1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/opaquenode.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/rootnode.hpp" 39 #include "opto/runtime.hpp" 40 #include "opto/type.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 // Static array so we can figure out which bytecodes stop us from compiling 48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 49 // and eventually should be encapsulated in a proper class (gri 8/18/98). 50 51 #ifndef PRODUCT 52 int nodes_created = 0; 53 int methods_parsed = 0; 54 int methods_seen = 0; 55 int blocks_parsed = 0; 56 int blocks_seen = 0; 57 58 int explicit_null_checks_inserted = 0; 59 int explicit_null_checks_elided = 0; 60 int all_null_checks_found = 0; 61 int implicit_null_checks = 0; 62 63 bool Parse::BytecodeParseHistogram::_initialized = false; 64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 68 69 //------------------------------print_statistics------------------------------- 70 void Parse::print_statistics() { 71 tty->print_cr("--- Compiler Statistics ---"); 72 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 73 tty->print(" Nodes created: %d", nodes_created); 74 tty->cr(); 75 if (methods_seen != methods_parsed) { 76 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 77 } 78 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 79 80 if (explicit_null_checks_inserted) { 81 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", 82 explicit_null_checks_inserted, explicit_null_checks_elided, 83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 84 all_null_checks_found); 85 } 86 if (all_null_checks_found) { 87 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 88 (100*implicit_null_checks)/all_null_checks_found); 89 } 90 if (SharedRuntime::_implicit_null_throws) { 91 tty->print_cr("%d implicit null exceptions at runtime", 92 SharedRuntime::_implicit_null_throws); 93 } 94 95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 96 BytecodeParseHistogram::print(); 97 } 98 } 99 #endif 100 101 //------------------------------ON STACK REPLACEMENT--------------------------- 102 103 // Construct a node which can be used to get incoming state for 104 // on stack replacement. 105 Node *Parse::fetch_interpreter_state(int index, 106 BasicType bt, 107 Node *local_addrs, 108 Node *local_addrs_base) { 109 Node *mem = memory(Compile::AliasIdxRaw); 110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 111 Node *ctl = control(); 112 113 // Very similar to LoadNode::make, except we handle un-aligned longs and 114 // doubles on Sparc. Intel can handle them just fine directly. 115 Node *l = NULL; 116 switch (bt) { // Signature is flattened 117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 121 case T_LONG: 122 case T_DOUBLE: { 123 // Since arguments are in reverse order, the argument address 'adr' 124 // refers to the back half of the long/double. Recompute adr. 125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 126 if (Matcher::misaligned_doubles_ok) { 127 l = (bt == T_DOUBLE) 128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 130 } else { 131 l = (bt == T_DOUBLE) 132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 134 } 135 break; 136 } 137 default: ShouldNotReachHere(); 138 } 139 return _gvn.transform(l); 140 } 141 142 // Helper routine to prevent the interpreter from handing 143 // unexpected typestate to an OSR method. 144 // The Node l is a value newly dug out of the interpreter frame. 145 // The type is the type predicted by ciTypeFlow. Note that it is 146 // not a general type, but can only come from Type::get_typeflow_type. 147 // The safepoint is a map which will feed an uncommon trap. 148 Node* Parse::check_interpreter_type(Node* l, const Type* type, 149 SafePointNode* &bad_type_exit) { 150 151 const TypeOopPtr* tp = type->isa_oopptr(); 152 153 // TypeFlow may assert null-ness if a type appears unloaded. 154 if (type == TypePtr::NULL_PTR || 155 (tp != NULL && !tp->klass()->is_loaded())) { 156 // Value must be null, not a real oop. 157 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 160 set_control(_gvn.transform( new IfTrueNode(iff) )); 161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 162 bad_type_exit->control()->add_req(bad_type); 163 l = null(); 164 } 165 166 // Typeflow can also cut off paths from the CFG, based on 167 // types which appear unloaded, or call sites which appear unlinked. 168 // When paths are cut off, values at later merge points can rise 169 // toward more specific classes. Make sure these specific classes 170 // are still in effect. 171 if (tp != NULL && tp->klass() != C->env()->Object_klass()) { 172 // TypeFlow asserted a specific object type. Value must have that type. 173 Node* bad_type_ctrl = NULL; 174 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); 175 bad_type_exit->control()->add_req(bad_type_ctrl); 176 } 177 178 BasicType bt_l = _gvn.type(l)->basic_type(); 179 BasicType bt_t = type->basic_type(); 180 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 181 return l; 182 } 183 184 // Helper routine which sets up elements of the initial parser map when 185 // performing a parse for on stack replacement. Add values into map. 186 // The only parameter contains the address of a interpreter arguments. 187 void Parse::load_interpreter_state(Node* osr_buf) { 188 int index; 189 int max_locals = jvms()->loc_size(); 190 int max_stack = jvms()->stk_size(); 191 192 193 // Mismatch between method and jvms can occur since map briefly held 194 // an OSR entry state (which takes up one RawPtr word). 195 assert(max_locals == method()->max_locals(), "sanity"); 196 assert(max_stack >= method()->max_stack(), "sanity"); 197 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 198 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 199 200 // Find the start block. 201 Block* osr_block = start_block(); 202 assert(osr_block->start() == osr_bci(), "sanity"); 203 204 // Set initial BCI. 205 set_parse_bci(osr_block->start()); 206 207 // Set initial stack depth. 208 set_sp(osr_block->start_sp()); 209 210 // Check bailouts. We currently do not perform on stack replacement 211 // of loops in catch blocks or loops which branch with a non-empty stack. 212 if (sp() != 0) { 213 C->record_method_not_compilable("OSR starts with non-empty stack"); 214 return; 215 } 216 // Do not OSR inside finally clauses: 217 if (osr_block->has_trap_at(osr_block->start())) { 218 C->record_method_not_compilable("OSR starts with an immediate trap"); 219 return; 220 } 221 222 // Commute monitors from interpreter frame to compiler frame. 223 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 224 int mcnt = osr_block->flow()->monitor_count(); 225 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 226 for (index = 0; index < mcnt; index++) { 227 // Make a BoxLockNode for the monitor. 228 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 229 230 231 // Displaced headers and locked objects are interleaved in the 232 // temp OSR buffer. We only copy the locked objects out here. 233 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 234 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 235 // Try and copy the displaced header to the BoxNode 236 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 237 238 239 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 240 241 // Build a bogus FastLockNode (no code will be generated) and push the 242 // monitor into our debug info. 243 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 244 map()->push_monitor(flock); 245 246 // If the lock is our method synchronization lock, tuck it away in 247 // _sync_lock for return and rethrow exit paths. 248 if (index == 0 && method()->is_synchronized()) { 249 _synch_lock = flock; 250 } 251 } 252 253 // Use the raw liveness computation to make sure that unexpected 254 // values don't propagate into the OSR frame. 255 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 256 if (!live_locals.is_valid()) { 257 // Degenerate or breakpointed method. 258 C->record_method_not_compilable("OSR in empty or breakpointed method"); 259 return; 260 } 261 262 // Extract the needed locals from the interpreter frame. 263 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 264 265 // find all the locals that the interpreter thinks contain live oops 266 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 267 for (index = 0; index < max_locals; index++) { 268 269 if (!live_locals.at(index)) { 270 continue; 271 } 272 273 const Type *type = osr_block->local_type_at(index); 274 275 if (type->isa_oopptr() != NULL) { 276 277 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 278 // else we might load a stale oop if the MethodLiveness disagrees with the 279 // result of the interpreter. If the interpreter says it is dead we agree 280 // by making the value go to top. 281 // 282 283 if (!live_oops.at(index)) { 284 if (C->log() != NULL) { 285 C->log()->elem("OSR_mismatch local_index='%d'",index); 286 } 287 set_local(index, null()); 288 // and ignore it for the loads 289 continue; 290 } 291 } 292 293 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 294 if (type == Type::TOP || type == Type::HALF) { 295 continue; 296 } 297 // If the type falls to bottom, then this must be a local that 298 // is mixing ints and oops or some such. Forcing it to top 299 // makes it go dead. 300 if (type == Type::BOTTOM) { 301 continue; 302 } 303 // Construct code to access the appropriate local. 304 BasicType bt = type->basic_type(); 305 if (type == TypePtr::NULL_PTR) { 306 // Ptr types are mixed together with T_ADDRESS but NULL is 307 // really for T_OBJECT types so correct it. 308 bt = T_OBJECT; 309 } 310 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 311 set_local(index, value); 312 } 313 314 // Extract the needed stack entries from the interpreter frame. 315 for (index = 0; index < sp(); index++) { 316 const Type *type = osr_block->stack_type_at(index); 317 if (type != Type::TOP) { 318 // Currently the compiler bails out when attempting to on stack replace 319 // at a bci with a non-empty stack. We should not reach here. 320 ShouldNotReachHere(); 321 } 322 } 323 324 // End the OSR migration 325 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 326 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 327 "OSR_migration_end", TypeRawPtr::BOTTOM, 328 osr_buf); 329 330 // Now that the interpreter state is loaded, make sure it will match 331 // at execution time what the compiler is expecting now: 332 SafePointNode* bad_type_exit = clone_map(); 333 bad_type_exit->set_control(new RegionNode(1)); 334 335 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 336 for (index = 0; index < max_locals; index++) { 337 if (stopped()) break; 338 Node* l = local(index); 339 if (l->is_top()) continue; // nothing here 340 const Type *type = osr_block->local_type_at(index); 341 if (type->isa_oopptr() != NULL) { 342 if (!live_oops.at(index)) { 343 // skip type check for dead oops 344 continue; 345 } 346 } 347 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 348 // In our current system it's illegal for jsr addresses to be 349 // live into an OSR entry point because the compiler performs 350 // inlining of jsrs. ciTypeFlow has a bailout that detect this 351 // case and aborts the compile if addresses are live into an OSR 352 // entry point. Because of that we can assume that any address 353 // locals at the OSR entry point are dead. Method liveness 354 // isn't precise enought to figure out that they are dead in all 355 // cases so simply skip checking address locals all 356 // together. Any type check is guaranteed to fail since the 357 // interpreter type is the result of a load which might have any 358 // value and the expected type is a constant. 