1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/opaquenode.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/rootnode.hpp" 39 #include "opto/runtime.hpp" 40 #include "opto/type.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 // Static array so we can figure out which bytecodes stop us from compiling 48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 49 // and eventually should be encapsulated in a proper class (gri 8/18/98). 50 51 #ifndef PRODUCT 52 int nodes_created = 0; 53 int methods_parsed = 0; 54 int methods_seen = 0; 55 int blocks_parsed = 0; 56 int blocks_seen = 0; 57 58 int explicit_null_checks_inserted = 0; 59 int explicit_null_checks_elided = 0; 60 int all_null_checks_found = 0; 61 int implicit_null_checks = 0; 62 63 bool Parse::BytecodeParseHistogram::_initialized = false; 64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 68 69 //------------------------------print_statistics------------------------------- 70 void Parse::print_statistics() { 71 tty->print_cr("--- Compiler Statistics ---"); 72 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 73 tty->print(" Nodes created: %d", nodes_created); 74 tty->cr(); 75 if (methods_seen != methods_parsed) { 76 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 77 } 78 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 79 80 if (explicit_null_checks_inserted) { 81 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", 82 explicit_null_checks_inserted, explicit_null_checks_elided, 83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 84 all_null_checks_found); 85 } 86 if (all_null_checks_found) { 87 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 88 (100*implicit_null_checks)/all_null_checks_found); 89 } 90 if (SharedRuntime::_implicit_null_throws) { 91 tty->print_cr("%d implicit null exceptions at runtime", 92 SharedRuntime::_implicit_null_throws); 93 } 94 95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 96 BytecodeParseHistogram::print(); 97 } 98 } 99 #endif 100 101 //------------------------------ON STACK REPLACEMENT--------------------------- 102 103 // Construct a node which can be used to get incoming state for 104 // on stack replacement. 105 Node *Parse::fetch_interpreter_state(int index, 106 BasicType bt, 107 Node *local_addrs, 108 Node *local_addrs_base) { 109 Node *mem = memory(Compile::AliasIdxRaw); 110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 111 Node *ctl = control(); 112 113 // Very similar to LoadNode::make, except we handle un-aligned longs and 114 // doubles on Sparc. Intel can handle them just fine directly. 115 Node *l = NULL; 116 switch (bt) { // Signature is flattened 117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 121 case T_LONG: 122 case T_DOUBLE: { 123 // Since arguments are in reverse order, the argument address 'adr' 124 // refers to the back half of the long/double. Recompute adr. 125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 126 if (Matcher::misaligned_doubles_ok) { 127 l = (bt == T_DOUBLE) 128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 130 } else { 131 l = (bt == T_DOUBLE) 132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 134 } 135 break; 136 } 137 default: ShouldNotReachHere(); 138 } 139 return _gvn.transform(l); 140 } 141 142 // Helper routine to prevent the interpreter from handing 143 // unexpected typestate to an OSR method. 144 // The Node l is a value newly dug out of the interpreter frame. 145 // The type is the type predicted by ciTypeFlow. Note that it is 146 // not a general type, but can only come from Type::get_typeflow_type. 147 // The safepoint is a map which will feed an uncommon trap. 148 Node* Parse::check_interpreter_type(Node* l, const Type* type, 149 SafePointNode* &bad_type_exit) { 150 151 const TypeOopPtr* tp = type->isa_oopptr(); 152 153 // TypeFlow may assert null-ness if a type appears unloaded. 154 if (type == TypePtr::NULL_PTR || 155 (tp != NULL && !tp->klass()->is_loaded())) { 156 // Value must be null, not a real oop. 157 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 160 set_control(_gvn.transform( new IfTrueNode(iff) )); 161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 162 bad_type_exit->control()->add_req(bad_type); 163 l = null(); 164 } 165 166 // Typeflow can also cut off paths from the CFG, based on 167 // types which appear unloaded, or call sites which appear unlinked. 168 // When paths are cut off, values at later merge points can rise 169 // toward more specific classes. Make sure these specific classes 170 // are still in effect. 171 if (tp != NULL && tp->klass() != C->env()->Object_klass()) { 172 // TypeFlow asserted a specific object type. Value must have that type. 173 Node* bad_type_ctrl = NULL; 174 l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl); 175 bad_type_exit->control()->add_req(bad_type_ctrl); 176 } 177 178 BasicType bt_l = _gvn.type(l)->basic_type(); 179 BasicType bt_t = type->basic_type(); 180 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 181 return l; 182 } 183 184 // Helper routine which sets up elements of the initial parser map when 185 // performing a parse for on stack replacement. Add values into map. 186 // The only parameter contains the address of a interpreter arguments. 187 void Parse::load_interpreter_state(Node* osr_buf) { 188 int index; 189 int max_locals = jvms()->loc_size(); 190 int max_stack = jvms()->stk_size(); 191 192 193 // Mismatch between method and jvms can occur since map briefly held 194 // an OSR entry state (which takes up one RawPtr word). 195 assert(max_locals == method()->max_locals(), "sanity"); 196 assert(max_stack >= method()->max_stack(), "sanity"); 197 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 198 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 199 200 // Find the start block. 201 Block* osr_block = start_block(); 202 assert(osr_block->start() == osr_bci(), "sanity"); 203 204 // Set initial BCI. 205 set_parse_bci(osr_block->start()); 206 207 // Set initial stack depth. 208 set_sp(osr_block->start_sp()); 209 210 // Check bailouts. We currently do not perform on stack replacement 211 // of loops in catch blocks or loops which branch with a non-empty stack. 212 if (sp() != 0) { 213 C->record_method_not_compilable("OSR starts with non-empty stack"); 214 return; 215 } 216 // Do not OSR inside finally clauses: 217 if (osr_block->has_trap_at(osr_block->start())) { 218 C->record_method_not_compilable("OSR starts with an immediate trap"); 219 return; 220 } 221 222 // Commute monitors from interpreter frame to compiler frame. 223 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 224 int mcnt = osr_block->flow()->monitor_count(); 225 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 226 for (index = 0; index < mcnt; index++) { 227 // Make a BoxLockNode for the monitor. 228 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 229 230 231 // Displaced headers and locked objects are interleaved in the 232 // temp OSR buffer. We only copy the locked objects out here. 233 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 234 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 235 // Try and copy the displaced header to the BoxNode 236 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 237 238 239 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 240 241 // Build a bogus FastLockNode (no code will be generated) and push the 242 // monitor into our debug info. 243 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 244 map()->push_monitor(flock); 245 246 // If the lock is our method synchronization lock, tuck it away in 247 // _sync_lock for return and rethrow exit paths. 248 if (index == 0 && method()->is_synchronized()) { 249 _synch_lock = flock; 250 } 251 } 252 253 // Use the raw liveness computation to make sure that unexpected 254 // values don't propagate into the OSR frame. 255 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 256 if (!live_locals.is_valid()) { 257 // Degenerate or breakpointed method. 258 C->record_method_not_compilable("OSR in empty or breakpointed method"); 259 return; 260 } 261 262 // Extract the needed locals from the interpreter frame. 263 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 264 265 // find all the locals that the interpreter thinks contain live oops 266 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 267 for (index = 0; index < max_locals; index++) { 268 269 if (!live_locals.at(index)) { 270 continue; 271 } 272 273 const Type *type = osr_block->local_type_at(index); 274 275 if (type->isa_oopptr() != NULL) { 276 277 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 278 // else we might load a stale oop if the MethodLiveness disagrees with the 279 // result of the interpreter. If the interpreter says it is dead we agree 280 // by making the value go to top. 281 // 282 283 if (!live_oops.at(index)) { 284 if (C->log() != NULL) { 285 C->log()->elem("OSR_mismatch local_index='%d'",index); 286 } 287 set_local(index, null()); 288 // and ignore it for the loads 289 continue; 290 } 291 } 292 293 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 294 if (type == Type::TOP || type == Type::HALF) { 295 continue; 296 } 297 // If the type falls to bottom, then this must be a local that 298 // is mixing ints and oops or some such. Forcing it to top 299 // makes it go dead. 300 if (type == Type::BOTTOM) { 301 continue; 302 } 303 // Construct code to access the appropriate local. 304 BasicType bt = type->basic_type(); 305 if (type == TypePtr::NULL_PTR) { 306 // Ptr types are mixed together with T_ADDRESS but NULL is 307 // really for T_OBJECT types so correct it. 308 bt = T_OBJECT; 309 } 310 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 311 set_local(index, value); 312 } 313 314 // Extract the needed stack entries from the interpreter frame. 315 for (index = 0; index < sp(); index++) { 316 const Type *type = osr_block->stack_type_at(index); 317 if (type != Type::TOP) { 318 // Currently the compiler bails out when attempting to on stack replace 319 // at a bci with a non-empty stack. We should not reach here. 320 ShouldNotReachHere(); 321 } 322 } 323 324 // End the OSR migration 325 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 326 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 327 "OSR_migration_end", TypeRawPtr::BOTTOM, 328 osr_buf); 329 330 // Now that the interpreter state is loaded, make sure it will match 331 // at execution time what the compiler is expecting now: 332 SafePointNode* bad_type_exit = clone_map(); 333 bad_type_exit->set_control(new RegionNode(1)); 334 335 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 336 for (index = 0; index < max_locals; index++) { 337 if (stopped()) break; 338 Node* l = local(index); 339 if (l->is_top()) continue; // nothing here 340 const Type *type = osr_block->local_type_at(index); 341 if (type->isa_oopptr() != NULL) { 342 if (!live_oops.at(index)) { 343 // skip type check for dead oops 344 continue; 345 } 346 } 347 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 348 // In our current system it's illegal for jsr addresses to be 349 // live into an OSR entry point because the compiler performs 350 // inlining of jsrs. ciTypeFlow has a bailout that detect this 351 // case and aborts the compile if addresses are live into an OSR 352 // entry point. Because of that we can assume that any address 353 // locals at the OSR entry point are dead. Method liveness 354 // isn't precise enought to figure out that they are dead in all 355 // cases so simply skip checking address locals all 356 // together. Any type check is guaranteed to fail since the 357 // interpreter type is the result of a load which might have any 358 // value and the expected type is a constant. 