1 /* 2 * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.inline.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/debugInfo.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compileBroker.hpp" 32 #include "compiler/compilerDirectives.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/c2/barrierSetC2.hpp" 37 #include "memory/allocation.inline.hpp" 38 #include "memory/allocation.hpp" 39 #include "opto/ad.hpp" 40 #include "opto/block.hpp" 41 #include "opto/c2compiler.hpp" 42 #include "opto/callnode.hpp" 43 #include "opto/cfgnode.hpp" 44 #include "opto/locknode.hpp" 45 #include "opto/machnode.hpp" 46 #include "opto/node.hpp" 47 #include "opto/optoreg.hpp" 48 #include "opto/output.hpp" 49 #include "opto/regalloc.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/subnode.hpp" 52 #include "opto/type.hpp" 53 #include "runtime/handles.inline.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "utilities/macros.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #include "utilities/xmlstream.hpp" 58 59 #ifndef PRODUCT 60 #define DEBUG_ARG(x) , x 61 #else 62 #define DEBUG_ARG(x) 63 #endif 64 65 //------------------------------Scheduling---------------------------------- 66 // This class contains all the information necessary to implement instruction 67 // scheduling and bundling. 68 class Scheduling { 69 70 private: 71 // Arena to use 72 Arena *_arena; 73 74 // Control-Flow Graph info 75 PhaseCFG *_cfg; 76 77 // Register Allocation info 78 PhaseRegAlloc *_regalloc; 79 80 // Number of nodes in the method 81 uint _node_bundling_limit; 82 83 // List of scheduled nodes. Generated in reverse order 84 Node_List _scheduled; 85 86 // List of nodes currently available for choosing for scheduling 87 Node_List _available; 88 89 // For each instruction beginning a bundle, the number of following 90 // nodes to be bundled with it. 91 Bundle *_node_bundling_base; 92 93 // Mapping from register to Node 94 Node_List _reg_node; 95 96 // Free list for pinch nodes. 97 Node_List _pinch_free_list; 98 99 // Latency from the beginning of the containing basic block (base 1) 100 // for each node. 101 unsigned short *_node_latency; 102 103 // Number of uses of this node within the containing basic block. 104 short *_uses; 105 106 // Schedulable portion of current block. Skips Region/Phi/CreateEx up 107 // front, branch+proj at end. Also skips Catch/CProj (same as 108 // branch-at-end), plus just-prior exception-throwing call. 109 uint _bb_start, _bb_end; 110 111 // Latency from the end of the basic block as scheduled 112 unsigned short *_current_latency; 113 114 // Remember the next node 115 Node *_next_node; 116 117 // Use this for an unconditional branch delay slot 118 Node *_unconditional_delay_slot; 119 120 // Pointer to a Nop 121 MachNopNode *_nop; 122 123 // Length of the current bundle, in instructions 124 uint _bundle_instr_count; 125 126 // Current Cycle number, for computing latencies and bundling 127 uint _bundle_cycle_number; 128 129 // Bundle information 130 Pipeline_Use_Element _bundle_use_elements[resource_count]; 131 Pipeline_Use _bundle_use; 132 133 // Dump the available list 134 void dump_available() const; 135 136 public: 137 Scheduling(Arena *arena, Compile &compile); 138 139 // Destructor 140 NOT_PRODUCT( ~Scheduling(); ) 141 142 // Step ahead "i" cycles 143 void step(uint i); 144 145 // Step ahead 1 cycle, and clear the bundle state (for example, 146 // at a branch target) 147 void step_and_clear(); 148 149 Bundle* node_bundling(const Node *n) { 150 assert(valid_bundle_info(n), "oob"); 151 return (&_node_bundling_base[n->_idx]); 152 } 153 154 bool valid_bundle_info(const Node *n) const { 155 return (_node_bundling_limit > n->_idx); 156 } 157 158 bool starts_bundle(const Node *n) const { 159 return (_node_bundling_limit > n->_idx && _node_bundling_base[n->_idx].starts_bundle()); 160 } 161 162 // Do the scheduling 163 void DoScheduling(); 164 165 // Compute the local latencies walking forward over the list of 166 // nodes for a basic block 167 void ComputeLocalLatenciesForward(const Block *bb); 168 169 // Compute the register antidependencies within a basic block 170 void ComputeRegisterAntidependencies(Block *bb); 171 void verify_do_def( Node *n, OptoReg::Name def, const char *msg ); 172 void verify_good_schedule( Block *b, const char *msg ); 173 void anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ); 174 void anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ); 175 176 // Add a node to the current bundle 177 void AddNodeToBundle(Node *n, const Block *bb); 178 179 // Add a node to the list of available nodes 180 void AddNodeToAvailableList(Node *n); 181 182 // Compute the local use count for the nodes in a block, and compute 183 // the list of instructions with no uses in the block as available 184 void ComputeUseCount(const Block *bb); 185 186 // Choose an instruction from the available list to add to the bundle 187 Node * ChooseNodeToBundle(); 188 189 // See if this Node fits into the currently accumulating bundle 190 bool NodeFitsInBundle(Node *n); 191 192 // Decrement the use count for a node 193 void DecrementUseCounts(Node *n, const Block *bb); 194 195 // Garbage collect pinch nodes for reuse by other blocks. 196 void garbage_collect_pinch_nodes(); 197 // Clean up a pinch node for reuse (helper for above). 198 void cleanup_pinch( Node *pinch ); 199 200 // Information for statistics gathering 201 #ifndef PRODUCT 202 private: 203 // Gather information on size of nops relative to total 204 uint _branches, _unconditional_delays; 205 206 static uint _total_nop_size, _total_method_size; 207 static uint _total_branches, _total_unconditional_delays; 208 static uint _total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 209 210 public: 211 static void print_statistics(); 212 213 static void increment_instructions_per_bundle(uint i) { 214 _total_instructions_per_bundle[i]++; 215 } 216 217 static void increment_nop_size(uint s) { 218 _total_nop_size += s; 219 } 220 221 static void increment_method_size(uint s) { 222 _total_method_size += s; 223 } 224 #endif 225 226 }; 227 228 volatile int C2SafepointPollStubTable::_stub_size = 0; 229 230 Label& C2SafepointPollStubTable::add_safepoint(uintptr_t safepoint_offset) { 231 C2SafepointPollStub* entry = new (Compile::current()->comp_arena()) C2SafepointPollStub(safepoint_offset); 232 _safepoints.append(entry); 233 return entry->_stub_label; 234 } 235 236 void C2SafepointPollStubTable::emit(CodeBuffer& cb) { 237 MacroAssembler masm(&cb); 238 for (int i = _safepoints.length() - 1; i >= 0; i--) { 239 // Make sure there is enough space in the code buffer 240 if (cb.insts()->maybe_expand_to_ensure_remaining(PhaseOutput::MAX_inst_size) && cb.blob() == NULL) { 241 ciEnv::current()->record_failure("CodeCache is full"); 242 return; 243 } 244 245 C2SafepointPollStub* entry = _safepoints.at(i); 246 emit_stub(masm, entry); 247 } 248 } 249 250 int C2SafepointPollStubTable::stub_size_lazy() const { 251 int size = Atomic::load(&_stub_size); 252 253 if (size != 0) { 254 return size; 255 } 256 257 Compile* const C = Compile::current(); 258 BufferBlob* const blob = C->output()->scratch_buffer_blob(); 259 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size()); 260 MacroAssembler masm(&cb); 261 C2SafepointPollStub* entry = _safepoints.at(0); 262 emit_stub(masm, entry); 263 size += cb.insts_size(); 264 265 Atomic::store(&_stub_size, size); 266 267 return size; 268 } 269 270 int C2SafepointPollStubTable::estimate_stub_size() const { 271 if (_safepoints.length() == 0) { 272 return 0; 273 } 274 275 int result = stub_size_lazy() * _safepoints.length(); 276 277 #ifdef ASSERT 278 Compile* const C = Compile::current(); 279 BufferBlob* const blob = C->output()->scratch_buffer_blob(); 280 int size = 0; 281 282 for (int i = _safepoints.length() - 1; i >= 0; i--) { 283 CodeBuffer cb(blob->content_begin(), C->output()->scratch_buffer_code_size()); 284 MacroAssembler masm(&cb); 285 C2SafepointPollStub* entry = _safepoints.at(i); 286 emit_stub(masm, entry); 287 size += cb.insts_size(); 288 } 289 assert(size == result, "stubs should not have variable size"); 290 #endif 291 292 return result; 293 } 294 295 PhaseOutput::PhaseOutput() 296 : Phase(Phase::Output), 297 _code_buffer("Compile::Fill_buffer"), 298 _first_block_size(0), 299 _handler_table(), 300 _inc_table(), 301 _oop_map_set(nullptr), 302 _scratch_buffer_blob(nullptr), 303 _scratch_locs_memory(nullptr), 304 _scratch_const_size(-1), 305 _in_scratch_emit_size(false), 306 _frame_slots(0), 307 _code_offsets(), 308 _node_bundling_limit(0), 309 _node_bundling_base(nullptr), 310 _orig_pc_slot(0), 311 _orig_pc_slot_offset_in_bytes(0), 312 _buf_sizes(), 313 _block(nullptr), 314 _index(0) { 315 C->set_output(this); 316 if (C->stub_name() == nullptr) { 317 _orig_pc_slot = C->fixed_slots() - (sizeof(address) / VMRegImpl::stack_slot_size); 318 } 319 } 320 321 PhaseOutput::~PhaseOutput() { 322 C->set_output(nullptr); 323 if (_scratch_buffer_blob != nullptr) { 324 BufferBlob::free(_scratch_buffer_blob); 325 } 326 } 327 328 void PhaseOutput::perform_mach_node_analysis() { 329 // Late barrier analysis must be done after schedule and bundle 330 // Otherwise liveness based spilling will fail 331 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 332 bs->late_barrier_analysis(); 333 334 pd_perform_mach_node_analysis(); 335 } 336 337 // Convert Nodes to instruction bits and pass off to the VM 338 void PhaseOutput::Output() { 339 // RootNode goes 340 assert( C->cfg()->get_root_block()->number_of_nodes() == 0, "" ); 341 342 // The number of new nodes (mostly MachNop) is proportional to 343 // the number of java calls and inner loops which are aligned. 344 if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 + 345 C->inner_loops()*(OptoLoopAlignment-1)), 346 "out of nodes before code generation" ) ) { 347 return; 348 } 349 // Make sure I can find the Start Node 350 Block *entry = C->cfg()->get_block(1); 351 Block *broot = C->cfg()->get_root_block(); 352 353 const StartNode *start = entry->head()->as_Start(); 354 355 // Replace StartNode with prolog 356 MachPrologNode *prolog = new MachPrologNode(); 357 entry->map_node(prolog, 0); 358 C->cfg()->map_node_to_block(prolog, entry); 359 C->cfg()->unmap_node_from_block(start); // start is no longer in any block 360 361 // Virtual methods need an unverified entry point 362 363 if( C->is_osr_compilation() ) { 364 if( PoisonOSREntry ) { 365 // TODO: Should use a ShouldNotReachHereNode... 366 C->cfg()->insert( broot, 0, new MachBreakpointNode() ); 367 } 368 } else { 369 if( C->method() && !C->method()->flags().is_static() ) { 370 // Insert unvalidated entry point 371 C->cfg()->insert( broot, 0, new MachUEPNode() ); 372 } 373 374 } 375 376 // Break before main entry point 377 if ((C->method() && C->directive()->BreakAtExecuteOption) || 378 (OptoBreakpoint && C->is_method_compilation()) || 379 (OptoBreakpointOSR && C->is_osr_compilation()) || 380 (OptoBreakpointC2R && !C->method()) ) { 381 // checking for C->method() means that OptoBreakpoint does not apply to 382 // runtime stubs or frame converters 383 C->cfg()->insert( entry, 1, new MachBreakpointNode() ); 384 } 385 386 // Insert epilogs before every return 387 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 388 Block* block = C->cfg()->get_block(i); 389 if (!block->is_connector() && block->non_connector_successor(0) == C->cfg()->get_root_block()) { // Found a program exit point? 390 Node* m = block->end(); 391 if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) { 392 MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return); 393 block->add_inst(epilog); 394 C->cfg()->map_node_to_block(epilog, block); 395 } 396 } 397 } 398 399 // Keeper of sizing aspects 400 _buf_sizes = BufferSizingData(); 401 402 // Initialize code buffer 403 estimate_buffer_size(_buf_sizes._const); 404 if (C->failing()) return; 405 406 // Pre-compute the length of blocks and replace 407 // long branches with short if machine supports it. 408 // Must be done before ScheduleAndBundle due to SPARC delay slots 409 uint* blk_starts = NEW_RESOURCE_ARRAY(uint, C->cfg()->number_of_blocks() + 1); 410 blk_starts[0] = 0; 411 shorten_branches(blk_starts); 412 413 ScheduleAndBundle(); 414 if (C->failing()) { 415 return; 416 } 417 418 perform_mach_node_analysis(); 419 420 // Complete sizing of codebuffer 421 CodeBuffer* cb = init_buffer(); 422 if (cb == nullptr || C->failing()) { 423 return; 424 } 425 426 BuildOopMaps(); 427 428 if (C->failing()) { 429 return; 430 } 431 432 fill_buffer(cb, blk_starts); 433 } 434 435 bool PhaseOutput::need_stack_bang(int frame_size_in_bytes) const { 436 // Determine if we need to generate a stack overflow check. 437 // Do it if the method is not a stub function and 438 // has java calls or has frame size > vm_page_size/8. 439 // The debug VM checks that deoptimization doesn't trigger an 440 // unexpected stack overflow (compiled method stack banging should 441 // guarantee it doesn't happen) so we always need the stack bang in 442 // a debug VM. 443 return (C->stub_function() == nullptr && 444 (C->has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3 445 DEBUG_ONLY(|| true))); 446 } 447 448 bool PhaseOutput::need_register_stack_bang() const { 449 // Determine if we need to generate a register stack overflow check. 450 // This is only used on architectures which have split register 451 // and memory stacks (ie. IA64). 452 // Bang if the method is not a stub function and has java calls 453 return (C->stub_function() == nullptr && C->has_java_calls()); 454 } 455 456 457 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top 458 // of a loop. When aligning a loop we need to provide enough instructions 459 // in cpu's fetch buffer to feed decoders. The loop alignment could be 460 // avoided if we have enough instructions in fetch buffer at the head of a loop. 461 // By default, the size is set to 999999 by Block's constructor so that 462 // a loop will be aligned if the size is not reset here. 463 // 464 // Note: Mach instructions could contain several HW instructions 465 // so the size is estimated only. 466 // 467 void PhaseOutput::compute_loop_first_inst_sizes() { 468 // The next condition is used to gate the loop alignment optimization. 469 // Don't aligned a loop if there are enough instructions at the head of a loop 470 // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad 471 // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is 472 // equal to 11 bytes which is the largest address NOP instruction. 473 if (MaxLoopPad < OptoLoopAlignment - 1) { 474 uint last_block = C->cfg()->number_of_blocks() - 1; 475 for (uint i = 1; i <= last_block; i++) { 476 Block* block = C->cfg()->get_block(i); 477 // Check the first loop's block which requires an alignment. 478 if (block->loop_alignment() > (uint)relocInfo::addr_unit()) { 479 uint sum_size = 0; 480 uint inst_cnt = NumberOfLoopInstrToAlign; 481 inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 482 483 // Check subsequent fallthrough blocks if the loop's first 484 // block(s) does not have enough instructions. 485 Block *nb = block; 486 while(inst_cnt > 0 && 487 i < last_block && 488 !C->cfg()->get_block(i + 1)->has_loop_alignment() && 489 !nb->has_successor(block)) { 490 i++; 491 nb = C->cfg()->get_block(i); 492 inst_cnt = nb->compute_first_inst_size(sum_size, inst_cnt, C->regalloc()); 493 } // while( inst_cnt > 0 && i < last_block ) 494 495 block->set_first_inst_size(sum_size); 496 } // f( b->head()->is_Loop() ) 497 } // for( i <= last_block ) 498 } // if( MaxLoopPad < OptoLoopAlignment-1 ) 499 } 500 501 // The architecture description provides short branch variants for some long 502 // branch instructions. Replace eligible long branches with short branches. 