359 continue; 360 } 361 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 362 } 363 364 for (index = 0; index < sp(); index++) { 365 if (stopped()) break; 366 Node* l = stack(index); 367 if (l->is_top()) continue; // nothing here 368 const Type *type = osr_block->stack_type_at(index); 369 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 370 } 371 372 if (bad_type_exit->control()->req() > 1) { 373 // Build an uncommon trap here, if any inputs can be unexpected. 374 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 375 record_for_igvn(bad_type_exit->control()); 376 SafePointNode* types_are_good = map(); 377 set_map(bad_type_exit); 378 // The unexpected type happens because a new edge is active 379 // in the CFG, which typeflow had previously ignored. 380 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 381 // This x will be typed as Integer if notReached is not yet linked. 382 // It could also happen due to a problem in ciTypeFlow analysis. 383 uncommon_trap(Deoptimization::Reason_constraint, 384 Deoptimization::Action_reinterpret); 385 set_map(types_are_good); 386 } 387 } 388 389 //------------------------------Parse------------------------------------------ 390 // Main parser constructor. 391 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 392 : _exits(caller) 393 { 394 // Init some variables 395 _caller = caller; 396 _method = parse_method; 397 _expected_uses = expected_uses; 398 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 399 _wrote_final = false; 400 _wrote_volatile = false; 401 _wrote_stable = false; 402 _wrote_fields = false; 403 _alloc_with_final = NULL; 404 _entry_bci = InvocationEntryBci; 405 _tf = NULL; 406 _block = NULL; 407 _first_return = true; 408 _replaced_nodes_for_exceptions = false; 409 _new_idx = C->unique(); 410 debug_only(_block_count = -1); 411 debug_only(_blocks = (Block*)-1); 412 #ifndef PRODUCT 413 if (PrintCompilation || PrintOpto) { 414 // Make sure I have an inline tree, so I can print messages about it. 415 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 416 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 417 } 418 _max_switch_depth = 0; 419 _est_switch_depth = 0; 420 #endif 421 422 if (parse_method->has_reserved_stack_access()) { 423 C->set_has_reserved_stack_access(true); 424 } 425 426 _tf = TypeFunc::make(method()); 427 _iter.reset_to_method(method()); 428 _flow = method()->get_flow_analysis(); 429 if (_flow->failing()) { 430 C->record_method_not_compilable(_flow->failure_reason()); 431 } 432 433 #ifndef PRODUCT 434 if (_flow->has_irreducible_entry()) { 435 C->set_parsed_irreducible_loop(true); 436 } 437 #endif 438 C->set_has_loops(C->has_loops() || method()->has_loops()); 439 440 if (_expected_uses <= 0) { 441 _prof_factor = 1; 442 } else { 443 float prof_total = parse_method->interpreter_invocation_count(); 444 if (prof_total <= _expected_uses) { 445 _prof_factor = 1; 446 } else { 447 _prof_factor = _expected_uses / prof_total; 448 } 449 } 450 451 CompileLog* log = C->log(); 452 if (log != NULL) { 453 log->begin_head("parse method='%d' uses='%f'", 454 log->identify(parse_method), expected_uses); 455 if (depth() == 1 && C->is_osr_compilation()) { 456 log->print(" osr_bci='%d'", C->entry_bci()); 457 } 458 log->stamp(); 459 log->end_head(); 460 } 461 462 // Accumulate deoptimization counts. 463 // (The range_check and store_check counts are checked elsewhere.) 464 ciMethodData* md = method()->method_data(); 465 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 466 uint md_count = md->trap_count(reason); 467 if (md_count != 0) { 468 if (md_count == md->trap_count_limit()) 469 md_count += md->overflow_trap_count(); 470 uint total_count = C->trap_count(reason); 471 uint old_count = total_count; 472 total_count += md_count; 473 // Saturate the add if it overflows. 474 if (total_count < old_count || total_count < md_count) 475 total_count = (uint)-1; 476 C->set_trap_count(reason, total_count); 477 if (log != NULL) 478 log->elem("observe trap='%s' count='%d' total='%d'", 479 Deoptimization::trap_reason_name(reason), 480 md_count, total_count); 481 } 482 } 483 // Accumulate total sum of decompilations, also. 484 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 485 486 if (log != NULL && method()->has_exception_handlers()) { 487 log->elem("observe that='has_exception_handlers'"); 488 } 489 490 assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier"); 491 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 492 493 // Always register dependence if JVMTI is enabled, because 494 // either breakpoint setting or hotswapping of methods may 495 // cause deoptimization. 496 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 497 C->dependencies()->assert_evol_method(method()); 498 } 499 500 NOT_PRODUCT(methods_seen++); 501 502 // Do some special top-level things. 503 if (depth() == 1 && C->is_osr_compilation()) { 504 _entry_bci = C->entry_bci(); 505 _flow = method()->get_osr_flow_analysis(osr_bci()); 506 if (_flow->failing()) { 507 C->record_method_not_compilable(_flow->failure_reason()); 508 #ifndef PRODUCT 509 if (PrintOpto && (Verbose || WizardMode)) { 510 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 511 if (Verbose) { 512 method()->print(); 513 method()->print_codes(); 514 _flow->print(); 515 } 516 } 517 #endif 518 } 519 _tf = C->tf(); // the OSR entry type is different 520 } 521 522 #ifdef ASSERT 523 if (depth() == 1) { 524 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 525 } else { 526 assert(!this->is_osr_parse(), "no recursive OSR"); 527 } 528 #endif 529 530 #ifndef PRODUCT 531 methods_parsed++; 532 // add method size here to guarantee that inlined methods are added too 533 if (CITime) 534 _total_bytes_compiled += method()->code_size(); 535 536 show_parse_info(); 537 #endif 538 539 if (failing()) { 540 if (log) log->done("parse"); 541 return; 542 } 543 544 gvn().set_type(root(), root()->bottom_type()); 545 gvn().transform(top()); 546 547 // Import the results of the ciTypeFlow. 548 init_blocks(); 549 550 // Merge point for all normal exits 551 build_exits(); 552 553 // Setup the initial JVM state map. 554 SafePointNode* entry_map = create_entry_map(); 555 556 // Check for bailouts during map initialization 557 if (failing() || entry_map == NULL) { 558 if (log) log->done("parse"); 559 return; 560 } 561 562 Node_Notes* caller_nn = C->default_node_notes(); 563 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 564 if (DebugInlinedCalls || depth() == 1) { 565 C->set_default_node_notes(make_node_notes(caller_nn)); 566 } 567 568 if (is_osr_parse()) { 569 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 570 entry_map->set_req(TypeFunc::Parms+0, top()); 571 set_map(entry_map); 572 load_interpreter_state(osr_buf); 573 } else { 574 set_map(entry_map); 575 do_method_entry(); 576 if (depth() == 1 && C->age_code()) { 577 decrement_age(); 578 } 579 } 580 581 if (depth() == 1 && !failing()) { 582 if (C->clinit_barrier_on_entry()) { 583 // Add check to deoptimize the nmethod once the holder class is fully initialized 584 clinit_deopt(); 585 } 586 587 // Add check to deoptimize the nmethod if RTM state was changed 588 rtm_deopt(); 589 } 590 591 // Check for bailouts during method entry or RTM state check setup. 592 if (failing()) { 593 if (log) log->done("parse"); 594 C->set_default_node_notes(caller_nn); 595 return; 596 } 597 598 entry_map = map(); // capture any changes performed by method setup code 599 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 600 601 // We begin parsing as if we have just encountered a jump to the 602 // method entry. 603 Block* entry_block = start_block(); 604 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 605 set_map_clone(entry_map); 606 merge_common(entry_block, entry_block->next_path_num()); 607 608 #ifndef PRODUCT 609 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 610 set_parse_histogram( parse_histogram_obj ); 611 #endif 612 613 // Parse all the basic blocks. 614 do_all_blocks(); 615 616 C->set_default_node_notes(caller_nn); 617 618 // Check for bailouts during conversion to graph 619 if (failing()) { 620 if (log) log->done("parse"); 621 return; 622 } 623 624 // Fix up all exiting control flow. 625 set_map(entry_map); 626 do_exits(); 627 628 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 629 C->unique(), C->live_nodes(), C->node_arena()->used()); 630 } 631 632 //---------------------------do_all_blocks------------------------------------- 633 void Parse::do_all_blocks() { 634 bool has_irreducible = flow()->has_irreducible_entry(); 635 636 // Walk over all blocks in Reverse Post-Order. 637 while (true) { 638 bool progress = false; 639 for (int rpo = 0; rpo < block_count(); rpo++) { 640 Block* block = rpo_at(rpo); 641 642 if (block->is_parsed()) continue; 643 644 if (!block->is_merged()) { 645 // Dead block, no state reaches this block 646 continue; 647 } 648 649 // Prepare to parse this block. 650 load_state_from(block); 651 652 if (stopped()) { 653 // Block is dead. 654 continue; 655 } 656 657 NOT_PRODUCT(blocks_parsed++); 658 659 progress = true; 660 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 661 // Not all preds have been parsed. We must build phis everywhere. 662 // (Note that dead locals do not get phis built, ever.) 663 ensure_phis_everywhere(); 664 665 if (block->is_SEL_head()) { 666 // Add predicate to single entry (not irreducible) loop head. 667 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 668 // Predicates may have been added after a dominating if 669 if (!block->has_predicates()) { 670 // Need correct bci for predicate. 671 // It is fine to set it here since do_one_block() will set it anyway. 672 set_parse_bci(block->start()); 673 add_empty_predicates(); 674 } 675 // Add new region for back branches. 676 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 677 RegionNode *r = new RegionNode(edges+1); 678 _gvn.set_type(r, Type::CONTROL); 679 record_for_igvn(r); 680 r->init_req(edges, control()); 681 set_control(r); 682 // Add new phis. 683 ensure_phis_everywhere(); 684 } 685 686 // Leave behind an undisturbed copy of the map, for future merges. 