1 /*
2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/vmClasses.hpp"
27 #include "classfile/vmSymbols.hpp"
28 #include "code/codeCache.hpp"
29 #include "code/compiledMethod.inline.hpp"
30 #include "code/compiledIC.hpp"
31 #include "code/icBuffer.hpp"
32 #include "code/nmethod.hpp"
33 #include "code/pcDesc.hpp"
34 #include "code/scopeDesc.hpp"
35 #include "code/vtableStubs.hpp"
36 #include "compiler/compileBroker.hpp"
37 #include "compiler/oopMap.hpp"
38 #include "gc/g1/heapRegion.hpp"
39 #include "gc/shared/barrierSet.hpp"
40 #include "gc/shared/collectedHeap.hpp"
41 #include "gc/shared/gcLocker.hpp"
42 #include "interpreter/bytecode.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/linkResolver.hpp"
45 #include "logging/log.hpp"
46 #include "logging/logStream.hpp"
47 #include "memory/oopFactory.hpp"
48 #include "memory/resourceArea.hpp"
49 #include "oops/objArrayKlass.hpp"
50 #include "oops/klass.inline.hpp"
51 #include "oops/oop.inline.hpp"
52 #include "oops/typeArrayOop.inline.hpp"
53 #include "opto/ad.hpp"
54 #include "opto/addnode.hpp"
55 #include "opto/callnode.hpp"
56 #include "opto/cfgnode.hpp"
57 #include "opto/graphKit.hpp"
58 #include "opto/machnode.hpp"
59 #include "opto/matcher.hpp"
60 #include "opto/memnode.hpp"
61 #include "opto/mulnode.hpp"
62 #include "opto/output.hpp"
63 #include "opto/runtime.hpp"
64 #include "opto/subnode.hpp"
65 #include "prims/jvmtiExport.hpp"
66 #include "runtime/atomic.hpp"
67 #include "runtime/frame.inline.hpp"
68 #include "runtime/handles.inline.hpp"
69 #include "runtime/interfaceSupport.inline.hpp"
70 #include "runtime/javaCalls.hpp"
71 #include "runtime/sharedRuntime.hpp"
72 #include "runtime/signature.hpp"
73 #include "runtime/stackWatermarkSet.hpp"
74 #include "runtime/threadCritical.hpp"
75 #include "runtime/threadWXSetters.inline.hpp"
76 #include "runtime/vframe.hpp"
77 #include "runtime/vframeArray.hpp"
78 #include "runtime/vframe_hp.hpp"
79 #include "utilities/copy.hpp"
80 #include "utilities/preserveException.hpp"
81
82
83 // For debugging purposes:
84 // To force FullGCALot inside a runtime function, add the following two lines
85 //
86 // Universe::release_fullgc_alot_dummy();
87 // MarkSweep::invoke(0, "Debugging");
88 //
89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
90
91
92
93
94 // Compiled code entry points
95 address OptoRuntime::_new_instance_Java = nullptr;
96 address OptoRuntime::_new_array_Java = nullptr;
97 address OptoRuntime::_new_array_nozero_Java = nullptr;
98 address OptoRuntime::_multianewarray2_Java = nullptr;
99 address OptoRuntime::_multianewarray3_Java = nullptr;
100 address OptoRuntime::_multianewarray4_Java = nullptr;
101 address OptoRuntime::_multianewarray5_Java = nullptr;
102 address OptoRuntime::_multianewarrayN_Java = nullptr;
103 address OptoRuntime::_vtable_must_compile_Java = nullptr;
104 address OptoRuntime::_complete_monitor_locking_Java = nullptr;
105 address OptoRuntime::_monitor_notify_Java = nullptr;
106 address OptoRuntime::_monitor_notifyAll_Java = nullptr;
107 address OptoRuntime::_rethrow_Java = nullptr;
108
109 address OptoRuntime::_slow_arraycopy_Java = nullptr;
110 address OptoRuntime::_register_finalizer_Java = nullptr;
111
112 ExceptionBlob* OptoRuntime::_exception_blob;
113
114 // This should be called in an assertion at the start of OptoRuntime routines
115 // which are entered from compiled code (all of them)
116 #ifdef ASSERT
117 static bool check_compiled_frame(JavaThread* thread) {
118 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
119 RegisterMap map(thread, false);
120 frame caller = thread->last_frame().sender(&map);
121 assert(caller.is_compiled_frame(), "not being called from compiled like code");
122 return true;
123 }
124 #endif // ASSERT
125
126
127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
128 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
129 if (var == nullptr) { return false; }
130
131 bool OptoRuntime::generate(ciEnv* env) {
132
133 generate_exception_blob();
134
135 // Note: tls: Means fetching the return oop out of the thread-local storage
136 //
137 // variable/name type-function-gen , runtime method ,fncy_jp, tls,retpc
138 // -------------------------------------------------------------------------------------------------------------------------------
139 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true, false);
140 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true, false);
141 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true, false);
142 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true, false);
143 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true, false);
144 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true, false);
145 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true, false);
146 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true, false);
147 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false);
148 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false);
149 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false);
150 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , true );
151
152 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false);
153 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false);
154
155 return true;
156 }
157
158 #undef gen
159
160
161 // Helper method to do generation of RunTimeStub's
162 address OptoRuntime::generate_stub(ciEnv* env,
163 TypeFunc_generator gen, address C_function,
164 const char *name, int is_fancy_jump,
165 bool pass_tls,
166 bool return_pc) {
167
168 // Matching the default directive, we currently have no method to match.
169 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
170 ResourceMark rm;
171 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
172 DirectivesStack::release(directive);
173 return C.stub_entry_point();
174 }
175
176 const char* OptoRuntime::stub_name(address entry) {
177 #ifndef PRODUCT
178 CodeBlob* cb = CodeCache::find_blob(entry);
179 RuntimeStub* rs =(RuntimeStub *)cb;
180 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
181 return rs->name();
182 #else
183 // Fast implementation for product mode (maybe it should be inlined too)
184 return "runtime stub";
185 #endif
186 }
187
188
189 //=============================================================================
190 // Opto compiler runtime routines
191 //=============================================================================
192
193
194 //=============================allocation======================================
195 // We failed the fast-path allocation. Now we need to do a scavenge or GC
196 // and try allocation again.
197
198 // object allocation
199 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
200 JRT_BLOCK;
201 #ifndef PRODUCT
202 SharedRuntime::_new_instance_ctr++; // new instance requires GC
203 #endif
204 assert(check_compiled_frame(current), "incorrect caller");
205
206 // These checks are cheap to make and support reflective allocation.
