precise"). 2018 // Check for fields we know are maintained as constants by the VM. 2019 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 2020 // The field is Klass::_super_check_offset. Return its (constant) value. 2021 // (Folds up type checking code.) 2022 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 2023 return TypeInt::make(klass->super_check_offset()); 2024 } 2025 // Compute index into primary_supers array 2026 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2027 // Check for overflowing; use unsigned compare to handle the negative case. 2028 if( depth < ciKlass::primary_super_limit() ) { 2029 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2030 // (Folds up type checking code.) 2031 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2032 ciKlass *ss = klass->super_of_depth(depth); 2033 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; 2034 } 2035 const Type* aift = load_array_final_field(tkls, klass); 2036 if (aift != nullptr) return aift; 2037 } 2038 2039 // We can still check if we are loading from the primary_supers array at a 2040 // shallow enough depth. Even though the klass is not exact, entries less 2041 // than or equal to its super depth are correct. 2042 if (klass->is_loaded() ) { 2043 ciType *inner = klass; 2044 while( inner->is_obj_array_klass() ) 2045 inner = inner->as_obj_array_klass()->base_element_type(); 2046 if( inner->is_instance_klass() && 2047 !inner->as_instance_klass()->flags().is_interface() ) { 2048 // Compute index into primary_supers array 2049 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2050 // Check for overflowing; use unsigned compare to handle the negative case. 2051 if( depth < ciKlass::primary_super_limit() && 2052 depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case 2053 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2054 // (Folds up type checking code.) 2055 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2056 ciKlass *ss = klass->super_of_depth(depth); 2057 return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR; 2058 } 2059 } 2060 } 2061 2062 // If the type is enough to determine that the thing is not an array, 2063 // we can give the layout_helper a positive interval type. 2064 // This will help short-circuit some reflective code. 2065 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) 2066 && !klass->is_array_klass() // not directly typed as an array 2067 && !klass->is_interface() // specifically not Serializable & Cloneable 2068 && !klass->is_java_lang_Object() // not the supertype of all T[] 2069 ) { 2070 // Note: When interfaces are reliable, we can narrow the interface 2071 // test to (klass != Serializable && klass != Cloneable). 2072 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2073 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 2074 // The key property of this type is that it folds up tests 2075 // for array-ness, since it proves that the layout_helper is positive. 2076 // Thus, a generic value like the basic object layout helper works fine. 2077 return TypeInt::make(min_size, max_jint, Type::WidenMin); 2078 } 2079 } 2080 2081 // If we are loading from a freshly-allocated object, produce a zero, 2082 // if the load is provably beyond the header of the object. 2083 // (Also allow a variable load from a fresh array to produce zero.) 2084 const TypeOopPtr *tinst = tp->isa_oopptr(); 2085 bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field(); 2086 bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value(); 2087 if (ReduceFieldZeroing || is_instance || is_boxed_value) { 2088 Node* value = can_see_stored_value(mem,phase); 2089 if (value != nullptr && value->is_Con()) { 2090 assert(value->bottom_type()->higher_equal(_type),"sanity"); 2091 return value->bottom_type(); 2092 } 2093 } 2094 2095 bool is_vect = (_type->isa_vect() != nullptr); 2096 if (is_instance && !is_vect) { 2097 // If we have an instance type and our memory input is the 2098 // programs's initial memory state, there is no matching store, 2099 // so just return a zero of the appropriate type - 2100 // except if it is vectorized - then we have no zero constant. 2101 Node *mem = in(MemNode::Memory); 2102 if (mem->is_Parm() && mem->in(0)->is_Start()) { 2103 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 2104 return Type::get_zero_type(_type->basic_type()); 2105 } 2106 } 2107 2108 Node* alloc = is_new_object_mark_load(phase); 2109 if (alloc != nullptr && !(alloc->Opcode() == Op_Allocate && UseBiasedLocking)) { 2110 return TypeX::make(markWord::prototype().value()); 2111 } 2112 2113 return _type; 2114 } 2115 2116 //------------------------------match_edge------------------------------------- 2117 // Do we Match on this edge index or not? Match only the address. 2118 uint LoadNode::match_edge(uint idx) const { 2119 return idx == MemNode::Address; 2120 } 2121 2122 //--------------------------LoadBNode::Ideal-------------------------------------- 2123 // 2124 // If the previous store is to the same address as this load, 2125 // and the value stored was larger than a byte, replace this load 2126 // with the value stored truncated to a byte. If no truncation is 2127 // needed, the replacement is done in LoadNode::Identity(). 2128 // 2129 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2130 Node* mem = in(MemNode::Memory); 2131 Node* value = can_see_stored_value(mem,phase); 2132 if (value != nullptr) { 2133 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); 2134 if (narrow != value) { 2135 return narrow; 2136 } 2137 } 2138 // Identity call will handle the case where truncation is not needed. 2139 return LoadNode::Ideal(phase, can_reshape); 2140 } 2141 2142 const Type* LoadBNode::Value(PhaseGVN* phase) const { 2143 Node* mem = in(MemNode::Memory); 2144 Node* value = can_see_stored_value(mem,phase); 2145 if (value != nullptr && value->is_Con() && 2146 !value->bottom_type()->higher_equal(_type)) { 2147 // If the input to the store does not fit with the load's result type, 2148 // it must be truncated. We can't delay until Ideal call since 2149 // a singleton Value is needed for split_thru_phi optimization. 2150 int con = value->get_int(); 2151 return TypeInt::make((con << 24) >> 24); 2152 } 2153 return LoadNode::Value(phase); 2154 } 2155 2156 //--------------------------LoadUBNode::Ideal------------------------------------- 2157 // 2158 // If the previous store is to the same address as this load, 2159 // and the value stored was larger than a byte, replace this load 2160 // with the value stored truncated to a byte. If no truncation is 2161 // needed, the replacement is done in LoadNode::Identity(). 2162 // 2163 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2164 Node* mem = in(MemNode::Memory); 2165 Node* value = can_see_stored_value(mem, phase); 2166 if (value != nullptr) { 2167 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); 2168 if (narrow != value) { 2169 return narrow; 2170 } 2171 } 2172 // Identity call will handle the case where truncation is not needed. 2173 return LoadNode::Ideal(phase, can_reshape); 2174 } 2175 2176 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 2177 Node* mem = in(MemNode::Memory); 2178 Node* value = can_see_stored_value(mem,phase); 2179 if (value != nullptr && value->is_Con() && 2180 !value->bottom_type()->higher_equal(_type)) { 2181 // If the input to the store does not fit with the load's result type, 2182 // it must be truncated. We can't delay until Ideal call since 2183 // a singleton Value is needed for split_thru_phi optimization. 2184 int con = value->get_int(); 2185 return TypeInt::make(con & 0xFF); 2186 } 2187 return LoadNode::Value(phase); 2188 } 2189 2190 //--------------------------LoadUSNode::Ideal------------------------------------- 2191 // 2192 // If the previous store is to the same address as this load, 2193 // and the value stored was larger than a char, replace this load 2194 // with the value stored truncated to a char. If no truncation is 2195 // needed, the replacement is done in LoadNode::Identity(). 2196 // 2197 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2198 Node* mem = in(MemNode::Memory); 2199 Node* value = can_see_stored_value(mem,phase); 2200 if (value != nullptr) { 2201 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); 2202 if (narrow != value) { 2203 return narrow; 2204 } 2205 } 2206 // Identity call will handle the case where truncation is not needed. 2207 return LoadNode::Ideal(phase, can_reshape); 2208 } 2209 2210 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 2211 Node* mem = in(MemNode::Memory); 2212 Node* value = can_see_stored_value(mem,phase); 2213 if (value != nullptr && value->is_Con() && 2214 !value->bottom_type()->higher_equal(_type)) { 2215 // If the input to the store does not fit with the load's result type, 2216 // it must be truncated. We can't delay until Ideal call since 2217 // a singleton Value is needed for split_thru_phi optimization. 2218 int con = value->get_int(); 2219 return TypeInt::make(con & 0xFFFF); 2220 } 2221 return LoadNode::Value(phase); 2222 } 2223 2224 //--------------------------LoadSNode::Ideal-------------------------------------- 2225 // 2226 // If the previous store is to the same address as this load, 2227 // and the value stored was larger than a short, replace this load 2228 // with the value stored truncated to a short. If no truncation is 2229 // needed, the replacement is done in LoadNode::Identity(). 2230 // 2231 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2232 Node* mem = in(MemNode::Memory); 2233 Node* value = can_see_stored_value(mem,phase); 2234 if (value != nullptr) { 2235 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); 2236 if (narrow != value) { 2237 return narrow; 2238 } 2239 } 2240 // Identity call will handle the case where truncation is not needed. 2241 return LoadNode::Ideal(phase, can_reshape); 2242 } 2243 2244 const Type* LoadSNode::Value(PhaseGVN* phase) const { 2245 Node* mem = in(MemNode::Memory); 2246 Node* value = can_see_stored_value(mem,phase); 2247 if (value != nullptr && value->is_Con() && 2248 !value->bottom_type()->higher_equal(_type)) { 2249 // If the input to the store does not fit with the load's result type, 2250 // it must be truncated. We can't delay until Ideal call since 2251 // a singleton Value is needed for split_thru_phi optimization. 2252 int con = value->get_int(); 2253 return TypeInt::make((con << 16) >> 16); 2254 } 2255 return LoadNode::Value(phase); 2256 } 2257 2258 //============================================================================= 2259 //----------------------------LoadKlassNode::make------------------------------ 2260 // Polymorphic factory method: 2261 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { 2262 // sanity check the alias category against the created node type 2263 const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); 2264 assert(adr_type != nullptr, "expecting TypeKlassPtr"); 2265 #ifdef _LP64 2266 if (adr_type->is_ptr_to_narrowklass()) { 2267 assert(UseCompressedClassPointers, "no compressed klasses"); 2268 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2269 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2270 } 2271 #endif 2272 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2273 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); 2274 } 2275 2276 //------------------------------Value------------------------------------------ 2277 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2278 return klass_value_common(phase); 2279 } 2280 2281 // In most cases, LoadKlassNode does not have the control input set. If the control 2282 // input is set, it must not be removed (by LoadNode::Ideal()). 2283 bool LoadKlassNode::can_remove_control() const { 2284 return false; 2285 } 2286 2287 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2288 // Either input is TOP ==> the result is TOP 2289 const Type *t1 = phase->type( in(MemNode::Memory) ); 2290 if (t1 == Type::TOP) return Type::TOP; 2291 Node *adr = in(MemNode::Address); 2292 const Type *t2 = phase->type( adr ); 2293 if (t2 == Type::TOP) return Type::TOP; 2294 const TypePtr *tp = t2->is_ptr(); 2295 if (TypePtr::above_centerline(tp->ptr()) || 2296 tp->ptr() == TypePtr::Null) return Type::TOP; 2297 2298 // Return a more precise klass, if possible 2299 const TypeInstPtr *tinst = tp->isa_instptr(); 2300 if (tinst != nullptr) { 2301 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2302 int offset = tinst->offset(); 2303 if (ik == phase->C->env()->Class_klass() 2304 && (offset == java_lang_Class::klass_offset() || 2305 offset == java_lang_Class::array_klass_offset())) { 2306 // We are loading a special hidden field from a Class mirror object, 2307 // the field which points to the VM's Klass metaobject. 2308 ciType* t = tinst->java_mirror_type(); 2309 // java_mirror_type returns non-null for compile-time Class constants. 2310 if (t != nullptr) { 2311 // constant oop => constant klass 2312 if (offset == java_lang_Class::array_klass_offset()) { 2313 if (t->is_void()) { 2314 // We cannot create a void array. Since void is a primitive type return null 2315 // klass. Users of this result need to do a null check on the returned klass. 2316 return TypePtr::NULL_PTR; 2317 } 2318 return TypeKlassPtr::make(ciArrayKlass::make(t)); 2319 } 2320 if (!t->is_klass()) { 2321 // a primitive Class (e.g., int.class) has null for a klass field 2322 return TypePtr::NULL_PTR; 2323 } 2324 // (Folds up the 1st indirection in aClassConstant.getModifiers().) 2325 return TypeKlassPtr::make(t->as_klass()); 2326 } 2327 // non-constant mirror, so we can't tell what's going on 2328 } 2329 if( !ik->is_loaded() ) 2330 return _type; // Bail out if not loaded 2331 if (offset == oopDesc::klass_offset_in_bytes()) { 2332 if (tinst->klass_is_exact()) { 2333 return TypeKlassPtr::make(ik); 2334 } 2335 // See if we can become precise: no subklasses and no interface 2336 // (Note: We need to support verified interfaces.) 2337 if (!ik->is_interface() && !ik->has_subklass()) { 2338 // Add a dependence; if any subclass added we need to recompile 2339 if (!ik->is_final()) { 2340 // %%% should use stronger assert_unique_concrete_subtype instead 2341 phase->C->dependencies()->assert_leaf_type(ik); 2342 } 2343 // Return precise klass 2344 return TypeKlassPtr::make(ik); 2345 } 2346 2347 // Return root of possible klass 2348 return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/); 2349 } 2350 } 2351 2352 // Check for loading klass from an array 2353 const TypeAryPtr *tary = tp->isa_aryptr(); 2354 if( tary != nullptr ) { 2355 ciKlass *tary_klass = tary->klass(); 2356 if (tary_klass != nullptr // can be null when at BOTTOM or TOP 2357 && tary->offset() == oopDesc::klass_offset_in_bytes()) { 2358 if (tary->klass_is_exact()) { 2359 return TypeKlassPtr::make(tary_klass); 2360 } 2361 ciArrayKlass *ak = tary->klass()->as_array_klass(); 2362 // If the klass is an object array, we defer the question to the 2363 // array component klass. 