503 void PhaseOutput::shorten_branches(uint* blk_starts) { 504 505 Compile::TracePhase tp("shorten branches", &timers[_t_shortenBranches]); 506 507 // Compute size of each block, method size, and relocation information size 508 uint nblocks = C->cfg()->number_of_blocks(); 509 510 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 511 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 512 int* jmp_nidx = NEW_RESOURCE_ARRAY(int ,nblocks); 513 514 // Collect worst case block paddings 515 int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks); 516 memset(block_worst_case_pad, 0, nblocks * sizeof(int)); 517 518 DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); ) 519 DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); ) 520 521 bool has_short_branch_candidate = false; 522 523 // Initialize the sizes to 0 524 int code_size = 0; // Size in bytes of generated code 525 int stub_size = 0; // Size in bytes of all stub entries 526 // Size in bytes of all relocation entries, including those in local stubs. 527 // Start with 2-bytes of reloc info for the unvalidated entry point 528 int reloc_size = 1; // Number of relocation entries 529 530 // Make three passes. The first computes pessimistic blk_starts, 531 // relative jmp_offset and reloc_size information. The second performs 532 // short branch substitution using the pessimistic sizing. The 533 // third inserts nops where needed. 534 535 // Step one, perform a pessimistic sizing pass. 536 uint last_call_adr = max_juint; 537 uint last_avoid_back_to_back_adr = max_juint; 538 uint nop_size = (new MachNopNode())->size(C->regalloc()); 539 for (uint i = 0; i < nblocks; i++) { // For all blocks 540 Block* block = C->cfg()->get_block(i); 541 _block = block; 542 543 // During short branch replacement, we store the relative (to blk_starts) 544 // offset of jump in jmp_offset, rather than the absolute offset of jump. 545 // This is so that we do not need to recompute sizes of all nodes when 546 // we compute correct blk_starts in our next sizing pass. 547 jmp_offset[i] = 0; 548 jmp_size[i] = 0; 549 jmp_nidx[i] = -1; 550 DEBUG_ONLY( jmp_target[i] = 0; ) 551 DEBUG_ONLY( jmp_rule[i] = 0; ) 552 553 // Sum all instruction sizes to compute block size 554 uint last_inst = block->number_of_nodes(); 555 uint blk_size = 0; 556 for (uint j = 0; j < last_inst; j++) { 557 _index = j; 558 Node* nj = block->get_node(_index); 559 // Handle machine instruction nodes 560 if (nj->is_Mach()) { 561 MachNode* mach = nj->as_Mach(); 562 blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding 563 reloc_size += mach->reloc(); 564 if (mach->is_MachCall()) { 565 // add size information for trampoline stub 566 // class CallStubImpl is platform-specific and defined in the *.ad files. 567 stub_size += CallStubImpl::size_call_trampoline(); 568 reloc_size += CallStubImpl::reloc_call_trampoline(); 569 570 MachCallNode *mcall = mach->as_MachCall(); 571 // This destination address is NOT PC-relative 572 573 mcall->method_set((intptr_t)mcall->entry_point()); 574 575 if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) { 576 stub_size += CompiledStaticCall::to_interp_stub_size(); 577 reloc_size += CompiledStaticCall::reloc_to_interp_stub(); 578 } 579 } else if (mach->is_MachSafePoint()) { 580 // If call/safepoint are adjacent, account for possible 581 // nop to disambiguate the two safepoints. 582 // ScheduleAndBundle() can rearrange nodes in a block, 583 // check for all offsets inside this block. 584 if (last_call_adr >= blk_starts[i]) { 585 blk_size += nop_size; 586 } 587 } 588 if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 589 // Nop is inserted between "avoid back to back" instructions. 590 // ScheduleAndBundle() can rearrange nodes in a block, 591 // check for all offsets inside this block. 592 if (last_avoid_back_to_back_adr >= blk_starts[i]) { 593 blk_size += nop_size; 594 } 595 } 596 if (mach->may_be_short_branch()) { 597 if (!nj->is_MachBranch()) { 598 #ifndef PRODUCT 599 nj->dump(3); 600 #endif 601 Unimplemented(); 602 } 603 assert(jmp_nidx[i] == -1, "block should have only one branch"); 604 jmp_offset[i] = blk_size; 605 jmp_size[i] = nj->size(C->regalloc()); 606 jmp_nidx[i] = j; 607 has_short_branch_candidate = true; 608 } 609 } 610 blk_size += nj->size(C->regalloc()); 611 // Remember end of call offset 612 if (nj->is_MachCall() && !nj->is_MachCallLeaf()) { 613 last_call_adr = blk_starts[i]+blk_size; 614 } 615 // Remember end of avoid_back_to_back offset 616 if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 617 last_avoid_back_to_back_adr = blk_starts[i]+blk_size; 618 } 619 } 620 621 // When the next block starts a loop, we may insert pad NOP 622 // instructions. Since we cannot know our future alignment, 623 // assume the worst. 624 if (i < nblocks - 1) { 625 Block* nb = C->cfg()->get_block(i + 1); 626 int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit(); 627 if (max_loop_pad > 0) { 628 assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), ""); 629 // Adjust last_call_adr and/or last_avoid_back_to_back_adr. 630 // If either is the last instruction in this block, bump by 631 // max_loop_pad in lock-step with blk_size, so sizing 632 // calculations in subsequent blocks still can conservatively 633 // detect that it may the last instruction in this block. 634 if (last_call_adr == blk_starts[i]+blk_size) { 635 last_call_adr += max_loop_pad; 636 } 637 if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) { 638 last_avoid_back_to_back_adr += max_loop_pad; 639 } 640 blk_size += max_loop_pad; 641 block_worst_case_pad[i + 1] = max_loop_pad; 642 } 643 } 644 645 // Save block size; update total method size 646 blk_starts[i+1] = blk_starts[i]+blk_size; 647 } 648 649 // Step two, replace eligible long jumps. 650 bool progress = true; 651 uint last_may_be_short_branch_adr = max_juint; 652 while (has_short_branch_candidate && progress) { 653 progress = false; 654 has_short_branch_candidate = false; 655 int adjust_block_start = 0; 656 for (uint i = 0; i < nblocks; i++) { 657 Block* block = C->cfg()->get_block(i); 658 int idx = jmp_nidx[i]; 659 MachNode* mach = (idx == -1) ? nullptr: block->get_node(idx)->as_Mach(); 660 if (mach != nullptr && mach->may_be_short_branch()) { 661 #ifdef ASSERT 662 assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity"); 663 int j; 664 // Find the branch; ignore trailing NOPs. 665 for (j = block->number_of_nodes()-1; j>=0; j--) { 666 Node* n = block->get_node(j); 667 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) 668 break; 669 } 670 assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity"); 671 #endif 672 int br_size = jmp_size[i]; 673 int br_offs = blk_starts[i] + jmp_offset[i]; 674 675 // This requires the TRUE branch target be in succs[0] 676 uint bnum = block->non_connector_successor(0)->_pre_order; 677 int offset = blk_starts[bnum] - br_offs; 678 if (bnum > i) { // adjust following block's offset 679 offset -= adjust_block_start; 680 } 681 682 // This block can be a loop header, account for the padding 683 // in the previous block. 684 int block_padding = block_worst_case_pad[i]; 685 assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top"); 686 // In the following code a nop could be inserted before 687 // the branch which will increase the backward distance. 688 bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr); 689 assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block"); 690 691 if (needs_padding && offset <= 0) 692 offset -= nop_size; 693 694 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 695 // We've got a winner. Replace this branch. 696 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 697 698 // Update the jmp_size. 699 int new_size = replacement->size(C->regalloc()); 700 int diff = br_size - new_size; 701 assert(diff >= (int)nop_size, "short_branch size should be smaller"); 702 // Conservatively take into account padding between 703 // avoid_back_to_back branches. Previous branch could be 704 // converted into avoid_back_to_back branch during next 705 // rounds. 706 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 707 jmp_offset[i] += nop_size; 708 diff -= nop_size; 709 } 710 adjust_block_start += diff; 711 block->map_node(replacement, idx); 712 mach->subsume_by(replacement, C); 713 mach = replacement; 714 progress = true; 715 716 jmp_size[i] = new_size; 717 DEBUG_ONLY( jmp_target[i] = bnum; ); 718 DEBUG_ONLY( jmp_rule[i] = mach->rule(); ); 719 } else { 720 // The jump distance is not short, try again during next iteration. 721 has_short_branch_candidate = true; 722 } 723 } // (mach->may_be_short_branch()) 724 if (mach != nullptr && (mach->may_be_short_branch() || 725 mach->avoid_back_to_back(MachNode::AVOID_AFTER))) { 726 last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i]; 727 } 728 blk_starts[i+1] -= adjust_block_start; 729 } 730 } 731 732 #ifdef ASSERT 733 for (uint i = 0; i < nblocks; i++) { // For all blocks 734 if (jmp_target[i] != 0) { 735 int br_size = jmp_size[i]; 736 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 737 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 738 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 739 } 740 assert(C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp"); 741 } 742 } 743 #endif 744 745 // Step 3, compute the offsets of all blocks, will be done in fill_buffer() 746 // after ScheduleAndBundle(). 747 748 // ------------------ 749 // Compute size for code buffer 750 code_size = blk_starts[nblocks]; 751 752 // Relocation records 753 reloc_size += 1; // Relo entry for exception handler 754 755 // Adjust reloc_size to number of record of relocation info 756 // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for 757 // a relocation index. 758 // The CodeBuffer will expand the locs array if this estimate is too low. 759 reloc_size *= 10 / sizeof(relocInfo); 760 761 _buf_sizes._reloc = reloc_size; 762 _buf_sizes._code = code_size; 763 _buf_sizes._stub = stub_size; 764 } 765 766 //------------------------------FillLocArray----------------------------------- 767 // Create a bit of debug info and append it to the array. The mapping is from 768 // Java local or expression stack to constant, register or stack-slot. For 769 // doubles, insert 2 mappings and return 1 (to tell the caller that the next 770 // entry has been taken care of and caller should skip it). 771 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) { 772 // This should never have accepted Bad before 773 assert(OptoReg::is_valid(regnum), "location must be valid"); 774 return (OptoReg::is_reg(regnum)) 775 ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) ) 776 : new LocationValue(Location::new_stk_loc(l_type, ra->reg2offset(regnum))); 777 } 778 779 780 ObjectValue* 781 PhaseOutput::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) { 782 for (int i = 0; i < objs->length(); i++) { 783 assert(objs->at(i)->is_object(), "corrupt object cache"); 784 ObjectValue* sv = (ObjectValue*) objs->at(i); 785 if (sv->id() == id) { 786 return sv; 787 } 788 } 789 // Otherwise.. 790 return nullptr; 791 } 792 793 void PhaseOutput::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs, 794 ObjectValue* sv ) { 795 assert(sv_for_node_id(objs, sv->id()) == nullptr, "Precondition"); 796 objs->append(sv); 797 } 798 799 800 void PhaseOutput::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local, 801 GrowableArray<ScopeValue*> *array, 802 GrowableArray<ScopeValue*> *objs ) { 803 assert( local, "use _top instead of null" ); 804 if (array->length() != idx) { 805 assert(array->length() == idx + 1, "Unexpected array count"); 806 // Old functionality: 807 // return 808 // New functionality: 809 // Assert if the local is not top. In product mode let the new node 810 // override the old entry. 811 assert(local == C->top(), "LocArray collision"); 812 if (local == C->top()) { 813 return; 814 } 815 array->pop(); 816 } 817 const Type *t = local->bottom_type(); 818 819 // Is it a safepoint scalar object node? 820 if (local->is_SafePointScalarObject()) { 821 SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject(); 822 823 ObjectValue* sv = sv_for_node_id(objs, spobj->_idx); 824 if (sv == nullptr) { 825 ciKlass* cik = t->is_oopptr()->klass(); 826 assert(cik->is_instance_klass() || 827 cik->is_array_klass(), "Not supported allocation."); 828 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()); 829 sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv) 830 : new ObjectValue(spobj->_idx, klass_sv); 831 set_sv_for_object_node(objs, sv); 832 833 uint first_ind = spobj->first_index(sfpt->jvms()); 834 for (uint i = 0; i < spobj->n_fields(); i++) { 835 Node* fld_node = sfpt->in(first_ind+i); 836 (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs); 837 } 838 } 839 array->append(sv); 840 return; 841 } 842 843 // Grab the register number for the local 844 OptoReg::Name regnum = C->regalloc()->get_reg_first(local); 845 if( OptoReg::is_valid(regnum) ) {// Got a register/stack? 846 // Record the double as two float registers. 847 // The register mask for such a value always specifies two adjacent 848 // float registers, with the lower register number even. 849 // Normally, the allocation of high and low words to these registers 850 // is irrelevant, because nearly all operations on register pairs 851 // (e.g., StoreD) treat them as a single unit. 852 // Here, we assume in addition that the words in these two registers 853 // stored "naturally" (by operations like StoreD and double stores 854 // within the interpreter) such that the lower-numbered register 855 // is written to the lower memory address. This may seem like 856 // a machine dependency, but it is not--it is a requirement on 857 // the author of the <arch>.ad file to ensure that, for every 858 // even/odd double-register pair to which a double may be allocated, 859 // the word in the even single-register is stored to the first 860 // memory word. (Note that register numbers are completely 861 // arbitrary, and are not tied to any machine-level encodings.) 862 #ifdef _LP64 863 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) { 864 array->append(new ConstantIntValue((jint)0)); 865 array->append(new_loc_value( C->regalloc(), regnum, Location::dbl )); 866 } else if ( t->base() == Type::Long ) { 867 array->append(new ConstantIntValue((jint)0)); 868 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 869 } else if ( t->base() == Type::RawPtr ) { 870 // jsr/ret return address which must be restored into a the full 871 // width 64-bit stack slot. 872 array->append(new_loc_value( C->regalloc(), regnum, Location::lng )); 873 } 874 #else //_LP64 875 if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) { 876 // Repack the double/long as two jints. 877 // The convention the interpreter uses is that the second local 878 // holds the first raw word of the native double representation. 879 // This is actually reasonable, since locals and stack arrays 880 // grow downwards in all implementations. 881 // (If, on some machine, the interpreter's Java locals or stack 882 // were to grow upwards, the embedded doubles would be word-swapped.) 883 array->append(new_loc_value( C->regalloc(), OptoReg::add(regnum,1), Location::normal )); 884 array->append(new_loc_value( C->regalloc(), regnum , Location::normal )); 885 } 886 #endif //_LP64 887 else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) && 888 OptoReg::is_reg(regnum) ) { 889 array->append(new_loc_value( C->regalloc(), regnum, Matcher::float_in_double() 890 ? Location::float_in_dbl : Location::normal )); 891 } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) { 892 array->append(new_loc_value( C->regalloc(), regnum, Matcher::int_in_long 893 ? Location::int_in_long : Location::normal )); 894 } else if( t->base() == Type::NarrowOop ) { 895 array->append(new_loc_value( C->regalloc(), regnum, Location::narrowoop )); 896 } else if (t->base() == Type::VectorA || t->base() == Type::VectorS || 897 t->base() == Type::VectorD || t->base() == Type::VectorX || 898 t->base() == Type::VectorY || t->base() == Type::VectorZ) { 899 array->append(new_loc_value( C->regalloc(), regnum, Location::vector )); 900 } else { 901 array->append(new_loc_value( C->regalloc(), regnum, C->regalloc()->is_oop(local) ? Location::oop : Location::normal )); 902 } 903 return; 904 } 905 906 // No register. It must be constant data. 907 switch (t->base()) { 908 case Type::Half: // Second half of a double 909 ShouldNotReachHere(); // Caller should skip 2nd halves 910 break; 911 case Type::AnyPtr: 912 array->append(new ConstantOopWriteValue(nullptr)); 913 break; 914 case Type::AryPtr: 915 case Type::InstPtr: // fall through 916 array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding())); 917 break; 918 case Type::NarrowOop: 919 if (t == TypeNarrowOop::NULL_PTR) { 920 array->append(new ConstantOopWriteValue(nullptr)); 921 } else { 922 array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding())); 923 } 924 break; 925 case Type::Int: 926 array->append(new ConstantIntValue(t->is_int()->get_con())); 927 break; 928 case Type::RawPtr: 929 // A return address (T_ADDRESS). 