1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledMethod.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/icBuffer.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/g1/heapRegion.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/linkResolver.hpp" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/threadCritical.hpp" 75 #include "runtime/threadWXSetters.inline.hpp" 76 #include "runtime/vframe.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vframe_hp.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/preserveException.hpp" 81 82 83 // For debugging purposes: 84 // To force FullGCALot inside a runtime function, add the following two lines 85 // 86 // Universe::release_fullgc_alot_dummy(); 87 // MarkSweep::invoke(0, "Debugging"); 88 // 89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 90 91 92 93 94 // Compiled code entry points 95 address OptoRuntime::_new_instance_Java = nullptr; 96 address OptoRuntime::_new_array_Java = nullptr; 97 address OptoRuntime::_new_array_nozero_Java = nullptr; 98 address OptoRuntime::_multianewarray2_Java = nullptr; 99 address OptoRuntime::_multianewarray3_Java = nullptr; 100 address OptoRuntime::_multianewarray4_Java = nullptr; 101 address OptoRuntime::_multianewarray5_Java = nullptr; 102 address OptoRuntime::_multianewarrayN_Java = nullptr; 103 address OptoRuntime::_vtable_must_compile_Java = nullptr; 104 address OptoRuntime::_complete_monitor_locking_Java = nullptr; 105 address OptoRuntime::_monitor_notify_Java = nullptr; 106 address OptoRuntime::_monitor_notifyAll_Java = nullptr; 107 address OptoRuntime::_rethrow_Java = nullptr; 108 109 address OptoRuntime::_slow_arraycopy_Java = nullptr; 110 address OptoRuntime::_register_finalizer_Java = nullptr; 111 112 ExceptionBlob* OptoRuntime::_exception_blob; 113 114 // This should be called in an assertion at the start of OptoRuntime routines 115 // which are entered from compiled code (all of them) 116 #ifdef ASSERT 117 static bool check_compiled_frame(JavaThread* thread) { 118 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 119 RegisterMap map(thread, false); 120 frame caller = thread->last_frame().sender(&map); 121 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 122 return true; 123 } 124 #endif // ASSERT 125 126 127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 128 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 129 if (var == nullptr) { return false; } 130 131 bool OptoRuntime::generate(ciEnv* env) { 132 133 generate_exception_blob(); 134 135 // Note: tls: Means fetching the return oop out of the thread-local storage 136 // 137 // variable/name type-function-gen , runtime method ,fncy_jp, tls,retpc 138 // ------------------------------------------------------------------------------------------------------------------------------- 139 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true, false); 140 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true, false); 141 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true, false); 142 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true, false); 143 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true, false); 144 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true, false); 145 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true, false); 146 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true, false); 147 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false); 148 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false); 149 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false); 150 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , true ); 151 152 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false); 153 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false); 154 155 return true; 156 } 157 158 #undef gen 159 160 161 // Helper method to do generation of RunTimeStub's 162 address OptoRuntime::generate_stub(ciEnv* env, 163 TypeFunc_generator gen, address C_function, 164 const char *name, int is_fancy_jump, 165 bool pass_tls, 166 bool return_pc) { 167 168 // Matching the default directive, we currently have no method to match. 169 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 170 ResourceMark rm; 171 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 172 DirectivesStack::release(directive); 173 return C.stub_entry_point(); 174 } 175 176 const char* OptoRuntime::stub_name(address entry) { 177 #ifndef PRODUCT 178 CodeBlob* cb = CodeCache::find_blob(entry); 179 RuntimeStub* rs =(RuntimeStub *)cb; 180 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 181 return rs->name(); 182 #else 183 // Fast implementation for product mode (maybe it should be inlined too) 184 return "runtime stub"; 185 #endif 186 } 187 188 189 //============================================================================= 190 // Opto compiler runtime routines 191 //============================================================================= 192 193 194 //=============================allocation====================================== 195 // We failed the fast-path allocation. Now we need to do a scavenge or GC 196 // and try allocation again. 197 198 // object allocation 199 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 200 JRT_BLOCK; 201 #ifndef PRODUCT 202 SharedRuntime::_new_instance_ctr++; // new instance requires GC 203 #endif 204 assert(check_compiled_frame(current), "incorrect caller"); 205 206 // These checks are cheap to make and support reflective allocation. 207 int lh = klass->layout_helper(); 208 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 209 Handle holder(current, klass->klass_holder()); // keep the klass alive 210 klass->check_valid_for_instantiation(false, THREAD); 211 if (!HAS_PENDING_EXCEPTION) { 212 InstanceKlass::cast(klass)->initialize(THREAD); 213 } 214 } 215 216 if (!HAS_PENDING_EXCEPTION) { 217 // Scavenge and allocate an instance. 218 Handle holder(current, klass->klass_holder()); // keep the klass alive 219 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 220 current->set_vm_result(result); 221 222 // Pass oops back through thread local storage. Our apparent type to Java 223 // is that we return an oop, but we can block on exit from this routine and 224 // a GC can trash the oop in C's return register. The generated stub will 225 // fetch the oop from TLS after any possible GC. 226 } 227 228 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 229 JRT_BLOCK_END; 230 231 // inform GC that we won't do card marks for initializing writes. 232 SharedRuntime::on_slowpath_allocation_exit(current); 233 JRT_END 234 235 236 // array allocation 237 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 238 JRT_BLOCK; 239 #ifndef PRODUCT 240 SharedRuntime::_new_array_ctr++; // new array requires GC 241 #endif 242 assert(check_compiled_frame(current), "incorrect caller"); 243 244 // Scavenge and allocate an instance. 245 oop result; 246 247 if (array_type->is_typeArray_klass()) { 248 // The oopFactory likes to work with the element type. 249 // (We could bypass the oopFactory, since it doesn't add much value.) 