687 set_map(clone_map()); 688 } 689 690 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 691 // In the absence of irreducible loops, the Region and Phis 692 // associated with a merge that doesn't involve a backedge can 693 // be simplified now since the RPO parsing order guarantees 694 // that any path which was supposed to reach here has already 695 // been parsed or must be dead. 696 Node* c = control(); 697 Node* result = _gvn.transform_no_reclaim(control()); 698 if (c != result && TraceOptoParse) { 699 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 700 } 701 if (result != top()) { 702 record_for_igvn(result); 703 } 704 } 705 706 // Parse the block. 707 do_one_block(); 708 709 // Check for bailouts. 710 if (failing()) return; 711 } 712 713 // with irreducible loops multiple passes might be necessary to parse everything 714 if (!has_irreducible || !progress) { 715 break; 716 } 717 } 718 719 #ifndef PRODUCT 720 blocks_seen += block_count(); 721 722 // Make sure there are no half-processed blocks remaining. 723 // Every remaining unprocessed block is dead and may be ignored now. 724 for (int rpo = 0; rpo < block_count(); rpo++) { 725 Block* block = rpo_at(rpo); 726 if (!block->is_parsed()) { 727 if (TraceOptoParse) { 728 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 729 } 730 assert(!block->is_merged(), "no half-processed blocks"); 731 } 732 } 733 #endif 734 } 735 736 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 737 switch (bt) { 738 case T_BYTE: 739 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 740 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 741 break; 742 case T_SHORT: 743 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 744 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 745 break; 746 case T_CHAR: 747 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 748 break; 749 case T_BOOLEAN: 750 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 751 break; 752 default: 753 break; 754 } 755 return v; 756 } 757 758 //-------------------------------build_exits---------------------------------- 759 // Build normal and exceptional exit merge points. 760 void Parse::build_exits() { 761 // make a clone of caller to prevent sharing of side-effects 762 _exits.set_map(_exits.clone_map()); 763 _exits.clean_stack(_exits.sp()); 764 _exits.sync_jvms(); 765 766 RegionNode* region = new RegionNode(1); 767 record_for_igvn(region); 768 gvn().set_type_bottom(region); 769 _exits.set_control(region); 770 771 // Note: iophi and memphi are not transformed until do_exits. 772 Node* iophi = new PhiNode(region, Type::ABIO); 773 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 774 gvn().set_type_bottom(iophi); 775 gvn().set_type_bottom(memphi); 776 _exits.set_i_o(iophi); 777 _exits.set_all_memory(memphi); 778 779 // Add a return value to the exit state. (Do not push it yet.) 780 if (tf()->range()->cnt() > TypeFunc::Parms) { 781 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 782 if (ret_type->isa_int()) { 783 BasicType ret_bt = method()->return_type()->basic_type(); 784 if (ret_bt == T_BOOLEAN || 785 ret_bt == T_CHAR || 786 ret_bt == T_BYTE || 787 ret_bt == T_SHORT) { 788 ret_type = TypeInt::INT; 789 } 790 } 791 792 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 793 // becomes loaded during the subsequent parsing, the loaded and unloaded 794 // types will not join when we transform and push in do_exits(). 795 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 796 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { 797 ret_type = TypeOopPtr::BOTTOM; 798 } 799 int ret_size = type2size[ret_type->basic_type()]; 800 Node* ret_phi = new PhiNode(region, ret_type); 801 gvn().set_type_bottom(ret_phi); 802 _exits.ensure_stack(ret_size); 803 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 804 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 805 _exits.set_argument(0, ret_phi); // here is where the parser finds it 806 // Note: ret_phi is not yet pushed, until do_exits. 807 } 808 } 809 810 811 //----------------------------build_start_state------------------------------- 812 // Construct a state which contains only the incoming arguments from an 813 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 814 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 815 int arg_size = tf->domain()->cnt(); 816 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 817 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 818 SafePointNode* map = new SafePointNode(max_size, jvms); 819 record_for_igvn(map); 820 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 821 Node_Notes* old_nn = default_node_notes(); 822 if (old_nn != NULL && has_method()) { 823 Node_Notes* entry_nn = old_nn->clone(this); 824 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 825 entry_jvms->set_offsets(0); 826 entry_jvms->set_bci(entry_bci()); 827 entry_nn->set_jvms(entry_jvms); 828 set_default_node_notes(entry_nn); 829 } 830 uint i; 831 for (i = 0; i < (uint)arg_size; i++) { 832 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 833 map->init_req(i, parm); 834 // Record all these guys for later GVN. 835 record_for_igvn(parm); 836 } 837 for (; i < map->req(); i++) { 838 map->init_req(i, top()); 839 } 840 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 841 set_default_node_notes(old_nn); 842 jvms->set_map(map); 843 return jvms; 844 } 845 846 //-----------------------------make_node_notes--------------------------------- 847 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 848 if (caller_nn == NULL) return NULL; 849 Node_Notes* nn = caller_nn->clone(C); 850 JVMState* caller_jvms = nn->jvms(); 851 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 852 jvms->set_offsets(0); 853 jvms->set_bci(_entry_bci); 854 nn->set_jvms(jvms); 855 return nn; 856 } 857 858 859 //--------------------------return_values-------------------------------------- 860 void Compile::return_values(JVMState* jvms) { 861 GraphKit kit(jvms); 862 Node* ret = new ReturnNode(TypeFunc::Parms, 863 kit.control(), 864 kit.i_o(), 865 kit.reset_memory(), 866 kit.frameptr(), 867 kit.returnadr()); 868 // Add zero or 1 return values 869 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 870 if (ret_size > 0) { 871 kit.inc_sp(-ret_size); // pop the return value(s) 872 kit.sync_jvms(); 873 ret->add_req(kit.argument(0)); 874 // Note: The second dummy edge is not needed by a ReturnNode. 875 } 876 // bind it to root 877 root()->add_req(ret); 878 record_for_igvn(ret); 879 initial_gvn()->transform_no_reclaim(ret); 880 } 881 882 //------------------------rethrow_exceptions----------------------------------- 883 // Bind all exception states in the list into a single RethrowNode. 884 void Compile::rethrow_exceptions(JVMState* jvms) { 885 GraphKit kit(jvms); 886 if (!kit.has_exceptions()) return; // nothing to generate 887 // Load my combined exception state into the kit, with all phis transformed: 888 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 889 Node* ex_oop = kit.use_exception_state(ex_map); 890 RethrowNode* exit = new RethrowNode(kit.control(), 891 kit.i_o(), kit.reset_memory(), 892 kit.frameptr(), kit.returnadr(), 893 // like a return but with exception input 894 ex_oop); 895 // bind to root 896 root()->add_req(exit); 897 record_for_igvn(exit); 898 initial_gvn()->transform_no_reclaim(exit); 899 } 900 901 //---------------------------do_exceptions------------------------------------- 902 // Process exceptions arising from the current bytecode. 903 // Send caught exceptions to the proper handler within this method. 904 // Unhandled exceptions feed into _exit. 905 void Parse::do_exceptions() { 906 if (!has_exceptions()) return; 907 908 if (failing()) { 909 // Pop them all off and throw them away. 910 while (pop_exception_state() != NULL) ; 911 return; 912 } 913 914 PreserveJVMState pjvms(this, false); 915 916 SafePointNode* ex_map; 917 while ((ex_map = pop_exception_state()) != NULL) { 918 if (!method()->has_exception_handlers()) { 919 // Common case: Transfer control outward. 920 // Doing it this early allows the exceptions to common up 921 // even between adjacent method calls. 922 throw_to_exit(ex_map); 923 } else { 924 // Have to look at the exception first. 925 assert(stopped(), "catch_inline_exceptions trashes the map"); 926 catch_inline_exceptions(ex_map); 927 stop_and_kill_map(); // we used up this exception state; kill it 928 } 929 } 930 931 // We now return to our regularly scheduled program: 932 } 933 934 //---------------------------throw_to_exit------------------------------------- 935 // Merge the given map into an exception exit from this method. 936 // The exception exit will handle any unlocking of receiver. 937 // The ex_oop must be saved within the ex_map, unlike merge_exception. 938 void Parse::throw_to_exit(SafePointNode* ex_map) { 939 // Pop the JVMS to (a copy of) the caller. 940 GraphKit caller; 941 caller.set_map_clone(_caller->map()); 942 caller.set_bci(_caller->bci()); 943 caller.set_sp(_caller->sp()); 944 // Copy out the standard machine state: 945 for (uint i = 0; i < TypeFunc::Parms; i++) { 946 caller.map()->set_req(i, ex_map->in(i)); 947 } 948 if (ex_map->has_replaced_nodes()) { 949 _replaced_nodes_for_exceptions = true; 950 } 951 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 952 // ...and the exception: 953 Node* ex_oop = saved_ex_oop(ex_map); 954 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 955 // Finally, collect the new exception state in my exits: 956 _exits.add_exception_state(caller_ex_map); 957 } 958 959 //------------------------------do_exits--------------------------------------- 960 void Parse::do_exits() { 961 set_parse_bci(InvocationEntryBci); 962 963 // Now peephole on the return bits 964 Node* region = _exits.control(); 965 _exits.set_control(gvn().transform(region)); 966 967 Node* iophi = _exits.i_o(); 968 _exits.set_i_o(gvn().transform(iophi)); 969 970 // Figure out if we need to emit the trailing barrier. The barrier is only 971 // needed in the constructors, and only in three cases: 972 // 973 // 1. The constructor wrote a final. The effects of all initializations 974 // must be committed to memory before any code after the constructor 975 // publishes the reference to the newly constructed object. Rather 976 // than wait for the publication, we simply block the writes here. 977 // Rather than put a barrier on only those writes which are required 978 // to complete, we force all writes to complete. 979 // 980 // 2. Experimental VM option is used to force the barrier if any field 981 // was written out in the constructor. 982 // 983 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 984 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 985 // MemBarVolatile is used before volatile load instead of after volatile 986 // store, so there's no barrier after the store. 