930 assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI"); 931 #ifdef _LP64 932 // Must be restored to the full-width 64-bit stack slot. 933 array->append(new ConstantLongValue(t->is_ptr()->get_con())); 934 #else 935 array->append(new ConstantIntValue(t->is_ptr()->get_con())); 936 #endif 937 break; 938 case Type::FloatCon: { 939 float f = t->is_float_constant()->getf(); 940 array->append(new ConstantIntValue(jint_cast(f))); 941 break; 942 } 943 case Type::DoubleCon: { 944 jdouble d = t->is_double_constant()->getd(); 945 #ifdef _LP64 946 array->append(new ConstantIntValue((jint)0)); 947 array->append(new ConstantDoubleValue(d)); 948 #else 949 // Repack the double as two jints. 950 // The convention the interpreter uses is that the second local 951 // holds the first raw word of the native double representation. 952 // This is actually reasonable, since locals and stack arrays 953 // grow downwards in all implementations. 954 // (If, on some machine, the interpreter's Java locals or stack 955 // were to grow upwards, the embedded doubles would be word-swapped.) 956 jlong_accessor acc; 957 acc.long_value = jlong_cast(d); 958 array->append(new ConstantIntValue(acc.words[1])); 959 array->append(new ConstantIntValue(acc.words[0])); 960 #endif 961 break; 962 } 963 case Type::Long: { 964 jlong d = t->is_long()->get_con(); 965 #ifdef _LP64 966 array->append(new ConstantIntValue((jint)0)); 967 array->append(new ConstantLongValue(d)); 968 #else 969 // Repack the long as two jints. 970 // The convention the interpreter uses is that the second local 971 // holds the first raw word of the native double representation. 972 // This is actually reasonable, since locals and stack arrays 973 // grow downwards in all implementations. 974 // (If, on some machine, the interpreter's Java locals or stack 975 // were to grow upwards, the embedded doubles would be word-swapped.) 976 jlong_accessor acc; 977 acc.long_value = d; 978 array->append(new ConstantIntValue(acc.words[1])); 979 array->append(new ConstantIntValue(acc.words[0])); 980 #endif 981 break; 982 } 983 case Type::Top: // Add an illegal value here 984 array->append(new LocationValue(Location())); 985 break; 986 default: 987 ShouldNotReachHere(); 988 break; 989 } 990 } 991 992 // Determine if this node starts a bundle 993 bool PhaseOutput::starts_bundle(const Node *n) const { 994 return (_node_bundling_limit > n->_idx && 995 _node_bundling_base[n->_idx].starts_bundle()); 996 } 997 998 //--------------------------Process_OopMap_Node-------------------------------- 999 void PhaseOutput::Process_OopMap_Node(MachNode *mach, int current_offset) { 1000 // Handle special safepoint nodes for synchronization 1001 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1002 MachCallNode *mcall; 1003 1004 int safepoint_pc_offset = current_offset; 1005 bool is_method_handle_invoke = false; 1006 bool is_opt_native = false; 1007 bool return_oop = false; 1008 bool has_ea_local_in_scope = sfn->_has_ea_local_in_scope; 1009 bool arg_escape = false; 1010 1011 // Add the safepoint in the DebugInfoRecorder 1012 if( !mach->is_MachCall() ) { 1013 mcall = nullptr; 1014 C->debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map); 1015 } else { 1016 mcall = mach->as_MachCall(); 1017 1018 // Is the call a MethodHandle call? 1019 if (mcall->is_MachCallJava()) { 1020 if (mcall->as_MachCallJava()->_method_handle_invoke) { 1021 assert(C->has_method_handle_invokes(), "must have been set during call generation"); 1022 is_method_handle_invoke = true; 1023 } 1024 arg_escape = mcall->as_MachCallJava()->_arg_escape; 1025 } else if (mcall->is_MachCallNative()) { 1026 is_opt_native = true; 1027 } 1028 1029 // Check if a call returns an object. 1030 if (mcall->returns_pointer()) { 1031 return_oop = true; 1032 } 1033 safepoint_pc_offset += mcall->ret_addr_offset(); 1034 C->debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map); 1035 } 1036 1037 // Loop over the JVMState list to add scope information 1038 // Do not skip safepoints with a null method, they need monitor info 1039 JVMState* youngest_jvms = sfn->jvms(); 1040 int max_depth = youngest_jvms->depth(); 1041 1042 // Allocate the object pool for scalar-replaced objects -- the map from 1043 // small-integer keys (which can be recorded in the local and ostack 1044 // arrays) to descriptions of the object state. 1045 GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>(); 1046 1047 // Visit scopes from oldest to youngest. 1048 for (int depth = 1; depth <= max_depth; depth++) { 1049 JVMState* jvms = youngest_jvms->of_depth(depth); 1050 int idx; 1051 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1052 // Safepoints that do not have method() set only provide oop-map and monitor info 1053 // to support GC; these do not support deoptimization. 1054 int num_locs = (method == nullptr) ? 0 : jvms->loc_size(); 1055 int num_exps = (method == nullptr) ? 0 : jvms->stk_size(); 1056 int num_mon = jvms->nof_monitors(); 1057 assert(method == nullptr || jvms->bci() < 0 || num_locs == method->max_locals(), 1058 "JVMS local count must match that of the method"); 1059 1060 // Add Local and Expression Stack Information 1061 1062 // Insert locals into the locarray 1063 GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs); 1064 for( idx = 0; idx < num_locs; idx++ ) { 1065 FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs ); 1066 } 1067 1068 // Insert expression stack entries into the exparray 1069 GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps); 1070 for( idx = 0; idx < num_exps; idx++ ) { 1071 FillLocArray( idx, sfn, sfn->stack(jvms, idx), exparray, objs ); 1072 } 1073 1074 // Add in mappings of the monitors 1075 assert( !method || 1076 !method->is_synchronized() || 1077 method->is_native() || 1078 num_mon > 0 || 1079 !GenerateSynchronizationCode, 1080 "monitors must always exist for synchronized methods"); 1081 1082 // Build the growable array of ScopeValues for exp stack 1083 GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon); 1084 1085 // Loop over monitors and insert into array 1086 for (idx = 0; idx < num_mon; idx++) { 1087 // Grab the node that defines this monitor 1088 Node* box_node = sfn->monitor_box(jvms, idx); 1089 Node* obj_node = sfn->monitor_obj(jvms, idx); 1090 1091 // Create ScopeValue for object 1092 ScopeValue *scval = nullptr; 1093 1094 if (obj_node->is_SafePointScalarObject()) { 1095 SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject(); 1096 scval = PhaseOutput::sv_for_node_id(objs, spobj->_idx); 1097 if (scval == nullptr) { 1098 const Type *t = spobj->bottom_type(); 1099 ciKlass* cik = t->is_oopptr()->klass(); 1100 assert(cik->is_instance_klass() || 1101 cik->is_array_klass(), "Not supported allocation."); 1102 ScopeValue* klass_sv = new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()); 1103 ObjectValue* sv = spobj->is_auto_box() ? new AutoBoxObjectValue(spobj->_idx, klass_sv) 1104 : new ObjectValue(spobj->_idx, klass_sv); 1105 PhaseOutput::set_sv_for_object_node(objs, sv); 1106 1107 uint first_ind = spobj->first_index(youngest_jvms); 1108 for (uint i = 0; i < spobj->n_fields(); i++) { 1109 Node* fld_node = sfn->in(first_ind+i); 1110 (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs); 1111 } 1112 scval = sv; 1113 } 1114 } else if (!obj_node->is_Con()) { 1115 OptoReg::Name obj_reg = C->regalloc()->get_reg_first(obj_node); 1116 if( obj_node->bottom_type()->base() == Type::NarrowOop ) { 1117 scval = new_loc_value( C->regalloc(), obj_reg, Location::narrowoop ); 1118 } else { 1119 scval = new_loc_value( C->regalloc(), obj_reg, Location::oop ); 1120 } 1121 } else { 1122 const TypePtr *tp = obj_node->get_ptr_type(); 1123 scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding()); 1124 } 1125 1126 OptoReg::Name box_reg = BoxLockNode::reg(box_node); 1127 Location basic_lock = Location::new_stk_loc(Location::normal,C->regalloc()->reg2offset(box_reg)); 1128 bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated()); 1129 monarray->append(new MonitorValue(scval, basic_lock, eliminated)); 1130 } 1131 1132 // We dump the object pool first, since deoptimization reads it in first. 1133 C->debug_info()->dump_object_pool(objs); 1134 1135 // Build first class objects to pass to scope 1136 DebugToken *locvals = C->debug_info()->create_scope_values(locarray); 1137 DebugToken *expvals = C->debug_info()->create_scope_values(exparray); 1138 DebugToken *monvals = C->debug_info()->create_monitor_values(monarray); 1139 1140 // Make method available for all Safepoints 1141 ciMethod* scope_method = method ? method : C->method(); 1142 // Describe the scope here 1143 assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI"); 1144 assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest"); 1145 // Now we can describe the scope. 1146 methodHandle null_mh; 1147 bool rethrow_exception = false; 1148 C->debug_info()->describe_scope( 1149 safepoint_pc_offset, 1150 null_mh, 1151 scope_method, 1152 jvms->bci(), 1153 jvms->should_reexecute(), 1154 rethrow_exception, 1155 is_method_handle_invoke, 1156 is_opt_native, 1157 return_oop, 1158 has_ea_local_in_scope, 1159 arg_escape, 1160 locvals, 1161 expvals, 1162 monvals 1163 ); 1164 } // End jvms loop 1165 1166 // Mark the end of the scope set. 1167 C->debug_info()->end_safepoint(safepoint_pc_offset); 1168 } 1169 1170 1171 1172 // A simplified version of Process_OopMap_Node, to handle non-safepoints. 1173 class NonSafepointEmitter { 1174 Compile* C; 1175 JVMState* _pending_jvms; 1176 int _pending_offset; 1177 1178 void emit_non_safepoint(); 1179 1180 public: 1181 NonSafepointEmitter(Compile* compile) { 1182 this->C = compile; 1183 _pending_jvms = nullptr; 1184 _pending_offset = 0; 1185 } 1186 1187 void observe_instruction(Node* n, int pc_offset) { 1188 if (!C->debug_info()->recording_non_safepoints()) return; 1189 1190 Node_Notes* nn = C->node_notes_at(n->_idx); 1191 if (nn == nullptr || nn->jvms() == nullptr) return; 1192 if (_pending_jvms != nullptr && 1193 _pending_jvms->same_calls_as(nn->jvms())) { 1194 // Repeated JVMS? Stretch it up here. 1195 _pending_offset = pc_offset; 1196 } else { 1197 if (_pending_jvms != nullptr && 1198 _pending_offset < pc_offset) { 1199 emit_non_safepoint(); 1200 } 1201 _pending_jvms = nullptr; 1202 if (pc_offset > C->debug_info()->last_pc_offset()) { 1203 // This is the only way _pending_jvms can become non-null: 1204 _pending_jvms = nn->jvms(); 1205 _pending_offset = pc_offset; 1206 } 1207 } 1208 } 1209 1210 // Stay out of the way of real safepoints: 1211 void observe_safepoint(JVMState* jvms, int pc_offset) { 1212 if (_pending_jvms != nullptr && 1213 !_pending_jvms->same_calls_as(jvms) && 1214 _pending_offset < pc_offset) { 1215 emit_non_safepoint(); 1216 } 1217 _pending_jvms = nullptr; 1218 } 1219 1220 void flush_at_end() { 1221 if (_pending_jvms != nullptr) { 1222 emit_non_safepoint(); 1223 } 1224 _pending_jvms = nullptr; 1225 } 1226 }; 1227 1228 void NonSafepointEmitter::emit_non_safepoint() { 1229 JVMState* youngest_jvms = _pending_jvms; 1230 int pc_offset = _pending_offset; 1231 1232 // Clear it now: 1233 _pending_jvms = nullptr; 1234 1235 DebugInformationRecorder* debug_info = C->debug_info(); 1236 assert(debug_info->recording_non_safepoints(), "sanity"); 1237 1238 debug_info->add_non_safepoint(pc_offset); 1239 int max_depth = youngest_jvms->depth(); 1240 1241 // Visit scopes from oldest to youngest. 1242 for (int depth = 1; depth <= max_depth; depth++) { 1243 JVMState* jvms = youngest_jvms->of_depth(depth); 1244 ciMethod* method = jvms->has_method() ? jvms->method() : nullptr; 1245 assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest"); 1246 methodHandle null_mh; 1247 debug_info->describe_scope(pc_offset, null_mh, method, jvms->bci(), jvms->should_reexecute()); 1248 } 1249 1250 // Mark the end of the scope set. 1251 debug_info->end_non_safepoint(pc_offset); 1252 } 1253 1254 //------------------------------init_buffer------------------------------------ 1255 void PhaseOutput::estimate_buffer_size(int& const_req) { 1256 1257 // Set the initially allocated size 1258 const_req = initial_const_capacity; 1259 1260 // The extra spacing after the code is necessary on some platforms. 1261 // Sometimes we need to patch in a jump after the last instruction, 1262 // if the nmethod has been deoptimized. (See 4932387, 4894843.) 1263 1264 // Compute the byte offset where we can store the deopt pc. 1265 if (C->fixed_slots() != 0) { 1266 _orig_pc_slot_offset_in_bytes = C->regalloc()->reg2offset(OptoReg::stack2reg(_orig_pc_slot)); 1267 } 1268 1269 // Compute prolog code size 1270 _method_size = 0; 1271 _frame_slots = OptoReg::reg2stack(C->matcher()->_old_SP) + C->regalloc()->_framesize; 1272 assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check"); 1273 1274 if (C->has_mach_constant_base_node()) { 1275 uint add_size = 0; 1276 // Fill the constant table. 1277 // Note: This must happen before shorten_branches. 1278 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1279 Block* b = C->cfg()->get_block(i); 1280 1281 for (uint j = 0; j < b->number_of_nodes(); j++) { 1282 Node* n = b->get_node(j); 1283 1284 // If the node is a MachConstantNode evaluate the constant 1285 // value section. 1286 if (n->is_MachConstant()) { 1287 MachConstantNode* machcon = n->as_MachConstant(); 1288 machcon->eval_constant(C); 1289 } else if (n->is_Mach()) { 1290 // On Power there are more nodes that issue constants. 1291 add_size += (n->as_Mach()->ins_num_consts() * 8); 1292 } 1293 } 1294 } 1295 1296 // Calculate the offsets of the constants and the size of the 1297 // constant table (including the padding to the next section). 1298 constant_table().calculate_offsets_and_size(); 1299 const_req = constant_table().size() + add_size; 1300 } 1301 1302 // Initialize the space for the BufferBlob used to find and verify 1303 // instruction size in MachNode::emit_size() 1304 init_scratch_buffer_blob(const_req); 1305 } 1306 1307 CodeBuffer* PhaseOutput::init_buffer() { 1308 int stub_req = _buf_sizes._stub; 1309 int code_req = _buf_sizes._code; 1310 int const_req = _buf_sizes._const; 1311 1312 int pad_req = NativeCall::instruction_size; 1313 1314 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1315 stub_req += bs->estimate_stub_size(); 1316 stub_req += safepoint_poll_table()->estimate_stub_size(); 1317 1318 // nmethod and CodeBuffer count stubs & constants as part of method's code. 1319 // class HandlerImpl is platform-specific and defined in the *.ad files. 1320 int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler 1321 int deopt_handler_req = HandlerImpl::size_deopt_handler() + MAX_stubs_size; // add marginal slop for handler 1322 stub_req += MAX_stubs_size; // ensure per-stub margin 1323 code_req += MAX_inst_size; // ensure per-instruction margin 1324 1325 if (StressCodeBuffers) 1326 code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10; // force expansion 1327 1328 int total_req = 1329 const_req + 1330 code_req + 1331 pad_req + 1332 stub_req + 1333 exception_handler_req + 1334 deopt_handler_req; // deopt handler 1335 1336 if (C->has_method_handle_invokes()) 1337 total_req += deopt_handler_req; // deopt MH handler 1338 1339 CodeBuffer* cb = code_buffer(); 1340 cb->initialize(total_req, _buf_sizes._reloc); 1341 1342 // Have we run out of code space? 