207 int lh = klass->layout_helper();
208 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
209 Handle holder(current, klass->klass_holder()); // keep the klass alive
210 klass->check_valid_for_instantiation(false, THREAD);
211 if (!HAS_PENDING_EXCEPTION) {
212 InstanceKlass::cast(klass)->initialize(THREAD);
213 }
214 }
215
216 if (!HAS_PENDING_EXCEPTION) {
217 // Scavenge and allocate an instance.
218 Handle holder(current, klass->klass_holder()); // keep the klass alive
219 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
220 current->set_vm_result(result);
221
222 // Pass oops back through thread local storage. Our apparent type to Java
223 // is that we return an oop, but we can block on exit from this routine and
224 // a GC can trash the oop in C's return register. The generated stub will
225 // fetch the oop from TLS after any possible GC.
226 }
227
228 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
229 JRT_BLOCK_END;
230
231 // inform GC that we won't do card marks for initializing writes.
232 SharedRuntime::on_slowpath_allocation_exit(current);
233 JRT_END
234
235
236 // array allocation
237 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
238 JRT_BLOCK;
239 #ifndef PRODUCT
240 SharedRuntime::_new_array_ctr++; // new array requires GC
241 #endif
242 assert(check_compiled_frame(current), "incorrect caller");
243
244 // Scavenge and allocate an instance.
245 oop result;
246
247 if (array_type->is_typeArray_klass()) {
248 // The oopFactory likes to work with the element type.
249 // (We could bypass the oopFactory, since it doesn't add much value.)
250 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
251 result = oopFactory::new_typeArray(elem_type, len, THREAD);
252 } else {
253 // Although the oopFactory likes to work with the elem_type,
254 // the compiler prefers the array_type, since it must already have
255 // that latter value in hand for the fast path.
256 Handle holder(current, array_type->klass_holder()); // keep the array klass alive
257 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
258 result = oopFactory::new_objArray(elem_type, len, THREAD);
259 }
260
261 // Pass oops back through thread local storage. Our apparent type to Java
262 // is that we return an oop, but we can block on exit from this routine and
263 // a GC can trash the oop in C's return register. The generated stub will
264 // fetch the oop from TLS after any possible GC.
265 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
266 current->set_vm_result(result);
267 JRT_BLOCK_END;
268
269 // inform GC that we won't do card marks for initializing writes.
270 SharedRuntime::on_slowpath_allocation_exit(current);
271 JRT_END
272
273 // array allocation without zeroing
274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
275 JRT_BLOCK;
276 #ifndef PRODUCT
277 SharedRuntime::_new_array_ctr++; // new array requires GC
278 #endif
279 assert(check_compiled_frame(current), "incorrect caller");
280
281 // Scavenge and allocate an instance.
282 oop result;
283
284 assert(array_type->is_typeArray_klass(), "should be called only for type array");
285 // The oopFactory likes to work with the element type.
286 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
287 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
288
289 // Pass oops back through thread local storage. Our apparent type to Java
290 // is that we return an oop, but we can block on exit from this routine and
291 // a GC can trash the oop in C's return register. The generated stub will
292 // fetch the oop from TLS after any possible GC.
293 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
294 current->set_vm_result(result);
295 JRT_BLOCK_END;
296
297
298 // inform GC that we won't do card marks for initializing writes.
299 SharedRuntime::on_slowpath_allocation_exit(current);
300
301 oop result = current->vm_result();
302 if ((len > 0) && (result != nullptr) &&
303 is_deoptimized_caller_frame(current)) {
304 // Zero array here if the caller is deoptimized.
305 int size = TypeArrayKlass::cast(array_type)->oop_size(result);
306 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
307 const size_t hs = arrayOopDesc::header_size(elem_type);
308 // Align to next 8 bytes to avoid trashing arrays's length.
309 const size_t aligned_hs = align_object_offset(hs);
310 HeapWord* obj = cast_from_oop<HeapWord*>(result);
311 if (aligned_hs > hs) {
312 Copy::zero_to_words(obj+hs, aligned_hs-hs);
313 }
314 // Optimized zeroing.
315 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
316 }
317
318 JRT_END
319
320 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
321
322 // multianewarray for 2 dimensions
323 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
324 #ifndef PRODUCT
325 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension
326 #endif
327 assert(check_compiled_frame(current), "incorrect caller");
328 assert(elem_type->is_klass(), "not a class");
329 jint dims[2];
330 dims[0] = len1;
331 dims[1] = len2;
332 Handle holder(current, elem_type->klass_holder()); // keep the klass alive
333 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
334 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
335 current->set_vm_result(obj);
336 JRT_END
337
338 // multianewarray for 3 dimensions
339 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
340 #ifndef PRODUCT
341 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension
342 #endif
343 assert(check_compiled_frame(current), "incorrect caller");
344 assert(elem_type->is_klass(), "not a class");
345 jint dims[3];
346 dims[0] = len1;
347 dims[1] = len2;
348 dims[2] = len3;
349 Handle holder(current, elem_type->klass_holder()); // keep the klass alive
350 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
351 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
352 current->set_vm_result(obj);
353 JRT_END
354
355 // multianewarray for 4 dimensions
356 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
357 #ifndef PRODUCT
358 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension
359 #endif
360 assert(check_compiled_frame(current), "incorrect caller");
361 assert(elem_type->is_klass(), "not a class");
362 jint dims[4];
363 dims[0] = len1;
364 dims[1] = len2;
365 dims[2] = len3;
366 dims[3] = len4;
367 Handle holder(current, elem_type->klass_holder()); // keep the klass alive
368 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
369 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
370 current->set_vm_result(obj);
371 JRT_END
372
373 // multianewarray for 5 dimensions
374 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
375 #ifndef PRODUCT
376 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension
377 #endif
378 assert(check_compiled_frame(current), "incorrect caller");
379 assert(elem_type->is_klass(), "not a class");
380 jint dims[5];
381 dims[0] = len1;
382 dims[1] = len2;
383 dims[2] = len3;
384 dims[3] = len4;
385 dims[4] = len5;
386 Handle holder(current, elem_type->klass_holder()); // keep the klass alive
387 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
388 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
389 current->set_vm_result(obj);
390 JRT_END
391
392 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
393 assert(check_compiled_frame(current), "incorrect caller");
394 assert(elem_type->is_klass(), "not a class");
395 assert(oop(dims)->is_typeArray(), "not an array");
396
397 ResourceMark rm;
398 jint len = dims->length();
399 assert(len > 0, "Dimensions array should contain data");
400 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
401 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
402 c_dims, len);
403
404 Handle holder(current, elem_type->klass_holder()); // keep the klass alive
405 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
406 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
407 current->set_vm_result(obj);
408 JRT_END
409
410 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
411
412 // Very few notify/notifyAll operations find any threads on the waitset, so
413 // the dominant fast-path is to simply return.
