1 /* 2 * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/c2/barrierSetC2.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/allocation.hpp" 39 #include "opto/ad.hpp" 40 #include "opto/block.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/callnode.hpp" 43 #include "opto/cfgnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/optoreg.hpp" 48 #include "opto/output.hpp" 49 #include "opto/regalloc.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subnode.hpp" 52 #include "opto/type.hpp" 53 #include "runtime/handles.inline.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "utilities/macros.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #include "utilities/xmlstream.hpp" 58 59 #ifndef PRODUCT 60 #define DEBUG_ARG(x) , x 61 #else 62 #define DEBUG_ARG(x) 63 #endif 64 65 //------------------------------Scheduling---------------------------------- 66 // This class contains all the information necessary to implement instruction 67 // scheduling and bundling. 68 class Scheduling { 69 70 private: 71 // Arena to use 72 Arena *_arena; 73 74 // Control-Flow Graph info 75 PhaseCFG *_cfg; 76 77 // Register Allocation info 78 PhaseRegAlloc *_regalloc; 79 80 // Number of nodes in the method 81 uint _node_bundling_limit; 82 83 // List of scheduled nodes. Generated in reverse order 84 Node_List _scheduled; 85 86 // List of nodes currently available for choosing for scheduling 87 Node_List _available; 88 89 // For each instruction beginning a bundle, the number of following 90 // nodes to be bundled with it. 91 Bundle *_node_bundling_base; 92 93 // Mapping from register to Node 94 Node_List _reg_node; 95 96 // Free list for pinch nodes. 97 Node_List _pinch_free_list; 98 99 // Latency from the beginning of the containing basic block (base 1) 100 // for each node. 101 unsigned short *_node_latency; 102 103 // Number of uses of this node within the containing basic block. 104 short *_uses; 105 106 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 107 // front, branch+proj at end. Also skips Catch/CProj (same as 108 // branch-at-end), plus just-prior exception-throwing call. 109 uint _bb_start, _bb_end; 110 111 // Latency from the end of the basic block as scheduled 112 unsigned short *_current_latency; 113 114 // Remember the next node 115 Node *_next_node; 116 117 // Use this for an unconditional branch delay slot 118 Node *_unconditional_delay_slot; 119 120 // Pointer to a Nop 121 MachNopNode *_nop; 122 123 // Length of the current bundle, in instructions 124 uint _bundle_instr_count; 125 126 // Current Cycle number, for computing latencies and bundling 127 uint _bundle_cycle_number; 128 129 // Bundle information 130 Pipeline_Use_Element _bundle_use_elements[resource_count]; 131 Pipeline_Use _bundle_use; 132 133 // Dump the available list 134 void dump_available() const; 135 136 public: 137 Scheduling(Arena *arena, Compile &compile); 138 139 // Destructor 140 NOT_PRODUCT( ~Scheduling(); ) 141 142 // Step ahead "i" cycles 143 void step(uint i); 144 145 // Step ahead 1 cycle, and clear the bundle state (for example, 146 // at a branch target) 147 void step_and_clear(); 148 149 Bundle* node_bundling(const Node *n) { 150 assert(valid_bundle_info(n), "oob"); 151 return (&_node_bundling_base[n->_idx]); 152 } 153 154 bool valid_bundle_info(const Node *n) const { 155 return (_node_bundling_limit > n->_idx); 156 } 157 158 bool starts_bundle(const Node *n) const { 159 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 160 } 161 162 // Do the scheduling 163 void DoScheduling(); 164 165 // Compute the local latencies walking forward over the list of 166 // nodes for a basic block 167 void ComputeLocalLatenciesForward(const Block *bb); 168 169 // Compute the register antidependencies within a basic block 170 void ComputeRegisterAntidependencies(Block *bb); 171 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 172 void verify_good_schedule( Block *b, const char *msg ); 173 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 174 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 175 176 // Add a node to the current bundle 177 void AddNodeToBundle(Node *n, const Block *bb); 178 179 // Add a node to the list of available nodes 180 void AddNodeToAvailableList(Node *n); 181 182 // Compute the local use count for the nodes in a block, and compute 183 // the list of instructions with no uses in the block as available 184 void ComputeUseCount(const Block *bb); 185 186 // Choose an instruction from the available list to add to the bundle 187 Node * ChooseNodeToBundle(); 188 189 // See if this Node fits into the currently accumulating bundle 190 bool NodeFitsInBundle(Node *n); 191 192 // Decrement the use count for a node 193 void DecrementUseCounts(Node *n, const Block *bb); 194 195 // Garbage collect pinch nodes for reuse by other blocks. 196 void garbage_collect_pinch_nodes(); 197 // Clean up a pinch node for reuse (helper for above). 198 void cleanup_pinch( Node *pinch ); 199 200 // Information for statistics gathering 201 #ifndef PRODUCT 202 private: 203 // Gather information on size of nops relative to total 204 uint _branches, _unconditional_delays; 205 206 static uint _total_nop_size, _total_method_size; 207 static uint _total_branches, _total_unconditional_delays; 208 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 209 210 public: 211 static void print_statistics(); 212 213 static void increment_instructions_per_bundle(uint i) { 214 _total_instructions_per_bundle[i]++; 215 } 216 217 static void increment_nop_size(uint s) { 218 _total_nop_size += s; 219 } 220 221 static void increment_method_size(uint s) { 222 _total_method_size += s; 223 } 224 #endif 225 226 }; 227 228 PhaseOutput::PhaseOutput() 229 : Phase(Phase::Output), 230 _code_buffer("Compile::Fill_buffer"), 231 _first_block_size(0), 232 _handler_table(), 233 _inc_table(), 234 _stub_list(), 235 _oop_map_set(nullptr), 236 _scratch_buffer_blob(nullptr), 237 _scratch_locs_memory(nullptr), 238 _scratch_const_size(-1), 239 _in_scratch_emit_size(false), 240 _frame_slots(0), 241 _code_offsets(), 242 _node_bundling_limit(0), 243 _node_bundling_base(nullptr), 244 _orig_pc_slot(0), 245 _orig_pc_slot_offset_in_bytes(0), 246 _buf_sizes(), 247 _block(nullptr), 248 _index(0) { 249 C->set_output(this); 250 if (C->stub_name() == nullptr) { 251 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size); 252 } 253 } 254 255 PhaseOutput::~PhaseOutput() { 256 C->set_output(nullptr); 257 if (_scratch_buffer_blob != nullptr) { 258 BufferBlob::free(_scratch_buffer_blob); 259 } 260 } 261 262 void PhaseOutput::perform_mach_node_analysis() { 263 // Late barrier analysis must be done after schedule and bundle 264 // Otherwise liveness based spilling will fail 265 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 266 bs->late_barrier_analysis(); 267 268 pd_perform_mach_node_analysis(); 269 } 270 271 // Convert Nodes to instruction bits and pass off to the VM 272 void PhaseOutput::Output() { 273 // RootNode goes 274 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 275 276 // The number of new nodes (mostly MachNop) is proportional to 277 // the number of java calls and inner loops which are aligned. 278 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 279 C->inner_loops()*(OptoLoopAlignment-1)), 280 "out of nodes before code generation" ) ) { 281 return; 282 } 283 // Make sure I can find the Start Node 284 Block *entry = C->cfg()->get_block(1); 285 Block *broot = C->cfg()->get_root_block(); 286 287 const StartNode *start = entry->head()->as_Start(); 288 289 // Replace StartNode with prolog 290 MachPrologNode *prolog = new MachPrologNode(); 291 entry->map_node(prolog, 0); 292 C->cfg()->map_node_to_block(prolog, entry); 293 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 294 295 // Virtual methods need an unverified entry point 296 297 if( C->is_osr_compilation() ) { 298 if( PoisonOSREntry ) { 299 // TODO: Should use a ShouldNotReachHereNode... 300 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 301 } 302 } else { 303 if( C->method() && !C->method()->flags().is_static() ) { 304 // Insert unvalidated entry point 305 C->cfg()->insert( broot, 0, new MachUEPNode() ); 306 } 307 308 } 309 310 // Break before main entry point 311 if ((C->method() && C->directive()->BreakAtExecuteOption) || 312 (OptoBreakpoint && C->is_method_compilation()) || 313 (OptoBreakpointOSR && C->is_osr_compilation()) || 314 (OptoBreakpointC2R && !C->method()) ) { 315 // checking for C->method() means that OptoBreakpoint does not apply to 316 // runtime stubs or frame converters 317 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 318 } 319 320 // Insert epilogs before every return 321 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 322 Block* block = C->cfg()->get_block(i); 323 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 324 Node* m = block->end(); 325 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 326 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 327 block->add_inst(epilog); 328 C->cfg()->map_node_to_block(epilog, block); 329 } 330 } 331 } 332 333 // Keeper of sizing aspects 334 _buf_sizes = BufferSizingData(); 335 336 // Initialize code buffer 337 estimate_buffer_size(_buf_sizes._const); 338 if (C->failing()) return; 339 340 // Pre-compute the length of blocks and replace 341 // long branches with short if machine supports it. 342 // Must be done before ScheduleAndBundle due to SPARC delay slots 343 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 344 blk_starts[0] = 0; 345 shorten_branches(blk_starts); 346 347 ScheduleAndBundle(); 348 if (C->failing()) { 349 return; 350 } 351 352 perform_mach_node_analysis(); 353 354 // Complete sizing of codebuffer 355 CodeBuffer* cb = init_buffer(); 356 if (cb == nullptr || C->failing()) { 357 return; 358 } 359 360 BuildOopMaps(); 361 362 if (C->failing()) { 363 return; 364 } 365 366 fill_buffer(cb, blk_starts); 367 } 368 369 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 370 // Determine if we need to generate a stack overflow check. 371 // Do it if the method is not a stub function and 372 // has java calls or has frame size > vm_page_size/8. 373 // The debug VM checks that deoptimization doesn't trigger an 374 // unexpected stack overflow (compiled method stack banging should 375 // guarantee it doesn't happen) so we always need the stack bang in 376 // a debug VM. 377 return (C->stub_function() == nullptr && 378 (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 379 DEBUG_ONLY(|| true))); 380 } 381 382 bool PhaseOutput::need_register_stack_bang() const { 383 // Determine if we need to generate a register stack overflow check. 384 // This is only used on architectures which have split register 385 // and memory stacks (ie. IA64). 386 // Bang if the method is not a stub function and has java calls 387 return (C->stub_function() == nullptr && C->has_java_calls()); 388 } 389 390 391 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 392 // of a loop. When aligning a loop we need to provide enough instructions 393 // in cpu's fetch buffer to feed decoders. The loop alignment could be 394 // avoided if we have enough instructions in fetch buffer at the head of a loop. 395 // By default, the size is set to 999999 by Block's constructor so that 396 // a loop will be aligned if the size is not reset here. 397 // 398 // Note: Mach instructions could contain several HW instructions 399 // so the size is estimated only. 400 // 401 void PhaseOutput::compute_loop_first_inst_sizes() { 402 // The next condition is used to gate the loop alignment optimization. 403 // Don't aligned a loop if there are enough instructions at the head of a loop 404 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 405 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 406 // equal to 11 bytes which is the largest address NOP instruction. 407 if (MaxLoopPad < OptoLoopAlignment - 1) { 408 uint last_block = C->cfg()->number_of_blocks() - 1; 409 for (uint i = 1; i <= last_block; i++) { 410 Block* block = C->cfg()->get_block(i); 411 // Check the first loop's block which requires an alignment. 412 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 413 uint sum_size = 0; 414 uint inst_cnt = NumberOfLoopInstrToAlign; 415 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 416 417 // Check subsequent fallthrough blocks if the loop's first 418 // block(s) does not have enough instructions. 419 Block *nb = block; 420 while(inst_cnt > 0 && 421 i < last_block && 422 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 423 !nb->has_successor(block)) { 424 i++; 425 nb = C->cfg()->get_block(i); 426 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 427 } // while( inst_cnt > 0 && i < last_block ) 428 429 block->set_first_inst_size(sum_size); 430 } // f( b->head()->is_Loop() ) 431 } // for( i <= last_block ) 432 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 433 } 434 435 // The architecture description provides short branch variants for some long 436 // branch instructions. Replace eligible long branches with short branches. 437 void PhaseOutput::shorten_branches(uint* blk_starts) { 438 439 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 440 441 // Compute size of each block, method size, and relocation information size 442 uint nblocks = C->cfg()->number_of_blocks(); 443 444 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 445 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 446 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 447 448 // Collect worst case block paddings 449 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 450 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 451 452 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 453 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 454 455 bool has_short_branch_candidate = false; 456 457 // Initialize the sizes to 0 458 int code_size = 0; // Size in bytes of generated code 459 int stub_size = 0; // Size in bytes of all stub entries 460 // Size in bytes of all relocation entries, including those in local stubs. 461 // Start with 2-bytes of reloc info for the unvalidated entry point 462 int reloc_size = 1; // Number of relocation entries 463 464 // Make three passes. The first computes pessimistic blk_starts, 465 // relative jmp_offset and reloc_size information. The second performs 466 // short branch substitution using the pessimistic sizing. The 467 // third inserts nops where needed. 468 469 // Step one, perform a pessimistic sizing pass. 470 uint last_call_adr = max_juint; 471 uint last_avoid_back_to_back_adr = max_juint; 472 uint nop_size = (new MachNopNode())->size(C->regalloc()); 473 for (uint i = 0; i < nblocks; i++) { // For all blocks 474 Block* block = C->cfg()->get_block(i); 475 _block = block; 476 477 // During short branch replacement, we store the relative (to blk_starts) 478 // offset of jump in jmp_offset, rather than the absolute offset of jump. 479 // This is so that we do not need to recompute sizes of all nodes when 480 // we compute correct blk_starts in our next sizing pass. 481 jmp_offset[i] = 0; 482 jmp_size[i] = 0; 483 jmp_nidx[i] = -1; 484 DEBUG_ONLY( jmp_target[i] = 0; ) 485 DEBUG_ONLY( jmp_rule[i] = 0; ) 486 487 // Sum all instruction sizes to compute block size 488 uint last_inst = block->number_of_nodes(); 489 uint blk_size = 0; 490 for (uint j = 0; j < last_inst; j++) { 491 _index = j; 492 Node* nj = block->get_node(_index); 493 // Handle machine instruction nodes 494 if (nj->is_Mach()) { 495 MachNode* mach = nj->as_Mach(); 496 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 497 reloc_size += mach->reloc(); 498 if (mach->is_MachCall()) { 499 // add size information for trampoline stub 500 // class CallStubImpl is platform-specific and defined in the *.ad files. 