1343 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1344 C->record_failure("CodeCache is full"); 1345 return nullptr; 1346 } 1347 // Configure the code buffer. 1348 cb->initialize_consts_size(const_req); 1349 cb->initialize_stubs_size(stub_req); 1350 cb->initialize_oop_recorder(C->env()->oop_recorder()); 1351 1352 // fill in the nop array for bundling computations 1353 MachNode *_nop_list[Bundle::_nop_count]; 1354 Bundle::initialize_nops(_nop_list); 1355 1356 return cb; 1357 } 1358 1359 //------------------------------fill_buffer------------------------------------ 1360 void PhaseOutput::fill_buffer(CodeBuffer* cb, uint* blk_starts) { 1361 // blk_starts[] contains offsets calculated during short branches processing, 1362 // offsets should not be increased during following steps. 1363 1364 // Compute the size of first NumberOfLoopInstrToAlign instructions at head 1365 // of a loop. It is used to determine the padding for loop alignment. 1366 Compile::TracePhase tp("fill buffer", &timers[_t_fillBuffer]); 1367 1368 compute_loop_first_inst_sizes(); 1369 1370 // Create oopmap set. 1371 _oop_map_set = new OopMapSet(); 1372 1373 // !!!!! This preserves old handling of oopmaps for now 1374 C->debug_info()->set_oopmaps(_oop_map_set); 1375 1376 uint nblocks = C->cfg()->number_of_blocks(); 1377 // Count and start of implicit null check instructions 1378 uint inct_cnt = 0; 1379 uint* inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1380 1381 // Count and start of calls 1382 uint* call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1); 1383 1384 uint return_offset = 0; 1385 int nop_size = (new MachNopNode())->size(C->regalloc()); 1386 1387 int previous_offset = 0; 1388 int current_offset = 0; 1389 int last_call_offset = -1; 1390 int last_avoid_back_to_back_offset = -1; 1391 #ifdef ASSERT 1392 uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); 1393 uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks); 1394 uint* jmp_size = NEW_RESOURCE_ARRAY(uint,nblocks); 1395 uint* jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); 1396 #endif 1397 1398 // Create an array of unused labels, one for each basic block, if printing is enabled 1399 #if defined(SUPPORT_OPTO_ASSEMBLY) 1400 int* node_offsets = nullptr; 1401 uint node_offset_limit = C->unique(); 1402 1403 if (C->print_assembly()) { 1404 node_offsets = NEW_RESOURCE_ARRAY(int, node_offset_limit); 1405 } 1406 if (node_offsets != nullptr) { 1407 // We need to initialize. Unused array elements may contain garbage and mess up PrintOptoAssembly. 1408 memset(node_offsets, 0, node_offset_limit*sizeof(int)); 1409 } 1410 #endif 1411 1412 NonSafepointEmitter non_safepoints(C); // emit non-safepoints lazily 1413 1414 // Emit the constant table. 1415 if (C->has_mach_constant_base_node()) { 1416 if (!constant_table().emit(*cb)) { 1417 C->record_failure("consts section overflow"); 1418 return; 1419 } 1420 } 1421 1422 // Create an array of labels, one for each basic block 1423 Label* blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1); 1424 for (uint i = 0; i <= nblocks; i++) { 1425 blk_labels[i].init(); 1426 } 1427 1428 // Now fill in the code buffer 1429 Node* delay_slot = nullptr; 1430 for (uint i = 0; i < nblocks; i++) { 1431 Block* block = C->cfg()->get_block(i); 1432 _block = block; 1433 Node* head = block->head(); 1434 1435 // If this block needs to start aligned (i.e, can be reached other 1436 // than by falling-thru from the previous block), then force the 1437 // start of a new bundle. 1438 if (Pipeline::requires_bundling() && starts_bundle(head)) { 1439 cb->flush_bundle(true); 1440 } 1441 1442 #ifdef ASSERT 1443 if (!block->is_connector()) { 1444 stringStream st; 1445 block->dump_head(C->cfg(), &st); 1446 MacroAssembler(cb).block_comment(st.as_string()); 1447 } 1448 jmp_target[i] = 0; 1449 jmp_offset[i] = 0; 1450 jmp_size[i] = 0; 1451 jmp_rule[i] = 0; 1452 #endif 1453 int blk_offset = current_offset; 1454 1455 // Define the label at the beginning of the basic block 1456 MacroAssembler(cb).bind(blk_labels[block->_pre_order]); 1457 1458 uint last_inst = block->number_of_nodes(); 1459 1460 // Emit block normally, except for last instruction. 1461 // Emit means "dump code bits into code buffer". 1462 for (uint j = 0; j<last_inst; j++) { 1463 _index = j; 1464 1465 // Get the node 1466 Node* n = block->get_node(j); 1467 1468 // See if delay slots are supported 1469 if (valid_bundle_info(n) && node_bundling(n)->used_in_unconditional_delay()) { 1470 assert(delay_slot == nullptr, "no use of delay slot node"); 1471 assert(n->size(C->regalloc()) == Pipeline::instr_unit_size(), "delay slot instruction wrong size"); 1472 1473 delay_slot = n; 1474 continue; 1475 } 1476 1477 // If this starts a new instruction group, then flush the current one 1478 // (but allow split bundles) 1479 if (Pipeline::requires_bundling() && starts_bundle(n)) 1480 cb->flush_bundle(false); 1481 1482 // Special handling for SafePoint/Call Nodes 1483 bool is_mcall = false; 1484 if (n->is_Mach()) { 1485 MachNode *mach = n->as_Mach(); 1486 is_mcall = n->is_MachCall(); 1487 bool is_sfn = n->is_MachSafePoint(); 1488 1489 // If this requires all previous instructions be flushed, then do so 1490 if (is_sfn || is_mcall || mach->alignment_required() != 1) { 1491 cb->flush_bundle(true); 1492 current_offset = cb->insts_size(); 1493 } 1494 1495 // A padding may be needed again since a previous instruction 1496 // could be moved to delay slot. 1497 1498 // align the instruction if necessary 1499 int padding = mach->compute_padding(current_offset); 1500 // Make sure safepoint node for polling is distinct from a call's 1501 // return by adding a nop if needed. 1502 if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) { 1503 padding = nop_size; 1504 } 1505 if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) && 1506 current_offset == last_avoid_back_to_back_offset) { 1507 // Avoid back to back some instructions. 1508 padding = nop_size; 1509 } 1510 1511 if (padding > 0) { 1512 assert((padding % nop_size) == 0, "padding is not a multiple of NOP size"); 1513 int nops_cnt = padding / nop_size; 1514 MachNode *nop = new MachNopNode(nops_cnt); 1515 block->insert_node(nop, j++); 1516 last_inst++; 1517 C->cfg()->map_node_to_block(nop, block); 1518 // Ensure enough space. 1519 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1520 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1521 C->record_failure("CodeCache is full"); 1522 return; 1523 } 1524 nop->emit(*cb, C->regalloc()); 1525 cb->flush_bundle(true); 1526 current_offset = cb->insts_size(); 1527 } 1528 1529 bool observe_safepoint = is_sfn; 1530 // Remember the start of the last call in a basic block 1531 if (is_mcall) { 1532 MachCallNode *mcall = mach->as_MachCall(); 1533 1534 // This destination address is NOT PC-relative 1535 mcall->method_set((intptr_t)mcall->entry_point()); 1536 1537 // Save the return address 1538 call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset(); 1539 1540 observe_safepoint = mcall->guaranteed_safepoint(); 1541 } 1542 1543 // sfn will be valid whenever mcall is valid now because of inheritance 1544 if (observe_safepoint) { 1545 // Handle special safepoint nodes for synchronization 1546 if (!is_mcall) { 1547 MachSafePointNode *sfn = mach->as_MachSafePoint(); 1548 // !!!!! Stubs only need an oopmap right now, so bail out 1549 if (sfn->jvms()->method() == nullptr) { 1550 // Write the oopmap directly to the code blob??!! 1551 continue; 1552 } 1553 } // End synchronization 1554 1555 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1556 current_offset); 1557 Process_OopMap_Node(mach, current_offset); 1558 } // End if safepoint 1559 1560 // If this is a null check, then add the start of the previous instruction to the list 1561 else if( mach->is_MachNullCheck() ) { 1562 inct_starts[inct_cnt++] = previous_offset; 1563 } 1564 1565 // If this is a branch, then fill in the label with the target BB's label 1566 else if (mach->is_MachBranch()) { 1567 // This requires the TRUE branch target be in succs[0] 1568 uint block_num = block->non_connector_successor(0)->_pre_order; 1569 1570 // Try to replace long branch if delay slot is not used, 1571 // it is mostly for back branches since forward branch's 1572 // distance is not updated yet. 1573 bool delay_slot_is_used = valid_bundle_info(n) && 1574 C->output()->node_bundling(n)->use_unconditional_delay(); 1575 if (!delay_slot_is_used && mach->may_be_short_branch()) { 1576 assert(delay_slot == nullptr, "not expecting delay slot node"); 1577 int br_size = n->size(C->regalloc()); 1578 int offset = blk_starts[block_num] - current_offset; 1579 if (block_num >= i) { 1580 // Current and following block's offset are not 1581 // finalized yet, adjust distance by the difference 1582 // between calculated and final offsets of current block. 1583 offset -= (blk_starts[i] - blk_offset); 1584 } 1585 // In the following code a nop could be inserted before 1586 // the branch which will increase the backward distance. 1587 bool needs_padding = (current_offset == last_avoid_back_to_back_offset); 1588 if (needs_padding && offset <= 0) 1589 offset -= nop_size; 1590 1591 if (C->matcher()->is_short_branch_offset(mach->rule(), br_size, offset)) { 1592 // We've got a winner. Replace this branch. 1593 MachNode* replacement = mach->as_MachBranch()->short_branch_version(); 1594 1595 // Update the jmp_size. 1596 int new_size = replacement->size(C->regalloc()); 1597 assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller"); 1598 // Insert padding between avoid_back_to_back branches. 1599 if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) { 1600 MachNode *nop = new MachNopNode(); 1601 block->insert_node(nop, j++); 1602 C->cfg()->map_node_to_block(nop, block); 1603 last_inst++; 1604 nop->emit(*cb, C->regalloc()); 1605 cb->flush_bundle(true); 1606 current_offset = cb->insts_size(); 1607 } 1608 #ifdef ASSERT 1609 jmp_target[i] = block_num; 1610 jmp_offset[i] = current_offset - blk_offset; 1611 jmp_size[i] = new_size; 1612 jmp_rule[i] = mach->rule(); 1613 #endif 1614 block->map_node(replacement, j); 1615 mach->subsume_by(replacement, C); 1616 n = replacement; 1617 mach = replacement; 1618 } 1619 } 1620 mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num ); 1621 } else if (mach->ideal_Opcode() == Op_Jump) { 1622 for (uint h = 0; h < block->_num_succs; h++) { 1623 Block* succs_block = block->_succs[h]; 1624 for (uint j = 1; j < succs_block->num_preds(); j++) { 1625 Node* jpn = succs_block->pred(j); 1626 if (jpn->is_JumpProj() && jpn->in(0) == mach) { 1627 uint block_num = succs_block->non_connector()->_pre_order; 1628 Label *blkLabel = &blk_labels[block_num]; 1629 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel); 1630 } 1631 } 1632 } 1633 } 1634 #ifdef ASSERT 1635 // Check that oop-store precedes the card-mark 1636 else if (mach->ideal_Opcode() == Op_StoreCM) { 1637 uint storeCM_idx = j; 1638 int count = 0; 1639 for (uint prec = mach->req(); prec < mach->len(); prec++) { 1640 Node *oop_store = mach->in(prec); // Precedence edge 1641 if (oop_store == nullptr) continue; 1642 count++; 1643 uint i4; 1644 for (i4 = 0; i4 < last_inst; ++i4) { 1645 if (block->get_node(i4) == oop_store) { 1646 break; 1647 } 1648 } 1649 // Note: This test can provide a false failure if other precedence 1650 // edges have been added to the storeCMNode. 1651 assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store"); 1652 } 1653 assert(count > 0, "storeCM expects at least one precedence edge"); 1654 } 1655 #endif 1656 else if (!n->is_Proj()) { 1657 // Remember the beginning of the previous instruction, in case 1658 // it's followed by a flag-kill and a null-check. Happens on 1659 // Intel all the time, with add-to-memory kind of opcodes. 1660 previous_offset = current_offset; 1661 } 1662 1663 // Not an else-if! 1664 // If this is a trap based cmp then add its offset to the list. 1665 if (mach->is_TrapBasedCheckNode()) { 1666 inct_starts[inct_cnt++] = current_offset; 1667 } 1668 } 1669 1670 // Verify that there is sufficient space remaining 1671 cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size); 1672 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1673 C->record_failure("CodeCache is full"); 1674 return; 1675 } 1676 1677 // Save the offset for the listing 1678 #if defined(SUPPORT_OPTO_ASSEMBLY) 1679 if ((node_offsets != nullptr) && (n->_idx < node_offset_limit)) { 1680 node_offsets[n->_idx] = cb->insts_size(); 1681 } 1682 #endif 1683 assert(!C->failing(), "Should not reach here if failing."); 1684 1685 // "Normal" instruction case 1686 DEBUG_ONLY(uint instr_offset = cb->insts_size()); 1687 n->emit(*cb, C->regalloc()); 1688 current_offset = cb->insts_size(); 1689 1690 // Above we only verified that there is enough space in the instruction section. 1691 // However, the instruction may emit stubs that cause code buffer expansion. 1692 // Bail out here if expansion failed due to a lack of code cache space. 1693 if (C->failing()) { 1694 return; 1695 } 1696 1697 assert(!is_mcall || (call_returns[block->_pre_order] <= (uint)current_offset), 1698 "ret_addr_offset() not within emitted code"); 1699 1700 #ifdef ASSERT 1701 uint n_size = n->size(C->regalloc()); 1702 if (n_size < (current_offset-instr_offset)) { 1703 MachNode* mach = n->as_Mach(); 1704 n->dump(); 1705 mach->dump_format(C->regalloc(), tty); 1706 tty->print_cr(" n_size (%d), current_offset (%d), instr_offset (%d)", n_size, current_offset, instr_offset); 1707 Disassembler::decode(cb->insts_begin() + instr_offset, cb->insts_begin() + current_offset + 1, tty); 1708 tty->print_cr(" ------------------- "); 1709 BufferBlob* blob = this->scratch_buffer_blob(); 1710 address blob_begin = blob->content_begin(); 1711 Disassembler::decode(blob_begin, blob_begin + n_size + 1, tty); 1712 assert(false, "wrong size of mach node"); 1713 } 1714 #endif 1715 non_safepoints.observe_instruction(n, current_offset); 1716 1717 // mcall is last "call" that can be a safepoint 1718 // record it so we can see if a poll will directly follow it 1719 // in which case we'll need a pad to make the PcDesc sites unique 1720 // see 5010568. This can be slightly inaccurate but conservative 1721 // in the case that return address is not actually at current_offset. 1722 // This is a small price to pay. 1723 1724 if (is_mcall) { 1725 last_call_offset = current_offset; 1726 } 1727 1728 if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) { 1729 // Avoid back to back some instructions. 1730 last_avoid_back_to_back_offset = current_offset; 1731 } 1732 1733 // See if this instruction has a delay slot 1734 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 1735 guarantee(delay_slot != nullptr, "expecting delay slot node"); 1736 1737 // Back up 1 instruction 1738 cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size()); 1739 1740 // Save the offset for the listing 1741 #if defined(SUPPORT_OPTO_ASSEMBLY) 1742 if ((node_offsets != nullptr) && (delay_slot->_idx < node_offset_limit)) { 1743 node_offsets[delay_slot->_idx] = cb->insts_size(); 1744 } 1745 #endif 1746 1747 // Support a SafePoint in the delay slot 1748 if (delay_slot->is_MachSafePoint()) { 1749 MachNode *mach = delay_slot->as_Mach(); 1750 // !!!!! Stubs only need an oopmap right now, so bail out 1751 if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == nullptr) { 1752 // Write the oopmap directly to the code blob??!! 1753 delay_slot = nullptr; 1754 continue; 1755 } 1756 1757 int adjusted_offset = current_offset - Pipeline::instr_unit_size(); 1758 non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(), 1759 adjusted_offset); 1760 // Generate an OopMap entry 1761 Process_OopMap_Node(mach, adjusted_offset); 1762 } 1763 1764 // Insert the delay slot instruction 1765 delay_slot->emit(*cb, C->regalloc()); 1766 1767 // Don't reuse it 1768 delay_slot = nullptr; 1769 } 1770 1771 } // End for all instructions in block 1772 1773 // If the next block is the top of a loop, pad this block out to align 1774 // the loop top a little. Helps prevent pipe stalls at loop back branches. 