2364 if( ak->is_obj_array_klass() ) { 2365 assert( ak->is_loaded(), "" ); 2366 ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass(); 2367 if( base_k->is_loaded() && base_k->is_instance_klass() ) { 2368 ciInstanceKlass* ik = base_k->as_instance_klass(); 2369 // See if we can become precise: no subklasses and no interface 2370 if (!ik->is_interface() && !ik->has_subklass()) { 2371 // Add a dependence; if any subclass added we need to recompile 2372 if (!ik->is_final()) { 2373 phase->C->dependencies()->assert_leaf_type(ik); 2374 } 2375 // Return precise array klass 2376 return TypeKlassPtr::make(ak); 2377 } 2378 } 2379 return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 2380 } else { // Found a type-array? 2381 assert( ak->is_type_array_klass(), "" ); 2382 return TypeKlassPtr::make(ak); // These are always precise 2383 } 2384 } 2385 } 2386 2387 // Check for loading klass from an array klass 2388 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2389 if (tkls != nullptr && !StressReflectiveCode) { 2390 ciKlass* klass = tkls->klass(); 2391 if( !klass->is_loaded() ) 2392 return _type; // Bail out if not loaded 2393 if( klass->is_obj_array_klass() && 2394 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2395 ciKlass* elem = klass->as_obj_array_klass()->element_klass(); 2396 // // Always returning precise element type is incorrect, 2397 // // e.g., element type could be object and array may contain strings 2398 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2399 2400 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2401 // according to the element type's subclassing. 2402 return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/); 2403 } 2404 if( klass->is_instance_klass() && tkls->klass_is_exact() && 2405 tkls->offset() == in_bytes(Klass::super_offset())) { 2406 ciKlass* sup = klass->as_instance_klass()->super(); 2407 // The field is Klass::_super. Return its (constant) value. 2408 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2409 return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR; 2410 } 2411 } 2412 2413 // Bailout case 2414 return LoadNode::Value(phase); 2415 } 2416 2417 //------------------------------Identity--------------------------------------- 2418 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2419 // Also feed through the klass in Allocate(...klass...)._klass. 2420 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2421 return klass_identity_common(phase); 2422 } 2423 2424 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2425 Node* x = LoadNode::Identity(phase); 2426 if (x != this) return x; 2427 2428 // Take apart the address into an oop and and offset. 2429 // Return 'this' if we cannot. 2430 Node* adr = in(MemNode::Address); 2431 intptr_t offset = 0; 2432 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2433 if (base == nullptr) return this; 2434 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2435 if (toop == nullptr) return this; 2436 2437 // Step over potential GC barrier for OopHandle resolve 2438 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2439 if (bs->is_gc_barrier_node(base)) { 2440 base = bs->step_over_gc_barrier(base); 2441 } 2442 2443 // We can fetch the klass directly through an AllocateNode. 2444 // This works even if the klass is not constant (clone or newArray). 2445 if (offset == oopDesc::klass_offset_in_bytes()) { 2446 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2447 if (allocated_klass != nullptr) { 2448 return allocated_klass; 2449 } 2450 } 2451 2452 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2453 // See inline_native_Class_query for occurrences of these patterns. 2454 // Java Example: x.getClass().isAssignableFrom(y) 2455 // 2456 // This improves reflective code, often making the Class 2457 // mirror go completely dead. (Current exception: Class 2458 // mirrors may appear in debug info, but we could clean them out by 2459 // introducing a new debug info operator for Klass.java_mirror). 2460 2461 if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass() 2462 && offset == java_lang_Class::klass_offset()) { 2463 if (base->is_Load()) { 2464 Node* base2 = base->in(MemNode::Address); 2465 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ 2466 Node* adr2 = base2->in(MemNode::Address); 2467 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2468 if (tkls != nullptr && !tkls->empty() 2469 && (tkls->klass()->is_instance_klass() || 2470 tkls->klass()->is_array_klass()) 2471 && adr2->is_AddP() 2472 ) { 2473 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2474 if (tkls->offset() == mirror_field) { 2475 return adr2->in(AddPNode::Base); 2476 } 2477 } 2478 } 2479 } 2480 } 2481 2482 return this; 2483 } 2484 2485 2486 //------------------------------Value------------------------------------------ 2487 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2488 const Type *t = klass_value_common(phase); 2489 if (t == Type::TOP) 2490 return t; 2491 2492 return t->make_narrowklass(); 2493 } 2494 2495 //------------------------------Identity--------------------------------------- 2496 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2497 // Also feed through the klass in Allocate(...klass...)._klass. 2498 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2499 Node *x = klass_identity_common(phase); 2500 2501 const Type *t = phase->type( x ); 2502 if( t == Type::TOP ) return x; 2503 if( t->isa_narrowklass()) return x; 2504 assert (!t->isa_narrowoop(), "no narrow oop here"); 2505 2506 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2507 } 2508 2509 //------------------------------Value----------------------------------------- 2510 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2511 // Either input is TOP ==> the result is TOP 2512 const Type *t1 = phase->type( in(MemNode::Memory) ); 2513 if( t1 == Type::TOP ) return Type::TOP; 2514 Node *adr = in(MemNode::Address); 2515 const Type *t2 = phase->type( adr ); 2516 if( t2 == Type::TOP ) return Type::TOP; 2517 const TypePtr *tp = t2->is_ptr(); 2518 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2519 const TypeAryPtr *tap = tp->isa_aryptr(); 2520 if( !tap ) return _type; 2521 return tap->size(); 2522 } 2523 2524 //-------------------------------Ideal--------------------------------------- 2525 // Feed through the length in AllocateArray(...length...)._length. 2526 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2527 Node* p = MemNode::Ideal_common(phase, can_reshape); 2528 if (p) return (p == NodeSentinel) ? nullptr : p; 2529 2530 // Take apart the address into an oop and and offset. 2531 // Return 'this' if we cannot. 2532 Node* adr = in(MemNode::Address); 2533 intptr_t offset = 0; 2534 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2535 if (base == nullptr) return nullptr; 2536 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2537 if (tary == nullptr) return nullptr; 2538 2539 // We can fetch the length directly through an AllocateArrayNode. 2540 // This works even if the length is not constant (clone or newArray). 2541 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2542 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); 2543 if (alloc != nullptr) { 2544 Node* allocated_length = alloc->Ideal_length(); 2545 Node* len = alloc->make_ideal_length(tary, phase); 2546 if (allocated_length != len) { 2547 // New CastII improves on this. 2548 return len; 2549 } 2550 } 2551 } 2552 2553 return nullptr; 2554 } 2555 2556 //------------------------------Identity--------------------------------------- 2557 // Feed through the length in AllocateArray(...length...)._length. 2558 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2559 Node* x = LoadINode::Identity(phase); 2560 if (x != this) return x; 2561 2562 // Take apart the address into an oop and and offset. 2563 // Return 'this' if we cannot. 2564 Node* adr = in(MemNode::Address); 2565 intptr_t offset = 0; 2566 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2567 if (base == nullptr) return this; 2568 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2569 if (tary == nullptr) return this; 2570 2571 // We can fetch the length directly through an AllocateArrayNode. 2572 // This works even if the length is not constant (clone or newArray). 2573 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2574 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase); 2575 if (alloc != nullptr) { 2576 Node* allocated_length = alloc->Ideal_length(); 2577 // Do not allow make_ideal_length to allocate a CastII node. 2578 Node* len = alloc->make_ideal_length(tary, phase, false); 2579 if (allocated_length == len) { 2580 // Return allocated_length only if it would not be improved by a CastII. 2581 return allocated_length; 2582 } 2583 } 2584 } 2585 2586 return this; 2587 2588 } 2589 2590 //============================================================================= 2591 //---------------------------StoreNode::make----------------------------------- 2592 // Polymorphic factory method: 2593 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) { 2594 assert((mo == unordered || mo == release), "unexpected"); 2595 Compile* C = gvn.C; 2596 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2597 ctl != nullptr, "raw memory operations should have control edge"); 2598 2599 switch (bt) { 2600 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case 2601 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2602 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2603 case T_CHAR: 2604 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2605 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2606 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2607 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2608 case T_METADATA: 2609 case T_ADDRESS: 2610 case T_OBJECT: 2611 #ifdef _LP64 2612 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2613 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2614 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2615 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2616 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2617 adr->bottom_type()->isa_rawptr())) { 2618 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2619 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2620 } 2621 #endif 2622 { 2623 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2624 } 2625 default: 2626 ShouldNotReachHere(); 2627 return (StoreNode*)nullptr; 2628 } 2629 } 2630 2631 //--------------------------bottom_type---------------------------------------- 2632 const Type *StoreNode::bottom_type() const { 2633 return Type::MEMORY; 2634 } 2635 2636 //------------------------------hash------------------------------------------- 2637 uint StoreNode::hash() const { 2638 // unroll addition of interesting fields 2639 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2640 2641 // Since they are not commoned, do not hash them: 2642 return NO_HASH; 2643 } 2644 2645 //------------------------------Ideal------------------------------------------ 2646 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 2647 // When a store immediately follows a relevant allocation/initialization, 2648 // try to capture it into the initialization, or hoist it above. 2649 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2650 Node* p = MemNode::Ideal_common(phase, can_reshape); 2651 if (p) return (p == NodeSentinel) ? nullptr : p; 2652 2653 Node* mem = in(MemNode::Memory); 2654 Node* address = in(MemNode::Address); 2655 Node* value = in(MemNode::ValueIn); 2656 // Back-to-back stores to same address? Fold em up. Generally 2657 // unsafe if I have intervening uses... Also disallowed for StoreCM 2658 // since they must follow each StoreP operation. Redundant StoreCMs 2659 // are eliminated just before matching in final_graph_reshape. 2660 { 2661 Node* st = mem; 2662 // If Store 'st' has more than one use, we cannot fold 'st' away. 2663 // For example, 'st' might be the final state at a conditional 2664 // return. Or, 'st' might be used by some node which is live at 2665 // the same time 'st' is live, which might be unschedulable. So, 2666 // require exactly ONE user until such time as we clone 'mem' for 2667 // each of 'mem's uses (thus making the exactly-1-user-rule hold 2668 // true). 2669 while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) { 2670 // Looking at a dead closed cycle of memory? 2671 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 2672 assert(Opcode() == st->Opcode() || 2673 st->Opcode() == Op_StoreVector || 2674 Opcode() == Op_StoreVector || 2675 st->Opcode() == Op_StoreVectorScatter || 2676 Opcode() == Op_StoreVectorScatter || 2677 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 2678 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 2679 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy 2680 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 2681 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 2682 2683 if (st->in(MemNode::Address)->eqv_uncast(address) && 2684 st->as_Store()->memory_size() <= this->memory_size()) { 2685 Node* use = st->raw_out(0); 2686 if (phase->is_IterGVN()) { 2687 phase->is_IterGVN()->rehash_node_delayed(use); 2688 } 2689 // It's OK to do this in the parser, since DU info is always accurate, 2690 // and the parser always refers to nodes via SafePointNode maps. 2691 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); 2692 return this; 2693 } 2694 st = st->in(MemNode::Memory); 2695 } 2696 } 2697 2698 2699 // Capture an unaliased, unconditional, simple store into an initializer. 2700 // Or, if it is independent of the allocation, hoist it above the allocation. 2701 if (ReduceFieldZeroing && /*can_reshape &&*/ 2702 mem->is_Proj() && mem->in(0)->is_Initialize()) { 2703 InitializeNode* init = mem->in(0)->as_Initialize(); 2704 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 2705 if (offset > 0) { 2706 Node* moved = init->capture_store(this, offset, phase, can_reshape); 2707 // If the InitializeNode captured me, it made a raw copy of me, 2708 // and I need to disappear. 