359 continue; 360 } 361 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 362 } 363 364 for (index = 0; index < sp(); index++) { 365 if (stopped()) break; 366 Node* l = stack(index); 367 if (l->is_top()) continue; // nothing here 368 const Type *type = osr_block->stack_type_at(index); 369 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 370 } 371 372 if (bad_type_exit->control()->req() > 1) { 373 // Build an uncommon trap here, if any inputs can be unexpected. 374 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 375 record_for_igvn(bad_type_exit->control()); 376 SafePointNode* types_are_good = map(); 377 set_map(bad_type_exit); 378 // The unexpected type happens because a new edge is active 379 // in the CFG, which typeflow had previously ignored. 380 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 381 // This x will be typed as Integer if notReached is not yet linked. 382 // It could also happen due to a problem in ciTypeFlow analysis. 383 uncommon_trap(Deoptimization::Reason_constraint, 384 Deoptimization::Action_reinterpret); 385 set_map(types_are_good); 386 } 387 } 388 389 //------------------------------Parse------------------------------------------ 390 // Main parser constructor. 391 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 392 : _exits(caller) 393 { 394 // Init some variables 395 _caller = caller; 396 _method = parse_method; 397 _expected_uses = expected_uses; 398 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 399 _wrote_final = false; 400 _wrote_volatile = false; 401 _wrote_stable = false; 402 _wrote_fields = false; 403 _alloc_with_final = NULL; 404 _entry_bci = InvocationEntryBci; 405 _tf = NULL; 406 _block = NULL; 407 _first_return = true; 408 _replaced_nodes_for_exceptions = false; 409 _new_idx = C->unique(); 410 debug_only(_block_count = -1); 411 debug_only(_blocks = (Block*)-1); 412 #ifndef PRODUCT 413 if (PrintCompilation || PrintOpto) { 414 // Make sure I have an inline tree, so I can print messages about it. 415 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 416 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 417 } 418 _max_switch_depth = 0; 419 _est_switch_depth = 0; 420 #endif 421 422 if (parse_method->has_reserved_stack_access()) { 423 C->set_has_reserved_stack_access(true); 424 } 425 426 if (parse_method->is_synchronized()) { 427 C->push_monitor(); 428 } 429 430 _tf = TypeFunc::make(method()); 431 _iter.reset_to_method(method()); 432 _flow = method()->get_flow_analysis(); 433 if (_flow->failing()) { 434 C->record_method_not_compilable(_flow->failure_reason()); 435 } 436 437 #ifndef PRODUCT 438 if (_flow->has_irreducible_entry()) { 439 C->set_parsed_irreducible_loop(true); 440 } 441 #endif 442 C->set_has_loops(C->has_loops() || method()->has_loops()); 443 444 if (_expected_uses <= 0) { 445 _prof_factor = 1; 446 } else { 447 float prof_total = parse_method->interpreter_invocation_count(); 448 if (prof_total <= _expected_uses) { 449 _prof_factor = 1; 450 } else { 451 _prof_factor = _expected_uses / prof_total; 452 } 453 } 454 455 CompileLog* log = C->log(); 456 if (log != NULL) { 457 log->begin_head("parse method='%d' uses='%f'", 458 log->identify(parse_method), expected_uses); 459 if (depth() == 1 && C->is_osr_compilation()) { 460 log->print(" osr_bci='%d'", C->entry_bci()); 461 } 462 log->stamp(); 463 log->end_head(); 464 } 465 466 // Accumulate deoptimization counts. 467 // (The range_check and store_check counts are checked elsewhere.) 468 ciMethodData* md = method()->method_data(); 469 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 470 uint md_count = md->trap_count(reason); 471 if (md_count != 0) { 472 if (md_count == md->trap_count_limit()) 473 md_count += md->overflow_trap_count(); 474 uint total_count = C->trap_count(reason); 475 uint old_count = total_count; 476 total_count += md_count; 477 // Saturate the add if it overflows. 478 if (total_count < old_count || total_count < md_count) 479 total_count = (uint)-1; 480 C->set_trap_count(reason, total_count); 481 if (log != NULL) 482 log->elem("observe trap='%s' count='%d' total='%d'", 483 Deoptimization::trap_reason_name(reason), 484 md_count, total_count); 485 } 486 } 487 // Accumulate total sum of decompilations, also. 488 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 489 490 if (log != NULL && method()->has_exception_handlers()) { 491 log->elem("observe that='has_exception_handlers'"); 492 } 493 494 assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier"); 495 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 496 497 // Always register dependence if JVMTI is enabled, because 498 // either breakpoint setting or hotswapping of methods may 499 // cause deoptimization. 500 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 501 C->dependencies()->assert_evol_method(method()); 502 } 503 504 NOT_PRODUCT(methods_seen++); 505 506 // Do some special top-level things. 507 if (depth() == 1 && C->is_osr_compilation()) { 508 _entry_bci = C->entry_bci(); 509 _flow = method()->get_osr_flow_analysis(osr_bci()); 510 if (_flow->failing()) { 511 C->record_method_not_compilable(_flow->failure_reason()); 512 #ifndef PRODUCT 513 if (PrintOpto && (Verbose || WizardMode)) { 514 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 515 if (Verbose) { 516 method()->print(); 517 method()->print_codes(); 518 _flow->print(); 519 } 520 } 521 #endif 522 } 523 _tf = C->tf(); // the OSR entry type is different 524 } 525 526 #ifdef ASSERT 527 if (depth() == 1) { 528 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 529 } else { 530 assert(!this->is_osr_parse(), "no recursive OSR"); 531 } 532 #endif 533 534 #ifndef PRODUCT 535 methods_parsed++; 536 // add method size here to guarantee that inlined methods are added too 537 if (CITime) 538 _total_bytes_compiled += method()->code_size(); 539 540 show_parse_info(); 541 #endif 542 543 if (failing()) { 544 if (log) log->done("parse"); 545 return; 546 } 547 548 gvn().set_type(root(), root()->bottom_type()); 549 gvn().transform(top()); 550 551 // Import the results of the ciTypeFlow. 552 init_blocks(); 553 554 // Merge point for all normal exits 555 build_exits(); 556 557 // Setup the initial JVM state map. 558 SafePointNode* entry_map = create_entry_map(); 559 560 // Check for bailouts during map initialization 561 if (failing() || entry_map == NULL) { 562 if (log) log->done("parse"); 563 return; 564 } 565 566 Node_Notes* caller_nn = C->default_node_notes(); 567 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 568 if (DebugInlinedCalls || depth() == 1) { 569 C->set_default_node_notes(make_node_notes(caller_nn)); 570 } 571 572 if (is_osr_parse()) { 573 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 574 entry_map->set_req(TypeFunc::Parms+0, top()); 575 set_map(entry_map); 576 load_interpreter_state(osr_buf); 577 } else { 578 set_map(entry_map); 579 do_method_entry(); 580 if (depth() == 1 && C->age_code()) { 581 decrement_age(); 582 } 583 } 584 585 if (depth() == 1 && !failing()) { 586 if (C->clinit_barrier_on_entry()) { 587 // Add check to deoptimize the nmethod once the holder class is fully initialized 588 clinit_deopt(); 589 } 590 591 // Add check to deoptimize the nmethod if RTM state was changed 592 rtm_deopt(); 593 } 594 595 // Check for bailouts during method entry or RTM state check setup. 596 if (failing()) { 597 if (log) log->done("parse"); 598 C->set_default_node_notes(caller_nn); 599 return; 600 } 601 602 entry_map = map(); // capture any changes performed by method setup code 603 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 604 605 // We begin parsing as if we have just encountered a jump to the 606 // method entry. 607 Block* entry_block = start_block(); 608 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 609 set_map_clone(entry_map); 610 merge_common(entry_block, entry_block->next_path_num()); 611 612 #ifndef PRODUCT 613 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 614 set_parse_histogram( parse_histogram_obj ); 615 #endif 616 617 // Parse all the basic blocks. 618 do_all_blocks(); 619 620 C->set_default_node_notes(caller_nn); 621 622 // Check for bailouts during conversion to graph 623 if (failing()) { 624 if (log) log->done("parse"); 625 return; 626 } 627 628 // Fix up all exiting control flow. 629 set_map(entry_map); 630 do_exits(); 631 632 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 633 C->unique(), C->live_nodes(), C->node_arena()->used()); 634 } 635 636 //---------------------------do_all_blocks------------------------------------- 637 void Parse::do_all_blocks() { 638 bool has_irreducible = flow()->has_irreducible_entry(); 639 640 // Walk over all blocks in Reverse Post-Order. 641 while (true) { 642 bool progress = false; 643 for (int rpo = 0; rpo < block_count(); rpo++) { 644 Block* block = rpo_at(rpo); 645 646 if (block->is_parsed()) continue; 647 648 if (!block->is_merged()) { 649 // Dead block, no state reaches this block 650 continue; 651 } 652 653 // Prepare to parse this block. 654 load_state_from(block); 655 656 if (stopped()) { 657 // Block is dead. 658 continue; 659 } 660 661 NOT_PRODUCT(blocks_parsed++); 662 663 progress = true; 664 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 665 // Not all preds have been parsed. We must build phis everywhere. 666 // (Note that dead locals do not get phis built, ever.) 667 ensure_phis_everywhere(); 668 669 if (block->is_SEL_head()) { 670 // Add predicate to single entry (not irreducible) loop head. 671 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 672 // Predicates may have been added after a dominating if 673 if (!block->has_predicates()) { 674 // Need correct bci for predicate. 675 // It is fine to set it here since do_one_block() will set it anyway. 676 set_parse_bci(block->start()); 677 add_empty_predicates(); 678 } 679 // Add new region for back branches. 680 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 681 RegionNode *r = new RegionNode(edges+1); 682 _gvn.set_type(r, Type::CONTROL); 683 record_for_igvn(r); 684 r->init_req(edges, control()); 685 set_control(r); 686 // Add new phis. 687 ensure_phis_everywhere(); 688 } 689 690 // Leave behind an undisturbed copy of the map, for future merges. 