501 stub_size += CallStubImpl::size_call_trampoline(); 502 reloc_size += CallStubImpl::reloc_call_trampoline(); 503 504 MachCallNode *mcall = mach->as_MachCall(); 505 // This destination address is NOT PC-relative 506 507 mcall->method_set((intptr_t)mcall->entry_point()); 508 509 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 510 stub_size += CompiledStaticCall::to_interp_stub_size(); 511 reloc_size += CompiledStaticCall::reloc_to_interp_stub(); 512 } 513 } else if (mach->is_MachSafePoint()) { 514 // If call/safepoint are adjacent, account for possible 515 // nop to disambiguate the two safepoints. 516 // ScheduleAndBundle() can rearrange nodes in a block, 517 // check for all offsets inside this block. 518 if (last_call_adr >= blk_starts[i]) { 519 blk_size += nop_size; 520 } 521 } 522 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 523 // Nop is inserted between "avoid back to back" instructions. 524 // ScheduleAndBundle() can rearrange nodes in a block, 525 // check for all offsets inside this block. 526 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 527 blk_size += nop_size; 528 } 529 } 530 if (mach->may_be_short_branch()) { 531 if (!nj->is_MachBranch()) { 532 #ifndef PRODUCT 533 nj->dump(3); 534 #endif 535 Unimplemented(); 536 } 537 assert(jmp_nidx[i] == -1, "block should have only one branch"); 538 jmp_offset[i] = blk_size; 539 jmp_size[i] = nj->size(C->regalloc()); 540 jmp_nidx[i] = j; 541 has_short_branch_candidate = true; 542 } 543 } 544 blk_size += nj->size(C->regalloc()); 545 // Remember end of call offset 546 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 547 last_call_adr = blk_starts[i]+blk_size; 548 } 549 // Remember end of avoid_back_to_back offset 550 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 551 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 552 } 553 } 554 555 // When the next block starts a loop, we may insert pad NOP 556 // instructions. Since we cannot know our future alignment, 557 // assume the worst. 558 if (i < nblocks - 1) { 559 Block* nb = C->cfg()->get_block(i + 1); 560 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 561 if (max_loop_pad > 0) { 562 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 563 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 564 // If either is the last instruction in this block, bump by 565 // max_loop_pad in lock-step with blk_size, so sizing 566 // calculations in subsequent blocks still can conservatively 567 // detect that it may the last instruction in this block. 568 if (last_call_adr == blk_starts[i]+blk_size) { 569 last_call_adr += max_loop_pad; 570 } 571 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 572 last_avoid_back_to_back_adr += max_loop_pad; 573 } 574 blk_size += max_loop_pad; 575 block_worst_case_pad[i + 1] = max_loop_pad; 576 } 577 } 578 579 // Save block size; update total method size 580 blk_starts[i+1] = blk_starts[i]+blk_size; 581 } 582 583 // Step two, replace eligible long jumps. 584 bool progress = true; 585 uint last_may_be_short_branch_adr = max_juint; 586 while (has_short_branch_candidate && progress) { 587 progress = false; 588 has_short_branch_candidate = false; 589 int adjust_block_start = 0; 590 for (uint i = 0; i < nblocks; i++) { 591 Block* block = C->cfg()->get_block(i); 592 int idx = jmp_nidx[i]; 593 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 594 if (mach != nullptr && mach->may_be_short_branch()) { 595 #ifdef ASSERT 596 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 597 int j; 598 // Find the branch; ignore trailing NOPs. 599 for (j = block->number_of_nodes()-1; j>=0; j--) { 600 Node* n = block->get_node(j); 601 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 602 break; 603 } 604 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 605 #endif 606 int br_size = jmp_size[i]; 607 int br_offs = blk_starts[i] + jmp_offset[i]; 608 609 // This requires the TRUE branch target be in succs[0] 610 uint bnum = block->non_connector_successor(0)->_pre_order; 611 int offset = blk_starts[bnum] - br_offs; 612 if (bnum > i) { // adjust following block's offset 613 offset -= adjust_block_start; 614 } 615 616 // This block can be a loop header, account for the padding 617 // in the previous block. 618 int block_padding = block_worst_case_pad[i]; 619 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 620 // In the following code a nop could be inserted before 621 // the branch which will increase the backward distance. 622 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 623 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 624 625 if (needs_padding && offset <= 0) 626 offset -= nop_size; 627 628 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 629 // We've got a winner. Replace this branch. 630 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 631 632 // Update the jmp_size. 633 int new_size = replacement->size(C->regalloc()); 634 int diff = br_size - new_size; 635 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 636 // Conservatively take into account padding between 637 // avoid_back_to_back branches. Previous branch could be 638 // converted into avoid_back_to_back branch during next 639 // rounds. 640 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 641 jmp_offset[i] += nop_size; 642 diff -= nop_size; 643 } 644 adjust_block_start += diff; 645 block->map_node(replacement, idx); 646 mach->subsume_by(replacement, C); 647 mach = replacement; 648 progress = true; 649 650 jmp_size[i] = new_size; 651 DEBUG_ONLY( jmp_target[i] = bnum; ); 652 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 653 } else { 654 // The jump distance is not short, try again during next iteration. 655 has_short_branch_candidate = true; 656 } 657 } // (mach->may_be_short_branch()) 658 if (mach != nullptr && (mach->may_be_short_branch() || 659 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 660 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 661 } 662 blk_starts[i+1] -= adjust_block_start; 663 } 664 } 665 666 #ifdef ASSERT 667 for (uint i = 0; i < nblocks; i++) { // For all blocks 668 if (jmp_target[i] != 0) { 669 int br_size = jmp_size[i]; 670 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 671 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 672 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 673 } 674 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 675 } 676 } 677 #endif 678 679 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 680 // after ScheduleAndBundle(). 681 682 // ------------------ 683 // Compute size for code buffer 684 code_size = blk_starts[nblocks]; 685 686 // Relocation records 687 reloc_size += 1; // Relo entry for exception handler 688 689 // Adjust reloc_size to number of record of relocation info 690 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 691 // a relocation index. 692 // The CodeBuffer will expand the locs array if this estimate is too low. 693 reloc_size *= 10 / sizeof(relocInfo); 694 695 _buf_sizes._reloc = reloc_size; 696 _buf_sizes._code = code_size; 697 _buf_sizes._stub = stub_size; 698 } 699 700 //------------------------------FillLocArray----------------------------------- 701 // Create a bit of debug info and append it to the array. The mapping is from 702 // Java local or expression stack to constant, register or stack-slot. For 703 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 704 // entry has been taken care of and caller should skip it). 705 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 706 // This should never have accepted Bad before 707 assert(OptoReg::is_valid(regnum), "location must be valid"); 708 return (OptoReg::is_reg(regnum)) 709 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 710 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 711 } 712 713 714 ObjectValue* 715 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 716 for (int i = 0; i < objs->length(); i++) { 717 assert(objs->at(i)->is_object(), "corrupt object cache"); 718 ObjectValue* sv = (ObjectValue*) objs->at(i); 719 if (sv->id() == id) { 720 return sv; 721 } 722 } 723 // Otherwise.. 724 return nullptr; 725 } 726 727 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 728 ObjectValue* sv ) { 729 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 730 objs->append(sv); 731 } 732 733 734 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 735 GrowableArray<ScopeValue*> *array, 736 GrowableArray<ScopeValue*> *objs ) { 737 assert( local, "use _top instead of null" ); 738 if (array->length() != idx) { 739 assert(array->length() == idx + 1, "Unexpected array count"); 740 // Old functionality: 741 // return 742 // New functionality: 743 // Assert if the local is not top. In product mode let the new node 744 // override the old entry. 745 assert(local == C->top(), "LocArray collision"); 746 if (local == C->top()) { 747 return; 748 } 749 array->pop(); 750 } 751 const Type *t = local->bottom_type(); 752 753 // Is it a safepoint scalar object node? 754 if (local->is_SafePointScalarObject()) { 755 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 756 757 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 758 if (sv == nullptr) { 759 ciKlass* cik = t->is_oopptr()->klass(); 760 assert(cik->is_instance_klass() || 761 cik->is_array_klass(), "Not supported allocation."); 762 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()); 763 sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv) 764 : new ObjectValue(spobj->_idx, klass_sv); 765 set_sv_for_object_node(objs, sv); 766 767 uint first_ind = spobj->first_index(sfpt->jvms()); 768 for (uint i = 0; i < spobj->n_fields(); i++) { 769 Node* fld_node = sfpt->in(first_ind+i); 770 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 771 } 772 } 773 array->append(sv); 774 return; 775 } 776 777 // Grab the register number for the local 778 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 779 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 780 // Record the double as two float registers. 781 // The register mask for such a value always specifies two adjacent 782 // float registers, with the lower register number even. 783 // Normally, the allocation of high and low words to these registers 784 // is irrelevant, because nearly all operations on register pairs 785 // (e.g., StoreD) treat them as a single unit. 786 // Here, we assume in addition that the words in these two registers 787 // stored "naturally" (by operations like StoreD and double stores 788 // within the interpreter) such that the lower-numbered register 789 // is written to the lower memory address. This may seem like 790 // a machine dependency, but it is not--it is a requirement on 791 // the author of the <arch>.ad file to ensure that, for every 792 // even/odd double-register pair to which a double may be allocated, 793 // the word in the even single-register is stored to the first 794 // memory word. (Note that register numbers are completely 795 // arbitrary, and are not tied to any machine-level encodings.) 796 #ifdef _LP64 797 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 798 array->append(new ConstantIntValue((jint)0)); 799 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 800 } else if ( t->base() == Type::Long ) { 801 array->append(new ConstantIntValue((jint)0)); 802 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 803 } else if ( t->base() == Type::RawPtr ) { 804 // jsr/ret return address which must be restored into a the full 805 // width 64-bit stack slot. 806 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 807 } 808 #else //_LP64 809 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 810 // Repack the double/long as two jints. 811 // The convention the interpreter uses is that the second local 812 // holds the first raw word of the native double representation. 813 // This is actually reasonable, since locals and stack arrays 814 // grow downwards in all implementations. 815 // (If, on some machine, the interpreter's Java locals or stack 816 // were to grow upwards, the embedded doubles would be word-swapped.) 817 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 818 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 819 } 820 #endif //_LP64 821 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 822 OptoReg::is_reg(regnum) ) { 823 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 824 ? Location::float_in_dbl : Location::normal )); 825 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 826 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 827 ? Location::int_in_long : Location::normal )); 828 } else if( t->base() == Type::NarrowOop ) { 829 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 830 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 831 t->base() == Type::VectorD || t->base() == Type::VectorX || 832 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 833 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 834 } else { 835 array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal )); 836 } 837 return; 838 } 839 840 // No register. It must be constant data. 841 switch (t->base()) { 842 case Type::Half: // Second half of a double 843 ShouldNotReachHere(); // Caller should skip 2nd halves 844 break; 845 case Type::AnyPtr: 846 array->append(new ConstantOopWriteValue(nullptr)); 847 break; 848 case Type::AryPtr: 849 case Type::InstPtr: // fall through 850 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 851 break; 852 case Type::NarrowOop: 853 if (t == TypeNarrowOop::NULL_PTR) { 854 array->append(new ConstantOopWriteValue(nullptr)); 855 } else { 856 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 857 } 858 break; 859 case Type::Int: 860 array->append(new ConstantIntValue(t->is_int()->get_con())); 861 break; 862 case Type::RawPtr: 863 // A return address (T_ADDRESS). 864 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 865 #ifdef _LP64 866 // Must be restored to the full-width 64-bit stack slot. 867 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 868 #else 869 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 870 #endif 871 break; 872 case Type::FloatCon: { 873 float f = t->is_float_constant()->getf(); 874 array->append(new ConstantIntValue(jint_cast(f))); 875 break; 876 } 877 case Type::DoubleCon: { 878 jdouble d = t->is_double_constant()->getd(); 879 #ifdef _LP64 880 array->append(new ConstantIntValue((jint)0)); 881 array->append(new ConstantDoubleValue(d)); 882 #else 883 // Repack the double as two jints. 884 // The convention the interpreter uses is that the second local 885 // holds the first raw word of the native double representation. 