2709 if (moved != nullptr) { 2710 // %%% hack to ensure that Ideal returns a new node: 2711 mem = MergeMemNode::make(mem); 2712 return mem; // fold me away 2713 } 2714 } 2715 } 2716 2717 // Fold reinterpret cast into memory operation: 2718 // StoreX mem (MoveY2X v) => StoreY mem v 2719 if (value->is_Move()) { 2720 const Type* vt = value->in(1)->bottom_type(); 2721 if (has_reinterpret_variant(vt)) { 2722 if (phase->C->post_loop_opts_phase()) { 2723 return convert_to_reinterpret_store(*phase, value->in(1), vt); 2724 } else { 2725 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over 2726 } 2727 } 2728 } 2729 2730 return nullptr; // No further progress 2731 } 2732 2733 //------------------------------Value----------------------------------------- 2734 const Type* StoreNode::Value(PhaseGVN* phase) const { 2735 // Either input is TOP ==> the result is TOP 2736 const Type *t1 = phase->type( in(MemNode::Memory) ); 2737 if( t1 == Type::TOP ) return Type::TOP; 2738 const Type *t2 = phase->type( in(MemNode::Address) ); 2739 if( t2 == Type::TOP ) return Type::TOP; 2740 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 2741 if( t3 == Type::TOP ) return Type::TOP; 2742 return Type::MEMORY; 2743 } 2744 2745 //------------------------------Identity--------------------------------------- 2746 // Remove redundant stores: 2747 // Store(m, p, Load(m, p)) changes to m. 2748 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 2749 Node* StoreNode::Identity(PhaseGVN* phase) { 2750 Node* mem = in(MemNode::Memory); 2751 Node* adr = in(MemNode::Address); 2752 Node* val = in(MemNode::ValueIn); 2753 2754 Node* result = this; 2755 2756 // Load then Store? Then the Store is useless 2757 if (val->is_Load() && 2758 val->in(MemNode::Address)->eqv_uncast(adr) && 2759 val->in(MemNode::Memory )->eqv_uncast(mem) && 2760 val->as_Load()->store_Opcode() == Opcode()) { 2761 result = mem; 2762 } 2763 2764 // Two stores in a row of the same value? 2765 if (result == this && 2766 mem->is_Store() && 2767 mem->in(MemNode::Address)->eqv_uncast(adr) && 2768 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 2769 mem->Opcode() == Opcode()) { 2770 result = mem; 2771 } 2772 2773 // Store of zero anywhere into a freshly-allocated object? 2774 // Then the store is useless. 2775 // (It must already have been captured by the InitializeNode.) 2776 if (result == this && 2777 ReduceFieldZeroing && phase->type(val)->is_zero_type()) { 2778 // a newly allocated object is already all-zeroes everywhere 2779 if (mem->is_Proj() && mem->in(0)->is_Allocate()) { 2780 result = mem; 2781 } 2782 2783 if (result == this) { 2784 // the store may also apply to zero-bits in an earlier object 2785 Node* prev_mem = find_previous_store(phase); 2786 // Steps (a), (b): Walk past independent stores to find an exact match. 2787 if (prev_mem != nullptr) { 2788 Node* prev_val = can_see_stored_value(prev_mem, phase); 2789 if (prev_val != nullptr && prev_val == val) { 2790 // prev_val and val might differ by a cast; it would be good 2791 // to keep the more informative of the two. 2792 result = mem; 2793 } 2794 } 2795 } 2796 } 2797 2798 PhaseIterGVN* igvn = phase->is_IterGVN(); 2799 if (result != this && igvn != nullptr) { 2800 MemBarNode* trailing = trailing_membar(); 2801 if (trailing != nullptr) { 2802 #ifdef ASSERT 2803 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); 2804 assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects"); 2805 #endif 2806 trailing->remove(igvn); 2807 } 2808 } 2809 2810 return result; 2811 } 2812 2813 //------------------------------match_edge------------------------------------- 2814 // Do we Match on this edge index or not? Match only memory & value 2815 uint StoreNode::match_edge(uint idx) const { 2816 return idx == MemNode::Address || idx == MemNode::ValueIn; 2817 } 2818 2819 //------------------------------cmp-------------------------------------------- 2820 // Do not common stores up together. They generally have to be split 2821 // back up anyways, so do not bother. 2822 bool StoreNode::cmp( const Node &n ) const { 2823 return (&n == this); // Always fail except on self 2824 } 2825 2826 //------------------------------Ideal_masked_input----------------------------- 2827 // Check for a useless mask before a partial-word store 2828 // (StoreB ... (AndI valIn conIa) ) 2829 // If (conIa & mask == mask) this simplifies to 2830 // (StoreB ... (valIn) ) 2831 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 2832 Node *val = in(MemNode::ValueIn); 2833 if( val->Opcode() == Op_AndI ) { 2834 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 2835 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 2836 set_req_X(MemNode::ValueIn, val->in(1), phase); 2837 return this; 2838 } 2839 } 2840 return nullptr; 2841 } 2842 2843 2844 //------------------------------Ideal_sign_extended_input---------------------- 2845 // Check for useless sign-extension before a partial-word store 2846 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) 2847 // If (conIL == conIR && conIR <= num_bits) this simplifies to 2848 // (StoreB ... (valIn) ) 2849 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { 2850 Node *val = in(MemNode::ValueIn); 2851 if( val->Opcode() == Op_RShiftI ) { 2852 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 2853 if( t && t->is_con() && (t->get_con() <= num_bits) ) { 2854 Node *shl = val->in(1); 2855 if( shl->Opcode() == Op_LShiftI ) { 2856 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); 2857 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { 2858 set_req_X(MemNode::ValueIn, shl->in(1), phase); 2859 return this; 2860 } 2861 } 2862 } 2863 } 2864 return nullptr; 2865 } 2866 2867 //------------------------------value_never_loaded----------------------------------- 2868 // Determine whether there are any possible loads of the value stored. 2869 // For simplicity, we actually check if there are any loads from the 2870 // address stored to, not just for loads of the value stored by this node. 2871 // 2872 bool StoreNode::value_never_loaded( PhaseTransform *phase) const { 2873 Node *adr = in(Address); 2874 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 2875 if (adr_oop == nullptr) 2876 return false; 2877 if (!adr_oop->is_known_instance_field()) 2878 return false; // if not a distinct instance, there may be aliases of the address 2879 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 2880 Node *use = adr->fast_out(i); 2881 if (use->is_Load() || use->is_LoadStore()) { 2882 return false; 2883 } 2884 } 2885 return true; 2886 } 2887 2888 MemBarNode* StoreNode::trailing_membar() const { 2889 if (is_release()) { 2890 MemBarNode* trailing_mb = nullptr; 2891 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 2892 Node* u = fast_out(i); 2893 if (u->is_MemBar()) { 2894 if (u->as_MemBar()->trailing_store()) { 2895 assert(u->Opcode() == Op_MemBarVolatile, ""); 2896 assert(trailing_mb == nullptr, "only one"); 2897 trailing_mb = u->as_MemBar(); 2898 #ifdef ASSERT 2899 Node* leading = u->as_MemBar()->leading_membar(); 2900 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 2901 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); 2902 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); 2903 #endif 2904 } else { 2905 assert(u->as_MemBar()->standalone(), ""); 2906 } 2907 } 2908 } 2909 return trailing_mb; 2910 } 2911 return nullptr; 2912 } 2913 2914 2915 //============================================================================= 2916 //------------------------------Ideal------------------------------------------ 2917 // If the store is from an AND mask that leaves the low bits untouched, then 2918 // we can skip the AND operation. If the store is from a sign-extension 2919 // (a left shift, then right shift) we can skip both. 2920 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2921 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 2922 if( progress != nullptr ) return progress; 2923 2924 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 2925 if( progress != nullptr ) return progress; 2926 2927 // Finally check the default case 2928 return StoreNode::Ideal(phase, can_reshape); 2929 } 2930 2931 //============================================================================= 2932 //------------------------------Ideal------------------------------------------ 2933 // If the store is from an AND mask that leaves the low bits untouched, then 2934 // we can skip the AND operation 2935 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2936 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 2937 if( progress != nullptr ) return progress; 2938 2939 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 2940 if( progress != nullptr ) return progress; 2941 2942 // Finally check the default case 2943 return StoreNode::Ideal(phase, can_reshape); 2944 } 2945 2946 //============================================================================= 2947 //------------------------------Identity--------------------------------------- 2948 Node* StoreCMNode::Identity(PhaseGVN* phase) { 2949 // No need to card mark when storing a null ptr 2950 Node* my_store = in(MemNode::OopStore); 2951 if (my_store->is_Store()) { 2952 const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) ); 2953 if( t1 == TypePtr::NULL_PTR ) { 2954 return in(MemNode::Memory); 2955 } 2956 } 2957 return this; 2958 } 2959 2960 //============================================================================= 2961 //------------------------------Ideal--------------------------------------- 2962 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){ 2963 Node* progress = StoreNode::Ideal(phase, can_reshape); 2964 if (progress != nullptr) return progress; 2965 2966 Node* my_store = in(MemNode::OopStore); 2967 if (my_store->is_MergeMem()) { 2968 Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx()); 2969 set_req_X(MemNode::OopStore, mem, phase); 2970 return this; 2971 } 2972 2973 return nullptr; 2974 } 2975 2976 //------------------------------Value----------------------------------------- 2977 const Type* StoreCMNode::Value(PhaseGVN* phase) const { 2978 // Either input is TOP ==> the result is TOP (checked in StoreNode::Value). 2979 // If extra input is TOP ==> the result is TOP 2980 const Type* t = phase->type(in(MemNode::OopStore)); 2981 if (t == Type::TOP) { 2982 return Type::TOP; 2983 } 2984 return StoreNode::Value(phase); 2985 } 2986 2987 2988 //============================================================================= 2989 //----------------------------------SCMemProjNode------------------------------ 2990 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 2991 { 2992 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 2993 return Type::TOP; 2994 } 2995 return bottom_type(); 2996 } 2997 2998 //============================================================================= 2999 //----------------------------------LoadStoreNode------------------------------ 3000 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 3001 : Node(required), 3002 _type(rt), 3003 _adr_type(at), 3004 _barrier_data(0) 3005 { 3006 init_req(MemNode::Control, c ); 3007 init_req(MemNode::Memory , mem); 3008 init_req(MemNode::Address, adr); 3009 init_req(MemNode::ValueIn, val); 3010 init_class_id(Class_LoadStore); 3011 } 3012 3013 //------------------------------Value----------------------------------------- 3014 const Type* LoadStoreNode::Value(PhaseGVN* phase) const { 3015 // Either input is TOP ==> the result is TOP 3016 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { 3017 return Type::TOP; 3018 } 3019 const Type* t = phase->type(in(MemNode::Memory)); 3020 if (t == Type::TOP) { 3021 return Type::TOP; 3022 } 3023 t = phase->type(in(MemNode::Address)); 3024 if (t == Type::TOP) { 3025 return Type::TOP; 3026 } 3027 t = phase->type(in(MemNode::ValueIn)); 3028 if (t == Type::TOP) { 3029 return Type::TOP; 3030 } 3031 return bottom_type(); 3032 } 3033 3034 uint LoadStoreNode::ideal_reg() const { 3035 return _type->ideal_reg(); 3036 } 3037 3038 bool LoadStoreNode::result_not_used() const { 3039 for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) { 3040 Node *x = fast_out(i); 3041 if (x->Opcode() == Op_SCMemProj) continue; 3042 return false; 3043 } 3044 return true; 3045 } 3046 3047 MemBarNode* LoadStoreNode::trailing_membar() const { 3048 MemBarNode* trailing = nullptr; 3049 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3050 Node* u = fast_out(i); 3051 if (u->is_MemBar()) { 3052 if (u->as_MemBar()->trailing_load_store()) { 3053 assert(u->Opcode() == Op_MemBarAcquire, ""); 3054 assert(trailing == nullptr, "only one"); 3055 trailing = u->as_MemBar(); 3056 #ifdef ASSERT 3057 Node* leading = trailing->leading_membar(); 3058 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3059 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); 3060 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); 3061 #endif 3062 } else { 3063 assert(u->as_MemBar()->standalone(), "wrong barrier kind"); 3064 } 3065 } 3066 } 3067 3068 return trailing; 3069 } 3070 3071 uint LoadStoreNode::size_of() const { return sizeof(*this); } 3072 3073 //============================================================================= 3074 //----------------------------------LoadStoreConditionalNode-------------------- 3075 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) { 3076 init_req(ExpectedIn, ex ); 3077 } 3078 3079 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { 3080 // Either input is TOP ==> the result is TOP 3081 const Type* t = phase->type(in(ExpectedIn)); 3082 if (t == Type::TOP) { 3083 return Type::TOP; 3084 } 3085 return LoadStoreNode::Value(phase); 3086 } 3087 3088 //============================================================================= 3089 //-------------------------------adr_type-------------------------------------- 3090 const TypePtr* ClearArrayNode::adr_type() const { 3091 Node *adr = in(3); 3092 if (adr == nullptr) return nullptr; // node is dead 3093 return MemNode::calculate_adr_type(adr->bottom_type()); 3094 } 3095 3096 //------------------------------match_edge------------------------------------- 3097 // Do we Match on this edge index or not? Do not match memory 3098 uint ClearArrayNode::match_edge(uint idx) const { 3099 return idx > 1; 3100 } 3101 3102 //------------------------------Identity--------------------------------------- 3103 // Clearing a zero length array does nothing 3104 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 3105 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 3106 } 3107 3108 //------------------------------Idealize--------------------------------------- 3109 // Clearing a short array is faster with stores 3110 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3111 // Already know this is a large node, do not try to ideal it 3112 if (_is_large) return nullptr; 3113 3114 const int unit = BytesPerLong; 3115 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 3116 if (!t) return nullptr; 3117 if (!t->is_con()) return nullptr; 3118 intptr_t raw_count = t->get_con(); 3119 intptr_t size = raw_count; 3120 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 3121 // Clearing nothing uses the Identity call. 3122 // Negative clears are possible on dead ClearArrays 3123 // (see jck test stmt114.stmt11402.val). 3124 if (size <= 0 || size % unit != 0) return nullptr; 3125 intptr_t count = size / unit; 3126 // Length too long; communicate this to matchers and assemblers. 