691 set_map(clone_map()); 692 } 693 694 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 695 // In the absence of irreducible loops, the Region and Phis 696 // associated with a merge that doesn't involve a backedge can 697 // be simplified now since the RPO parsing order guarantees 698 // that any path which was supposed to reach here has already 699 // been parsed or must be dead. 700 Node* c = control(); 701 Node* result = _gvn.transform_no_reclaim(control()); 702 if (c != result && TraceOptoParse) { 703 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 704 } 705 if (result != top()) { 706 record_for_igvn(result); 707 } 708 } 709 710 // Parse the block. 711 do_one_block(); 712 713 // Check for bailouts. 714 if (failing()) return; 715 } 716 717 // with irreducible loops multiple passes might be necessary to parse everything 718 if (!has_irreducible || !progress) { 719 break; 720 } 721 } 722 723 #ifndef PRODUCT 724 blocks_seen += block_count(); 725 726 // Make sure there are no half-processed blocks remaining. 727 // Every remaining unprocessed block is dead and may be ignored now. 728 for (int rpo = 0; rpo < block_count(); rpo++) { 729 Block* block = rpo_at(rpo); 730 if (!block->is_parsed()) { 731 if (TraceOptoParse) { 732 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 733 } 734 assert(!block->is_merged(), "no half-processed blocks"); 735 } 736 } 737 #endif 738 } 739 740 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 741 switch (bt) { 742 case T_BYTE: 743 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 744 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 745 break; 746 case T_SHORT: 747 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 748 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 749 break; 750 case T_CHAR: 751 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 752 break; 753 case T_BOOLEAN: 754 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 755 break; 756 default: 757 break; 758 } 759 return v; 760 } 761 762 //-------------------------------build_exits---------------------------------- 763 // Build normal and exceptional exit merge points. 764 void Parse::build_exits() { 765 // make a clone of caller to prevent sharing of side-effects 766 _exits.set_map(_exits.clone_map()); 767 _exits.clean_stack(_exits.sp()); 768 _exits.sync_jvms(); 769 770 RegionNode* region = new RegionNode(1); 771 record_for_igvn(region); 772 gvn().set_type_bottom(region); 773 _exits.set_control(region); 774 775 // Note: iophi and memphi are not transformed until do_exits. 776 Node* iophi = new PhiNode(region, Type::ABIO); 777 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 778 gvn().set_type_bottom(iophi); 779 gvn().set_type_bottom(memphi); 780 _exits.set_i_o(iophi); 781 _exits.set_all_memory(memphi); 782 783 // Add a return value to the exit state. (Do not push it yet.) 784 if (tf()->range()->cnt() > TypeFunc::Parms) { 785 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 786 if (ret_type->isa_int()) { 787 BasicType ret_bt = method()->return_type()->basic_type(); 788 if (ret_bt == T_BOOLEAN || 789 ret_bt == T_CHAR || 790 ret_bt == T_BYTE || 791 ret_bt == T_SHORT) { 792 ret_type = TypeInt::INT; 793 } 794 } 795 796 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 797 // becomes loaded during the subsequent parsing, the loaded and unloaded 798 // types will not join when we transform and push in do_exits(). 799 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 800 if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) { 801 ret_type = TypeOopPtr::BOTTOM; 802 } 803 int ret_size = type2size[ret_type->basic_type()]; 804 Node* ret_phi = new PhiNode(region, ret_type); 805 gvn().set_type_bottom(ret_phi); 806 _exits.ensure_stack(ret_size); 807 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 808 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 809 _exits.set_argument(0, ret_phi); // here is where the parser finds it 810 // Note: ret_phi is not yet pushed, until do_exits. 811 } 812 } 813 814 815 //----------------------------build_start_state------------------------------- 816 // Construct a state which contains only the incoming arguments from an 817 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 818 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 819 int arg_size = tf->domain()->cnt(); 820 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 821 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 822 SafePointNode* map = new SafePointNode(max_size, jvms); 823 record_for_igvn(map); 824 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 825 Node_Notes* old_nn = default_node_notes(); 826 if (old_nn != NULL && has_method()) { 827 Node_Notes* entry_nn = old_nn->clone(this); 828 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 829 entry_jvms->set_offsets(0); 830 entry_jvms->set_bci(entry_bci()); 831 entry_nn->set_jvms(entry_jvms); 832 set_default_node_notes(entry_nn); 833 } 834 uint i; 835 for (i = 0; i < (uint)arg_size; i++) { 836 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 837 map->init_req(i, parm); 838 // Record all these guys for later GVN. 839 record_for_igvn(parm); 840 } 841 for (; i < map->req(); i++) { 842 map->init_req(i, top()); 843 } 844 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 845 set_default_node_notes(old_nn); 846 jvms->set_map(map); 847 return jvms; 848 } 849 850 //-----------------------------make_node_notes--------------------------------- 851 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 852 if (caller_nn == NULL) return NULL; 853 Node_Notes* nn = caller_nn->clone(C); 854 JVMState* caller_jvms = nn->jvms(); 855 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 856 jvms->set_offsets(0); 857 jvms->set_bci(_entry_bci); 858 nn->set_jvms(jvms); 859 return nn; 860 } 861 862 863 //--------------------------return_values-------------------------------------- 864 void Compile::return_values(JVMState* jvms) { 865 GraphKit kit(jvms); 866 Node* ret = new ReturnNode(TypeFunc::Parms, 867 kit.control(), 868 kit.i_o(), 869 kit.reset_memory(), 870 kit.frameptr(), 871 kit.returnadr()); 872 // Add zero or 1 return values 873 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 874 if (ret_size > 0) { 875 kit.inc_sp(-ret_size); // pop the return value(s) 876 kit.sync_jvms(); 877 ret->add_req(kit.argument(0)); 878 // Note: The second dummy edge is not needed by a ReturnNode. 879 } 880 // bind it to root 881 root()->add_req(ret); 882 record_for_igvn(ret); 883 initial_gvn()->transform_no_reclaim(ret); 884 } 885 886 //------------------------rethrow_exceptions----------------------------------- 887 // Bind all exception states in the list into a single RethrowNode. 888 void Compile::rethrow_exceptions(JVMState* jvms) { 889 GraphKit kit(jvms); 890 if (!kit.has_exceptions()) return; // nothing to generate 891 // Load my combined exception state into the kit, with all phis transformed: 892 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 893 Node* ex_oop = kit.use_exception_state(ex_map); 894 RethrowNode* exit = new RethrowNode(kit.control(), 895 kit.i_o(), kit.reset_memory(), 896 kit.frameptr(), kit.returnadr(), 897 // like a return but with exception input 898 ex_oop); 899 // bind to root 900 root()->add_req(exit); 901 record_for_igvn(exit); 902 initial_gvn()->transform_no_reclaim(exit); 903 } 904 905 //---------------------------do_exceptions------------------------------------- 906 // Process exceptions arising from the current bytecode. 907 // Send caught exceptions to the proper handler within this method. 908 // Unhandled exceptions feed into _exit. 909 void Parse::do_exceptions() { 910 if (!has_exceptions()) return; 911 912 if (failing()) { 913 // Pop them all off and throw them away. 914 while (pop_exception_state() != NULL) ; 915 return; 916 } 917 918 PreserveJVMState pjvms(this, false); 919 920 SafePointNode* ex_map; 921 while ((ex_map = pop_exception_state()) != NULL) { 922 if (!method()->has_exception_handlers()) { 923 // Common case: Transfer control outward. 924 // Doing it this early allows the exceptions to common up 925 // even between adjacent method calls. 926 throw_to_exit(ex_map); 927 } else { 928 // Have to look at the exception first. 929 assert(stopped(), "catch_inline_exceptions trashes the map"); 930 catch_inline_exceptions(ex_map); 931 stop_and_kill_map(); // we used up this exception state; kill it 932 } 933 } 934 935 // We now return to our regularly scheduled program: 936 } 937 938 //---------------------------throw_to_exit------------------------------------- 939 // Merge the given map into an exception exit from this method. 940 // The exception exit will handle any unlocking of receiver. 941 // The ex_oop must be saved within the ex_map, unlike merge_exception. 942 void Parse::throw_to_exit(SafePointNode* ex_map) { 943 // Pop the JVMS to (a copy of) the caller. 944 GraphKit caller; 945 caller.set_map_clone(_caller->map()); 946 caller.set_bci(_caller->bci()); 947 caller.set_sp(_caller->sp()); 948 // Copy out the standard machine state: 949 for (uint i = 0; i < TypeFunc::Parms; i++) { 950 caller.map()->set_req(i, ex_map->in(i)); 951 } 952 if (ex_map->has_replaced_nodes()) { 953 _replaced_nodes_for_exceptions = true; 954 } 955 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 956 // ...and the exception: 957 Node* ex_oop = saved_ex_oop(ex_map); 958 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 959 // Finally, collect the new exception state in my exits: 960 _exits.add_exception_state(caller_ex_map); 961 } 962 963 //------------------------------do_exits--------------------------------------- 964 void Parse::do_exits() { 965 set_parse_bci(InvocationEntryBci); 966 967 // Now peephole on the return bits 968 Node* region = _exits.control(); 969 _exits.set_control(gvn().transform(region)); 970 971 Node* iophi = _exits.i_o(); 972 _exits.set_i_o(gvn().transform(iophi)); 973 974 // Figure out if we need to emit the trailing barrier. The barrier is only 975 // needed in the constructors, and only in three cases: 976 // 977 // 1. The constructor wrote a final. The effects of all initializations 978 // must be committed to memory before any code after the constructor 979 // publishes the reference to the newly constructed object. Rather 980 // than wait for the publication, we simply block the writes here. 981 // Rather than put a barrier on only those writes which are required 982 // to complete, we force all writes to complete. 983 // 984 // 2. Experimental VM option is used to force the barrier if any field 985 // was written out in the constructor. 986 // 987 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 988 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 989 // MemBarVolatile is used before volatile load instead of after volatile 990 // store, so there's no barrier after the store. 