886 // This is actually reasonable, since locals and stack arrays 887 // grow downwards in all implementations. 888 // (If, on some machine, the interpreter's Java locals or stack 889 // were to grow upwards, the embedded doubles would be word-swapped.) 890 jlong_accessor acc; 891 acc.long_value = jlong_cast(d); 892 array->append(new ConstantIntValue(acc.words[1])); 893 array->append(new ConstantIntValue(acc.words[0])); 894 #endif 895 break; 896 } 897 case Type::Long: { 898 jlong d = t->is_long()->get_con(); 899 #ifdef _LP64 900 array->append(new ConstantIntValue((jint)0)); 901 array->append(new ConstantLongValue(d)); 902 #else 903 // Repack the long as two jints. 904 // The convention the interpreter uses is that the second local 905 // holds the first raw word of the native double representation. 906 // This is actually reasonable, since locals and stack arrays 907 // grow downwards in all implementations. 908 // (If, on some machine, the interpreter's Java locals or stack 909 // were to grow upwards, the embedded doubles would be word-swapped.) 910 jlong_accessor acc; 911 acc.long_value = d; 912 array->append(new ConstantIntValue(acc.words[1])); 913 array->append(new ConstantIntValue(acc.words[0])); 914 #endif 915 break; 916 } 917 case Type::Top: // Add an illegal value here 918 array->append(new LocationValue(Location())); 919 break; 920 default: 921 ShouldNotReachHere(); 922 break; 923 } 924 } 925 926 // Determine if this node starts a bundle 927 bool PhaseOutput::starts_bundle(const Node *n) const { 928 return (_node_bundling_limit > n->_idx && 929 _node_bundling_base[n->_idx].starts_bundle()); 930 } 931 932 //--------------------------Process_OopMap_Node-------------------------------- 933 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 934 // Handle special safepoint nodes for synchronization 935 MachSafePointNode *sfn = mach->as_MachSafePoint(); 936 MachCallNode *mcall; 937 938 int safepoint_pc_offset = current_offset; 939 bool is_method_handle_invoke = false; 940 bool is_opt_native = false; 941 bool return_oop = false; 942 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 943 bool arg_escape = false; 944 945 // Add the safepoint in the DebugInfoRecorder 946 if( !mach->is_MachCall() ) { 947 mcall = nullptr; 948 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 949 } else { 950 mcall = mach->as_MachCall(); 951 952 // Is the call a MethodHandle call? 953 if (mcall->is_MachCallJava()) { 954 if (mcall->as_MachCallJava()->_method_handle_invoke) { 955 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 956 is_method_handle_invoke = true; 957 } 958 arg_escape = mcall->as_MachCallJava()->_arg_escape; 959 } else if (mcall->is_MachCallNative()) { 960 is_opt_native = true; 961 } 962 963 // Check if a call returns an object. 964 if (mcall->returns_pointer()) { 965 return_oop = true; 966 } 967 safepoint_pc_offset += mcall->ret_addr_offset(); 968 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 969 } 970 971 // Loop over the JVMState list to add scope information 972 // Do not skip safepoints with a null method, they need monitor info 973 JVMState* youngest_jvms = sfn->jvms(); 974 int max_depth = youngest_jvms->depth(); 975 976 // Allocate the object pool for scalar-replaced objects -- the map from 977 // small-integer keys (which can be recorded in the local and ostack 978 // arrays) to descriptions of the object state. 979 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 980 981 // Visit scopes from oldest to youngest. 982 for (int depth = 1; depth <= max_depth; depth++) { 983 JVMState* jvms = youngest_jvms->of_depth(depth); 984 int idx; 985 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 986 // Safepoints that do not have method() set only provide oop-map and monitor info 987 // to support GC; these do not support deoptimization. 988 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 989 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 990 int num_mon = jvms->nof_monitors(); 991 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 992 "JVMS local count must match that of the method"); 993 994 // Add Local and Expression Stack Information 995 996 // Insert locals into the locarray 997 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 998 for( idx = 0; idx < num_locs; idx++ ) { 999 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1000 } 1001 1002 // Insert expression stack entries into the exparray 1003 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1004 for( idx = 0; idx < num_exps; idx++ ) { 1005 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1006 } 1007 1008 // Add in mappings of the monitors 1009 assert( !method || 1010 !method->is_synchronized() || 1011 method->is_native() || 1012 num_mon > 0 || 1013 !GenerateSynchronizationCode, 1014 "monitors must always exist for synchronized methods"); 1015 1016 // Build the growable array of ScopeValues for exp stack 1017 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1018 1019 // Loop over monitors and insert into array 1020 for (idx = 0; idx < num_mon; idx++) { 1021 // Grab the node that defines this monitor 1022 Node* box_node = sfn->monitor_box(jvms, idx); 1023 Node* obj_node = sfn->monitor_obj(jvms, idx); 1024 1025 // Create ScopeValue for object 1026 ScopeValue *scval = nullptr; 1027 1028 if (obj_node->is_SafePointScalarObject()) { 1029 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1030 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1031 if (scval == nullptr) { 1032 const Type *t = spobj->bottom_type(); 1033 ciKlass* cik = t->is_oopptr()->klass(); 1034 assert(cik->is_instance_klass() || 1035 cik->is_array_klass(), "Not supported allocation."); 1036 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()); 1037 ObjectValue* sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv) 1038 : new ObjectValue(spobj->_idx, klass_sv); 1039 PhaseOutput::set_sv_for_object_node(objs, sv); 1040 1041 uint first_ind = spobj->first_index(youngest_jvms); 1042 for (uint i = 0; i < spobj->n_fields(); i++) { 1043 Node* fld_node = sfn->in(first_ind+i); 1044 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1045 } 1046 scval = sv; 1047 } 1048 } else if (!obj_node->is_Con()) { 1049 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1050 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1051 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1052 } else { 1053 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1054 } 1055 } else { 1056 const TypePtr *tp = obj_node->get_ptr_type(); 1057 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1058 } 1059 1060 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1061 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1062 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1063 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1064 } 1065 1066 // We dump the object pool first, since deoptimization reads it in first. 1067 C->debug_info()->dump_object_pool(objs); 1068 1069 // Build first class objects to pass to scope 1070 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1071 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1072 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1073 1074 // Make method available for all Safepoints 1075 ciMethod* scope_method = method ? method : C->method(); 1076 // Describe the scope here 1077 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1078 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1079 // Now we can describe the scope. 1080 methodHandle null_mh; 1081 bool rethrow_exception = false; 1082 C->debug_info()->describe_scope( 1083 safepoint_pc_offset, 1084 null_mh, 1085 scope_method, 1086 jvms->bci(), 1087 jvms->should_reexecute(), 1088 rethrow_exception, 1089 is_method_handle_invoke, 1090 is_opt_native, 1091 return_oop, 1092 has_ea_local_in_scope, 1093 arg_escape, 1094 locvals, 1095 expvals, 1096 monvals 1097 ); 1098 } // End jvms loop 1099 1100 // Mark the end of the scope set. 1101 C->debug_info()->end_safepoint(safepoint_pc_offset); 1102 } 1103 1104 1105 1106 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1107 class NonSafepointEmitter { 1108 Compile* C; 1109 JVMState* _pending_jvms; 1110 int _pending_offset; 1111 1112 void emit_non_safepoint(); 1113 1114 public: 1115 NonSafepointEmitter(Compile* compile) { 1116 this->C = compile; 1117 _pending_jvms = nullptr; 1118 _pending_offset = 0; 1119 } 1120 1121 void observe_instruction(Node* n, int pc_offset) { 1122 if (!C->debug_info()->recording_non_safepoints()) return; 1123 1124 Node_Notes* nn = C->node_notes_at(n->_idx); 1125 if (nn == nullptr || nn->jvms() == nullptr) return; 1126 if (_pending_jvms != nullptr && 1127 _pending_jvms->same_calls_as(nn->jvms())) { 1128 // Repeated JVMS? Stretch it up here. 1129 _pending_offset = pc_offset; 1130 } else { 1131 if (_pending_jvms != nullptr && 1132 _pending_offset < pc_offset) { 1133 emit_non_safepoint(); 1134 } 1135 _pending_jvms = nullptr; 1136 if (pc_offset > C->debug_info()->last_pc_offset()) { 1137 // This is the only way _pending_jvms can become non-null: 1138 _pending_jvms = nn->jvms(); 1139 _pending_offset = pc_offset; 1140 } 1141 } 1142 } 1143 1144 // Stay out of the way of real safepoints: 1145 void observe_safepoint(JVMState* jvms, int pc_offset) { 1146 if (_pending_jvms != nullptr && 1147 !_pending_jvms->same_calls_as(jvms) && 1148 _pending_offset < pc_offset) { 1149 emit_non_safepoint(); 1150 } 1151 _pending_jvms = nullptr; 1152 } 1153 1154 void flush_at_end() { 1155 if (_pending_jvms != nullptr) { 1156 emit_non_safepoint(); 1157 } 1158 _pending_jvms = nullptr; 1159 } 1160 }; 1161 1162 void NonSafepointEmitter::emit_non_safepoint() { 1163 JVMState* youngest_jvms = _pending_jvms; 1164 int pc_offset = _pending_offset; 1165 1166 // Clear it now: 1167 _pending_jvms = nullptr; 1168 1169 DebugInformationRecorder* debug_info = C->debug_info(); 1170 assert(debug_info->recording_non_safepoints(), "sanity"); 1171 1172 debug_info->add_non_safepoint(pc_offset); 1173 int max_depth = youngest_jvms->depth(); 1174 1175 // Visit scopes from oldest to youngest. 1176 for (int depth = 1; depth <= max_depth; depth++) { 1177 JVMState* jvms = youngest_jvms->of_depth(depth); 1178 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1179 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1180 methodHandle null_mh; 1181 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1182 } 1183 1184 // Mark the end of the scope set. 1185 debug_info->end_non_safepoint(pc_offset); 1186 } 1187 1188 //------------------------------init_buffer------------------------------------ 1189 void PhaseOutput::estimate_buffer_size(int& const_req) { 1190 1191 // Set the initially allocated size 1192 const_req = initial_const_capacity; 1193 1194 // The extra spacing after the code is necessary on some platforms. 1195 // Sometimes we need to patch in a jump after the last instruction, 1196 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1197 1198 // Compute the byte offset where we can store the deopt pc. 1199 if (C->fixed_slots() != 0) { 1200 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1201 } 1202 1203 // Compute prolog code size 1204 _method_size = 0; 1205 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1206 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1207 1208 if (C->has_mach_constant_base_node()) { 1209 uint add_size = 0; 1210 // Fill the constant table. 1211 // Note: This must happen before shorten_branches. 1212 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1213 Block* b = C->cfg()->get_block(i); 1214 1215 for (uint j = 0; j < b->number_of_nodes(); j++) { 1216 Node* n = b->get_node(j); 1217 1218 // If the node is a MachConstantNode evaluate the constant 1219 // value section. 1220 if (n->is_MachConstant()) { 1221 MachConstantNode* machcon = n->as_MachConstant(); 1222 machcon->eval_constant(C); 1223 } else if (n->is_Mach()) { 1224 // On Power there are more nodes that issue constants. 1225 add_size += (n->as_Mach()->ins_num_consts() * 8); 1226 } 1227 } 1228 } 1229 1230 // Calculate the offsets of the constants and the size of the 1231 // constant table (including the padding to the next section). 1232 constant_table().calculate_offsets_and_size(); 1233 const_req = constant_table().size() + add_size; 1234 } 1235 1236 // Initialize the space for the BufferBlob used to find and verify 1237 // instruction size in MachNode::emit_size() 1238 init_scratch_buffer_blob(const_req); 1239 } 1240 1241 CodeBuffer* PhaseOutput::init_buffer() { 1242 int stub_req = _buf_sizes._stub; 1243 int code_req = _buf_sizes._code; 1244 int const_req = _buf_sizes._const; 1245 1246 int pad_req = NativeCall::instruction_size; 1247 1248 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1249 stub_req += bs->estimate_stub_size(); 1250 1251 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1252 // class HandlerImpl is platform-specific and defined in the *.ad files. 1253 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1254 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1255 stub_req += MAX_stubs_size; // ensure per-stub margin 1256 code_req += MAX_inst_size; // ensure per-instruction margin 1257 1258 if (StressCodeBuffers) 1259 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1260 1261 int total_req = 1262 const_req + 1263 code_req + 1264 pad_req + 1265 stub_req + 1266 exception_handler_req + 1267 deopt_handler_req; // deopt handler 1268 1269 if (C->has_method_handle_invokes()) 1270 total_req += deopt_handler_req; // deopt MH handler 1271 1272 CodeBuffer* cb = code_buffer(); 1273 cb->initialize(total_req, _buf_sizes._reloc); 1274 1275 // Have we run out of code space? 1276 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1277 C->record_failure("CodeCache is full"); 1278 return nullptr; 1279 } 1280 // Configure the code buffer. 1281 cb->initialize_consts_size(const_req); 1282 cb->initialize_stubs_size(stub_req); 1283 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1284 1285 // fill in the nop array for bundling computations 1286 MachNode *_nop_list[Bundle::_nop_count]; 1287 Bundle::initialize_nops(_nop_list); 1288 1289 return cb; 1290 } 1291 1292 //------------------------------fill_buffer------------------------------------ 1293 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) { 1294 // blk_starts[] contains offsets calculated during short branches processing, 1295 // offsets should not be increased during following steps. 1296 1297 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1298 // of a loop. It is used to determine the padding for loop alignment. 