3127 // Assemblers are responsible to produce fast hardware clears for it. 3128 if (size > InitArrayShortSize) { 3129 return new ClearArrayNode(in(0), in(1), in(2), in(3), true); 3130 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { 3131 return nullptr; 3132 } 3133 if (!IdealizeClearArrayNode) return nullptr; 3134 Node *mem = in(1); 3135 if( phase->type(mem)==Type::TOP ) return nullptr; 3136 Node *adr = in(3); 3137 const Type* at = phase->type(adr); 3138 if( at==Type::TOP ) return nullptr; 3139 const TypePtr* atp = at->isa_ptr(); 3140 // adjust atp to be the correct array element address type 3141 if (atp == nullptr) atp = TypePtr::BOTTOM; 3142 else atp = atp->add_offset(Type::OffsetBot); 3143 // Get base for derived pointer purposes 3144 if( adr->Opcode() != Op_AddP ) Unimplemented(); 3145 Node *base = adr->in(1); 3146 3147 Node *zero = phase->makecon(TypeLong::ZERO); 3148 Node *off = phase->MakeConX(BytesPerLong); 3149 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3150 count--; 3151 while( count-- ) { 3152 mem = phase->transform(mem); 3153 adr = phase->transform(new AddPNode(base,adr,off)); 3154 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3155 } 3156 return mem; 3157 } 3158 3159 //----------------------------step_through---------------------------------- 3160 // Return allocation input memory edge if it is different instance 3161 // or itself if it is the one we are looking for. 3162 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) { 3163 Node* n = *np; 3164 assert(n->is_ClearArray(), "sanity"); 3165 intptr_t offset; 3166 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 3167 // This method is called only before Allocate nodes are expanded 3168 // during macro nodes expansion. Before that ClearArray nodes are 3169 // only generated in PhaseMacroExpand::generate_arraycopy() (before 3170 // Allocate nodes are expanded) which follows allocations. 3171 assert(alloc != nullptr, "should have allocation"); 3172 if (alloc->_idx == instance_id) { 3173 // Can not bypass initialization of the instance we are looking for. 3174 return false; 3175 } 3176 // Otherwise skip it. 3177 InitializeNode* init = alloc->initialization(); 3178 if (init != nullptr) 3179 *np = init->in(TypeFunc::Memory); 3180 else 3181 *np = alloc->in(TypeFunc::Memory); 3182 return true; 3183 } 3184 3185 //----------------------------clear_memory------------------------------------- 3186 // Generate code to initialize object storage to zero. 3187 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3188 intptr_t start_offset, 3189 Node* end_offset, 3190 PhaseGVN* phase) { 3191 intptr_t offset = start_offset; 3192 3193 int unit = BytesPerLong; 3194 if ((offset % unit) != 0) { 3195 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 3196 adr = phase->transform(adr); 3197 const TypePtr* atp = TypeRawPtr::BOTTOM; 3198 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3199 mem = phase->transform(mem); 3200 offset += BytesPerInt; 3201 } 3202 assert((offset % unit) == 0, ""); 3203 3204 // Initialize the remaining stuff, if any, with a ClearArray. 3205 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase); 3206 } 3207 3208 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3209 Node* start_offset, 3210 Node* end_offset, 3211 PhaseGVN* phase) { 3212 if (start_offset == end_offset) { 3213 // nothing to do 3214 return mem; 3215 } 3216 3217 int unit = BytesPerLong; 3218 Node* zbase = start_offset; 3219 Node* zend = end_offset; 3220 3221 // Scale to the unit required by the CPU: 3222 if (!Matcher::init_array_count_is_in_bytes) { 3223 Node* shift = phase->intcon(exact_log2(unit)); 3224 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 3225 zend = phase->transform(new URShiftXNode(zend, shift) ); 3226 } 3227 3228 // Bulk clear double-words 3229 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 3230 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 3231 mem = new ClearArrayNode(ctl, mem, zsize, adr, false); 3232 return phase->transform(mem); 3233 } 3234 3235 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3236 intptr_t start_offset, 3237 intptr_t end_offset, 3238 PhaseGVN* phase) { 3239 if (start_offset == end_offset) { 3240 // nothing to do 3241 return mem; 3242 } 3243 3244 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 3245 intptr_t done_offset = end_offset; 3246 if ((done_offset % BytesPerLong) != 0) { 3247 done_offset -= BytesPerInt; 3248 } 3249 if (done_offset > start_offset) { 3250 mem = clear_memory(ctl, mem, dest, 3251 start_offset, phase->MakeConX(done_offset), phase); 3252 } 3253 if (done_offset < end_offset) { // emit the final 32-bit store 3254 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 3255 adr = phase->transform(adr); 3256 const TypePtr* atp = TypeRawPtr::BOTTOM; 3257 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3258 mem = phase->transform(mem); 3259 done_offset += BytesPerInt; 3260 } 3261 assert(done_offset == end_offset, ""); 3262 return mem; 3263 } 3264 3265 //============================================================================= 3266 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 3267 : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)), 3268 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) 3269 #ifdef ASSERT 3270 , _pair_idx(0) 3271 #endif 3272 { 3273 init_class_id(Class_MemBar); 3274 Node* top = C->top(); 3275 init_req(TypeFunc::I_O,top); 3276 init_req(TypeFunc::FramePtr,top); 3277 init_req(TypeFunc::ReturnAdr,top); 3278 if (precedent != nullptr) 3279 init_req(TypeFunc::Parms, precedent); 3280 } 3281 3282 //------------------------------cmp-------------------------------------------- 3283 uint MemBarNode::hash() const { return NO_HASH; } 3284 bool MemBarNode::cmp( const Node &n ) const { 3285 return (&n == this); // Always fail except on self 3286 } 3287 3288 //------------------------------make------------------------------------------- 3289 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 3290 switch (opcode) { 3291 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 3292 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 3293 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 3294 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 3295 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 3296 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); 3297 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 3298 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 3299 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 3300 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 3301 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); 3302 case Op_Initialize: return new InitializeNode(C, atp, pn); 3303 default: ShouldNotReachHere(); return nullptr; 3304 } 3305 } 3306 3307 void MemBarNode::remove(PhaseIterGVN *igvn) { 3308 if (outcnt() != 2) { 3309 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory"); 3310 assert(outcnt() == 1, "Only control then"); 3311 } 3312 if (trailing_store() || trailing_load_store()) { 3313 MemBarNode* leading = leading_membar(); 3314 if (leading != nullptr) { 3315 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); 3316 leading->remove(igvn); 3317 } 3318 } 3319 if (proj_out_or_null(TypeFunc::Memory) != nullptr) { 3320 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 3321 } 3322 if (proj_out_or_null(TypeFunc::Control) != nullptr) { 3323 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 3324 } 3325 } 3326 3327 //------------------------------Ideal------------------------------------------ 3328 // Return a node which is more "ideal" than the current node. Strip out 3329 // control copies 3330 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3331 if (remove_dead_region(phase, can_reshape)) return this; 3332 // Don't bother trying to transform a dead node 3333 if (in(0) && in(0)->is_top()) { 3334 return nullptr; 3335 } 3336 3337 bool progress = false; 3338 // Eliminate volatile MemBars for scalar replaced objects. 3339 if (can_reshape && req() == (Precedent+1)) { 3340 bool eliminate = false; 3341 int opc = Opcode(); 3342 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 3343 // Volatile field loads and stores. 3344 Node* my_mem = in(MemBarNode::Precedent); 3345 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 3346 if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 3347 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 3348 // replace this Precedent (decodeN) with the Load instead. 3349 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 3350 Node* load_node = my_mem->in(1); 3351 set_req(MemBarNode::Precedent, load_node); 3352 phase->is_IterGVN()->_worklist.push(my_mem); 3353 my_mem = load_node; 3354 } else { 3355 assert(my_mem->unique_out() == this, "sanity"); 3356 del_req(Precedent); 3357 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 3358 my_mem = nullptr; 3359 } 3360 progress = true; 3361 } 3362 if (my_mem != nullptr && my_mem->is_Mem()) { 3363 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 3364 // Check for scalar replaced object reference. 3365 if( t_oop != nullptr && t_oop->is_known_instance_field() && 3366 t_oop->offset() != Type::OffsetBot && 3367 t_oop->offset() != Type::OffsetTop) { 3368 eliminate = true; 3369 } 3370 } 3371 } else if (opc == Op_MemBarRelease) { 3372 // Final field stores. 3373 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase); 3374 if ((alloc != nullptr) && alloc->is_Allocate() && 3375 alloc->as_Allocate()->does_not_escape_thread()) { 3376 // The allocated object does not escape. 3377 eliminate = true; 3378 } 3379 } 3380 if (eliminate) { 3381 // Replace MemBar projections by its inputs. 3382 PhaseIterGVN* igvn = phase->is_IterGVN(); 3383 remove(igvn); 3384 // Must return either the original node (now dead) or a new node 3385 // (Do not return a top here, since that would break the uniqueness of top.) 3386 return new ConINode(TypeInt::ZERO); 3387 } 3388 } 3389 return progress ? this : nullptr; 3390 } 3391 3392 //------------------------------Value------------------------------------------ 3393 const Type* MemBarNode::Value(PhaseGVN* phase) const { 3394 if( !in(0) ) return Type::TOP; 3395 if( phase->type(in(0)) == Type::TOP ) 3396 return Type::TOP; 3397 return TypeTuple::MEMBAR; 3398 } 3399 3400 //------------------------------match------------------------------------------ 3401 // Construct projections for memory. 3402 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { 3403 switch (proj->_con) { 3404 case TypeFunc::Control: 3405 case TypeFunc::Memory: 3406 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 3407 } 3408 ShouldNotReachHere(); 3409 return nullptr; 3410 } 3411 3412 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { 3413 trailing->_kind = TrailingStore; 3414 leading->_kind = LeadingStore; 3415 #ifdef ASSERT 3416 trailing->_pair_idx = leading->_idx; 3417 leading->_pair_idx = leading->_idx; 3418 #endif 3419 } 3420 3421 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { 3422 trailing->_kind = TrailingLoadStore; 3423 leading->_kind = LeadingLoadStore; 3424 #ifdef ASSERT 3425 trailing->_pair_idx = leading->_idx; 3426 leading->_pair_idx = leading->_idx; 3427 #endif 3428 } 3429 3430 MemBarNode* MemBarNode::trailing_membar() const { 3431 ResourceMark rm; 3432 Node* trailing = (Node*)this; 3433 VectorSet seen; 3434 Node_Stack multis(0); 3435 do { 3436 Node* c = trailing; 3437 uint i = 0; 3438 do { 3439 trailing = nullptr; 3440 for (; i < c->outcnt(); i++) { 3441 Node* next = c->raw_out(i); 3442 if (next != c && next->is_CFG()) { 3443 if (c->is_MultiBranch()) { 3444 if (multis.node() == c) { 3445 multis.set_index(i+1); 3446 } else { 3447 multis.push(c, i+1); 3448 } 3449 } 3450 trailing = next; 3451 break; 3452 } 3453 } 3454 if (trailing != nullptr && !seen.test_set(trailing->_idx)) { 3455 break; 3456 } 3457 while (multis.size() > 0) { 3458 c = multis.node(); 3459 i = multis.index(); 3460 if (i < c->req()) { 3461 break; 3462 } 3463 multis.pop(); 3464 } 3465 } while (multis.size() > 0); 3466 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); 3467 3468 MemBarNode* mb = trailing->as_MemBar(); 3469 assert((mb->_kind == TrailingStore && _kind == LeadingStore) || 3470 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); 3471 assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); 3472 return mb; 3473 } 3474 3475 MemBarNode* MemBarNode::leading_membar() const { 3476 ResourceMark rm; 3477 VectorSet seen; 3478 Node_Stack regions(0); 3479 Node* leading = in(0); 3480 while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { 3481 while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) { 3482 leading = nullptr; 3483 while (regions.size() > 0 && leading == nullptr) { 3484 Node* r = regions.node(); 3485 uint i = regions.index(); 3486 if (i < r->req()) { 3487 leading = r->in(i); 3488 regions.set_index(i+1); 3489 } else { 3490 regions.pop(); 3491 } 3492 } 3493 if (leading == nullptr) { 3494 assert(regions.size() == 0, "all paths should have been tried"); 3495 return nullptr; 3496 } 3497 } 3498 if (leading->is_Region()) { 3499 regions.push(leading, 2); 3500 leading = leading->in(1); 3501 } else { 3502 leading = leading->in(0); 3503 } 3504 } 3505 #ifdef ASSERT 3506 Unique_Node_List wq; 3507 wq.push((Node*)this); 3508 uint found = 0; 3509 for (uint i = 0; i < wq.size(); i++) { 3510 Node* n = wq.at(i); 3511 if (n->is_Region()) { 3512 for (uint j = 1; j < n->req(); j++) { 3513 Node* in = n->in(j); 3514 if (in != nullptr && !in->is_top()) { 3515 wq.push(in); 3516 } 3517 } 3518 } else { 3519 if (n->is_MemBar() && n->as_MemBar()->leading()) { 3520 assert(n == leading, "consistency check failed"); 3521 found++; 3522 } else { 3523 Node* in = n->in(0); 3524 if (in != nullptr && !in->is_top()) { 3525 wq.push(in); 3526 } 3527 } 3528 } 3529 } 3530 assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed"); 3531 #endif 3532 if (leading == nullptr) { 3533 return nullptr; 3534 } 3535 MemBarNode* mb = leading->as_MemBar(); 3536 assert((mb->_kind == LeadingStore && _kind == TrailingStore) || 3537 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); 3538 assert(mb->_pair_idx == _pair_idx, "bad leading membar"); 3539 return mb; 3540 } 3541 3542 3543 //===========================InitializeNode==================================== 3544 // SUMMARY: 3545 // This node acts as a memory barrier on raw memory, after some raw stores. 3546 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 3547 // The Initialize can 'capture' suitably constrained stores as raw inits. 3548 // It can coalesce related raw stores into larger units (called 'tiles'). 3549 // It can avoid zeroing new storage for memory units which have raw inits. 3550 // At macro-expansion, it is marked 'complete', and does not optimize further. 