414 // Relatedly, it's critical that notify/notifyAll be fast in order to
415 // reduce lock hold times.
416 if (!SafepointSynchronize::is_synchronizing()) {
417 if (ObjectSynchronizer::quick_notify(obj, current, false)) {
418 return;
419 }
420 }
421
422 // This is the case the fast-path above isn't provisioned to handle.
423 // The fast-path is designed to handle frequently arising cases in an efficient manner.
424 // (The fast-path is just a degenerate variant of the slow-path).
425 // Perform the dreaded state transition and pass control into the slow-path.
426 JRT_BLOCK;
427 Handle h_obj(current, obj);
428 ObjectSynchronizer::notify(h_obj, CHECK);
429 JRT_BLOCK_END;
430 JRT_END
431
432 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
433
434 if (!SafepointSynchronize::is_synchronizing() ) {
435 if (ObjectSynchronizer::quick_notify(obj, current, true)) {
436 return;
437 }
438 }
439
440 // This is the case the fast-path above isn't provisioned to handle.
441 // The fast-path is designed to handle frequently arising cases in an efficient manner.
442 // (The fast-path is just a degenerate variant of the slow-path).
443 // Perform the dreaded state transition and pass control into the slow-path.
444 JRT_BLOCK;
445 Handle h_obj(current, obj);
446 ObjectSynchronizer::notifyall(h_obj, CHECK);
447 JRT_BLOCK_END;
448 JRT_END
449
450 const TypeFunc *OptoRuntime::new_instance_Type() {
451 // create input type (domain)
452 const Type **fields = TypeTuple::fields(1);
453 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
454 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
455
456 // create result type (range)
457 fields = TypeTuple::fields(1);
458 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
459
460 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
461
462 return TypeFunc::make(domain, range);
463 }
464
465
466 const TypeFunc *OptoRuntime::athrow_Type() {
467 // create input type (domain)
468 const Type **fields = TypeTuple::fields(1);
469 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
470 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
471
472 // create result type (range)
473 fields = TypeTuple::fields(0);
474
475 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
476
477 return TypeFunc::make(domain, range);
478 }
479
480
481 const TypeFunc *OptoRuntime::new_array_Type() {
482 // create input type (domain)
483 const Type **fields = TypeTuple::fields(2);
484 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
485 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size
486 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
487
488 // create result type (range)
489 fields = TypeTuple::fields(1);
490 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
491
492 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
493
494 return TypeFunc::make(domain, range);
495 }
496
497 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
498 // create input type (domain)
499 const int nargs = ndim + 1;
500 const Type **fields = TypeTuple::fields(nargs);
501 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
502 for( int i = 1; i < nargs; i++ )
503 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size
504 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
505
506 // create result type (range)
507 fields = TypeTuple::fields(1);
508 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
509 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
510
511 return TypeFunc::make(domain, range);
512 }
513
514 const TypeFunc *OptoRuntime::multianewarray2_Type() {
515 return multianewarray_Type(2);
516 }
517
518 const TypeFunc *OptoRuntime::multianewarray3_Type() {
519 return multianewarray_Type(3);
520 }
521
522 const TypeFunc *OptoRuntime::multianewarray4_Type() {
523 return multianewarray_Type(4);
524 }
525
526 const TypeFunc *OptoRuntime::multianewarray5_Type() {
527 return multianewarray_Type(5);
528 }
529
530 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
531 // create input type (domain)
532 const Type **fields = TypeTuple::fields(2);
533 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass
534 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes
535 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
536
537 // create result type (range)
538 fields = TypeTuple::fields(1);
539 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
540 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
541
542 return TypeFunc::make(domain, range);
543 }
544
545 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
546 // create input type (domain)
547 const Type **fields = TypeTuple::fields(1);
548 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
549 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
550
551 // create result type (range)
552 fields = TypeTuple::fields(0);
553 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
554
555 return TypeFunc::make(domain, range);
556 }
557
558 //-----------------------------------------------------------------------------
559 // Monitor Handling
560 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
561 // create input type (domain)
562 const Type **fields = TypeTuple::fields(2);
563 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
564 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock
565 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
566
567 // create result type (range)
568 fields = TypeTuple::fields(0);
569
570 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
571
572 return TypeFunc::make(domain,range);
573 }
574
575
576 //-----------------------------------------------------------------------------
577 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
578 // create input type (domain)
579 const Type **fields = TypeTuple::fields(3);
580 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
581 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock
582 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self)
583 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
584
585 // create result type (range)
586 fields = TypeTuple::fields(0);
587
588 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
589
590 return TypeFunc::make(domain, range);
591 }
592
593 const TypeFunc *OptoRuntime::monitor_notify_Type() {
594 // create input type (domain)
595 const Type **fields = TypeTuple::fields(1);
596 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked
597 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
598
599 // create result type (range)
600 fields = TypeTuple::fields(0);
601 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
602 return TypeFunc::make(domain, range);
603 }
604
605 const TypeFunc* OptoRuntime::flush_windows_Type() {
606 // create input type (domain)
607 const Type** fields = TypeTuple::fields(1);
608 fields[TypeFunc::Parms+0] = nullptr; // void
609 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
610
611 // create result type
612 fields = TypeTuple::fields(1);
613 fields[TypeFunc::Parms+0] = nullptr; // void
614 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
615
616 return TypeFunc::make(domain, range);
617 }
618
619 const TypeFunc* OptoRuntime::l2f_Type() {
620 // create input type (domain)
621 const Type **fields = TypeTuple::fields(2);
622 fields[TypeFunc::Parms+0] = TypeLong::LONG;
623 fields[TypeFunc::Parms+1] = Type::HALF;
624 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
625
626 // create result type (range)
627 fields = TypeTuple::fields(1);
628 fields[TypeFunc::Parms+0] = Type::FLOAT;
629 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
630
631 return TypeFunc::make(domain, range);
632 }
633
634 const TypeFunc* OptoRuntime::modf_Type() {
635 const Type **fields = TypeTuple::fields(2);