250 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 251 result = oopFactory::new_typeArray(elem_type, len, THREAD); 252 } else { 253 // Although the oopFactory likes to work with the elem_type, 254 // the compiler prefers the array_type, since it must already have 255 // that latter value in hand for the fast path. 256 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 257 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 258 result = oopFactory::new_objArray(elem_type, len, THREAD); 259 } 260 261 // Pass oops back through thread local storage. Our apparent type to Java 262 // is that we return an oop, but we can block on exit from this routine and 263 // a GC can trash the oop in C's return register. The generated stub will 264 // fetch the oop from TLS after any possible GC. 265 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 266 current->set_vm_result(result); 267 JRT_BLOCK_END; 268 269 // inform GC that we won't do card marks for initializing writes. 270 SharedRuntime::on_slowpath_allocation_exit(current); 271 JRT_END 272 273 // array allocation without zeroing 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 275 JRT_BLOCK; 276 #ifndef PRODUCT 277 SharedRuntime::_new_array_ctr++; // new array requires GC 278 #endif 279 assert(check_compiled_frame(current), "incorrect caller"); 280 281 // Scavenge and allocate an instance. 282 oop result; 283 284 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 285 // The oopFactory likes to work with the element type. 286 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 287 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 288 289 // Pass oops back through thread local storage. Our apparent type to Java 290 // is that we return an oop, but we can block on exit from this routine and 291 // a GC can trash the oop in C's return register. The generated stub will 292 // fetch the oop from TLS after any possible GC. 293 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 294 current->set_vm_result(result); 295 JRT_BLOCK_END; 296 297 298 // inform GC that we won't do card marks for initializing writes. 299 SharedRuntime::on_slowpath_allocation_exit(current); 300 301 oop result = current->vm_result(); 302 if ((len > 0) && (result != nullptr) && 303 is_deoptimized_caller_frame(current)) { 304 // Zero array here if the caller is deoptimized. 305 int size = TypeArrayKlass::cast(array_type)->oop_size(result); 306 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 307 const size_t hs = arrayOopDesc::header_size(elem_type); 308 // Align to next 8 bytes to avoid trashing arrays's length. 309 const size_t aligned_hs = align_object_offset(hs); 310 HeapWord* obj = cast_from_oop<HeapWord*>(result); 311 if (aligned_hs > hs) { 312 Copy::zero_to_words(obj+hs, aligned_hs-hs); 313 } 314 // Optimized zeroing. 315 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 316 } 317 318 JRT_END 319 320 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 321 322 // multianewarray for 2 dimensions 323 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 324 #ifndef PRODUCT 325 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 326 #endif 327 assert(check_compiled_frame(current), "incorrect caller"); 328 assert(elem_type->is_klass(), "not a class"); 329 jint dims[2]; 330 dims[0] = len1; 331 dims[1] = len2; 332 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 333 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 334 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 335 current->set_vm_result(obj); 336 JRT_END 337 338 // multianewarray for 3 dimensions 339 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 340 #ifndef PRODUCT 341 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 342 #endif 343 assert(check_compiled_frame(current), "incorrect caller"); 344 assert(elem_type->is_klass(), "not a class"); 345 jint dims[3]; 346 dims[0] = len1; 347 dims[1] = len2; 348 dims[2] = len3; 349 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 350 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 351 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 352 current->set_vm_result(obj); 353 JRT_END 354 355 // multianewarray for 4 dimensions 356 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 357 #ifndef PRODUCT 358 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 359 #endif 360 assert(check_compiled_frame(current), "incorrect caller"); 361 assert(elem_type->is_klass(), "not a class"); 362 jint dims[4]; 363 dims[0] = len1; 364 dims[1] = len2; 365 dims[2] = len3; 366 dims[3] = len4; 367 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 368 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 369 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 370 current->set_vm_result(obj); 371 JRT_END 372 373 // multianewarray for 5 dimensions 374 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 375 #ifndef PRODUCT 376 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 377 #endif 378 assert(check_compiled_frame(current), "incorrect caller"); 379 assert(elem_type->is_klass(), "not a class"); 380 jint dims[5]; 381 dims[0] = len1; 382 dims[1] = len2; 383 dims[2] = len3; 384 dims[3] = len4; 385 dims[4] = len5; 386 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 387 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 388 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 389 current->set_vm_result(obj); 390 JRT_END 391 392 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 393 assert(check_compiled_frame(current), "incorrect caller"); 394 assert(elem_type->is_klass(), "not a class"); 395 assert(oop(dims)->is_typeArray(), "not an array"); 396 397 ResourceMark rm; 398 jint len = dims->length(); 399 assert(len > 0, "Dimensions array should contain data"); 400 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 401 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 402 c_dims, len); 403 404 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 405 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 406 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 407 current->set_vm_result(obj); 408 JRT_END 409 410 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 411 412 // Very few notify/notifyAll operations find any threads on the waitset, so 413 // the dominant fast-path is to simply return. 414 // Relatedly, it's critical that notify/notifyAll be fast in order to 415 // reduce lock hold times. 416 if (!SafepointSynchronize::is_synchronizing()) { 417 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 418 return; 419 } 420 } 421 422 // This is the case the fast-path above isn't provisioned to handle. 423 // The fast-path is designed to handle frequently arising cases in an efficient manner. 424 // (The fast-path is just a degenerate variant of the slow-path). 425 // Perform the dreaded state transition and pass control into the slow-path. 426 JRT_BLOCK; 427 Handle h_obj(current, obj); 428 ObjectSynchronizer::notify(h_obj, CHECK); 429 JRT_BLOCK_END; 430 JRT_END 431 432 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 433 434 if (!SafepointSynchronize::is_synchronizing() ) { 435 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 436 return; 437 } 438 } 439 440 // This is the case the fast-path above isn't provisioned to handle. 441 // The fast-path is designed to handle frequently arising cases in an efficient manner. 442 // (The fast-path is just a degenerate variant of the slow-path). 