991 // We want to guarantee the same behavior as on platforms with total store 992 // order, although this is not required by the Java memory model. 993 // In this case, we want to enforce visibility of volatile field 994 // initializations which are performed in constructors. 995 // So as with finals, we add a barrier here. 996 // 997 // "All bets are off" unless the first publication occurs after a 998 // normal return from the constructor. We do not attempt to detect 999 // such unusual early publications. But no barrier is needed on 1000 // exceptional returns, since they cannot publish normally. 1001 // 1002 if (method()->is_initializer() && 1003 (wrote_final() || 1004 (AlwaysSafeConstructors && wrote_fields()) || 1005 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1006 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 1007 1008 // If Memory barrier is created for final fields write 1009 // and allocation node does not escape the initialize method, 1010 // then barrier introduced by allocation node can be removed. 1011 if (DoEscapeAnalysis && alloc_with_final()) { 1012 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn); 1013 alloc->compute_MemBar_redundancy(method()); 1014 } 1015 if (PrintOpto && (Verbose || WizardMode)) { 1016 method()->print_name(); 1017 tty->print_cr(" writes finals and needs a memory barrier"); 1018 } 1019 } 1020 1021 // Any method can write a @Stable field; insert memory barriers 1022 // after those also. Can't bind predecessor allocation node (if any) 1023 // with barrier because allocation doesn't always dominate 1024 // MemBarRelease. 1025 if (wrote_stable()) { 1026 _exits.insert_mem_bar(Op_MemBarRelease); 1027 if (PrintOpto && (Verbose || WizardMode)) { 1028 method()->print_name(); 1029 tty->print_cr(" writes @Stable and needs a memory barrier"); 1030 } 1031 } 1032 1033 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1034 // transform each slice of the original memphi: 1035 mms.set_memory(_gvn.transform(mms.memory())); 1036 } 1037 // Clean up input MergeMems created by transforming the slices 1038 _gvn.transform(_exits.merged_memory()); 1039 1040 if (tf()->range()->cnt() > TypeFunc::Parms) { 1041 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1042 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1043 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1044 // If the type we set for the ret_phi in build_exits() is too optimistic and 1045 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1046 // loading. It could also be due to an error, so mark this method as not compilable because 1047 // otherwise this could lead to an infinite compile loop. 1048 // In any case, this code path is rarely (and never in my testing) reached. 1049 C->record_method_not_compilable("Can't determine return type."); 1050 return; 1051 } 1052 if (ret_type->isa_int()) { 1053 BasicType ret_bt = method()->return_type()->basic_type(); 1054 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1055 } 1056 _exits.push_node(ret_type->basic_type(), ret_phi); 1057 } 1058 1059 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1060 1061 // Unlock along the exceptional paths. 1062 // This is done late so that we can common up equivalent exceptions 1063 // (e.g., null checks) arising from multiple points within this method. 1064 // See GraphKit::add_exception_state, which performs the commoning. 1065 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1066 1067 // record exit from a method if compiled while Dtrace is turned on. 1068 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1069 // First move the exception list out of _exits: 1070 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1071 SafePointNode* normal_map = kit.map(); // keep this guy safe 1072 // Now re-collect the exceptions into _exits: 1073 SafePointNode* ex_map; 1074 while ((ex_map = kit.pop_exception_state()) != NULL) { 1075 Node* ex_oop = kit.use_exception_state(ex_map); 1076 // Force the exiting JVM state to have this method at InvocationEntryBci. 1077 // The exiting JVM state is otherwise a copy of the calling JVMS. 1078 JVMState* caller = kit.jvms(); 1079 JVMState* ex_jvms = caller->clone_shallow(C); 1080 ex_jvms->bind_map(kit.clone_map()); 1081 ex_jvms->set_bci( InvocationEntryBci); 1082 kit.set_jvms(ex_jvms); 1083 if (do_synch) { 1084 // Add on the synchronized-method box/object combo 1085 kit.map()->push_monitor(_synch_lock); 1086 // Unlock! 1087 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1088 } 1089 if (C->env()->dtrace_method_probes()) { 1090 kit.make_dtrace_method_exit(method()); 1091 } 1092 if (_replaced_nodes_for_exceptions) { 1093 kit.map()->apply_replaced_nodes(_new_idx); 1094 } 1095 // Done with exception-path processing. 1096 ex_map = kit.make_exception_state(ex_oop); 1097 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1098 // Pop the last vestige of this method: 1099 caller->clone_shallow(C)->bind_map(ex_map); 1100 _exits.push_exception_state(ex_map); 1101 } 1102 assert(_exits.map() == normal_map, "keep the same return state"); 1103 } 1104 1105 { 1106 // Capture very early exceptions (receiver null checks) from caller JVMS 1107 GraphKit caller(_caller); 1108 SafePointNode* ex_map; 1109 while ((ex_map = caller.pop_exception_state()) != NULL) { 1110 _exits.add_exception_state(ex_map); 1111 } 1112 } 1113 _exits.map()->apply_replaced_nodes(_new_idx); 1114 } 1115 1116 //-----------------------------create_entry_map------------------------------- 1117 // Initialize our parser map to contain the types at method entry. 1118 // For OSR, the map contains a single RawPtr parameter. 1119 // Initial monitor locking for sync. methods is performed by do_method_entry. 1120 SafePointNode* Parse::create_entry_map() { 1121 // Check for really stupid bail-out cases. 1122 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1123 if (len >= 32760) { 1124 C->record_method_not_compilable("too many local variables"); 1125 return NULL; 1126 } 1127 1128 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1129 _caller->map()->delete_replaced_nodes(); 1130 1131 // If this is an inlined method, we may have to do a receiver null check. 1132 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1133 GraphKit kit(_caller); 1134 kit.null_check_receiver_before_call(method()); 1135 _caller = kit.transfer_exceptions_into_jvms(); 1136 if (kit.stopped()) { 1137 _exits.add_exception_states_from(_caller); 1138 _exits.set_jvms(_caller); 1139 return NULL; 1140 } 1141 } 1142 1143 assert(method() != NULL, "parser must have a method"); 1144 1145 // Create an initial safepoint to hold JVM state during parsing 1146 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1147 set_map(new SafePointNode(len, jvms)); 1148 jvms->set_map(map()); 1149 record_for_igvn(map()); 1150 assert(jvms->endoff() == len, "correct jvms sizing"); 1151 1152 SafePointNode* inmap = _caller->map(); 1153 assert(inmap != NULL, "must have inmap"); 1154 // In case of null check on receiver above 1155 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1156 1157 uint i; 1158 1159 // Pass thru the predefined input parameters. 1160 for (i = 0; i < TypeFunc::Parms; i++) { 1161 map()->init_req(i, inmap->in(i)); 1162 } 1163 1164 if (depth() == 1) { 1165 assert(map()->memory()->Opcode() == Op_Parm, ""); 1166 // Insert the memory aliasing node 1167 set_all_memory(reset_memory()); 1168 } 1169 assert(merged_memory(), ""); 1170 1171 // Now add the locals which are initially bound to arguments: 1172 uint arg_size = tf()->domain()->cnt(); 1173 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1174 for (i = TypeFunc::Parms; i < arg_size; i++) { 1175 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1176 } 1177 1178 // Clear out the rest of the map (locals and stack) 1179 for (i = arg_size; i < len; i++) { 1180 map()->init_req(i, top()); 1181 } 1182 1183 SafePointNode* entry_map = stop(); 1184 return entry_map; 1185 } 1186 1187 //-----------------------------do_method_entry-------------------------------- 1188 // Emit any code needed in the pseudo-block before BCI zero. 1189 // The main thing to do is lock the receiver of a synchronized method. 1190 void Parse::do_method_entry() { 1191 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1192 set_sp(0); // Java Stack Pointer 1193 1194 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1195 1196 if (C->env()->dtrace_method_probes()) { 1197 make_dtrace_method_entry(method()); 1198 } 1199 1200 #ifdef ASSERT 1201 // Narrow receiver type when it is too broad for the method being parsed. 1202 if (!method()->is_static()) { 1203 ciInstanceKlass* callee_holder = method()->holder(); 1204 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder); 1205 1206 Node* receiver_obj = local(0); 1207 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1208 1209 if (receiver_type != NULL && !receiver_type->higher_equal(holder_type)) { 1210 // Receiver should always be a subtype of callee holder. 1211 // But, since C2 type system doesn't properly track interfaces, 1212 // the invariant can't be expressed in the type system for default methods. 1213 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1214 assert(callee_holder->is_interface(), "missing subtype check"); 1215 1216 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1217 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder)); 1218 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1219 assert(!stopped(), "not a subtype"); 1220 1221 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1222 C->root()->add_req(halt); 1223 } 1224 } 1225 #endif // ASSERT 1226 1227 // If the method is synchronized, we need to construct a lock node, attach 1228 // it to the Start node, and pin it there. 1229 if (method()->is_synchronized()) { 1230 // Insert a FastLockNode right after the Start which takes as arguments 1231 // the current thread pointer, the "this" pointer & the address of the 1232 // stack slot pair used for the lock. The "this" pointer is a projection 1233 // off the start node, but the locking spot has to be constructed by 1234 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1235 // becomes the second argument to the FastLockNode call. The 1236 // FastLockNode becomes the new control parent to pin it to the start. 1237 1238 // Setup Object Pointer 1239 Node *lock_obj = NULL; 1240 if (method()->is_static()) { 1241 ciInstance* mirror = _method->holder()->java_mirror(); 1242 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1243 lock_obj = makecon(t_lock); 1244 } else { // Else pass the "this" pointer, 1245 lock_obj = local(0); // which is Parm0 from StartNode 1246 } 1247 // Clear out dead values from the debug info. 1248 kill_dead_locals(); 1249 // Build the FastLockNode 1250 _synch_lock = shared_lock(lock_obj); 1251 } 1252 1253 // Feed profiling data for parameters to the type system so it can 1254 // propagate it as speculative types 1255 record_profiled_parameters_for_speculation(); 1256 } 1257 1258 //------------------------------init_blocks------------------------------------ 1259 // Initialize our parser map to contain the types/monitors at method entry. 