1 /*
2 * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/assembler.inline.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "code/compiledIC.hpp"
29 #include "code/debugInfo.hpp"
30 #include "code/debugInfoRec.hpp"
31 #include "compiler/compileBroker.hpp"
32 #include "compiler/compilerDirectives.hpp"
33 #include "compiler/disassembler.hpp"
34 #include "compiler/oopMap.hpp"
35 #include "gc/shared/barrierSet.hpp"
36 #include "gc/shared/c2/barrierSetC2.hpp"
37 #include "memory/allocation.inline.hpp"
38 #include "memory/allocation.hpp"
39 #include "opto/ad.hpp"
40 #include "opto/block.hpp"
41 #include "opto/c2compiler.hpp"
42 #include "opto/callnode.hpp"
43 #include "opto/cfgnode.hpp"
44 #include "opto/locknode.hpp"
45 #include "opto/machnode.hpp"
46 #include "opto/node.hpp"
47 #include "opto/optoreg.hpp"
48 #include "opto/output.hpp"
49 #include "opto/regalloc.hpp"
50 #include "opto/runtime.hpp"
51 #include "opto/subnode.hpp"
52 #include "opto/type.hpp"
53 #include "runtime/handles.inline.hpp"
54 #include "runtime/sharedRuntime.hpp"
55 #include "utilities/macros.hpp"
56 #include "utilities/powerOfTwo.hpp"
57 #include "utilities/xmlstream.hpp"
58
59 #ifndef PRODUCT
60 #define DEBUG_ARG(x) , x
61 #else
62 #define DEBUG_ARG(x)
63 #endif
64
65 //------------------------------Scheduling----------------------------------
66 // This class contains all the information necessary to implement instruction
67 // scheduling and bundling.
68 class Scheduling {
69
70 private:
71 // Arena to use
72 Arena *_arena;
73
74 // Control-Flow Graph info
75 PhaseCFG *_cfg;
76
77 // Register Allocation info
78 PhaseRegAlloc *_regalloc;
79
80 // Number of nodes in the method
81 uint _node_bundling_limit;
82
83 // List of scheduled nodes. Generated in reverse order
84 Node_List _scheduled;
85
86 // List of nodes currently available for choosing for scheduling
87 Node_List _available;
88
89 // For each instruction beginning a bundle, the number of following
90 // nodes to be bundled with it.
91 Bundle *_node_bundling_base;
92
93 // Mapping from register to Node
94 Node_List _reg_node;
95
96 // Free list for pinch nodes.
97 Node_List _pinch_free_list;
98
99 // Latency from the beginning of the containing basic block (base 1)
100 // for each node.
101 unsigned short *_node_latency;
102
103 // Number of uses of this node within the containing basic block.
104 short *_uses;
105
106 // Schedulable portion of current block. Skips Region/Phi/CreateEx up
107 // front, branch+proj at end. Also skips Catch/CProj (same as
108 // branch-at-end), plus just-prior exception-throwing call.
109 uint _bb_start, _bb_end;
110
111 // Latency from the end of the basic block as scheduled
112 unsigned short *_current_latency;
113
114 // Remember the next node
115 Node *_next_node;
116
117 // Use this for an unconditional branch delay slot
118 Node *_unconditional_delay_slot;
119
120 // Pointer to a Nop
121 MachNopNode *_nop;
122
123 // Length of the current bundle, in instructions
124 uint _bundle_instr_count;
125
126 // Current Cycle number, for computing latencies and bundling
127 uint _bundle_cycle_number;
128
129 // Bundle information
130 Pipeline_Use_Element _bundle_use_elements[resource_count];
131 Pipeline_Use _bundle_use;
132
133 // Dump the available list
134 void dump_available() const;
135
136 public:
137 Scheduling(Arena *arena, Compile &compile);
138
139 // Destructor
140 NOT_PRODUCT( ~Scheduling(); )
141
142 // Step ahead "i" cycles
143 void step(uint i);
144
145 // Step ahead 1 cycle, and clear the bundle state (for example,
146 // at a branch target)
147 void step_and_clear();
148
149 Bundle* node_bundling(const Node *n) {
150 assert(valid_bundle_info(n), "oob");
151 return (&_node_bundling_base[n->_idx]);
152 }
153
154 bool valid_bundle_info(const Node *n) const {
155 return (_node_bundling_limit > n->_idx);
156 }
157
158 bool starts_bundle(const Node *n) const {
159 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle());
160 }
161
162 // Do the scheduling
163 void DoScheduling();
164
165 // Compute the local latencies walking forward over the list of
166 // nodes for a basic block
167 void ComputeLocalLatenciesForward(const Block *bb);
168
169 // Compute the register antidependencies within a basic block
170 void ComputeRegisterAntidependencies(Block *bb);
171 void verify_do_def( Node *n, OptoReg::Name def, const char *msg );
172 void verify_good_schedule( Block *b, const char *msg );
173 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def );
174 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg );
175
176 // Add a node to the current bundle
177 void AddNodeToBundle(Node *n, const Block *bb);
178
179 // Add a node to the list of available nodes
180 void AddNodeToAvailableList(Node *n);
181
182 // Compute the local use count for the nodes in a block, and compute
183 // the list of instructions with no uses in the block as available
184 void ComputeUseCount(const Block *bb);
185
186 // Choose an instruction from the available list to add to the bundle
187 Node * ChooseNodeToBundle();
188
189 // See if this Node fits into the currently accumulating bundle
190 bool NodeFitsInBundle(Node *n);
191
192 // Decrement the use count for a node
193 void DecrementUseCounts(Node *n, const Block *bb);
194
195 // Garbage collect pinch nodes for reuse by other blocks.
196 void garbage_collect_pinch_nodes();
197 // Clean up a pinch node for reuse (helper for above).
198 void cleanup_pinch( Node *pinch );
199
200 // Information for statistics gathering
201 #ifndef PRODUCT
202 private:
203 // Gather information on size of nops relative to total
204 uint _branches, _unconditional_delays;
205
206 static uint _total_nop_size, _total_method_size;
207 static uint _total_branches, _total_unconditional_delays;
208 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
209
210 public:
211 static void print_statistics();
212
213 static void increment_instructions_per_bundle(uint i) {
214 _total_instructions_per_bundle[i]++;
215 }
216
217 static void increment_nop_size(uint s) {
218 _total_nop_size += s;
219 }
220
221 static void increment_method_size(uint s) {
222 _total_method_size += s;
223 }
224 #endif
225
226 };
227
228 volatile int C2SafepointPollStubTable::_stub_size = 0;
229
230 Label& C2SafepointPollStubTable::add_safepoint(uintptr_t safepoint_offset) {
231 C2SafepointPollStub* entry = new (Compile::current()->comp_arena()) C2SafepointPollStub(safepoint_offset);
232 _safepoints.append(entry);
233 return entry->_stub_label;
234 }
235
236 void C2SafepointPollStubTable::emit(CodeBuffer& cb) {
237 MacroAssembler masm(&cb);
238 for (int i = _safepoints.length() - 1; i >= 0; i--) {
239 // Make sure there is enough space in the code buffer
240 if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == NULL) {
241 ciEnv::current()->record_failure("CodeCache is full");
242 return;
243 }
244
245 C2SafepointPollStub* entry = _safepoints.at(i);
246 emit_stub(masm, entry);
247 }
248 }
249
250 int C2SafepointPollStubTable::stub_size_lazy() const {
251 int size = Atomic::load(&_stub_size);
252
253 if (size != 0) {
254 return size;
255 }
256
257 Compile* const C = Compile::current();
258 BufferBlob* const blob = C->output()->scratch_buffer_blob();
259 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size());
260 MacroAssembler masm(&cb);
261 C2SafepointPollStub* entry = _safepoints.at(0);
262 emit_stub(masm, entry);
263 size += cb.insts_size();
264
265 Atomic::store(&_stub_size, size);
266
267 return size;
268 }
269
270 int C2SafepointPollStubTable::estimate_stub_size() const {
271 if (_safepoints.length() == 0) {
272 return 0;
273 }
274
275 int result = stub_size_lazy() * _safepoints.length();
276
277 #ifdef ASSERT
278 Compile* const C = Compile::current();
279 BufferBlob* const blob = C->output()->scratch_buffer_blob();
280 int size = 0;
281
282 for (int i = _safepoints.length() - 1; i >= 0; i--) {
283 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size());
284 MacroAssembler masm(&cb);
285 C2SafepointPollStub* entry = _safepoints.at(i);
286 emit_stub(masm, entry);
287 size += cb.insts_size();
288 }
289 assert(size == result, "stubs should not have variable size");
290 #endif
291
292 return result;
293 }
294
295 PhaseOutput::PhaseOutput()
296 : Phase(Phase::Output),
297 _code_buffer("Compile::Fill_buffer"),
298 _first_block_size(0),
299 _handler_table(),
300 _inc_table(),
301 _oop_map_set(nullptr),
302 _scratch_buffer_blob(nullptr),
303 _scratch_locs_memory(nullptr),
304 _scratch_const_size(-1),
305 _in_scratch_emit_size(false),
306 _frame_slots(0),
307 _code_offsets(),
308 _node_bundling_limit(0),
309 _node_bundling_base(nullptr),
310 _orig_pc_slot(0),
311 _orig_pc_slot_offset_in_bytes(0),
312 _buf_sizes(),
313 _block(nullptr),
314 _index(0) {
315 C->set_output(this);
316 if (C->stub_name() == nullptr) {
317 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size);
318 }
319 }
320
321 PhaseOutput::~PhaseOutput() {
322 C->set_output(nullptr);
323 if (_scratch_buffer_blob != nullptr) {
324 BufferBlob::free(_scratch_buffer_blob);
325 }
326 }
327
328 void PhaseOutput::perform_mach_node_analysis() {
329 // Late barrier analysis must be done after schedule and bundle
330 // Otherwise liveness based spilling will fail
331 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
332 bs->late_barrier_analysis();
333
334 pd_perform_mach_node_analysis();
335 }
336
337 // Convert Nodes to instruction bits and pass off to the VM
338 void PhaseOutput::Output() {
339 // RootNode goes
340 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" );
341
342 // The number of new nodes (mostly MachNop) is proportional to
343 // the number of java calls and inner loops which are aligned.
344 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
345 C->inner_loops()*(OptoLoopAlignment-1)),
346 "out of nodes before code generation" ) ) {
347 return;
348 }
349 // Make sure I can find the Start Node
350 Block *entry = C->cfg()->get_block(1);
351 Block *broot = C->cfg()->get_root_block();
352
353 const StartNode *start = entry->head()->as_Start();
354
355 // Replace StartNode with prolog
356 MachPrologNode *prolog = new MachPrologNode();
357 entry->map_node(prolog, 0);
358 C->cfg()->map_node_to_block(prolog, entry);
359 C->cfg()->unmap_node_from_block(start); // start is no longer in any block
360
361 // Virtual methods need an unverified entry point
362
363 if( C->is_osr_compilation() ) {
364 if( PoisonOSREntry ) {
365 // TODO: Should use a ShouldNotReachHereNode...
366 C->cfg()->insert( broot, 0, new MachBreakpointNode() );
367 }
368 } else {
369 if( C->method() && !C->method()->flags().is_static() ) {
370 // Insert unvalidated entry point
371 C->cfg()->insert( broot, 0, new MachUEPNode() );
372 }
373
374 }
375
376 // Break before main entry point
377 if ((C->method() && C->directive()->BreakAtExecuteOption) ||
378 (OptoBreakpoint && C->is_method_compilation()) ||
379 (OptoBreakpointOSR && C->is_osr_compilation()) ||
380 (OptoBreakpointC2R && !C->method()) ) {
381 // checking for C->method() means that OptoBreakpoint does not apply to
382 // runtime stubs or frame converters
383 C->cfg()->insert( entry, 1, new MachBreakpointNode() );
384 }
385
386 // Insert epilogs before every return
387 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
388 Block* block = C->cfg()->get_block(i);
389 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point?
390 Node* m = block->end();
391 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
392 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
393 block->add_inst(epilog);
394 C->cfg()->map_node_to_block(epilog, block);
395 }
396 }
397 }
398
399 // Keeper of sizing aspects
400 _buf_sizes = BufferSizingData();
401
402 // Initialize code buffer
403 estimate_buffer_size(_buf_sizes._const);
404 if (C->failing()) return;
405
406 // Pre-compute the length of blocks and replace
407 // long branches with short if machine supports it.
408 // Must be done before ScheduleAndBundle due to SPARC delay slots
409 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1);
410 blk_starts[0] = 0;
411 shorten_branches(blk_starts);
412
413 ScheduleAndBundle();
414 if (C->failing()) {
415 return;
416 }
417
418 perform_mach_node_analysis();
419
420 // Complete sizing of codebuffer
421 CodeBuffer* cb = init_buffer();
422 if (cb == nullptr || C->failing()) {
423 return;
424 }
425
426 BuildOopMaps();
427
428 if (C->failing()) {
429 return;
430 }
431
432 fill_buffer(cb, blk_starts);
433 }
434
435 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const {
436 // Determine if we need to generate a stack overflow check.
437 // Do it if the method is not a stub function and
438 // has java calls or has frame size > vm_page_size/8.
439 // The debug VM checks that deoptimization doesn't trigger an
440 // unexpected stack overflow (compiled method stack banging should
441 // guarantee it doesn't happen) so we always need the stack bang in
442 // a debug VM.
443 return (C->stub_function() == nullptr &&
444 (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
445 DEBUG_ONLY(|| true)));
446 }
447
448 bool PhaseOutput::need_register_stack_bang() const {
449 // Determine if we need to generate a register stack overflow check.
450 // This is only used on architectures which have split register
451 // and memory stacks (ie. IA64).
452 // Bang if the method is not a stub function and has java calls
453 return (C->stub_function() == nullptr && C->has_java_calls());
454 }
455
456
457 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
458 // of a loop. When aligning a loop we need to provide enough instructions
459 // in cpu's fetch buffer to feed decoders. The loop alignment could be
460 // avoided if we have enough instructions in fetch buffer at the head of a loop.
461 // By default, the size is set to 999999 by Block's constructor so that
462 // a loop will be aligned if the size is not reset here.
463 //
464 // Note: Mach instructions could contain several HW instructions
465 // so the size is estimated only.
466 //
467 void PhaseOutput::compute_loop_first_inst_sizes() {
468 // The next condition is used to gate the loop alignment optimization.
469 // Don't aligned a loop if there are enough instructions at the head of a loop
470 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
471 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
472 // equal to 11 bytes which is the largest address NOP instruction.
473 if (MaxLoopPad < OptoLoopAlignment - 1) {
474 uint last_block = C->cfg()->number_of_blocks() - 1;
475 for (uint i = 1; i <= last_block; i++) {
476 Block* block = C->cfg()->get_block(i);
477 // Check the first loop's block which requires an alignment.
478 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
479 uint sum_size = 0;
480 uint inst_cnt = NumberOfLoopInstrToAlign;
481 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
482
483 // Check subsequent fallthrough blocks if the loop's first
484 // block(s) does not have enough instructions.