987 // We want to guarantee the same behavior as on platforms with total store 988 // order, although this is not required by the Java memory model. 989 // In this case, we want to enforce visibility of volatile field 990 // initializations which are performed in constructors. 991 // So as with finals, we add a barrier here. 992 // 993 // "All bets are off" unless the first publication occurs after a 994 // normal return from the constructor. We do not attempt to detect 995 // such unusual early publications. But no barrier is needed on 996 // exceptional returns, since they cannot publish normally. 997 // 998 if (method()->is_initializer() && 999 (wrote_final() || 1000 (AlwaysSafeConstructors && wrote_fields()) || 1001 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1002 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 1003 1004 // If Memory barrier is created for final fields write 1005 // and allocation node does not escape the initialize method, 1006 // then barrier introduced by allocation node can be removed. 1007 if (DoEscapeAnalysis && alloc_with_final()) { 1008 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn); 1009 alloc->compute_MemBar_redundancy(method()); 1010 } 1011 if (PrintOpto && (Verbose || WizardMode)) { 1012 method()->print_name(); 1013 tty->print_cr(" writes finals and needs a memory barrier"); 1014 } 1015 } 1016 1017 // Any method can write a @Stable field; insert memory barriers 1018 // after those also. Can't bind predecessor allocation node (if any) 1019 // with barrier because allocation doesn't always dominate 1020 // MemBarRelease. 1021 if (wrote_stable()) { 1022 _exits.insert_mem_bar(Op_MemBarRelease); 1023 if (PrintOpto && (Verbose || WizardMode)) { 1024 method()->print_name(); 1025 tty->print_cr(" writes @Stable and needs a memory barrier"); 1026 } 1027 } 1028 1029 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1030 // transform each slice of the original memphi: 1031 mms.set_memory(_gvn.transform(mms.memory())); 1032 } 1033 // Clean up input MergeMems created by transforming the slices 1034 _gvn.transform(_exits.merged_memory()); 1035 1036 if (tf()->range()->cnt() > TypeFunc::Parms) { 1037 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1038 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1039 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1040 // If the type we set for the ret_phi in build_exits() is too optimistic and 1041 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1042 // loading. It could also be due to an error, so mark this method as not compilable because 1043 // otherwise this could lead to an infinite compile loop. 1044 // In any case, this code path is rarely (and never in my testing) reached. 1045 C->record_method_not_compilable("Can't determine return type."); 1046 return; 1047 } 1048 if (ret_type->isa_int()) { 1049 BasicType ret_bt = method()->return_type()->basic_type(); 1050 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1051 } 1052 _exits.push_node(ret_type->basic_type(), ret_phi); 1053 } 1054 1055 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1056 1057 // Unlock along the exceptional paths. 1058 // This is done late so that we can common up equivalent exceptions 1059 // (e.g., null checks) arising from multiple points within this method. 1060 // See GraphKit::add_exception_state, which performs the commoning. 1061 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1062 1063 // record exit from a method if compiled while Dtrace is turned on. 1064 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1065 // First move the exception list out of _exits: 1066 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1067 SafePointNode* normal_map = kit.map(); // keep this guy safe 1068 // Now re-collect the exceptions into _exits: 1069 SafePointNode* ex_map; 1070 while ((ex_map = kit.pop_exception_state()) != NULL) { 1071 Node* ex_oop = kit.use_exception_state(ex_map); 1072 // Force the exiting JVM state to have this method at InvocationEntryBci. 1073 // The exiting JVM state is otherwise a copy of the calling JVMS. 1074 JVMState* caller = kit.jvms(); 1075 JVMState* ex_jvms = caller->clone_shallow(C); 1076 ex_jvms->bind_map(kit.clone_map()); 1077 ex_jvms->set_bci( InvocationEntryBci); 1078 kit.set_jvms(ex_jvms); 1079 if (do_synch) { 1080 // Add on the synchronized-method box/object combo 1081 kit.map()->push_monitor(_synch_lock); 1082 // Unlock! 1083 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1084 } 1085 if (C->env()->dtrace_method_probes()) { 1086 kit.make_dtrace_method_exit(method()); 1087 } 1088 if (_replaced_nodes_for_exceptions) { 1089 kit.map()->apply_replaced_nodes(_new_idx); 1090 } 1091 // Done with exception-path processing. 1092 ex_map = kit.make_exception_state(ex_oop); 1093 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1094 // Pop the last vestige of this method: 1095 caller->clone_shallow(C)->bind_map(ex_map); 1096 _exits.push_exception_state(ex_map); 1097 } 1098 assert(_exits.map() == normal_map, "keep the same return state"); 1099 } 1100 1101 { 1102 // Capture very early exceptions (receiver null checks) from caller JVMS 1103 GraphKit caller(_caller); 1104 SafePointNode* ex_map; 1105 while ((ex_map = caller.pop_exception_state()) != NULL) { 1106 _exits.add_exception_state(ex_map); 1107 } 1108 } 1109 _exits.map()->apply_replaced_nodes(_new_idx); 1110 } 1111 1112 //-----------------------------create_entry_map------------------------------- 1113 // Initialize our parser map to contain the types at method entry. 1114 // For OSR, the map contains a single RawPtr parameter. 1115 // Initial monitor locking for sync. methods is performed by do_method_entry. 1116 SafePointNode* Parse::create_entry_map() { 1117 // Check for really stupid bail-out cases. 1118 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1119 if (len >= 32760) { 1120 C->record_method_not_compilable("too many local variables"); 1121 return NULL; 1122 } 1123 1124 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1125 _caller->map()->delete_replaced_nodes(); 1126 1127 // If this is an inlined method, we may have to do a receiver null check. 1128 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1129 GraphKit kit(_caller); 1130 kit.null_check_receiver_before_call(method()); 1131 _caller = kit.transfer_exceptions_into_jvms(); 1132 if (kit.stopped()) { 1133 _exits.add_exception_states_from(_caller); 1134 _exits.set_jvms(_caller); 1135 return NULL; 1136 } 1137 } 1138 1139 assert(method() != NULL, "parser must have a method"); 1140 1141 // Create an initial safepoint to hold JVM state during parsing 1142 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1143 set_map(new SafePointNode(len, jvms)); 1144 jvms->set_map(map()); 1145 record_for_igvn(map()); 1146 assert(jvms->endoff() == len, "correct jvms sizing"); 1147 1148 SafePointNode* inmap = _caller->map(); 1149 assert(inmap != NULL, "must have inmap"); 1150 // In case of null check on receiver above 1151 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1152 1153 uint i; 1154 1155 // Pass thru the predefined input parameters. 1156 for (i = 0; i < TypeFunc::Parms; i++) { 1157 map()->init_req(i, inmap->in(i)); 1158 } 1159 1160 if (depth() == 1) { 1161 assert(map()->memory()->Opcode() == Op_Parm, ""); 1162 // Insert the memory aliasing node 1163 set_all_memory(reset_memory()); 1164 } 1165 assert(merged_memory(), ""); 1166 1167 // Now add the locals which are initially bound to arguments: 1168 uint arg_size = tf()->domain()->cnt(); 1169 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1170 for (i = TypeFunc::Parms; i < arg_size; i++) { 1171 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1172 } 1173 1174 // Clear out the rest of the map (locals and stack) 1175 for (i = arg_size; i < len; i++) { 1176 map()->init_req(i, top()); 1177 } 1178 1179 SafePointNode* entry_map = stop(); 1180 return entry_map; 1181 } 1182 1183 //-----------------------------do_method_entry-------------------------------- 1184 // Emit any code needed in the pseudo-block before BCI zero. 1185 // The main thing to do is lock the receiver of a synchronized method. 1186 void Parse::do_method_entry() { 1187 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1188 set_sp(0); // Java Stack Pointer 1189 1190 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1191 1192 if (C->env()->dtrace_method_probes()) { 1193 make_dtrace_method_entry(method()); 1194 } 1195 1196 #ifdef ASSERT 1197 // Narrow receiver type when it is too broad for the method being parsed. 1198 if (!method()->is_static()) { 1199 ciInstanceKlass* callee_holder = method()->holder(); 1200 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder); 1201 1202 Node* receiver_obj = local(0); 1203 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1204 1205 if (receiver_type != NULL && !receiver_type->higher_equal(holder_type)) { 1206 // Receiver should always be a subtype of callee holder. 1207 // But, since C2 type system doesn't properly track interfaces, 1208 // the invariant can't be expressed in the type system for default methods. 1209 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1210 assert(callee_holder->is_interface(), "missing subtype check"); 1211 1212 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1213 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder)); 1214 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1215 assert(!stopped(), "not a subtype"); 1216 1217 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1218 C->root()->add_req(halt); 1219 } 1220 } 1221 #endif // ASSERT 1222 1223 // If the method is synchronized, we need to construct a lock node, attach 1224 // it to the Start node, and pin it there. 1225 if (method()->is_synchronized()) { 1226 // Insert a FastLockNode right after the Start which takes as arguments 1227 // the current thread pointer, the "this" pointer & the address of the 1228 // stack slot pair used for the lock. The "this" pointer is a projection 1229 // off the start node, but the locking spot has to be constructed by 1230 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1231 // becomes the second argument to the FastLockNode call. The 1232 // FastLockNode becomes the new control parent to pin it to the start. 1233 1234 // Setup Object Pointer 1235 Node *lock_obj = NULL; 1236 if (method()->is_static()) { 1237 ciInstance* mirror = _method->holder()->java_mirror(); 1238 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1239 lock_obj = makecon(t_lock); 1240 } else { // Else pass the "this" pointer, 1241 lock_obj = local(0); // which is Parm0 from StartNode 1242 } 1243 // Clear out dead values from the debug info. 1244 kill_dead_locals(); 1245 // Build the FastLockNode 1246 _synch_lock = shared_lock(lock_obj); 1247 } 1248 1249 // Feed profiling data for parameters to the type system so it can 1250 // propagate it as speculative types 1251 record_profiled_parameters_for_speculation(); 1252 } 1253 1254 //------------------------------init_blocks------------------------------------ 1255 // Initialize our parser map to contain the types/monitors at method entry. 