636 fields[TypeFunc::Parms+0] = Type::FLOAT;
637 fields[TypeFunc::Parms+1] = Type::FLOAT;
638 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
639
640 // create result type (range)
641 fields = TypeTuple::fields(1);
642 fields[TypeFunc::Parms+0] = Type::FLOAT;
643
644 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
645
646 return TypeFunc::make(domain, range);
647 }
648
649 const TypeFunc *OptoRuntime::Math_D_D_Type() {
650 // create input type (domain)
651 const Type **fields = TypeTuple::fields(2);
652 // Symbol* name of class to be loaded
653 fields[TypeFunc::Parms+0] = Type::DOUBLE;
654 fields[TypeFunc::Parms+1] = Type::HALF;
655 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
656
657 // create result type (range)
658 fields = TypeTuple::fields(2);
659 fields[TypeFunc::Parms+0] = Type::DOUBLE;
660 fields[TypeFunc::Parms+1] = Type::HALF;
661 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
662
663 return TypeFunc::make(domain, range);
664 }
665
666 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
667 // create input type (domain)
668 const Type **fields = TypeTuple::fields(num_arg);
669 // Symbol* name of class to be loaded
670 assert(num_arg > 0, "must have at least 1 input");
671 for (uint i = 0; i < num_arg; i++) {
672 fields[TypeFunc::Parms+i] = in_type;
673 }
674 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
675
676 // create result type (range)
677 const uint num_ret = 1;
678 fields = TypeTuple::fields(num_ret);
679 fields[TypeFunc::Parms+0] = out_type;
680 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
681
682 return TypeFunc::make(domain, range);
683 }
684
685 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
686 const Type **fields = TypeTuple::fields(4);
687 fields[TypeFunc::Parms+0] = Type::DOUBLE;
688 fields[TypeFunc::Parms+1] = Type::HALF;
689 fields[TypeFunc::Parms+2] = Type::DOUBLE;
690 fields[TypeFunc::Parms+3] = Type::HALF;
691 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
692
693 // create result type (range)
694 fields = TypeTuple::fields(2);
695 fields[TypeFunc::Parms+0] = Type::DOUBLE;
696 fields[TypeFunc::Parms+1] = Type::HALF;
697 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
698
699 return TypeFunc::make(domain, range);
700 }
701
702 //-------------- currentTimeMillis, currentTimeNanos, etc
703
704 const TypeFunc* OptoRuntime::void_long_Type() {
705 // create input type (domain)
706 const Type **fields = TypeTuple::fields(0);
707 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
708
709 // create result type (range)
710 fields = TypeTuple::fields(2);
711 fields[TypeFunc::Parms+0] = TypeLong::LONG;
712 fields[TypeFunc::Parms+1] = Type::HALF;
713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
714
715 return TypeFunc::make(domain, range);
716 }
717
718 // arraycopy stub variations:
719 enum ArrayCopyType {
720 ac_fast, // void(ptr, ptr, size_t)
721 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr)
722 ac_slow, // void(ptr, int, ptr, int, int)
723 ac_generic // int(ptr, int, ptr, int, int)
724 };
725
726 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
727 // create input type (domain)
728 int num_args = (act == ac_fast ? 3 : 5);
729 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
730 int argcnt = num_args;
731 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
732 const Type** fields = TypeTuple::fields(argcnt);
733 int argp = TypeFunc::Parms;
734 fields[argp++] = TypePtr::NOTNULL; // src
735 if (num_size_args == 0) {
736 fields[argp++] = TypeInt::INT; // src_pos
737 }
738 fields[argp++] = TypePtr::NOTNULL; // dest
739 if (num_size_args == 0) {
740 fields[argp++] = TypeInt::INT; // dest_pos
741 fields[argp++] = TypeInt::INT; // length
742 }
743 while (num_size_args-- > 0) {
744 fields[argp++] = TypeX_X; // size in whatevers (size_t)
745 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
746 }
747 if (act == ac_checkcast) {
748 fields[argp++] = TypePtr::NOTNULL; // super_klass
749 }
750 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
751 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
752
753 // create result type if needed
754 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
755 fields = TypeTuple::fields(1);
756 if (retcnt == 0)
757 fields[TypeFunc::Parms+0] = nullptr; // void
758 else
759 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
760 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
761 return TypeFunc::make(domain, range);
762 }
763
764 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
765 // This signature is simple: Two base pointers and a size_t.
766 return make_arraycopy_Type(ac_fast);
767 }
768
769 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
770 // An extension of fast_arraycopy_Type which adds type checking.
771 return make_arraycopy_Type(ac_checkcast);
772 }
773
774 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
775 // This signature is exactly the same as System.arraycopy.
776 // There are no intptr_t (int/long) arguments.
777 return make_arraycopy_Type(ac_slow);
778 }
779
780 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
781 // This signature is like System.arraycopy, except that it returns status.
782 return make_arraycopy_Type(ac_generic);
783 }
784
785
786 const TypeFunc* OptoRuntime::array_fill_Type() {
787 const Type** fields;
788 int argp = TypeFunc::Parms;
789 // create input type (domain): pointer, int, size_t
790 fields = TypeTuple::fields(3 LP64_ONLY( + 1));
791 fields[argp++] = TypePtr::NOTNULL;
792 fields[argp++] = TypeInt::INT;
793 fields[argp++] = TypeX_X; // size in whatevers (size_t)
794 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
795 const TypeTuple *domain = TypeTuple::make(argp, fields);
796
797 // create result type
798 fields = TypeTuple::fields(1);
799 fields[TypeFunc::Parms+0] = nullptr; // void
800 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
801
802 return TypeFunc::make(domain, range);
803 }
804
805 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
806 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
807 // create input type (domain)
808 int num_args = 3;
809 int argcnt = num_args;
810 const Type** fields = TypeTuple::fields(argcnt);
811 int argp = TypeFunc::Parms;
812 fields[argp++] = TypePtr::NOTNULL; // src
813 fields[argp++] = TypePtr::NOTNULL; // dest
814 fields[argp++] = TypePtr::NOTNULL; // k array
815 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
816 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
817
818 // no result type needed
819 fields = TypeTuple::fields(1);
820 fields[TypeFunc::Parms+0] = nullptr; // void
821 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
822 return TypeFunc::make(domain, range);
823 }
824
825 /**
826 * int updateBytesCRC32(int crc, byte* b, int len)
827 */
828 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
829 // create input type (domain)
830 int num_args = 3;
831 int argcnt = num_args;
832 const Type** fields = TypeTuple::fields(argcnt);
833 int argp = TypeFunc::Parms;
834 fields[argp++] = TypeInt::INT; // crc
835 fields[argp++] = TypePtr::NOTNULL; // src
836 fields[argp++] = TypeInt::INT; // len
837 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
838 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
839
840 // result type needed
841 fields = TypeTuple::fields(1);
842 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
843 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
844 return TypeFunc::make(domain, range);
845 }
846
847 /**
848 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
849 */
850 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
851 // create input type (domain)
852 int num_args = 4;
853 int argcnt = num_args;