485 Block *nb = block;
486 while(inst_cnt > 0 &&
487 i < last_block &&
488 !C->cfg()->get_block(i + 1)->has_loop_alignment() &&
489 !nb->has_successor(block)) {
490 i++;
491 nb = C->cfg()->get_block(i);
492 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc());
493 } // while( inst_cnt > 0 && i < last_block )
494
495 block->set_first_inst_size(sum_size);
496 } // f( b->head()->is_Loop() )
497 } // for( i <= last_block )
498 } // if( MaxLoopPad < OptoLoopAlignment-1 )
499 }
500
501 // The architecture description provides short branch variants for some long
502 // branch instructions. Replace eligible long branches with short branches.
503 void PhaseOutput::shorten_branches(uint* blk_starts) {
504
505 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]);
506
507 // Compute size of each block, method size, and relocation information size
508 uint nblocks = C->cfg()->number_of_blocks();
509
510 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
511 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
512 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks);
513
514 // Collect worst case block paddings
515 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
516 memset(block_worst_case_pad, 0, nblocks * sizeof(int));
517
518 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
519 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
520
521 bool has_short_branch_candidate = false;
522
523 // Initialize the sizes to 0
524 int code_size = 0; // Size in bytes of generated code
525 int stub_size = 0; // Size in bytes of all stub entries
526 // Size in bytes of all relocation entries, including those in local stubs.
527 // Start with 2-bytes of reloc info for the unvalidated entry point
528 int reloc_size = 1; // Number of relocation entries
529
530 // Make three passes. The first computes pessimistic blk_starts,
531 // relative jmp_offset and reloc_size information. The second performs
532 // short branch substitution using the pessimistic sizing. The
533 // third inserts nops where needed.
534
535 // Step one, perform a pessimistic sizing pass.
536 uint last_call_adr = max_juint;
537 uint last_avoid_back_to_back_adr = max_juint;
538 uint nop_size = (new MachNopNode())->size(C->regalloc());
539 for (uint i = 0; i < nblocks; i++) { // For all blocks
540 Block* block = C->cfg()->get_block(i);
541 _block = block;
542
543 // During short branch replacement, we store the relative (to blk_starts)
544 // offset of jump in jmp_offset, rather than the absolute offset of jump.
545 // This is so that we do not need to recompute sizes of all nodes when
546 // we compute correct blk_starts in our next sizing pass.
547 jmp_offset[i] = 0;
548 jmp_size[i] = 0;
549 jmp_nidx[i] = -1;
550 DEBUG_ONLY( jmp_target[i] = 0; )
551 DEBUG_ONLY( jmp_rule[i] = 0; )
552
553 // Sum all instruction sizes to compute block size
554 uint last_inst = block->number_of_nodes();
555 uint blk_size = 0;
556 for (uint j = 0; j < last_inst; j++) {
557 _index = j;
558 Node* nj = block->get_node(_index);
559 // Handle machine instruction nodes
560 if (nj->is_Mach()) {
561 MachNode* mach = nj->as_Mach();
562 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
563 reloc_size += mach->reloc();
564 if (mach->is_MachCall()) {
565 // add size information for trampoline stub
566 // class CallStubImpl is platform-specific and defined in the *.ad files.
567 stub_size += CallStubImpl::size_call_trampoline();
568 reloc_size += CallStubImpl::reloc_call_trampoline();
569
570 MachCallNode *mcall = mach->as_MachCall();
571 // This destination address is NOT PC-relative
572
573 mcall->method_set((intptr_t)mcall->entry_point());
574
575 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
576 stub_size += CompiledStaticCall::to_interp_stub_size();
577 reloc_size += CompiledStaticCall::reloc_to_interp_stub();
578 }
579 } else if (mach->is_MachSafePoint()) {
580 // If call/safepoint are adjacent, account for possible
581 // nop to disambiguate the two safepoints.
582 // ScheduleAndBundle() can rearrange nodes in a block,
583 // check for all offsets inside this block.
584 if (last_call_adr >= blk_starts[i]) {
585 blk_size += nop_size;
586 }
587 }
588 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
589 // Nop is inserted between "avoid back to back" instructions.
590 // ScheduleAndBundle() can rearrange nodes in a block,
591 // check for all offsets inside this block.
592 if (last_avoid_back_to_back_adr >= blk_starts[i]) {
593 blk_size += nop_size;
594 }
595 }
596 if (mach->may_be_short_branch()) {
597 if (!nj->is_MachBranch()) {
598 #ifndef PRODUCT
599 nj->dump(3);
600 #endif
601 Unimplemented();
602 }
603 assert(jmp_nidx[i] == -1, "block should have only one branch");
604 jmp_offset[i] = blk_size;
605 jmp_size[i] = nj->size(C->regalloc());
606 jmp_nidx[i] = j;
607 has_short_branch_candidate = true;
608 }
609 }
610 blk_size += nj->size(C->regalloc());
611 // Remember end of call offset
612 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
613 last_call_adr = blk_starts[i]+blk_size;
614 }
615 // Remember end of avoid_back_to_back offset
616 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
617 last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
618 }
619 }
620
621 // When the next block starts a loop, we may insert pad NOP
622 // instructions. Since we cannot know our future alignment,
623 // assume the worst.
624 if (i < nblocks - 1) {
625 Block* nb = C->cfg()->get_block(i + 1);
626 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
627 if (max_loop_pad > 0) {
628 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
629 // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
630 // If either is the last instruction in this block, bump by
631 // max_loop_pad in lock-step with blk_size, so sizing
632 // calculations in subsequent blocks still can conservatively
633 // detect that it may the last instruction in this block.
634 if (last_call_adr == blk_starts[i]+blk_size) {
635 last_call_adr += max_loop_pad;
636 }
637 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
638 last_avoid_back_to_back_adr += max_loop_pad;
639 }
640 blk_size += max_loop_pad;
641 block_worst_case_pad[i + 1] = max_loop_pad;
642 }
643 }
644
645 // Save block size; update total method size
646 blk_starts[i+1] = blk_starts[i]+blk_size;
647 }
648
649 // Step two, replace eligible long jumps.
650 bool progress = true;
651 uint last_may_be_short_branch_adr = max_juint;
652 while (has_short_branch_candidate && progress) {
653 progress = false;
654 has_short_branch_candidate = false;
655 int adjust_block_start = 0;
656 for (uint i = 0; i < nblocks; i++) {
657 Block* block = C->cfg()->get_block(i);
658 int idx = jmp_nidx[i];
659 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach();
660 if (mach != nullptr && mach->may_be_short_branch()) {
661 #ifdef ASSERT
662 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
663 int j;
664 // Find the branch; ignore trailing NOPs.
665 for (j = block->number_of_nodes()-1; j>=0; j--) {
666 Node* n = block->get_node(j);
667 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
668 break;
669 }
670 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
671 #endif
672 int br_size = jmp_size[i];
673 int br_offs = blk_starts[i] + jmp_offset[i];
674
675 // This requires the TRUE branch target be in succs[0]
676 uint bnum = block->non_connector_successor(0)->_pre_order;
677 int offset = blk_starts[bnum] - br_offs;
678 if (bnum > i) { // adjust following block's offset
679 offset -= adjust_block_start;
680 }
681
682 // This block can be a loop header, account for the padding
683 // in the previous block.
684 int block_padding = block_worst_case_pad[i];
685 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
686 // In the following code a nop could be inserted before
687 // the branch which will increase the backward distance.
688 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
689 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
690
691 if (needs_padding && offset <= 0)
692 offset -= nop_size;
693
694 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
695 // We've got a winner. Replace this branch.
696 MachNode* replacement = mach->as_MachBranch()->short_branch_version();
697
698 // Update the jmp_size.
699 int new_size = replacement->size(C->regalloc());
700 int diff = br_size - new_size;
701 assert(diff >= (int)nop_size, "short_branch size should be smaller");
702 // Conservatively take into account padding between
703 // avoid_back_to_back branches. Previous branch could be
704 // converted into avoid_back_to_back branch during next
705 // rounds.
706 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
707 jmp_offset[i] += nop_size;
708 diff -= nop_size;
709 }
710 adjust_block_start += diff;
711 block->map_node(replacement, idx);
712 mach->subsume_by(replacement, C);
713 mach = replacement;
714 progress = true;
715
716 jmp_size[i] = new_size;
717 DEBUG_ONLY( jmp_target[i] = bnum; );
718 DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
719 } else {
720 // The jump distance is not short, try again during next iteration.
721 has_short_branch_candidate = true;
722 }
723 } // (mach->may_be_short_branch())
724 if (mach != nullptr && (mach->may_be_short_branch() ||
725 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
726 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
727 }
728 blk_starts[i+1] -= adjust_block_start;
729 }
730 }
731
732 #ifdef ASSERT
733 for (uint i = 0; i < nblocks; i++) { // For all blocks
734 if (jmp_target[i] != 0) {
735 int br_size = jmp_size[i];
736 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
737 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
738 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
739 }
740 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
741 }
742 }
743 #endif
744
745 // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
746 // after ScheduleAndBundle().
747
748 // ------------------
749 // Compute size for code buffer
750 code_size = blk_starts[nblocks];
751
752 // Relocation records
753 reloc_size += 1; // Relo entry for exception handler
754
755 // Adjust reloc_size to number of record of relocation info
756 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
757 // a relocation index.
758 // The CodeBuffer will expand the locs array if this estimate is too low.
759 reloc_size *= 10 / sizeof(relocInfo);
760
761 _buf_sizes._reloc = reloc_size;
762 _buf_sizes._code = code_size;
763 _buf_sizes._stub = stub_size;
764 }
765
766 //------------------------------FillLocArray-----------------------------------
767 // Create a bit of debug info and append it to the array. The mapping is from
768 // Java local or expression stack to constant, register or stack-slot. For
769 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
770 // entry has been taken care of and caller should skip it).
771 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
772 // This should never have accepted Bad before
773 assert(OptoReg::is_valid(regnum), "location must be valid");
774 return (OptoReg::is_reg(regnum))
775 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
776 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum)));
777 }
778
779
780 ObjectValue*
781 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
782 for (int i = 0; i < objs->length(); i++) {
783 assert(objs->at(i)->is_object(), "corrupt object cache");
784 ObjectValue* sv = (ObjectValue*) objs->at(i);
785 if (sv->id() == id) {
786 return sv;
787 }
788 }
789 // Otherwise..
790 return nullptr;
791 }
792
793 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
794 ObjectValue* sv ) {
795 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition");
796 objs->append(sv);
797 }
798
799
800 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
801 GrowableArray<ScopeValue*> *array,
802 GrowableArray<ScopeValue*> *objs ) {
803 assert( local, "use _top instead of null" );
804 if (array->length() != idx) {
805 assert(array->length() == idx + 1, "Unexpected array count");
806 // Old functionality:
807 // return
808 // New functionality:
809 // Assert if the local is not top. In product mode let the new node
810 // override the old entry.
811 assert(local == C->top(), "LocArray collision");
812 if (local == C->top()) {
813 return;
814 }
815 array->pop();
816 }
817 const Type *t = local->bottom_type();
818
819 // Is it a safepoint scalar object node?
820 if (local->is_SafePointScalarObject()) {
821 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
822
823 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx);
824 if (sv == nullptr) {
825 ciKlass* cik = t->is_oopptr()->klass();
826 assert(cik->is_instance_klass() ||
827 cik->is_array_klass(), "Not supported allocation.");
828 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding());
829 sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv)
830 : new ObjectValue(spobj->_idx, klass_sv);
831 set_sv_for_object_node(objs, sv);
832
833 uint first_ind = spobj->first_index(sfpt->jvms());
834 for (uint i = 0; i < spobj->n_fields(); i++) {
835 Node* fld_node = sfpt->in(first_ind+i);
836 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
837 }
838 }
839 array->append(sv);
840 return;
841 }
842
843 // Grab the register number for the local
844 OptoReg::Name regnum = C->regalloc()->get_reg_first(local);
845 if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
846 // Record the double as two float registers.
847 // The register mask for such a value always specifies two adjacent
848 // float registers, with the lower register number even.
849 // Normally, the allocation of high and low words to these registers
850 // is irrelevant, because nearly all operations on register pairs
851 // (e.g., StoreD) treat them as a single unit.
852 // Here, we assume in addition that the words in these two registers
853 // stored "naturally" (by operations like StoreD and double stores
854 // within the interpreter) such that the lower-numbered register
855 // is written to the lower memory address. This may seem like
856 // a machine dependency, but it is not--it is a requirement on
857 // the author of the <arch>.ad file to ensure that, for every
858 // even/odd double-register pair to which a double may be allocated,
859 // the word in the even single-register is stored to the first
860 // memory word. (Note that register numbers are completely
861 // arbitrary, and are not tied to any machine-level encodings.)
862 #ifdef _LP64
863 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
864 array->append(new ConstantIntValue((jint)0));
865 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl ));
866 } else if ( t->base() == Type::Long ) {
867 array->append(new ConstantIntValue((jint)0));
868 array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
869 } else if ( t->base() == Type::RawPtr ) {
870 // jsr/ret return address which must be restored into a the full
871 // width 64-bit stack slot.
872 array->append(new_loc_value( C->regalloc(), regnum, Location::lng ));
873 }
874 #else //_LP64
875 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
876 // Repack the double/long as two jints.
877 // The convention the interpreter uses is that the second local
878 // holds the first raw word of the native double representation.
879 // This is actually reasonable, since locals and stack arrays
880 // grow downwards in all implementations.
881 // (If, on some machine, the interpreter's Java locals or stack
882 // were to grow upwards, the embedded doubles would be word-swapped.)
883 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal ));
884 array->append(new_loc_value( C->regalloc(), regnum , Location::normal ));
885 }
886 #endif //_LP64
887 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
888 OptoReg::is_reg(regnum) ) {
889 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double()
890 ? Location::float_in_dbl : Location::normal ));
891 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
892 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long
893 ? Location::int_in_long : Location::normal ));
894 } else if( t->base() == Type::NarrowOop ) {
895 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop ));
896 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS ||
897 t->base() == Type::VectorD || t->base() == Type::VectorX ||
898 t->base() == Type::VectorY || t->base() == Type::VectorZ) {
899 array->append(new_loc_value( C->regalloc(), regnum, Location::vector ));
900 } else {
901 array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal ));
902 }
903 return;
904 }
905
906 // No register. It must be constant data.
907 switch (t->base()) {
908 case Type::Half: // Second half of a double
909 ShouldNotReachHere(); // Caller should skip 2nd halves
910 break;
911 case Type::AnyPtr:
912 array->append(new ConstantOopWriteValue(nullptr));
913 break;
914 case Type::AryPtr:
915 case Type::InstPtr: // fall through
916 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
917 break;
918 case Type::NarrowOop:
919 if (t == TypeNarrowOop::NULL_PTR) {
920 array->append(new ConstantOopWriteValue(nullptr));
921 } else {
922 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
923 }
924 break;
925 case Type::Int:
926 array->append(new ConstantIntValue(t->is_int()->get_con()));
927 break;
928 case Type::RawPtr:
929 // A return address (T_ADDRESS).
930 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
931 #ifdef _LP64
932 // Must be restored to the full-width 64-bit stack slot.
933 array->append(new ConstantLongValue(t->is_ptr()->get_con()));
934 #else
935 array->append(new ConstantIntValue(t->is_ptr()->get_con()));
936 #endif
937 break;
938 case Type::FloatCon: {
939 float f = t->is_float_constant()->getf();
940 array->append(new ConstantIntValue(jint_cast(f)));
941 break;
942 }
943 case Type::DoubleCon: {
944 jdouble d = t->is_double_constant()->getd();
945 #ifdef _LP64
946 array->append(new ConstantIntValue((jint)0));
947 array->append(new ConstantDoubleValue(d));
948 #else
949 // Repack the double as two jints.