443 // Perform the dreaded state transition and pass control into the slow-path. 444 JRT_BLOCK; 445 Handle h_obj(current, obj); 446 ObjectSynchronizer::notifyall(h_obj, CHECK); 447 JRT_BLOCK_END; 448 JRT_END 449 450 const TypeFunc *OptoRuntime::new_instance_Type() { 451 // create input type (domain) 452 const Type **fields = TypeTuple::fields(1); 453 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 454 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 455 456 // create result type (range) 457 fields = TypeTuple::fields(1); 458 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 459 460 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 461 462 return TypeFunc::make(domain, range); 463 } 464 465 466 const TypeFunc *OptoRuntime::athrow_Type() { 467 // create input type (domain) 468 const Type **fields = TypeTuple::fields(1); 469 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 470 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 471 472 // create result type (range) 473 fields = TypeTuple::fields(0); 474 475 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 476 477 return TypeFunc::make(domain, range); 478 } 479 480 481 const TypeFunc *OptoRuntime::new_array_Type() { 482 // create input type (domain) 483 const Type **fields = TypeTuple::fields(2); 484 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 485 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 486 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 487 488 // create result type (range) 489 fields = TypeTuple::fields(1); 490 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 491 492 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 493 494 return TypeFunc::make(domain, range); 495 } 496 497 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 498 // create input type (domain) 499 const int nargs = ndim + 1; 500 const Type **fields = TypeTuple::fields(nargs); 501 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 502 for( int i = 1; i < nargs; i++ ) 503 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 504 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 505 506 // create result type (range) 507 fields = TypeTuple::fields(1); 508 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 509 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 510 511 return TypeFunc::make(domain, range); 512 } 513 514 const TypeFunc *OptoRuntime::multianewarray2_Type() { 515 return multianewarray_Type(2); 516 } 517 518 const TypeFunc *OptoRuntime::multianewarray3_Type() { 519 return multianewarray_Type(3); 520 } 521 522 const TypeFunc *OptoRuntime::multianewarray4_Type() { 523 return multianewarray_Type(4); 524 } 525 526 const TypeFunc *OptoRuntime::multianewarray5_Type() { 527 return multianewarray_Type(5); 528 } 529 530 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 531 // create input type (domain) 532 const Type **fields = TypeTuple::fields(2); 533 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 534 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 535 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 536 537 // create result type (range) 538 fields = TypeTuple::fields(1); 539 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 540 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 541 542 return TypeFunc::make(domain, range); 543 } 544 545 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 546 // create input type (domain) 547 const Type **fields = TypeTuple::fields(1); 548 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 549 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 550 551 // create result type (range) 552 fields = TypeTuple::fields(0); 553 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 554 555 return TypeFunc::make(domain, range); 556 } 557 558 //----------------------------------------------------------------------------- 559 // Monitor Handling 560 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 561 // create input type (domain) 562 const Type **fields = TypeTuple::fields(2); 563 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 564 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 565 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 566 567 // create result type (range) 568 fields = TypeTuple::fields(0); 569 570 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 571 572 return TypeFunc::make(domain,range); 573 } 574 575 576 //----------------------------------------------------------------------------- 577 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 578 // create input type (domain) 579 const Type **fields = TypeTuple::fields(3); 580 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 581 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 582 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 583 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 584 585 // create result type (range) 586 fields = TypeTuple::fields(0); 587 588 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 589 590 return TypeFunc::make(domain, range); 591 } 592 593 const TypeFunc *OptoRuntime::monitor_notify_Type() { 594 // create input type (domain) 595 const Type **fields = TypeTuple::fields(1); 596 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 597 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 598 599 // create result type (range) 600 fields = TypeTuple::fields(0); 601 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 602 return TypeFunc::make(domain, range); 603 } 604 605 const TypeFunc* OptoRuntime::flush_windows_Type() { 606 // create input type (domain) 607 const Type** fields = TypeTuple::fields(1); 608 fields[TypeFunc::Parms+0] = nullptr; // void 609 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 610 611 // create result type 612 fields = TypeTuple::fields(1); 613 fields[TypeFunc::Parms+0] = nullptr; // void 614 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 615 616 return TypeFunc::make(domain, range); 617 } 618 619 const TypeFunc* OptoRuntime::l2f_Type() { 620 // create input type (domain) 621 const Type **fields = TypeTuple::fields(2); 622 fields[TypeFunc::Parms+0] = TypeLong::LONG; 623 fields[TypeFunc::Parms+1] = Type::HALF; 624 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 625 626 // create result type (range) 627 fields = TypeTuple::fields(1); 628 fields[TypeFunc::Parms+0] = Type::FLOAT; 629 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 630 631 return TypeFunc::make(domain, range); 632 } 633 634 const TypeFunc* OptoRuntime::modf_Type() { 635 const Type **fields = TypeTuple::fields(2); 636 fields[TypeFunc::Parms+0] = Type::FLOAT; 637 fields[TypeFunc::Parms+1] = Type::FLOAT; 638 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 639 640 // create result type (range) 641 fields = TypeTuple::fields(1); 642 fields[TypeFunc::Parms+0] = Type::FLOAT; 643 644 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 645 646 return TypeFunc::make(domain, range); 647 } 648 649 const TypeFunc *OptoRuntime::Math_D_D_Type() { 650 // create input type (domain) 651 const Type **fields = TypeTuple::fields(2); 652 // Symbol* name of class to be loaded 653 fields[TypeFunc::Parms+0] = Type::DOUBLE; 654 fields[TypeFunc::Parms+1] = Type::HALF; 655 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 656 657 // create result type (range) 658 fields = TypeTuple::fields(2); 659 fields[TypeFunc::Parms+0] = Type::DOUBLE; 660 fields[TypeFunc::Parms+1] = Type::HALF; 661 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 662 663 return TypeFunc::make(domain, range); 664 } 665 666 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 667 // create input type (domain) 668 const Type **fields = TypeTuple::fields(num_arg); 669 // Symbol* name of class to be loaded 670 assert(num_arg > 0, "must have at least 1 input"); 671 for (uint i = 0; i < num_arg; i++) { 672 fields[TypeFunc::Parms+i] = in_type; 673 } 674 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 675 676 // create result type (range) 677 const uint num_ret = 1; 678 fields = TypeTuple::fields(num_ret); 679 fields[TypeFunc::Parms+0] = out_type; 680 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 681 682 return TypeFunc::make(domain, range); 683 } 684 685 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 686 const Type **fields = TypeTuple::fields(4); 687 fields[TypeFunc::Parms+0] = Type::DOUBLE; 688 fields[TypeFunc::Parms+1] = Type::HALF; 689 fields[TypeFunc::Parms+2] = Type::DOUBLE; 690 fields[TypeFunc::Parms+3] = Type::HALF; 691 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 692 693 // create result type (range) 694 fields = TypeTuple::fields(2); 695 fields[TypeFunc::Parms+0] = Type::DOUBLE; 696 fields[TypeFunc::Parms+1] = Type::HALF; 697 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 698 699 return TypeFunc::make(domain, range); 700 } 701 702 //-------------- currentTimeMillis, currentTimeNanos, etc 703 704 const TypeFunc* OptoRuntime::void_long_Type() { 705 // create input type (domain) 706 const Type **fields = TypeTuple::fields(0); 707 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 708 709 // create result type (range) 710 fields = TypeTuple::fields(2); 711 fields[TypeFunc::Parms+0] = TypeLong::LONG; 712 fields[TypeFunc::Parms+1] = Type::HALF; 713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 714 715 return TypeFunc::make(domain, range); 716 } 717 718 // arraycopy stub variations: 719 enum ArrayCopyType { 720 ac_fast, // void(ptr, ptr, size_t) 721 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 722 ac_slow, // void(ptr, int, ptr, int, int) 723 ac_generic // int(ptr, int, ptr, int, int) 724 }; 725 726 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 727 // create input type (domain) 728 int num_args = (act == ac_fast ? 3 : 5); 729 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 730 int argcnt = num_args; 731 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 732 const Type** fields = TypeTuple::fields(argcnt); 733 int argp = TypeFunc::Parms; 734 fields[argp++] = TypePtr::NOTNULL; // src 735 if (num_size_args == 0) { 736 fields[argp++] = TypeInt::INT; // src_pos 737 } 738 fields[argp++] = TypePtr::NOTNULL; // dest 739 if (num_size_args == 0) { 740 fields[argp++] = TypeInt::INT; // dest_pos 741 fields[argp++] = TypeInt::INT; // length 742 } 743 while (num_size_args-- > 0) { 744 fields[argp++] = TypeX_X; // size in whatevers (size_t) 745 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 746 } 747 if (act == ac_checkcast) { 748 fields[argp++] = TypePtr::NOTNULL; // super_klass 749 } 750 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 751 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 752 753 // create result type if needed 754 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 755 fields = TypeTuple::fields(1); 756 if (retcnt == 0) 757 fields[TypeFunc::Parms+0] = nullptr; // void 758 else 759 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 760 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 761 return TypeFunc::make(domain, range); 762 } 763 764 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 765 // This signature is simple: Two base pointers and a size_t. 766 return make_arraycopy_Type(ac_fast); 767 } 768 769 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 770 // An extension of fast_arraycopy_Type which adds type checking. 771 return make_arraycopy_Type(ac_checkcast); 772 } 773 774 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 775 // This signature is exactly the same as System.arraycopy. 776 // There are no intptr_t (int/long) arguments. 777 return make_arraycopy_Type(ac_slow); 778 } 779 780 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 781 // This signature is like System.arraycopy, except that it returns status. 782 return make_arraycopy_Type(ac_generic); 783 } 784 785 786 const TypeFunc* OptoRuntime::array_fill_Type() { 787 const Type** fields; 788 int argp = TypeFunc::Parms; 789 // create input type (domain): pointer, int, size_t 790 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 791 fields[argp++] = TypePtr::NOTNULL; 792 fields[argp++] = TypeInt::INT; 793 fields[argp++] = TypeX_X; // size in whatevers (size_t) 794 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 795 const TypeTuple *domain = TypeTuple::make(argp, fields); 796 797 // create result type 798 fields = TypeTuple::fields(1); 799 fields[TypeFunc::Parms+0] = nullptr; // void 800 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 801 802 return TypeFunc::make(domain, range); 803 } 804 805 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 806 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 807 // create input type (domain) 808 int num_args = 3; 809 int argcnt = num_args; 810 const Type** fields = TypeTuple::fields(argcnt); 811 int argp = TypeFunc::Parms; 812 fields[argp++] = TypePtr::NOTNULL; // src 813 fields[argp++] = TypePtr::NOTNULL; // dest 814 fields[argp++] = TypePtr::NOTNULL; // k array 815 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 816 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 817 818 // no result type needed 819 fields = TypeTuple::fields(1); 820 fields[TypeFunc::Parms+0] = nullptr; // void 821 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 822 return TypeFunc::make(domain, range); 823 } 824 825 /** 826 * int updateBytesCRC32(int crc, byte* b, int len) 827 */ 828 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 829 // create input type (domain) 830 int num_args = 3; 831 int argcnt = num_args; 832 const Type** fields = TypeTuple::fields(argcnt); 833 int argp = TypeFunc::Parms; 834 fields[argp++] = TypeInt::INT; // crc 835 fields[argp++] = TypePtr::NOTNULL; // src 836 fields[argp++] = TypeInt::INT; // len 837 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 838 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 839 840 // result type needed 841 fields = TypeTuple::fields(1); 842 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 843 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 844 return TypeFunc::make(domain, range); 845 } 846 847 /** 848 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 849 */ 850 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 851 // create input type (domain) 852 int num_args = 4; 853 int argcnt = num_args; 854 const Type** fields = TypeTuple::fields(argcnt); 855 int argp = TypeFunc::Parms; 856 fields[argp++] = TypeInt::INT; // crc 857 fields[argp++] = TypePtr::NOTNULL; // buf 858 fields[argp++] = TypeInt::INT; // len 859 fields[argp++] = TypePtr::NOTNULL; // table 860 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 861 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 862 863 // result type needed 864 fields = TypeTuple::fields(1); 865 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 866 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 867 return TypeFunc::make(domain, range); 868 } 869 870 /** 871 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 872 */ 873 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 874 // create input type (domain) 875 int num_args = 3; 876 int argcnt = num_args; 877 const Type** fields = TypeTuple::fields(argcnt); 878 int argp = TypeFunc::Parms; 879 fields[argp++] = TypeInt::INT; // crc 880 fields[argp++] = TypePtr::NOTNULL; // src + offset 881 fields[argp++] = TypeInt::INT; // len 882 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 883 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 884 885 // result type needed 886 fields = TypeTuple::fields(1); 887 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 