854 const Type** fields = TypeTuple::fields(argcnt);
855 int argp = TypeFunc::Parms;
856 fields[argp++] = TypeInt::INT; // crc
857 fields[argp++] = TypePtr::NOTNULL; // buf
858 fields[argp++] = TypeInt::INT; // len
859 fields[argp++] = TypePtr::NOTNULL; // table
860 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
861 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
862
863 // result type needed
864 fields = TypeTuple::fields(1);
865 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
866 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
867 return TypeFunc::make(domain, range);
868 }
869
870 /**
871 * int updateBytesAdler32(int adler, bytes* b, int off, int len)
872 */
873 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
874 // create input type (domain)
875 int num_args = 3;
876 int argcnt = num_args;
877 const Type** fields = TypeTuple::fields(argcnt);
878 int argp = TypeFunc::Parms;
879 fields[argp++] = TypeInt::INT; // crc
880 fields[argp++] = TypePtr::NOTNULL; // src + offset
881 fields[argp++] = TypeInt::INT; // len
882 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
883 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
884
885 // result type needed
886 fields = TypeTuple::fields(1);
887 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
888 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
889 return TypeFunc::make(domain, range);
890 }
891
892 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
893 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
894 // create input type (domain)
895 int num_args = 5;
896 int argcnt = num_args;
897 const Type** fields = TypeTuple::fields(argcnt);
898 int argp = TypeFunc::Parms;
899 fields[argp++] = TypePtr::NOTNULL; // src
900 fields[argp++] = TypePtr::NOTNULL; // dest
901 fields[argp++] = TypePtr::NOTNULL; // k array
902 fields[argp++] = TypePtr::NOTNULL; // r array
903 fields[argp++] = TypeInt::INT; // src len
904 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
905 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
906
907 // returning cipher len (int)
908 fields = TypeTuple::fields(1);
909 fields[TypeFunc::Parms+0] = TypeInt::INT;
910 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
911 return TypeFunc::make(domain, range);
912 }
913
914 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
915 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
916 // create input type (domain)
917 int num_args = 4;
918 int argcnt = num_args;
919 const Type** fields = TypeTuple::fields(argcnt);
920 int argp = TypeFunc::Parms;
921 fields[argp++] = TypePtr::NOTNULL; // src
922 fields[argp++] = TypePtr::NOTNULL; // dest
923 fields[argp++] = TypePtr::NOTNULL; // k array
924 fields[argp++] = TypeInt::INT; // src len
925 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
926 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
927
928 // returning cipher len (int)
929 fields = TypeTuple::fields(1);
930 fields[TypeFunc::Parms + 0] = TypeInt::INT;
931 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
932 return TypeFunc::make(domain, range);
933 }
934
935 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
936 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
937 // create input type (domain)
938 int num_args = 7;
939 int argcnt = num_args;
940 const Type** fields = TypeTuple::fields(argcnt);
941 int argp = TypeFunc::Parms;
942 fields[argp++] = TypePtr::NOTNULL; // src
943 fields[argp++] = TypePtr::NOTNULL; // dest
944 fields[argp++] = TypePtr::NOTNULL; // k array
945 fields[argp++] = TypePtr::NOTNULL; // counter array
946 fields[argp++] = TypeInt::INT; // src len
947 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
948 fields[argp++] = TypePtr::NOTNULL; // saved used addr
949 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
950 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
951 // returning cipher len (int)
952 fields = TypeTuple::fields(1);
953 fields[TypeFunc::Parms + 0] = TypeInt::INT;
954 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
955 return TypeFunc::make(domain, range);
956 }
957
958 /*
959 * void implCompress(byte[] buf, int ofs)
960 */
961 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
962 // create input type (domain)
963 int num_args = is_sha3 ? 3 : 2;
964 int argcnt = num_args;
965 const Type** fields = TypeTuple::fields(argcnt);
966 int argp = TypeFunc::Parms;
967 fields[argp++] = TypePtr::NOTNULL; // buf
968 fields[argp++] = TypePtr::NOTNULL; // state
969 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
970 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
971 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
972
973 // no result type needed
974 fields = TypeTuple::fields(1);
975 fields[TypeFunc::Parms+0] = nullptr; // void
976 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
977 return TypeFunc::make(domain, range);
978 }
979
980 /*
981 * int implCompressMultiBlock(byte[] b, int ofs, int limit)
982 */
983 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
984 // create input type (domain)
985 int num_args = is_sha3 ? 5 : 4;
986 int argcnt = num_args;
987 const Type** fields = TypeTuple::fields(argcnt);
988 int argp = TypeFunc::Parms;
989 fields[argp++] = TypePtr::NOTNULL; // buf
990 fields[argp++] = TypePtr::NOTNULL; // state
991 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
992 fields[argp++] = TypeInt::INT; // ofs
993 fields[argp++] = TypeInt::INT; // limit
994 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
995 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
996
997 // returning ofs (int)
998 fields = TypeTuple::fields(1);
999 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1000 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1001 return TypeFunc::make(domain, range);
1002 }
1003
1004 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1005 // create input type (domain)
1006 int num_args = 6;
1007 int argcnt = num_args;
1008 const Type** fields = TypeTuple::fields(argcnt);
1009 int argp = TypeFunc::Parms;
1010 fields[argp++] = TypePtr::NOTNULL; // x
1011 fields[argp++] = TypeInt::INT; // xlen
1012 fields[argp++] = TypePtr::NOTNULL; // y
1013 fields[argp++] = TypeInt::INT; // ylen
1014 fields[argp++] = TypePtr::NOTNULL; // z
1015 fields[argp++] = TypeInt::INT; // zlen
1016 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1017 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1018
1019 // no result type needed
1020 fields = TypeTuple::fields(1);
1021 fields[TypeFunc::Parms+0] = nullptr;
1022 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1023 return TypeFunc::make(domain, range);
1024 }
1025
1026 const TypeFunc* OptoRuntime::squareToLen_Type() {
1027 // create input type (domain)
1028 int num_args = 4;
1029 int argcnt = num_args;
1030 const Type** fields = TypeTuple::fields(argcnt);
1031 int argp = TypeFunc::Parms;
1032 fields[argp++] = TypePtr::NOTNULL; // x
1033 fields[argp++] = TypeInt::INT; // len
1034 fields[argp++] = TypePtr::NOTNULL; // z
1035 fields[argp++] = TypeInt::INT; // zlen
1036 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1037 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1038
1039 // no result type needed
1040 fields = TypeTuple::fields(1);
1041 fields[TypeFunc::Parms+0] = nullptr;
1042 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1043 return TypeFunc::make(domain, range);
1044 }
1045
1046 // for mulAdd calls, 2 pointers and 3 ints, returning int
1047 const TypeFunc* OptoRuntime::mulAdd_Type() {
1048 // create input type (domain)
1049 int num_args = 5;
1050 int argcnt = num_args;
1051 const Type** fields = TypeTuple::fields(argcnt);
1052 int argp = TypeFunc::Parms;
1053 fields[argp++] = TypePtr::NOTNULL; // out
1054 fields[argp++] = TypePtr::NOTNULL; // in