1775 if (i < nblocks-1) { 1776 Block *nb = C->cfg()->get_block(i + 1); 1777 int padding = nb->alignment_padding(current_offset); 1778 if( padding > 0 ) { 1779 MachNode *nop = new MachNopNode(padding / nop_size); 1780 block->insert_node(nop, block->number_of_nodes()); 1781 C->cfg()->map_node_to_block(nop, block); 1782 nop->emit(*cb, C->regalloc()); 1783 current_offset = cb->insts_size(); 1784 } 1785 } 1786 // Verify that the distance for generated before forward 1787 // short branches is still valid. 1788 guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size"); 1789 1790 // Save new block start offset 1791 blk_starts[i] = blk_offset; 1792 } // End of for all blocks 1793 blk_starts[nblocks] = current_offset; 1794 1795 non_safepoints.flush_at_end(); 1796 1797 // Offset too large? 1798 if (C->failing()) return; 1799 1800 // Define a pseudo-label at the end of the code 1801 MacroAssembler(cb).bind( blk_labels[nblocks] ); 1802 1803 // Compute the size of the first block 1804 _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos(); 1805 1806 #ifdef ASSERT 1807 for (uint i = 0; i < nblocks; i++) { // For all blocks 1808 if (jmp_target[i] != 0) { 1809 int br_size = jmp_size[i]; 1810 int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]); 1811 if (!C->matcher()->is_short_branch_offset(jmp_rule[i], br_size, offset)) { 1812 tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]); 1813 assert(false, "Displacement too large for short jmp"); 1814 } 1815 } 1816 } 1817 #endif 1818 1819 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1820 bs->emit_stubs(*cb); 1821 if (C->failing()) return; 1822 1823 // Fill in stubs for calling the runtime from safepoint polls. 1824 safepoint_poll_table()->emit(*cb); 1825 if (C->failing()) return; 1826 1827 #ifndef PRODUCT 1828 // Information on the size of the method, without the extraneous code 1829 Scheduling::increment_method_size(cb->insts_size()); 1830 #endif 1831 1832 // ------------------ 1833 // Fill in exception table entries. 1834 FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels); 1835 1836 // Only java methods have exception handlers and deopt handlers 1837 // class HandlerImpl is platform-specific and defined in the *.ad files. 1838 if (C->method()) { 1839 // Emit the exception handler code. 1840 _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb)); 1841 if (C->failing()) { 1842 return; // CodeBuffer::expand failed 1843 } 1844 // Emit the deopt handler code. 1845 _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb)); 1846 1847 // Emit the MethodHandle deopt handler code (if required). 1848 if (C->has_method_handle_invokes() && !C->failing()) { 1849 // We can use the same code as for the normal deopt handler, we 1850 // just need a different entry point address. 1851 _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb)); 1852 } 1853 } 1854 1855 // One last check for failed CodeBuffer::expand: 1856 if ((cb->blob() == nullptr) || (!CompileBroker::should_compile_new_jobs())) { 1857 C->record_failure("CodeCache is full"); 1858 return; 1859 } 1860 1861 #if defined(SUPPORT_ABSTRACT_ASSEMBLY) || defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_OPTO_ASSEMBLY) 1862 if (C->print_assembly()) { 1863 tty->cr(); 1864 tty->print_cr("============================= C2-compiled nmethod =============================="); 1865 } 1866 #endif 1867 1868 #if defined(SUPPORT_OPTO_ASSEMBLY) 1869 // Dump the assembly code, including basic-block numbers 1870 if (C->print_assembly()) { 1871 ttyLocker ttyl; // keep the following output all in one block 1872 if (!VMThread::should_terminate()) { // test this under the tty lock 1873 // This output goes directly to the tty, not the compiler log. 1874 // To enable tools to match it up with the compilation activity, 1875 // be sure to tag this tty output with the compile ID. 1876 if (xtty != nullptr) { 1877 xtty->head("opto_assembly compile_id='%d'%s", C->compile_id(), 1878 C->is_osr_compilation() ? " compile_kind='osr'" : ""); 1879 } 1880 if (C->method() != nullptr) { 1881 tty->print_cr("----------------------- MetaData before Compile_id = %d ------------------------", C->compile_id()); 1882 C->method()->print_metadata(); 1883 } else if (C->stub_name() != nullptr) { 1884 tty->print_cr("----------------------------- RuntimeStub %s -------------------------------", C->stub_name()); 1885 } 1886 tty->cr(); 1887 tty->print_cr("------------------------ OptoAssembly for Compile_id = %d -----------------------", C->compile_id()); 1888 dump_asm(node_offsets, node_offset_limit); 1889 tty->print_cr("--------------------------------------------------------------------------------"); 1890 if (xtty != nullptr) { 1891 // print_metadata and dump_asm above may safepoint which makes us loose the ttylock. 1892 // Retake lock too make sure the end tag is coherent, and that xmlStream->pop_tag is done 1893 // thread safe 1894 ttyLocker ttyl2; 1895 xtty->tail("opto_assembly"); 1896 } 1897 } 1898 } 1899 #endif 1900 } 1901 1902 void PhaseOutput::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) { 1903 _inc_table.set_size(cnt); 1904 1905 uint inct_cnt = 0; 1906 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 1907 Block* block = C->cfg()->get_block(i); 1908 Node *n = nullptr; 1909 int j; 1910 1911 // Find the branch; ignore trailing NOPs. 1912 for (j = block->number_of_nodes() - 1; j >= 0; j--) { 1913 n = block->get_node(j); 1914 if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) { 1915 break; 1916 } 1917 } 1918 1919 // If we didn't find anything, continue 1920 if (j < 0) { 1921 continue; 1922 } 1923 1924 // Compute ExceptionHandlerTable subtable entry and add it 1925 // (skip empty blocks) 1926 if (n->is_Catch()) { 1927 1928 // Get the offset of the return from the call 1929 uint call_return = call_returns[block->_pre_order]; 1930 #ifdef ASSERT 1931 assert( call_return > 0, "no call seen for this basic block" ); 1932 while (block->get_node(--j)->is_MachProj()) ; 1933 assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call"); 1934 #endif 1935 // last instruction is a CatchNode, find it's CatchProjNodes 1936 int nof_succs = block->_num_succs; 1937 // allocate space 1938 GrowableArray<intptr_t> handler_bcis(nof_succs); 1939 GrowableArray<intptr_t> handler_pcos(nof_succs); 1940 // iterate through all successors 1941 for (int j = 0; j < nof_succs; j++) { 1942 Block* s = block->_succs[j]; 1943 bool found_p = false; 1944 for (uint k = 1; k < s->num_preds(); k++) { 1945 Node* pk = s->pred(k); 1946 if (pk->is_CatchProj() && pk->in(0) == n) { 1947 const CatchProjNode* p = pk->as_CatchProj(); 1948 found_p = true; 1949 // add the corresponding handler bci & pco information 1950 if (p->_con != CatchProjNode::fall_through_index) { 1951 // p leads to an exception handler (and is not fall through) 1952 assert(s == C->cfg()->get_block(s->_pre_order), "bad numbering"); 1953 // no duplicates, please 1954 if (!handler_bcis.contains(p->handler_bci())) { 1955 uint block_num = s->non_connector()->_pre_order; 1956 handler_bcis.append(p->handler_bci()); 1957 handler_pcos.append(blk_labels[block_num].loc_pos()); 1958 } 1959 } 1960 } 1961 } 1962 assert(found_p, "no matching predecessor found"); 1963 // Note: Due to empty block removal, one block may have 1964 // several CatchProj inputs, from the same Catch. 1965 } 1966 1967 // Set the offset of the return from the call 1968 assert(handler_bcis.find(-1) != -1, "must have default handler"); 1969 _handler_table.add_subtable(call_return, &handler_bcis, nullptr, &handler_pcos); 1970 continue; 1971 } 1972 1973 // Handle implicit null exception table updates 1974 if (n->is_MachNullCheck()) { 1975 uint block_num = block->non_connector_successor(0)->_pre_order; 1976 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1977 continue; 1978 } 1979 // Handle implicit exception table updates: trap instructions. 1980 if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) { 1981 uint block_num = block->non_connector_successor(0)->_pre_order; 1982 _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos()); 1983 continue; 1984 } 1985 } // End of for all blocks fill in exception table entries 1986 } 1987 1988 // Static Variables 1989 #ifndef PRODUCT 1990 uint Scheduling::_total_nop_size = 0; 1991 uint Scheduling::_total_method_size = 0; 1992 uint Scheduling::_total_branches = 0; 1993 uint Scheduling::_total_unconditional_delays = 0; 1994 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1]; 1995 #endif 1996 1997 // Initializer for class Scheduling 1998 1999 Scheduling::Scheduling(Arena *arena, Compile &compile) 2000 : _arena(arena), 2001 _cfg(compile.cfg()), 2002 _regalloc(compile.regalloc()), 2003 _scheduled(arena), 2004 _available(arena), 2005 _reg_node(arena), 2006 _pinch_free_list(arena), 2007 _next_node(nullptr), 2008 _bundle_instr_count(0), 2009 _bundle_cycle_number(0), 2010 _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]) 2011 #ifndef PRODUCT 2012 , _branches(0) 2013 , _unconditional_delays(0) 2014 #endif 2015 { 2016 // Create a MachNopNode 2017 _nop = new MachNopNode(); 2018 2019 // Now that the nops are in the array, save the count 2020 // (but allow entries for the nops) 2021 _node_bundling_limit = compile.unique(); 2022 uint node_max = _regalloc->node_regs_max_index(); 2023 2024 compile.output()->set_node_bundling_limit(_node_bundling_limit); 2025 2026 // This one is persistent within the Compile class 2027 _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max); 2028 2029 // Allocate space for fixed-size arrays 2030 _node_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2031 _uses = NEW_ARENA_ARRAY(arena, short, node_max); 2032 _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max); 2033 2034 // Clear the arrays 2035 for (uint i = 0; i < node_max; i++) { 2036 ::new (&_node_bundling_base[i]) Bundle(); 2037 } 2038 memset(_node_latency, 0, node_max * sizeof(unsigned short)); 2039 memset(_uses, 0, node_max * sizeof(short)); 2040 memset(_current_latency, 0, node_max * sizeof(unsigned short)); 2041 2042 // Clear the bundling information 2043 memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements)); 2044 2045 // Get the last node 2046 Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1); 2047 2048 _next_node = block->get_node(block->number_of_nodes() - 1); 2049 } 2050 2051 #ifndef PRODUCT 2052 // Scheduling destructor 2053 Scheduling::~Scheduling() { 2054 _total_branches += _branches; 2055 _total_unconditional_delays += _unconditional_delays; 2056 } 2057 #endif 2058 2059 // Step ahead "i" cycles 2060 void Scheduling::step(uint i) { 2061 2062 Bundle *bundle = node_bundling(_next_node); 2063 bundle->set_starts_bundle(); 2064 2065 // Update the bundle record, but leave the flags information alone 2066 if (_bundle_instr_count > 0) { 2067 bundle->set_instr_count(_bundle_instr_count); 2068 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2069 } 2070 2071 // Update the state information 2072 _bundle_instr_count = 0; 2073 _bundle_cycle_number += i; 2074 _bundle_use.step(i); 2075 } 2076 2077 void Scheduling::step_and_clear() { 2078 Bundle *bundle = node_bundling(_next_node); 2079 bundle->set_starts_bundle(); 2080 2081 // Update the bundle record 2082 if (_bundle_instr_count > 0) { 2083 bundle->set_instr_count(_bundle_instr_count); 2084 bundle->set_resources_used(_bundle_use.resourcesUsed()); 2085 2086 _bundle_cycle_number += 1; 2087 } 2088 2089 // Clear the bundling information 2090 _bundle_instr_count = 0; 2091 _bundle_use.reset(); 2092 2093 memcpy(_bundle_use_elements, 2094 Pipeline_Use::elaborated_elements, 2095 sizeof(Pipeline_Use::elaborated_elements)); 2096 } 2097 2098 // Perform instruction scheduling and bundling over the sequence of 2099 // instructions in backwards order. 2100 void PhaseOutput::ScheduleAndBundle() { 2101 2102 // Don't optimize this if it isn't a method 2103 if (!C->method()) 2104 return; 2105 2106 // Don't optimize this if scheduling is disabled 2107 if (!C->do_scheduling()) 2108 return; 2109 2110 // Scheduling code works only with pairs (8 bytes) maximum. 2111 if (C->max_vector_size() > 8) 2112 return; 2113 2114 Compile::TracePhase tp("isched", &timers[_t_instrSched]); 2115 2116 // Create a data structure for all the scheduling information 2117 Scheduling scheduling(Thread::current()->resource_area(), *C); 2118 2119 // Walk backwards over each basic block, computing the needed alignment 2120 // Walk over all the basic blocks 2121 scheduling.DoScheduling(); 2122 2123 #ifndef PRODUCT 2124 if (C->trace_opto_output()) { 2125 tty->print("\n---- After ScheduleAndBundle ----\n"); 2126 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 2127 tty->print("\nBB#%03d:\n", i); 2128 Block* block = C->cfg()->get_block(i); 2129 for (uint j = 0; j < block->number_of_nodes(); j++) { 2130 Node* n = block->get_node(j); 2131 OptoReg::Name reg = C->regalloc()->get_reg_first(n); 2132 tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : ""); 2133 n->dump(); 2134 } 2135 } 2136 } 2137 #endif 2138 } 2139 2140 // Compute the latency of all the instructions. This is fairly simple, 2141 // because we already have a legal ordering. Walk over the instructions 2142 // from first to last, and compute the latency of the instruction based 2143 // on the latency of the preceding instruction(s). 2144 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) { 2145 #ifndef PRODUCT 2146 if (_cfg->C->trace_opto_output()) 2147 tty->print("# -> ComputeLocalLatenciesForward\n"); 2148 #endif 2149 2150 // Walk over all the schedulable instructions 2151 for( uint j=_bb_start; j < _bb_end; j++ ) { 2152 2153 // This is a kludge, forcing all latency calculations to start at 1. 2154 // Used to allow latency 0 to force an instruction to the beginning 2155 // of the bb 2156 uint latency = 1; 2157 Node *use = bb->get_node(j); 2158 uint nlen = use->len(); 2159 2160 // Walk over all the inputs 2161 for ( uint k=0; k < nlen; k++ ) { 2162 Node *def = use->in(k); 2163 if (!def) 2164 continue; 2165 2166 uint l = _node_latency[def->_idx] + use->latency(k); 2167 if (latency < l) 2168 latency = l; 2169 } 2170 2171 _node_latency[use->_idx] = latency; 2172 2173 #ifndef PRODUCT 2174 if (_cfg->C->trace_opto_output()) { 2175 tty->print("# latency %4d: ", latency); 2176 use->dump(); 2177 } 2178 #endif 2179 } 2180 2181 #ifndef PRODUCT 2182 if (_cfg->C->trace_opto_output()) 2183 tty->print("# <- ComputeLocalLatenciesForward\n"); 2184 #endif 2185 2186 } // end ComputeLocalLatenciesForward 2187 2188 // See if this node fits into the present instruction bundle 2189 bool Scheduling::NodeFitsInBundle(Node *n) { 2190 uint n_idx = n->_idx; 2191 2192 // If this is the unconditional delay instruction, then it fits 2193 if (n == _unconditional_delay_slot) { 2194 #ifndef PRODUCT 2195 if (_cfg->C->trace_opto_output()) 2196 tty->print("# NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx); 2197 #endif 2198 return (true); 2199 } 2200 2201 // If the node cannot be scheduled this cycle, skip it 2202 if (_current_latency[n_idx] > _bundle_cycle_number) { 2203 #ifndef PRODUCT 2204 if (_cfg->C->trace_opto_output()) 2205 tty->print("# NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n", 2206 n->_idx, _current_latency[n_idx], _bundle_cycle_number); 2207 #endif 2208 return (false); 2209 } 2210 2211 const Pipeline *node_pipeline = n->pipeline(); 2212 2213 uint instruction_count = node_pipeline->instructionCount(); 2214 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2215 instruction_count = 0; 2216 else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2217 instruction_count++; 2218 2219 if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) { 2220 #ifndef PRODUCT 2221 if (_cfg->C->trace_opto_output()) 2222 tty->print("# NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n", 2223 n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle); 2224 #endif 2225 return (false); 2226 } 2227 2228 // Don't allow non-machine nodes to be handled this way 2229 if (!n->is_Mach() && instruction_count == 0) 2230 return (false); 2231 2232 // See if there is any overlap 2233 uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse()); 2234 2235 if (delay > 0) { 2236 #ifndef PRODUCT 2237 if (_cfg->C->trace_opto_output()) 2238 tty->print("# NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx); 2239 #endif 2240 return false; 2241 } 2242 2243 #ifndef PRODUCT 2244 if (_cfg->C->trace_opto_output()) 2245 tty->print("# NodeFitsInBundle [%4d]: TRUE\n", n_idx); 2246 #endif 2247 2248 return true; 2249 } 2250 2251 Node * Scheduling::ChooseNodeToBundle() { 2252 uint siz = _available.size(); 2253 2254 if (siz == 0) { 2255 2256 #ifndef PRODUCT 2257 if (_cfg->C->trace_opto_output()) 2258 tty->print("# ChooseNodeToBundle: null\n"); 2259 #endif 2260 return (nullptr); 2261 } 2262 2263 // Fast path, if only 1 instruction in the bundle 2264 if (siz == 1) { 2265 #ifndef PRODUCT 2266 if (_cfg->C->trace_opto_output()) { 2267 tty->print("# ChooseNodeToBundle (only 1): "); 2268 _available[0]->dump(); 2269 } 2270 #endif 2271 return (_available[0]); 2272 } 2273 2274 // Don't bother, if the bundle is already full 2275 if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) { 2276 for ( uint i = 0; i < siz; i++ ) { 2277 Node *n = _available[i]; 2278 2279 // Skip projections, we'll handle them another way 2280 if (n->is_Proj()) 2281 continue; 2282 2283 // This presupposed that instructions are inserted into the 2284 // available list in a legality order; i.e. instructions that 2285 // must be inserted first are at the head of the list 2286 if (NodeFitsInBundle(n)) { 2287 #ifndef PRODUCT 2288 if (_cfg->C->trace_opto_output()) { 2289 tty->print("# ChooseNodeToBundle: "); 2290 n->dump(); 2291 } 2292 #endif 2293 return (n); 2294 } 2295 } 2296 } 2297 2298 // Nothing fits in this bundle, choose the highest priority 2299 #ifndef PRODUCT 2300 if (_cfg->C->trace_opto_output()) { 2301 tty->print("# ChooseNodeToBundle: "); 2302 _available[0]->dump(); 2303 } 2304 #endif 2305 2306 return _available[0]; 2307 } 2308 2309 void Scheduling::AddNodeToAvailableList(Node *n) { 2310 assert( !n->is_Proj(), "projections never directly made available" ); 2311 #ifndef PRODUCT 2312 if (_cfg->C->trace_opto_output()) { 2313 tty->print("# AddNodeToAvailableList: "); 2314 n->dump(); 2315 } 2316 #endif 2317 2318 int latency = _current_latency[n->_idx]; 2319 2320 // Insert in latency order (insertion sort) 2321 uint i; 2322 for ( i=0; i < _available.size(); i++ ) 2323 if (_current_latency[_available[i]->_idx] > latency) 2324 break; 2325 2326 // Special Check for compares following branches 2327 if( n->is_Mach() && _scheduled.size() > 0 ) { 2328 int op = n->as_Mach()->ideal_Opcode(); 2329 Node *last = _scheduled[0]; 2330 if( last->is_MachIf() && last->in(1) == n && 2331 ( op == Op_CmpI || 2332 op == Op_CmpU || 2333 op == Op_CmpUL || 2334 op == Op_CmpP || 2335 op == Op_CmpF || 2336 op == Op_CmpD || 2337 op == Op_CmpL ) ) { 2338 2339 // Recalculate position, moving to front of same latency 2340 for ( i=0 ; i < _available.size(); i++ ) 2341 if (_current_latency[_available[i]->_idx] >= latency) 2342 break; 2343 } 2344 } 2345 2346 // Insert the node in the available list 2347 _available.insert(i, n); 2348 2349 #ifndef PRODUCT 2350 if (_cfg->C->trace_opto_output()) 2351 dump_available(); 2352 #endif 2353 } 2354 2355 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) { 2356 for ( uint i=0; i < n->len(); i++ ) { 2357 Node *def = n->in(i); 2358 if (!def) continue; 2359 if( def->is_Proj() ) // If this is a machine projection, then 2360 def = def->in(0); // propagate usage thru to the base instruction 2361 2362 if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local 2363 continue; 2364 } 2365 2366 // Compute the latency 2367 uint l = _bundle_cycle_number + n->latency(i); 2368 if (_current_latency[def->_idx] < l) 2369 _current_latency[def->_idx] = l; 2370 2371 // If this does not have uses then schedule it 2372 if ((--_uses[def->_idx]) == 0) 2373 AddNodeToAvailableList(def); 2374 } 2375 } 2376 2377 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) { 2378 #ifndef PRODUCT 2379 if (_cfg->C->trace_opto_output()) { 2380 tty->print("# AddNodeToBundle: "); 2381 n->dump(); 2382 } 2383 #endif 2384 2385 // Remove this from the available list 2386 uint i; 2387 for (i = 0; i < _available.size(); i++) 2388 if (_available[i] == n) 2389 break; 2390 assert(i < _available.size(), "entry in _available list not found"); 2391 _available.remove(i); 2392 2393 // See if this fits in the current bundle 2394 const Pipeline *node_pipeline = n->pipeline(); 2395 const Pipeline_Use& node_usage = node_pipeline->resourceUse(); 2396 2397 // Check for instructions to be placed in the delay slot. We 2398 // do this before we actually schedule the current instruction, 2399 // because the delay slot follows the current instruction. 2400 if (Pipeline::_branch_has_delay_slot && 2401 node_pipeline->hasBranchDelay() && 2402 !_unconditional_delay_slot) { 2403 2404 uint siz = _available.size(); 2405 2406 // Conditional branches can support an instruction that 2407 // is unconditionally executed and not dependent by the 2408 // branch, OR a conditionally executed instruction if 2409 // the branch is taken. In practice, this means that 2410 // the first instruction at the branch target is 2411 // copied to the delay slot, and the branch goes to 2412 // the instruction after that at the branch target 2413 if ( n->is_MachBranch() ) { 2414 2415 assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" ); 2416 assert( !n->is_Catch(), "should not look for delay slot for Catch" ); 2417 2418 #ifndef PRODUCT 2419 _branches++; 2420 #endif 2421 2422 // At least 1 instruction is on the available list 2423 // that is not dependent on the branch 2424 for (uint i = 0; i < siz; i++) { 2425 Node *d = _available[i]; 2426 const Pipeline *avail_pipeline = d->pipeline(); 2427 2428 // Don't allow safepoints in the branch shadow, that will 2429 // cause a number of difficulties 2430 if ( avail_pipeline->instructionCount() == 1 && 2431 !avail_pipeline->hasMultipleBundles() && 2432 !avail_pipeline->hasBranchDelay() && 2433 Pipeline::instr_has_unit_size() && 2434 d->size(_regalloc) == Pipeline::instr_unit_size() && 2435 NodeFitsInBundle(d) && 2436 !node_bundling(d)->used_in_delay()) { 2437 2438 if (d->is_Mach() && !d->is_MachSafePoint()) { 2439 // A node that fits in the delay slot was found, so we need to 2440 // set the appropriate bits in the bundle pipeline information so 2441 // that it correctly indicates resource usage. Later, when we 2442 // attempt to add this instruction to the bundle, we will skip 2443 // setting the resource usage. 2444 _unconditional_delay_slot = d; 2445 node_bundling(n)->set_use_unconditional_delay(); 2446 node_bundling(d)->set_used_in_unconditional_delay(); 2447 _bundle_use.add_usage(avail_pipeline->resourceUse()); 2448 _current_latency[d->_idx] = _bundle_cycle_number; 2449 _next_node = d; 2450 ++_bundle_instr_count; 2451 #ifndef PRODUCT 2452 _unconditional_delays++; 2453 #endif 2454 break; 2455 } 2456 } 2457 } 2458 } 2459 2460 // No delay slot, add a nop to the usage 2461 if (!_unconditional_delay_slot) { 2462 // See if adding an instruction in the delay slot will overflow 2463 // the bundle. 2464 if (!NodeFitsInBundle(_nop)) { 2465 #ifndef PRODUCT 2466 if (_cfg->C->trace_opto_output()) 2467 tty->print("# *** STEP(1 instruction for delay slot) ***\n"); 2468 #endif 2469 step(1); 2470 } 2471 2472 _bundle_use.add_usage(_nop->pipeline()->resourceUse()); 2473 _next_node = _nop; 2474 ++_bundle_instr_count; 2475 } 2476 2477 // See if the instruction in the delay slot requires a 2478 // step of the bundles 2479 if (!NodeFitsInBundle(n)) { 2480 #ifndef PRODUCT 2481 if (_cfg->C->trace_opto_output()) 2482 tty->print("# *** STEP(branch won't fit) ***\n"); 2483 #endif 2484 // Update the state information 2485 _bundle_instr_count = 0; 2486 _bundle_cycle_number += 1; 2487 _bundle_use.step(1); 2488 } 2489 } 2490 2491 // Get the number of instructions 2492 uint instruction_count = node_pipeline->instructionCount(); 2493 if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0) 2494 instruction_count = 0; 2495 2496 // Compute the latency information 2497 uint delay = 0; 2498 2499 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) { 2500 int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number; 2501 if (relative_latency < 0) 2502 relative_latency = 0; 2503 2504 delay = _bundle_use.full_latency(relative_latency, node_usage); 2505 2506 // Does not fit in this bundle, start a new one 2507 if (delay > 0) { 2508 step(delay); 2509 2510 #ifndef PRODUCT 2511 if (_cfg->C->trace_opto_output()) 2512 tty->print("# *** STEP(%d) ***\n", delay); 2513 #endif 2514 } 2515 } 2516 2517 // If this was placed in the delay slot, ignore it 2518 if (n != _unconditional_delay_slot) { 2519 2520 if (delay == 0) { 2521 if (node_pipeline->hasMultipleBundles()) { 2522 #ifndef PRODUCT 2523 if (_cfg->C->trace_opto_output()) 2524 tty->print("# *** STEP(multiple instructions) ***\n"); 2525 #endif 2526 step(1); 2527 } 2528 2529 else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) { 2530 #ifndef PRODUCT 2531 if (_cfg->C->trace_opto_output()) 2532 tty->print("# *** STEP(%d >= %d instructions) ***\n", 2533 instruction_count + _bundle_instr_count, 2534 Pipeline::_max_instrs_per_cycle); 2535 #endif 2536 step(1); 2537 } 2538 } 2539 2540 if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot) 2541 _bundle_instr_count++; 2542 2543 // Set the node's latency 2544 _current_latency[n->_idx] = _bundle_cycle_number; 2545 2546 // Now merge the functional unit information 2547 if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) 2548 _bundle_use.add_usage(node_usage); 2549 2550 // Increment the number of instructions in this bundle 2551 _bundle_instr_count += instruction_count; 2552 2553 // Remember this node for later 2554 if (n->is_Mach()) 2555 _next_node = n; 2556 } 2557 2558 // It's possible to have a BoxLock in the graph and in the _bbs mapping but 2559 // not in the bb->_nodes array. This happens for debug-info-only BoxLocks. 2560 // 'Schedule' them (basically ignore in the schedule) but do not insert them 2561 // into the block. All other scheduled nodes get put in the schedule here. 2562 int op = n->Opcode(); 2563 if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR 2564 (op != Op_Node && // Not an unused antidepedence node and 2565 // not an unallocated boxlock 2566 (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) { 2567 2568 // Push any trailing projections 2569 if( bb->get_node(bb->number_of_nodes()-1) != n ) { 2570 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2571 Node *foi = n->fast_out(i); 2572 if( foi->is_Proj() ) 2573 _scheduled.push(foi); 2574 } 2575 } 2576 2577 // Put the instruction in the schedule list 2578 _scheduled.push(n); 2579 } 2580 2581 #ifndef PRODUCT 2582 if (_cfg->C->trace_opto_output()) 2583 dump_available(); 2584 #endif 2585 2586 // Walk all the definitions, decrementing use counts, and 2587 // if a definition has a 0 use count, place it in the available list. 2588 DecrementUseCounts(n,bb); 2589 } 2590 2591 // This method sets the use count within a basic block. We will ignore all 2592 // uses outside the current basic block. As we are doing a backwards walk, 2593 // any node we reach that has a use count of 0 may be scheduled. This also 2594 // avoids the problem of cyclic references from phi nodes, as long as phi 2595 // nodes are at the front of the basic block. This method also initializes 2596 // the available list to the set of instructions that have no uses within this 2597 // basic block. 2598 void Scheduling::ComputeUseCount(const Block *bb) { 2599 #ifndef PRODUCT 2600 if (_cfg->C->trace_opto_output()) 2601 tty->print("# -> ComputeUseCount\n"); 2602 #endif 2603 2604 // Clear the list of available and scheduled instructions, just in case 2605 _available.clear(); 2606 _scheduled.clear(); 2607 2608 // No delay slot specified 2609 _unconditional_delay_slot = nullptr; 2610 2611 #ifdef ASSERT 2612 for( uint i=0; i < bb->number_of_nodes(); i++ ) 2613 assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" ); 2614 #endif 2615 2616 // Force the _uses count to never go to zero for unscheduable pieces 2617 // of the block 2618 for( uint k = 0; k < _bb_start; k++ ) 2619 _uses[bb->get_node(k)->_idx] = 1; 2620 for( uint l = _bb_end; l < bb->number_of_nodes(); l++ ) 2621 _uses[bb->get_node(l)->_idx] = 1; 2622 2623 // Iterate backwards over the instructions in the block. Don't count the 2624 // branch projections at end or the block header instructions. 2625 for( uint j = _bb_end-1; j >= _bb_start; j-- ) { 2626 Node *n = bb->get_node(j); 2627 if( n->is_Proj() ) continue; // Projections handled another way 2628 2629 // Account for all uses 2630 for ( uint k = 0; k < n->len(); k++ ) { 2631 Node *inp = n->in(k); 2632 if (!inp) continue; 2633 assert(inp != n, "no cycles allowed" ); 2634 if (_cfg->get_block_for_node(inp) == bb) { // Block-local use? 2635 if (inp->is_Proj()) { // Skip through Proj's 2636 inp = inp->in(0); 2637 } 2638 ++_uses[inp->_idx]; // Count 1 block-local use 2639 } 2640 } 2641 2642 // If this instruction has a 0 use count, then it is available 2643 if (!_uses[n->_idx]) { 2644 _current_latency[n->_idx] = _bundle_cycle_number; 2645 AddNodeToAvailableList(n); 2646 } 2647 2648 #ifndef PRODUCT 2649 if (_cfg->C->trace_opto_output()) { 2650 tty->print("# uses: %3d: ", _uses[n->_idx]); 2651 n->dump(); 2652 } 2653 #endif 2654 } 2655 2656 #ifndef PRODUCT 2657 if (_cfg->C->trace_opto_output()) 2658 tty->print("# <- ComputeUseCount\n"); 2659 #endif 2660 } 2661 2662 // This routine performs scheduling on each basic block in reverse order, 2663 // using instruction latencies and taking into account function unit 2664 // availability. 2665 void Scheduling::DoScheduling() { 2666 #ifndef PRODUCT 2667 if (_cfg->C->trace_opto_output()) 2668 tty->print("# -> DoScheduling\n"); 2669 #endif 2670 2671 Block *succ_bb = nullptr; 2672 Block *bb; 2673 Compile* C = Compile::current(); 2674 2675 // Walk over all the basic blocks in reverse order 2676 for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) { 2677 bb = _cfg->get_block(i); 2678 2679 #ifndef PRODUCT 2680 if (_cfg->C->trace_opto_output()) { 2681 tty->print("# Schedule BB#%03d (initial)\n", i); 2682 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2683 bb->get_node(j)->dump(); 2684 } 2685 } 2686 #endif 2687 2688 // On the head node, skip processing 2689 if (bb == _cfg->get_root_block()) { 2690 continue; 2691 } 2692 2693 // Skip empty, connector blocks 2694 if (bb->is_connector()) 2695 continue; 2696 2697 // If the following block is not the sole successor of 2698 // this one, then reset the pipeline information 2699 if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) { 2700 #ifndef PRODUCT 2701 if (_cfg->C->trace_opto_output()) { 2702 tty->print("*** bundle start of next BB, node %d, for %d instructions\n", 2703 _next_node->_idx, _bundle_instr_count); 2704 } 2705 #endif 2706 step_and_clear(); 2707 } 2708 2709 // Leave untouched the starting instruction, any Phis, a CreateEx node 2710 // or Top. bb->get_node(_bb_start) is the first schedulable instruction. 2711 _bb_end = bb->number_of_nodes()-1; 2712 for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) { 2713 Node *n = bb->get_node(_bb_start); 2714 // Things not matched, like Phinodes and ProjNodes don't get scheduled. 