1299 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1300 1301 compute_loop_first_inst_sizes(); 1302 1303 // Create oopmap set. 1304 _oop_map_set = new OopMapSet(); 1305 1306 // !!!!! This preserves old handling of oopmaps for now 1307 C->debug_info()->set_oopmaps(_oop_map_set); 1308 1309 uint nblocks = C->cfg()->number_of_blocks(); 1310 // Count and start of implicit null check instructions 1311 uint inct_cnt = 0; 1312 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1313 1314 // Count and start of calls 1315 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1316 1317 uint return_offset = 0; 1318 int nop_size = (new MachNopNode())->size(C->regalloc()); 1319 1320 int previous_offset = 0; 1321 int current_offset = 0; 1322 int last_call_offset = -1; 1323 int last_avoid_back_to_back_offset = -1; 1324 #ifdef ASSERT 1325 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1326 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1327 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1328 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1329 #endif 1330 1331 // Create an array of unused labels, one for each basic block, if printing is enabled 1332 #if defined(SUPPORT_OPTO_ASSEMBLY) 1333 int* node_offsets = nullptr; 1334 uint node_offset_limit = C->unique(); 1335 1336 if (C->print_assembly()) { 1337 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1338 } 1339 if (node_offsets != nullptr) { 1340 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1341 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1342 } 1343 #endif 1344 1345 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1346 1347 // Emit the constant table. 1348 if (C->has_mach_constant_base_node()) { 1349 if (!constant_table().emit(*cb)) { 1350 C->record_failure("consts section overflow"); 1351 return; 1352 } 1353 } 1354 1355 // Create an array of labels, one for each basic block 1356 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1357 for (uint i = 0; i <= nblocks; i++) { 1358 blk_labels[i].init(); 1359 } 1360 1361 // Now fill in the code buffer 1362 Node* delay_slot = nullptr; 1363 for (uint i = 0; i < nblocks; i++) { 1364 Block* block = C->cfg()->get_block(i); 1365 _block = block; 1366 Node* head = block->head(); 1367 1368 // If this block needs to start aligned (i.e, can be reached other 1369 // than by falling-thru from the previous block), then force the 1370 // start of a new bundle. 1371 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1372 cb->flush_bundle(true); 1373 } 1374 1375 #ifdef ASSERT 1376 if (!block->is_connector()) { 1377 stringStream st; 1378 block->dump_head(C->cfg(), &st); 1379 MacroAssembler(cb).block_comment(st.as_string()); 1380 } 1381 jmp_target[i] = 0; 1382 jmp_offset[i] = 0; 1383 jmp_size[i] = 0; 1384 jmp_rule[i] = 0; 1385 #endif 1386 int blk_offset = current_offset; 1387 1388 // Define the label at the beginning of the basic block 1389 MacroAssembler(cb).bind(blk_labels[block->_pre_order]); 1390 1391 uint last_inst = block->number_of_nodes(); 1392 1393 // Emit block normally, except for last instruction. 1394 // Emit means "dump code bits into code buffer". 1395 for (uint j = 0; j<last_inst; j++) { 1396 _index = j; 1397 1398 // Get the node 1399 Node* n = block->get_node(j); 1400 1401 // See if delay slots are supported 1402 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1403 assert(delay_slot == nullptr, "no use of delay slot node"); 1404 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1405 1406 delay_slot = n; 1407 continue; 1408 } 1409 1410 // If this starts a new instruction group, then flush the current one 1411 // (but allow split bundles) 1412 if (Pipeline::requires_bundling() && starts_bundle(n)) 1413 cb->flush_bundle(false); 1414 1415 // Special handling for SafePoint/Call Nodes 1416 bool is_mcall = false; 1417 if (n->is_Mach()) { 1418 MachNode *mach = n->as_Mach(); 1419 is_mcall = n->is_MachCall(); 1420 bool is_sfn = n->is_MachSafePoint(); 1421 1422 // If this requires all previous instructions be flushed, then do so 1423 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1424 cb->flush_bundle(true); 1425 current_offset = cb->insts_size(); 1426 } 1427 1428 // A padding may be needed again since a previous instruction 1429 // could be moved to delay slot. 1430 1431 // align the instruction if necessary 1432 int padding = mach->compute_padding(current_offset); 1433 // Make sure safepoint node for polling is distinct from a call's 1434 // return by adding a nop if needed. 1435 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1436 padding = nop_size; 1437 } 1438 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1439 current_offset == last_avoid_back_to_back_offset) { 1440 // Avoid back to back some instructions. 1441 padding = nop_size; 1442 } 1443 1444 if (padding > 0) { 1445 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1446 int nops_cnt = padding / nop_size; 1447 MachNode *nop = new MachNopNode(nops_cnt); 1448 block->insert_node(nop, j++); 1449 last_inst++; 1450 C->cfg()->map_node_to_block(nop, block); 1451 // Ensure enough space. 1452 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1453 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1454 C->record_failure("CodeCache is full"); 1455 return; 1456 } 1457 nop->emit(*cb, C->regalloc()); 1458 cb->flush_bundle(true); 1459 current_offset = cb->insts_size(); 1460 } 1461 1462 bool observe_safepoint = is_sfn; 1463 // Remember the start of the last call in a basic block 1464 if (is_mcall) { 1465 MachCallNode *mcall = mach->as_MachCall(); 1466 1467 // This destination address is NOT PC-relative 1468 mcall->method_set((intptr_t)mcall->entry_point()); 1469 1470 // Save the return address 1471 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1472 1473 observe_safepoint = mcall->guaranteed_safepoint(); 1474 } 1475 1476 // sfn will be valid whenever mcall is valid now because of inheritance 1477 if (observe_safepoint) { 1478 // Handle special safepoint nodes for synchronization 1479 if (!is_mcall) { 1480 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1481 // !!!!! Stubs only need an oopmap right now, so bail out 1482 if (sfn->jvms()->method() == nullptr) { 1483 // Write the oopmap directly to the code blob??!! 1484 continue; 1485 } 1486 } // End synchronization 1487 1488 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1489 current_offset); 1490 Process_OopMap_Node(mach, current_offset); 1491 } // End if safepoint 1492 1493 // If this is a null check, then add the start of the previous instruction to the list 1494 else if( mach->is_MachNullCheck() ) { 1495 inct_starts[inct_cnt++] = previous_offset; 1496 } 1497 1498 // If this is a branch, then fill in the label with the target BB's label 1499 else if (mach->is_MachBranch()) { 1500 // This requires the TRUE branch target be in succs[0] 1501 uint block_num = block->non_connector_successor(0)->_pre_order; 1502 1503 // Try to replace long branch if delay slot is not used, 1504 // it is mostly for back branches since forward branch's 1505 // distance is not updated yet. 1506 bool delay_slot_is_used = valid_bundle_info(n) && 1507 C->output()->node_bundling(n)->use_unconditional_delay(); 1508 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1509 assert(delay_slot == nullptr, "not expecting delay slot node"); 1510 int br_size = n->size(C->regalloc()); 1511 int offset = blk_starts[block_num] - current_offset; 1512 if (block_num >= i) { 1513 // Current and following block's offset are not 1514 // finalized yet, adjust distance by the difference 1515 // between calculated and final offsets of current block. 1516 offset -= (blk_starts[i] - blk_offset); 1517 } 1518 // In the following code a nop could be inserted before 1519 // the branch which will increase the backward distance. 1520 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1521 if (needs_padding && offset <= 0) 1522 offset -= nop_size; 1523 1524 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1525 // We've got a winner. Replace this branch. 1526 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1527 1528 // Update the jmp_size. 1529 int new_size = replacement->size(C->regalloc()); 1530 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1531 // Insert padding between avoid_back_to_back branches. 1532 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1533 MachNode *nop = new MachNopNode(); 1534 block->insert_node(nop, j++); 1535 C->cfg()->map_node_to_block(nop, block); 1536 last_inst++; 1537 nop->emit(*cb, C->regalloc()); 1538 cb->flush_bundle(true); 1539 current_offset = cb->insts_size(); 1540 } 1541 #ifdef ASSERT 1542 jmp_target[i] = block_num; 1543 jmp_offset[i] = current_offset - blk_offset; 1544 jmp_size[i] = new_size; 1545 jmp_rule[i] = mach->rule(); 1546 #endif 1547 block->map_node(replacement, j); 1548 mach->subsume_by(replacement, C); 1549 n = replacement; 1550 mach = replacement; 1551 } 1552 } 1553 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1554 } else if (mach->ideal_Opcode() == Op_Jump) { 1555 for (uint h = 0; h < block->_num_succs; h++) { 1556 Block* succs_block = block->_succs[h]; 1557 for (uint j = 1; j < succs_block->num_preds(); j++) { 1558 Node* jpn = succs_block->pred(j); 1559 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1560 uint block_num = succs_block->non_connector()->_pre_order; 1561 Label *blkLabel = &blk_labels[block_num]; 1562 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1563 } 1564 } 1565 } 1566 } 1567 #ifdef ASSERT 1568 // Check that oop-store precedes the card-mark 1569 else if (mach->ideal_Opcode() == Op_StoreCM) { 1570 uint storeCM_idx = j; 1571 int count = 0; 1572 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1573 Node *oop_store = mach->in(prec); // Precedence edge 1574 if (oop_store == nullptr) continue; 1575 count++; 1576 uint i4; 1577 for (i4 = 0; i4 < last_inst; ++i4) { 1578 if (block->get_node(i4) == oop_store) { 1579 break; 1580 } 1581 } 1582 // Note: This test can provide a false failure if other precedence 1583 // edges have been added to the storeCMNode. 1584 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1585 } 1586 assert(count > 0, "storeCM expects at least one precedence edge"); 1587 } 1588 #endif 1589 else if (!n->is_Proj()) { 1590 // Remember the beginning of the previous instruction, in case 1591 // it's followed by a flag-kill and a null-check. Happens on 1592 // Intel all the time, with add-to-memory kind of opcodes. 1593 previous_offset = current_offset; 1594 } 1595 1596 // Not an else-if! 1597 // If this is a trap based cmp then add its offset to the list. 1598 if (mach->is_TrapBasedCheckNode()) { 1599 inct_starts[inct_cnt++] = current_offset; 1600 } 1601 } 1602 1603 // Verify that there is sufficient space remaining 1604 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1605 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1606 C->record_failure("CodeCache is full"); 1607 return; 1608 } 1609 1610 // Save the offset for the listing 1611 #if defined(SUPPORT_OPTO_ASSEMBLY) 1612 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1613 node_offsets[n->_idx] = cb->insts_size(); 1614 } 1615 #endif 1616 assert(!C->failing(), "Should not reach here if failing."); 1617 1618 // "Normal" instruction case 1619 DEBUG_ONLY(uint instr_offset = cb->insts_size()); 1620 n->emit(*cb, C->regalloc()); 1621 current_offset = cb->insts_size(); 1622 1623 // Above we only verified that there is enough space in the instruction section. 1624 // However, the instruction may emit stubs that cause code buffer expansion. 1625 // Bail out here if expansion failed due to a lack of code cache space. 1626 if (C->failing()) { 1627 return; 1628 } 1629 1630 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1631 "ret_addr_offset() not within emitted code"); 1632 1633 #ifdef ASSERT 1634 uint n_size = n->size(C->regalloc()); 1635 if (n_size < (current_offset-instr_offset)) { 1636 MachNode* mach = n->as_Mach(); 1637 n->dump(); 1638 mach->dump_format(C->regalloc(), tty); 1639 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1640 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty); 1641 tty->print_cr(" ------------------- "); 1642 BufferBlob* blob = this->scratch_buffer_blob(); 1643 address blob_begin = blob->content_begin(); 1644 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1645 assert(false, "wrong size of mach node"); 1646 } 1647 #endif 1648 non_safepoints.observe_instruction(n, current_offset); 1649 1650 // mcall is last "call" that can be a safepoint 1651 // record it so we can see if a poll will directly follow it 1652 // in which case we'll need a pad to make the PcDesc sites unique 1653 // see 5010568. This can be slightly inaccurate but conservative 1654 // in the case that return address is not actually at current_offset. 1655 // This is a small price to pay. 1656 1657 if (is_mcall) { 1658 last_call_offset = current_offset; 1659 } 1660 1661 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1662 // Avoid back to back some instructions. 1663 last_avoid_back_to_back_offset = current_offset; 1664 } 1665 1666 // See if this instruction has a delay slot 1667 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1668 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1669 1670 // Back up 1 instruction 1671 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); 1672 1673 // Save the offset for the listing 1674 #if defined(SUPPORT_OPTO_ASSEMBLY) 1675 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1676 node_offsets[delay_slot->_idx] = cb->insts_size(); 1677 } 1678 #endif 1679 1680 // Support a SafePoint in the delay slot 1681 if (delay_slot->is_MachSafePoint()) { 1682 MachNode *mach = delay_slot->as_Mach(); 1683 // !!!!! Stubs only need an oopmap right now, so bail out 1684 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1685 // Write the oopmap directly to the code blob??!! 1686 delay_slot = nullptr; 1687 continue; 1688 } 1689 1690 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1691 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1692 adjusted_offset); 1693 // Generate an OopMap entry 1694 Process_OopMap_Node(mach, adjusted_offset); 1695 } 1696 1697 // Insert the delay slot instruction 1698 delay_slot->emit(*cb, C->regalloc()); 1699 1700 // Don't reuse it 1701 delay_slot = nullptr; 1702 } 1703 1704 } // End for all instructions in block 1705 1706 // If the next block is the top of a loop, pad this block out to align 1707 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1708 if (i < nblocks-1) { 1709 Block *nb = C->cfg()->get_block(i + 1); 1710 int padding = nb->alignment_padding(current_offset); 1711 if( padding > 0 ) { 1712 MachNode *nop = new MachNopNode(padding / nop_size); 1713 block->insert_node(nop, block->number_of_nodes()); 1714 C->cfg()->map_node_to_block(nop, block); 1715 nop->emit(*cb, C->regalloc()); 1716 current_offset = cb->insts_size(); 1717 } 1718 } 1719 // Verify that the distance for generated before forward 1720 // short branches is still valid. 1721 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1722 1723 // Save new block start offset 1724 blk_starts[i] = blk_offset; 1725 } // End of for all blocks 1726 blk_starts[nblocks] = current_offset; 1727 1728 non_safepoints.flush_at_end(); 1729 1730 // Offset too large? 1731 if (C->failing()) return; 1732 1733 // Define a pseudo-label at the end of the code 1734 MacroAssembler(cb).bind( blk_labels[nblocks] ); 1735 1736 // Compute the size of the first block 1737 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1738 1739 #ifdef ASSERT 1740 for (uint i = 0; i < nblocks; i++) { // For all blocks 1741 if (jmp_target[i] != 0) { 1742 int br_size = jmp_size[i]; 1743 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1744 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1745 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1746 assert(false, "Displacement too large for short jmp"); 1747 } 1748 } 1749 } 1750 #endif 1751 1752 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1753 bs->emit_stubs(*cb); 1754 if (C->failing()) return; 1755 1756 // Fill in stubs. 