3551 // 3552 // EXAMPLE: 3553 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 3554 // ctl = incoming control; mem* = incoming memory 3555 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 3556 // First allocate uninitialized memory and fill in the header: 3557 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 3558 // ctl := alloc.Control; mem* := alloc.Memory* 3559 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 3560 // Then initialize to zero the non-header parts of the raw memory block: 3561 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 3562 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 3563 // After the initialize node executes, the object is ready for service: 3564 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 3565 // Suppose its body is immediately initialized as {1,2}: 3566 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 3567 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 3568 // mem.SLICE(#short[*]) := store2 3569 // 3570 // DETAILS: 3571 // An InitializeNode collects and isolates object initialization after 3572 // an AllocateNode and before the next possible safepoint. As a 3573 // memory barrier (MemBarNode), it keeps critical stores from drifting 3574 // down past any safepoint or any publication of the allocation. 3575 // Before this barrier, a newly-allocated object may have uninitialized bits. 3576 // After this barrier, it may be treated as a real oop, and GC is allowed. 3577 // 3578 // The semantics of the InitializeNode include an implicit zeroing of 3579 // the new object from object header to the end of the object. 3580 // (The object header and end are determined by the AllocateNode.) 3581 // 3582 // Certain stores may be added as direct inputs to the InitializeNode. 3583 // These stores must update raw memory, and they must be to addresses 3584 // derived from the raw address produced by AllocateNode, and with 3585 // a constant offset. They must be ordered by increasing offset. 3586 // The first one is at in(RawStores), the last at in(req()-1). 3587 // Unlike most memory operations, they are not linked in a chain, 3588 // but are displayed in parallel as users of the rawmem output of 3589 // the allocation. 3590 // 3591 // (See comments in InitializeNode::capture_store, which continue 3592 // the example given above.) 3593 // 3594 // When the associated Allocate is macro-expanded, the InitializeNode 3595 // may be rewritten to optimize collected stores. A ClearArrayNode 3596 // may also be created at that point to represent any required zeroing. 3597 // The InitializeNode is then marked 'complete', prohibiting further 3598 // capturing of nearby memory operations. 3599 // 3600 // During macro-expansion, all captured initializations which store 3601 // constant values of 32 bits or smaller are coalesced (if advantageous) 3602 // into larger 'tiles' 32 or 64 bits. This allows an object to be 3603 // initialized in fewer memory operations. Memory words which are 3604 // covered by neither tiles nor non-constant stores are pre-zeroed 3605 // by explicit stores of zero. (The code shape happens to do all 3606 // zeroing first, then all other stores, with both sequences occurring 3607 // in order of ascending offsets.) 3608 // 3609 // Alternatively, code may be inserted between an AllocateNode and its 3610 // InitializeNode, to perform arbitrary initialization of the new object. 3611 // E.g., the object copying intrinsics insert complex data transfers here. 3612 // The initialization must then be marked as 'complete' disable the 3613 // built-in zeroing semantics and the collection of initializing stores. 3614 // 3615 // While an InitializeNode is incomplete, reads from the memory state 3616 // produced by it are optimizable if they match the control edge and 3617 // new oop address associated with the allocation/initialization. 3618 // They return a stored value (if the offset matches) or else zero. 3619 // A write to the memory state, if it matches control and address, 3620 // and if it is to a constant offset, may be 'captured' by the 3621 // InitializeNode. It is cloned as a raw memory operation and rewired 3622 // inside the initialization, to the raw oop produced by the allocation. 3623 // Operations on addresses which are provably distinct (e.g., to 3624 // other AllocateNodes) are allowed to bypass the initialization. 3625 // 3626 // The effect of all this is to consolidate object initialization 3627 // (both arrays and non-arrays, both piecewise and bulk) into a 3628 // single location, where it can be optimized as a unit. 3629 // 3630 // Only stores with an offset less than TrackedInitializationLimit words 3631 // will be considered for capture by an InitializeNode. This puts a 3632 // reasonable limit on the complexity of optimized initializations. 3633 3634 //---------------------------InitializeNode------------------------------------ 3635 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 3636 : MemBarNode(C, adr_type, rawoop), 3637 _is_complete(Incomplete), _does_not_escape(false) 3638 { 3639 init_class_id(Class_Initialize); 3640 3641 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 3642 assert(in(RawAddress) == rawoop, "proper init"); 3643 // Note: allocation() can be null, for secondary initialization barriers 3644 } 3645 3646 // Since this node is not matched, it will be processed by the 3647 // register allocator. Declare that there are no constraints 3648 // on the allocation of the RawAddress edge. 3649 const RegMask &InitializeNode::in_RegMask(uint idx) const { 3650 // This edge should be set to top, by the set_complete. But be conservative. 3651 if (idx == InitializeNode::RawAddress) 3652 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 3653 return RegMask::Empty; 3654 } 3655 3656 Node* InitializeNode::memory(uint alias_idx) { 3657 Node* mem = in(Memory); 3658 if (mem->is_MergeMem()) { 3659 return mem->as_MergeMem()->memory_at(alias_idx); 3660 } else { 3661 // incoming raw memory is not split 3662 return mem; 3663 } 3664 } 3665 3666 bool InitializeNode::is_non_zero() { 3667 if (is_complete()) return false; 3668 remove_extra_zeroes(); 3669 return (req() > RawStores); 3670 } 3671 3672 void InitializeNode::set_complete(PhaseGVN* phase) { 3673 assert(!is_complete(), "caller responsibility"); 3674 _is_complete = Complete; 3675 3676 // After this node is complete, it contains a bunch of 3677 // raw-memory initializations. There is no need for 3678 // it to have anything to do with non-raw memory effects. 3679 // Therefore, tell all non-raw users to re-optimize themselves, 3680 // after skipping the memory effects of this initialization. 3681 PhaseIterGVN* igvn = phase->is_IterGVN(); 3682 if (igvn) igvn->add_users_to_worklist(this); 3683 } 3684 3685 // convenience function 3686 // return false if the init contains any stores already 3687 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 3688 InitializeNode* init = initialization(); 3689 if (init == nullptr || init->is_complete()) return false; 3690 init->remove_extra_zeroes(); 3691 // for now, if this allocation has already collected any inits, bail: 3692 if (init->is_non_zero()) return false; 3693 init->set_complete(phase); 3694 return true; 3695 } 3696 3697 void InitializeNode::remove_extra_zeroes() { 3698 if (req() == RawStores) return; 3699 Node* zmem = zero_memory(); 3700 uint fill = RawStores; 3701 for (uint i = fill; i < req(); i++) { 3702 Node* n = in(i); 3703 if (n->is_top() || n == zmem) continue; // skip 3704 if (fill < i) set_req(fill, n); // compact 3705 ++fill; 3706 } 3707 // delete any empty spaces created: 3708 while (fill < req()) { 3709 del_req(fill); 3710 } 3711 } 3712 3713 // Helper for remembering which stores go with which offsets. 3714 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) { 3715 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 3716 intptr_t offset = -1; 3717 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 3718 phase, offset); 3719 if (base == nullptr) return -1; // something is dead, 3720 if (offset < 0) return -1; // dead, dead 3721 return offset; 3722 } 3723 3724 // Helper for proving that an initialization expression is 3725 // "simple enough" to be folded into an object initialization. 3726 // Attempts to prove that a store's initial value 'n' can be captured 3727 // within the initialization without creating a vicious cycle, such as: 3728 // { Foo p = new Foo(); p.next = p; } 3729 // True for constants and parameters and small combinations thereof. 3730 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { 3731 ResourceMark rm; 3732 Unique_Node_List worklist; 3733 worklist.push(value); 3734 3735 uint complexity_limit = 20; 3736 for (uint j = 0; j < worklist.size(); j++) { 3737 if (j >= complexity_limit) { 3738 return false; // Bail out if processed too many nodes 3739 } 3740 3741 Node* n = worklist.at(j); 3742 if (n == nullptr) continue; // (can this really happen?) 3743 if (n->is_Proj()) n = n->in(0); 3744 if (n == this) return false; // found a cycle 3745 if (n->is_Con()) continue; 3746 if (n->is_Start()) continue; // params, etc., are OK 3747 if (n->is_Root()) continue; // even better 3748 3749 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation 3750 if (n->is_CFG() && phase->is_dominator(n, allocation())) { 3751 continue; 3752 } 3753 3754 Node* ctl = n->in(0); 3755 if (ctl != nullptr && !ctl->is_top()) { 3756 if (ctl->is_Proj()) ctl = ctl->in(0); 3757 if (ctl == this) return false; 3758 3759 // If we already know that the enclosing memory op is pinned right after 3760 // the init, then any control flow that the store has picked up 3761 // must have preceded the init, or else be equal to the init. 3762 // Even after loop optimizations (which might change control edges) 3763 // a store is never pinned *before* the availability of its inputs. 3764 if (!MemNode::all_controls_dominate(n, this)) 3765 return false; // failed to prove a good control 3766 } 3767 3768 // Check data edges for possible dependencies on 'this'. 3769 for (uint i = 1; i < n->req(); i++) { 3770 Node* m = n->in(i); 3771 if (m == nullptr || m == n || m->is_top()) continue; 3772 3773 // Only process data inputs once 3774 worklist.push(m); 3775 } 3776 } 3777 3778 return true; 3779 } 3780 3781 // Here are all the checks a Store must pass before it can be moved into 3782 // an initialization. Returns zero if a check fails. 3783 // On success, returns the (constant) offset to which the store applies, 3784 // within the initialized memory. 3785 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { 3786 const int FAIL = 0; 3787 if (st->req() != MemNode::ValueIn + 1) 3788 return FAIL; // an inscrutable StoreNode (card mark?) 3789 Node* ctl = st->in(MemNode::Control); 3790 if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this)) 3791 return FAIL; // must be unconditional after the initialization 3792 Node* mem = st->in(MemNode::Memory); 3793 if (!(mem->is_Proj() && mem->in(0) == this)) 3794 return FAIL; // must not be preceded by other stores 3795 Node* adr = st->in(MemNode::Address); 3796 intptr_t offset; 3797 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 3798 if (alloc == nullptr) 3799 return FAIL; // inscrutable address 3800 if (alloc != allocation()) 3801 return FAIL; // wrong allocation! (store needs to float up) 3802 int size_in_bytes = st->memory_size(); 3803 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { 3804 return FAIL; // mismatched access 3805 } 3806 Node* val = st->in(MemNode::ValueIn); 3807 3808 if (!detect_init_independence(val, phase)) 3809 return FAIL; // stored value must be 'simple enough' 3810 3811 // The Store can be captured only if nothing after the allocation 3812 // and before the Store is using the memory location that the store 3813 // overwrites. 3814 bool failed = false; 3815 // If is_complete_with_arraycopy() is true the shape of the graph is 3816 // well defined and is safe so no need for extra checks. 3817 if (!is_complete_with_arraycopy()) { 3818 // We are going to look at each use of the memory state following 3819 // the allocation to make sure nothing reads the memory that the 3820 // Store writes. 3821 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 3822 int alias_idx = phase->C->get_alias_index(t_adr); 3823 ResourceMark rm; 3824 Unique_Node_List mems; 3825 mems.push(mem); 3826 Node* unique_merge = nullptr; 3827 for (uint next = 0; next < mems.size(); ++next) { 3828 Node *m = mems.at(next); 3829 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 3830 Node *n = m->fast_out(j); 3831 if (n->outcnt() == 0) { 3832 continue; 3833 } 3834 if (n == st) { 3835 continue; 3836 } else if (n->in(0) != nullptr && n->in(0) != ctl) { 3837 // If the control of this use is different from the control 3838 // of the Store which is right after the InitializeNode then 3839 // this node cannot be between the InitializeNode and the 3840 // Store. 3841 continue; 3842 } else if (n->is_MergeMem()) { 3843 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 3844 // We can hit a MergeMemNode (that will likely go away 3845 // later) that is a direct use of the memory state 3846 // following the InitializeNode on the same slice as the 3847 // store node that we'd like to capture. We need to check 3848 // the uses of the MergeMemNode. 3849 mems.push(n); 3850 } 3851 } else if (n->is_Mem()) { 3852 Node* other_adr = n->in(MemNode::Address); 3853 if (other_adr == adr) { 3854 failed = true; 3855 break; 3856 } else { 3857 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 3858 if (other_t_adr != nullptr) { 3859 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 3860 if (other_alias_idx == alias_idx) { 3861 // A load from the same memory slice as the store right 3862 // after the InitializeNode. We check the control of the 3863 // object/array that is loaded from. If it's the same as 3864 // the store control then we cannot capture the store. 3865 assert(!n->is_Store(), "2 stores to same slice on same control?"); 3866 Node* base = other_adr; 3867 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 3868 base = base->in(AddPNode::Base); 3869 if (base != nullptr) { 3870 base = base->uncast(); 3871 if (base->is_Proj() && base->in(0) == alloc) { 3872 failed = true; 3873 break; 3874 } 3875 } 3876 } 3877 } 3878 } 3879 } else { 3880 failed = true; 3881 break; 3882 } 3883 } 3884 } 3885 } 3886 if (failed) { 3887 if (!can_reshape) { 3888 // We decided we couldn't capture the store during parsing. We 3889 // should try again during the next IGVN once the graph is 3890 // cleaner. 3891 phase->C->record_for_igvn(st); 3892 } 3893 return FAIL; 3894 } 3895 3896 return offset; // success 3897 } 3898 3899 // Find the captured store in(i) which corresponds to the range 3900 // [start..start+size) in the initialized object. 3901 // If there is one, return its index i. If there isn't, return the 3902 // negative of the index where it should be inserted. 3903 // Return 0 if the queried range overlaps an initialization boundary 3904 // or if dead code is encountered. 3905 // If size_in_bytes is zero, do not bother with overlap checks. 