1256 void Parse::init_blocks() { 1257 // Create the blocks. 1258 _block_count = flow()->block_count(); 1259 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1260 1261 // Initialize the structs. 1262 for (int rpo = 0; rpo < block_count(); rpo++) { 1263 Block* block = rpo_at(rpo); 1264 new(block) Block(this, rpo); 1265 } 1266 1267 // Collect predecessor and successor information. 1268 for (int rpo = 0; rpo < block_count(); rpo++) { 1269 Block* block = rpo_at(rpo); 1270 block->init_graph(this); 1271 } 1272 } 1273 1274 //-------------------------------init_node------------------------------------- 1275 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1276 _flow = outer->flow()->rpo_at(rpo); 1277 _pred_count = 0; 1278 _preds_parsed = 0; 1279 _count = 0; 1280 _is_parsed = false; 1281 _is_handler = false; 1282 _has_merged_backedge = false; 1283 _start_map = NULL; 1284 _has_predicates = false; 1285 _num_successors = 0; 1286 _all_successors = 0; 1287 _successors = NULL; 1288 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1289 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1290 assert(_live_locals.size() == 0, "sanity"); 1291 1292 // entry point has additional predecessor 1293 if (flow()->is_start()) _pred_count++; 1294 assert(flow()->is_start() == (this == outer->start_block()), ""); 1295 } 1296 1297 //-------------------------------init_graph------------------------------------ 1298 void Parse::Block::init_graph(Parse* outer) { 1299 // Create the successor list for this parser block. 1300 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1301 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1302 int ns = tfs->length(); 1303 int ne = tfe->length(); 1304 _num_successors = ns; 1305 _all_successors = ns+ne; 1306 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1307 int p = 0; 1308 for (int i = 0; i < ns+ne; i++) { 1309 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1310 Block* block2 = outer->rpo_at(tf2->rpo()); 1311 _successors[i] = block2; 1312 1313 // Accumulate pred info for the other block, too. 1314 // Note: We also need to set _pred_count for exception blocks since they could 1315 // also have normal predecessors (reached without athrow by an explicit jump). 1316 // This also means that next_path_num can be called along exception paths. 1317 block2->_pred_count++; 1318 if (i >= ns) { 1319 block2->_is_handler = true; 1320 } 1321 1322 #ifdef ASSERT 1323 // A block's successors must be distinguishable by BCI. 1324 // That is, no bytecode is allowed to branch to two different 1325 // clones of the same code location. 1326 for (int j = 0; j < i; j++) { 1327 Block* block1 = _successors[j]; 1328 if (block1 == block2) continue; // duplicates are OK 1329 assert(block1->start() != block2->start(), "successors have unique bcis"); 1330 } 1331 #endif 1332 } 1333 } 1334 1335 //---------------------------successor_for_bci--------------------------------- 1336 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1337 for (int i = 0; i < all_successors(); i++) { 1338 Block* block2 = successor_at(i); 1339 if (block2->start() == bci) return block2; 1340 } 1341 // We can actually reach here if ciTypeFlow traps out a block 1342 // due to an unloaded class, and concurrently with compilation the 1343 // class is then loaded, so that a later phase of the parser is 1344 // able to see more of the bytecode CFG. Or, the flow pass and 1345 // the parser can have a minor difference of opinion about executability 1346 // of bytecodes. For example, "obj.field = null" is executable even 1347 // if the field's type is an unloaded class; the flow pass used to 1348 // make a trap for such code. 1349 return NULL; 1350 } 1351 1352 1353 //-----------------------------stack_type_at----------------------------------- 1354 const Type* Parse::Block::stack_type_at(int i) const { 1355 return get_type(flow()->stack_type_at(i)); 1356 } 1357 1358 1359 //-----------------------------local_type_at----------------------------------- 1360 const Type* Parse::Block::local_type_at(int i) const { 1361 // Make dead locals fall to bottom. 1362 if (_live_locals.size() == 0) { 1363 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1364 // This bitmap can be zero length if we saw a breakpoint. 1365 // In such cases, pretend they are all live. 1366 ((Block*)this)->_live_locals = live_locals; 1367 } 1368 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1369 return Type::BOTTOM; 1370 1371 return get_type(flow()->local_type_at(i)); 1372 } 1373 1374 1375 #ifndef PRODUCT 1376 1377 //----------------------------name_for_bc-------------------------------------- 1378 // helper method for BytecodeParseHistogram 1379 static const char* name_for_bc(int i) { 1380 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1381 } 1382 1383 //----------------------------BytecodeParseHistogram------------------------------------ 1384 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1385 _parser = p; 1386 _compiler = c; 1387 if( ! _initialized ) { _initialized = true; reset(); } 1388 } 1389 1390 //----------------------------current_count------------------------------------ 1391 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1392 switch( bph_type ) { 1393 case BPH_transforms: { return _parser->gvn().made_progress(); } 1394 case BPH_values: { return _parser->gvn().made_new_values(); } 1395 default: { ShouldNotReachHere(); return 0; } 1396 } 1397 } 1398 1399 //----------------------------initialized-------------------------------------- 1400 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1401 1402 //----------------------------reset-------------------------------------------- 1403 void Parse::BytecodeParseHistogram::reset() { 1404 int i = Bytecodes::number_of_codes; 1405 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1406 } 1407 1408 //----------------------------set_initial_state-------------------------------- 1409 // Record info when starting to parse one bytecode 1410 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1411 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1412 _initial_bytecode = bc; 1413 _initial_node_count = _compiler->unique(); 1414 _initial_transforms = current_count(BPH_transforms); 1415 _initial_values = current_count(BPH_values); 1416 } 1417 } 1418 1419 //----------------------------record_change-------------------------------- 1420 // Record results of parsing one bytecode 1421 void Parse::BytecodeParseHistogram::record_change() { 1422 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1423 ++_bytecodes_parsed[_initial_bytecode]; 1424 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1425 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1426 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1427 } 1428 } 1429 1430 1431 //----------------------------print-------------------------------------------- 1432 void Parse::BytecodeParseHistogram::print(float cutoff) { 1433 ResourceMark rm; 1434 // print profile 1435 int total = 0; 1436 int i = 0; 1437 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1438 int abs_sum = 0; 1439 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1440 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1441 if( total == 0 ) { return; } 1442 tty->cr(); 1443 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1444 tty->print_cr("relative: percentage contribution to compiled nodes"); 1445 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1446 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1447 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); 1448 tty->print_cr("values : Average number of node values improved per bytecode"); 1449 tty->print_cr("name : Bytecode name"); 1450 tty->cr(); 1451 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1452 tty->print_cr("----------------------------------------------------------------------"); 1453 while (--i > 0) { 1454 int abs = _bytecodes_parsed[i]; 1455 float rel = abs * 100.0F / total; 1456 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1457 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1458 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1459 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1460 if (cutoff <= rel) { 1461 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1462 abs_sum += abs; 1463 } 1464 } 1465 tty->print_cr("----------------------------------------------------------------------"); 1466 float rel_sum = abs_sum * 100.0F / total; 1467 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1468 tty->print_cr("----------------------------------------------------------------------"); 1469 tty->cr(); 1470 } 1471 #endif 1472 1473 //----------------------------load_state_from---------------------------------- 1474 // Load block/map/sp. But not do not touch iter/bci. 1475 void Parse::load_state_from(Block* block) { 1476 set_block(block); 1477 // load the block's JVM state: 1478 set_map(block->start_map()); 1479 set_sp( block->start_sp()); 1480 } 1481 1482 1483 //-----------------------------record_state------------------------------------ 1484 void Parse::Block::record_state(Parse* p) { 1485 assert(!is_merged(), "can only record state once, on 1st inflow"); 1486 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1487 set_start_map(p->stop()); 1488 } 1489 1490 1491 //------------------------------do_one_block----------------------------------- 1492 void Parse::do_one_block() { 1493 if (TraceOptoParse) { 1494 Block *b = block(); 1495 int ns = b->num_successors(); 1496 int nt = b->all_successors(); 1497 1498 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1499 block()->rpo(), block()->start(), block()->limit()); 1500 for (int i = 0; i < nt; i++) { 1501 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1502 } 1503 if (b->is_loop_head()) tty->print(" lphd"); 1504 tty->cr(); 1505 } 1506 1507 assert(block()->is_merged(), "must be merged before being parsed"); 1508 block()->mark_parsed(); 1509 1510 // Set iterator to start of block. 1511 iter().reset_to_bci(block()->start()); 1512 1513 CompileLog* log = C->log(); 1514 1515 // Parse bytecodes 1516 while (!stopped() && !failing()) { 1517 iter().next(); 1518 1519 // Learn the current bci from the iterator: 1520 set_parse_bci(iter().cur_bci()); 1521 1522 if (bci() == block()->limit()) { 1523 // Do not walk into the next block until directed by do_all_blocks. 1524 merge(bci()); 1525 break; 1526 } 1527 assert(bci() < block()->limit(), "bci still in block"); 1528 1529 if (log != NULL) { 1530 // Output an optional context marker, to help place actions 1531 // that occur during parsing of this BC. If there is no log 1532 // output until the next context string, this context string 1533 // will be silently ignored. 