1260 void Parse::init_blocks() { 1261 // Create the blocks. 1262 _block_count = flow()->block_count(); 1263 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1264 1265 // Initialize the structs. 1266 for (int rpo = 0; rpo < block_count(); rpo++) { 1267 Block* block = rpo_at(rpo); 1268 new(block) Block(this, rpo); 1269 } 1270 1271 // Collect predecessor and successor information. 1272 for (int rpo = 0; rpo < block_count(); rpo++) { 1273 Block* block = rpo_at(rpo); 1274 block->init_graph(this); 1275 } 1276 } 1277 1278 //-------------------------------init_node------------------------------------- 1279 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1280 _flow = outer->flow()->rpo_at(rpo); 1281 _pred_count = 0; 1282 _preds_parsed = 0; 1283 _count = 0; 1284 _is_parsed = false; 1285 _is_handler = false; 1286 _has_merged_backedge = false; 1287 _start_map = NULL; 1288 _has_predicates = false; 1289 _num_successors = 0; 1290 _all_successors = 0; 1291 _successors = NULL; 1292 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1293 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1294 assert(_live_locals.size() == 0, "sanity"); 1295 1296 // entry point has additional predecessor 1297 if (flow()->is_start()) _pred_count++; 1298 assert(flow()->is_start() == (this == outer->start_block()), ""); 1299 } 1300 1301 //-------------------------------init_graph------------------------------------ 1302 void Parse::Block::init_graph(Parse* outer) { 1303 // Create the successor list for this parser block. 1304 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1305 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1306 int ns = tfs->length(); 1307 int ne = tfe->length(); 1308 _num_successors = ns; 1309 _all_successors = ns+ne; 1310 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1311 int p = 0; 1312 for (int i = 0; i < ns+ne; i++) { 1313 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1314 Block* block2 = outer->rpo_at(tf2->rpo()); 1315 _successors[i] = block2; 1316 1317 // Accumulate pred info for the other block, too. 1318 // Note: We also need to set _pred_count for exception blocks since they could 1319 // also have normal predecessors (reached without athrow by an explicit jump). 1320 // This also means that next_path_num can be called along exception paths. 1321 block2->_pred_count++; 1322 if (i >= ns) { 1323 block2->_is_handler = true; 1324 } 1325 1326 #ifdef ASSERT 1327 // A block's successors must be distinguishable by BCI. 1328 // That is, no bytecode is allowed to branch to two different 1329 // clones of the same code location. 1330 for (int j = 0; j < i; j++) { 1331 Block* block1 = _successors[j]; 1332 if (block1 == block2) continue; // duplicates are OK 1333 assert(block1->start() != block2->start(), "successors have unique bcis"); 1334 } 1335 #endif 1336 } 1337 } 1338 1339 //---------------------------successor_for_bci--------------------------------- 1340 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1341 for (int i = 0; i < all_successors(); i++) { 1342 Block* block2 = successor_at(i); 1343 if (block2->start() == bci) return block2; 1344 } 1345 // We can actually reach here if ciTypeFlow traps out a block 1346 // due to an unloaded class, and concurrently with compilation the 1347 // class is then loaded, so that a later phase of the parser is 1348 // able to see more of the bytecode CFG. Or, the flow pass and 1349 // the parser can have a minor difference of opinion about executability 1350 // of bytecodes. For example, "obj.field = null" is executable even 1351 // if the field's type is an unloaded class; the flow pass used to 1352 // make a trap for such code. 1353 return NULL; 1354 } 1355 1356 1357 //-----------------------------stack_type_at----------------------------------- 1358 const Type* Parse::Block::stack_type_at(int i) const { 1359 return get_type(flow()->stack_type_at(i)); 1360 } 1361 1362 1363 //-----------------------------local_type_at----------------------------------- 1364 const Type* Parse::Block::local_type_at(int i) const { 1365 // Make dead locals fall to bottom. 1366 if (_live_locals.size() == 0) { 1367 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1368 // This bitmap can be zero length if we saw a breakpoint. 1369 // In such cases, pretend they are all live. 1370 ((Block*)this)->_live_locals = live_locals; 1371 } 1372 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1373 return Type::BOTTOM; 1374 1375 return get_type(flow()->local_type_at(i)); 1376 } 1377 1378 1379 #ifndef PRODUCT 1380 1381 //----------------------------name_for_bc-------------------------------------- 1382 // helper method for BytecodeParseHistogram 1383 static const char* name_for_bc(int i) { 1384 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1385 } 1386 1387 //----------------------------BytecodeParseHistogram------------------------------------ 1388 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1389 _parser = p; 1390 _compiler = c; 1391 if( ! _initialized ) { _initialized = true; reset(); } 1392 } 1393 1394 //----------------------------current_count------------------------------------ 1395 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1396 switch( bph_type ) { 1397 case BPH_transforms: { return _parser->gvn().made_progress(); } 1398 case BPH_values: { return _parser->gvn().made_new_values(); } 1399 default: { ShouldNotReachHere(); return 0; } 1400 } 1401 } 1402 1403 //----------------------------initialized-------------------------------------- 1404 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1405 1406 //----------------------------reset-------------------------------------------- 1407 void Parse::BytecodeParseHistogram::reset() { 1408 int i = Bytecodes::number_of_codes; 1409 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1410 } 1411 1412 //----------------------------set_initial_state-------------------------------- 1413 // Record info when starting to parse one bytecode 1414 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1415 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1416 _initial_bytecode = bc; 1417 _initial_node_count = _compiler->unique(); 1418 _initial_transforms = current_count(BPH_transforms); 1419 _initial_values = current_count(BPH_values); 1420 } 1421 } 1422 1423 //----------------------------record_change-------------------------------- 1424 // Record results of parsing one bytecode 1425 void Parse::BytecodeParseHistogram::record_change() { 1426 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1427 ++_bytecodes_parsed[_initial_bytecode]; 1428 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1429 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1430 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1431 } 1432 } 1433 1434 1435 //----------------------------print-------------------------------------------- 1436 void Parse::BytecodeParseHistogram::print(float cutoff) { 1437 ResourceMark rm; 1438 // print profile 1439 int total = 0; 1440 int i = 0; 1441 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1442 int abs_sum = 0; 1443 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1444 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1445 if( total == 0 ) { return; } 1446 tty->cr(); 1447 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1448 tty->print_cr("relative: percentage contribution to compiled nodes"); 1449 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1450 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1451 tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled"); 1452 tty->print_cr("values : Average number of node values improved per bytecode"); 1453 tty->print_cr("name : Bytecode name"); 1454 tty->cr(); 1455 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1456 tty->print_cr("----------------------------------------------------------------------"); 1457 while (--i > 0) { 1458 int abs = _bytecodes_parsed[i]; 1459 float rel = abs * 100.0F / total; 1460 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1461 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1462 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1463 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1464 if (cutoff <= rel) { 1465 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1466 abs_sum += abs; 1467 } 1468 } 1469 tty->print_cr("----------------------------------------------------------------------"); 1470 float rel_sum = abs_sum * 100.0F / total; 1471 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1472 tty->print_cr("----------------------------------------------------------------------"); 1473 tty->cr(); 1474 } 1475 #endif 1476 1477 //----------------------------load_state_from---------------------------------- 1478 // Load block/map/sp. But not do not touch iter/bci. 1479 void Parse::load_state_from(Block* block) { 1480 set_block(block); 1481 // load the block's JVM state: 1482 set_map(block->start_map()); 1483 set_sp( block->start_sp()); 1484 } 1485 1486 1487 //-----------------------------record_state------------------------------------ 1488 void Parse::Block::record_state(Parse* p) { 1489 assert(!is_merged(), "can only record state once, on 1st inflow"); 1490 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1491 set_start_map(p->stop()); 1492 } 1493 1494 1495 //------------------------------do_one_block----------------------------------- 1496 void Parse::do_one_block() { 1497 if (TraceOptoParse) { 1498 Block *b = block(); 1499 int ns = b->num_successors(); 1500 int nt = b->all_successors(); 1501 1502 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1503 block()->rpo(), block()->start(), block()->limit()); 1504 for (int i = 0; i < nt; i++) { 1505 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1506 } 1507 if (b->is_loop_head()) tty->print(" lphd"); 1508 tty->cr(); 1509 } 1510 1511 assert(block()->is_merged(), "must be merged before being parsed"); 1512 block()->mark_parsed(); 1513 1514 // Set iterator to start of block. 1515 iter().reset_to_bci(block()->start()); 1516 1517 CompileLog* log = C->log(); 1518 1519 // Parse bytecodes 1520 while (!stopped() && !failing()) { 1521 iter().next(); 1522 1523 // Learn the current bci from the iterator: 1524 set_parse_bci(iter().cur_bci()); 1525 1526 if (bci() == block()->limit()) { 1527 // Do not walk into the next block until directed by do_all_blocks. 1528 merge(bci()); 1529 break; 1530 } 1531 assert(bci() < block()->limit(), "bci still in block"); 1532 1533 if (log != NULL) { 1534 // Output an optional context marker, to help place actions 1535 // that occur during parsing of this BC. If there is no log 1536 // output until the next context string, this context string 1537 // will be silently ignored. 