2715 // Also, MachIdealNodes do not get scheduled 2716 if( !n->is_Mach() ) continue; // Skip non-machine nodes 2717 MachNode *mach = n->as_Mach(); 2718 int iop = mach->ideal_Opcode(); 2719 if( iop == Op_CreateEx ) continue; // CreateEx is pinned 2720 if( iop == Op_Con ) continue; // Do not schedule Top 2721 if( iop == Op_Node && // Do not schedule PhiNodes, ProjNodes 2722 mach->pipeline() == MachNode::pipeline_class() && 2723 !n->is_SpillCopy() && !n->is_MachMerge() ) // Breakpoints, Prolog, etc 2724 continue; 2725 break; // Funny loop structure to be sure... 2726 } 2727 // Compute last "interesting" instruction in block - last instruction we 2728 // might schedule. _bb_end points just after last schedulable inst. We 2729 // normally schedule conditional branches (despite them being forced last 2730 // in the block), because they have delay slots we can fill. Calls all 2731 // have their delay slots filled in the template expansions, so we don't 2732 // bother scheduling them. 2733 Node *last = bb->get_node(_bb_end); 2734 // Ignore trailing NOPs. 2735 while (_bb_end > 0 && last->is_Mach() && 2736 last->as_Mach()->ideal_Opcode() == Op_Con) { 2737 last = bb->get_node(--_bb_end); 2738 } 2739 assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, ""); 2740 if( last->is_Catch() || 2741 (last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) { 2742 // There might be a prior call. Skip it. 2743 while (_bb_start < _bb_end && bb->get_node(--_bb_end)->is_MachProj()); 2744 } else if( last->is_MachNullCheck() ) { 2745 // Backup so the last null-checked memory instruction is 2746 // outside the schedulable range. Skip over the nullcheck, 2747 // projection, and the memory nodes. 2748 Node *mem = last->in(1); 2749 do { 2750 _bb_end--; 2751 } while (mem != bb->get_node(_bb_end)); 2752 } else { 2753 // Set _bb_end to point after last schedulable inst. 2754 _bb_end++; 2755 } 2756 2757 assert( _bb_start <= _bb_end, "inverted block ends" ); 2758 2759 // Compute the register antidependencies for the basic block 2760 ComputeRegisterAntidependencies(bb); 2761 if (C->failing()) return; // too many D-U pinch points 2762 2763 // Compute intra-bb latencies for the nodes 2764 ComputeLocalLatenciesForward(bb); 2765 2766 // Compute the usage within the block, and set the list of all nodes 2767 // in the block that have no uses within the block. 2768 ComputeUseCount(bb); 2769 2770 // Schedule the remaining instructions in the block 2771 while ( _available.size() > 0 ) { 2772 Node *n = ChooseNodeToBundle(); 2773 guarantee(n != nullptr, "no nodes available"); 2774 AddNodeToBundle(n,bb); 2775 } 2776 2777 assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" ); 2778 #ifdef ASSERT 2779 for( uint l = _bb_start; l < _bb_end; l++ ) { 2780 Node *n = bb->get_node(l); 2781 uint m; 2782 for( m = 0; m < _bb_end-_bb_start; m++ ) 2783 if( _scheduled[m] == n ) 2784 break; 2785 assert( m < _bb_end-_bb_start, "instruction missing in schedule" ); 2786 } 2787 #endif 2788 2789 // Now copy the instructions (in reverse order) back to the block 2790 for ( uint k = _bb_start; k < _bb_end; k++ ) 2791 bb->map_node(_scheduled[_bb_end-k-1], k); 2792 2793 #ifndef PRODUCT 2794 if (_cfg->C->trace_opto_output()) { 2795 tty->print("# Schedule BB#%03d (final)\n", i); 2796 uint current = 0; 2797 for (uint j = 0; j < bb->number_of_nodes(); j++) { 2798 Node *n = bb->get_node(j); 2799 if( valid_bundle_info(n) ) { 2800 Bundle *bundle = node_bundling(n); 2801 if (bundle->instr_count() > 0 || bundle->flags() > 0) { 2802 tty->print("*** Bundle: "); 2803 bundle->dump(); 2804 } 2805 n->dump(); 2806 } 2807 } 2808 } 2809 #endif 2810 #ifdef ASSERT 2811 verify_good_schedule(bb,"after block local scheduling"); 2812 #endif 2813 } 2814 2815 #ifndef PRODUCT 2816 if (_cfg->C->trace_opto_output()) 2817 tty->print("# <- DoScheduling\n"); 2818 #endif 2819 2820 // Record final node-bundling array location 2821 _regalloc->C->output()->set_node_bundling_base(_node_bundling_base); 2822 2823 } // end DoScheduling 2824 2825 // Verify that no live-range used in the block is killed in the block by a 2826 // wrong DEF. This doesn't verify live-ranges that span blocks. 2827 2828 // Check for edge existence. Used to avoid adding redundant precedence edges. 2829 static bool edge_from_to( Node *from, Node *to ) { 2830 for( uint i=0; i<from->len(); i++ ) 2831 if( from->in(i) == to ) 2832 return true; 2833 return false; 2834 } 2835 2836 #ifdef ASSERT 2837 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) { 2838 // Check for bad kills 2839 if( OptoReg::is_valid(def) ) { // Ignore stores & control flow 2840 Node *prior_use = _reg_node[def]; 2841 if( prior_use && !edge_from_to(prior_use,n) ) { 2842 tty->print("%s = ",OptoReg::as_VMReg(def)->name()); 2843 n->dump(); 2844 tty->print_cr("..."); 2845 prior_use->dump(); 2846 assert(edge_from_to(prior_use,n), "%s", msg); 2847 } 2848 _reg_node.map(def,nullptr); // Kill live USEs 2849 } 2850 } 2851 2852 void Scheduling::verify_good_schedule( Block *b, const char *msg ) { 2853 2854 // Zap to something reasonable for the verify code 2855 _reg_node.clear(); 2856 2857 // Walk over the block backwards. Check to make sure each DEF doesn't 2858 // kill a live value (other than the one it's supposed to). Add each 2859 // USE to the live set. 2860 for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) { 2861 Node *n = b->get_node(i); 2862 int n_op = n->Opcode(); 2863 if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) { 2864 // Fat-proj kills a slew of registers 2865 RegMaskIterator rmi(n->out_RegMask()); 2866 while (rmi.has_next()) { 2867 OptoReg::Name kill = rmi.next(); 2868 verify_do_def(n, kill, msg); 2869 } 2870 } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes 2871 // Get DEF'd registers the normal way 2872 verify_do_def( n, _regalloc->get_reg_first(n), msg ); 2873 verify_do_def( n, _regalloc->get_reg_second(n), msg ); 2874 } 2875 2876 // Now make all USEs live 2877 for( uint i=1; i<n->req(); i++ ) { 2878 Node *def = n->in(i); 2879 assert(def != 0, "input edge required"); 2880 OptoReg::Name reg_lo = _regalloc->get_reg_first(def); 2881 OptoReg::Name reg_hi = _regalloc->get_reg_second(def); 2882 if( OptoReg::is_valid(reg_lo) ) { 2883 assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), "%s", msg); 2884 _reg_node.map(reg_lo,n); 2885 } 2886 if( OptoReg::is_valid(reg_hi) ) { 2887 assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), "%s", msg); 2888 _reg_node.map(reg_hi,n); 2889 } 2890 } 2891 2892 } 2893 2894 // Zap to something reasonable for the Antidependence code 2895 _reg_node.clear(); 2896 } 2897 #endif 2898 2899 // Conditionally add precedence edges. Avoid putting edges on Projs. 2900 static void add_prec_edge_from_to( Node *from, Node *to ) { 2901 if( from->is_Proj() ) { // Put precedence edge on Proj's input 2902 assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" ); 2903 from = from->in(0); 2904 } 2905 if( from != to && // No cycles (for things like LD L0,[L0+4] ) 2906 !edge_from_to( from, to ) ) // Avoid duplicate edge 2907 from->add_prec(to); 2908 } 2909 2910 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) { 2911 if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow 2912 return; 2913 2914 if (OptoReg::is_reg(def_reg)) { 2915 VMReg vmreg = OptoReg::as_VMReg(def_reg); 2916 if (vmreg->is_reg() && !vmreg->is_concrete() && !vmreg->prev()->is_concrete()) { 2917 // This is one of the high slots of a vector register. 2918 // ScheduleAndBundle already checked there are no live wide 2919 // vectors in this method so it can be safely ignored. 2920 return; 2921 } 2922 } 2923 2924 Node *pinch = _reg_node[def_reg]; // Get pinch point 2925 if ((pinch == nullptr) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet? 2926 is_def ) { // Check for a true def (not a kill) 2927 _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point 2928 return; 2929 } 2930 2931 Node *kill = def; // Rename 'def' to more descriptive 'kill' 2932 debug_only( def = (Node*)((intptr_t)0xdeadbeef); ) 2933 2934 // After some number of kills there _may_ be a later def 2935 Node *later_def = nullptr; 2936 2937 Compile* C = Compile::current(); 2938 2939 // Finding a kill requires a real pinch-point. 2940 // Check for not already having a pinch-point. 2941 // Pinch points are Op_Node's. 2942 if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point? 2943 later_def = pinch; // Must be def/kill as optimistic pinch-point 2944 if ( _pinch_free_list.size() > 0) { 2945 pinch = _pinch_free_list.pop(); 2946 } else { 2947 pinch = new Node(1); // Pinch point to-be 2948 } 2949 if (pinch->_idx >= _regalloc->node_regs_max_index()) { 2950 _cfg->C->record_method_not_compilable("too many D-U pinch points"); 2951 return; 2952 } 2953 _cfg->map_node_to_block(pinch, b); // Pretend it's valid in this block (lazy init) 2954 _reg_node.map(def_reg,pinch); // Record pinch-point 2955 //regalloc()->set_bad(pinch->_idx); // Already initialized this way. 2956 if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill 2957 pinch->init_req(0, C->top()); // set not null for the next call 2958 add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch 2959 later_def = nullptr; // and no later def 2960 } 2961 pinch->set_req(0,later_def); // Hook later def so we can find it 2962 } else { // Else have valid pinch point 2963 if( pinch->in(0) ) // If there is a later-def 2964 later_def = pinch->in(0); // Get it 2965 } 2966 2967 // Add output-dependence edge from later def to kill 2968 if( later_def ) // If there is some original def 2969 add_prec_edge_from_to(later_def,kill); // Add edge from def to kill 2970 2971 // See if current kill is also a use, and so is forced to be the pinch-point. 2972 if( pinch->Opcode() == Op_Node ) { 2973 Node *uses = kill->is_Proj() ? kill->in(0) : kill; 2974 for( uint i=1; i<uses->req(); i++ ) { 2975 if( _regalloc->get_reg_first(uses->in(i)) == def_reg || 2976 _regalloc->get_reg_second(uses->in(i)) == def_reg ) { 2977 // Yes, found a use/kill pinch-point 2978 pinch->set_req(0,nullptr); // 2979 pinch->replace_by(kill); // Move anti-dep edges up 2980 pinch = kill; 2981 _reg_node.map(def_reg,pinch); 2982 return; 2983 } 2984 } 2985 } 2986 2987 // Add edge from kill to pinch-point 2988 add_prec_edge_from_to(kill,pinch); 2989 } 2990 2991 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) { 2992 if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow 2993 return; 2994 Node *pinch = _reg_node[use_reg]; // Get pinch point 2995 // Check for no later def_reg/kill in block 2996 if ((pinch != nullptr) && _cfg->get_block_for_node(pinch) == b && 2997 // Use has to be block-local as well 2998 _cfg->get_block_for_node(use) == b) { 2999 if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?) 3000 pinch->req() == 1 ) { // pinch not yet in block? 3001 pinch->del_req(0); // yank pointer to later-def, also set flag 3002 // Insert the pinch-point in the block just after the last use 3003 b->insert_node(pinch, b->find_node(use) + 1); 3004 _bb_end++; // Increase size scheduled region in block 3005 } 3006 3007 add_prec_edge_from_to(pinch,use); 3008 } 3009 } 3010 3011 // We insert antidependences between the reads and following write of 3012 // allocated registers to prevent illegal code motion. Hopefully, the 3013 // number of added references should be fairly small, especially as we 3014 // are only adding references within the current basic block. 3015 void Scheduling::ComputeRegisterAntidependencies(Block *b) { 3016 3017 #ifdef ASSERT 3018 verify_good_schedule(b,"before block local scheduling"); 3019 #endif 3020 3021 // A valid schedule, for each register independently, is an endless cycle 3022 // of: a def, then some uses (connected to the def by true dependencies), 3023 // then some kills (defs with no uses), finally the cycle repeats with a new 3024 // def. The uses are allowed to float relative to each other, as are the 3025 // kills. No use is allowed to slide past a kill (or def). This requires 3026 // antidependencies between all uses of a single def and all kills that 3027 // follow, up to the next def. More edges are redundant, because later defs 3028 // & kills are already serialized with true or antidependencies. To keep 3029 // the edge count down, we add a 'pinch point' node if there's more than 3030 // one use or more than one kill/def. 3031 3032 // We add dependencies in one bottom-up pass. 3033 3034 // For each instruction we handle it's DEFs/KILLs, then it's USEs. 3035 3036 // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this 3037 // register. If not, we record the DEF/KILL in _reg_node, the 3038 // register-to-def mapping. If there is a prior DEF/KILL, we insert a 3039 // "pinch point", a new Node that's in the graph but not in the block. 3040 // We put edges from the prior and current DEF/KILLs to the pinch point. 3041 // We put the pinch point in _reg_node. If there's already a pinch point 3042 // we merely add an edge from the current DEF/KILL to the pinch point. 3043 3044 // After doing the DEF/KILLs, we handle USEs. For each used register, we 3045 // put an edge from the pinch point to the USE. 3046 3047 // To be expedient, the _reg_node array is pre-allocated for the whole 3048 // compilation. _reg_node is lazily initialized; it either contains a null, 3049 // or a valid def/kill/pinch-point, or a leftover node from some prior 3050 // block. Leftover node from some prior block is treated like a null (no 3051 // prior def, so no anti-dependence needed). Valid def is distinguished by 3052 // it being in the current block. 3053 bool fat_proj_seen = false; 3054 uint last_safept = _bb_end-1; 3055 Node* end_node = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : nullptr; 3056 Node* last_safept_node = end_node; 3057 for( uint i = _bb_end-1; i >= _bb_start; i-- ) { 3058 Node *n = b->get_node(i); 3059 int is_def = n->outcnt(); // def if some uses prior to adding precedence edges 3060 if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) { 3061 // Fat-proj kills a slew of registers 3062 // This can add edges to 'n' and obscure whether or not it was a def, 3063 // hence the is_def flag. 3064 fat_proj_seen = true; 3065 RegMaskIterator rmi(n->out_RegMask()); 3066 while (rmi.has_next()) { 3067 OptoReg::Name kill = rmi.next(); 3068 anti_do_def(b, n, kill, is_def); 3069 } 3070 } else { 3071 // Get DEF'd registers the normal way 3072 anti_do_def( b, n, _regalloc->get_reg_first(n), is_def ); 3073 anti_do_def( b, n, _regalloc->get_reg_second(n), is_def ); 3074 } 3075 3076 // Kill projections on a branch should appear to occur on the 3077 // branch, not afterwards, so grab the masks from the projections 3078 // and process them. 3079 if (n->is_MachBranch() || (n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump)) { 3080 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 3081 Node* use = n->fast_out(i); 3082 if (use->is_Proj()) { 3083 RegMaskIterator rmi(use->out_RegMask()); 3084 while (rmi.has_next()) { 3085 OptoReg::Name kill = rmi.next(); 3086 anti_do_def(b, n, kill, false); 3087 } 3088 } 3089 } 3090 } 3091 3092 // Check each register used by this instruction for a following DEF/KILL 3093 // that must occur afterward and requires an anti-dependence edge. 3094 for( uint j=0; j<n->req(); j++ ) { 3095 Node *def = n->in(j); 3096 if( def ) { 3097 assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" ); 3098 anti_do_use( b, n, _regalloc->get_reg_first(def) ); 3099 anti_do_use( b, n, _regalloc->get_reg_second(def) ); 3100 } 3101 } 3102 // Do not allow defs of new derived values to float above GC 3103 // points unless the base is definitely available at the GC point. 3104 3105 Node *m = b->get_node(i); 3106 3107 // Add precedence edge from following safepoint to use of derived pointer 3108 if( last_safept_node != end_node && 3109 m != last_safept_node) { 3110 for (uint k = 1; k < m->req(); k++) { 3111 const Type *t = m->in(k)->bottom_type(); 3112 if( t->isa_oop_ptr() && 3113 t->is_ptr()->offset() != 0 ) { 3114 last_safept_node->add_prec( m ); 3115 break; 3116 } 3117 } 3118 } 3119 3120 if( n->jvms() ) { // Precedence edge from derived to safept 3121 // Check if last_safept_node was moved by pinch-point insertion in anti_do_use() 3122 if( b->get_node(last_safept) != last_safept_node ) { 3123 last_safept = b->find_node(last_safept_node); 3124 } 3125 for( uint j=last_safept; j > i; j-- ) { 3126 Node *mach = b->get_node(j); 3127 if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP ) 3128 mach->add_prec( n ); 3129 } 3130 last_safept = i; 3131 last_safept_node = m; 3132 } 3133 } 3134 3135 if (fat_proj_seen) { 3136 // Garbage collect pinch nodes that were not consumed. 3137 // They are usually created by a fat kill MachProj for a call. 3138 garbage_collect_pinch_nodes(); 3139 } 3140 } 3141 3142 // Garbage collect pinch nodes for reuse by other blocks. 