1534 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1535 } 1536 1537 if (block()->has_trap_at(bci())) { 1538 // We must respect the flow pass's traps, because it will refuse 1539 // to produce successors for trapping blocks. 1540 int trap_index = block()->flow()->trap_index(); 1541 assert(trap_index != 0, "trap index must be valid"); 1542 uncommon_trap(trap_index); 1543 break; 1544 } 1545 1546 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1547 1548 #ifdef ASSERT 1549 int pre_bc_sp = sp(); 1550 int inputs, depth; 1551 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1552 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1553 #endif //ASSERT 1554 1555 do_one_bytecode(); 1556 1557 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1558 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1559 1560 do_exceptions(); 1561 1562 NOT_PRODUCT( parse_histogram()->record_change(); ); 1563 1564 if (log != NULL) 1565 log->clear_context(); // skip marker if nothing was printed 1566 1567 // Fall into next bytecode. Each bytecode normally has 1 sequential 1568 // successor which is typically made ready by visiting this bytecode. 1569 // If the successor has several predecessors, then it is a merge 1570 // point, starts a new basic block, and is handled like other basic blocks. 1571 } 1572 } 1573 1574 1575 //------------------------------merge------------------------------------------ 1576 void Parse::set_parse_bci(int bci) { 1577 set_bci(bci); 1578 Node_Notes* nn = C->default_node_notes(); 1579 if (nn == NULL) return; 1580 1581 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1582 if (!DebugInlinedCalls && depth() > 1) { 1583 return; 1584 } 1585 1586 // Update the JVMS annotation, if present. 1587 JVMState* jvms = nn->jvms(); 1588 if (jvms != NULL && jvms->bci() != bci) { 1589 // Update the JVMS. 1590 jvms = jvms->clone_shallow(C); 1591 jvms->set_bci(bci); 1592 nn->set_jvms(jvms); 1593 } 1594 } 1595 1596 //------------------------------merge------------------------------------------ 1597 // Merge the current mapping into the basic block starting at bci 1598 void Parse::merge(int target_bci) { 1599 Block* target = successor_for_bci(target_bci); 1600 if (target == NULL) { handle_missing_successor(target_bci); return; } 1601 assert(!target->is_ready(), "our arrival must be expected"); 1602 int pnum = target->next_path_num(); 1603 merge_common(target, pnum); 1604 } 1605 1606 //-------------------------merge_new_path-------------------------------------- 1607 // Merge the current mapping into the basic block, using a new path 1608 void Parse::merge_new_path(int target_bci) { 1609 Block* target = successor_for_bci(target_bci); 1610 if (target == NULL) { handle_missing_successor(target_bci); return; } 1611 assert(!target->is_ready(), "new path into frozen graph"); 1612 int pnum = target->add_new_path(); 1613 merge_common(target, pnum); 1614 } 1615 1616 //-------------------------merge_exception------------------------------------- 1617 // Merge the current mapping into the basic block starting at bci 1618 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1619 void Parse::merge_exception(int target_bci) { 1620 #ifdef ASSERT 1621 if (target_bci < bci()) { 1622 C->set_exception_backedge(); 1623 } 1624 #endif 1625 assert(sp() == 1, "must have only the throw exception on the stack"); 1626 Block* target = successor_for_bci(target_bci); 1627 if (target == NULL) { handle_missing_successor(target_bci); return; } 1628 assert(target->is_handler(), "exceptions are handled by special blocks"); 1629 int pnum = target->add_new_path(); 1630 merge_common(target, pnum); 1631 } 1632 1633 //--------------------handle_missing_successor--------------------------------- 1634 void Parse::handle_missing_successor(int target_bci) { 1635 #ifndef PRODUCT 1636 Block* b = block(); 1637 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1638 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1639 #endif 1640 ShouldNotReachHere(); 1641 } 1642 1643 //--------------------------merge_common--------------------------------------- 1644 void Parse::merge_common(Parse::Block* target, int pnum) { 1645 if (TraceOptoParse) { 1646 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1647 } 1648 1649 // Zap extra stack slots to top 1650 assert(sp() == target->start_sp(), ""); 1651 clean_stack(sp()); 1652 1653 if (!target->is_merged()) { // No prior mapping at this bci 1654 if (TraceOptoParse) { tty->print(" with empty state"); } 1655 1656 // If this path is dead, do not bother capturing it as a merge. 1657 // It is "as if" we had 1 fewer predecessors from the beginning. 1658 if (stopped()) { 1659 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1660 return; 1661 } 1662 1663 // Make a region if we know there are multiple or unpredictable inputs. 1664 // (Also, if this is a plain fall-through, we might see another region, 1665 // which must not be allowed into this block's map.) 1666 if (pnum > PhiNode::Input // Known multiple inputs. 1667 || target->is_handler() // These have unpredictable inputs. 1668 || target->is_loop_head() // Known multiple inputs 1669 || control()->is_Region()) { // We must hide this guy. 1670 1671 int current_bci = bci(); 1672 set_parse_bci(target->start()); // Set target bci 1673 if (target->is_SEL_head()) { 1674 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1675 if (target->start() == 0) { 1676 // Add loop predicate for the special case when 1677 // there are backbranches to the method entry. 1678 add_empty_predicates(); 1679 } 1680 } 1681 // Add a Region to start the new basic block. Phis will be added 1682 // later lazily. 1683 int edges = target->pred_count(); 1684 if (edges < pnum) edges = pnum; // might be a new path! 1685 RegionNode *r = new RegionNode(edges+1); 1686 gvn().set_type(r, Type::CONTROL); 1687 record_for_igvn(r); 1688 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1689 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1690 r->init_req(pnum, control()); 1691 set_control(r); 1692 set_parse_bci(current_bci); // Restore bci 1693 } 1694 1695 // Convert the existing Parser mapping into a mapping at this bci. 1696 store_state_to(target); 1697 assert(target->is_merged(), "do not come here twice"); 1698 1699 } else { // Prior mapping at this bci 1700 if (TraceOptoParse) { tty->print(" with previous state"); } 1701 #ifdef ASSERT 1702 if (target->is_SEL_head()) { 1703 target->mark_merged_backedge(block()); 1704 } 1705 #endif 1706 // We must not manufacture more phis if the target is already parsed. 1707 bool nophi = target->is_parsed(); 1708 1709 SafePointNode* newin = map();// Hang on to incoming mapping 1710 Block* save_block = block(); // Hang on to incoming block; 1711 load_state_from(target); // Get prior mapping 1712 1713 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1714 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1715 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1716 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1717 1718 // Iterate over my current mapping and the old mapping. 1719 // Where different, insert Phi functions. 1720 // Use any existing Phi functions. 1721 assert(control()->is_Region(), "must be merging to a region"); 1722 RegionNode* r = control()->as_Region(); 1723 1724 // Compute where to merge into 1725 // Merge incoming control path 1726 r->init_req(pnum, newin->control()); 1727 1728 if (pnum == 1) { // Last merge for this Region? 1729 if (!block()->flow()->is_irreducible_entry()) { 1730 Node* result = _gvn.transform_no_reclaim(r); 1731 if (r != result && TraceOptoParse) { 1732 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1733 } 1734 } 1735 record_for_igvn(r); 1736 } 1737 1738 // Update all the non-control inputs to map: 1739 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1740 bool check_elide_phi = target->is_SEL_backedge(save_block); 1741 for (uint j = 1; j < newin->req(); j++) { 1742 Node* m = map()->in(j); // Current state of target. 1743 Node* n = newin->in(j); // Incoming change to target state. 1744 PhiNode* phi; 1745 if (m->is_Phi() && m->as_Phi()->region() == r) 1746 phi = m->as_Phi(); 1747 else 1748 phi = NULL; 1749 if (m != n) { // Different; must merge 1750 switch (j) { 1751 // Frame pointer and Return Address never changes 1752 case TypeFunc::FramePtr:// Drop m, use the original value 1753 case TypeFunc::ReturnAdr: 1754 break; 1755 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1756 assert(phi == NULL, "the merge contains phis, not vice versa"); 1757 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1758 continue; 1759 default: // All normal stuff 1760 if (phi == NULL) { 1761 const JVMState* jvms = map()->jvms(); 1762 if (EliminateNestedLocks && 1763 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1764 // BoxLock nodes are not commoning. 1765 // Use old BoxLock node as merged box. 1766 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1767 // This assert also tests that nodes are BoxLock. 1768 assert(BoxLockNode::same_slot(n, m), "sanity"); 1769 C->gvn_replace_by(n, m); 1770 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1771 phi = ensure_phi(j, nophi); 1772 } 1773 } 1774 break; 1775 } 1776 } 1777 // At this point, n might be top if: 1778 // - there is no phi (because TypeFlow detected a conflict), or 1779 // - the corresponding control edges is top (a dead incoming path) 1780 // It is a bug if we create a phi which sees a garbage value on a live path. 1781 1782 if (phi != NULL) { 1783 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1784 assert(phi->region() == r, ""); 1785 phi->set_req(pnum, n); // Then add 'n' to the merge 1786 if (pnum == PhiNode::Input) { 1787 // Last merge for this Phi. 1788 // So far, Phis have had a reasonable type from ciTypeFlow. 1789 // Now _gvn will join that with the meet of current inputs. 1790 // BOTTOM is never permissible here, 'cause pessimistically 1791 // Phis of pointers cannot lose the basic pointer type. 1792 debug_only(const Type* bt1 = phi->bottom_type()); 1793 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1794 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1795 debug_only(const Type* bt2 = phi->bottom_type()); 1796 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1797 record_for_igvn(phi); 1798 } 1799 } 1800 } // End of for all values to be merged 1801 1802 if (pnum == PhiNode::Input && 1803 !r->in(0)) { // The occasional useless Region 1804 assert(control() == r, ""); 1805 set_control(r->nonnull_req()); 1806 } 1807 1808 map()->merge_replaced_nodes_with(newin); 1809 1810 // newin has been subsumed into the lazy merge, and is now dead. 1811 set_block(save_block); 1812 1813 stop(); // done with this guy, for now 1814 } 1815 1816 if (TraceOptoParse) { 1817 tty->print_cr(" on path %d", pnum); 1818 } 1819 1820 // Done with this parser state. 