1538 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1539 } 1540 1541 if (block()->has_trap_at(bci())) { 1542 // We must respect the flow pass's traps, because it will refuse 1543 // to produce successors for trapping blocks. 1544 int trap_index = block()->flow()->trap_index(); 1545 assert(trap_index != 0, "trap index must be valid"); 1546 uncommon_trap(trap_index); 1547 break; 1548 } 1549 1550 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1551 1552 #ifdef ASSERT 1553 int pre_bc_sp = sp(); 1554 int inputs, depth; 1555 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1556 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1557 #endif //ASSERT 1558 1559 do_one_bytecode(); 1560 1561 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1562 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1563 1564 do_exceptions(); 1565 1566 NOT_PRODUCT( parse_histogram()->record_change(); ); 1567 1568 if (log != NULL) 1569 log->clear_context(); // skip marker if nothing was printed 1570 1571 // Fall into next bytecode. Each bytecode normally has 1 sequential 1572 // successor which is typically made ready by visiting this bytecode. 1573 // If the successor has several predecessors, then it is a merge 1574 // point, starts a new basic block, and is handled like other basic blocks. 1575 } 1576 } 1577 1578 1579 //------------------------------merge------------------------------------------ 1580 void Parse::set_parse_bci(int bci) { 1581 set_bci(bci); 1582 Node_Notes* nn = C->default_node_notes(); 1583 if (nn == NULL) return; 1584 1585 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1586 if (!DebugInlinedCalls && depth() > 1) { 1587 return; 1588 } 1589 1590 // Update the JVMS annotation, if present. 1591 JVMState* jvms = nn->jvms(); 1592 if (jvms != NULL && jvms->bci() != bci) { 1593 // Update the JVMS. 1594 jvms = jvms->clone_shallow(C); 1595 jvms->set_bci(bci); 1596 nn->set_jvms(jvms); 1597 } 1598 } 1599 1600 //------------------------------merge------------------------------------------ 1601 // Merge the current mapping into the basic block starting at bci 1602 void Parse::merge(int target_bci) { 1603 Block* target = successor_for_bci(target_bci); 1604 if (target == NULL) { handle_missing_successor(target_bci); return; } 1605 assert(!target->is_ready(), "our arrival must be expected"); 1606 int pnum = target->next_path_num(); 1607 merge_common(target, pnum); 1608 } 1609 1610 //-------------------------merge_new_path-------------------------------------- 1611 // Merge the current mapping into the basic block, using a new path 1612 void Parse::merge_new_path(int target_bci) { 1613 Block* target = successor_for_bci(target_bci); 1614 if (target == NULL) { handle_missing_successor(target_bci); return; } 1615 assert(!target->is_ready(), "new path into frozen graph"); 1616 int pnum = target->add_new_path(); 1617 merge_common(target, pnum); 1618 } 1619 1620 //-------------------------merge_exception------------------------------------- 1621 // Merge the current mapping into the basic block starting at bci 1622 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1623 void Parse::merge_exception(int target_bci) { 1624 #ifdef ASSERT 1625 if (target_bci < bci()) { 1626 C->set_exception_backedge(); 1627 } 1628 #endif 1629 assert(sp() == 1, "must have only the throw exception on the stack"); 1630 Block* target = successor_for_bci(target_bci); 1631 if (target == NULL) { handle_missing_successor(target_bci); return; } 1632 assert(target->is_handler(), "exceptions are handled by special blocks"); 1633 int pnum = target->add_new_path(); 1634 merge_common(target, pnum); 1635 } 1636 1637 //--------------------handle_missing_successor--------------------------------- 1638 void Parse::handle_missing_successor(int target_bci) { 1639 #ifndef PRODUCT 1640 Block* b = block(); 1641 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1642 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1643 #endif 1644 ShouldNotReachHere(); 1645 } 1646 1647 //--------------------------merge_common--------------------------------------- 1648 void Parse::merge_common(Parse::Block* target, int pnum) { 1649 if (TraceOptoParse) { 1650 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1651 } 1652 1653 // Zap extra stack slots to top 1654 assert(sp() == target->start_sp(), ""); 1655 clean_stack(sp()); 1656 1657 if (!target->is_merged()) { // No prior mapping at this bci 1658 if (TraceOptoParse) { tty->print(" with empty state"); } 1659 1660 // If this path is dead, do not bother capturing it as a merge. 1661 // It is "as if" we had 1 fewer predecessors from the beginning. 1662 if (stopped()) { 1663 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1664 return; 1665 } 1666 1667 // Make a region if we know there are multiple or unpredictable inputs. 1668 // (Also, if this is a plain fall-through, we might see another region, 1669 // which must not be allowed into this block's map.) 1670 if (pnum > PhiNode::Input // Known multiple inputs. 1671 || target->is_handler() // These have unpredictable inputs. 1672 || target->is_loop_head() // Known multiple inputs 1673 || control()->is_Region()) { // We must hide this guy. 1674 1675 int current_bci = bci(); 1676 set_parse_bci(target->start()); // Set target bci 1677 if (target->is_SEL_head()) { 1678 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1679 if (target->start() == 0) { 1680 // Add loop predicate for the special case when 1681 // there are backbranches to the method entry. 1682 add_empty_predicates(); 1683 } 1684 } 1685 // Add a Region to start the new basic block. Phis will be added 1686 // later lazily. 1687 int edges = target->pred_count(); 1688 if (edges < pnum) edges = pnum; // might be a new path! 1689 RegionNode *r = new RegionNode(edges+1); 1690 gvn().set_type(r, Type::CONTROL); 1691 record_for_igvn(r); 1692 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1693 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1694 r->init_req(pnum, control()); 1695 set_control(r); 1696 set_parse_bci(current_bci); // Restore bci 1697 } 1698 1699 // Convert the existing Parser mapping into a mapping at this bci. 1700 store_state_to(target); 1701 assert(target->is_merged(), "do not come here twice"); 1702 1703 } else { // Prior mapping at this bci 1704 if (TraceOptoParse) { tty->print(" with previous state"); } 1705 #ifdef ASSERT 1706 if (target->is_SEL_head()) { 1707 target->mark_merged_backedge(block()); 1708 } 1709 #endif 1710 // We must not manufacture more phis if the target is already parsed. 1711 bool nophi = target->is_parsed(); 1712 1713 SafePointNode* newin = map();// Hang on to incoming mapping 1714 Block* save_block = block(); // Hang on to incoming block; 1715 load_state_from(target); // Get prior mapping 1716 1717 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1718 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1719 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1720 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1721 1722 // Iterate over my current mapping and the old mapping. 1723 // Where different, insert Phi functions. 1724 // Use any existing Phi functions. 1725 assert(control()->is_Region(), "must be merging to a region"); 1726 RegionNode* r = control()->as_Region(); 1727 1728 // Compute where to merge into 1729 // Merge incoming control path 1730 r->init_req(pnum, newin->control()); 1731 1732 if (pnum == 1) { // Last merge for this Region? 1733 if (!block()->flow()->is_irreducible_entry()) { 1734 Node* result = _gvn.transform_no_reclaim(r); 1735 if (r != result && TraceOptoParse) { 1736 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1737 } 1738 } 1739 record_for_igvn(r); 1740 } 1741 1742 // Update all the non-control inputs to map: 1743 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1744 bool check_elide_phi = target->is_SEL_backedge(save_block); 1745 for (uint j = 1; j < newin->req(); j++) { 1746 Node* m = map()->in(j); // Current state of target. 1747 Node* n = newin->in(j); // Incoming change to target state. 1748 PhiNode* phi; 1749 if (m->is_Phi() && m->as_Phi()->region() == r) 1750 phi = m->as_Phi(); 1751 else 1752 phi = NULL; 1753 if (m != n) { // Different; must merge 1754 switch (j) { 1755 // Frame pointer and Return Address never changes 1756 case TypeFunc::FramePtr:// Drop m, use the original value 1757 case TypeFunc::ReturnAdr: 1758 break; 1759 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1760 assert(phi == NULL, "the merge contains phis, not vice versa"); 1761 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1762 continue; 1763 default: // All normal stuff 1764 if (phi == NULL) { 1765 const JVMState* jvms = map()->jvms(); 1766 if (EliminateNestedLocks && 1767 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1768 // BoxLock nodes are not commoning. 1769 // Use old BoxLock node as merged box. 1770 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1771 // This assert also tests that nodes are BoxLock. 1772 assert(BoxLockNode::same_slot(n, m), "sanity"); 1773 C->gvn_replace_by(n, m); 1774 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1775 phi = ensure_phi(j, nophi); 1776 } 1777 } 1778 break; 1779 } 1780 } 1781 // At this point, n might be top if: 1782 // - there is no phi (because TypeFlow detected a conflict), or 1783 // - the corresponding control edges is top (a dead incoming path) 1784 // It is a bug if we create a phi which sees a garbage value on a live path. 1785 1786 if (phi != NULL) { 1787 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1788 assert(phi->region() == r, ""); 1789 phi->set_req(pnum, n); // Then add 'n' to the merge 1790 if (pnum == PhiNode::Input) { 1791 // Last merge for this Phi. 1792 // So far, Phis have had a reasonable type from ciTypeFlow. 1793 // Now _gvn will join that with the meet of current inputs. 1794 // BOTTOM is never permissible here, 'cause pessimistically 1795 // Phis of pointers cannot lose the basic pointer type. 1796 debug_only(const Type* bt1 = phi->bottom_type()); 1797 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1798 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1799 debug_only(const Type* bt2 = phi->bottom_type()); 1800 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1801 record_for_igvn(phi); 1802 } 1803 } 1804 } // End of for all values to be merged 1805 1806 if (pnum == PhiNode::Input && 1807 !r->in(0)) { // The occasional useless Region 1808 assert(control() == r, ""); 1809 set_control(r->nonnull_req()); 1810 } 1811 1812 map()->merge_replaced_nodes_with(newin); 1813 1814 // newin has been subsumed into the lazy merge, and is now dead. 1815 set_block(save_block); 1816 1817 stop(); // done with this guy, for now 1818 } 1819 1820 if (TraceOptoParse) { 1821 tty->print_cr(" on path %d", pnum); 1822 } 1823 1824 // Done with this parser state. 