1055 fields[argp++] = TypeInt::INT; // offset
1056 fields[argp++] = TypeInt::INT; // len
1057 fields[argp++] = TypeInt::INT; // k
1058 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1059 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1060
1061 // returning carry (int)
1062 fields = TypeTuple::fields(1);
1063 fields[TypeFunc::Parms+0] = TypeInt::INT;
1064 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1065 return TypeFunc::make(domain, range);
1066 }
1067
1068 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1069 // create input type (domain)
1070 int num_args = 7;
1071 int argcnt = num_args;
1072 const Type** fields = TypeTuple::fields(argcnt);
1073 int argp = TypeFunc::Parms;
1074 fields[argp++] = TypePtr::NOTNULL; // a
1075 fields[argp++] = TypePtr::NOTNULL; // b
1076 fields[argp++] = TypePtr::NOTNULL; // n
1077 fields[argp++] = TypeInt::INT; // len
1078 fields[argp++] = TypeLong::LONG; // inv
1079 fields[argp++] = Type::HALF;
1080 fields[argp++] = TypePtr::NOTNULL; // result
1081 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1082 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1083
1084 // result type needed
1085 fields = TypeTuple::fields(1);
1086 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1087
1088 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1089 return TypeFunc::make(domain, range);
1090 }
1091
1092 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1093 // create input type (domain)
1094 int num_args = 6;
1095 int argcnt = num_args;
1096 const Type** fields = TypeTuple::fields(argcnt);
1097 int argp = TypeFunc::Parms;
1098 fields[argp++] = TypePtr::NOTNULL; // a
1099 fields[argp++] = TypePtr::NOTNULL; // n
1100 fields[argp++] = TypeInt::INT; // len
1101 fields[argp++] = TypeLong::LONG; // inv
1102 fields[argp++] = Type::HALF;
1103 fields[argp++] = TypePtr::NOTNULL; // result
1104 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1105 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1106
1107 // result type needed
1108 fields = TypeTuple::fields(1);
1109 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1110
1111 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1112 return TypeFunc::make(domain, range);
1113 }
1114
1115 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1116 int argcnt = 5;
1117 const Type** fields = TypeTuple::fields(argcnt);
1118 int argp = TypeFunc::Parms;
1119 fields[argp++] = TypePtr::NOTNULL; // newArr
1120 fields[argp++] = TypePtr::NOTNULL; // oldArr
1121 fields[argp++] = TypeInt::INT; // newIdx
1122 fields[argp++] = TypeInt::INT; // shiftCount
1123 fields[argp++] = TypeInt::INT; // numIter
1124 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1125 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1126
1127 // no result type needed
1128 fields = TypeTuple::fields(1);
1129 fields[TypeFunc::Parms + 0] = nullptr;
1130 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1131 return TypeFunc::make(domain, range);
1132 }
1133
1134 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1135 // create input type (domain)
1136 int num_args = 4;
1137 int argcnt = num_args;
1138 const Type** fields = TypeTuple::fields(argcnt);
1139 int argp = TypeFunc::Parms;
1140 fields[argp++] = TypePtr::NOTNULL; // obja
1141 fields[argp++] = TypePtr::NOTNULL; // objb
1142 fields[argp++] = TypeInt::INT; // length, number of elements
1143 fields[argp++] = TypeInt::INT; // log2scale, element size
1144 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1145 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1146
1147 //return mismatch index (int)
1148 fields = TypeTuple::fields(1);
1149 fields[TypeFunc::Parms + 0] = TypeInt::INT;
1150 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1151 return TypeFunc::make(domain, range);
1152 }
1153
1154 // GHASH block processing
1155 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1156 int argcnt = 4;
1157
1158 const Type** fields = TypeTuple::fields(argcnt);
1159 int argp = TypeFunc::Parms;
1160 fields[argp++] = TypePtr::NOTNULL; // state
1161 fields[argp++] = TypePtr::NOTNULL; // subkeyH
1162 fields[argp++] = TypePtr::NOTNULL; // data
1163 fields[argp++] = TypeInt::INT; // blocks
1164 assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1165 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1166
1167 // result type needed
1168 fields = TypeTuple::fields(1);
1169 fields[TypeFunc::Parms+0] = nullptr; // void
1170 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1171 return TypeFunc::make(domain, range);
1172 }
1173 // Base64 encode function
1174 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1175 int argcnt = 6;
1176
1177 const Type** fields = TypeTuple::fields(argcnt);
1178 int argp = TypeFunc::Parms;
1179 fields[argp++] = TypePtr::NOTNULL; // src array
1180 fields[argp++] = TypeInt::INT; // offset
1181 fields[argp++] = TypeInt::INT; // length
1182 fields[argp++] = TypePtr::NOTNULL; // dest array
1183 fields[argp++] = TypeInt::INT; // dp
1184 fields[argp++] = TypeInt::BOOL; // isURL
1185 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1186 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1187
1188 // result type needed
1189 fields = TypeTuple::fields(1);
1190 fields[TypeFunc::Parms + 0] = nullptr; // void
1191 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1192 return TypeFunc::make(domain, range);
1193 }
1194 // Base64 decode function
1195 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1196 int argcnt = 7;
1197
1198 const Type** fields = TypeTuple::fields(argcnt);
1199 int argp = TypeFunc::Parms;
1200 fields[argp++] = TypePtr::NOTNULL; // src array
1201 fields[argp++] = TypeInt::INT; // src offset
1202 fields[argp++] = TypeInt::INT; // src length
1203 fields[argp++] = TypePtr::NOTNULL; // dest array
1204 fields[argp++] = TypeInt::INT; // dest offset
1205 fields[argp++] = TypeInt::BOOL; // isURL
1206 fields[argp++] = TypeInt::BOOL; // isMIME
1207 assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1208 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1209
1210 // result type needed
1211 fields = TypeTuple::fields(1);
1212 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1213 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1214 return TypeFunc::make(domain, range);
1215 }
1216
1217 //------------- Interpreter state access for on stack replacement
1218 const TypeFunc* OptoRuntime::osr_end_Type() {
1219 // create input type (domain)
1220 const Type **fields = TypeTuple::fields(1);
1221 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1222 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1223
1224 // create result type
1225 fields = TypeTuple::fields(1);
1226 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1227 fields[TypeFunc::Parms+0] = nullptr; // void
1228 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1229 return TypeFunc::make(domain, range);
1230 }
1231
1232 //-------------------------------------------------------------------------------------
1233 // register policy
1234
1235 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1236 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1237 switch (register_save_policy[reg]) {
1238 case 'C': return false; //SOC
1239 case 'E': return true ; //SOE
1240 case 'N': return false; //NS
1241 case 'A': return false; //AS
1242 }
1243 ShouldNotReachHere();
1244 return false;
1245 }
1246
1247 //-----------------------------------------------------------------------
1248 // Exceptions
1249 //
1250
1251 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1252
1253 // The method is an entry that is always called by a C++ method not
1254 // directly from compiled code. Compiled code will call the C++ method following.