1821 assert(stopped(), ""); 1822 } 1823 1824 1825 //--------------------------merge_memory_edges--------------------------------- 1826 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1827 // (nophi means we must not create phis, because we already parsed here) 1828 assert(n != NULL, ""); 1829 // Merge the inputs to the MergeMems 1830 MergeMemNode* m = merged_memory(); 1831 1832 assert(control()->is_Region(), "must be merging to a region"); 1833 RegionNode* r = control()->as_Region(); 1834 1835 PhiNode* base = NULL; 1836 MergeMemNode* remerge = NULL; 1837 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1838 Node *p = mms.force_memory(); 1839 Node *q = mms.memory2(); 1840 if (mms.is_empty() && nophi) { 1841 // Trouble: No new splits allowed after a loop body is parsed. 1842 // Instead, wire the new split into a MergeMem on the backedge. 1843 // The optimizer will sort it out, slicing the phi. 1844 if (remerge == NULL) { 1845 guarantee(base != NULL, ""); 1846 assert(base->in(0) != NULL, "should not be xformed away"); 1847 remerge = MergeMemNode::make(base->in(pnum)); 1848 gvn().set_type(remerge, Type::MEMORY); 1849 base->set_req(pnum, remerge); 1850 } 1851 remerge->set_memory_at(mms.alias_idx(), q); 1852 continue; 1853 } 1854 assert(!q->is_MergeMem(), ""); 1855 PhiNode* phi; 1856 if (p != q) { 1857 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1858 } else { 1859 if (p->is_Phi() && p->as_Phi()->region() == r) 1860 phi = p->as_Phi(); 1861 else 1862 phi = NULL; 1863 } 1864 // Insert q into local phi 1865 if (phi != NULL) { 1866 assert(phi->region() == r, ""); 1867 p = phi; 1868 phi->set_req(pnum, q); 1869 if (mms.at_base_memory()) { 1870 base = phi; // delay transforming it 1871 } else if (pnum == 1) { 1872 record_for_igvn(phi); 1873 p = _gvn.transform_no_reclaim(phi); 1874 } 1875 mms.set_memory(p);// store back through the iterator 1876 } 1877 } 1878 // Transform base last, in case we must fiddle with remerging. 1879 if (base != NULL && pnum == 1) { 1880 record_for_igvn(base); 1881 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1882 } 1883 } 1884 1885 1886 //------------------------ensure_phis_everywhere------------------------------- 1887 void Parse::ensure_phis_everywhere() { 1888 ensure_phi(TypeFunc::I_O); 1889 1890 // Ensure a phi on all currently known memories. 1891 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1892 ensure_memory_phi(mms.alias_idx()); 1893 debug_only(mms.set_memory()); // keep the iterator happy 1894 } 1895 1896 // Note: This is our only chance to create phis for memory slices. 1897 // If we miss a slice that crops up later, it will have to be 1898 // merged into the base-memory phi that we are building here. 1899 // Later, the optimizer will comb out the knot, and build separate 1900 // phi-loops for each memory slice that matters. 1901 1902 // Monitors must nest nicely and not get confused amongst themselves. 1903 // Phi-ify everything up to the monitors, though. 1904 uint monoff = map()->jvms()->monoff(); 1905 uint nof_monitors = map()->jvms()->nof_monitors(); 1906 1907 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1908 bool check_elide_phi = block()->is_SEL_head(); 1909 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1910 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1911 ensure_phi(i); 1912 } 1913 } 1914 1915 // Even monitors need Phis, though they are well-structured. 1916 // This is true for OSR methods, and also for the rare cases where 1917 // a monitor object is the subject of a replace_in_map operation. 1918 // See bugs 4426707 and 5043395. 1919 for (uint m = 0; m < nof_monitors; m++) { 1920 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1921 } 1922 } 1923 1924 1925 //-----------------------------add_new_path------------------------------------ 1926 // Add a previously unaccounted predecessor to this block. 1927 int Parse::Block::add_new_path() { 1928 // If there is no map, return the lowest unused path number. 1929 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1930 1931 SafePointNode* map = start_map(); 1932 if (!map->control()->is_Region()) 1933 return pred_count()+1; // there may be a region some day 1934 RegionNode* r = map->control()->as_Region(); 1935 1936 // Add new path to the region. 1937 uint pnum = r->req(); 1938 r->add_req(NULL); 1939 1940 for (uint i = 1; i < map->req(); i++) { 1941 Node* n = map->in(i); 1942 if (i == TypeFunc::Memory) { 1943 // Ensure a phi on all currently known memories. 1944 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1945 Node* phi = mms.memory(); 1946 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1947 assert(phi->req() == pnum, "must be same size as region"); 1948 phi->add_req(NULL); 1949 } 1950 } 1951 } else { 1952 if (n->is_Phi() && n->as_Phi()->region() == r) { 1953 assert(n->req() == pnum, "must be same size as region"); 1954 n->add_req(NULL); 1955 } 1956 } 1957 } 1958 1959 return pnum; 1960 } 1961 1962 //------------------------------ensure_phi------------------------------------- 1963 // Turn the idx'th entry of the current map into a Phi 1964 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1965 SafePointNode* map = this->map(); 1966 Node* region = map->control(); 1967 assert(region->is_Region(), ""); 1968 1969 Node* o = map->in(idx); 1970 assert(o != NULL, ""); 1971 1972 if (o == top()) return NULL; // TOP always merges into TOP 1973 1974 if (o->is_Phi() && o->as_Phi()->region() == region) { 1975 return o->as_Phi(); 1976 } 1977 1978 // Now use a Phi here for merging 1979 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1980 const JVMState* jvms = map->jvms(); 1981 const Type* t = NULL; 1982 if (jvms->is_loc(idx)) { 1983 t = block()->local_type_at(idx - jvms->locoff()); 1984 } else if (jvms->is_stk(idx)) { 1985 t = block()->stack_type_at(idx - jvms->stkoff()); 1986 } else if (jvms->is_mon(idx)) { 1987 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1988 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1989 } else if ((uint)idx < TypeFunc::Parms) { 1990 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1991 } else { 1992 assert(false, "no type information for this phi"); 1993 } 1994 1995 // If the type falls to bottom, then this must be a local that 1996 // is mixing ints and oops or some such. Forcing it to top 1997 // makes it go dead. 1998 if (t == Type::BOTTOM) { 1999 map->set_req(idx, top()); 2000 return NULL; 2001 } 2002 2003 // Do not create phis for top either. 2004 // A top on a non-null control flow must be an unused even after the.phi. 2005 if (t == Type::TOP || t == Type::HALF) { 2006 map->set_req(idx, top()); 2007 return NULL; 2008 } 2009 2010 PhiNode* phi = PhiNode::make(region, o, t); 2011 gvn().set_type(phi, t); 2012 if (C->do_escape_analysis()) record_for_igvn(phi); 2013 map->set_req(idx, phi); 2014 return phi; 2015 } 2016 2017 //--------------------------ensure_memory_phi---------------------------------- 2018 // Turn the idx'th slice of the current memory into a Phi 2019 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2020 MergeMemNode* mem = merged_memory(); 2021 Node* region = control(); 2022 assert(region->is_Region(), ""); 2023 2024 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2025 assert(o != NULL && o != top(), ""); 2026 2027 PhiNode* phi; 2028 if (o->is_Phi() && o->as_Phi()->region() == region) { 2029 phi = o->as_Phi(); 2030 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2031 // clone the shared base memory phi to make a new memory split 2032 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2033 const Type* t = phi->bottom_type(); 2034 const TypePtr* adr_type = C->get_adr_type(idx); 2035 phi = phi->slice_memory(adr_type); 2036 gvn().set_type(phi, t); 2037 } 2038 return phi; 2039 } 2040 2041 // Now use a Phi here for merging 2042 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2043 const Type* t = o->bottom_type(); 2044 const TypePtr* adr_type = C->get_adr_type(idx); 2045 phi = PhiNode::make(region, o, t, adr_type); 2046 gvn().set_type(phi, t); 2047 if (idx == Compile::AliasIdxBot) 2048 mem->set_base_memory(phi); 2049 else 2050 mem->set_memory_at(idx, phi); 2051 return phi; 2052 } 2053 2054 //------------------------------call_register_finalizer----------------------- 2055 // Check the klass of the receiver and call register_finalizer if the 2056 // class need finalization. 2057 void Parse::call_register_finalizer() { 2058 Node* receiver = local(0); 2059 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 2060 "must have non-null instance type"); 2061 2062 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2063 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { 2064 // The type isn't known exactly so see if CHA tells us anything. 2065 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2066 if (!Dependencies::has_finalizable_subclass(ik)) { 2067 // No finalizable subclasses so skip the dynamic check. 2068 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2069 return; 2070 } 2071 } 2072 2073 // Insert a dynamic test for whether the instance needs 2074 // finalization. In general this will fold up since the concrete 2075 // class is often visible so the access flags are constant. 2076 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2077 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2078 2079 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2080 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2081 2082 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2083 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2084 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2085 2086 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2087 2088 RegionNode* result_rgn = new RegionNode(3); 2089 record_for_igvn(result_rgn); 2090 2091 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2092 result_rgn->init_req(1, skip_register); 2093 2094 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2095 set_control(needs_register); 2096 if (stopped()) { 2097 // There is no slow path. 2098 result_rgn->init_req(2, top()); 2099 } else { 2100 Node *call = make_runtime_call(RC_NO_LEAF, 2101 OptoRuntime::register_finalizer_Type(), 2102 OptoRuntime::register_finalizer_Java(), 2103 NULL, TypePtr::BOTTOM, 2104 receiver); 2105 make_slow_call_ex(call, env()->Throwable_klass(), true); 2106 2107 Node* fast_io = call->in(TypeFunc::I_O); 2108 Node* fast_mem = call->in(TypeFunc::Memory); 2109 // These two phis are pre-filled with copies of of the fast IO and Memory 2110 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2111 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2112 2113 result_rgn->init_req(2, control()); 2114 io_phi ->init_req(2, i_o()); 2115 mem_phi ->init_req(2, reset_memory()); 2116 2117 set_all_memory( _gvn.transform(mem_phi) ); 2118 set_i_o( _gvn.transform(io_phi) ); 2119 } 2120 2121 set_control( _gvn.transform(result_rgn) ); 2122 } 2123 2124 // Add check to deoptimize once holder klass is fully initialized. 