888 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 889 return TypeFunc::make(domain, range); 890 } 891 892 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 893 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 894 // create input type (domain) 895 int num_args = 5; 896 int argcnt = num_args; 897 const Type** fields = TypeTuple::fields(argcnt); 898 int argp = TypeFunc::Parms; 899 fields[argp++] = TypePtr::NOTNULL; // src 900 fields[argp++] = TypePtr::NOTNULL; // dest 901 fields[argp++] = TypePtr::NOTNULL; // k array 902 fields[argp++] = TypePtr::NOTNULL; // r array 903 fields[argp++] = TypeInt::INT; // src len 904 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 905 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 906 907 // returning cipher len (int) 908 fields = TypeTuple::fields(1); 909 fields[TypeFunc::Parms+0] = TypeInt::INT; 910 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 911 return TypeFunc::make(domain, range); 912 } 913 914 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 915 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 916 // create input type (domain) 917 int num_args = 4; 918 int argcnt = num_args; 919 const Type** fields = TypeTuple::fields(argcnt); 920 int argp = TypeFunc::Parms; 921 fields[argp++] = TypePtr::NOTNULL; // src 922 fields[argp++] = TypePtr::NOTNULL; // dest 923 fields[argp++] = TypePtr::NOTNULL; // k array 924 fields[argp++] = TypeInt::INT; // src len 925 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 926 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 927 928 // returning cipher len (int) 929 fields = TypeTuple::fields(1); 930 fields[TypeFunc::Parms + 0] = TypeInt::INT; 931 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 932 return TypeFunc::make(domain, range); 933 } 934 935 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 936 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 937 // create input type (domain) 938 int num_args = 7; 939 int argcnt = num_args; 940 const Type** fields = TypeTuple::fields(argcnt); 941 int argp = TypeFunc::Parms; 942 fields[argp++] = TypePtr::NOTNULL; // src 943 fields[argp++] = TypePtr::NOTNULL; // dest 944 fields[argp++] = TypePtr::NOTNULL; // k array 945 fields[argp++] = TypePtr::NOTNULL; // counter array 946 fields[argp++] = TypeInt::INT; // src len 947 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 948 fields[argp++] = TypePtr::NOTNULL; // saved used addr 949 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 950 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 951 // returning cipher len (int) 952 fields = TypeTuple::fields(1); 953 fields[TypeFunc::Parms + 0] = TypeInt::INT; 954 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 955 return TypeFunc::make(domain, range); 956 } 957 958 /* 959 * void implCompress(byte[] buf, int ofs) 960 */ 961 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 962 // create input type (domain) 963 int num_args = is_sha3 ? 3 : 2; 964 int argcnt = num_args; 965 const Type** fields = TypeTuple::fields(argcnt); 966 int argp = TypeFunc::Parms; 967 fields[argp++] = TypePtr::NOTNULL; // buf 968 fields[argp++] = TypePtr::NOTNULL; // state 969 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length 970 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 971 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 972 973 // no result type needed 974 fields = TypeTuple::fields(1); 975 fields[TypeFunc::Parms+0] = nullptr; // void 976 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 977 return TypeFunc::make(domain, range); 978 } 979 980 /* 981 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 982 */ 983 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 984 // create input type (domain) 985 int num_args = is_sha3 ? 5 : 4; 986 int argcnt = num_args; 987 const Type** fields = TypeTuple::fields(argcnt); 988 int argp = TypeFunc::Parms; 989 fields[argp++] = TypePtr::NOTNULL; // buf 990 fields[argp++] = TypePtr::NOTNULL; // state 991 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length 992 fields[argp++] = TypeInt::INT; // ofs 993 fields[argp++] = TypeInt::INT; // limit 994 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 995 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 996 997 // returning ofs (int) 998 fields = TypeTuple::fields(1); 999 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1000 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1001 return TypeFunc::make(domain, range); 1002 } 1003 1004 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1005 // create input type (domain) 1006 int num_args = 6; 1007 int argcnt = num_args; 1008 const Type** fields = TypeTuple::fields(argcnt); 1009 int argp = TypeFunc::Parms; 1010 fields[argp++] = TypePtr::NOTNULL; // x 1011 fields[argp++] = TypeInt::INT; // xlen 1012 fields[argp++] = TypePtr::NOTNULL; // y 1013 fields[argp++] = TypeInt::INT; // ylen 1014 fields[argp++] = TypePtr::NOTNULL; // z 1015 fields[argp++] = TypeInt::INT; // zlen 1016 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1017 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1018 1019 // no result type needed 1020 fields = TypeTuple::fields(1); 1021 fields[TypeFunc::Parms+0] = nullptr; 1022 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1023 return TypeFunc::make(domain, range); 1024 } 1025 1026 const TypeFunc* OptoRuntime::squareToLen_Type() { 1027 // create input type (domain) 1028 int num_args = 4; 1029 int argcnt = num_args; 1030 const Type** fields = TypeTuple::fields(argcnt); 1031 int argp = TypeFunc::Parms; 1032 fields[argp++] = TypePtr::NOTNULL; // x 1033 fields[argp++] = TypeInt::INT; // len 1034 fields[argp++] = TypePtr::NOTNULL; // z 1035 fields[argp++] = TypeInt::INT; // zlen 1036 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1037 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1038 1039 // no result type needed 1040 fields = TypeTuple::fields(1); 1041 fields[TypeFunc::Parms+0] = nullptr; 1042 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1043 return TypeFunc::make(domain, range); 1044 } 1045 1046 // for mulAdd calls, 2 pointers and 3 ints, returning int 1047 const TypeFunc* OptoRuntime::mulAdd_Type() { 1048 // create input type (domain) 1049 int num_args = 5; 1050 int argcnt = num_args; 1051 const Type** fields = TypeTuple::fields(argcnt); 1052 int argp = TypeFunc::Parms; 1053 fields[argp++] = TypePtr::NOTNULL; // out 1054 fields[argp++] = TypePtr::NOTNULL; // in 1055 fields[argp++] = TypeInt::INT; // offset 1056 fields[argp++] = TypeInt::INT; // len 1057 fields[argp++] = TypeInt::INT; // k 1058 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1059 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1060 1061 // returning carry (int) 1062 fields = TypeTuple::fields(1); 1063 fields[TypeFunc::Parms+0] = TypeInt::INT; 1064 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1065 return TypeFunc::make(domain, range); 1066 } 1067 1068 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1069 // create input type (domain) 1070 int num_args = 7; 1071 int argcnt = num_args; 1072 const Type** fields = TypeTuple::fields(argcnt); 1073 int argp = TypeFunc::Parms; 1074 fields[argp++] = TypePtr::NOTNULL; // a 1075 fields[argp++] = TypePtr::NOTNULL; // b 1076 fields[argp++] = TypePtr::NOTNULL; // n 1077 fields[argp++] = TypeInt::INT; // len 1078 fields[argp++] = TypeLong::LONG; // inv 1079 fields[argp++] = Type::HALF; 1080 fields[argp++] = TypePtr::NOTNULL; // result 1081 