1255 // We can't allow async exception to be installed during exception processing.
1256 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1257 // Do not confuse exception_oop with pending_exception. The exception_oop
1258 // is only used to pass arguments into the method. Not for general
1259 // exception handling. DO NOT CHANGE IT to use pending_exception, since
1260 // the runtime stubs checks this on exit.
1261 assert(current->exception_oop() != nullptr, "exception oop is found");
1262 address handler_address = nullptr;
1263
1264 Handle exception(current, current->exception_oop());
1265 address pc = current->exception_pc();
1266
1267 // Clear out the exception oop and pc since looking up an
1268 // exception handler can cause class loading, which might throw an
1269 // exception and those fields are expected to be clear during
1270 // normal bytecode execution.
1271 current->clear_exception_oop_and_pc();
1272
1273 LogTarget(Info, exceptions) lt;
1274 if (lt.is_enabled()) {
1275 ResourceMark rm;
1276 LogStream ls(lt);
1277 trace_exception(&ls, exception(), pc, "");
1278 }
1279
1280 // for AbortVMOnException flag
1281 Exceptions::debug_check_abort(exception);
1282
1283 #ifdef ASSERT
1284 if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1285 // should throw an exception here
1286 ShouldNotReachHere();
1287 }
1288 #endif
1289
1290 // new exception handling: this method is entered only from adapters
1291 // exceptions from compiled java methods are handled in compiled code
1292 // using rethrow node
1293
1294 nm = CodeCache::find_nmethod(pc);
1295 assert(nm != nullptr, "No NMethod found");
1296 if (nm->is_native_method()) {
1297 fatal("Native method should not have path to exception handling");
1298 } else {
1299 // we are switching to old paradigm: search for exception handler in caller_frame
1300 // instead in exception handler of caller_frame.sender()
1301
1302 if (JvmtiExport::can_post_on_exceptions()) {
1303 // "Full-speed catching" is not necessary here,
1304 // since we're notifying the VM on every catch.
1305 // Force deoptimization and the rest of the lookup
1306 // will be fine.
1307 deoptimize_caller_frame(current);
1308 }
1309
1310 // Check the stack guard pages. If enabled, look for handler in this frame;
1311 // otherwise, forcibly unwind the frame.
1312 //
1313 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1314 bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1315 bool deopting = false;
1316 if (nm->is_deopt_pc(pc)) {
1317 deopting = true;
1318 RegisterMap map(current, false);
1319 frame deoptee = current->last_frame().sender(&map);
1320 assert(deoptee.is_deoptimized_frame(), "must be deopted");
1321 // Adjust the pc back to the original throwing pc
1322 pc = deoptee.pc();
1323 }
1324
1325 // If we are forcing an unwind because of stack overflow then deopt is
1326 // irrelevant since we are throwing the frame away anyway.
1327
1328 if (deopting && !force_unwind) {
1329 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1330 } else {
1331
1332 handler_address =
1333 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1334
1335 if (handler_address == nullptr) {
1336 bool recursive_exception = false;
1337 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1338 assert (handler_address != nullptr, "must have compiled handler");
1339 // Update the exception cache only when the unwind was not forced
1340 // and there didn't happen another exception during the computation of the
1341 // compiled exception handler. Checking for exception oop equality is not
1342 // sufficient because some exceptions are pre-allocated and reused.
1343 if (!force_unwind && !recursive_exception) {
1344 nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1345 }
1346 } else {
1347 #ifdef ASSERT
1348 bool recursive_exception = false;
1349 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1350 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1351 p2i(handler_address), p2i(computed_address));
1352 #endif
1353 }
1354 }
1355
1356 current->set_exception_pc(pc);
1357 current->set_exception_handler_pc(handler_address);
1358
1359 // Check if the exception PC is a MethodHandle call site.
1360 current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1361 }
1362
1363 // Restore correct return pc. Was saved above.
1364 current->set_exception_oop(exception());
1365 return handler_address;
1366
1367 JRT_END
1368
1369 // We are entering here from exception_blob
1370 // If there is a compiled exception handler in this method, we will continue there;
1371 // otherwise we will unwind the stack and continue at the caller of top frame method
1372 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1373 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1374 // we looked up the handler for has been deoptimized in the meantime. If it has been
1375 // we must not use the handler and instead return the deopt blob.
1376 address OptoRuntime::handle_exception_C(JavaThread* current) {
1377 //
1378 // We are in Java not VM and in debug mode we have a NoHandleMark
1379 //
1380 #ifndef PRODUCT
1381 SharedRuntime::_find_handler_ctr++; // find exception handler
1382 #endif
1383 debug_only(NoHandleMark __hm;)
1384 nmethod* nm = nullptr;
1385 address handler_address = nullptr;
1386 {
1387 // Enter the VM
1388
1389 ResetNoHandleMark rnhm;
1390 handler_address = handle_exception_C_helper(current, nm);
1391 }
1392
1393 // Back in java: Use no oops, DON'T safepoint
1394
1395 // Now check to see if the handler we are returning is in a now
1396 // deoptimized frame
1397
1398 if (nm != nullptr) {
1399 RegisterMap map(current, false);
1400 frame caller = current->last_frame().sender(&map);
1401 #ifdef ASSERT
1402 assert(caller.is_compiled_frame(), "must be");
1403 #endif // ASSERT
1404 if (caller.is_deoptimized_frame()) {
1405 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1406 }
1407 }
1408 return handler_address;
1409 }
1410
1411 //------------------------------rethrow----------------------------------------
1412 // We get here after compiled code has executed a 'RethrowNode'. The callee
1413 // is either throwing or rethrowing an exception. The callee-save registers
1414 // have been restored, synchronized objects have been unlocked and the callee
1415 // stack frame has been removed. The return address was passed in.
1416 // Exception oop is passed as the 1st argument. This routine is then called
1417 // from the stub. On exit, we know where to jump in the caller's code.
1418 // After this C code exits, the stub will pop his frame and end in a jump
1419 // (instead of a return). We enter the caller's default handler.
1420 //
1421 // This must be JRT_LEAF:
1422 // - caller will not change its state as we cannot block on exit,
1423 // therefore raw_exception_handler_for_return_address is all it takes
1424 // to handle deoptimized blobs
1425 //
1426 // However, there needs to be a safepoint check in the middle! So compiled
1427 // safepoints are completely watertight.
1428 //
1429 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1430 //
1431 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1432 //
1433 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1434 // The frame we rethrow the exception to might not have been processed by the GC yet.