1757 _stub_list.emit(*cb); 1758 if (C->failing()) return; 1759 1760 #ifndef PRODUCT 1761 // Information on the size of the method, without the extraneous code 1762 Scheduling::increment_method_size(cb->insts_size()); 1763 #endif 1764 1765 // ------------------ 1766 // Fill in exception table entries. 1767 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1768 1769 // Only java methods have exception handlers and deopt handlers 1770 // class HandlerImpl is platform-specific and defined in the *.ad files. 1771 if (C->method()) { 1772 // Emit the exception handler code. 1773 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); 1774 if (C->failing()) { 1775 return; // CodeBuffer::expand failed 1776 } 1777 // Emit the deopt handler code. 1778 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); 1779 1780 // Emit the MethodHandle deopt handler code (if required). 1781 if (C->has_method_handle_invokes() && !C->failing()) { 1782 // We can use the same code as for the normal deopt handler, we 1783 // just need a different entry point address. 1784 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); 1785 } 1786 } 1787 1788 // One last check for failed CodeBuffer::expand: 1789 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1790 C->record_failure("CodeCache is full"); 1791 return; 1792 } 1793 1794 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1795 if (C->print_assembly()) { 1796 tty->cr(); 1797 tty->print_cr("============================= C2-compiled nmethod =============================="); 1798 } 1799 #endif 1800 1801 #if defined(SUPPORT_OPTO_ASSEMBLY) 1802 // Dump the assembly code, including basic-block numbers 1803 if (C->print_assembly()) { 1804 ttyLocker ttyl; // keep the following output all in one block 1805 if (!VMThread::should_terminate()) { // test this under the tty lock 1806 // This output goes directly to the tty, not the compiler log. 1807 // To enable tools to match it up with the compilation activity, 1808 // be sure to tag this tty output with the compile ID. 1809 if (xtty != nullptr) { 1810 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1811 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1812 } 1813 if (C->method() != nullptr) { 1814 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1815 C->method()->print_metadata(); 1816 } else if (C->stub_name() != nullptr) { 1817 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1818 } 1819 tty->cr(); 1820 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1821 dump_asm(node_offsets, node_offset_limit); 1822 tty->print_cr("--------------------------------------------------------------------------------"); 1823 if (xtty != nullptr) { 1824 // print_metadata and dump_asm above may safepoint which makes us loose the ttylock. 1825 // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done 1826 // thread safe 1827 ttyLocker ttyl2; 1828 xtty->tail("opto_assembly"); 1829 } 1830 } 1831 } 1832 #endif 1833 } 1834 1835 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1836 _inc_table.set_size(cnt); 1837 1838 uint inct_cnt = 0; 1839 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1840 Block* block = C->cfg()->get_block(i); 1841 Node *n = nullptr; 1842 int j; 1843 1844 // Find the branch; ignore trailing NOPs. 1845 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1846 n = block->get_node(j); 1847 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1848 break; 1849 } 1850 } 1851 1852 // If we didn't find anything, continue 1853 if (j < 0) { 1854 continue; 1855 } 1856 1857 // Compute ExceptionHandlerTable subtable entry and add it 1858 // (skip empty blocks) 1859 if (n->is_Catch()) { 1860 1861 // Get the offset of the return from the call 1862 uint call_return = call_returns[block->_pre_order]; 1863 #ifdef ASSERT 1864 assert( call_return > 0, "no call seen for this basic block" ); 1865 while (block->get_node(--j)->is_MachProj()) ; 1866 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1867 #endif 1868 // last instruction is a CatchNode, find it's CatchProjNodes 1869 int nof_succs = block->_num_succs; 1870 // allocate space 1871 GrowableArray<intptr_t> handler_bcis(nof_succs); 1872 GrowableArray<intptr_t> handler_pcos(nof_succs); 1873 // iterate through all successors 1874 for (int j = 0; j < nof_succs; j++) { 1875 Block* s = block->_succs[j]; 1876 bool found_p = false; 1877 for (uint k = 1; k < s->num_preds(); k++) { 1878 Node* pk = s->pred(k); 1879 if (pk->is_CatchProj() && pk->in(0) == n) { 1880 const CatchProjNode* p = pk->as_CatchProj(); 1881 found_p = true; 1882 // add the corresponding handler bci & pco information 1883 if (p->_con != CatchProjNode::fall_through_index) { 1884 // p leads to an exception handler (and is not fall through) 1885 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1886 // no duplicates, please 1887 if (!handler_bcis.contains(p->handler_bci())) { 1888 uint block_num = s->non_connector()->_pre_order; 1889 handler_bcis.append(p->handler_bci()); 1890 handler_pcos.append(blk_labels[block_num].loc_pos()); 1891 } 1892 } 1893 } 1894 } 1895 assert(found_p, "no matching predecessor found"); 1896 // Note: Due to empty block removal, one block may have 1897 // several CatchProj inputs, from the same Catch. 1898 } 1899 1900 // Set the offset of the return from the call 1901 assert(handler_bcis.find(-1) != -1, "must have default handler"); 1902 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 1903 continue; 1904 } 1905 1906 // Handle implicit null exception table updates 1907 if (n->is_MachNullCheck()) { 1908 uint block_num = block->non_connector_successor(0)->_pre_order; 1909 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1910 continue; 1911 } 1912 // Handle implicit exception table updates: trap instructions. 1913 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 1914 uint block_num = block->non_connector_successor(0)->_pre_order; 1915 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1916 continue; 1917 } 1918 } // End of for all blocks fill in exception table entries 1919 } 1920 1921 // Static Variables 1922 #ifndef PRODUCT 1923 uint Scheduling::_total_nop_size = 0; 1924 uint Scheduling::_total_method_size = 0; 1925 uint Scheduling::_total_branches = 0; 1926 uint Scheduling::_total_unconditional_delays = 0; 1927 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 1928 #endif 1929 1930 // Initializer for class Scheduling 1931 1932 Scheduling::Scheduling(Arena *arena, Compile &compile) 1933 : _arena(arena), 1934 _cfg(compile.cfg()), 1935 _regalloc(compile.regalloc()), 1936 _scheduled(arena), 1937 _available(arena), 1938 _reg_node(arena), 1939 _pinch_free_list(arena), 1940 _next_node(nullptr), 1941 _bundle_instr_count(0), 1942 _bundle_cycle_number(0), 1943 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 1944 #ifndef PRODUCT 1945 , _branches(0) 1946 , _unconditional_delays(0) 1947 #endif 1948 { 1949 // Create a MachNopNode 1950 _nop = new MachNopNode(); 1951 1952 // Now that the nops are in the array, save the count 1953 // (but allow entries for the nops) 1954 _node_bundling_limit = compile.unique(); 1955 uint node_max = _regalloc->node_regs_max_index(); 1956 1957 compile.output()->set_node_bundling_limit(_node_bundling_limit); 1958 1959 // This one is persistent within the Compile class 1960 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 1961 1962 // Allocate space for fixed-size arrays 1963 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 1964 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 1965 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 1966 1967 // Clear the arrays 1968 for (uint i = 0; i < node_max; i++) { 1969 ::new (&_node_bundling_base[i]) Bundle(); 1970 } 1971 memset(_node_latency, 0, node_max * sizeof(unsigned short)); 1972 memset(_uses, 0, node_max * sizeof(short)); 1973 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 1974 1975 // Clear the bundling information 1976 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 1977 1978 // Get the last node 1979 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 1980 1981 _next_node = block->get_node(block->number_of_nodes() - 1); 1982 } 1983 1984 #ifndef PRODUCT 1985 // Scheduling destructor 1986 Scheduling::~Scheduling() { 1987 _total_branches += _branches; 1988 _total_unconditional_delays += _unconditional_delays; 1989 } 1990 #endif 1991 1992 // Step ahead "i" cycles 1993 void Scheduling::step(uint i) { 1994 1995 Bundle *bundle = node_bundling(_next_node); 1996 bundle->set_starts_bundle(); 1997 1998 // Update the bundle record, but leave the flags information alone 1999 if (_bundle_instr_count > 0) { 2000 bundle->set_instr_count(_bundle_instr_count); 2001 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2002 } 2003 2004 // Update the state information 2005 _bundle_instr_count = 0; 2006 _bundle_cycle_number += i; 2007 _bundle_use.step(i); 2008 } 2009 2010 void Scheduling::step_and_clear() { 2011 Bundle *bundle = node_bundling(_next_node); 2012 bundle->set_starts_bundle(); 2013 2014 // Update the bundle record 2015 if (_bundle_instr_count > 0) { 2016 bundle->set_instr_count(_bundle_instr_count); 2017 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2018 2019 _bundle_cycle_number += 1; 2020 } 2021 2022 // Clear the bundling information 2023 _bundle_instr_count = 0; 2024 _bundle_use.reset(); 2025 2026 memcpy(_bundle_use_elements, 2027 Pipeline_Use::elaborated_elements, 2028 sizeof(Pipeline_Use::elaborated_elements)); 2029 } 2030 2031 // Perform instruction scheduling and bundling over the sequence of 2032 // instructions in backwards order. 2033 void PhaseOutput::ScheduleAndBundle() { 2034 2035 // Don't optimize this if it isn't a method 2036 if (!C->method()) 2037 return; 2038 2039 // Don't optimize this if scheduling is disabled 2040 if (!C->do_scheduling()) 2041 return; 2042 2043 // Scheduling code works only with pairs (8 bytes) maximum. 2044 if (C->max_vector_size() > 8) 2045 return; 2046 2047 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2048 2049 // Create a data structure for all the scheduling information 2050 Scheduling scheduling(Thread::current()->resource_area(), *C); 2051 2052 // Walk backwards over each basic block, computing the needed alignment 2053 // Walk over all the basic blocks 2054 scheduling.DoScheduling(); 2055 2056 #ifndef PRODUCT 2057 if (C->trace_opto_output()) { 2058 tty->print("\n---- After ScheduleAndBundle ----\n"); 2059 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2060 tty->print("\nBB#%03d:\n", i); 2061 Block* block = C->cfg()->get_block(i); 2062 for (uint j = 0; j < block->number_of_nodes(); j++) { 2063 Node* n = block->get_node(j); 2064 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2065 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2066 n->dump(); 2067 } 2068 } 2069 } 2070 #endif 2071 } 2072 2073 // Compute the latency of all the instructions. This is fairly simple, 2074 // because we already have a legal ordering. Walk over the instructions 2075 // from first to last, and compute the latency of the instruction based 2076 // on the latency of the preceding instruction(s). 2077 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) { 2078 #ifndef PRODUCT 2079 if (_cfg->C->trace_opto_output()) 2080 tty->print("# -> ComputeLocalLatenciesForward\n"); 2081 #endif 2082 2083 // Walk over all the schedulable instructions 2084 for( uint j=_bb_start; j < _bb_end; j++ ) { 2085 2086 // This is a kludge, forcing all latency calculations to start at 1. 2087 // Used to allow latency 0 to force an instruction to the beginning 2088 // of the bb 2089 uint latency = 1; 2090 Node *use = bb->get_node(j); 2091 uint nlen = use->len(); 2092 2093 // Walk over all the inputs 2094 for ( uint k=0; k < nlen; k++ ) { 2095 Node *def = use->in(k); 2096 if (!def) 2097 continue; 2098 2099 uint l = _node_latency[def->_idx] + use->latency(k); 2100 if (latency < l) 2101 latency = l; 2102 } 2103 2104 _node_latency[use->_idx] = latency; 2105 2106 #ifndef PRODUCT 2107 if (_cfg->C->trace_opto_output()) { 2108 tty->print("# latency %4d: ", latency); 2109 use->dump(); 2110 } 2111 #endif 2112 } 2113 2114 #ifndef PRODUCT 2115 if (_cfg->C->trace_opto_output()) 2116 tty->print("# <- ComputeLocalLatenciesForward\n"); 2117 #endif 2118 2119 } // end ComputeLocalLatenciesForward 2120 2121 // See if this node fits into the present instruction bundle 2122 bool Scheduling::NodeFitsInBundle(Node *n) { 2123 uint n_idx = n->_idx; 2124 2125 // If this is the unconditional delay instruction, then it fits 2126 if (n == _unconditional_delay_slot) { 2127 #ifndef PRODUCT 2128 if (_cfg->C->trace_opto_output()) 2129 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2130 #endif 2131 return (true); 2132 } 2133 2134 // If the node cannot be scheduled this cycle, skip it 2135 if (_current_latency[n_idx] > _bundle_cycle_number) { 2136 #ifndef PRODUCT 2137 if (_cfg->C->trace_opto_output()) 2138 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2139 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2140 #endif 2141 return (false); 2142 } 2143 2144 const Pipeline *node_pipeline = n->pipeline(); 2145 2146 uint instruction_count = node_pipeline->instructionCount(); 2147 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2148 instruction_count = 0; 2149 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2150 instruction_count++; 2151 2152 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2153 #ifndef PRODUCT 2154 if (_cfg->C->trace_opto_output()) 2155 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2156 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2157 #endif 2158 return (false); 2159 } 2160 2161 // Don't allow non-machine nodes to be handled this way 2162 if (!n->is_Mach() && instruction_count == 0) 2163 return (false); 2164 2165 // See if there is any overlap 2166 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2167 2168 if (delay > 0) { 2169 #ifndef PRODUCT 2170 if (_cfg->C->trace_opto_output()) 2171 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2172 #endif 2173 return false; 2174 } 2175 2176 #ifndef PRODUCT 2177 if (_cfg->C->trace_opto_output()) 2178 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2179 #endif 2180 2181 return true; 2182 } 2183 2184 Node * Scheduling::ChooseNodeToBundle() { 2185 uint siz = _available.size(); 2186 2187 if (siz == 0) { 2188 2189 #ifndef PRODUCT 2190 if (_cfg->C->trace_opto_output()) 2191 tty->print("# ChooseNodeToBundle: null\n"); 2192 #endif 2193 return (nullptr); 2194 } 2195 2196 // Fast path, if only 1 instruction in the bundle 2197 if (siz == 1) { 2198 #ifndef PRODUCT 2199 if (_cfg->C->trace_opto_output()) { 2200 tty->print("# ChooseNodeToBundle (only 1): "); 2201 _available[0]->dump(); 2202 } 2203 #endif 2204 return (_available[0]); 2205 } 2206 2207 // Don't bother, if the bundle is already full 2208 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2209 for ( uint i = 0; i < siz; i++ ) { 2210 Node *n = _available[i]; 2211 2212 // Skip projections, we'll handle them another way 2213 if (n->is_Proj()) 2214 continue; 2215 2216 // This