950 // The convention the interpreter uses is that the second local
951 // holds the first raw word of the native double representation.
952 // This is actually reasonable, since locals and stack arrays
953 // grow downwards in all implementations.
954 // (If, on some machine, the interpreter's Java locals or stack
955 // were to grow upwards, the embedded doubles would be word-swapped.)
956 jlong_accessor acc;
957 acc.long_value = jlong_cast(d);
958 array->append(new ConstantIntValue(acc.words[1]));
959 array->append(new ConstantIntValue(acc.words[0]));
960 #endif
961 break;
962 }
963 case Type::Long: {
964 jlong d = t->is_long()->get_con();
965 #ifdef _LP64
966 array->append(new ConstantIntValue((jint)0));
967 array->append(new ConstantLongValue(d));
968 #else
969 // Repack the long as two jints.
970 // The convention the interpreter uses is that the second local
971 // holds the first raw word of the native double representation.
972 // This is actually reasonable, since locals and stack arrays
973 // grow downwards in all implementations.
974 // (If, on some machine, the interpreter's Java locals or stack
975 // were to grow upwards, the embedded doubles would be word-swapped.)
976 jlong_accessor acc;
977 acc.long_value = d;
978 array->append(new ConstantIntValue(acc.words[1]));
979 array->append(new ConstantIntValue(acc.words[0]));
980 #endif
981 break;
982 }
983 case Type::Top: // Add an illegal value here
984 array->append(new LocationValue(Location()));
985 break;
986 default:
987 ShouldNotReachHere();
988 break;
989 }
990 }
991
992 // Determine if this node starts a bundle
993 bool PhaseOutput::starts_bundle(const Node *n) const {
994 return (_node_bundling_limit > n->_idx &&
995 _node_bundling_base[n->_idx].starts_bundle());
996 }
997
998 //--------------------------Process_OopMap_Node--------------------------------
999 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) {
1000 // Handle special safepoint nodes for synchronization
1001 MachSafePointNode *sfn = mach->as_MachSafePoint();
1002 MachCallNode *mcall;
1003
1004 int safepoint_pc_offset = current_offset;
1005 bool is_method_handle_invoke = false;
1006 bool is_opt_native = false;
1007 bool return_oop = false;
1008 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope;
1009 bool arg_escape = false;
1010
1011 // Add the safepoint in the DebugInfoRecorder
1012 if( !mach->is_MachCall() ) {
1013 mcall = nullptr;
1014 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
1015 } else {
1016 mcall = mach->as_MachCall();
1017
1018 // Is the call a MethodHandle call?
1019 if (mcall->is_MachCallJava()) {
1020 if (mcall->as_MachCallJava()->_method_handle_invoke) {
1021 assert(C->has_method_handle_invokes(), "must have been set during call generation");
1022 is_method_handle_invoke = true;
1023 }
1024 arg_escape = mcall->as_MachCallJava()->_arg_escape;
1025 } else if (mcall->is_MachCallNative()) {
1026 is_opt_native = true;
1027 }
1028
1029 // Check if a call returns an object.
1030 if (mcall->returns_pointer()) {
1031 return_oop = true;
1032 }
1033 safepoint_pc_offset += mcall->ret_addr_offset();
1034 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
1035 }
1036
1037 // Loop over the JVMState list to add scope information
1038 // Do not skip safepoints with a null method, they need monitor info
1039 JVMState* youngest_jvms = sfn->jvms();
1040 int max_depth = youngest_jvms->depth();
1041
1042 // Allocate the object pool for scalar-replaced objects -- the map from
1043 // small-integer keys (which can be recorded in the local and ostack
1044 // arrays) to descriptions of the object state.
1045 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
1046
1047 // Visit scopes from oldest to youngest.
1048 for (int depth = 1; depth <= max_depth; depth++) {
1049 JVMState* jvms = youngest_jvms->of_depth(depth);
1050 int idx;
1051 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1052 // Safepoints that do not have method() set only provide oop-map and monitor info
1053 // to support GC; these do not support deoptimization.
1054 int num_locs = (method == nullptr) ? 0 : jvms->loc_size();
1055 int num_exps = (method == nullptr) ? 0 : jvms->stk_size();
1056 int num_mon = jvms->nof_monitors();
1057 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(),
1058 "JVMS local count must match that of the method");
1059
1060 // Add Local and Expression Stack Information
1061
1062 // Insert locals into the locarray
1063 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
1064 for( idx = 0; idx < num_locs; idx++ ) {
1065 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
1066 }
1067
1068 // Insert expression stack entries into the exparray
1069 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
1070 for( idx = 0; idx < num_exps; idx++ ) {
1071 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs );
1072 }
1073
1074 // Add in mappings of the monitors
1075 assert( !method ||
1076 !method->is_synchronized() ||
1077 method->is_native() ||
1078 num_mon > 0 ||
1079 !GenerateSynchronizationCode,
1080 "monitors must always exist for synchronized methods");
1081
1082 // Build the growable array of ScopeValues for exp stack
1083 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
1084
1085 // Loop over monitors and insert into array
1086 for (idx = 0; idx < num_mon; idx++) {
1087 // Grab the node that defines this monitor
1088 Node* box_node = sfn->monitor_box(jvms, idx);
1089 Node* obj_node = sfn->monitor_obj(jvms, idx);
1090
1091 // Create ScopeValue for object
1092 ScopeValue *scval = nullptr;
1093
1094 if (obj_node->is_SafePointScalarObject()) {
1095 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
1096 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx);
1097 if (scval == nullptr) {
1098 const Type *t = spobj->bottom_type();
1099 ciKlass* cik = t->is_oopptr()->klass();
1100 assert(cik->is_instance_klass() ||
1101 cik->is_array_klass(), "Not supported allocation.");
1102 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding());
1103 ObjectValue* sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv)
1104 : new ObjectValue(spobj->_idx, klass_sv);
1105 PhaseOutput::set_sv_for_object_node(objs, sv);
1106
1107 uint first_ind = spobj->first_index(youngest_jvms);
1108 for (uint i = 0; i < spobj->n_fields(); i++) {
1109 Node* fld_node = sfn->in(first_ind+i);
1110 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
1111 }
1112 scval = sv;
1113 }
1114 } else if (!obj_node->is_Con()) {
1115 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node);
1116 if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
1117 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop );
1118 } else {
1119 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop );
1120 }
1121 } else {
1122 const TypePtr *tp = obj_node->get_ptr_type();
1123 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
1124 }
1125
1126 OptoReg::Name box_reg = BoxLockNode::reg(box_node);
1127 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg));
1128 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
1129 monarray->append(new MonitorValue(scval, basic_lock, eliminated));
1130 }
1131
1132 // We dump the object pool first, since deoptimization reads it in first.
1133 C->debug_info()->dump_object_pool(objs);
1134
1135 // Build first class objects to pass to scope
1136 DebugToken *locvals = C->debug_info()->create_scope_values(locarray);
1137 DebugToken *expvals = C->debug_info()->create_scope_values(exparray);
1138 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray);
1139
1140 // Make method available for all Safepoints
1141 ciMethod* scope_method = method ? method : C->method();
1142 // Describe the scope here
1143 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
1144 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
1145 // Now we can describe the scope.
1146 methodHandle null_mh;
1147 bool rethrow_exception = false;
1148 C->debug_info()->describe_scope(
1149 safepoint_pc_offset,
1150 null_mh,
1151 scope_method,
1152 jvms->bci(),
1153 jvms->should_reexecute(),
1154 rethrow_exception,
1155 is_method_handle_invoke,
1156 is_opt_native,
1157 return_oop,
1158 has_ea_local_in_scope,
1159 arg_escape,
1160 locvals,
1161 expvals,
1162 monvals
1163 );
1164 } // End jvms loop
1165
1166 // Mark the end of the scope set.
1167 C->debug_info()->end_safepoint(safepoint_pc_offset);
1168 }
1169
1170
1171
1172 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
1173 class NonSafepointEmitter {
1174 Compile* C;
1175 JVMState* _pending_jvms;
1176 int _pending_offset;
1177
1178 void emit_non_safepoint();
1179
1180 public:
1181 NonSafepointEmitter(Compile* compile) {
1182 this->C = compile;
1183 _pending_jvms = nullptr;
1184 _pending_offset = 0;
1185 }
1186
1187 void observe_instruction(Node* n, int pc_offset) {
1188 if (!C->debug_info()->recording_non_safepoints()) return;
1189
1190 Node_Notes* nn = C->node_notes_at(n->_idx);
1191 if (nn == nullptr || nn->jvms() == nullptr) return;
1192 if (_pending_jvms != nullptr &&
1193 _pending_jvms->same_calls_as(nn->jvms())) {
1194 // Repeated JVMS? Stretch it up here.
1195 _pending_offset = pc_offset;
1196 } else {
1197 if (_pending_jvms != nullptr &&
1198 _pending_offset < pc_offset) {
1199 emit_non_safepoint();
1200 }
1201 _pending_jvms = nullptr;
1202 if (pc_offset > C->debug_info()->last_pc_offset()) {
1203 // This is the only way _pending_jvms can become non-null:
1204 _pending_jvms = nn->jvms();
1205 _pending_offset = pc_offset;
1206 }
1207 }
1208 }
1209
1210 // Stay out of the way of real safepoints:
1211 void observe_safepoint(JVMState* jvms, int pc_offset) {
1212 if (_pending_jvms != nullptr &&
1213 !_pending_jvms->same_calls_as(jvms) &&
1214 _pending_offset < pc_offset) {
1215 emit_non_safepoint();
1216 }
1217 _pending_jvms = nullptr;
1218 }
1219
1220 void flush_at_end() {
1221 if (_pending_jvms != nullptr) {
1222 emit_non_safepoint();
1223 }
1224 _pending_jvms = nullptr;
1225 }
1226 };
1227
1228 void NonSafepointEmitter::emit_non_safepoint() {
1229 JVMState* youngest_jvms = _pending_jvms;
1230 int pc_offset = _pending_offset;
1231
1232 // Clear it now:
1233 _pending_jvms = nullptr;
1234
1235 DebugInformationRecorder* debug_info = C->debug_info();
1236 assert(debug_info->recording_non_safepoints(), "sanity");
1237
1238 debug_info->add_non_safepoint(pc_offset);
1239 int max_depth = youngest_jvms->depth();
1240
1241 // Visit scopes from oldest to youngest.
1242 for (int depth = 1; depth <= max_depth; depth++) {
1243 JVMState* jvms = youngest_jvms->of_depth(depth);
1244 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr;
1245 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1246 methodHandle null_mh;
1247 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute());
1248 }
1249
1250 // Mark the end of the scope set.
1251 debug_info->end_non_safepoint(pc_offset);
1252 }
1253
1254 //------------------------------init_buffer------------------------------------
1255 void PhaseOutput::estimate_buffer_size(int& const_req) {
1256
1257 // Set the initially allocated size
1258 const_req = initial_const_capacity;
1259
1260 // The extra spacing after the code is necessary on some platforms.
1261 // Sometimes we need to patch in a jump after the last instruction,
1262 // if the nmethod has been deoptimized. (See 4932387, 4894843.)
1263
1264 // Compute the byte offset where we can store the deopt pc.
1265 if (C->fixed_slots() != 0) {
1266 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1267 }
1268
1269 // Compute prolog code size
1270 _method_size = 0;
1271 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize;
1272 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1273
1274 if (C->has_mach_constant_base_node()) {
1275 uint add_size = 0;
1276 // Fill the constant table.
1277 // Note: This must happen before shorten_branches.
1278 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1279 Block* b = C->cfg()->get_block(i);
1280
1281 for (uint j = 0; j < b->number_of_nodes(); j++) {
1282 Node* n = b->get_node(j);
1283
1284 // If the node is a MachConstantNode evaluate the constant
1285 // value section.
1286 if (n->is_MachConstant()) {
1287 MachConstantNode* machcon = n->as_MachConstant();
1288 machcon->eval_constant(C);
1289 } else if (n->is_Mach()) {
1290 // On Power there are more nodes that issue constants.
1291 add_size += (n->as_Mach()->ins_num_consts() * 8);
1292 }
1293 }
1294 }
1295
1296 // Calculate the offsets of the constants and the size of the
1297 // constant table (including the padding to the next section).
1298 constant_table().calculate_offsets_and_size();
1299 const_req = constant_table().size() + add_size;
1300 }
1301
1302 // Initialize the space for the BufferBlob used to find and verify
1303 // instruction size in MachNode::emit_size()
1304 init_scratch_buffer_blob(const_req);
1305 }
1306
1307 CodeBuffer* PhaseOutput::init_buffer() {
1308 int stub_req = _buf_sizes._stub;
1309 int code_req = _buf_sizes._code;
1310 int const_req = _buf_sizes._const;
1311
1312 int pad_req = NativeCall::instruction_size;
1313
1314 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1315 stub_req += bs->estimate_stub_size();
1316 stub_req += safepoint_poll_table()->estimate_stub_size();
1317
1318 // nmethod and CodeBuffer count stubs & constants as part of method's code.
1319 // class HandlerImpl is platform-specific and defined in the *.ad files.
1320 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1321 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler
1322 stub_req += MAX_stubs_size; // ensure per-stub margin
1323 code_req += MAX_inst_size; // ensure per-instruction margin
1324
1325 if (StressCodeBuffers)
1326 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion
1327
1328 int total_req =
1329 const_req +
1330 code_req +
1331 pad_req +
1332 stub_req +
1333 exception_handler_req +
1334 deopt_handler_req; // deopt handler
1335
1336 if (C->has_method_handle_invokes())
1337 total_req += deopt_handler_req; // deopt MH handler
1338
1339 CodeBuffer* cb = code_buffer();
1340 cb->initialize(total_req, _buf_sizes._reloc);
1341
1342 // Have we run out of code space?
1343 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1344 C->record_failure("CodeCache is full");
1345 return nullptr;
1346 }
1347 // Configure the code buffer.
1348 cb->initialize_consts_size(const_req);
1349 cb->initialize_stubs_size(stub_req);
1350 cb->initialize_oop_recorder(C->env()->oop_recorder());
1351
1352 // fill in the nop array for bundling computations
1353 MachNode *_nop_list[Bundle::_nop_count];
1354 Bundle::initialize_nops(_nop_list);
1355
1356 return cb;
1357 }
1358
1359 //------------------------------fill_buffer------------------------------------
1360 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1361 // blk_starts[] contains offsets calculated during short branches processing,
1362 // offsets should not be increased during following steps.
1363
1364 // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1365 // of a loop. It is used to determine the padding for loop alignment.
1366 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]);
1367
1368 compute_loop_first_inst_sizes();
1369
1370 // Create oopmap set.