3906 int InitializeNode::captured_store_insertion_point(intptr_t start, 3907 int size_in_bytes, 3908 PhaseTransform* phase) { 3909 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 3910 3911 if (is_complete()) 3912 return FAIL; // arraycopy got here first; punt 3913 3914 assert(allocation() != nullptr, "must be present"); 3915 3916 // no negatives, no header fields: 3917 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 3918 3919 // after a certain size, we bail out on tracking all the stores: 3920 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 3921 if (start >= ti_limit) return FAIL; 3922 3923 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 3924 if (i >= limit) return -(int)i; // not found; here is where to put it 3925 3926 Node* st = in(i); 3927 intptr_t st_off = get_store_offset(st, phase); 3928 if (st_off < 0) { 3929 if (st != zero_memory()) { 3930 return FAIL; // bail out if there is dead garbage 3931 } 3932 } else if (st_off > start) { 3933 // ...we are done, since stores are ordered 3934 if (st_off < start + size_in_bytes) { 3935 return FAIL; // the next store overlaps 3936 } 3937 return -(int)i; // not found; here is where to put it 3938 } else if (st_off < start) { 3939 assert(st->as_Store()->memory_size() <= MAX_STORE, ""); 3940 if (size_in_bytes != 0 && 3941 start < st_off + MAX_STORE && 3942 start < st_off + st->as_Store()->memory_size()) { 3943 return FAIL; // the previous store overlaps 3944 } 3945 } else { 3946 if (size_in_bytes != 0 && 3947 st->as_Store()->memory_size() != size_in_bytes) { 3948 return FAIL; // mismatched store size 3949 } 3950 return i; 3951 } 3952 3953 ++i; 3954 } 3955 } 3956 3957 // Look for a captured store which initializes at the offset 'start' 3958 // with the given size. If there is no such store, and no other 3959 // initialization interferes, then return zero_memory (the memory 3960 // projection of the AllocateNode). 3961 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 3962 PhaseTransform* phase) { 3963 assert(stores_are_sane(phase), ""); 3964 int i = captured_store_insertion_point(start, size_in_bytes, phase); 3965 if (i == 0) { 3966 return nullptr; // something is dead 3967 } else if (i < 0) { 3968 return zero_memory(); // just primordial zero bits here 3969 } else { 3970 Node* st = in(i); // here is the store at this position 3971 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 3972 return st; 3973 } 3974 } 3975 3976 // Create, as a raw pointer, an address within my new object at 'offset'. 3977 Node* InitializeNode::make_raw_address(intptr_t offset, 3978 PhaseTransform* phase) { 3979 Node* addr = in(RawAddress); 3980 if (offset != 0) { 3981 Compile* C = phase->C; 3982 addr = phase->transform( new AddPNode(C->top(), addr, 3983 phase->MakeConX(offset)) ); 3984 } 3985 return addr; 3986 } 3987 3988 // Clone the given store, converting it into a raw store 3989 // initializing a field or element of my new object. 3990 // Caller is responsible for retiring the original store, 3991 // with subsume_node or the like. 3992 // 3993 // From the example above InitializeNode::InitializeNode, 3994 // here are the old stores to be captured: 3995 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 3996 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 3997 // 3998 // Here is the changed code; note the extra edges on init: 3999 // alloc = (Allocate ...) 4000 // rawoop = alloc.RawAddress 4001 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 4002 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 4003 // init = (Initialize alloc.Control alloc.Memory rawoop 4004 // rawstore1 rawstore2) 4005 // 4006 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 4007 PhaseGVN* phase, bool can_reshape) { 4008 assert(stores_are_sane(phase), ""); 4009 4010 if (start < 0) return nullptr; 4011 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 4012 4013 Compile* C = phase->C; 4014 int size_in_bytes = st->memory_size(); 4015 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4016 if (i == 0) return nullptr; // bail out 4017 Node* prev_mem = nullptr; // raw memory for the captured store 4018 if (i > 0) { 4019 prev_mem = in(i); // there is a pre-existing store under this one 4020 set_req(i, C->top()); // temporarily disconnect it 4021 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 4022 } else { 4023 i = -i; // no pre-existing store 4024 prev_mem = zero_memory(); // a slice of the newly allocated object 4025 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 4026 set_req(--i, C->top()); // reuse this edge; it has been folded away 4027 else 4028 ins_req(i, C->top()); // build a new edge 4029 } 4030 Node* new_st = st->clone(); 4031 new_st->set_req(MemNode::Control, in(Control)); 4032 new_st->set_req(MemNode::Memory, prev_mem); 4033 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 4034 new_st = phase->transform(new_st); 4035 4036 // At this point, new_st might have swallowed a pre-existing store 4037 // at the same offset, or perhaps new_st might have disappeared, 4038 // if it redundantly stored the same value (or zero to fresh memory). 4039 4040 // In any case, wire it in: 4041 PhaseIterGVN* igvn = phase->is_IterGVN(); 4042 if (igvn) { 4043 igvn->rehash_node_delayed(this); 4044 } 4045 set_req(i, new_st); 4046 4047 // The caller may now kill the old guy. 4048 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 4049 assert(check_st == new_st || check_st == nullptr, "must be findable"); 4050 assert(!is_complete(), ""); 4051 return new_st; 4052 } 4053 4054 static bool store_constant(jlong* tiles, int num_tiles, 4055 intptr_t st_off, int st_size, 4056 jlong con) { 4057 if ((st_off & (st_size-1)) != 0) 4058 return false; // strange store offset (assume size==2**N) 4059 address addr = (address)tiles + st_off; 4060 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 4061 switch (st_size) { 4062 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 4063 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 4064 case sizeof(jint): *(jint*) addr = (jint) con; break; 4065 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 4066 default: return false; // strange store size (detect size!=2**N here) 4067 } 4068 return true; // return success to caller 4069 } 4070 4071 // Coalesce subword constants into int constants and possibly 4072 // into long constants. The goal, if the CPU permits, 4073 // is to initialize the object with a small number of 64-bit tiles. 4074 // Also, convert floating-point constants to bit patterns. 4075 // Non-constants are not relevant to this pass. 4076 // 4077 // In terms of the running example on InitializeNode::InitializeNode 4078 // and InitializeNode::capture_store, here is the transformation 4079 // of rawstore1 and rawstore2 into rawstore12: 4080 // alloc = (Allocate ...) 4081 // rawoop = alloc.RawAddress 4082 // tile12 = 0x00010002 4083 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 4084 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 4085 // 4086 void 4087 InitializeNode::coalesce_subword_stores(intptr_t header_size, 4088 Node* size_in_bytes, 4089 PhaseGVN* phase) { 4090 Compile* C = phase->C; 4091 4092 assert(stores_are_sane(phase), ""); 4093 // Note: After this pass, they are not completely sane, 4094 // since there may be some overlaps. 4095 4096 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 4097 4098 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4099 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 4100 size_limit = MIN2(size_limit, ti_limit); 4101 size_limit = align_up(size_limit, BytesPerLong); 4102 int num_tiles = size_limit / BytesPerLong; 4103 4104 // allocate space for the tile map: 4105 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 4106 jlong tiles_buf[small_len]; 4107 Node* nodes_buf[small_len]; 4108 jlong inits_buf[small_len]; 4109 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 4110 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4111 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 4112 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 4113 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 4114 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4115 // tiles: exact bitwise model of all primitive constants 4116 // nodes: last constant-storing node subsumed into the tiles model 4117 // inits: which bytes (in each tile) are touched by any initializations 4118 4119 //// Pass A: Fill in the tile model with any relevant stores. 4120 4121 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 4122 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 4123 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 4124 Node* zmem = zero_memory(); // initially zero memory state 4125 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 4126 Node* st = in(i); 4127 intptr_t st_off = get_store_offset(st, phase); 4128 4129 // Figure out the store's offset and constant value: 4130 if (st_off < header_size) continue; //skip (ignore header) 4131 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 4132 int st_size = st->as_Store()->memory_size(); 4133 if (st_off + st_size > size_limit) break; 4134 4135 // Record which bytes are touched, whether by constant or not. 4136 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 4137 continue; // skip (strange store size) 4138 4139 const Type* val = phase->type(st->in(MemNode::ValueIn)); 4140 if (!val->singleton()) continue; //skip (non-con store) 4141 BasicType type = val->basic_type(); 4142 4143 jlong con = 0; 4144 switch (type) { 4145 case T_INT: con = val->is_int()->get_con(); break; 4146 case T_LONG: con = val->is_long()->get_con(); break; 4147 case T_FLOAT: con = jint_cast(val->getf()); break; 4148 case T_DOUBLE: con = jlong_cast(val->getd()); break; 4149 default: continue; //skip (odd store type) 4150 } 4151 4152 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 4153 st->Opcode() == Op_StoreL) { 4154 continue; // This StoreL is already optimal. 4155 } 4156 4157 // Store down the constant. 4158 store_constant(tiles, num_tiles, st_off, st_size, con); 4159 4160 intptr_t j = st_off >> LogBytesPerLong; 4161 4162 if (type == T_INT && st_size == BytesPerInt 4163 && (st_off & BytesPerInt) == BytesPerInt) { 4164 jlong lcon = tiles[j]; 4165 if (!Matcher::isSimpleConstant64(lcon) && 4166 st->Opcode() == Op_StoreI) { 4167 // This StoreI is already optimal by itself. 4168 jint* intcon = (jint*) &tiles[j]; 4169 intcon[1] = 0; // undo the store_constant() 4170 4171 // If the previous store is also optimal by itself, back up and 4172 // undo the action of the previous loop iteration... if we can. 4173 // But if we can't, just let the previous half take care of itself. 4174 st = nodes[j]; 4175 st_off -= BytesPerInt; 4176 con = intcon[0]; 4177 if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) { 4178 assert(st_off >= header_size, "still ignoring header"); 4179 assert(get_store_offset(st, phase) == st_off, "must be"); 4180 assert(in(i-1) == zmem, "must be"); 4181 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 4182 assert(con == tcon->is_int()->get_con(), "must be"); 4183 // Undo the effects of the previous loop trip, which swallowed st: 4184 intcon[0] = 0; // undo store_constant() 4185 set_req(i-1, st); // undo set_req(i, zmem) 4186 nodes[j] = nullptr; // undo nodes[j] = st 4187 --old_subword; // undo ++old_subword 4188 } 4189 continue; // This StoreI is already optimal. 4190 } 4191 } 4192 4193 // This store is not needed. 4194 set_req(i, zmem); 4195 nodes[j] = st; // record for the moment 4196 if (st_size < BytesPerLong) // something has changed 4197 ++old_subword; // includes int/float, but who's counting... 4198 else ++old_long; 4199 } 4200 4201 if ((old_subword + old_long) == 0) 4202 return; // nothing more to do 4203 4204 //// Pass B: Convert any non-zero tiles into optimal constant stores. 4205 // Be sure to insert them before overlapping non-constant stores. 4206 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 4207 for (int j = 0; j < num_tiles; j++) { 4208 jlong con = tiles[j]; 4209 jlong init = inits[j]; 4210 if (con == 0) continue; 4211 jint con0, con1; // split the constant, address-wise 4212 jint init0, init1; // split the init map, address-wise 4213 { union { jlong con; jint intcon[2]; } u; 4214 u.con = con; 4215 con0 = u.intcon[0]; 4216 con1 = u.intcon[1]; 4217 u.con = init; 4218 init0 = u.intcon[0]; 4219 init1 = u.intcon[1]; 4220 } 4221 4222 Node* old = nodes[j]; 4223 assert(old != nullptr, "need the prior store"); 4224 intptr_t offset = (j * BytesPerLong); 4225 4226 bool split = !Matcher::isSimpleConstant64(con); 4227 4228 if (offset < header_size) { 4229 assert(offset + BytesPerInt >= header_size, "second int counts"); 4230 assert(*(jint*)&tiles[j] == 0, "junk in header"); 4231 split = true; // only the second word counts 4232 // Example: int a[] = { 42 ... } 4233 } else if (con0 == 0 && init0 == -1) { 4234 split = true; // first word is covered by full inits 4235 // Example: int a[] = { ... foo(), 42 ... } 4236 } else if (con1 == 0 && init1 == -1) { 4237 split = true; // second word is covered by full inits 4238 // Example: int a[] = { ... 42, foo() ... } 4239 } 4240 4241 // Here's a case where init0 is neither 0 nor -1: 4242 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 4243 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 4244 // In this case the tile is not split; it is (jlong)42. 4245 // The big tile is stored down, and then the foo() value is inserted. 4246 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 4247 4248 Node* ctl = old->in(MemNode::Control); 4249 Node* adr = make_raw_address(offset, phase); 4250 const TypePtr* atp = TypeRawPtr::BOTTOM; 4251 4252 // One or two coalesced stores to plop down. 4253 Node* st[2]; 4254 intptr_t off[2]; 4255 int nst = 0; 4256 if (!split) { 4257 ++new_long; 4258 off[nst] = offset; 4259 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4260 phase->longcon(con), T_LONG, MemNode::unordered); 4261 } else { 4262 // Omit either if it is a zero. 4263 if (con0 != 0) { 4264 ++new_int; 4265 off[nst] = offset; 4266 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4267 phase->intcon(con0), T_INT, MemNode::unordered); 4268 } 4269 if (con1 != 0) { 4270 ++new_int; 4271 offset += BytesPerInt; 4272 adr = make_raw_address(offset, phase); 4273 off[nst] = offset; 4274 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4275 phase->intcon(con1), T_INT, MemNode::unordered); 4276 } 4277 } 4278 4279 // Insert second store first, then the first before the second. 4280 // Insert each one just before any overlapping non-constant stores. 