1825 assert(stopped(), ""); 1826 } 1827 1828 1829 //--------------------------merge_memory_edges--------------------------------- 1830 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1831 // (nophi means we must not create phis, because we already parsed here) 1832 assert(n != NULL, ""); 1833 // Merge the inputs to the MergeMems 1834 MergeMemNode* m = merged_memory(); 1835 1836 assert(control()->is_Region(), "must be merging to a region"); 1837 RegionNode* r = control()->as_Region(); 1838 1839 PhiNode* base = NULL; 1840 MergeMemNode* remerge = NULL; 1841 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1842 Node *p = mms.force_memory(); 1843 Node *q = mms.memory2(); 1844 if (mms.is_empty() && nophi) { 1845 // Trouble: No new splits allowed after a loop body is parsed. 1846 // Instead, wire the new split into a MergeMem on the backedge. 1847 // The optimizer will sort it out, slicing the phi. 1848 if (remerge == NULL) { 1849 guarantee(base != NULL, ""); 1850 assert(base->in(0) != NULL, "should not be xformed away"); 1851 remerge = MergeMemNode::make(base->in(pnum)); 1852 gvn().set_type(remerge, Type::MEMORY); 1853 base->set_req(pnum, remerge); 1854 } 1855 remerge->set_memory_at(mms.alias_idx(), q); 1856 continue; 1857 } 1858 assert(!q->is_MergeMem(), ""); 1859 PhiNode* phi; 1860 if (p != q) { 1861 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1862 } else { 1863 if (p->is_Phi() && p->as_Phi()->region() == r) 1864 phi = p->as_Phi(); 1865 else 1866 phi = NULL; 1867 } 1868 // Insert q into local phi 1869 if (phi != NULL) { 1870 assert(phi->region() == r, ""); 1871 p = phi; 1872 phi->set_req(pnum, q); 1873 if (mms.at_base_memory()) { 1874 base = phi; // delay transforming it 1875 } else if (pnum == 1) { 1876 record_for_igvn(phi); 1877 p = _gvn.transform_no_reclaim(phi); 1878 } 1879 mms.set_memory(p);// store back through the iterator 1880 } 1881 } 1882 // Transform base last, in case we must fiddle with remerging. 1883 if (base != NULL && pnum == 1) { 1884 record_for_igvn(base); 1885 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1886 } 1887 } 1888 1889 1890 //------------------------ensure_phis_everywhere------------------------------- 1891 void Parse::ensure_phis_everywhere() { 1892 ensure_phi(TypeFunc::I_O); 1893 1894 // Ensure a phi on all currently known memories. 1895 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1896 ensure_memory_phi(mms.alias_idx()); 1897 debug_only(mms.set_memory()); // keep the iterator happy 1898 } 1899 1900 // Note: This is our only chance to create phis for memory slices. 1901 // If we miss a slice that crops up later, it will have to be 1902 // merged into the base-memory phi that we are building here. 1903 // Later, the optimizer will comb out the knot, and build separate 1904 // phi-loops for each memory slice that matters. 1905 1906 // Monitors must nest nicely and not get confused amongst themselves. 1907 // Phi-ify everything up to the monitors, though. 1908 uint monoff = map()->jvms()->monoff(); 1909 uint nof_monitors = map()->jvms()->nof_monitors(); 1910 1911 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1912 bool check_elide_phi = block()->is_SEL_head(); 1913 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1914 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1915 ensure_phi(i); 1916 } 1917 } 1918 1919 // Even monitors need Phis, though they are well-structured. 1920 // This is true for OSR methods, and also for the rare cases where 1921 // a monitor object is the subject of a replace_in_map operation. 1922 // See bugs 4426707 and 5043395. 1923 for (uint m = 0; m < nof_monitors; m++) { 1924 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1925 } 1926 } 1927 1928 1929 //-----------------------------add_new_path------------------------------------ 1930 // Add a previously unaccounted predecessor to this block. 1931 int Parse::Block::add_new_path() { 1932 // If there is no map, return the lowest unused path number. 1933 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1934 1935 SafePointNode* map = start_map(); 1936 if (!map->control()->is_Region()) 1937 return pred_count()+1; // there may be a region some day 1938 RegionNode* r = map->control()->as_Region(); 1939 1940 // Add new path to the region. 1941 uint pnum = r->req(); 1942 r->add_req(NULL); 1943 1944 for (uint i = 1; i < map->req(); i++) { 1945 Node* n = map->in(i); 1946 if (i == TypeFunc::Memory) { 1947 // Ensure a phi on all currently known memories. 1948 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1949 Node* phi = mms.memory(); 1950 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1951 assert(phi->req() == pnum, "must be same size as region"); 1952 phi->add_req(NULL); 1953 } 1954 } 1955 } else { 1956 if (n->is_Phi() && n->as_Phi()->region() == r) { 1957 assert(n->req() == pnum, "must be same size as region"); 1958 n->add_req(NULL); 1959 } 1960 } 1961 } 1962 1963 return pnum; 1964 } 1965 1966 //------------------------------ensure_phi------------------------------------- 1967 // Turn the idx'th entry of the current map into a Phi 1968 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1969 SafePointNode* map = this->map(); 1970 Node* region = map->control(); 1971 assert(region->is_Region(), ""); 1972 1973 Node* o = map->in(idx); 1974 assert(o != NULL, ""); 1975 1976 if (o == top()) return NULL; // TOP always merges into TOP 1977 1978 if (o->is_Phi() && o->as_Phi()->region() == region) { 1979 return o->as_Phi(); 1980 } 1981 1982 // Now use a Phi here for merging 1983 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1984 const JVMState* jvms = map->jvms(); 1985 const Type* t = NULL; 1986 if (jvms->is_loc(idx)) { 1987 t = block()->local_type_at(idx - jvms->locoff()); 1988 } else if (jvms->is_stk(idx)) { 1989 t = block()->stack_type_at(idx - jvms->stkoff()); 1990 } else if (jvms->is_mon(idx)) { 1991 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1992 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1993 } else if ((uint)idx < TypeFunc::Parms) { 1994 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1995 } else { 1996 assert(false, "no type information for this phi"); 1997 } 1998 1999 // If the type falls to bottom, then this must be a local that 2000 // is mixing ints and oops or some such. Forcing it to top 2001 // makes it go dead. 2002 if (t == Type::BOTTOM) { 2003 map->set_req(idx, top()); 2004 return NULL; 2005 } 2006 2007 // Do not create phis for top either. 2008 // A top on a non-null control flow must be an unused even after the.phi. 2009 if (t == Type::TOP || t == Type::HALF) { 2010 map->set_req(idx, top()); 2011 return NULL; 2012 } 2013 2014 PhiNode* phi = PhiNode::make(region, o, t); 2015 gvn().set_type(phi, t); 2016 if (C->do_escape_analysis()) record_for_igvn(phi); 2017 map->set_req(idx, phi); 2018 return phi; 2019 } 2020 2021 //--------------------------ensure_memory_phi---------------------------------- 2022 // Turn the idx'th slice of the current memory into a Phi 2023 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2024 MergeMemNode* mem = merged_memory(); 2025 Node* region = control(); 2026 assert(region->is_Region(), ""); 2027 2028 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2029 assert(o != NULL && o != top(), ""); 2030 2031 PhiNode* phi; 2032 if (o->is_Phi() && o->as_Phi()->region() == region) { 2033 phi = o->as_Phi(); 2034 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2035 // clone the shared base memory phi to make a new memory split 2036 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2037 const Type* t = phi->bottom_type(); 2038 const TypePtr* adr_type = C->get_adr_type(idx); 2039 phi = phi->slice_memory(adr_type); 2040 gvn().set_type(phi, t); 2041 } 2042 return phi; 2043 } 2044 2045 // Now use a Phi here for merging 2046 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2047 const Type* t = o->bottom_type(); 2048 const TypePtr* adr_type = C->get_adr_type(idx); 2049 phi = PhiNode::make(region, o, t, adr_type); 2050 gvn().set_type(phi, t); 2051 if (idx == Compile::AliasIdxBot) 2052 mem->set_base_memory(phi); 2053 else 2054 mem->set_memory_at(idx, phi); 2055 return phi; 2056 } 2057 2058 //------------------------------call_register_finalizer----------------------- 2059 // Check the klass of the receiver and call register_finalizer if the 2060 // class need finalization. 2061 void Parse::call_register_finalizer() { 2062 Node* receiver = local(0); 2063 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 2064 "must have non-null instance type"); 2065 2066 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2067 if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) { 2068 // The type isn't known exactly so see if CHA tells us anything. 2069 ciInstanceKlass* ik = tinst->klass()->as_instance_klass(); 2070 if (!Dependencies::has_finalizable_subclass(ik)) { 2071 // No finalizable subclasses so skip the dynamic check. 2072 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2073 return; 2074 } 2075 } 2076 2077 // Insert a dynamic test for whether the instance needs 2078 // finalization. In general this will fold up since the concrete 2079 // class is often visible so the access flags are constant. 2080 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2081 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2082 2083 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2084 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2085 2086 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2087 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2088 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2089 2090 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2091 2092 RegionNode* result_rgn = new RegionNode(3); 2093 record_for_igvn(result_rgn); 2094 2095 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2096 result_rgn->init_req(1, skip_register); 2097 2098 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2099 set_control(needs_register); 2100 if (stopped()) { 2101 // There is no slow path. 2102 result_rgn->init_req(2, top()); 2103 } else { 2104 Node *call = make_runtime_call(RC_NO_LEAF, 2105 OptoRuntime::register_finalizer_Type(), 2106 OptoRuntime::register_finalizer_Java(), 2107 NULL, TypePtr::BOTTOM, 2108 receiver); 2109 make_slow_call_ex(call, env()->Throwable_klass(), true); 2110 2111 Node* fast_io = call->in(TypeFunc::I_O); 2112 Node* fast_mem = call->in(TypeFunc::Memory); 2113 // These two phis are pre-filled with copies of of the fast IO and Memory 2114 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2115 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2116 2117 result_rgn->init_req(2, control()); 2118 io_phi ->init_req(2, i_o()); 2119 mem_phi ->init_req(2, reset_memory()); 2120 2121 set_all_memory( _gvn.transform(mem_phi) ); 2122 set_i_o( _gvn.transform(io_phi) ); 2123 } 2124 2125 set_control( _gvn.transform(result_rgn) ); 2126 } 2127 2128 // Add check to deoptimize once holder klass is fully initialized. 