1371 _oop_map_set = new OopMapSet();
1372
1373 // !!!!! This preserves old handling of oopmaps for now
1374 C->debug_info()->set_oopmaps(_oop_map_set);
1375
1376 uint nblocks = C->cfg()->number_of_blocks();
1377 // Count and start of implicit null check instructions
1378 uint inct_cnt = 0;
1379 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1380
1381 // Count and start of calls
1382 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1383
1384 uint return_offset = 0;
1385 int nop_size = (new MachNopNode())->size(C->regalloc());
1386
1387 int previous_offset = 0;
1388 int current_offset = 0;
1389 int last_call_offset = -1;
1390 int last_avoid_back_to_back_offset = -1;
1391 #ifdef ASSERT
1392 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1393 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1394 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks);
1395 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks);
1396 #endif
1397
1398 // Create an array of unused labels, one for each basic block, if printing is enabled
1399 #if defined(SUPPORT_OPTO_ASSEMBLY)
1400 int* node_offsets = nullptr;
1401 uint node_offset_limit = C->unique();
1402
1403 if (C->print_assembly()) {
1404 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1405 }
1406 if (node_offsets != nullptr) {
1407 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly.
1408 memset(node_offsets, 0, node_offset_limit*sizeof(int));
1409 }
1410 #endif
1411
1412 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily
1413
1414 // Emit the constant table.
1415 if (C->has_mach_constant_base_node()) {
1416 if (!constant_table().emit(*cb)) {
1417 C->record_failure("consts section overflow");
1418 return;
1419 }
1420 }
1421
1422 // Create an array of labels, one for each basic block
1423 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1424 for (uint i = 0; i <= nblocks; i++) {
1425 blk_labels[i].init();
1426 }
1427
1428 // Now fill in the code buffer
1429 Node* delay_slot = nullptr;
1430 for (uint i = 0; i < nblocks; i++) {
1431 Block* block = C->cfg()->get_block(i);
1432 _block = block;
1433 Node* head = block->head();
1434
1435 // If this block needs to start aligned (i.e, can be reached other
1436 // than by falling-thru from the previous block), then force the
1437 // start of a new bundle.
1438 if (Pipeline::requires_bundling() && starts_bundle(head)) {
1439 cb->flush_bundle(true);
1440 }
1441
1442 #ifdef ASSERT
1443 if (!block->is_connector()) {
1444 stringStream st;
1445 block->dump_head(C->cfg(), &st);
1446 MacroAssembler(cb).block_comment(st.as_string());
1447 }
1448 jmp_target[i] = 0;
1449 jmp_offset[i] = 0;
1450 jmp_size[i] = 0;
1451 jmp_rule[i] = 0;
1452 #endif
1453 int blk_offset = current_offset;
1454
1455 // Define the label at the beginning of the basic block
1456 MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1457
1458 uint last_inst = block->number_of_nodes();
1459
1460 // Emit block normally, except for last instruction.
1461 // Emit means "dump code bits into code buffer".
1462 for (uint j = 0; j<last_inst; j++) {
1463 _index = j;
1464
1465 // Get the node
1466 Node* n = block->get_node(j);
1467
1468 // See if delay slots are supported
1469 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) {
1470 assert(delay_slot == nullptr, "no use of delay slot node");
1471 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1472
1473 delay_slot = n;
1474 continue;
1475 }
1476
1477 // If this starts a new instruction group, then flush the current one
1478 // (but allow split bundles)
1479 if (Pipeline::requires_bundling() && starts_bundle(n))
1480 cb->flush_bundle(false);
1481
1482 // Special handling for SafePoint/Call Nodes
1483 bool is_mcall = false;
1484 if (n->is_Mach()) {
1485 MachNode *mach = n->as_Mach();
1486 is_mcall = n->is_MachCall();
1487 bool is_sfn = n->is_MachSafePoint();
1488
1489 // If this requires all previous instructions be flushed, then do so
1490 if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1491 cb->flush_bundle(true);
1492 current_offset = cb->insts_size();
1493 }
1494
1495 // A padding may be needed again since a previous instruction
1496 // could be moved to delay slot.
1497
1498 // align the instruction if necessary
1499 int padding = mach->compute_padding(current_offset);
1500 // Make sure safepoint node for polling is distinct from a call's
1501 // return by adding a nop if needed.
1502 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1503 padding = nop_size;
1504 }
1505 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1506 current_offset == last_avoid_back_to_back_offset) {
1507 // Avoid back to back some instructions.
1508 padding = nop_size;
1509 }
1510
1511 if (padding > 0) {
1512 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1513 int nops_cnt = padding / nop_size;
1514 MachNode *nop = new MachNopNode(nops_cnt);
1515 block->insert_node(nop, j++);
1516 last_inst++;
1517 C->cfg()->map_node_to_block(nop, block);
1518 // Ensure enough space.
1519 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1520 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1521 C->record_failure("CodeCache is full");
1522 return;
1523 }
1524 nop->emit(*cb, C->regalloc());
1525 cb->flush_bundle(true);
1526 current_offset = cb->insts_size();
1527 }
1528
1529 bool observe_safepoint = is_sfn;
1530 // Remember the start of the last call in a basic block
1531 if (is_mcall) {
1532 MachCallNode *mcall = mach->as_MachCall();
1533
1534 // This destination address is NOT PC-relative
1535 mcall->method_set((intptr_t)mcall->entry_point());
1536
1537 // Save the return address
1538 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1539
1540 observe_safepoint = mcall->guaranteed_safepoint();
1541 }
1542
1543 // sfn will be valid whenever mcall is valid now because of inheritance
1544 if (observe_safepoint) {
1545 // Handle special safepoint nodes for synchronization
1546 if (!is_mcall) {
1547 MachSafePointNode *sfn = mach->as_MachSafePoint();
1548 // !!!!! Stubs only need an oopmap right now, so bail out
1549 if (sfn->jvms()->method() == nullptr) {
1550 // Write the oopmap directly to the code blob??!!
1551 continue;
1552 }
1553 } // End synchronization
1554
1555 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1556 current_offset);
1557 Process_OopMap_Node(mach, current_offset);
1558 } // End if safepoint
1559
1560 // If this is a null check, then add the start of the previous instruction to the list
1561 else if( mach->is_MachNullCheck() ) {
1562 inct_starts[inct_cnt++] = previous_offset;
1563 }
1564
1565 // If this is a branch, then fill in the label with the target BB's label
1566 else if (mach->is_MachBranch()) {
1567 // This requires the TRUE branch target be in succs[0]
1568 uint block_num = block->non_connector_successor(0)->_pre_order;
1569
1570 // Try to replace long branch if delay slot is not used,
1571 // it is mostly for back branches since forward branch's
1572 // distance is not updated yet.
1573 bool delay_slot_is_used = valid_bundle_info(n) &&
1574 C->output()->node_bundling(n)->use_unconditional_delay();
1575 if (!delay_slot_is_used && mach->may_be_short_branch()) {
1576 assert(delay_slot == nullptr, "not expecting delay slot node");
1577 int br_size = n->size(C->regalloc());
1578 int offset = blk_starts[block_num] - current_offset;
1579 if (block_num >= i) {
1580 // Current and following block's offset are not
1581 // finalized yet, adjust distance by the difference
1582 // between calculated and final offsets of current block.
1583 offset -= (blk_starts[i] - blk_offset);
1584 }
1585 // In the following code a nop could be inserted before
1586 // the branch which will increase the backward distance.
1587 bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1588 if (needs_padding && offset <= 0)
1589 offset -= nop_size;
1590
1591 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) {
1592 // We've got a winner. Replace this branch.
1593 MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1594
1595 // Update the jmp_size.
1596 int new_size = replacement->size(C->regalloc());
1597 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1598 // Insert padding between avoid_back_to_back branches.
1599 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1600 MachNode *nop = new MachNopNode();
1601 block->insert_node(nop, j++);
1602 C->cfg()->map_node_to_block(nop, block);
1603 last_inst++;
1604 nop->emit(*cb, C->regalloc());
1605 cb->flush_bundle(true);
1606 current_offset = cb->insts_size();
1607 }
1608 #ifdef ASSERT
1609 jmp_target[i] = block_num;
1610 jmp_offset[i] = current_offset - blk_offset;
1611 jmp_size[i] = new_size;
1612 jmp_rule[i] = mach->rule();
1613 #endif
1614 block->map_node(replacement, j);
1615 mach->subsume_by(replacement, C);
1616 n = replacement;
1617 mach = replacement;
1618 }
1619 }
1620 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1621 } else if (mach->ideal_Opcode() == Op_Jump) {
1622 for (uint h = 0; h < block->_num_succs; h++) {
1623 Block* succs_block = block->_succs[h];
1624 for (uint j = 1; j < succs_block->num_preds(); j++) {
1625 Node* jpn = succs_block->pred(j);
1626 if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1627 uint block_num = succs_block->non_connector()->_pre_order;
1628 Label *blkLabel = &blk_labels[block_num];
1629 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1630 }
1631 }
1632 }
1633 }
1634 #ifdef ASSERT
1635 // Check that oop-store precedes the card-mark
1636 else if (mach->ideal_Opcode() == Op_StoreCM) {
1637 uint storeCM_idx = j;
1638 int count = 0;
1639 for (uint prec = mach->req(); prec < mach->len(); prec++) {
1640 Node *oop_store = mach->in(prec); // Precedence edge
1641 if (oop_store == nullptr) continue;
1642 count++;
1643 uint i4;
1644 for (i4 = 0; i4 < last_inst; ++i4) {
1645 if (block->get_node(i4) == oop_store) {
1646 break;
1647 }
1648 }
1649 // Note: This test can provide a false failure if other precedence
1650 // edges have been added to the storeCMNode.
1651 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1652 }
1653 assert(count > 0, "storeCM expects at least one precedence edge");
1654 }
1655 #endif
1656 else if (!n->is_Proj()) {
1657 // Remember the beginning of the previous instruction, in case
1658 // it's followed by a flag-kill and a null-check. Happens on
1659 // Intel all the time, with add-to-memory kind of opcodes.
1660 previous_offset = current_offset;
1661 }
1662
1663 // Not an else-if!
1664 // If this is a trap based cmp then add its offset to the list.
1665 if (mach->is_TrapBasedCheckNode()) {
1666 inct_starts[inct_cnt++] = current_offset;
1667 }
1668 }
1669
1670 // Verify that there is sufficient space remaining
1671 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1672 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1673 C->record_failure("CodeCache is full");
1674 return;
1675 }
1676
1677 // Save the offset for the listing
1678 #if defined(SUPPORT_OPTO_ASSEMBLY)
1679 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) {
1680 node_offsets[n->_idx] = cb->insts_size();
1681 }
1682 #endif
1683 assert(!C->failing(), "Should not reach here if failing.");
1684
1685 // "Normal" instruction case
1686 DEBUG_ONLY(uint instr_offset = cb->insts_size());
1687 n->emit(*cb, C->regalloc());
1688 current_offset = cb->insts_size();
1689
1690 // Above we only verified that there is enough space in the instruction section.
1691 // However, the instruction may emit stubs that cause code buffer expansion.
1692 // Bail out here if expansion failed due to a lack of code cache space.
1693 if (C->failing()) {
1694 return;
1695 }
1696
1697 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset),
1698 "ret_addr_offset() not within emitted code");
1699
1700 #ifdef ASSERT
1701 uint n_size = n->size(C->regalloc());
1702 if (n_size < (current_offset-instr_offset)) {
1703 MachNode* mach = n->as_Mach();
1704 n->dump();
1705 mach->dump_format(C->regalloc(), tty);
1706 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset);
1707 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty);
1708 tty->print_cr(" ------------------- ");
1709 BufferBlob* blob = this->scratch_buffer_blob();
1710 address blob_begin = blob->content_begin();
1711 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty);
1712 assert(false, "wrong size of mach node");
1713 }
1714 #endif
1715 non_safepoints.observe_instruction(n, current_offset);
1716
1717 // mcall is last "call" that can be a safepoint
1718 // record it so we can see if a poll will directly follow it
1719 // in which case we'll need a pad to make the PcDesc sites unique
1720 // see 5010568. This can be slightly inaccurate but conservative
1721 // in the case that return address is not actually at current_offset.
1722 // This is a small price to pay.
1723
1724 if (is_mcall) {
1725 last_call_offset = current_offset;
1726 }
1727
1728 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1729 // Avoid back to back some instructions.
1730 last_avoid_back_to_back_offset = current_offset;
1731 }
1732
1733 // See if this instruction has a delay slot
1734 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1735 guarantee(delay_slot != nullptr, "expecting delay slot node");
1736
1737 // Back up 1 instruction
1738 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1739
1740 // Save the offset for the listing
1741 #if defined(SUPPORT_OPTO_ASSEMBLY)
1742 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) {
1743 node_offsets[delay_slot->_idx] = cb->insts_size();
1744 }
1745 #endif
1746
1747 // Support a SafePoint in the delay slot
1748 if (delay_slot->is_MachSafePoint()) {
1749 MachNode *mach = delay_slot->as_Mach();
1750 // !!!!! Stubs only need an oopmap right now, so bail out
1751 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) {
1752 // Write the oopmap directly to the code blob??!!
1753 delay_slot = nullptr;
1754 continue;
1755 }
1756
1757 int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1758 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1759 adjusted_offset);
1760 // Generate an OopMap entry
1761 Process_OopMap_Node(mach, adjusted_offset);
1762 }
1763
1764 // Insert the delay slot instruction
1765 delay_slot->emit(*cb, C->regalloc());
1766
1767 // Don't reuse it
1768 delay_slot = nullptr;
1769 }
1770
1771 } // End for all instructions in block
1772
1773 // If the next block is the top of a loop, pad this block out to align
1774 // the loop top a little. Helps prevent pipe stalls at loop back branches.
1775 if (i < nblocks-1) {
1776 Block *nb = C->cfg()->get_block(i + 1);
1777 int padding = nb->alignment_padding(current_offset);
1778 if( padding > 0 ) {
1779 MachNode *nop = new MachNopNode(padding / nop_size);
1780 block->insert_node(nop, block->number_of_nodes());
1781 C->cfg()->map_node_to_block(nop, block);
1782 nop->emit(*cb, C->regalloc());
1783 current_offset = cb->insts_size();
1784 }
1785 }
1786 // Verify that the distance for generated before forward
1787 // short branches is still valid.
1788 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1789
1790 // Save new block start offset
1791 blk_starts[i] = blk_offset;
1792 } // End of for all blocks
1793 blk_starts[nblocks] = current_offset;
1794
1795 non_safepoints.flush_at_end();
1796
1797 // Offset too large?
1798 if (C->failing()) return;
1799
1800 // Define a pseudo-label at the end of the code
1801 MacroAssembler(cb).bind( blk_labels[nblocks] );
1802
1803 // Compute the size of the first block
1804 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1805
1806 #ifdef ASSERT
1807 for (uint i = 0; i < nblocks; i++) { // For all blocks
1808 if (jmp_target[i] != 0) {
1809 int br_size = jmp_size[i];
1810 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1811 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1812 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1813 assert(false, "Displacement too large for short jmp");
1814 }
1815 }
1816 }
1817 #endif
1818
1819 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1820 bs->emit_stubs(*cb);
1821 if (C->failing()) return;
1822
1823 // Fill in stubs for calling the runtime from safepoint polls.
1824 safepoint_poll_table()->emit(*cb);
1825 if (C->failing()) return;
1826
1827 #ifndef PRODUCT
1828 // Information on the size of the method, without the extraneous code
1829 Scheduling::increment_method_size(cb->insts_size());
1830 #endif
1831
1832 // ------------------
1833 // Fill in exception table entries.