2125 void Parse::clinit_deopt() { 2126 assert(C->has_method(), "only for normal compilations"); 2127 assert(depth() == 1, "only for main compiled method"); 2128 assert(is_normal_parse(), "no barrier needed on osr entry"); 2129 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2130 2131 set_parse_bci(0); 2132 2133 Node* holder = makecon(TypeKlassPtr::make(method()->holder())); 2134 guard_klass_being_initialized(holder); 2135 } 2136 2137 // Add check to deoptimize if RTM state is not ProfileRTM 2138 void Parse::rtm_deopt() { 2139 #if INCLUDE_RTM_OPT 2140 if (C->profile_rtm()) { 2141 assert(C->has_method(), "only for normal compilations"); 2142 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2143 assert(depth() == 1, "generate check only for main compiled method"); 2144 2145 // Set starting bci for uncommon trap. 2146 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2147 2148 // Load the rtm_state from the MethodData. 2149 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2150 Node* mdo = makecon(adr_type); 2151 int offset = MethodData::rtm_state_offset_in_bytes(); 2152 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2153 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2154 2155 // Separate Load from Cmp by Opaque. 2156 // In expand_macro_nodes() it will be replaced either 2157 // with this load when there are locks in the code 2158 // or with ProfileRTM (cmp->in(2)) otherwise so that 2159 // the check will fold. 2160 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2161 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2162 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2163 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2164 // Branch to failure if state was changed 2165 { BuildCutout unless(this, tst, PROB_ALWAYS); 2166 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2167 Deoptimization::Action_make_not_entrant); 2168 } 2169 } 2170 #endif 2171 } 2172 2173 void Parse::decrement_age() { 2174 MethodCounters* mc = method()->ensure_method_counters(); 2175 if (mc == NULL) { 2176 C->record_failure("Must have MCs"); 2177 return; 2178 } 2179 assert(!is_osr_parse(), "Not doing this for OSRs"); 2180 2181 // Set starting bci for uncommon trap. 2182 set_parse_bci(0); 2183 2184 const TypePtr* adr_type = TypeRawPtr::make((address)mc); 2185 Node* mc_adr = makecon(adr_type); 2186 Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset())); 2187 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2188 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE))); 2189 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered); 2190 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO))); 2191 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt)); 2192 { BuildCutout unless(this, tst, PROB_ALWAYS); 2193 uncommon_trap(Deoptimization::Reason_tenured, 2194 Deoptimization::Action_make_not_entrant); 2195 } 2196 } 2197 2198 //------------------------------return_current--------------------------------- 2199 // Append current _map to _exit_return 2200 void Parse::return_current(Node* value) { 2201 if (RegisterFinalizersAtInit && 2202 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2203 call_register_finalizer(); 2204 } 2205 2206 // Do not set_parse_bci, so that return goo is credited to the return insn. 2207 set_bci(InvocationEntryBci); 2208 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2209 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2210 } 2211 if (C->env()->dtrace_method_probes()) { 2212 make_dtrace_method_exit(method()); 2213 } 2214 SafePointNode* exit_return = _exits.map(); 2215 exit_return->in( TypeFunc::Control )->add_req( control() ); 2216 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2217 Node *mem = exit_return->in( TypeFunc::Memory ); 2218 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2219 if (mms.is_empty()) { 2220 // get a copy of the base memory, and patch just this one input 2221 const TypePtr* adr_type = mms.adr_type(C); 2222 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2223 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2224 gvn().set_type_bottom(phi); 2225 phi->del_req(phi->req()-1); // prepare to re-patch 2226 mms.set_memory(phi); 2227 } 2228 mms.memory()->add_req(mms.memory2()); 2229 } 2230 2231 // frame pointer is always same, already captured 2232 if (value != NULL) { 2233 // If returning oops to an interface-return, there is a silent free 2234 // cast from oop to interface allowed by the Verifier. Make it explicit 2235 // here. 2236 Node* phi = _exits.argument(0); 2237 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); 2238 if (tr && tr->klass()->is_loaded() && 2239 tr->klass()->is_interface()) { 2240 const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); 2241 if (tp && tp->klass()->is_loaded() && 2242 !tp->klass()->is_interface()) { 2243 // sharpen the type eagerly; this eases certain assert checking 2244 if (tp->higher_equal(TypeInstPtr::NOTNULL)) 2245 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr(); 2246 value = _gvn.transform(new CheckCastPPNode(0, value, tr)); 2247 } 2248 } else { 2249 // Also handle returns of oop-arrays to an arrays-of-interface return 2250 const TypeInstPtr* phi_tip; 2251 const TypeInstPtr* val_tip; 2252 Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip); 2253 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() && 2254 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) { 2255 value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type())); 2256 } 2257 } 2258 phi->add_req(value); 2259 } 2260 2261 if (_first_return) { 2262 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2263 _first_return = false; 2264 } else { 2265 _exits.map()->merge_replaced_nodes_with(map()); 2266 } 2267 2268 stop_and_kill_map(); // This CFG path dies here 2269 } 2270 2271 2272 //------------------------------add_safepoint---------------------------------- 2273 void Parse::add_safepoint() { 2274 uint parms = TypeFunc::Parms+1; 2275 2276 // Clear out dead values from the debug info. 2277 kill_dead_locals(); 2278 2279 // Clone the JVM State 2280 SafePointNode *sfpnt = new SafePointNode(parms, NULL); 2281 2282 // Capture memory state BEFORE a SafePoint. Since we can block at a 2283 // SafePoint we need our GC state to be safe; i.e. we need all our current 2284 // write barriers (card marks) to not float down after the SafePoint so we 2285 // must read raw memory. Likewise we need all oop stores to match the card 2286 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2287 // state on a deopt). 2288 2289 // We do not need to WRITE the memory state after a SafePoint. The control 2290 // edge will keep card-marks and oop-stores from floating up from below a 2291 // SafePoint and our true dependency added here will keep them from floating 2292 // down below a SafePoint. 2293 2294 // Clone the current memory state 2295 Node* mem = MergeMemNode::make(map()->memory()); 2296 2297 mem = _gvn.transform(mem); 2298 2299 // Pass control through the safepoint 2300 sfpnt->init_req(TypeFunc::Control , control()); 2301 // Fix edges normally used by a call 2302 sfpnt->init_req(TypeFunc::I_O , top() ); 2303 sfpnt->init_req(TypeFunc::Memory , mem ); 2304 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2305 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2306 2307 // Create a node for the polling address 2308 Node *polladr; 2309 Node *thread = _gvn.transform(new ThreadLocalNode()); 2310 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2311 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2312 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2313 2314 // Fix up the JVM State edges 2315 add_safepoint_edges(sfpnt); 2316 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2317 set_control(transformed_sfpnt); 2318 2319 // Provide an edge from root to safepoint. This makes the safepoint 2320 // appear useful until the parse has completed. 2321 if (transformed_sfpnt->is_SafePoint()) { 2322 assert(C->root() != NULL, "Expect parse is still valid"); 2323 C->root()->add_prec(transformed_sfpnt); 2324 } 2325 } 2326 2327 #ifndef PRODUCT 2328 //------------------------show_parse_info-------------------------------------- 2329 void Parse::show_parse_info() { 2330 InlineTree* ilt = NULL; 2331 if (C->ilt() != NULL) { 2332 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2333 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2334 } 2335 if (PrintCompilation && Verbose) { 2336 if (depth() == 1) { 2337 if( ilt->count_inlines() ) { 2338 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2339 ilt->count_inline_bcs()); 2340 tty->cr(); 2341 } 2342 } else { 2343 if (method()->is_synchronized()) tty->print("s"); 2344 if (method()->has_exception_handlers()) tty->print("!"); 2345 // Check this is not the final compiled version 2346 if (C->trap_can_recompile()) { 2347 tty->print("-"); 2348 } else { 2349 tty->print(" "); 2350 } 2351 method()->print_short_name(); 2352 if (is_osr_parse()) { 2353 tty->print(" @ %d", osr_bci()); 2354 } 2355 tty->print(" (%d bytes)",method()->code_size()); 2356 if (ilt->count_inlines()) { 2357 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2358 ilt->count_inline_bcs()); 2359 } 2360 tty->cr(); 2361 } 2362 } 2363 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2364 // Print that we succeeded; suppress this message on the first osr parse. 2365 2366 if (method()->is_synchronized()) tty->print("s"); 2367 if (method()->has_exception_handlers()) tty->print("!"); 2368 // Check this is not the final compiled version 2369 if (C->trap_can_recompile() && depth() == 1) { 2370 tty->print("-"); 2371 } else { 2372 tty->print(" "); 2373 } 2374 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2375 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2376 method()->print_short_name(); 2377 if (is_osr_parse()) { 2378 tty->print(" @ %d", osr_bci()); 2379 } 2380 if (ilt->caller_bci() != -1) { 2381 tty->print(" @ %d", ilt->caller_bci()); 2382 } 2383 tty->print(" (%d bytes)",method()->code_size()); 2384 if (ilt->count_inlines()) { 2385 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2386 ilt->count_inline_bcs()); 2387 } 2388 tty->cr(); 2389 } 2390 } 2391 2392 2393 //------------------------------dump------------------------------------------- 2394 // Dump information associated with the bytecodes of current _method 2395 void Parse::dump() { 2396 if( method() != NULL ) { 2397 // Iterate over bytecodes 2398 ciBytecodeStream iter(method()); 2399 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2400 dump_bci( iter.cur_bci() ); 2401 tty->cr(); 2402 } 2403 } 2404 } 2405 2406 // Dump information associated with a byte code index, 'bci' 2407 void Parse::dump_bci(int bci) { 2408 // Output info on merge-points, cloning, and within _jsr..._ret 2409 // NYI 2410 tty->print(" bci:%d", bci); 2411 } 2412 2413 #endif