4281 while (nst > 0) { 4282 Node* st1 = st[--nst]; 4283 C->copy_node_notes_to(st1, old); 4284 st1 = phase->transform(st1); 4285 offset = off[nst]; 4286 assert(offset >= header_size, "do not smash header"); 4287 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 4288 guarantee(ins_idx != 0, "must re-insert constant store"); 4289 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 4290 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 4291 set_req(--ins_idx, st1); 4292 else 4293 ins_req(ins_idx, st1); 4294 } 4295 } 4296 4297 if (PrintCompilation && WizardMode) 4298 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 4299 old_subword, old_long, new_int, new_long); 4300 if (C->log() != nullptr) 4301 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 4302 old_subword, old_long, new_int, new_long); 4303 4304 // Clean up any remaining occurrences of zmem: 4305 remove_extra_zeroes(); 4306 } 4307 4308 // Explore forward from in(start) to find the first fully initialized 4309 // word, and return its offset. Skip groups of subword stores which 4310 // together initialize full words. If in(start) is itself part of a 4311 // fully initialized word, return the offset of in(start). If there 4312 // are no following full-word stores, or if something is fishy, return 4313 // a negative value. 4314 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 4315 int int_map = 0; 4316 intptr_t int_map_off = 0; 4317 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 4318 4319 for (uint i = start, limit = req(); i < limit; i++) { 4320 Node* st = in(i); 4321 4322 intptr_t st_off = get_store_offset(st, phase); 4323 if (st_off < 0) break; // return conservative answer 4324 4325 int st_size = st->as_Store()->memory_size(); 4326 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 4327 return st_off; // we found a complete word init 4328 } 4329 4330 // update the map: 4331 4332 intptr_t this_int_off = align_down(st_off, BytesPerInt); 4333 if (this_int_off != int_map_off) { 4334 // reset the map: 4335 int_map = 0; 4336 int_map_off = this_int_off; 4337 } 4338 4339 int subword_off = st_off - this_int_off; 4340 int_map |= right_n_bits(st_size) << subword_off; 4341 if ((int_map & FULL_MAP) == FULL_MAP) { 4342 return this_int_off; // we found a complete word init 4343 } 4344 4345 // Did this store hit or cross the word boundary? 4346 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); 4347 if (next_int_off == this_int_off + BytesPerInt) { 4348 // We passed the current int, without fully initializing it. 4349 int_map_off = next_int_off; 4350 int_map >>= BytesPerInt; 4351 } else if (next_int_off > this_int_off + BytesPerInt) { 4352 // We passed the current and next int. 4353 return this_int_off + BytesPerInt; 4354 } 4355 } 4356 4357 return -1; 4358 } 4359 4360 4361 // Called when the associated AllocateNode is expanded into CFG. 4362 // At this point, we may perform additional optimizations. 4363 // Linearize the stores by ascending offset, to make memory 4364 // activity as coherent as possible. 4365 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 4366 intptr_t header_size, 4367 Node* size_in_bytes, 4368 PhaseIterGVN* phase) { 4369 assert(!is_complete(), "not already complete"); 4370 assert(stores_are_sane(phase), ""); 4371 assert(allocation() != nullptr, "must be present"); 4372 4373 remove_extra_zeroes(); 4374 4375 if (ReduceFieldZeroing || ReduceBulkZeroing) 4376 // reduce instruction count for common initialization patterns 4377 coalesce_subword_stores(header_size, size_in_bytes, phase); 4378 4379 Node* zmem = zero_memory(); // initially zero memory state 4380 Node* inits = zmem; // accumulating a linearized chain of inits 4381 #ifdef ASSERT 4382 intptr_t first_offset = allocation()->minimum_header_size(); 4383 intptr_t last_init_off = first_offset; // previous init offset 4384 intptr_t last_init_end = first_offset; // previous init offset+size 4385 intptr_t last_tile_end = first_offset; // previous tile offset+size 4386 #endif 4387 intptr_t zeroes_done = header_size; 4388 4389 bool do_zeroing = true; // we might give up if inits are very sparse 4390 int big_init_gaps = 0; // how many large gaps have we seen? 4391 4392 if (UseTLAB && ZeroTLAB) do_zeroing = false; 4393 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 4394 4395 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 4396 Node* st = in(i); 4397 intptr_t st_off = get_store_offset(st, phase); 4398 if (st_off < 0) 4399 break; // unknown junk in the inits 4400 if (st->in(MemNode::Memory) != zmem) 4401 break; // complicated store chains somehow in list 4402 4403 int st_size = st->as_Store()->memory_size(); 4404 intptr_t next_init_off = st_off + st_size; 4405 4406 if (do_zeroing && zeroes_done < next_init_off) { 4407 // See if this store needs a zero before it or under it. 4408 intptr_t zeroes_needed = st_off; 4409 4410 if (st_size < BytesPerInt) { 4411 // Look for subword stores which only partially initialize words. 4412 // If we find some, we must lay down some word-level zeroes first, 4413 // underneath the subword stores. 4414 // 4415 // Examples: 4416 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 4417 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 4418 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 4419 // 4420 // Note: coalesce_subword_stores may have already done this, 4421 // if it was prompted by constant non-zero subword initializers. 4422 // But this case can still arise with non-constant stores. 4423 4424 intptr_t next_full_store = find_next_fullword_store(i, phase); 4425 4426 // In the examples above: 4427 // in(i) p q r s x y z 4428 // st_off 12 13 14 15 12 13 14 4429 // st_size 1 1 1 1 1 1 1 4430 // next_full_s. 12 16 16 16 16 16 16 4431 // z's_done 12 16 16 16 12 16 12 4432 // z's_needed 12 16 16 16 16 16 16 4433 // zsize 0 0 0 0 4 0 4 4434 if (next_full_store < 0) { 4435 // Conservative tack: Zero to end of current word. 4436 zeroes_needed = align_up(zeroes_needed, BytesPerInt); 4437 } else { 4438 // Zero to beginning of next fully initialized word. 4439 // Or, don't zero at all, if we are already in that word. 4440 assert(next_full_store >= zeroes_needed, "must go forward"); 4441 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 4442 zeroes_needed = next_full_store; 4443 } 4444 } 4445 4446 if (zeroes_needed > zeroes_done) { 4447 intptr_t zsize = zeroes_needed - zeroes_done; 4448 // Do some incremental zeroing on rawmem, in parallel with inits. 4449 zeroes_done = align_down(zeroes_done, BytesPerInt); 4450 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 4451 zeroes_done, zeroes_needed, 4452 phase); 4453 zeroes_done = zeroes_needed; 4454 if (zsize > InitArrayShortSize && ++big_init_gaps > 2) 4455 do_zeroing = false; // leave the hole, next time 4456 } 4457 } 4458 4459 // Collect the store and move on: 4460 phase->replace_input_of(st, MemNode::Memory, inits); 4461 inits = st; // put it on the linearized chain 4462 set_req(i, zmem); // unhook from previous position 4463 4464 if (zeroes_done == st_off) 4465 zeroes_done = next_init_off; 4466 4467 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 4468 4469 #ifdef ASSERT 4470 // Various order invariants. Weaker than stores_are_sane because 4471 // a large constant tile can be filled in by smaller non-constant stores. 4472 assert(st_off >= last_init_off, "inits do not reverse"); 4473 last_init_off = st_off; 4474 const Type* val = nullptr; 4475 if (st_size >= BytesPerInt && 4476 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 4477 (int)val->basic_type() < (int)T_OBJECT) { 4478 assert(st_off >= last_tile_end, "tiles do not overlap"); 4479 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 4480 last_tile_end = MAX2(last_tile_end, next_init_off); 4481 } else { 4482 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); 4483 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 4484 assert(st_off >= last_init_end, "inits do not overlap"); 4485 last_init_end = next_init_off; // it's a non-tile 4486 } 4487 #endif //ASSERT 4488 } 4489 4490 remove_extra_zeroes(); // clear out all the zmems left over 4491 add_req(inits); 4492 4493 if (!(UseTLAB && ZeroTLAB)) { 4494 // If anything remains to be zeroed, zero it all now. 4495 zeroes_done = align_down(zeroes_done, BytesPerInt); 4496 // if it is the last unused 4 bytes of an instance, forget about it 4497 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 4498 if (zeroes_done + BytesPerLong >= size_limit) { 4499 AllocateNode* alloc = allocation(); 4500 assert(alloc != nullptr, "must be present"); 4501 if (alloc != nullptr && alloc->Opcode() == Op_Allocate) { 4502 Node* klass_node = alloc->in(AllocateNode::KlassNode); 4503 ciKlass* k = phase->type(klass_node)->is_klassptr()->klass(); 4504 if (zeroes_done == k->layout_helper()) 4505 zeroes_done = size_limit; 4506 } 4507 } 4508 if (zeroes_done < size_limit) { 4509 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 4510 zeroes_done, size_in_bytes, phase); 4511 } 4512 } 4513 4514 set_complete(phase); 4515 return rawmem; 4516 } 4517 4518 4519 #ifdef ASSERT 4520 bool InitializeNode::stores_are_sane(PhaseTransform* phase) { 4521 if (is_complete()) 4522 return true; // stores could be anything at this point 4523 assert(allocation() != nullptr, "must be present"); 4524 intptr_t last_off = allocation()->minimum_header_size(); 4525 for (uint i = InitializeNode::RawStores; i < req(); i++) { 4526 Node* st = in(i); 4527 intptr_t st_off = get_store_offset(st, phase); 4528 if (st_off < 0) continue; // ignore dead garbage 4529 if (last_off > st_off) { 4530 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off); 4531 this->dump(2); 4532 assert(false, "ascending store offsets"); 4533 return false; 4534 } 4535 last_off = st_off + st->as_Store()->memory_size(); 4536 } 4537 return true; 4538 } 4539 #endif //ASSERT 4540 4541 4542 4543 4544 //============================MergeMemNode===================================== 4545 // 4546 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 4547 // contributing store or call operations. Each contributor provides the memory 4548 // state for a particular "alias type" (see Compile::alias_type). For example, 4549 // if a MergeMem has an input X for alias category #6, then any memory reference 4550 // to alias category #6 may use X as its memory state input, as an exact equivalent 4551 // to using the MergeMem as a whole. 4552 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 4553 // 4554 // (Here, the <N> notation gives the index of the relevant adr_type.) 4555 // 4556 // In one special case (and more cases in the future), alias categories overlap. 4557 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 4558 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 4559 // it is exactly equivalent to that state W: 4560 // MergeMem(<Bot>: W) <==> W 4561 // 4562 // Usually, the merge has more than one input. In that case, where inputs 4563 // overlap (i.e., one is Bot), the narrower alias type determines the memory 4564 // state for that type, and the wider alias type (Bot) fills in everywhere else: 4565 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 4566 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 4567 // 4568 // A merge can take a "wide" memory state as one of its narrow inputs. 4569 // This simply means that the merge observes out only the relevant parts of 4570 // the wide input. That is, wide memory states arriving at narrow merge inputs 4571 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 4572 // 4573 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 4574 // and that memory slices "leak through": 4575 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 4576 // 4577 // But, in such a cascade, repeated memory slices can "block the leak": 4578 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 4579 // 4580 // In the last example, Y is not part of the combined memory state of the 4581 // outermost MergeMem. The system must, of course, prevent unschedulable 4582 // memory states from arising, so you can be sure that the state Y is somehow 4583 // a precursor to state Y'. 4584 // 4585 // 4586 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 4587 // of each MergeMemNode array are exactly the numerical alias indexes, including 4588 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 4589 // Compile::alias_type (and kin) produce and manage these indexes. 4590 // 4591 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 4592 // (Note that this provides quick access to the top node inside MergeMem methods, 4593 // without the need to reach out via TLS to Compile::current.) 4594 // 4595 // As a consequence of what was just described, a MergeMem that represents a full 4596 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 4597 // containing all alias categories. 4598 // 4599 // MergeMem nodes never (?) have control inputs, so in(0) is null. 4600 // 4601 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 4602 // a memory state for the alias type <N>, or else the top node, meaning that 4603 // there is no particular input for that alias type. Note that the length of 4604 // a MergeMem is variable, and may be extended at any time to accommodate new 4605 // memory states at larger alias indexes. When merges grow, they are of course 4606 // filled with "top" in the unused in() positions. 4607 // 4608 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 4609 // (Top was chosen because it works smoothly with passes like GCM.) 4610 // 4611 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 4612 // the type of random VM bits like TLS references.) Since it is always the 4613 // first non-Bot memory slice, some low-level loops use it to initialize an 4614 // index variable: for (i = AliasIdxRaw; i < req(); i++). 4615 // 4616 // 4617 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 4618 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 4619 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 4620 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 4621 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 4622 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 4623 // 4624 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 4625 // really that different from the other memory inputs. An abbreviation called 4626 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 4627 // 4628 // 4629 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 4630 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 4631 // that "emerges though" the base memory will be marked as excluding the alias types 4632 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 4633 // 4634 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 4635 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 4636 // 4637 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 4638 // (It is currently unimplemented.) As you can see, the resulting merge is 4639 // actually a disjoint union of memory states, rather than an overlay. 4640 // 4641 4642 //------------------------------MergeMemNode----------------------------------- 4643 Node* MergeMemNode::make_empty_memory() { 4644 Node* empty_memory = (Node*) Compile::current()->top(); 4645 assert(empty_memory->is_top(), "correct sentinel identity"); 4646 return empty_memory; 4647 } 4648 4649 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 4650 init_class_id(Class_MergeMem); 4651 // all inputs are nullified in Node::Node(int) 4652 // set_input(0, nullptr); // no control input 4653 4654 // Initialize the edges uniformly to top, for starters. 