2129 void Parse::clinit_deopt() { 2130 assert(C->has_method(), "only for normal compilations"); 2131 assert(depth() == 1, "only for main compiled method"); 2132 assert(is_normal_parse(), "no barrier needed on osr entry"); 2133 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2134 2135 set_parse_bci(0); 2136 2137 Node* holder = makecon(TypeKlassPtr::make(method()->holder())); 2138 guard_klass_being_initialized(holder); 2139 } 2140 2141 // Add check to deoptimize if RTM state is not ProfileRTM 2142 void Parse::rtm_deopt() { 2143 #if INCLUDE_RTM_OPT 2144 if (C->profile_rtm()) { 2145 assert(C->has_method(), "only for normal compilations"); 2146 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2147 assert(depth() == 1, "generate check only for main compiled method"); 2148 2149 // Set starting bci for uncommon trap. 2150 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2151 2152 // Load the rtm_state from the MethodData. 2153 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2154 Node* mdo = makecon(adr_type); 2155 int offset = MethodData::rtm_state_offset_in_bytes(); 2156 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2157 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2158 2159 // Separate Load from Cmp by Opaque. 2160 // In expand_macro_nodes() it will be replaced either 2161 // with this load when there are locks in the code 2162 // or with ProfileRTM (cmp->in(2)) otherwise so that 2163 // the check will fold. 2164 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2165 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2166 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2167 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2168 // Branch to failure if state was changed 2169 { BuildCutout unless(this, tst, PROB_ALWAYS); 2170 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2171 Deoptimization::Action_make_not_entrant); 2172 } 2173 } 2174 #endif 2175 } 2176 2177 void Parse::decrement_age() { 2178 MethodCounters* mc = method()->ensure_method_counters(); 2179 if (mc == NULL) { 2180 C->record_failure("Must have MCs"); 2181 return; 2182 } 2183 assert(!is_osr_parse(), "Not doing this for OSRs"); 2184 2185 // Set starting bci for uncommon trap. 2186 set_parse_bci(0); 2187 2188 const TypePtr* adr_type = TypeRawPtr::make((address)mc); 2189 Node* mc_adr = makecon(adr_type); 2190 Node* cnt_adr = basic_plus_adr(mc_adr, mc_adr, in_bytes(MethodCounters::nmethod_age_offset())); 2191 Node* cnt = make_load(control(), cnt_adr, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2192 Node* decr = _gvn.transform(new SubINode(cnt, makecon(TypeInt::ONE))); 2193 store_to_memory(control(), cnt_adr, decr, T_INT, adr_type, MemNode::unordered); 2194 Node *chk = _gvn.transform(new CmpINode(decr, makecon(TypeInt::ZERO))); 2195 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::gt)); 2196 { BuildCutout unless(this, tst, PROB_ALWAYS); 2197 uncommon_trap(Deoptimization::Reason_tenured, 2198 Deoptimization::Action_make_not_entrant); 2199 } 2200 } 2201 2202 //------------------------------return_current--------------------------------- 2203 // Append current _map to _exit_return 2204 void Parse::return_current(Node* value) { 2205 if (RegisterFinalizersAtInit && 2206 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2207 call_register_finalizer(); 2208 } 2209 2210 // Do not set_parse_bci, so that return goo is credited to the return insn. 2211 set_bci(InvocationEntryBci); 2212 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2213 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2214 } 2215 if (C->env()->dtrace_method_probes()) { 2216 make_dtrace_method_exit(method()); 2217 } 2218 SafePointNode* exit_return = _exits.map(); 2219 exit_return->in( TypeFunc::Control )->add_req( control() ); 2220 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2221 Node *mem = exit_return->in( TypeFunc::Memory ); 2222 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2223 if (mms.is_empty()) { 2224 // get a copy of the base memory, and patch just this one input 2225 const TypePtr* adr_type = mms.adr_type(C); 2226 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2227 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2228 gvn().set_type_bottom(phi); 2229 phi->del_req(phi->req()-1); // prepare to re-patch 2230 mms.set_memory(phi); 2231 } 2232 mms.memory()->add_req(mms.memory2()); 2233 } 2234 2235 // frame pointer is always same, already captured 2236 if (value != NULL) { 2237 // If returning oops to an interface-return, there is a silent free 2238 // cast from oop to interface allowed by the Verifier. Make it explicit 2239 // here. 2240 Node* phi = _exits.argument(0); 2241 const TypeInstPtr *tr = phi->bottom_type()->isa_instptr(); 2242 if (tr && tr->klass()->is_loaded() && 2243 tr->klass()->is_interface()) { 2244 const TypeInstPtr *tp = value->bottom_type()->isa_instptr(); 2245 if (tp && tp->klass()->is_loaded() && 2246 !tp->klass()->is_interface()) { 2247 // sharpen the type eagerly; this eases certain assert checking 2248 if (tp->higher_equal(TypeInstPtr::NOTNULL)) 2249 tr = tr->join_speculative(TypeInstPtr::NOTNULL)->is_instptr(); 2250 value = _gvn.transform(new CheckCastPPNode(0, value, tr)); 2251 } 2252 } else { 2253 // Also handle returns of oop-arrays to an arrays-of-interface return 2254 const TypeInstPtr* phi_tip; 2255 const TypeInstPtr* val_tip; 2256 Type::get_arrays_base_elements(phi->bottom_type(), value->bottom_type(), &phi_tip, &val_tip); 2257 if (phi_tip != NULL && phi_tip->is_loaded() && phi_tip->klass()->is_interface() && 2258 val_tip != NULL && val_tip->is_loaded() && !val_tip->klass()->is_interface()) { 2259 value = _gvn.transform(new CheckCastPPNode(0, value, phi->bottom_type())); 2260 } 2261 } 2262 phi->add_req(value); 2263 } 2264 2265 if (_first_return) { 2266 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2267 _first_return = false; 2268 } else { 2269 _exits.map()->merge_replaced_nodes_with(map()); 2270 } 2271 2272 stop_and_kill_map(); // This CFG path dies here 2273 } 2274 2275 2276 //------------------------------add_safepoint---------------------------------- 2277 void Parse::add_safepoint() { 2278 uint parms = TypeFunc::Parms+1; 2279 2280 // Clear out dead values from the debug info. 2281 kill_dead_locals(); 2282 2283 // Clone the JVM State 2284 SafePointNode *sfpnt = new SafePointNode(parms, NULL); 2285 2286 // Capture memory state BEFORE a SafePoint. Since we can block at a 2287 // SafePoint we need our GC state to be safe; i.e. we need all our current 2288 // write barriers (card marks) to not float down after the SafePoint so we 2289 // must read raw memory. Likewise we need all oop stores to match the card 2290 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2291 // state on a deopt). 2292 2293 // We do not need to WRITE the memory state after a SafePoint. The control 2294 // edge will keep card-marks and oop-stores from floating up from below a 2295 // SafePoint and our true dependency added here will keep them from floating 2296 // down below a SafePoint. 2297 2298 // Clone the current memory state 2299 Node* mem = MergeMemNode::make(map()->memory()); 2300 2301 mem = _gvn.transform(mem); 2302 2303 // Pass control through the safepoint 2304 sfpnt->init_req(TypeFunc::Control , control()); 2305 // Fix edges normally used by a call 2306 sfpnt->init_req(TypeFunc::I_O , top() ); 2307 sfpnt->init_req(TypeFunc::Memory , mem ); 2308 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2309 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2310 2311 // Create a node for the polling address 2312 Node *polladr; 2313 Node *thread = _gvn.transform(new ThreadLocalNode()); 2314 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2315 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2316 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2317 2318 // Fix up the JVM State edges 2319 add_safepoint_edges(sfpnt); 2320 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2321 set_control(transformed_sfpnt); 2322 2323 // Provide an edge from root to safepoint. This makes the safepoint 2324 // appear useful until the parse has completed. 2325 if (transformed_sfpnt->is_SafePoint()) { 2326 assert(C->root() != NULL, "Expect parse is still valid"); 2327 C->root()->add_prec(transformed_sfpnt); 2328 } 2329 } 2330 2331 #ifndef PRODUCT 2332 //------------------------show_parse_info-------------------------------------- 2333 void Parse::show_parse_info() { 2334 InlineTree* ilt = NULL; 2335 if (C->ilt() != NULL) { 2336 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2337 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2338 } 2339 if (PrintCompilation && Verbose) { 2340 if (depth() == 1) { 2341 if( ilt->count_inlines() ) { 2342 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2343 ilt->count_inline_bcs()); 2344 tty->cr(); 2345 } 2346 } else { 2347 if (method()->is_synchronized()) tty->print("s"); 2348 if (method()->has_exception_handlers()) tty->print("!"); 2349 // Check this is not the final compiled version 2350 if (C->trap_can_recompile()) { 2351 tty->print("-"); 2352 } else { 2353 tty->print(" "); 2354 } 2355 method()->print_short_name(); 2356 if (is_osr_parse()) { 2357 tty->print(" @ %d", osr_bci()); 2358 } 2359 tty->print(" (%d bytes)",method()->code_size()); 2360 if (ilt->count_inlines()) { 2361 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2362 ilt->count_inline_bcs()); 2363 } 2364 tty->cr(); 2365 } 2366 } 2367 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2368 // Print that we succeeded; suppress this message on the first osr parse. 2369 2370 if (method()->is_synchronized()) tty->print("s"); 2371 if (method()->has_exception_handlers()) tty->print("!"); 2372 // Check this is not the final compiled version 2373 if (C->trap_can_recompile() && depth() == 1) { 2374 tty->print("-"); 2375 } else { 2376 tty->print(" "); 2377 } 2378 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2379 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2380 method()->print_short_name(); 2381 if (is_osr_parse()) { 2382 tty->print(" @ %d", osr_bci()); 2383 } 2384 if (ilt->caller_bci() != -1) { 2385 tty->print(" @ %d", ilt->caller_bci()); 2386 } 2387 tty->print(" (%d bytes)",method()->code_size()); 2388 if (ilt->count_inlines()) { 2389 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2390 ilt->count_inline_bcs()); 2391 } 2392 tty->cr(); 2393 } 2394 } 2395 2396 2397 //------------------------------dump------------------------------------------- 2398 // Dump information associated with the bytecodes of current _method 2399 void Parse::dump() { 2400 if( method() != NULL ) { 2401 // Iterate over bytecodes 2402 ciBytecodeStream iter(method()); 2403 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2404 dump_bci( iter.cur_bci() ); 2405 tty->cr(); 2406 } 2407 } 2408 } 2409 2410 // Dump information associated with a byte code index, 'bci' 2411 void Parse::dump_bci(int bci) { 2412 // Output info on merge-points, cloning, and within _jsr..._ret 2413 // NYI 2414 tty->print(" bci:%d", bci); 2415 } 2416 2417 #endif