1834 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1835
1836 // Only java methods have exception handlers and deopt handlers
1837 // class HandlerImpl is platform-specific and defined in the *.ad files.
1838 if (C->method()) {
1839 // Emit the exception handler code.
1840 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1841 if (C->failing()) {
1842 return; // CodeBuffer::expand failed
1843 }
1844 // Emit the deopt handler code.
1845 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1846
1847 // Emit the MethodHandle deopt handler code (if required).
1848 if (C->has_method_handle_invokes() && !C->failing()) {
1849 // We can use the same code as for the normal deopt handler, we
1850 // just need a different entry point address.
1851 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1852 }
1853 }
1854
1855 // One last check for failed CodeBuffer::expand:
1856 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) {
1857 C->record_failure("CodeCache is full");
1858 return;
1859 }
1860
1861 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY)
1862 if (C->print_assembly()) {
1863 tty->cr();
1864 tty->print_cr("============================= C2-compiled nmethod ==============================");
1865 }
1866 #endif
1867
1868 #if defined(SUPPORT_OPTO_ASSEMBLY)
1869 // Dump the assembly code, including basic-block numbers
1870 if (C->print_assembly()) {
1871 ttyLocker ttyl; // keep the following output all in one block
1872 if (!VMThread::should_terminate()) { // test this under the tty lock
1873 // This output goes directly to the tty, not the compiler log.
1874 // To enable tools to match it up with the compilation activity,
1875 // be sure to tag this tty output with the compile ID.
1876 if (xtty != nullptr) {
1877 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(),
1878 C->is_osr_compilation() ? " compile_kind='osr'" : "");
1879 }
1880 if (C->method() != nullptr) {
1881 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id());
1882 C->method()->print_metadata();
1883 } else if (C->stub_name() != nullptr) {
1884 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name());
1885 }
1886 tty->cr();
1887 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id());
1888 dump_asm(node_offsets, node_offset_limit);
1889 tty->print_cr("--------------------------------------------------------------------------------");
1890 if (xtty != nullptr) {
1891 // print_metadata and dump_asm above may safepoint which makes us loose the ttylock.
1892 // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done
1893 // thread safe
1894 ttyLocker ttyl2;
1895 xtty->tail("opto_assembly");
1896 }
1897 }
1898 }
1899 #endif
1900 }
1901
1902 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1903 _inc_table.set_size(cnt);
1904
1905 uint inct_cnt = 0;
1906 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
1907 Block* block = C->cfg()->get_block(i);
1908 Node *n = nullptr;
1909 int j;
1910
1911 // Find the branch; ignore trailing NOPs.
1912 for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1913 n = block->get_node(j);
1914 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1915 break;
1916 }
1917 }
1918
1919 // If we didn't find anything, continue
1920 if (j < 0) {
1921 continue;
1922 }
1923
1924 // Compute ExceptionHandlerTable subtable entry and add it
1925 // (skip empty blocks)
1926 if (n->is_Catch()) {
1927
1928 // Get the offset of the return from the call
1929 uint call_return = call_returns[block->_pre_order];
1930 #ifdef ASSERT
1931 assert( call_return > 0, "no call seen for this basic block" );
1932 while (block->get_node(--j)->is_MachProj()) ;
1933 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1934 #endif
1935 // last instruction is a CatchNode, find it's CatchProjNodes
1936 int nof_succs = block->_num_succs;
1937 // allocate space
1938 GrowableArray<intptr_t> handler_bcis(nof_succs);
1939 GrowableArray<intptr_t> handler_pcos(nof_succs);
1940 // iterate through all successors
1941 for (int j = 0; j < nof_succs; j++) {
1942 Block* s = block->_succs[j];
1943 bool found_p = false;
1944 for (uint k = 1; k < s->num_preds(); k++) {
1945 Node* pk = s->pred(k);
1946 if (pk->is_CatchProj() && pk->in(0) == n) {
1947 const CatchProjNode* p = pk->as_CatchProj();
1948 found_p = true;
1949 // add the corresponding handler bci & pco information
1950 if (p->_con != CatchProjNode::fall_through_index) {
1951 // p leads to an exception handler (and is not fall through)
1952 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering");
1953 // no duplicates, please
1954 if (!handler_bcis.contains(p->handler_bci())) {
1955 uint block_num = s->non_connector()->_pre_order;
1956 handler_bcis.append(p->handler_bci());
1957 handler_pcos.append(blk_labels[block_num].loc_pos());
1958 }
1959 }
1960 }
1961 }
1962 assert(found_p, "no matching predecessor found");
1963 // Note: Due to empty block removal, one block may have
1964 // several CatchProj inputs, from the same Catch.
1965 }
1966
1967 // Set the offset of the return from the call
1968 assert(handler_bcis.find(-1) != -1, "must have default handler");
1969 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos);
1970 continue;
1971 }
1972
1973 // Handle implicit null exception table updates
1974 if (n->is_MachNullCheck()) {
1975 uint block_num = block->non_connector_successor(0)->_pre_order;
1976 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1977 continue;
1978 }
1979 // Handle implicit exception table updates: trap instructions.
1980 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1981 uint block_num = block->non_connector_successor(0)->_pre_order;
1982 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1983 continue;
1984 }
1985 } // End of for all blocks fill in exception table entries
1986 }
1987
1988 // Static Variables
1989 #ifndef PRODUCT
1990 uint Scheduling::_total_nop_size = 0;
1991 uint Scheduling::_total_method_size = 0;
1992 uint Scheduling::_total_branches = 0;
1993 uint Scheduling::_total_unconditional_delays = 0;
1994 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1995 #endif
1996
1997 // Initializer for class Scheduling
1998
1999 Scheduling::Scheduling(Arena *arena, Compile &compile)
2000 : _arena(arena),
2001 _cfg(compile.cfg()),
2002 _regalloc(compile.regalloc()),
2003 _scheduled(arena),
2004 _available(arena),
2005 _reg_node(arena),
2006 _pinch_free_list(arena),
2007 _next_node(nullptr),
2008 _bundle_instr_count(0),
2009 _bundle_cycle_number(0),
2010 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0])
2011 #ifndef PRODUCT
2012 , _branches(0)
2013 , _unconditional_delays(0)
2014 #endif
2015 {
2016 // Create a MachNopNode
2017 _nop = new MachNopNode();
2018
2019 // Now that the nops are in the array, save the count
2020 // (but allow entries for the nops)
2021 _node_bundling_limit = compile.unique();
2022 uint node_max = _regalloc->node_regs_max_index();
2023
2024 compile.output()->set_node_bundling_limit(_node_bundling_limit);
2025
2026 // This one is persistent within the Compile class
2027 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
2028
2029 // Allocate space for fixed-size arrays
2030 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2031 _uses = NEW_ARENA_ARRAY(arena, short, node_max);
2032 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
2033
2034 // Clear the arrays
2035 for (uint i = 0; i < node_max; i++) {
2036 ::new (&_node_bundling_base[i]) Bundle();
2037 }
2038 memset(_node_latency, 0, node_max * sizeof(unsigned short));
2039 memset(_uses, 0, node_max * sizeof(short));
2040 memset(_current_latency, 0, node_max * sizeof(unsigned short));
2041
2042 // Clear the bundling information
2043 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
2044
2045 // Get the last node
2046 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
2047
2048 _next_node = block->get_node(block->number_of_nodes() - 1);
2049 }
2050
2051 #ifndef PRODUCT
2052 // Scheduling destructor
2053 Scheduling::~Scheduling() {
2054 _total_branches += _branches;
2055 _total_unconditional_delays += _unconditional_delays;
2056 }
2057 #endif
2058
2059 // Step ahead "i" cycles
2060 void Scheduling::step(uint i) {
2061
2062 Bundle *bundle = node_bundling(_next_node);
2063 bundle->set_starts_bundle();
2064
2065 // Update the bundle record, but leave the flags information alone
2066 if (_bundle_instr_count > 0) {
2067 bundle->set_instr_count(_bundle_instr_count);
2068 bundle->set_resources_used(_bundle_use.resourcesUsed());
2069 }
2070
2071 // Update the state information
2072 _bundle_instr_count = 0;
2073 _bundle_cycle_number += i;
2074 _bundle_use.step(i);
2075 }
2076
2077 void Scheduling::step_and_clear() {
2078 Bundle *bundle = node_bundling(_next_node);
2079 bundle->set_starts_bundle();
2080
2081 // Update the bundle record
2082 if (_bundle_instr_count > 0) {
2083 bundle->set_instr_count(_bundle_instr_count);
2084 bundle->set_resources_used(_bundle_use.resourcesUsed());
2085
2086 _bundle_cycle_number += 1;
2087 }
2088
2089 // Clear the bundling information
2090 _bundle_instr_count = 0;
2091 _bundle_use.reset();
2092
2093 memcpy(_bundle_use_elements,
2094 Pipeline_Use::elaborated_elements,
2095 sizeof(Pipeline_Use::elaborated_elements));
2096 }
2097
2098 // Perform instruction scheduling and bundling over the sequence of
2099 // instructions in backwards order.
2100 void PhaseOutput::ScheduleAndBundle() {
2101
2102 // Don't optimize this if it isn't a method
2103 if (!C->method())
2104 return;
2105
2106 // Don't optimize this if scheduling is disabled
2107 if (!C->do_scheduling())
2108 return;
2109
2110 // Scheduling code works only with pairs (8 bytes) maximum.
2111 if (C->max_vector_size() > 8)
2112 return;
2113
2114 Compile::TracePhase tp("isched", &timers[_t_instrSched]);
2115
2116 // Create a data structure for all the scheduling information
2117 Scheduling scheduling(Thread::current()->resource_area(), *C);
2118
2119 // Walk backwards over each basic block, computing the needed alignment
2120 // Walk over all the basic blocks
2121 scheduling.DoScheduling();
2122
2123 #ifndef PRODUCT
2124 if (C->trace_opto_output()) {
2125 tty->print("\n---- After ScheduleAndBundle ----\n");
2126 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
2127 tty->print("\nBB#%03d:\n", i);
2128 Block* block = C->cfg()->get_block(i);
2129 for (uint j = 0; j < block->number_of_nodes(); j++) {
2130 Node* n = block->get_node(j);
2131 OptoReg::Name reg = C->regalloc()->get_reg_first(n);
2132 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
2133 n->dump();
2134 }
2135 }
2136 }
2137 #endif
2138 }
2139
2140 // Compute the latency of all the instructions. This is fairly simple,
2141 // because we already have a legal ordering. Walk over the instructions
2142 // from first to last, and compute the latency of the instruction based
2143 // on the latency of the preceding instruction(s).
2144 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
2145 #ifndef PRODUCT
2146 if (_cfg->C->trace_opto_output())
2147 tty->print("# -> ComputeLocalLatenciesForward\n");
2148 #endif
2149
2150 // Walk over all the schedulable instructions
2151 for( uint j=_bb_start; j < _bb_end; j++ ) {
2152
2153 // This is a kludge, forcing all latency calculations to start at 1.
2154 // Used to allow latency 0 to force an instruction to the beginning
2155 // of the bb
2156 uint latency = 1;
2157 Node *use = bb->get_node(j);
2158 uint nlen = use->len();
2159
2160 // Walk over all the inputs
2161 for ( uint k=0; k < nlen; k++ ) {
2162 Node *def = use->in(k);
2163 if (!def)
2164 continue;
2165
2166 uint l = _node_latency[def->_idx] + use->latency(k);
2167 if (latency < l)
2168 latency = l;
2169 }
2170
2171 _node_latency[use->_idx] = latency;
2172
2173 #ifndef PRODUCT
2174 if (_cfg->C->trace_opto_output()) {
2175 tty->print("# latency %4d: ", latency);
2176 use->dump();
2177 }
2178 #endif
2179 }
2180
2181 #ifndef PRODUCT
2182 if (_cfg->C->trace_opto_output())
2183 tty->print("# <- ComputeLocalLatenciesForward\n");
2184 #endif
2185
2186 } // end ComputeLocalLatenciesForward
2187
2188 // See if this node fits into the present instruction bundle
2189 bool Scheduling::NodeFitsInBundle(Node *n) {
2190 uint n_idx = n->_idx;
2191
2192 // If this is the unconditional delay instruction, then it fits
2193 if (n == _unconditional_delay_slot) {
2194 #ifndef PRODUCT
2195 if (_cfg->C->trace_opto_output())
2196 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
2197 #endif
2198 return (true);
2199 }
2200
2201 // If the node cannot be scheduled this cycle, skip it
2202 if (_current_latency[n_idx] > _bundle_cycle_number) {
2203 #ifndef PRODUCT
2204 if (_cfg->C->trace_opto_output())
2205 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
2206 n->_idx, _current_latency[n_idx], _bundle_cycle_number);
2207 #endif
2208 return (false);
2209 }
2210
2211 const Pipeline *node_pipeline = n->pipeline();
2212
2213 uint instruction_count = node_pipeline->instructionCount();
2214 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2215 instruction_count = 0;
2216 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2217 instruction_count++;
2218
2219 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
2220 #ifndef PRODUCT
2221 if (_cfg->C->trace_opto_output())
2222 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2223 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2224 #endif
2225 return (false);
2226 }
2227
2228 // Don't allow non-machine nodes to be handled this way
2229 if (!n->is_Mach() && instruction_count == 0)
2230 return (false);
2231
2232 // See if there is any overlap
2233 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2234
2235 if (delay > 0) {
2236 #ifndef PRODUCT
2237 if (_cfg->C->trace_opto_output())
2238 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2239 #endif
2240 return false;
2241 }
2242
2243 #ifndef PRODUCT
2244 if (_cfg->C->trace_opto_output())
2245 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx);
2246 #endif
2247
2248 return true;
2249 }
2250
2251 Node * Scheduling::ChooseNodeToBundle() {
2252 uint siz = _available.size();
2253
2254 if (siz == 0) {
2255
2256 #ifndef PRODUCT
2257 if (_cfg->C->trace_opto_output())
2258 tty->print("# ChooseNodeToBundle: null\n");
2259 #endif
2260 return (nullptr);
2261 }
2262
2263 // Fast path, if only 1 instruction in the bundle
2264 if (siz == 1) {
2265 #ifndef PRODUCT
2266 if (_cfg->C->trace_opto_output()) {
2267 tty->print("# ChooseNodeToBundle (only 1): ");
2268 _available[0]->dump();
2269 }
2270 #endif
2271 return (_available[0]);
2272 }
2273
2274 // Don't bother, if the bundle is already full
2275 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2276 for ( uint i = 0; i < siz; i++ ) {
2277 Node *n = _available[i];
2278
2279 // Skip projections, we'll handle them another way
2280 if (n->is_Proj())
2281 continue;
2282
2283 // This presupposed that instructions are inserted into the
2284 // available list in a legality order; i.e. instructions that
2285 // must be inserted first are at the head of the list
2286 if (NodeFitsInBundle(n)) {
2287 #ifndef PRODUCT
2288 if (_cfg->C->trace_opto_output()) {
2289 tty->print("# ChooseNodeToBundle: ");
2290 n->dump();
2291 }
2292 #endif
2293 return (n);
2294 }
2295 }
2296 }
2297
2298 // Nothing fits in this bundle, choose the highest priority
2299 #ifndef PRODUCT
2300 if (_cfg->C->trace_opto_output()) {
2301 tty->print("# ChooseNodeToBundle: ");
2302 _available[0]->dump();
2303 }
2304 #endif
2305
2306 return _available[0];
2307 }
2308
2309 void Scheduling::AddNodeToAvailableList(Node *n) {
2310 assert( !n->is_Proj(), "projections never directly made available" );
2311 #ifndef PRODUCT
2312 if (_cfg->C->trace_opto_output()) {
2313 tty->print("# AddNodeToAvailableList: ");
2314 n->dump();
2315 }
2316 #endif
2317
2318 int latency = _current_latency[n->_idx];
2319
2320 // Insert in latency order (insertion sort)
2321 uint i;
2322 for ( i=0; i < _available.size(); i++ )
2323 if (_current_latency[_available[i]->_idx] > latency)
2324 break;
2325
2326 // Special Check for compares following branches
2327 if( n->is_Mach() && _scheduled.size() > 0 ) {
2328 int op = n->as_Mach()->ideal_Opcode();
2329 Node *last = _scheduled[0];
2330 if( last->is_MachIf() && last->in(1) == n &&
2331 ( op == Op_CmpI ||
2332 op == Op_CmpU ||
2333 op == Op_CmpUL ||
2334 op == Op_CmpP ||
2335 op == Op_CmpF ||
2336 op == Op_CmpD ||
2337 op == Op_CmpL ) ) {
2338
2339 // Recalculate position, moving to front of same latency
2340 for ( i=0 ; i < _available.size(); i++ )
2341 if (_current_latency[_available[i]->_idx] >= latency)
2342 break;
2343 }
2344 }
2345
2346 // Insert the node in the available list
2347 _available.insert(i, n);
2348
2349 #ifndef PRODUCT
2350 if (_cfg->C->trace_opto_output())
2351 dump_available();
2352 #endif
2353 }
2354
2355 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2356 for ( uint i=0; i < n->len(); i++ ) {
2357 Node *def = n->in(i);
2358 if (!def) continue;
2359 if( def->is_Proj() ) // If this is a machine projection, then
2360 def = def->in(0); // propagate usage thru to the base instruction
2361
2362 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2363 continue;
2364 }
2365
2366 // Compute the latency
2367 uint l = _bundle_cycle_number + n->latency(i);
2368 if (_current_latency[def->_idx] < l)
2369 _current_latency[def->_idx] = l;
2370
2371 // If this does not have uses then schedule it
2372 if ((--_uses[def->_idx]) == 0)
2373 AddNodeToAvailableList(def);
2374 }
2375 }
2376
2377 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2378 #ifndef PRODUCT
2379 if (_cfg->C->trace_opto_output()) {
2380 tty->print("# AddNodeToBundle: ");
2381 n->dump();
2382 }
2383 #endif
2384
2385 // Remove this from the available list
2386 uint i;
2387 for (i = 0; i < _available.size(); i++)
2388 if (_available[i] == n)
2389 break;
2390 assert(i < _available.size(), "entry in _available list not found");
2391 _available.remove(i);
2392
2393 // See if this fits in the current bundle
2394 const Pipeline *node_pipeline = n->pipeline();
2395 const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2396
2397 // Check for instructions to be placed in the delay slot. We
2398 // do this before we actually schedule the current instruction,
2399 // because the delay slot follows the current instruction.