4655 Node* empty_mem = make_empty_memory(); 4656 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 4657 init_req(i,empty_mem); 4658 } 4659 assert(empty_memory() == empty_mem, ""); 4660 4661 if( new_base != nullptr && new_base->is_MergeMem() ) { 4662 MergeMemNode* mdef = new_base->as_MergeMem(); 4663 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 4664 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 4665 mms.set_memory(mms.memory2()); 4666 } 4667 assert(base_memory() == mdef->base_memory(), ""); 4668 } else { 4669 set_base_memory(new_base); 4670 } 4671 } 4672 4673 // Make a new, untransformed MergeMem with the same base as 'mem'. 4674 // If mem is itself a MergeMem, populate the result with the same edges. 4675 MergeMemNode* MergeMemNode::make(Node* mem) { 4676 return new MergeMemNode(mem); 4677 } 4678 4679 //------------------------------cmp-------------------------------------------- 4680 uint MergeMemNode::hash() const { return NO_HASH; } 4681 bool MergeMemNode::cmp( const Node &n ) const { 4682 return (&n == this); // Always fail except on self 4683 } 4684 4685 //------------------------------Identity--------------------------------------- 4686 Node* MergeMemNode::Identity(PhaseGVN* phase) { 4687 // Identity if this merge point does not record any interesting memory 4688 // disambiguations. 4689 Node* base_mem = base_memory(); 4690 Node* empty_mem = empty_memory(); 4691 if (base_mem != empty_mem) { // Memory path is not dead? 4692 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4693 Node* mem = in(i); 4694 if (mem != empty_mem && mem != base_mem) { 4695 return this; // Many memory splits; no change 4696 } 4697 } 4698 } 4699 return base_mem; // No memory splits; ID on the one true input 4700 } 4701 4702 //------------------------------Ideal------------------------------------------ 4703 // This method is invoked recursively on chains of MergeMem nodes 4704 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 4705 // Remove chain'd MergeMems 4706 // 4707 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 4708 // relative to the "in(Bot)". Since we are patching both at the same time, 4709 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 4710 // but rewrite each "in(i)" relative to the new "in(Bot)". 4711 Node *progress = nullptr; 4712 4713 4714 Node* old_base = base_memory(); 4715 Node* empty_mem = empty_memory(); 4716 if (old_base == empty_mem) 4717 return nullptr; // Dead memory path. 4718 4719 MergeMemNode* old_mbase; 4720 if (old_base != nullptr && old_base->is_MergeMem()) 4721 old_mbase = old_base->as_MergeMem(); 4722 else 4723 old_mbase = nullptr; 4724 Node* new_base = old_base; 4725 4726 // simplify stacked MergeMems in base memory 4727 if (old_mbase) new_base = old_mbase->base_memory(); 4728 4729 // the base memory might contribute new slices beyond my req() 4730 if (old_mbase) grow_to_match(old_mbase); 4731 4732 // Look carefully at the base node if it is a phi. 4733 PhiNode* phi_base; 4734 if (new_base != NULL && new_base->is_Phi()) 4735 phi_base = new_base->as_Phi(); 4736 else 4737 phi_base = NULL; 4738 4739 Node* phi_reg = NULL; 4740 uint phi_len = (uint)-1; 4741 if (phi_base != NULL) { 4742 phi_reg = phi_base->region(); 4743 phi_len = phi_base->req(); 4744 // see if the phi is unfinished 4745 for (uint i = 1; i < phi_len; i++) { 4746 if (phi_base->in(i) == NULL) { 4747 // incomplete phi; do not look at it yet! 4748 phi_reg = NULL; 4749 phi_len = (uint)-1; 4750 break; 4751 } 4752 } 4753 } 4754 4755 // Note: We do not call verify_sparse on entry, because inputs 4756 // can normalize to the base_memory via subsume_node or similar 4757 // mechanisms. This method repairs that damage. 4758 4759 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 4760 4761 // Look at each slice. 4762 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4763 Node* old_in = in(i); 4764 // calculate the old memory value 4765 Node* old_mem = old_in; 4766 if (old_mem == empty_mem) old_mem = old_base; 4767 assert(old_mem == memory_at(i), ""); 4768 4769 // maybe update (reslice) the old memory value 4770 4771 // simplify stacked MergeMems 4772 Node* new_mem = old_mem; 4773 MergeMemNode* old_mmem; 4774 if (old_mem != nullptr && old_mem->is_MergeMem()) 4775 old_mmem = old_mem->as_MergeMem(); 4776 else 4777 old_mmem = nullptr; 4778 if (old_mmem == this) { 4779 // This can happen if loops break up and safepoints disappear. 4780 // A merge of BotPtr (default) with a RawPtr memory derived from a 4781 // safepoint can be rewritten to a merge of the same BotPtr with 4782 // the BotPtr phi coming into the loop. If that phi disappears 4783 // also, we can end up with a self-loop of the mergemem. 4784 // In general, if loops degenerate and memory effects disappear, 4785 // a mergemem can be left looking at itself. This simply means 4786 // that the mergemem's default should be used, since there is 4787 // no longer any apparent effect on this slice. 4788 // Note: If a memory slice is a MergeMem cycle, it is unreachable 4789 // from start. Update the input to TOP. 4790 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 4791 } 4792 else if (old_mmem != nullptr) { 4793 new_mem = old_mmem->memory_at(i); 4794 } 4795 // else preceding memory was not a MergeMem 4796 4797 // maybe store down a new value 4798 Node* new_in = new_mem; 4799 if (new_in == new_base) new_in = empty_mem; 4800 4801 if (new_in != old_in) { 4802 // Warning: Do not combine this "if" with the previous "if" 4803 // A memory slice might have be be rewritten even if it is semantically 4804 // unchanged, if the base_memory value has changed. 4805 set_req_X(i, new_in, phase); 4806 progress = this; // Report progress 4807 } 4808 } 4809 4810 if (new_base != old_base) { 4811 set_req_X(Compile::AliasIdxBot, new_base, phase); 4812 // Don't use set_base_memory(new_base), because we need to update du. 4813 assert(base_memory() == new_base, ""); 4814 progress = this; 4815 } 4816 4817 if( base_memory() == this ) { 4818 // a self cycle indicates this memory path is dead 4819 set_req(Compile::AliasIdxBot, empty_mem); 4820 } 4821 4822 // Resolve external cycles by calling Ideal on a MergeMem base_memory 4823 // Recursion must occur after the self cycle check above 4824 if( base_memory()->is_MergeMem() ) { 4825 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 4826 Node *m = phase->transform(new_mbase); // Rollup any cycles 4827 if( m != nullptr && 4828 (m->is_top() || 4829 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { 4830 // propagate rollup of dead cycle to self 4831 set_req(Compile::AliasIdxBot, empty_mem); 4832 } 4833 } 4834 4835 if( base_memory() == empty_mem ) { 4836 progress = this; 4837 // Cut inputs during Parse phase only. 4838 // During Optimize phase a dead MergeMem node will be subsumed by Top. 4839 if( !can_reshape ) { 4840 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4841 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 4842 } 4843 } 4844 } 4845 4846 if( !progress && base_memory()->is_Phi() && can_reshape ) { 4847 // Check if PhiNode::Ideal's "Split phis through memory merges" 4848 // transform should be attempted. Look for this->phi->this cycle. 4849 uint merge_width = req(); 4850 if (merge_width > Compile::AliasIdxRaw) { 4851 PhiNode* phi = base_memory()->as_Phi(); 4852 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 4853 if (phi->in(i) == this) { 4854 phase->is_IterGVN()->_worklist.push(phi); 4855 break; 4856 } 4857 } 4858 } 4859 } 4860 4861 assert(progress || verify_sparse(), "please, no dups of base"); 4862 return progress; 4863 } 4864 4865 //-------------------------set_base_memory------------------------------------- 4866 void MergeMemNode::set_base_memory(Node *new_base) { 4867 Node* empty_mem = empty_memory(); 4868 set_req(Compile::AliasIdxBot, new_base); 4869 assert(memory_at(req()) == new_base, "must set default memory"); 4870 // Clear out other occurrences of new_base: 4871 if (new_base != empty_mem) { 4872 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 4873 if (in(i) == new_base) set_req(i, empty_mem); 4874 } 4875 } 4876 } 4877 4878 //------------------------------out_RegMask------------------------------------ 4879 const RegMask &MergeMemNode::out_RegMask() const { 4880 return RegMask::Empty; 4881 } 4882 4883 //------------------------------dump_spec-------------------------------------- 4884 #ifndef PRODUCT 4885 void MergeMemNode::dump_spec(outputStream *st) const { 4886 st->print(" {"); 4887 Node* base_mem = base_memory(); 4888 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 4889 Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem; 4890 if (mem == base_mem) { st->print(" -"); continue; } 4891 st->print( " N%d:", mem->_idx ); 4892 Compile::current()->get_adr_type(i)->dump_on(st); 4893 } 4894 st->print(" }"); 4895 } 4896 #endif // !PRODUCT 4897 4898 4899 #ifdef ASSERT 4900 static bool might_be_same(Node* a, Node* b) { 4901 if (a == b) return true; 4902 if (!(a->is_Phi() || b->is_Phi())) return false; 4903 // phis shift around during optimization 4904 return true; // pretty stupid... 4905 } 4906 4907 // verify a narrow slice (either incoming or outgoing) 4908 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 4909 if (!VerifyAliases) return; // don't bother to verify unless requested 4910 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 4911 if (Node::in_dump()) return; // muzzle asserts when printing 4912 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 4913 assert(n != nullptr, ""); 4914 // Elide intervening MergeMem's 4915 while (n->is_MergeMem()) { 4916 n = n->as_MergeMem()->memory_at(alias_idx); 4917 } 4918 Compile* C = Compile::current(); 4919 const TypePtr* n_adr_type = n->adr_type(); 4920 if (n == m->empty_memory()) { 4921 // Implicit copy of base_memory() 4922 } else if (n_adr_type != TypePtr::BOTTOM) { 4923 assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type"); 4924 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 4925 } else { 4926 // A few places like make_runtime_call "know" that VM calls are narrow, 4927 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 4928 bool expected_wide_mem = false; 4929 if (n == m->base_memory()) { 4930 expected_wide_mem = true; 4931 } else if (alias_idx == Compile::AliasIdxRaw || 4932 n == m->memory_at(Compile::AliasIdxRaw)) { 4933 expected_wide_mem = true; 4934 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 4935 // memory can "leak through" calls on channels that 4936 // are write-once. Allow this also. 4937 expected_wide_mem = true; 4938 } 4939 assert(expected_wide_mem, "expected narrow slice replacement"); 4940 } 4941 } 4942 #else // !ASSERT 4943 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 4944 #endif 4945 4946 4947 //-----------------------------memory_at--------------------------------------- 4948 Node* MergeMemNode::memory_at(uint alias_idx) const { 4949 assert(alias_idx >= Compile::AliasIdxRaw || 4950 alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0, 4951 "must avoid base_memory and AliasIdxTop"); 4952 4953 // Otherwise, it is a narrow slice. 4954 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 4955 Compile *C = Compile::current(); 4956 if (is_empty_memory(n)) { 4957 // the array is sparse; empty slots are the "top" node 4958 n = base_memory(); 4959 assert(Node::in_dump() 4960 || n == nullptr || n->bottom_type() == Type::TOP 4961 || n->adr_type() == nullptr // address is TOP 4962 || n->adr_type() == TypePtr::BOTTOM 4963 || n->adr_type() == TypeRawPtr::BOTTOM 4964 || Compile::current()->AliasLevel() == 0, 4965 "must be a wide memory"); 4966 // AliasLevel == 0 if we are organizing the memory states manually. 4967 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 4968 } else { 4969 // make sure the stored slice is sane 4970 #ifdef ASSERT 4971 if (VMError::is_error_reported() || Node::in_dump()) { 4972 } else if (might_be_same(n, base_memory())) { 4973 // Give it a pass: It is a mostly harmless repetition of the base. 4974 // This can arise normally from node subsumption during optimization. 4975 } else { 4976 verify_memory_slice(this, alias_idx, n); 4977 } 4978 #endif 4979 } 4980 return n; 4981 } 4982 4983 //---------------------------set_memory_at------------------------------------- 4984 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 4985 verify_memory_slice(this, alias_idx, n); 4986 Node* empty_mem = empty_memory(); 4987 if (n == base_memory()) n = empty_mem; // collapse default 4988 uint need_req = alias_idx+1; 4989 if (req() < need_req) { 4990 if (n == empty_mem) return; // already the default, so do not grow me 4991 // grow the sparse array 4992 do { 4993 add_req(empty_mem); 4994 } while (req() < need_req); 4995 } 4996 set_req( alias_idx, n ); 4997 } 4998 4999 5000 5001 //--------------------------iteration_setup------------------------------------ 5002 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 5003 if (other != nullptr) { 5004 grow_to_match(other); 5005 // invariant: the finite support of mm2 is within mm->req() 5006 #ifdef ASSERT 5007 for (uint i = req(); i < other->req(); i++) { 5008 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 5009 } 5010 #endif 5011 } 5012 // Replace spurious copies of base_memory by top. 5013 Node* base_mem = base_memory(); 5014 if (base_mem != nullptr && !base_mem->is_top()) { 5015 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 5016 if (in(i) == base_mem) 5017 set_req(i, empty_memory()); 5018 } 5019 } 5020 } 5021 5022 //---------------------------grow_to_match------------------------------------- 5023 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 5024 Node* empty_mem = empty_memory(); 5025 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 5026 // look for the finite support of the other memory 5027 for (uint i = other->req(); --i >= req(); ) { 5028 if (other->in(i) != empty_mem) { 5029 uint new_len = i+1; 5030 while (req() < new_len) add_req(empty_mem); 5031 break; 5032 } 5033 } 5034 } 5035 5036 //---------------------------verify_sparse------------------------------------- 5037 #ifndef PRODUCT 5038 bool MergeMemNode::verify_sparse() const { 5039 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 5040 Node* base_mem = base_memory(); 5041 // The following can happen in degenerate cases, since empty==top. 5042 if (is_empty_memory(base_mem)) return true; 5043 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5044 assert(in(i) != nullptr, "sane slice"); 5045 if (in(i) == base_mem) return false; // should have been the sentinel value! 5046 } 5047 return true; 5048 } 5049 5050 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 5051 Node* n; 5052 n = mm->in(idx); 5053 if (mem == n) return true; // might be empty_memory() 5054 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 5055 if (mem == n) return true; 5056 return false; 5057 } 5058 #endif // !PRODUCT