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1082 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1083 1084 // result type needed 1085 fields = TypeTuple::fields(1); 1086 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1087 1088 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1089 return TypeFunc::make(domain, range); 1090 } 1091 1092 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1093 // create input type (domain) 1094 int num_args = 6; 1095 int argcnt = num_args; 1096 const Type** fields = TypeTuple::fields(argcnt); 1097 int argp = TypeFunc::Parms; 1098 fields[argp++] = TypePtr::NOTNULL; // a 1099 fields[argp++] = TypePtr::NOTNULL; // n 1100 fields[argp++] = TypeInt::INT; // len 1101 fields[argp++] = TypeLong::LONG; // inv 1102 fields[argp++] = Type::HALF; 1103 fields[argp++] = TypePtr::NOTNULL; // result 1104 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1105 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1106 1107 // result type needed 1108 fields = TypeTuple::fields(1); 1109 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1110 1111 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1112 return TypeFunc::make(domain, range); 1113 } 1114 1115 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1116 int argcnt = 5; 1117 const Type** fields = TypeTuple::fields(argcnt); 1118 int argp = TypeFunc::Parms; 1119 fields[argp++] = TypePtr::NOTNULL; // newArr 1120 fields[argp++] = TypePtr::NOTNULL; // oldArr 1121 fields[argp++] = TypeInt::INT; // newIdx 1122 fields[argp++] = TypeInt::INT; // shiftCount 1123 fields[argp++] = TypeInt::INT; // numIter 1124 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1125 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1126 1127 // no result type needed 1128 fields = TypeTuple::fields(1); 1129 fields[TypeFunc::Parms + 0] = nullptr; 1130 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1131 return TypeFunc::make(domain, range); 1132 } 1133 1134 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1135 // create input type (domain) 1136 int num_args = 4; 1137 int argcnt = num_args; 1138 const Type** fields = TypeTuple::fields(argcnt); 1139 int argp = TypeFunc::Parms; 1140 fields[argp++] = TypePtr::NOTNULL; // obja 1141 fields[argp++] = TypePtr::NOTNULL; // objb 1142 fields[argp++] = TypeInt::INT; // length, number of elements 1143 fields[argp++] = TypeInt::INT; // log2scale, element size 1144 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1145 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1146 1147 //return mismatch index (int) 1148 fields = TypeTuple::fields(1); 1149 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1150 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1151 return TypeFunc::make(domain, range); 1152 } 1153 1154 // GHASH block processing 1155 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1156 int argcnt = 4; 1157 1158 const Type** fields = TypeTuple::fields(argcnt); 1159 int argp = TypeFunc::Parms; 1160 fields[argp++] = TypePtr::NOTNULL; // state 1161 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1162 fields[argp++] = TypePtr::NOTNULL; // data 1163 fields[argp++] = TypeInt::INT; // blocks 1164 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1165 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1166 1167 // result type needed 1168 fields = TypeTuple::fields(1); 1169 fields[TypeFunc::Parms+0] = nullptr; // void 1170 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1171 return TypeFunc::make(domain, range); 1172 } 1173 // Base64 encode function 1174 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1175 int argcnt = 6; 1176 1177 const Type** fields = TypeTuple::fields(argcnt); 1178 int argp = TypeFunc::Parms; 1179 fields[argp++] = TypePtr::NOTNULL; // src array 1180 fields[argp++] = TypeInt::INT; // offset 1181 fields[argp++] = TypeInt::INT; // length 1182 fields[argp++] = TypePtr::NOTNULL; // dest array 1183 fields[argp++] = TypeInt::INT; // dp 1184 fields[argp++] = TypeInt::BOOL; // isURL 1185 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1186 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1187 1188 // result type needed 1189 fields = TypeTuple::fields(1); 1190 fields[TypeFunc::Parms + 0] = nullptr; // void 1191 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1192 return TypeFunc::make(domain, range); 1193 } 1194 // Base64 decode function 1195 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1196 int argcnt = 7; 1197 1198 const Type** fields = TypeTuple::fields(argcnt); 1199 int argp = TypeFunc::Parms; 1200 fields[argp++] = TypePtr::NOTNULL; // src array 1201 fields[argp++] = TypeInt::INT; // src offset 1202 fields[argp++] = TypeInt::INT; // src length 1203 fields[argp++] = TypePtr::NOTNULL; // dest array 1204 fields[argp++] = TypeInt::INT; // dest offset 1205 fields[argp++] = TypeInt::BOOL; // isURL 1206 fields[argp++] = TypeInt::BOOL; // isMIME 1207 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1208 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1209 1210 // result type needed 1211 fields = TypeTuple::fields(1); 1212 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1213 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1214 return TypeFunc::make(domain, range); 1215 } 1216 1217 //------------- Interpreter state access for on stack replacement 1218 const TypeFunc* OptoRuntime::osr_end_Type() { 1219 // create input type (domain) 1220 const Type **fields = TypeTuple::fields(1); 1221 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1222 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1223 1224 // create result type 1225 fields = TypeTuple::fields(1); 1226 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1227 fields[TypeFunc::Parms+0] = nullptr; // void 1228 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1229 return TypeFunc::make(domain, range); 1230 } 1231 1232 //------------------------------------------------------------------------------------- 1233 // register policy 1234 1235 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1236 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1237 switch (register_save_policy[reg]) { 1238 case 'C': return false; //SOC 1239 case 'E': return true ; //SOE 1240 case 'N': return false; //NS 1241 case 'A': return false; //AS 1242 } 1243 ShouldNotReachHere(); 1244 return false; 1245 } 1246 1247 //----------------------------------------------------------------------- 1248 // Exceptions 1249 // 1250 1251 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1252 1253 // The method is an entry that is always called by a C++ method not 1254 // directly from compiled code. Compiled code will call the C++ method following. 1255 // We can't allow async exception to be installed during exception processing. 1256 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1257 // Do not confuse exception_oop with pending_exception. The exception_oop 1258 // is only used to pass arguments into the method. Not for general 1259 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1260 // the runtime stubs checks this on exit. 1261 assert(current->exception_oop() != nullptr, "exception oop is found"); 1262 address handler_address = nullptr; 1263 1264 Handle exception(current, current->exception_oop()); 1265 address pc = current->exception_pc(); 1266 1267 // Clear out the exception oop and pc since looking up an 1268 // exception handler can cause class loading, which might throw an 1269 // exception and those fields are expected to be clear during 1270 // normal bytecode execution. 