presupposed that instructions are inserted into the 2217 // available list in a legality order; i.e. instructions that 2218 // must be inserted first are at the head of the list 2219 if (NodeFitsInBundle(n)) { 2220 #ifndef PRODUCT 2221 if (_cfg->C->trace_opto_output()) { 2222 tty->print("# ChooseNodeToBundle: "); 2223 n->dump(); 2224 } 2225 #endif 2226 return (n); 2227 } 2228 } 2229 } 2230 2231 // Nothing fits in this bundle, choose the highest priority 2232 #ifndef PRODUCT 2233 if (_cfg->C->trace_opto_output()) { 2234 tty->print("# ChooseNodeToBundle: "); 2235 _available[0]->dump(); 2236 } 2237 #endif 2238 2239 return _available[0]; 2240 } 2241 2242 void Scheduling::AddNodeToAvailableList(Node *n) { 2243 assert( !n->is_Proj(), "projections never directly made available" ); 2244 #ifndef PRODUCT 2245 if (_cfg->C->trace_opto_output()) { 2246 tty->print("# AddNodeToAvailableList: "); 2247 n->dump(); 2248 } 2249 #endif 2250 2251 int latency = _current_latency[n->_idx]; 2252 2253 // Insert in latency order (insertion sort) 2254 uint i; 2255 for ( i=0; i < _available.size(); i++ ) 2256 if (_current_latency[_available[i]->_idx] > latency) 2257 break; 2258 2259 // Special Check for compares following branches 2260 if( n->is_Mach() && _scheduled.size() > 0 ) { 2261 int op = n->as_Mach()->ideal_Opcode(); 2262 Node *last = _scheduled[0]; 2263 if( last->is_MachIf() && last->in(1) == n && 2264 ( op == Op_CmpI || 2265 op == Op_CmpU || 2266 op == Op_CmpUL || 2267 op == Op_CmpP || 2268 op == Op_CmpF || 2269 op == Op_CmpD || 2270 op == Op_CmpL ) ) { 2271 2272 // Recalculate position, moving to front of same latency 2273 for ( i=0 ; i < _available.size(); i++ ) 2274 if (_current_latency[_available[i]->_idx] >= latency) 2275 break; 2276 } 2277 } 2278 2279 // Insert the node in the available list 2280 _available.insert(i, n); 2281 2282 #ifndef PRODUCT 2283 if (_cfg->C->trace_opto_output()) 2284 dump_available(); 2285 #endif 2286 } 2287 2288 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2289 for ( uint i=0; i < n->len(); i++ ) { 2290 Node *def = n->in(i); 2291 if (!def) continue; 2292 if( def->is_Proj() ) // If this is a machine projection, then 2293 def = def->in(0); // propagate usage thru to the base instruction 2294 2295 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2296 continue; 2297 } 2298 2299 // Compute the latency 2300 uint l = _bundle_cycle_number + n->latency(i); 2301 if (_current_latency[def->_idx] < l) 2302 _current_latency[def->_idx] = l; 2303 2304 // If this does not have uses then schedule it 2305 if ((--_uses[def->_idx]) == 0) 2306 AddNodeToAvailableList(def); 2307 } 2308 } 2309 2310 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2311 #ifndef PRODUCT 2312 if (_cfg->C->trace_opto_output()) { 2313 tty->print("# AddNodeToBundle: "); 2314 n->dump(); 2315 } 2316 #endif 2317 2318 // Remove this from the available list 2319 uint i; 2320 for (i = 0; i < _available.size(); i++) 2321 if (_available[i] == n) 2322 break; 2323 assert(i < _available.size(), "entry in _available list not found"); 2324 _available.remove(i); 2325 2326 // See if this fits in the current bundle 2327 const Pipeline *node_pipeline = n->pipeline(); 2328 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2329 2330 // Check for instructions to be placed in the delay slot. We 2331 // do this before we actually schedule the current instruction, 2332 // because the delay slot follows the current instruction. 2333 if (Pipeline::_branch_has_delay_slot && 2334 node_pipeline->hasBranchDelay() && 2335 !_unconditional_delay_slot) { 2336 2337 uint siz = _available.size(); 2338 2339 // Conditional branches can support an instruction that 2340 // is unconditionally executed and not dependent by the 2341 // branch, OR a conditionally executed instruction if 2342 // the branch is taken. In practice, this means that 2343 // the first instruction at the branch target is 2344 // copied to the delay slot, and the branch goes to 2345 // the instruction after that at the branch target 2346 if ( n->is_MachBranch() ) { 2347 2348 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2349 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2350 2351 #ifndef PRODUCT 2352 _branches++; 2353 #endif 2354 2355 // At least 1 instruction is on the available list 2356 // that is not dependent on the branch 2357 for (uint i = 0; i < siz; i++) { 2358 Node *d = _available[i]; 2359 const Pipeline *avail_pipeline = d->pipeline(); 2360 2361 // Don't allow safepoints in the branch shadow, that will 2362 // cause a number of difficulties 2363 if ( avail_pipeline->instructionCount() == 1 && 2364 !avail_pipeline->hasMultipleBundles() && 2365 !avail_pipeline->hasBranchDelay() && 2366 Pipeline::instr_has_unit_size() && 2367 d->size(_regalloc) == Pipeline::instr_unit_size() && 2368 NodeFitsInBundle(d) && 2369 !node_bundling(d)->used_in_delay()) { 2370 2371 if (d->is_Mach() && !d->is_MachSafePoint()) { 2372 // A node that fits in the delay slot was found, so we need to 2373 // set the appropriate bits in the bundle pipeline information so 2374 // that it correctly indicates resource usage. Later, when we 2375 // attempt to add this instruction to the bundle, we will skip 2376 // setting the resource usage. 2377 _unconditional_delay_slot = d; 2378 node_bundling(n)->set_use_unconditional_delay(); 2379 node_bundling(d)->set_used_in_unconditional_delay(); 2380 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2381 _current_latency[d->_idx] = _bundle_cycle_number; 2382 _next_node = d; 2383 ++_bundle_instr_count; 2384 #ifndef PRODUCT 2385 _unconditional_delays++; 2386 #endif 2387 break; 2388 } 2389 } 2390 } 2391 } 2392 2393 // No delay slot, add a nop to the usage 2394 if (!_unconditional_delay_slot) { 2395 // See if adding an instruction in the delay slot will overflow 2396 // the bundle. 2397 if (!NodeFitsInBundle(_nop)) { 2398 #ifndef PRODUCT 2399 if (_cfg->C->trace_opto_output()) 2400 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2401 #endif 2402 step(1); 2403 } 2404 2405 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2406 _next_node = _nop; 2407 ++_bundle_instr_count; 2408 } 2409 2410 // See if the instruction in the delay slot requires a 2411 // step of the bundles 2412 if (!NodeFitsInBundle(n)) { 2413 #ifndef PRODUCT 2414 if (_cfg->C->trace_opto_output()) 2415 tty->print("# *** STEP(branch won't fit) ***\n"); 2416 #endif 2417 // Update the state information 2418 _bundle_instr_count = 0; 2419 _bundle_cycle_number += 1; 2420 _bundle_use.step(1); 2421 } 2422 } 2423 2424 // Get the number of instructions 2425 uint instruction_count = node_pipeline->instructionCount(); 2426 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2427 instruction_count = 0; 2428 2429 // Compute the latency information 2430 uint delay = 0; 2431 2432 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2433 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2434 if (relative_latency < 0) 2435 relative_latency = 0; 2436 2437 delay = _bundle_use.full_latency(relative_latency, node_usage); 2438 2439 // Does not fit in this bundle, start a new one 2440 if (delay > 0) { 2441 step(delay); 2442 2443 #ifndef PRODUCT 2444 if (_cfg->C->trace_opto_output()) 2445 tty->print("# *** STEP(%d) ***\n", delay); 2446 #endif 2447 } 2448 } 2449 2450 // If this was placed in the delay slot, ignore it 2451 if (n != _unconditional_delay_slot) { 2452 2453 if (delay == 0) { 2454 if (node_pipeline->hasMultipleBundles()) { 2455 #ifndef PRODUCT 2456 if (_cfg->C->trace_opto_output()) 2457 tty->print("# *** STEP(multiple instructions) ***\n"); 2458 #endif 2459 step(1); 2460 } 2461 2462 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2463 #ifndef PRODUCT 2464 if (_cfg->C->trace_opto_output()) 2465 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2466 instruction_count + _bundle_instr_count, 2467 Pipeline::_max_instrs_per_cycle); 2468 #endif 2469 step(1); 2470 } 2471 } 2472 2473 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2474 _bundle_instr_count++; 2475 2476 // Set the node's latency 2477 _current_latency[n->_idx] = _bundle_cycle_number; 2478 2479 // Now merge the functional unit information 2480 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2481 _bundle_use.add_usage(node_usage); 2482 2483 // Increment the number of instructions in this bundle 2484 _bundle_instr_count += instruction_count; 2485 2486 // Remember this node for later 2487 if (n->is_Mach()) 2488 _next_node = n; 2489 } 2490 2491 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2492 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2493 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2494 // into the block. All other scheduled nodes get put in the schedule here. 2495 int op = n->Opcode(); 2496 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2497 (op != Op_Node && // Not an unused antidepedence node and 2498 // not an unallocated boxlock 2499 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2500 2501 // Push any trailing projections 2502 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2503 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2504 Node *foi = n->fast_out(i); 2505 if( foi->is_Proj() ) 2506 _scheduled.push(foi); 2507 } 2508 } 2509 2510 // Put the instruction in the schedule list 2511 _scheduled.push(n); 2512 } 2513 2514 #ifndef PRODUCT 2515 if (_cfg->C->trace_opto_output()) 2516 dump_available(); 2517 #endif 2518 2519 // Walk all the definitions, decrementing use counts, and 2520 // if a definition has a 0 use count, place it in the available list. 2521 DecrementUseCounts(n,bb); 2522 } 2523 2524 // This method sets the use count within a basic block. We will ignore all 2525 // uses outside the current basic block. As we are doing a backwards walk, 2526 // any node we reach that has a use count of 0 may be scheduled. This also 2527 // avoids the problem of cyclic references from phi nodes, as long as phi 2528 // nodes are at the front of the basic block. This method also initializes 2529 // the available list to the set of instructions that have no uses within this 2530 // basic block. 2531 void Scheduling::ComputeUseCount(const Block *bb) { 2532 #ifndef PRODUCT 2533 if (_cfg->C->trace_opto_output()) 2534 tty->print("# -> ComputeUseCount\n"); 2535 #endif 2536 2537 // Clear the list of available and scheduled instructions, just in case 2538 _available.clear(); 2539 _scheduled.clear(); 2540 2541 // No delay slot specified 2542 _unconditional_delay_slot = nullptr; 2543 2544 #ifdef ASSERT 2545 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2546 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2547 #endif 2548 2549 // Force the _uses count to never go to zero for unscheduable pieces 2550 // of the block 2551 for( uint k = 0; k < _bb_start; k++ ) 2552 _uses[bb->get_node(k)->_idx] = 1; 2553 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2554 _uses[bb->get_node(l)->_idx] = 1; 2555 2556 // Iterate backwards over the instructions in the block. Don't count the 2557 // branch projections at end or the block header instructions. 2558 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2559 Node *n = bb->get_node(j); 2560 if( n->is_Proj() ) continue; // Projections handled another way 2561 2562 // Account for all uses 2563 for ( uint k = 0; k < n->len(); k++ ) { 2564 Node *inp = n->in(k); 2565 if (!inp) continue; 2566 assert(inp != n, "no cycles allowed" ); 2567 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2568 if (inp->is_Proj()) { // Skip through Proj's 2569 inp = inp->in(0); 2570 } 2571 ++_uses[inp->_idx]; // Count 1 block-local use 2572 } 2573 } 2574 2575 // If this instruction has a 0 use count, then it is available 2576 if (!_uses[n->_idx]) { 2577 _current_latency[n->_idx] = _bundle_cycle_number; 2578 AddNodeToAvailableList(n); 2579 } 2580 2581 #ifndef PRODUCT 2582 if (_cfg->C->trace_opto_output()) { 2583 tty->print("# uses: %3d: ", _uses[n->_idx]); 2584 n->dump(); 2585 } 2586 #endif 2587 } 2588 2589 #ifndef PRODUCT 2590 if (_cfg->C->trace_opto_output()) 2591 tty->print("# <- ComputeUseCount\n"); 2592 #endif 2593 } 2594 2595 // This routine performs scheduling on each basic block in reverse order, 2596 // using instruction latencies and taking into account function unit 2597 // availability. 2598 void Scheduling::DoScheduling() { 2599 #ifndef PRODUCT 2600 if (_cfg->C->trace_opto_output()) 2601 tty->print("# -> DoScheduling\n"); 2602 #endif 2603 2604 Block *succ_bb = nullptr; 2605 Block *bb; 2606 Compile* C = Compile::current(); 2607 2608 // Walk over all the basic blocks in reverse order 2609 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2610 bb = _cfg->get_block(i); 2611 2612 #ifndef PRODUCT 2613 if (_cfg->C->trace_opto_output()) { 2614 tty->print("# Schedule BB#%03d (initial)\n", i); 2615 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2616 bb->get_node(j)->dump(); 2617 } 2618 } 2619 #endif 2620 2621 // On the head node, skip processing 2622 if (bb == _cfg->get_root_block()) { 2623 continue; 2624 } 2625 2626 // Skip empty, connector blocks 2627 if (bb->is_connector()) 2628 continue; 2629 2630 // If the following block is not the sole successor of 2631 // this one, then reset the pipeline information 2632 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2633 #ifndef PRODUCT 2634 if (_cfg->C->trace_opto_output()) { 2635 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2636 _next_node->_idx, _bundle_instr_count); 2637 } 2638 #endif 2639 step_and_clear(); 2640 } 2641 2642 // Leave untouched the starting instruction, any Phis, a CreateEx node 2643 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2644 _bb_end = bb->number_of_nodes()-1; 2645 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2646 Node *n = bb->get_node(_bb_start); 2647 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2648 // Also, MachIdealNodes do not get scheduled 2649 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2650 MachNode *mach = n->as_Mach(); 2651 int iop = mach->ideal_Opcode(); 2652 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2653 if( iop == Op_Con ) continue; // Do not schedule Top 2654 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2655 mach->pipeline() == MachNode::pipeline_class() && 2656 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2657 continue; 2658 break; // Funny loop structure to be sure... 2659 } 2660 // Compute last "interesting" instruction in block - last instruction we 2661 // might schedule. _bb_end points just after last schedulable inst. We 2662 // normally schedule conditional branches (despite them being forced last 2663 // in the block), because they have delay slots we can fill. Calls all 2664 // have their delay slots filled in the template expansions, so we don't 2665 // bother scheduling them. 2666 Node *last = bb->get_node(_bb_end); 2667 // Ignore trailing NOPs. 2668 while (_bb_end > 0 && last->is_Mach() && 2669 last->as_Mach()->ideal_Opcode() == Op_Con) { 2670 last = bb->get_node(--_bb_end); 2671 } 2672 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2673 if( last->is_Catch() || 2674 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2675 // There might be a prior call. Skip it. 2676 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2677 } else if( last->is_MachNullCheck() ) { 2678 // Backup so the last null-checked memory instruction is 2679 // outside the schedulable range. Skip over the nullcheck, 2680 // projection, and the memory nodes. 