2400 if (Pipeline::_branch_has_delay_slot &&
2401 node_pipeline->hasBranchDelay() &&
2402 !_unconditional_delay_slot) {
2403
2404 uint siz = _available.size();
2405
2406 // Conditional branches can support an instruction that
2407 // is unconditionally executed and not dependent by the
2408 // branch, OR a conditionally executed instruction if
2409 // the branch is taken. In practice, this means that
2410 // the first instruction at the branch target is
2411 // copied to the delay slot, and the branch goes to
2412 // the instruction after that at the branch target
2413 if ( n->is_MachBranch() ) {
2414
2415 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2416 assert( !n->is_Catch(), "should not look for delay slot for Catch" );
2417
2418 #ifndef PRODUCT
2419 _branches++;
2420 #endif
2421
2422 // At least 1 instruction is on the available list
2423 // that is not dependent on the branch
2424 for (uint i = 0; i < siz; i++) {
2425 Node *d = _available[i];
2426 const Pipeline *avail_pipeline = d->pipeline();
2427
2428 // Don't allow safepoints in the branch shadow, that will
2429 // cause a number of difficulties
2430 if ( avail_pipeline->instructionCount() == 1 &&
2431 !avail_pipeline->hasMultipleBundles() &&
2432 !avail_pipeline->hasBranchDelay() &&
2433 Pipeline::instr_has_unit_size() &&
2434 d->size(_regalloc) == Pipeline::instr_unit_size() &&
2435 NodeFitsInBundle(d) &&
2436 !node_bundling(d)->used_in_delay()) {
2437
2438 if (d->is_Mach() && !d->is_MachSafePoint()) {
2439 // A node that fits in the delay slot was found, so we need to
2440 // set the appropriate bits in the bundle pipeline information so
2441 // that it correctly indicates resource usage. Later, when we
2442 // attempt to add this instruction to the bundle, we will skip
2443 // setting the resource usage.
2444 _unconditional_delay_slot = d;
2445 node_bundling(n)->set_use_unconditional_delay();
2446 node_bundling(d)->set_used_in_unconditional_delay();
2447 _bundle_use.add_usage(avail_pipeline->resourceUse());
2448 _current_latency[d->_idx] = _bundle_cycle_number;
2449 _next_node = d;
2450 ++_bundle_instr_count;
2451 #ifndef PRODUCT
2452 _unconditional_delays++;
2453 #endif
2454 break;
2455 }
2456 }
2457 }
2458 }
2459
2460 // No delay slot, add a nop to the usage
2461 if (!_unconditional_delay_slot) {
2462 // See if adding an instruction in the delay slot will overflow
2463 // the bundle.
2464 if (!NodeFitsInBundle(_nop)) {
2465 #ifndef PRODUCT
2466 if (_cfg->C->trace_opto_output())
2467 tty->print("# *** STEP(1 instruction for delay slot) ***\n");
2468 #endif
2469 step(1);
2470 }
2471
2472 _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2473 _next_node = _nop;
2474 ++_bundle_instr_count;
2475 }
2476
2477 // See if the instruction in the delay slot requires a
2478 // step of the bundles
2479 if (!NodeFitsInBundle(n)) {
2480 #ifndef PRODUCT
2481 if (_cfg->C->trace_opto_output())
2482 tty->print("# *** STEP(branch won't fit) ***\n");
2483 #endif
2484 // Update the state information
2485 _bundle_instr_count = 0;
2486 _bundle_cycle_number += 1;
2487 _bundle_use.step(1);
2488 }
2489 }
2490
2491 // Get the number of instructions
2492 uint instruction_count = node_pipeline->instructionCount();
2493 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2494 instruction_count = 0;
2495
2496 // Compute the latency information
2497 uint delay = 0;
2498
2499 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2500 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2501 if (relative_latency < 0)
2502 relative_latency = 0;
2503
2504 delay = _bundle_use.full_latency(relative_latency, node_usage);
2505
2506 // Does not fit in this bundle, start a new one
2507 if (delay > 0) {
2508 step(delay);
2509
2510 #ifndef PRODUCT
2511 if (_cfg->C->trace_opto_output())
2512 tty->print("# *** STEP(%d) ***\n", delay);
2513 #endif
2514 }
2515 }
2516
2517 // If this was placed in the delay slot, ignore it
2518 if (n != _unconditional_delay_slot) {
2519
2520 if (delay == 0) {
2521 if (node_pipeline->hasMultipleBundles()) {
2522 #ifndef PRODUCT
2523 if (_cfg->C->trace_opto_output())
2524 tty->print("# *** STEP(multiple instructions) ***\n");
2525 #endif
2526 step(1);
2527 }
2528
2529 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2530 #ifndef PRODUCT
2531 if (_cfg->C->trace_opto_output())
2532 tty->print("# *** STEP(%d >= %d instructions) ***\n",
2533 instruction_count + _bundle_instr_count,
2534 Pipeline::_max_instrs_per_cycle);
2535 #endif
2536 step(1);
2537 }
2538 }
2539
2540 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2541 _bundle_instr_count++;
2542
2543 // Set the node's latency
2544 _current_latency[n->_idx] = _bundle_cycle_number;
2545
2546 // Now merge the functional unit information
2547 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2548 _bundle_use.add_usage(node_usage);
2549
2550 // Increment the number of instructions in this bundle
2551 _bundle_instr_count += instruction_count;
2552
2553 // Remember this node for later
2554 if (n->is_Mach())
2555 _next_node = n;
2556 }
2557
2558 // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2559 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks.
2560 // 'Schedule' them (basically ignore in the schedule) but do not insert them
2561 // into the block. All other scheduled nodes get put in the schedule here.
2562 int op = n->Opcode();
2563 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2564 (op != Op_Node && // Not an unused antidepedence node and
2565 // not an unallocated boxlock
2566 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2567
2568 // Push any trailing projections
2569 if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2570 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2571 Node *foi = n->fast_out(i);
2572 if( foi->is_Proj() )
2573 _scheduled.push(foi);
2574 }
2575 }
2576
2577 // Put the instruction in the schedule list
2578 _scheduled.push(n);
2579 }
2580
2581 #ifndef PRODUCT
2582 if (_cfg->C->trace_opto_output())
2583 dump_available();
2584 #endif
2585
2586 // Walk all the definitions, decrementing use counts, and
2587 // if a definition has a 0 use count, place it in the available list.
2588 DecrementUseCounts(n,bb);
2589 }
2590
2591 // This method sets the use count within a basic block. We will ignore all
2592 // uses outside the current basic block. As we are doing a backwards walk,
2593 // any node we reach that has a use count of 0 may be scheduled. This also
2594 // avoids the problem of cyclic references from phi nodes, as long as phi
2595 // nodes are at the front of the basic block. This method also initializes
2596 // the available list to the set of instructions that have no uses within this
2597 // basic block.
2598 void Scheduling::ComputeUseCount(const Block *bb) {
2599 #ifndef PRODUCT
2600 if (_cfg->C->trace_opto_output())
2601 tty->print("# -> ComputeUseCount\n");
2602 #endif
2603
2604 // Clear the list of available and scheduled instructions, just in case
2605 _available.clear();
2606 _scheduled.clear();
2607
2608 // No delay slot specified
2609 _unconditional_delay_slot = nullptr;
2610
2611 #ifdef ASSERT
2612 for( uint i=0; i < bb->number_of_nodes(); i++ )
2613 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2614 #endif
2615
2616 // Force the _uses count to never go to zero for unscheduable pieces
2617 // of the block
2618 for( uint k = 0; k < _bb_start; k++ )
2619 _uses[bb->get_node(k)->_idx] = 1;
2620 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2621 _uses[bb->get_node(l)->_idx] = 1;
2622
2623 // Iterate backwards over the instructions in the block. Don't count the
2624 // branch projections at end or the block header instructions.
2625 for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2626 Node *n = bb->get_node(j);
2627 if( n->is_Proj() ) continue; // Projections handled another way
2628
2629 // Account for all uses
2630 for ( uint k = 0; k < n->len(); k++ ) {
2631 Node *inp = n->in(k);
2632 if (!inp) continue;
2633 assert(inp != n, "no cycles allowed" );
2634 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2635 if (inp->is_Proj()) { // Skip through Proj's
2636 inp = inp->in(0);
2637 }
2638 ++_uses[inp->_idx]; // Count 1 block-local use
2639 }
2640 }
2641
2642 // If this instruction has a 0 use count, then it is available
2643 if (!_uses[n->_idx]) {
2644 _current_latency[n->_idx] = _bundle_cycle_number;
2645 AddNodeToAvailableList(n);
2646 }
2647
2648 #ifndef PRODUCT
2649 if (_cfg->C->trace_opto_output()) {
2650 tty->print("# uses: %3d: ", _uses[n->_idx]);
2651 n->dump();
2652 }
2653 #endif
2654 }
2655
2656 #ifndef PRODUCT
2657 if (_cfg->C->trace_opto_output())
2658 tty->print("# <- ComputeUseCount\n");
2659 #endif
2660 }
2661
2662 // This routine performs scheduling on each basic block in reverse order,
2663 // using instruction latencies and taking into account function unit
2664 // availability.
2665 void Scheduling::DoScheduling() {
2666 #ifndef PRODUCT
2667 if (_cfg->C->trace_opto_output())
2668 tty->print("# -> DoScheduling\n");
2669 #endif
2670
2671 Block *succ_bb = nullptr;
2672 Block *bb;
2673 Compile* C = Compile::current();
2674
2675 // Walk over all the basic blocks in reverse order
2676 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2677 bb = _cfg->get_block(i);
2678
2679 #ifndef PRODUCT
2680 if (_cfg->C->trace_opto_output()) {
2681 tty->print("# Schedule BB#%03d (initial)\n", i);
2682 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2683 bb->get_node(j)->dump();
2684 }
2685 }
2686 #endif
2687
2688 // On the head node, skip processing
2689 if (bb == _cfg->get_root_block()) {
2690 continue;
2691 }
2692
2693 // Skip empty, connector blocks
2694 if (bb->is_connector())
2695 continue;
2696
2697 // If the following block is not the sole successor of
2698 // this one, then reset the pipeline information
2699 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2700 #ifndef PRODUCT
2701 if (_cfg->C->trace_opto_output()) {
2702 tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2703 _next_node->_idx, _bundle_instr_count);
2704 }
2705 #endif
2706 step_and_clear();
2707 }
2708
2709 // Leave untouched the starting instruction, any Phis, a CreateEx node
2710 // or Top. bb->get_node(_bb_start) is the first schedulable instruction.
2711 _bb_end = bb->number_of_nodes()-1;
2712 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2713 Node *n = bb->get_node(_bb_start);
2714 // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2715 // Also, MachIdealNodes do not get scheduled
2716 if( !n->is_Mach() ) continue; // Skip non-machine nodes
2717 MachNode *mach = n->as_Mach();
2718 int iop = mach->ideal_Opcode();
2719 if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2720 if( iop == Op_Con ) continue; // Do not schedule Top
2721 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes
2722 mach->pipeline() == MachNode::pipeline_class() &&
2723 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc
2724 continue;
2725 break; // Funny loop structure to be sure...
2726 }
2727 // Compute last "interesting" instruction in block - last instruction we
2728 // might schedule. _bb_end points just after last schedulable inst. We
2729 // normally schedule conditional branches (despite them being forced last
2730 // in the block), because they have delay slots we can fill. Calls all
2731 // have their delay slots filled in the template expansions, so we don't
2732 // bother scheduling them.
2733 Node *last = bb->get_node(_bb_end);
2734 // Ignore trailing NOPs.
2735 while (_bb_end > 0 && last->is_Mach() &&
2736 last->as_Mach()->ideal_Opcode() == Op_Con) {
2737 last = bb->get_node(--_bb_end);
2738 }
2739 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2740 if( last->is_Catch() ||
2741 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2742 // There might be a prior call. Skip it.
2743 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj());
2744 } else if( last->is_MachNullCheck() ) {
2745 // Backup so the last null-checked memory instruction is
2746 // outside the schedulable range. Skip over the nullcheck,
2747 // projection, and the memory nodes.