1271 current->clear_exception_oop_and_pc(); 1272 1273 LogTarget(Info, exceptions) lt; 1274 if (lt.is_enabled()) { 1275 ResourceMark rm; 1276 LogStream ls(lt); 1277 trace_exception(&ls, exception(), pc, ""); 1278 } 1279 1280 // for AbortVMOnException flag 1281 Exceptions::debug_check_abort(exception); 1282 1283 #ifdef ASSERT 1284 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1285 // should throw an exception here 1286 ShouldNotReachHere(); 1287 } 1288 #endif 1289 1290 // new exception handling: this method is entered only from adapters 1291 // exceptions from compiled java methods are handled in compiled code 1292 // using rethrow node 1293 1294 nm = CodeCache::find_nmethod(pc); 1295 assert(nm != nullptr, "No NMethod found"); 1296 if (nm->is_native_method()) { 1297 fatal("Native method should not have path to exception handling"); 1298 } else { 1299 // we are switching to old paradigm: search for exception handler in caller_frame 1300 // instead in exception handler of caller_frame.sender() 1301 1302 if (JvmtiExport::can_post_on_exceptions()) { 1303 // "Full-speed catching" is not necessary here, 1304 // since we're notifying the VM on every catch. 1305 // Force deoptimization and the rest of the lookup 1306 // will be fine. 1307 deoptimize_caller_frame(current); 1308 } 1309 1310 // Check the stack guard pages. If enabled, look for handler in this frame; 1311 // otherwise, forcibly unwind the frame. 1312 // 1313 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1314 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1315 bool deopting = false; 1316 if (nm->is_deopt_pc(pc)) { 1317 deopting = true; 1318 RegisterMap map(current, false); 1319 frame deoptee = current->last_frame().sender(&map); 1320 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1321 // Adjust the pc back to the original throwing pc 1322 pc = deoptee.pc(); 1323 } 1324 1325 // If we are forcing an unwind because of stack overflow then deopt is 1326 // irrelevant since we are throwing the frame away anyway. 1327 1328 if (deopting && !force_unwind) { 1329 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1330 } else { 1331 1332 handler_address = 1333 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1334 1335 if (handler_address == nullptr) { 1336 bool recursive_exception = false; 1337 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1338 assert (handler_address != nullptr, "must have compiled handler"); 1339 // Update the exception cache only when the unwind was not forced 1340 // and there didn't happen another exception during the computation of the 1341 // compiled exception handler. Checking for exception oop equality is not 1342 // sufficient because some exceptions are pre-allocated and reused. 1343 if (!force_unwind && !recursive_exception) { 1344 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1345 } 1346 } else { 1347 #ifdef ASSERT 1348 bool recursive_exception = false; 1349 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1350 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1351 p2i(handler_address), p2i(computed_address)); 1352 #endif 1353 } 1354 } 1355 1356 current->set_exception_pc(pc); 1357 current->set_exception_handler_pc(handler_address); 1358 1359 // Check if the exception PC is a MethodHandle call site. 1360 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1361 } 1362 1363 // Restore correct return pc. Was saved above. 1364 current->set_exception_oop(exception()); 1365 return handler_address; 1366 1367 JRT_END 1368 1369 // We are entering here from exception_blob 1370 // If there is a compiled exception handler in this method, we will continue there; 1371 // otherwise we will unwind the stack and continue at the caller of top frame method 1372 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1373 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1374 // we looked up the handler for has been deoptimized in the meantime. If it has been 1375 // we must not use the handler and instead return the deopt blob. 1376 address OptoRuntime::handle_exception_C(JavaThread* current) { 1377 // 1378 // We are in Java not VM and in debug mode we have a NoHandleMark 1379 // 1380 #ifndef PRODUCT 1381 SharedRuntime::_find_handler_ctr++; // find exception handler 1382 #endif 1383 debug_only(NoHandleMark __hm;) 1384 nmethod* nm = nullptr; 1385 address handler_address = nullptr; 1386 { 1387 // Enter the VM 1388 1389 ResetNoHandleMark rnhm; 1390 handler_address = handle_exception_C_helper(current, nm); 1391 } 1392 1393 // Back in java: Use no oops, DON'T safepoint 1394 1395 // Now check to see if the handler we are returning is in a now 1396 // deoptimized frame 1397 1398 if (nm != nullptr) { 1399 RegisterMap map(current, false); 1400 frame caller = current->last_frame().sender(&map); 1401 #ifdef ASSERT 1402 assert(caller.is_compiled_frame(), "must be"); 1403 #endif // ASSERT 1404 if (caller.is_deoptimized_frame()) { 1405 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1406 } 1407 } 1408 return handler_address; 1409 } 1410 1411 //------------------------------rethrow---------------------------------------- 1412 // We get here after compiled code has executed a 'RethrowNode'. The callee 1413 // is either throwing or rethrowing an exception. The callee-save registers 1414 // have been restored, synchronized objects have been unlocked and the callee 1415 // stack frame has been removed. The return address was passed in. 1416 // Exception oop is passed as the 1st argument. This routine is then called 1417 // from the stub. On exit, we know where to jump in the caller's code. 1418 // After this C code exits, the stub will pop his frame and end in a jump 1419 // (instead of a return). We enter the caller's default handler. 1420 // 1421 // This must be JRT_LEAF: 1422 // - caller will not change its state as we cannot block on exit, 1423 // therefore raw_exception_handler_for_return_address is all it takes 1424 // to handle deoptimized blobs 1425 // 1426 // However, there needs to be a safepoint check in the middle! So compiled 1427 // safepoints are completely watertight. 1428 // 1429 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1430 // 1431 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1432 // 1433 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1434 // The frame we rethrow the exception to might not have been processed by the GC yet. 1435 // The stack watermark barrier takes care of detecting that and ensuring the frame 1436 // has updated oops. 1437 StackWatermarkSet::after_unwind(thread); 1438 1439 #ifndef PRODUCT 1440 SharedRuntime::_rethrow_ctr++; // count rethrows 1441 #endif 1442 assert (exception != nullptr, "should have thrown a NullPointerException"); 1443 #ifdef ASSERT 1444 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1445 // should throw an exception here 1446 ShouldNotReachHere(); 1447 } 1448 #endif 1449 1450 thread->set_vm_result(exception); 1451 // Frame not compiled (handles deoptimization blob) 1452 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1453 } 1454 1455 1456 const TypeFunc *OptoRuntime::rethrow_Type() { 1457 // create input type (domain) 1458 const Type **fields = TypeTuple::fields(1); 1459 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1460 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1461 1462 // create result type (range) 1463 fields = TypeTuple::fields(1); 1464 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1465 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1466 1467 return TypeFunc::make(domain, range); 1468 } 1469 1470 1471 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1472 // Deoptimize the caller before continuing, as the compiled 1473 // exception handler table may not be valid. 