3143 // 3144 // The block scheduler's insertion of anti-dependence 3145 // edges creates many pinch nodes when the block contains 3146 // 2 or more Calls. A pinch node is used to prevent a 3147 // combinatorial explosion of edges. If a set of kills for a 3148 // register is anti-dependent on a set of uses (or defs), rather 3149 // than adding an edge in the graph between each pair of kill 3150 // and use (or def), a pinch is inserted between them: 3151 // 3152 // use1 use2 use3 3153 // \ | / 3154 // \ | / 3155 // pinch 3156 // / | \ 3157 // / | \ 3158 // kill1 kill2 kill3 3159 // 3160 // One pinch node is created per register killed when 3161 // the second call is encountered during a backwards pass 3162 // over the block. Most of these pinch nodes are never 3163 // wired into the graph because the register is never 3164 // used or def'ed in the block. 3165 // 3166 void Scheduling::garbage_collect_pinch_nodes() { 3167 #ifndef PRODUCT 3168 if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:"); 3169 #endif 3170 int trace_cnt = 0; 3171 for (uint k = 0; k < _reg_node.Size(); k++) { 3172 Node* pinch = _reg_node[k]; 3173 if ((pinch != nullptr) && pinch->Opcode() == Op_Node && 3174 // no predecence input edges 3175 (pinch->req() == pinch->len() || pinch->in(pinch->req()) == nullptr) ) { 3176 cleanup_pinch(pinch); 3177 _pinch_free_list.push(pinch); 3178 _reg_node.map(k, nullptr); 3179 #ifndef PRODUCT 3180 if (_cfg->C->trace_opto_output()) { 3181 trace_cnt++; 3182 if (trace_cnt > 40) { 3183 tty->print("\n"); 3184 trace_cnt = 0; 3185 } 3186 tty->print(" %d", pinch->_idx); 3187 } 3188 #endif 3189 } 3190 } 3191 #ifndef PRODUCT 3192 if (_cfg->C->trace_opto_output()) tty->print("\n"); 3193 #endif 3194 } 3195 3196 // Clean up a pinch node for reuse. 3197 void Scheduling::cleanup_pinch( Node *pinch ) { 3198 assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking"); 3199 3200 for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) { 3201 Node* use = pinch->last_out(i); 3202 uint uses_found = 0; 3203 for (uint j = use->req(); j < use->len(); j++) { 3204 if (use->in(j) == pinch) { 3205 use->rm_prec(j); 3206 uses_found++; 3207 } 3208 } 3209 assert(uses_found > 0, "must be a precedence edge"); 3210 i -= uses_found; // we deleted 1 or more copies of this edge 3211 } 3212 // May have a later_def entry 3213 pinch->set_req(0, nullptr); 3214 } 3215 3216 #ifndef PRODUCT 3217 3218 void Scheduling::dump_available() const { 3219 tty->print("#Availist "); 3220 for (uint i = 0; i < _available.size(); i++) 3221 tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]); 3222 tty->cr(); 3223 } 3224 3225 // Print Scheduling Statistics 3226 void Scheduling::print_statistics() { 3227 // Print the size added by nops for bundling 3228 tty->print("Nops added %d bytes to total of %d bytes", 3229 _total_nop_size, _total_method_size); 3230 if (_total_method_size > 0) 3231 tty->print(", for %.2f%%", 3232 ((double)_total_nop_size) / ((double) _total_method_size) * 100.0); 3233 tty->print("\n"); 3234 3235 // Print the number of branch shadows filled 3236 if (Pipeline::_branch_has_delay_slot) { 3237 tty->print("Of %d branches, %d had unconditional delay slots filled", 3238 _total_branches, _total_unconditional_delays); 3239 if (_total_branches > 0) 3240 tty->print(", for %.2f%%", 3241 ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0); 3242 tty->print("\n"); 3243 } 3244 3245 uint total_instructions = 0, total_bundles = 0; 3246 3247 for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) { 3248 uint bundle_count = _total_instructions_per_bundle[i]; 3249 total_instructions += bundle_count * i; 3250 total_bundles += bundle_count; 3251 } 3252 3253 if (total_bundles > 0) 3254 tty->print("Average ILP (excluding nops) is %.2f\n", 3255 ((double)total_instructions) / ((double)total_bundles)); 3256 } 3257 #endif 3258 3259 //-----------------------init_scratch_buffer_blob------------------------------ 3260 // Construct a temporary BufferBlob and cache it for this compile. 3261 void PhaseOutput::init_scratch_buffer_blob(int const_size) { 3262 // If there is already a scratch buffer blob allocated and the 3263 // constant section is big enough, use it. Otherwise free the 3264 // current and allocate a new one. 3265 BufferBlob* blob = scratch_buffer_blob(); 3266 if ((blob != nullptr) && (const_size <= _scratch_const_size)) { 3267 // Use the current blob. 3268 } else { 3269 if (blob != nullptr) { 3270 BufferBlob::free(blob); 3271 } 3272 3273 ResourceMark rm; 3274 _scratch_const_size = const_size; 3275 int size = C2Compiler::initial_code_buffer_size(const_size); 3276 blob = BufferBlob::create("Compile::scratch_buffer", size); 3277 // Record the buffer blob for next time. 3278 set_scratch_buffer_blob(blob); 3279 // Have we run out of code space? 3280 if (scratch_buffer_blob() == nullptr) { 3281 // Let CompilerBroker disable further compilations. 3282 C->record_failure("Not enough space for scratch buffer in CodeCache"); 3283 return; 3284 } 3285 } 3286 3287 // Initialize the relocation buffers 3288 relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size; 3289 set_scratch_locs_memory(locs_buf); 3290 } 3291 3292 3293 //-----------------------scratch_emit_size------------------------------------- 3294 // Helper function that computes size by emitting code 3295 uint PhaseOutput::scratch_emit_size(const Node* n) { 3296 // Start scratch_emit_size section. 3297 set_in_scratch_emit_size(true); 3298 3299 // Emit into a trash buffer and count bytes emitted. 3300 // This is a pretty expensive way to compute a size, 3301 // but it works well enough if seldom used. 3302 // All common fixed-size instructions are given a size 3303 // method by the AD file. 3304 // Note that the scratch buffer blob and locs memory are 3305 // allocated at the beginning of the compile task, and 3306 // may be shared by several calls to scratch_emit_size. 3307 // The allocation of the scratch buffer blob is particularly 3308 // expensive, since it has to grab the code cache lock. 3309 BufferBlob* blob = this->scratch_buffer_blob(); 3310 assert(blob != nullptr, "Initialize BufferBlob at start"); 3311 assert(blob->size() > MAX_inst_size, "sanity"); 3312 relocInfo* locs_buf = scratch_locs_memory(); 3313 address blob_begin = blob->content_begin(); 3314 address blob_end = (address)locs_buf; 3315 assert(blob->contains(blob_end), "sanity"); 3316 CodeBuffer buf(blob_begin, blob_end - blob_begin); 3317 buf.initialize_consts_size(_scratch_const_size); 3318 buf.initialize_stubs_size(MAX_stubs_size); 3319 assert(locs_buf != nullptr, "sanity"); 3320 int lsize = MAX_locs_size / 3; 3321 buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize); 3322 buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize); 3323 buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize); 3324 // Mark as scratch buffer. 3325 buf.consts()->set_scratch_emit(); 3326 buf.insts()->set_scratch_emit(); 3327 buf.stubs()->set_scratch_emit(); 3328 3329 // Do the emission. 3330 3331 Label fakeL; // Fake label for branch instructions. 3332 Label* saveL = nullptr; 3333 uint save_bnum = 0; 3334 bool is_branch = n->is_MachBranch(); 3335 if (is_branch) { 3336 MacroAssembler masm(&buf); 3337 masm.bind(fakeL); 3338 n->as_MachBranch()->save_label(&saveL, &save_bnum); 3339 n->as_MachBranch()->label_set(&fakeL, 0); 3340 } 3341 n->emit(buf, C->regalloc()); 3342 3343 // Emitting into the scratch buffer should not fail 3344 assert (!C->failing(), "Must not have pending failure. Reason is: %s", C->failure_reason()); 3345 3346 if (is_branch) // Restore label. 3347 n->as_MachBranch()->label_set(saveL, save_bnum); 3348 3349 // End scratch_emit_size section. 3350 set_in_scratch_emit_size(false); 3351 3352 return buf.insts_size(); 3353 } 3354 3355 void PhaseOutput::install() { 3356 if (!C->should_install_code()) { 3357 return; 3358 } else if (C->stub_function() != nullptr) { 3359 install_stub(C->stub_name()); 3360 } else { 3361 install_code(C->method(), 3362 C->entry_bci(), 3363 CompileBroker::compiler2(), 3364 C->has_unsafe_access(), 3365 SharedRuntime::is_wide_vector(C->max_vector_size()), 3366 C->rtm_state()); 3367 } 3368 } 3369 3370 void PhaseOutput::install_code(ciMethod* target, 3371 int entry_bci, 3372 AbstractCompiler* compiler, 3373 bool has_unsafe_access, 3374 bool has_wide_vectors, 3375 RTMState rtm_state) { 3376 // Check if we want to skip execution of all compiled code. 3377 { 3378 #ifndef PRODUCT 3379 if (OptoNoExecute) { 3380 C->record_method_not_compilable("+OptoNoExecute"); // Flag as failed 3381 return; 3382 } 3383 #endif 3384 Compile::TracePhase tp("install_code", &timers[_t_registerMethod]); 3385 3386 if (C->is_osr_compilation()) { 3387 _code_offsets.set_value(CodeOffsets::Verified_Entry, 0); 3388 _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size); 3389 } else { 3390 _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size); 3391 _code_offsets.set_value(CodeOffsets::OSR_Entry, 0); 3392 } 3393 3394 C->env()->register_method(target, 3395 entry_bci, 3396 &_code_offsets, 3397 _orig_pc_slot_offset_in_bytes, 3398 code_buffer(), 3399 frame_size_in_words(), 3400 oop_map_set(), 3401 &_handler_table, 3402 inc_table(), 3403 compiler, 3404 has_unsafe_access, 3405 SharedRuntime::is_wide_vector(C->max_vector_size()), 3406 C->rtm_state(), 3407 C->native_invokers()); 3408 3409 if (C->log() != nullptr) { // Print code cache state into compiler log 3410 C->log()->code_cache_state(); 3411 } 3412 } 3413 } 3414 void PhaseOutput::install_stub(const char* stub_name) { 3415 // Entry point will be accessed using stub_entry_point(); 3416 if (code_buffer() == nullptr) { 3417 Matcher::soft_match_failure(); 3418 } else { 3419 if (PrintAssembly && (WizardMode || Verbose)) 3420 tty->print_cr("### Stub::%s", stub_name); 3421 3422 if (!C->failing()) { 3423 assert(C->fixed_slots() == 0, "no fixed slots used for runtime stubs"); 3424 3425 // Make the NMethod 3426 // For now we mark the frame as never safe for profile stackwalking 3427 RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name, 3428 code_buffer(), 3429 CodeOffsets::frame_never_safe, 3430 // _code_offsets.value(CodeOffsets::Frame_Complete), 3431 frame_size_in_words(), 3432 oop_map_set(), 3433 false); 3434 assert(rs != nullptr && rs->is_runtime_stub(), "sanity check"); 3435 3436 C->set_stub_entry_point(rs->entry_point()); 3437 } 3438 } 3439 } 3440 3441 // Support for bundling info 3442 Bundle* PhaseOutput::node_bundling(const Node *n) { 3443 assert(valid_bundle_info(n), "oob"); 3444 return &_node_bundling_base[n->_idx]; 3445 } 3446 3447 bool PhaseOutput::valid_bundle_info(const Node *n) { 3448 return (_node_bundling_limit > n->_idx); 3449 } 3450 3451 //------------------------------frame_size_in_words----------------------------- 3452 // frame_slots in units of words 3453 int PhaseOutput::frame_size_in_words() const { 3454 // shift is 0 in LP32 and 1 in LP64 3455 const int shift = (LogBytesPerWord - LogBytesPerInt); 3456 int words = _frame_slots >> shift; 3457 assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" ); 3458 return words; 3459 } 3460 3461 // To bang the stack of this compiled method we use the stack size 3462 // that the interpreter would need in case of a deoptimization. This 3463 // removes the need to bang the stack in the deoptimization blob which 3464 // in turn simplifies stack overflow handling. 3465 int PhaseOutput::bang_size_in_bytes() const { 3466 return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), C->interpreter_frame_size()); 3467 } 3468 3469 //------------------------------dump_asm--------------------------------------- 3470 // Dump formatted assembly 3471 #if defined(SUPPORT_OPTO_ASSEMBLY) 3472 void PhaseOutput::dump_asm_on(outputStream* st, int* pcs, uint pc_limit) { 3473 3474 int pc_digits = 3; // #chars required for pc 3475 int sb_chars = 3; // #chars for "start bundle" indicator 3476 int tab_size = 8; 3477 if (pcs != nullptr) { 3478 int max_pc = 0; 3479 for (uint i = 0; i < pc_limit; i++) { 3480 max_pc = (max_pc < pcs[i]) ? pcs[i] : max_pc; 3481 } 3482 pc_digits = ((max_pc < 4096) ? 3 : ((max_pc < 65536) ? 4 : ((max_pc < 65536*256) ? 6 : 8))); // #chars required for pc 3483 } 3484 int prefix_len = ((pc_digits + sb_chars + tab_size - 1)/tab_size)*tab_size; 3485 3486 bool cut_short = false; 3487 st->print_cr("#"); 3488 st->print("# "); C->tf()->dump_on(st); st->cr(); 3489 st->print_cr("#"); 3490 3491 // For all blocks 3492 int pc = 0x0; // Program counter 3493 char starts_bundle = ' '; 3494 C->regalloc()->dump_frame(); 3495 3496 Node *n = nullptr; 3497 for (uint i = 0; i < C->cfg()->number_of_blocks(); i++) { 3498 if (VMThread::should_terminate()) { 3499 cut_short = true; 3500 break; 3501 } 3502 Block* block = C->cfg()->get_block(i); 3503 if (block->is_connector() && !Verbose) { 3504 continue; 3505 } 3506 n = block->head(); 3507 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3508 pc = pcs[n->_idx]; 3509 st->print("%*.*x", pc_digits, pc_digits, pc); 3510 } 3511 st->fill_to(prefix_len); 3512 block->dump_head(C->cfg(), st); 3513 if (block->is_connector()) { 3514 st->fill_to(prefix_len); 3515 st->print_cr("# Empty connector block"); 3516 } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) { 3517 st->fill_to(prefix_len); 3518 st->print_cr("# Block is sole successor of call"); 3519 } 3520 3521 // For all instructions 3522 Node *delay = nullptr; 3523 for (uint j = 0; j < block->number_of_nodes(); j++) { 3524 if (VMThread::should_terminate()) { 3525 cut_short = true; 3526 break; 3527 } 3528 n = block->get_node(j); 3529 if (valid_bundle_info(n)) { 3530 Bundle* bundle = node_bundling(n); 3531 if (bundle->used_in_unconditional_delay()) { 3532 delay = n; 3533 continue; 3534 } 3535 if (bundle->starts_bundle()) { 3536 starts_bundle = '+'; 3537 } 3538 } 3539 3540 if (WizardMode) { 3541 n->dump(); 3542 } 3543 3544 if( !n->is_Region() && // Dont print in the Assembly 3545 !n->is_Phi() && // a few noisely useless nodes 3546 !n->is_Proj() && 3547 !n->is_MachTemp() && 3548 !n->is_SafePointScalarObject() && 3549 !n->is_Catch() && // Would be nice to print exception table targets 3550 !n->is_MergeMem() && // Not very interesting 3551 !n->is_top() && // Debug info table constants 3552 !(n->is_Con() && !n->is_Mach())// Debug info table constants 3553 ) { 3554 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3555 pc = pcs[n->_idx]; 3556 st->print("%*.*x", pc_digits, pc_digits, pc); 3557 } else { 3558 st->fill_to(pc_digits); 3559 } 3560 st->print(" %c ", starts_bundle); 3561 starts_bundle = ' '; 3562 st->fill_to(prefix_len); 3563 n->format(C->regalloc(), st); 3564 st->cr(); 3565 } 3566 3567 // If we have an instruction with a delay slot, and have seen a delay, 3568 // then back up and print it 3569 if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) { 3570 // Coverity finding - Explicit null dereferenced. 3571 guarantee(delay != nullptr, "no unconditional delay instruction"); 3572 if (WizardMode) delay->dump(); 3573 3574 if (node_bundling(delay)->starts_bundle()) 3575 starts_bundle = '+'; 3576 if ((pcs != nullptr) && (n->_idx < pc_limit)) { 3577 pc = pcs[n->_idx]; 3578 st->print("%*.*x", pc_digits, pc_digits, pc); 3579 } else { 3580 st->fill_to(pc_digits); 3581 } 3582 st->print(" %c ", starts_bundle); 3583 starts_bundle = ' '; 3584 st->fill_to(prefix_len); 3585 delay->format(C->regalloc(), st); 3586 st->cr(); 3587 delay = nullptr; 3588 } 3589 3590 // Dump the exception table as well 3591 if( n->is_Catch() && (Verbose || WizardMode) ) { 3592 // Print the exception table for this offset 3593 _handler_table.print_subtable_for(pc); 3594 } 3595 st->bol(); // Make sure we start on a new line 3596 } 3597 st->cr(); // one empty line between blocks 3598 assert(cut_short || delay == nullptr, "no unconditional delay branch"); 3599 } // End of per-block dump 3600 3601 if (cut_short) st->print_cr("*** disassembly is cut short ***"); 3602 } 3603 #endif 3604 3605 #ifndef PRODUCT 3606 void PhaseOutput::print_statistics() { 3607 Scheduling::print_statistics(); 3608 } 3609 #endif --- EOF ---