2681 Node *mem = last->in(1); 2682 do { 2683 _bb_end--; 2684 } while (mem != bb->get_node(_bb_end)); 2685 } else { 2686 // Set _bb_end to point after last schedulable inst. 2687 _bb_end++; 2688 } 2689 2690 assert( _bb_start <= _bb_end, "inverted block ends" ); 2691 2692 // Compute the register antidependencies for the basic block 2693 ComputeRegisterAntidependencies(bb); 2694 if (C->failing()) return; // too many D-U pinch points 2695 2696 // Compute intra-bb latencies for the nodes 2697 ComputeLocalLatenciesForward(bb); 2698 2699 // Compute the usage within the block, and set the list of all nodes 2700 // in the block that have no uses within the block. 2701 ComputeUseCount(bb); 2702 2703 // Schedule the remaining instructions in the block 2704 while ( _available.size() > 0 ) { 2705 Node *n = ChooseNodeToBundle(); 2706 guarantee(n != nullptr, "no nodes available"); 2707 AddNodeToBundle(n,bb); 2708 } 2709 2710 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2711 #ifdef ASSERT 2712 for( uint l = _bb_start; l < _bb_end; l++ ) { 2713 Node *n = bb->get_node(l); 2714 uint m; 2715 for( m = 0; m < _bb_end-_bb_start; m++ ) 2716 if( _scheduled[m] == n ) 2717 break; 2718 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2719 } 2720 #endif 2721 2722 // Now copy the instructions (in reverse order) back to the block 2723 for ( uint k = _bb_start; k < _bb_end; k++ ) 2724 bb->map_node(_scheduled[_bb_end-k-1], k); 2725 2726 #ifndef PRODUCT 2727 if (_cfg->C->trace_opto_output()) { 2728 tty->print("# Schedule BB#%03d (final)\n", i); 2729 uint current = 0; 2730 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2731 Node *n = bb->get_node(j); 2732 if( valid_bundle_info(n) ) { 2733 Bundle *bundle = node_bundling(n); 2734 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2735 tty->print("*** Bundle: "); 2736 bundle->dump(); 2737 } 2738 n->dump(); 2739 } 2740 } 2741 } 2742 #endif 2743 #ifdef ASSERT 2744 verify_good_schedule(bb,"after block local scheduling"); 2745 #endif 2746 } 2747 2748 #ifndef PRODUCT 2749 if (_cfg->C->trace_opto_output()) 2750 tty->print("# <- DoScheduling\n"); 2751 #endif 2752 2753 // Record final node-bundling array location 2754 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2755 2756 } // end DoScheduling 2757 2758 // Verify that no live-range used in the block is killed in the block by a 2759 // wrong DEF. This doesn't verify live-ranges that span blocks. 2760 2761 // Check for edge existence. Used to avoid adding redundant precedence edges. 2762 static bool edge_from_to( Node *from, Node *to ) { 2763 for( uint i=0; i<from->len(); i++ ) 2764 if( from->in(i) == to ) 2765 return true; 2766 return false; 2767 } 2768 2769 #ifdef ASSERT 2770 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2771 // Check for bad kills 2772 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2773 Node *prior_use = _reg_node[def]; 2774 if( prior_use && !edge_from_to(prior_use,n) ) { 2775 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2776 n->dump(); 2777 tty->print_cr("..."); 2778 prior_use->dump(); 2779 assert(edge_from_to(prior_use,n), "%s", msg); 2780 } 2781 _reg_node.map(def,nullptr); // Kill live USEs 2782 } 2783 } 2784 2785 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2786 2787 // Zap to something reasonable for the verify code 2788 _reg_node.clear(); 2789 2790 // Walk over the block backwards. Check to make sure each DEF doesn't 2791 // kill a live value (other than the one it's supposed to). Add each 2792 // USE to the live set. 2793 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2794 Node *n = b->get_node(i); 2795 int n_op = n->Opcode(); 2796 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2797 // Fat-proj kills a slew of registers 2798 RegMaskIterator rmi(n->out_RegMask()); 2799 while (rmi.has_next()) { 2800 OptoReg::Name kill = rmi.next(); 2801 verify_do_def(n, kill, msg); 2802 } 2803 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2804 // Get DEF'd registers the normal way 2805 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2806 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2807 } 2808 2809 // Now make all USEs live 2810 for( uint i=1; i<n->req(); i++ ) { 2811 Node *def = n->in(i); 2812 assert(def != 0, "input edge required"); 2813 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2814 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2815 if( OptoReg::is_valid(reg_lo) ) { 2816 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2817 _reg_node.map(reg_lo,n); 2818 } 2819 if( OptoReg::is_valid(reg_hi) ) { 2820 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2821 _reg_node.map(reg_hi,n); 2822 } 2823 } 2824 2825 } 2826 2827 // Zap to something reasonable for the Antidependence code 2828 _reg_node.clear(); 2829 } 2830 #endif 2831 2832 // Conditionally add precedence edges. Avoid putting edges on Projs. 2833 static void add_prec_edge_from_to( Node *from, Node *to ) { 2834 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2835 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); 2836 from = from->in(0); 2837 } 2838 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2839 !edge_from_to( from, to ) ) // Avoid duplicate edge 2840 from->add_prec(to); 2841 } 2842 2843 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2844 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2845 return; 2846 2847 if (OptoReg::is_reg(def_reg)) { 2848 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2849 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2850 // This is one of the high slots of a vector register. 2851 // ScheduleAndBundle already checked there are no live wide 2852 // vectors in this method so it can be safely ignored. 2853 return; 2854 } 2855 } 2856 2857 Node *pinch = _reg_node[def_reg]; // Get pinch point 2858 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2859 is_def ) { // Check for a true def (not a kill) 2860 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2861 return; 2862 } 2863 2864 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2865 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2866 2867 // After some number of kills there _may_ be a later def 2868 Node *later_def = nullptr; 2869 2870 Compile* C = Compile::current(); 2871 2872 // Finding a kill requires a real pinch-point. 2873 // Check for not already having a pinch-point. 2874 // Pinch points are Op_Node's. 2875 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2876 later_def = pinch; // Must be def/kill as optimistic pinch-point 2877 if ( _pinch_free_list.size() > 0) { 2878 pinch = _pinch_free_list.pop(); 2879 } else { 2880 pinch = new Node(1); // Pinch point to-be 2881 } 2882 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2883 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2884 return; 2885 } 2886 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2887 _reg_node.map(def_reg,pinch); // Record pinch-point 2888 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2889 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2890 pinch->init_req(0, C->top()); // set not null for the next call 2891 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2892 later_def = nullptr; // and no later def 2893 } 2894 pinch->set_req(0,later_def); // Hook later def so we can find it 2895 } else { // Else have valid pinch point 2896 if( pinch->in(0) ) // If there is a later-def 2897 later_def = pinch->in(0); // Get it 2898 } 2899 2900 // Add output-dependence edge from later def to kill 2901 if( later_def ) // If there is some original def 2902 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 2903 2904 // See if current kill is also a use, and so is forced to be the pinch-point. 2905 if( pinch->Opcode() == Op_Node ) { 2906 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 2907 for( uint i=1; i<uses->req(); i++ ) { 2908 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 2909 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 2910 // Yes, found a use/kill pinch-point 2911 pinch->set_req(0,nullptr); // 2912 pinch->replace_by(kill); // Move anti-dep edges up 2913 pinch = kill; 2914 _reg_node.map(def_reg,pinch); 2915 return; 2916 } 2917 } 2918 } 2919 2920 // Add edge from kill to pinch-point 2921 add_prec_edge_from_to(kill,pinch); 2922 } 2923 2924 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 2925 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 2926 return; 2927 Node *pinch = _reg_node[use_reg]; // Get pinch point 2928 // Check for no later def_reg/kill in block 2929 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 2930 // Use has to be block-local as well 2931 _cfg->get_block_for_node(use) == b) { 2932 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 2933 pinch->req() == 1 ) { // pinch not yet in block? 2934 pinch->del_req(0); // yank pointer to later-def, also set flag 2935 // Insert the pinch-point in the block just after the last use 2936 b->insert_node(pinch, b->find_node(use) + 1); 2937 _bb_end++; // Increase size scheduled region in block 2938 } 2939 2940 add_prec_edge_from_to(pinch,use); 2941 } 2942 } 2943 2944 // We insert antidependences between the reads and following write of 2945 // allocated registers to prevent illegal code motion. Hopefully, the 2946 // number of added references should be fairly small, especially as we 2947 // are only adding references within the current basic block. 2948 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 2949 2950 #ifdef ASSERT 2951 verify_good_schedule(b,"before block local scheduling"); 2952 #endif 2953 2954 // A valid schedule, for each register independently, is an endless cycle 2955 // of: a def, then some uses (connected to the def by true dependencies), 2956 // then some kills (defs with no uses), finally the cycle repeats with a new 2957 // def. The uses are allowed to float relative to each other, as are the 2958 // kills. No use is allowed to slide past a kill (or def). This requires 2959 // antidependencies between all uses of a single def and all kills that 2960 // follow, up to the next def. More edges are redundant, because later defs 2961 // & kills are already serialized with true or antidependencies. To keep 2962 // the edge count down, we add a 'pinch point' node if there's more than 2963 // one use or more than one kill/def. 2964 2965 // We add dependencies in one bottom-up pass. 2966 2967 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 2968 2969 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 2970 // register. If not, we record the DEF/KILL in _reg_node, the 2971 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 2972 // "pinch point", a new Node that's in the graph but not in the block. 2973 // We put edges from the prior and current DEF/KILLs to the pinch point. 2974 // We put the pinch point in _reg_node. If there's already a pinch point 2975 // we merely add an edge from the current DEF/KILL to the pinch point. 2976 2977 // After doing the DEF/KILLs, we handle USEs. For each used register, we 2978 // put an edge from the pinch point to the USE. 2979 2980 // To be expedient, the _reg_node array is pre-allocated for the whole 2981 // compilation. _reg_node is lazily initialized; it either contains a null, 2982 // or a valid def/kill/pinch-point, or a leftover node from some prior 2983 // block. Leftover node from some prior block is treated like a null (no 2984 // prior def, so no anti-dependence needed). Valid def is distinguished by 2985 // it being in the current block. 2986 bool fat_proj_seen = false; 2987 uint last_safept = _bb_end-1; 2988 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 2989 Node* last_safept_node = end_node; 2990 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 2991 Node *n = b->get_node(i); 2992 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 2993 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 2994 // Fat-proj kills a slew of registers 2995 // This can add edges to 'n' and obscure whether or not it was a def, 2996 // hence the is_def flag. 2997 fat_proj_seen = true; 2998 RegMaskIterator rmi(n->out_RegMask()); 2999 while (rmi.has_next()) { 3000 OptoReg::Name kill = rmi.next(); 3001 anti_do_def(b, n, kill, is_def); 3002 } 3003 } else { 3004 // Get DEF'd registers the normal way 3005 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3006 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3007 } 3008 3009 // Kill projections on a branch should appear to occur on the 3010 // branch, not afterwards, so grab the masks from the projections 3011 // and process them. 3012 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3013 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3014 Node* use = n->fast_out(i); 3015 if (use->is_Proj()) { 3016 RegMaskIterator rmi(use->out_RegMask()); 3017 while (rmi.has_next()) { 3018 OptoReg::Name kill = rmi.next(); 3019 anti_do_def(b, n, kill, false); 3020 } 3021 } 3022 } 3023 } 3024 3025 // Check each register used by this instruction for a following DEF/KILL 3026 // that must occur afterward and requires an anti-dependence edge. 3027 for( uint j=0; j<n->req(); j++ ) { 3028 Node *def = n->in(j); 3029 if( def ) { 3030 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3031 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3032 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3033 } 3034 } 3035 // Do not allow defs of new derived values to float above GC 3036 // points unless the base is definitely available at the GC point. 3037 3038 Node *m = b->get_node(i); 3039 3040 // Add precedence edge from following safepoint to use of derived pointer 3041 if( last_safept_node != end_node && 3042 m != last_safept_node) { 3043 for (uint k = 1; k < m->req(); k++) { 3044 const Type *t = m->in(k)->bottom_type(); 3045 if( t->isa_oop_ptr() && 3046 t->is_ptr()->offset() != 0 ) { 3047 last_safept_node->add_prec( m ); 3048 break; 3049 } 3050 } 3051 } 3052 3053 if( n->jvms() ) { // Precedence edge from derived to safept 3054 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3055 if( b->get_node(last_safept) != last_safept_node ) { 3056 last_safept = b->find_node(last_safept_node); 3057 } 3058 for( uint j=last_safept; j > i; j-- ) { 3059 Node *mach = b->get_node(j); 3060 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3061 mach->add_prec( n ); 3062 } 3063 last_safept = i; 3064 last_safept_node = m; 3065 } 3066 } 3067 3068 if (fat_proj_seen) { 3069 // Garbage collect pinch nodes that were not consumed. 3070 // They are usually created by a fat kill MachProj for a call. 3071 garbage_collect_pinch_nodes(); 3072 } 3073 } 3074 3075 // Garbage collect pinch nodes for reuse by other blocks. 