2748 Node *mem = last->in(1);
2749 do {
2750 _bb_end--;
2751 } while (mem != bb->get_node(_bb_end));
2752 } else {
2753 // Set _bb_end to point after last schedulable inst.
2754 _bb_end++;
2755 }
2756
2757 assert( _bb_start <= _bb_end, "inverted block ends" );
2758
2759 // Compute the register antidependencies for the basic block
2760 ComputeRegisterAntidependencies(bb);
2761 if (C->failing()) return; // too many D-U pinch points
2762
2763 // Compute intra-bb latencies for the nodes
2764 ComputeLocalLatenciesForward(bb);
2765
2766 // Compute the usage within the block, and set the list of all nodes
2767 // in the block that have no uses within the block.
2768 ComputeUseCount(bb);
2769
2770 // Schedule the remaining instructions in the block
2771 while ( _available.size() > 0 ) {
2772 Node *n = ChooseNodeToBundle();
2773 guarantee(n != nullptr, "no nodes available");
2774 AddNodeToBundle(n,bb);
2775 }
2776
2777 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2778 #ifdef ASSERT
2779 for( uint l = _bb_start; l < _bb_end; l++ ) {
2780 Node *n = bb->get_node(l);
2781 uint m;
2782 for( m = 0; m < _bb_end-_bb_start; m++ )
2783 if( _scheduled[m] == n )
2784 break;
2785 assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2786 }
2787 #endif
2788
2789 // Now copy the instructions (in reverse order) back to the block
2790 for ( uint k = _bb_start; k < _bb_end; k++ )
2791 bb->map_node(_scheduled[_bb_end-k-1], k);
2792
2793 #ifndef PRODUCT
2794 if (_cfg->C->trace_opto_output()) {
2795 tty->print("# Schedule BB#%03d (final)\n", i);
2796 uint current = 0;
2797 for (uint j = 0; j < bb->number_of_nodes(); j++) {
2798 Node *n = bb->get_node(j);
2799 if( valid_bundle_info(n) ) {
2800 Bundle *bundle = node_bundling(n);
2801 if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2802 tty->print("*** Bundle: ");
2803 bundle->dump();
2804 }
2805 n->dump();
2806 }
2807 }
2808 }
2809 #endif
2810 #ifdef ASSERT
2811 verify_good_schedule(bb,"after block local scheduling");
2812 #endif
2813 }
2814
2815 #ifndef PRODUCT
2816 if (_cfg->C->trace_opto_output())
2817 tty->print("# <- DoScheduling\n");
2818 #endif
2819
2820 // Record final node-bundling array location
2821 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base);
2822
2823 } // end DoScheduling
2824
2825 // Verify that no live-range used in the block is killed in the block by a
2826 // wrong DEF. This doesn't verify live-ranges that span blocks.
2827
2828 // Check for edge existence. Used to avoid adding redundant precedence edges.
2829 static bool edge_from_to( Node *from, Node *to ) {
2830 for( uint i=0; i<from->len(); i++ )
2831 if( from->in(i) == to )
2832 return true;
2833 return false;
2834 }
2835
2836 #ifdef ASSERT
2837 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2838 // Check for bad kills
2839 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2840 Node *prior_use = _reg_node[def];
2841 if( prior_use && !edge_from_to(prior_use,n) ) {
2842 tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2843 n->dump();
2844 tty->print_cr("...");
2845 prior_use->dump();
2846 assert(edge_from_to(prior_use,n), "%s", msg);
2847 }
2848 _reg_node.map(def,nullptr); // Kill live USEs
2849 }
2850 }
2851
2852 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2853
2854 // Zap to something reasonable for the verify code
2855 _reg_node.clear();
2856
2857 // Walk over the block backwards. Check to make sure each DEF doesn't
2858 // kill a live value (other than the one it's supposed to). Add each
2859 // USE to the live set.
2860 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2861 Node *n = b->get_node(i);
2862 int n_op = n->Opcode();
2863 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2864 // Fat-proj kills a slew of registers
2865 RegMaskIterator rmi(n->out_RegMask());
2866 while (rmi.has_next()) {
2867 OptoReg::Name kill = rmi.next();
2868 verify_do_def(n, kill, msg);
2869 }
2870 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2871 // Get DEF'd registers the normal way
2872 verify_do_def( n, _regalloc->get_reg_first(n), msg );
2873 verify_do_def( n, _regalloc->get_reg_second(n), msg );
2874 }
2875
2876 // Now make all USEs live
2877 for( uint i=1; i<n->req(); i++ ) {
2878 Node *def = n->in(i);
2879 assert(def != 0, "input edge required");
2880 OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2881 OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2882 if( OptoReg::is_valid(reg_lo) ) {
2883 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg);
2884 _reg_node.map(reg_lo,n);
2885 }
2886 if( OptoReg::is_valid(reg_hi) ) {
2887 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg);
2888 _reg_node.map(reg_hi,n);
2889 }
2890 }
2891
2892 }
2893
2894 // Zap to something reasonable for the Antidependence code
2895 _reg_node.clear();
2896 }
2897 #endif
2898
2899 // Conditionally add precedence edges. Avoid putting edges on Projs.
2900 static void add_prec_edge_from_to( Node *from, Node *to ) {
2901 if( from->is_Proj() ) { // Put precedence edge on Proj's input
2902 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2903 from = from->in(0);
2904 }
2905 if( from != to && // No cycles (for things like LD L0,[L0+4] )
2906 !edge_from_to( from, to ) ) // Avoid duplicate edge
2907 from->add_prec(to);
2908 }
2909
2910 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2911 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2912 return;
2913
2914 if (OptoReg::is_reg(def_reg)) {
2915 VMReg vmreg = OptoReg::as_VMReg(def_reg);
2916 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) {
2917 // This is one of the high slots of a vector register.
2918 // ScheduleAndBundle already checked there are no live wide
2919 // vectors in this method so it can be safely ignored.
2920 return;
2921 }
2922 }
2923
2924 Node *pinch = _reg_node[def_reg]; // Get pinch point
2925 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2926 is_def ) { // Check for a true def (not a kill)
2927 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2928 return;
2929 }
2930
2931 Node *kill = def; // Rename 'def' to more descriptive 'kill'
2932 debug_only( def = (Node*)((intptr_t)0xdeadbeef); )
2933
2934 // After some number of kills there _may_ be a later def
2935 Node *later_def = nullptr;
2936
2937 Compile* C = Compile::current();
2938
2939 // Finding a kill requires a real pinch-point.
2940 // Check for not already having a pinch-point.
2941 // Pinch points are Op_Node's.
2942 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2943 later_def = pinch; // Must be def/kill as optimistic pinch-point
2944 if ( _pinch_free_list.size() > 0) {
2945 pinch = _pinch_free_list.pop();
2946 } else {
2947 pinch = new Node(1); // Pinch point to-be
2948 }
2949 if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2950 _cfg->C->record_method_not_compilable("too many D-U pinch points");
2951 return;
2952 }
2953 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init)
2954 _reg_node.map(def_reg,pinch); // Record pinch-point
2955 //regalloc()->set_bad(pinch->_idx); // Already initialized this way.
2956 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2957 pinch->init_req(0, C->top()); // set not null for the next call
2958 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2959 later_def = nullptr; // and no later def
2960 }
2961 pinch->set_req(0,later_def); // Hook later def so we can find it
2962 } else { // Else have valid pinch point
2963 if( pinch->in(0) ) // If there is a later-def
2964 later_def = pinch->in(0); // Get it
2965 }
2966
2967 // Add output-dependence edge from later def to kill
2968 if( later_def ) // If there is some original def
2969 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2970
2971 // See if current kill is also a use, and so is forced to be the pinch-point.
2972 if( pinch->Opcode() == Op_Node ) {
2973 Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2974 for( uint i=1; i<uses->req(); i++ ) {
2975 if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2976 _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2977 // Yes, found a use/kill pinch-point
2978 pinch->set_req(0,nullptr); //
2979 pinch->replace_by(kill); // Move anti-dep edges up
2980 pinch = kill;
2981 _reg_node.map(def_reg,pinch);
2982 return;
2983 }
2984 }
2985 }
2986
2987 // Add edge from kill to pinch-point
2988 add_prec_edge_from_to(kill,pinch);
2989 }
2990
2991 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2992 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2993 return;
2994 Node *pinch = _reg_node[use_reg]; // Get pinch point
2995 // Check for no later def_reg/kill in block
2996 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b &&
2997 // Use has to be block-local as well
2998 _cfg->get_block_for_node(use) == b) {
2999 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
3000 pinch->req() == 1 ) { // pinch not yet in block?
3001 pinch->del_req(0); // yank pointer to later-def, also set flag
3002 // Insert the pinch-point in the block just after the last use
3003 b->insert_node(pinch, b->find_node(use) + 1);
3004 _bb_end++; // Increase size scheduled region in block
3005 }
3006
3007 add_prec_edge_from_to(pinch,use);
3008 }
3009 }
3010
3011 // We insert antidependences between the reads and following write of
3012 // allocated registers to prevent illegal code motion. Hopefully, the
3013 // number of added references should be fairly small, especially as we
3014 // are only adding references within the current basic block.
3015 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
3016
3017 #ifdef ASSERT
3018 verify_good_schedule(b,"before block local scheduling");
3019 #endif
3020
3021 // A valid schedule, for each register independently, is an endless cycle
3022 // of: a def, then some uses (connected to the def by true dependencies),
3023 // then some kills (defs with no uses), finally the cycle repeats with a new
3024 // def. The uses are allowed to float relative to each other, as are the
3025 // kills. No use is allowed to slide past a kill (or def). This requires
3026 // antidependencies between all uses of a single def and all kills that
3027 // follow, up to the next def. More edges are redundant, because later defs
3028 // & kills are already serialized with true or antidependencies. To keep
3029 // the edge count down, we add a 'pinch point' node if there's more than
3030 // one use or more than one kill/def.
3031
3032 // We add dependencies in one bottom-up pass.
3033
3034 // For each instruction we handle it's DEFs/KILLs, then it's USEs.
3035
3036 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
3037 // register. If not, we record the DEF/KILL in _reg_node, the
3038 // register-to-def mapping. If there is a prior DEF/KILL, we insert a
3039 // "pinch point", a new Node that's in the graph but not in the block.
3040 // We put edges from the prior and current DEF/KILLs to the pinch point.
3041 // We put the pinch point in _reg_node. If there's already a pinch point
3042 // we merely add an edge from the current DEF/KILL to the pinch point.
3043
3044 // After doing the DEF/KILLs, we handle USEs. For each used register, we
3045 // put an edge from the pinch point to the USE.
3046
3047 // To be expedient, the _reg_node array is pre-allocated for the whole
3048 // compilation. _reg_node is lazily initialized; it either contains a null,
3049 // or a valid def/kill/pinch-point, or a leftover node from some prior
3050 // block. Leftover node from some prior block is treated like a null (no
3051 // prior def, so no anti-dependence needed). Valid def is distinguished by
3052 // it being in the current block.
3053 bool fat_proj_seen = false;
3054 uint last_safept = _bb_end-1;
3055 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr;
3056 Node* last_safept_node = end_node;
3057 for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
3058 Node *n = b->get_node(i);
3059 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges
3060 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
3061 // Fat-proj kills a slew of registers
3062 // This can add edges to 'n' and obscure whether or not it was a def,
3063 // hence the is_def flag.
3064 fat_proj_seen = true;
3065 RegMaskIterator rmi(n->out_RegMask());
3066 while (rmi.has_next()) {
3067 OptoReg::Name kill = rmi.next();
3068 anti_do_def(b, n, kill, is_def);
3069 }
3070 } else {
3071 // Get DEF'd registers the normal way
3072 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
3073 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
3074 }
3075
3076 // Kill projections on a branch should appear to occur on the
3077 // branch, not afterwards, so grab the masks from the projections
3078 // and process them.
3079 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) {
3080 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3081 Node* use = n->fast_out(i);
3082 if (use->is_Proj()) {
3083 RegMaskIterator rmi(use->out_RegMask());
3084 while (rmi.has_next()) {
3085 OptoReg::Name kill = rmi.next();
3086 anti_do_def(b, n, kill, false);
3087 }
3088 }
3089 }
3090 }
3091
3092 // Check each register used by this instruction for a following DEF/KILL
3093 // that must occur afterward and requires an anti-dependence edge.
3094 for( uint j=0; j<n->req(); j++ ) {
3095 Node *def = n->in(j);
3096 if( def ) {
3097 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
3098 anti_do_use( b, n, _regalloc->get_reg_first(def) );
3099 anti_do_use( b, n, _regalloc->get_reg_second(def) );
3100 }
3101 }
3102 // Do not allow defs of new derived values to float above GC
3103 // points unless the base is definitely available at the GC point.
3104
3105 Node *m = b->get_node(i);
3106
3107 // Add precedence edge from following safepoint to use of derived pointer
3108 if( last_safept_node != end_node &&
3109 m != last_safept_node) {
3110 for (uint k = 1; k < m->req(); k++) {
3111 const Type *t = m->in(k)->bottom_type();
3112 if( t->isa_oop_ptr() &&
3113 t->is_ptr()->offset() != 0 ) {
3114 last_safept_node->add_prec( m );
3115 break;
3116 }
3117 }
3118 }
3119
3120 if( n->jvms() ) { // Precedence edge from derived to safept
3121 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
3122 if( b->get_node(last_safept) != last_safept_node ) {
3123 last_safept = b->find_node(last_safept_node);
3124 }
3125 for( uint j=last_safept; j > i; j-- ) {
3126 Node *mach = b->get_node(j);
3127 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
3128 mach->add_prec( n );
3129 }
3130 last_safept = i;
3131 last_safept_node = m;
3132 }
3133 }
3134
3135 if (fat_proj_seen) {
3136 // Garbage collect pinch nodes that were not consumed.
3137 // They are usually created by a fat kill MachProj for a call.
3138 garbage_collect_pinch_nodes();
3139 }
3140 }
3141
3142 // Garbage collect pinch nodes for reuse by other blocks.
3143 //
3144 // The block scheduler's insertion of anti-dependence
3145 // edges creates many pinch nodes when the block contains
3146 // 2 or more Calls. A pinch node is used to prevent a
3147 // combinatorial explosion of edges. If a set of kills for a
3148 // register is anti-dependent on a set of uses (or defs), rather
3149 // than adding an edge in the graph between each pair of kill
3150 // and use (or def), a pinch is inserted between them:
3151 //
3152 // use1 use2 use3
3153 // \ | /
3154 // \ | /
3155 // pinch
3156 // / | \
3157 // / | \
3158 // kill1 kill2 kill3
3159 //
3160 // One pinch node is created per register killed when
3161 // the second call is encountered during a backwards pass
3162 // over the block. Most of these pinch nodes are never
3163 // wired into the graph because the register is never
3164 // used or def'ed in the block.