1474 if (!StressCompiledExceptionHandlers && doit) { 1475 deoptimize_caller_frame(thread); 1476 } 1477 } 1478 1479 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1480 // Called from within the owner thread, so no need for safepoint 1481 RegisterMap reg_map(thread); 1482 frame stub_frame = thread->last_frame(); 1483 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1484 frame caller_frame = stub_frame.sender(®_map); 1485 1486 // Deoptimize the caller frame. 1487 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1488 } 1489 1490 1491 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1492 // Called from within the owner thread, so no need for safepoint 1493 RegisterMap reg_map(thread); 1494 frame stub_frame = thread->last_frame(); 1495 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1496 frame caller_frame = stub_frame.sender(®_map); 1497 return caller_frame.is_deoptimized_frame(); 1498 } 1499 1500 1501 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1502 // create input type (domain) 1503 const Type **fields = TypeTuple::fields(1); 1504 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1505 // // The JavaThread* is passed to each routine as the last argument 1506 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1507 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1508 1509 // create result type (range) 1510 fields = TypeTuple::fields(0); 1511 1512 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1513 1514 return TypeFunc::make(domain,range); 1515 } 1516 1517 #if INCLUDE_JFR 1518 const TypeFunc *OptoRuntime::get_class_id_intrinsic_Type() { 1519 // create input type (domain) 1520 const Type **fields = TypeTuple::fields(1); 1521 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1522 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1523 1524 // create result type (range) 1525 fields = TypeTuple::fields(0); 1526 1527 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1528 1529 return TypeFunc::make(domain,range); 1530 } 1531 #endif 1532 1533 //----------------------------------------------------------------------------- 1534 // Dtrace support. entry and exit probes have the same signature 1535 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1536 // create input type (domain) 1537 const Type **fields = TypeTuple::fields(2); 1538 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1539 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1540 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1541 1542 // create result type (range) 1543 fields = TypeTuple::fields(0); 1544 1545 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1546 1547 return TypeFunc::make(domain,range); 1548 } 1549 1550 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1551 // create input type (domain) 1552 const Type **fields = TypeTuple::fields(2); 1553 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1554 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1555 1556 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1557 1558 // create result type (range) 1559 fields = TypeTuple::fields(0); 1560 1561 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1562 1563 return TypeFunc::make(domain,range); 1564 } 1565 1566 1567 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current)) 1568 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1569 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1570 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1571 JRT_END 1572 1573 //----------------------------------------------------------------------------- 1574 1575 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 1576 1577 // 1578 // dump the collected NamedCounters. 1579 // 1580 void OptoRuntime::print_named_counters() { 1581 int total_lock_count = 0; 1582 int eliminated_lock_count = 0; 1583 1584 NamedCounter* c = _named_counters; 1585 while (c) { 1586 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1587 int count = c->count(); 1588 if (count > 0) { 1589 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1590 if (Verbose) { 1591 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1592 } 1593 total_lock_count += count; 1594 if (eliminated) { 1595 eliminated_lock_count += count; 1596 } 1597 } 1598 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1599 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1600 if (blc->nonzero()) { 1601 tty->print_cr("%s", c->name()); 1602 blc->print_on(tty); 1603 } 1604 #if INCLUDE_RTM_OPT 1605 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1606 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1607 if (rlc->nonzero()) { 1608 tty->print_cr("%s", c->name()); 1609 rlc->print_on(tty); 1610 } 1611 #endif 1612 } 1613 c = c->next(); 1614 } 1615 if (total_lock_count > 0) { 1616 tty->print_cr("dynamic locks: %d", total_lock_count); 1617 if (eliminated_lock_count) { 1618 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1619 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1620 } 1621 } 1622 } 1623 1624 // 1625 // Allocate a new NamedCounter. The JVMState is used to generate the 1626 // name which consists of method@line for the inlining tree. 1627 // 1628 1629 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1630 int max_depth = youngest_jvms->depth(); 1631 1632 // Visit scopes from youngest to oldest. 1633 bool first = true; 1634 stringStream st; 1635 for (int depth = max_depth; depth >= 1; depth--) { 1636 JVMState* jvms = youngest_jvms->of_depth(depth); 1637 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 1638 if (!first) { 1639 st.print(" "); 1640 } else { 1641 first = false; 1642 } 1643 int bci = jvms->bci(); 1644 if (bci < 0) bci = 0; 1645 if (m != nullptr) { 1646 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1647 } else { 1648 st.print("no method"); 1649 } 1650 st.print("@%d", bci); 1651 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1652 } 1653 NamedCounter* c; 1654 if (tag == NamedCounter::BiasedLockingCounter) { 1655 c = new BiasedLockingNamedCounter(st.as_string()); 1656 } else if (tag == NamedCounter::RTMLockingCounter) { 1657 c = new RTMLockingNamedCounter(st.as_string()); 1658 } else { 1659 c = new NamedCounter(st.as_string(), tag); 1660 } 1661 1662 // atomically add the new counter to the head of the list. We only 1663 // add counters so this is safe. 1664 NamedCounter* head; 1665 do { 1666 c->set_next(nullptr); 1667 head = _named_counters; 1668 c->set_next(head); 1669 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1670 return c; 1671 } 1672 1673 int trace_exception_counter = 0; 1674 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1675 trace_exception_counter++; 1676 stringStream tempst; 1677 1678 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1679 exception_oop->print_value_on(&tempst); 1680 tempst.print(" in "); 1681 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1682 if (blob->is_compiled()) { 1683 CompiledMethod* cm = blob->as_compiled_method_or_null(); 1684 cm->method()->print_value_on(&tempst); 1685 } else if (blob->is_runtime_stub()) { 1686 tempst.print("<runtime-stub>"); 1687 } else { 1688 tempst.print("<unknown>"); 1689 } 1690 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1691 tempst.print("]"); 1692 1693 st->print_raw_cr(tempst.as_string()); 1694 }