3076 // 3077 // The block scheduler's insertion of anti-dependence 3078 // edges creates many pinch nodes when the block contains 3079 // 2 or more Calls. A pinch node is used to prevent a 3080 // combinatorial explosion of edges. If a set of kills for a 3081 // register is anti-dependent on a set of uses (or defs), rather 3082 // than adding an edge in the graph between each pair of kill 3083 // and use (or def), a pinch is inserted between them: 3084 // 3085 // use1 use2 use3 3086 // \ | / 3087 // \ | / 3088 // pinch 3089 // / | \ 3090 // / | \ 3091 // kill1 kill2 kill3 3092 // 3093 // One pinch node is created per register killed when 3094 // the second call is encountered during a backwards pass 3095 // over the block. Most of these pinch nodes are never 3096 // wired into the graph because the register is never 3097 // used or def'ed in the block. 3098 // 3099 void Scheduling::garbage_collect_pinch_nodes() { 3100 #ifndef PRODUCT 3101 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3102 #endif 3103 int trace_cnt = 0; 3104 for (uint k = 0; k < _reg_node.Size(); k++) { 3105 Node* pinch = _reg_node[k]; 3106 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3107 // no predecence input edges 3108 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3109 cleanup_pinch(pinch); 3110 _pinch_free_list.push(pinch); 3111 _reg_node.map(k, nullptr); 3112 #ifndef PRODUCT 3113 if (_cfg->C->trace_opto_output()) { 3114 trace_cnt++; 3115 if (trace_cnt > 40) { 3116 tty->print("\n"); 3117 trace_cnt = 0; 3118 } 3119 tty->print(" %d", pinch->_idx); 3120 } 3121 #endif 3122 } 3123 } 3124 #ifndef PRODUCT 3125 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3126 #endif 3127 } 3128 3129 // Clean up a pinch node for reuse. 3130 void Scheduling::cleanup_pinch( Node *pinch ) { 3131 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3132 3133 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3134 Node* use = pinch->last_out(i); 3135 uint uses_found = 0; 3136 for (uint j = use->req(); j < use->len(); j++) { 3137 if (use->in(j) == pinch) { 3138 use->rm_prec(j); 3139 uses_found++; 3140 } 3141 } 3142 assert(uses_found > 0, "must be a precedence edge"); 3143 i -= uses_found; // we deleted 1 or more copies of this edge 3144 } 3145 // May have a later_def entry 3146 pinch->set_req(0, nullptr); 3147 } 3148 3149 #ifndef PRODUCT 3150 3151 void Scheduling::dump_available() const { 3152 tty->print("#Availist "); 3153 for (uint i = 0; i < _available.size(); i++) 3154 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3155 tty->cr(); 3156 } 3157 3158 // Print Scheduling Statistics 3159 void Scheduling::print_statistics() { 3160 // Print the size added by nops for bundling 3161 tty->print("Nops added %d bytes to total of %d bytes", 3162 _total_nop_size, _total_method_size); 3163 if (_total_method_size > 0) 3164 tty->print(", for %.2f%%", 3165 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3166 tty->print("\n"); 3167 3168 // Print the number of branch shadows filled 3169 if (Pipeline::_branch_has_delay_slot) { 3170 tty->print("Of %d branches, %d had unconditional delay slots filled", 3171 _total_branches, _total_unconditional_delays); 3172 if (_total_branches > 0) 3173 tty->print(", for %.2f%%", 3174 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3175 tty->print("\n"); 3176 } 3177 3178 uint total_instructions = 0, total_bundles = 0; 3179 3180 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3181 uint bundle_count = _total_instructions_per_bundle[i]; 3182 total_instructions += bundle_count * i; 3183 total_bundles += bundle_count; 3184 } 3185 3186 if (total_bundles > 0) 3187 tty->print("Average ILP (excluding nops) is %.2f\n", 3188 ((double)total_instructions) / ((double)total_bundles)); 3189 } 3190 #endif 3191 3192 //-----------------------init_scratch_buffer_blob------------------------------ 3193 // Construct a temporary BufferBlob and cache it for this compile. 3194 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3195 // If there is already a scratch buffer blob allocated and the 3196 // constant section is big enough, use it. Otherwise free the 3197 // current and allocate a new one. 3198 BufferBlob* blob = scratch_buffer_blob(); 3199 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3200 // Use the current blob. 3201 } else { 3202 if (blob != nullptr) { 3203 BufferBlob::free(blob); 3204 } 3205 3206 ResourceMark rm; 3207 _scratch_const_size = const_size; 3208 int size = C2Compiler::initial_code_buffer_size(const_size); 3209 blob = BufferBlob::create("Compile::scratch_buffer", size); 3210 // Record the buffer blob for next time. 3211 set_scratch_buffer_blob(blob); 3212 // Have we run out of code space? 3213 if (scratch_buffer_blob() == nullptr) { 3214 // Let CompilerBroker disable further compilations. 3215 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3216 return; 3217 } 3218 } 3219 3220 // Initialize the relocation buffers 3221 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3222 set_scratch_locs_memory(locs_buf); 3223 } 3224 3225 3226 //-----------------------scratch_emit_size------------------------------------- 3227 // Helper function that computes size by emitting code 3228 uint PhaseOutput::scratch_emit_size(const Node* n) { 3229 // Start scratch_emit_size section. 3230 set_in_scratch_emit_size(true); 3231 3232 // Emit into a trash buffer and count bytes emitted. 3233 // This is a pretty expensive way to compute a size, 3234 // but it works well enough if seldom used. 3235 // All common fixed-size instructions are given a size 3236 // method by the AD file. 3237 // Note that the scratch buffer blob and locs memory are 3238 // allocated at the beginning of the compile task, and 3239 // may be shared by several calls to scratch_emit_size. 3240 // The allocation of the scratch buffer blob is particularly 3241 // expensive, since it has to grab the code cache lock. 3242 BufferBlob* blob = this->scratch_buffer_blob(); 3243 assert(blob != nullptr, "Initialize BufferBlob at start"); 3244 assert(blob->size() > MAX_inst_size, "sanity"); 3245 relocInfo* locs_buf = scratch_locs_memory(); 3246 address blob_begin = blob->content_begin(); 3247 address blob_end = (address)locs_buf; 3248 assert(blob->contains(blob_end), "sanity"); 3249 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3250 buf.initialize_consts_size(_scratch_const_size); 3251 buf.initialize_stubs_size(MAX_stubs_size); 3252 assert(locs_buf != nullptr, "sanity"); 3253 int lsize = MAX_locs_size / 3; 3254 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3255 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3256 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3257 // Mark as scratch buffer. 3258 buf.consts()->set_scratch_emit(); 3259 buf.insts()->set_scratch_emit(); 3260 buf.stubs()->set_scratch_emit(); 3261 3262 // Do the emission. 3263 3264 Label fakeL; // Fake label for branch instructions. 3265 Label* saveL = nullptr; 3266 uint save_bnum = 0; 3267 bool is_branch = n->is_MachBranch(); 3268 if (is_branch) { 3269 MacroAssembler masm(&buf); 3270 masm.bind(fakeL); 3271 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3272 n->as_MachBranch()->label_set(&fakeL, 0); 3273 } 3274 n->emit(buf, C->regalloc()); 3275 3276 // Emitting into the scratch buffer should not fail 3277 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3278 3279 if (is_branch) // Restore label. 3280 n->as_MachBranch()->label_set(saveL, save_bnum); 3281 3282 // End scratch_emit_size section. 3283 set_in_scratch_emit_size(false); 3284 3285 return buf.insts_size(); 3286 } 3287 3288 void PhaseOutput::install() { 3289 if (!C->should_install_code()) { 3290 return; 3291 } else if (C->stub_function() != nullptr) { 3292 install_stub(C->stub_name()); 3293 } else { 3294 install_code(C->method(), 3295 C->entry_bci(), 3296 CompileBroker::compiler2(), 3297 C->has_unsafe_access(), 3298 SharedRuntime::is_wide_vector(C->max_vector_size()), 3299 C->rtm_state()); 3300 } 3301 } 3302 3303 void PhaseOutput::install_code(ciMethod* target, 3304 int entry_bci, 3305 AbstractCompiler* compiler, 3306 bool has_unsafe_access, 3307 bool has_wide_vectors, 3308 RTMState rtm_state) { 3309 // Check if we want to skip execution of all compiled code. 3310 { 3311 #ifndef PRODUCT 3312 if (OptoNoExecute) { 3313 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3314 return; 3315 } 3316 #endif 3317 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3318 3319 if (C->is_osr_compilation()) { 3320 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3321 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3322 } else { 3323 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3324 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3325 } 3326 3327 C->env()->register_method(target, 3328 entry_bci, 3329 &_code_offsets, 3330 _orig_pc_slot_offset_in_bytes, 3331 code_buffer(), 3332 frame_size_in_words(), 3333 oop_map_set(), 3334 &_handler_table, 3335 inc_table(), 3336 compiler, 3337 has_unsafe_access, 3338 SharedRuntime::is_wide_vector(C->max_vector_size()), 3339 C->rtm_state(), 3340 C->native_invokers()); 3341 3342 if (C->log() != nullptr) { // Print code cache state into compiler log 3343 C->log()->code_cache_state(); 3344 } 3345 } 3346 } 3347 void PhaseOutput::install_stub(const char* stub_name) { 3348 // Entry point will be accessed using stub_entry_point(); 3349 if (code_buffer() == nullptr) { 3350 Matcher::soft_match_failure(); 3351 } else { 3352 if (PrintAssembly && (WizardMode || Verbose)) 3353 tty->print_cr("### Stub::%s", stub_name); 3354 3355 if (!C->failing()) { 3356 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3357 3358 // Make the NMethod 3359 // For now we mark the frame as never safe for profile stackwalking 3360 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3361 code_buffer(), 3362 CodeOffsets::frame_never_safe, 3363 // _code_offsets.value(CodeOffsets::Frame_Complete), 3364 frame_size_in_words(), 3365 oop_map_set(), 3366 false); 3367 assert(rs != nullptr && rs->is_runtime_stub(), "sanity check"); 3368 3369 C->set_stub_entry_point(rs->entry_point()); 3370 } 3371 } 3372 } 3373 3374 // Support for bundling info 3375 Bundle* PhaseOutput::node_bundling(const Node *n) { 3376 assert(valid_bundle_info(n), "oob"); 3377 return &_node_bundling_base[n->_idx]; 3378 } 3379 3380 bool PhaseOutput::valid_bundle_info(const Node *n) { 3381 return (_node_bundling_limit > n->_idx); 3382 } 3383 3384 //------------------------------frame_size_in_words----------------------------- 3385 // frame_slots in units of words 3386 int PhaseOutput::frame_size_in_words() const { 3387 // shift is 0 in LP32 and 1 in LP64 3388 const int shift = (LogBytesPerWord - LogBytesPerInt); 3389 int words = _frame_slots >> shift; 3390 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3391 return words; 3392 } 3393 3394 // To bang the stack of this compiled method we use the stack size 3395 // that the interpreter would need in case of a deoptimization. This 3396 // removes the need to bang the stack in the deoptimization blob which 3397 // in turn simplifies stack overflow handling. 3398 int PhaseOutput::bang_size_in_bytes() const { 3399 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3400 } 3401 3402 //------------------------------dump_asm--------------------------------------- 3403 // Dump formatted assembly 3404 #if defined(SUPPORT_OPTO_ASSEMBLY) 3405 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3406 3407 int pc_digits = 3; // #chars required for pc 3408 int sb_chars = 3; // #chars for "start bundle" indicator 3409 int tab_size = 8; 3410 if (pcs != nullptr) { 3411 int max_pc = 0; 3412 for (uint i = 0; i < pc_limit; i++) { 3413 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3414 } 3415 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3416 } 3417 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3418 3419 bool cut_short = false; 3420 st->print_cr("#"); 3421 st->print("# "); C->tf()->dump_on(st); st->cr(); 3422 st->print_cr("#"); 3423 3424 // For all blocks 3425 int pc = 0x0; // Program counter 3426 char starts_bundle = ' '; 3427 C->regalloc()->dump_frame(); 3428 3429 Node *n = nullptr; 3430 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3431 if (VMThread::should_terminate()) { 3432 cut_short = true; 3433 break; 3434 } 3435 Block* block = C->cfg()->get_block(i); 3436 if (block->is_connector() && !Verbose) { 3437 continue; 3438 } 3439 n = block->head(); 3440 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3441 pc = pcs[n->_idx]; 3442 st->print("%*.*x", pc_digits, pc_digits, pc); 3443 } 3444 st->fill_to(prefix_len); 3445 block->dump_head(C->cfg(), st); 3446 if (block->is_connector()) { 3447 st->fill_to(prefix_len); 3448 st->print_cr("# Empty connector block"); 3449 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3450 st->fill_to(prefix_len); 3451 st->print_cr("# Block is sole successor of call"); 3452 } 3453 3454 // For all instructions 3455 Node *delay = nullptr; 3456 for (uint j = 0; j < block->number_of_nodes(); j++) { 3457 if (VMThread::should_terminate()) { 3458 cut_short = true; 3459 break; 3460 } 3461 n = block->get_node(j); 3462 if (valid_bundle_info(n)) { 3463 Bundle* bundle = node_bundling(n); 3464 if (bundle->used_in_unconditional_delay()) { 3465 delay = n; 3466 continue; 3467 } 3468 if (bundle->starts_bundle()) { 3469 starts_bundle = '+'; 3470 } 3471 } 3472 3473 if (WizardMode) { 3474 n->dump(); 3475 } 3476 3477 if( !n->is_Region() && // Dont print in the Assembly 3478 !n->is_Phi() && // a few noisely useless nodes 3479 !n->is_Proj() && 3480 !n->is_MachTemp() && 3481 !n->is_SafePointScalarObject() && 3482 !n->is_Catch() && // Would be nice to print exception table targets 3483 !n->is_MergeMem() && // Not very interesting 3484 !n->is_top() && // Debug info table constants 3485 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3486 ) { 3487 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3488 pc = pcs[n->_idx]; 3489 st->print("%*.*x", pc_digits, pc_digits, pc); 3490 } else { 3491 st->fill_to(pc_digits); 3492 } 3493 st->print(" %c ", starts_bundle); 3494 starts_bundle = ' '; 3495 st->fill_to(prefix_len); 3496 n->format(C->regalloc(), st); 3497 st->cr(); 3498 } 3499 3500 // If we have an instruction with a delay slot, and have seen a delay, 3501 // then back up and print it 3502 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3503 // Coverity finding - Explicit null dereferenced. 3504 guarantee(delay != nullptr, "no unconditional delay instruction"); 3505 if (WizardMode) delay->dump(); 3506 3507 if (node_bundling(delay)->starts_bundle()) 3508 starts_bundle = '+'; 3509 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3510 pc = pcs[n->_idx]; 3511 st->print("%*.*x", pc_digits, pc_digits, pc); 3512 } else { 3513 st->fill_to(pc_digits); 3514 } 3515 st->print(" %c ", starts_bundle); 3516 starts_bundle = ' '; 3517 st->fill_to(prefix_len); 3518 delay->format(C->regalloc(), st); 3519 st->cr(); 3520 delay = nullptr; 3521 } 3522 3523 // Dump the exception table as well 3524 if( n->is_Catch() && (Verbose || WizardMode) ) { 3525 // Print the exception table for this offset 3526 _handler_table.print_subtable_for(pc); 3527 } 3528 st->bol(); // Make sure we start on a new line 3529 } 3530 st->cr(); // one empty line between blocks 3531 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3532 } // End of per-block dump 3533 3534 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3535 } 3536 #endif 3537 3538 #ifndef PRODUCT 3539 void PhaseOutput::print_statistics() { 3540 Scheduling::print_statistics(); 3541 } 3542 #endif