3165 //
3166 void Scheduling::garbage_collect_pinch_nodes() {
3167 #ifndef PRODUCT
3168 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
3169 #endif
3170 int trace_cnt = 0;
3171 for (uint k = 0; k < _reg_node.Size(); k++) {
3172 Node* pinch = _reg_node[k];
3173 if ((pinch != nullptr) && pinch->Opcode() == Op_Node &&
3174 // no predecence input edges
3175 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) {
3176 cleanup_pinch(pinch);
3177 _pinch_free_list.push(pinch);
3178 _reg_node.map(k, nullptr);
3179 #ifndef PRODUCT
3180 if (_cfg->C->trace_opto_output()) {
3181 trace_cnt++;
3182 if (trace_cnt > 40) {
3183 tty->print("\n");
3184 trace_cnt = 0;
3185 }
3186 tty->print(" %d", pinch->_idx);
3187 }
3188 #endif
3189 }
3190 }
3191 #ifndef PRODUCT
3192 if (_cfg->C->trace_opto_output()) tty->print("\n");
3193 #endif
3194 }
3195
3196 // Clean up a pinch node for reuse.
3197 void Scheduling::cleanup_pinch( Node *pinch ) {
3198 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
3199
3200 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
3201 Node* use = pinch->last_out(i);
3202 uint uses_found = 0;
3203 for (uint j = use->req(); j < use->len(); j++) {
3204 if (use->in(j) == pinch) {
3205 use->rm_prec(j);
3206 uses_found++;
3207 }
3208 }
3209 assert(uses_found > 0, "must be a precedence edge");
3210 i -= uses_found; // we deleted 1 or more copies of this edge
3211 }
3212 // May have a later_def entry
3213 pinch->set_req(0, nullptr);
3214 }
3215
3216 #ifndef PRODUCT
3217
3218 void Scheduling::dump_available() const {
3219 tty->print("#Availist ");
3220 for (uint i = 0; i < _available.size(); i++)
3221 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
3222 tty->cr();
3223 }
3224
3225 // Print Scheduling Statistics
3226 void Scheduling::print_statistics() {
3227 // Print the size added by nops for bundling
3228 tty->print("Nops added %d bytes to total of %d bytes",
3229 _total_nop_size, _total_method_size);
3230 if (_total_method_size > 0)
3231 tty->print(", for %.2f%%",
3232 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3233 tty->print("\n");
3234
3235 // Print the number of branch shadows filled
3236 if (Pipeline::_branch_has_delay_slot) {
3237 tty->print("Of %d branches, %d had unconditional delay slots filled",
3238 _total_branches, _total_unconditional_delays);
3239 if (_total_branches > 0)
3240 tty->print(", for %.2f%%",
3241 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3242 tty->print("\n");
3243 }
3244
3245 uint total_instructions = 0, total_bundles = 0;
3246
3247 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3248 uint bundle_count = _total_instructions_per_bundle[i];
3249 total_instructions += bundle_count * i;
3250 total_bundles += bundle_count;
3251 }
3252
3253 if (total_bundles > 0)
3254 tty->print("Average ILP (excluding nops) is %.2f\n",
3255 ((double)total_instructions) / ((double)total_bundles));
3256 }
3257 #endif
3258
3259 //-----------------------init_scratch_buffer_blob------------------------------
3260 // Construct a temporary BufferBlob and cache it for this compile.
3261 void PhaseOutput::init_scratch_buffer_blob(int const_size) {
3262 // If there is already a scratch buffer blob allocated and the
3263 // constant section is big enough, use it. Otherwise free the
3264 // current and allocate a new one.
3265 BufferBlob* blob = scratch_buffer_blob();
3266 if ((blob != nullptr) && (const_size <= _scratch_const_size)) {
3267 // Use the current blob.
3268 } else {
3269 if (blob != nullptr) {
3270 BufferBlob::free(blob);
3271 }
3272
3273 ResourceMark rm;
3274 _scratch_const_size = const_size;
3275 int size = C2Compiler::initial_code_buffer_size(const_size);
3276 blob = BufferBlob::create("Compile::scratch_buffer", size);
3277 // Record the buffer blob for next time.
3278 set_scratch_buffer_blob(blob);
3279 // Have we run out of code space?
3280 if (scratch_buffer_blob() == nullptr) {
3281 // Let CompilerBroker disable further compilations.
3282 C->record_failure("Not enough space for scratch buffer in CodeCache");
3283 return;
3284 }
3285 }
3286
3287 // Initialize the relocation buffers
3288 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
3289 set_scratch_locs_memory(locs_buf);
3290 }
3291
3292
3293 //-----------------------scratch_emit_size-------------------------------------
3294 // Helper function that computes size by emitting code
3295 uint PhaseOutput::scratch_emit_size(const Node* n) {
3296 // Start scratch_emit_size section.
3297 set_in_scratch_emit_size(true);
3298
3299 // Emit into a trash buffer and count bytes emitted.
3300 // This is a pretty expensive way to compute a size,
3301 // but it works well enough if seldom used.
3302 // All common fixed-size instructions are given a size
3303 // method by the AD file.
3304 // Note that the scratch buffer blob and locs memory are
3305 // allocated at the beginning of the compile task, and
3306 // may be shared by several calls to scratch_emit_size.
3307 // The allocation of the scratch buffer blob is particularly
3308 // expensive, since it has to grab the code cache lock.
3309 BufferBlob* blob = this->scratch_buffer_blob();
3310 assert(blob != nullptr, "Initialize BufferBlob at start");
3311 assert(blob->size() > MAX_inst_size, "sanity");
3312 relocInfo* locs_buf = scratch_locs_memory();
3313 address blob_begin = blob->content_begin();
3314 address blob_end = (address)locs_buf;
3315 assert(blob->contains(blob_end), "sanity");
3316 CodeBuffer buf(blob_begin, blob_end - blob_begin);
3317 buf.initialize_consts_size(_scratch_const_size);
3318 buf.initialize_stubs_size(MAX_stubs_size);
3319 assert(locs_buf != nullptr, "sanity");
3320 int lsize = MAX_locs_size / 3;
3321 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
3322 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
3323 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
3324 // Mark as scratch buffer.
3325 buf.consts()->set_scratch_emit();
3326 buf.insts()->set_scratch_emit();
3327 buf.stubs()->set_scratch_emit();
3328
3329 // Do the emission.
3330
3331 Label fakeL; // Fake label for branch instructions.
3332 Label* saveL = nullptr;
3333 uint save_bnum = 0;
3334 bool is_branch = n->is_MachBranch();
3335 if (is_branch) {
3336 MacroAssembler masm(&buf);
3337 masm.bind(fakeL);
3338 n->as_MachBranch()->save_label(&saveL, &save_bnum);
3339 n->as_MachBranch()->label_set(&fakeL, 0);
3340 }
3341 n->emit(buf, C->regalloc());
3342
3343 // Emitting into the scratch buffer should not fail
3344 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason());
3345
3346 if (is_branch) // Restore label.
3347 n->as_MachBranch()->label_set(saveL, save_bnum);
3348
3349 // End scratch_emit_size section.
3350 set_in_scratch_emit_size(false);
3351
3352 return buf.insts_size();
3353 }
3354
3355 void PhaseOutput::install() {
3356 if (!C->should_install_code()) {
3357 return;
3358 } else if (C->stub_function() != nullptr) {
3359 install_stub(C->stub_name());
3360 } else {
3361 install_code(C->method(),
3362 C->entry_bci(),
3363 CompileBroker::compiler2(),
3364 C->has_unsafe_access(),
3365 SharedRuntime::is_wide_vector(C->max_vector_size()),
3366 C->rtm_state());
3367 }
3368 }
3369
3370 void PhaseOutput::install_code(ciMethod* target,
3371 int entry_bci,
3372 AbstractCompiler* compiler,
3373 bool has_unsafe_access,
3374 bool has_wide_vectors,
3375 RTMState rtm_state) {
3376 // Check if we want to skip execution of all compiled code.
3377 {
3378 #ifndef PRODUCT
3379 if (OptoNoExecute) {
3380 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed
3381 return;
3382 }
3383 #endif
3384 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]);
3385
3386 if (C->is_osr_compilation()) {
3387 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
3388 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
3389 } else {
3390 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
3391 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
3392 }
3393
3394 C->env()->register_method(target,
3395 entry_bci,
3396 &_code_offsets,
3397 _orig_pc_slot_offset_in_bytes,
3398 code_buffer(),
3399 frame_size_in_words(),
3400 oop_map_set(),
3401 &_handler_table,
3402 inc_table(),
3403 compiler,
3404 has_unsafe_access,
3405 SharedRuntime::is_wide_vector(C->max_vector_size()),
3406 C->rtm_state(),
3407 C->native_invokers());
3408
3409 if (C->log() != nullptr) { // Print code cache state into compiler log
3410 C->log()->code_cache_state();
3411 }
3412 }
3413 }
3414 void PhaseOutput::install_stub(const char* stub_name) {
3415 // Entry point will be accessed using stub_entry_point();
3416 if (code_buffer() == nullptr) {
3417 Matcher::soft_match_failure();
3418 } else {
3419 if (PrintAssembly && (WizardMode || Verbose))
3420 tty->print_cr("### Stub::%s", stub_name);
3421
3422 if (!C->failing()) {
3423 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs");
3424
3425 // Make the NMethod
3426 // For now we mark the frame as never safe for profile stackwalking
3427 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
3428 code_buffer(),
3429 CodeOffsets::frame_never_safe,
3430 // _code_offsets.value(CodeOffsets::Frame_Complete),
3431 frame_size_in_words(),
3432 oop_map_set(),
3433 false);
3434 assert(rs != nullptr && rs->is_runtime_stub(), "sanity check");
3435
3436 C->set_stub_entry_point(rs->entry_point());
3437 }
3438 }
3439 }
3440
3441 // Support for bundling info
3442 Bundle* PhaseOutput::node_bundling(const Node *n) {
3443 assert(valid_bundle_info(n), "oob");
3444 return &_node_bundling_base[n->_idx];
3445 }
3446
3447 bool PhaseOutput::valid_bundle_info(const Node *n) {
3448 return (_node_bundling_limit > n->_idx);
3449 }
3450
3451 //------------------------------frame_size_in_words-----------------------------
3452 // frame_slots in units of words
3453 int PhaseOutput::frame_size_in_words() const {
3454 // shift is 0 in LP32 and 1 in LP64
3455 const int shift = (LogBytesPerWord - LogBytesPerInt);
3456 int words = _frame_slots >> shift;
3457 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
3458 return words;
3459 }
3460
3461 // To bang the stack of this compiled method we use the stack size
3462 // that the interpreter would need in case of a deoptimization. This
3463 // removes the need to bang the stack in the deoptimization blob which
3464 // in turn simplifies stack overflow handling.
3465 int PhaseOutput::bang_size_in_bytes() const {
3466 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size());
3467 }
3468
3469 //------------------------------dump_asm---------------------------------------
3470 // Dump formatted assembly
3471 #if defined(SUPPORT_OPTO_ASSEMBLY)
3472 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) {
3473
3474 int pc_digits = 3; // #chars required for pc
3475 int sb_chars = 3; // #chars for "start bundle" indicator
3476 int tab_size = 8;
3477 if (pcs != nullptr) {
3478 int max_pc = 0;
3479 for (uint i = 0; i < pc_limit; i++) {
3480 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc;
3481 }
3482 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc
3483 }
3484 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size;
3485
3486 bool cut_short = false;
3487 st->print_cr("#");
3488 st->print("# "); C->tf()->dump_on(st); st->cr();
3489 st->print_cr("#");
3490
3491 // For all blocks
3492 int pc = 0x0; // Program counter
3493 char starts_bundle = ' ';
3494 C->regalloc()->dump_frame();
3495
3496 Node *n = nullptr;
3497 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) {
3498 if (VMThread::should_terminate()) {
3499 cut_short = true;
3500 break;
3501 }
3502 Block* block = C->cfg()->get_block(i);
3503 if (block->is_connector() && !Verbose) {
3504 continue;
3505 }
3506 n = block->head();
3507 if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3508 pc = pcs[n->_idx];
3509 st->print("%*.*x", pc_digits, pc_digits, pc);
3510 }
3511 st->fill_to(prefix_len);
3512 block->dump_head(C->cfg(), st);
3513 if (block->is_connector()) {
3514 st->fill_to(prefix_len);
3515 st->print_cr("# Empty connector block");
3516 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
3517 st->fill_to(prefix_len);
3518 st->print_cr("# Block is sole successor of call");
3519 }
3520
3521 // For all instructions
3522 Node *delay = nullptr;
3523 for (uint j = 0; j < block->number_of_nodes(); j++) {
3524 if (VMThread::should_terminate()) {
3525 cut_short = true;
3526 break;
3527 }
3528 n = block->get_node(j);
3529 if (valid_bundle_info(n)) {
3530 Bundle* bundle = node_bundling(n);
3531 if (bundle->used_in_unconditional_delay()) {
3532 delay = n;
3533 continue;
3534 }
3535 if (bundle->starts_bundle()) {
3536 starts_bundle = '+';
3537 }
3538 }
3539
3540 if (WizardMode) {
3541 n->dump();
3542 }
3543
3544 if( !n->is_Region() && // Dont print in the Assembly
3545 !n->is_Phi() && // a few noisely useless nodes
3546 !n->is_Proj() &&
3547 !n->is_MachTemp() &&
3548 !n->is_SafePointScalarObject() &&
3549 !n->is_Catch() && // Would be nice to print exception table targets
3550 !n->is_MergeMem() && // Not very interesting
3551 !n->is_top() && // Debug info table constants
3552 !(n->is_Con() && !n->is_Mach())// Debug info table constants
3553 ) {
3554 if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3555 pc = pcs[n->_idx];
3556 st->print("%*.*x", pc_digits, pc_digits, pc);
3557 } else {
3558 st->fill_to(pc_digits);
3559 }
3560 st->print(" %c ", starts_bundle);
3561 starts_bundle = ' ';
3562 st->fill_to(prefix_len);
3563 n->format(C->regalloc(), st);
3564 st->cr();
3565 }
3566
3567 // If we have an instruction with a delay slot, and have seen a delay,
3568 // then back up and print it
3569 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
3570 // Coverity finding - Explicit null dereferenced.
3571 guarantee(delay != nullptr, "no unconditional delay instruction");
3572 if (WizardMode) delay->dump();
3573
3574 if (node_bundling(delay)->starts_bundle())
3575 starts_bundle = '+';
3576 if ((pcs != nullptr) && (n->_idx < pc_limit)) {
3577 pc = pcs[n->_idx];
3578 st->print("%*.*x", pc_digits, pc_digits, pc);
3579 } else {
3580 st->fill_to(pc_digits);
3581 }
3582 st->print(" %c ", starts_bundle);
3583 starts_bundle = ' ';
3584 st->fill_to(prefix_len);
3585 delay->format(C->regalloc(), st);
3586 st->cr();
3587 delay = nullptr;
3588 }
3589
3590 // Dump the exception table as well
3591 if( n->is_Catch() && (Verbose || WizardMode) ) {
3592 // Print the exception table for this offset
3593 _handler_table.print_subtable_for(pc);
3594 }
3595 st->bol(); // Make sure we start on a new line
3596 }
3597 st->cr(); // one empty line between blocks
3598 assert(cut_short || delay == nullptr, "no unconditional delay branch");
3599 } // End of per-block dump
3600
3601 if (cut_short) st->print_cr("*** disassembly is cut short ***");
3602 }
3603 #endif
3604
3605 #ifndef PRODUCT
3606 void PhaseOutput::print_statistics() {
3607 Scheduling::print_statistics();
3608 }
3609 #endif