1435 // The stack watermark barrier takes care of detecting that and ensuring the frame
1436 // has updated oops.
1437 StackWatermarkSet::after_unwind(thread);
1438
1439 #ifndef PRODUCT
1440 SharedRuntime::_rethrow_ctr++; // count rethrows
1441 #endif
1442 assert (exception != nullptr, "should have thrown a NullPointerException");
1443 #ifdef ASSERT
1444 if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1445 // should throw an exception here
1446 ShouldNotReachHere();
1447 }
1448 #endif
1449
1450 thread->set_vm_result(exception);
1451 // Frame not compiled (handles deoptimization blob)
1452 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1453 }
1454
1455
1456 const TypeFunc *OptoRuntime::rethrow_Type() {
1457 // create input type (domain)
1458 const Type **fields = TypeTuple::fields(1);
1459 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1460 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1461
1462 // create result type (range)
1463 fields = TypeTuple::fields(1);
1464 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1465 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1466
1467 return TypeFunc::make(domain, range);
1468 }
1469
1470
1471 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1472 // Deoptimize the caller before continuing, as the compiled
1473 // exception handler table may not be valid.
1474 if (!StressCompiledExceptionHandlers && doit) {
1475 deoptimize_caller_frame(thread);
1476 }
1477 }
1478
1479 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1480 // Called from within the owner thread, so no need for safepoint
1481 RegisterMap reg_map(thread);
1482 frame stub_frame = thread->last_frame();
1483 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1484 frame caller_frame = stub_frame.sender(®_map);
1485
1486 // Deoptimize the caller frame.
1487 Deoptimization::deoptimize_frame(thread, caller_frame.id());
1488 }
1489
1490
1491 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1492 // Called from within the owner thread, so no need for safepoint
1493 RegisterMap reg_map(thread);
1494 frame stub_frame = thread->last_frame();
1495 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1496 frame caller_frame = stub_frame.sender(®_map);
1497 return caller_frame.is_deoptimized_frame();
1498 }
1499
1500
1501 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1502 // create input type (domain)
1503 const Type **fields = TypeTuple::fields(1);
1504 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver
1505 // // The JavaThread* is passed to each routine as the last argument
1506 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread
1507 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1508
1509 // create result type (range)
1510 fields = TypeTuple::fields(0);
1511
1512 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1513
1514 return TypeFunc::make(domain,range);
1515 }
1516
1517 #if INCLUDE_JFR
1518 const TypeFunc *OptoRuntime::get_class_id_intrinsic_Type() {
1519 // create input type (domain)
1520 const Type **fields = TypeTuple::fields(1);
1521 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1522 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1523
1524 // create result type (range)
1525 fields = TypeTuple::fields(0);
1526
1527 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1528
1529 return TypeFunc::make(domain,range);
1530 }
1531 #endif
1532
1533 //-----------------------------------------------------------------------------
1534 // Dtrace support. entry and exit probes have the same signature
1535 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1536 // create input type (domain)
1537 const Type **fields = TypeTuple::fields(2);
1538 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1539 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering
1540 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1541
1542 // create result type (range)
1543 fields = TypeTuple::fields(0);
1544
1545 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1546
1547 return TypeFunc::make(domain,range);
1548 }
1549
1550 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1551 // create input type (domain)
1552 const Type **fields = TypeTuple::fields(2);
1553 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1554 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object
1555
1556 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1557
1558 // create result type (range)
1559 fields = TypeTuple::fields(0);
1560
1561 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1562
1563 return TypeFunc::make(domain,range);
1564 }
1565
1566
1567 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1568 assert(oopDesc::is_oop(obj), "must be a valid oop");
1569 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1570 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1571 JRT_END
1572
1573 //-----------------------------------------------------------------------------
1574
1575 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1576
1577 //
1578 // dump the collected NamedCounters.
1579 //
1580 void OptoRuntime::print_named_counters() {
1581 int total_lock_count = 0;
1582 int eliminated_lock_count = 0;
1583
1584 NamedCounter* c = _named_counters;
1585 while (c) {
1586 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1587 int count = c->count();
1588 if (count > 0) {
1589 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1590 if (Verbose) {
1591 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1592 }
1593 total_lock_count += count;
1594 if (eliminated) {
1595 eliminated_lock_count += count;
1596 }
1597 }
1598 } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1599 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1600 if (blc->nonzero()) {
1601 tty->print_cr("%s", c->name());
1602 blc->print_on(tty);
1603 }
1604 #if INCLUDE_RTM_OPT
1605 } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1606 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1607 if (rlc->nonzero()) {
1608 tty->print_cr("%s", c->name());
1609 rlc->print_on(tty);
1610 }
1611 #endif
1612 }
1613 c = c->next();
1614 }
1615 if (total_lock_count > 0) {
1616 tty->print_cr("dynamic locks: %d", total_lock_count);
1617 if (eliminated_lock_count) {
1618 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1619 (int)(eliminated_lock_count * 100.0 / total_lock_count));
1620 }
1621 }
1622 }
1623
1624 //
1625 // Allocate a new NamedCounter. The JVMState is used to generate the
1626 // name which consists of method@line for the inlining tree.
1627 //
1628
1629 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1630 int max_depth = youngest_jvms->depth();
1631
1632 // Visit scopes from youngest to oldest.
1633 bool first = true;
1634 stringStream st;
1635 for (int depth = max_depth; depth >= 1; depth--) {
1636 JVMState* jvms = youngest_jvms->of_depth(depth);
1637 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1638 if (!first) {
1639 st.print(" ");
1640 } else {
1641 first = false;
1642 }
1643 int bci = jvms->bci();
1644 if (bci < 0) bci = 0;
1645 if (m != nullptr) {
1646 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1647 } else {
1648 st.print("no method");
1649 }
1650 st.print("@%d", bci);
1651 // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1652 }
1653 NamedCounter* c;
1654 if (tag == NamedCounter::BiasedLockingCounter) {
1655 c = new BiasedLockingNamedCounter(st.as_string());
1656 } else if (tag == NamedCounter::RTMLockingCounter) {
1657 c = new RTMLockingNamedCounter(st.as_string());
1658 } else {
1659 c = new NamedCounter(st.as_string(), tag);
1660 }
1661
1662 // atomically add the new counter to the head of the list. We only
1663 // add counters so this is safe.
1664 NamedCounter* head;
1665 do {
1666 c->set_next(nullptr);
1667 head = _named_counters;
1668 c->set_next(head);
1669 } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1670 return c;
1671 }
1672
1673 int trace_exception_counter = 0;
1674 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1675 trace_exception_counter++;
1676 stringStream tempst;
1677
1678 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1679 exception_oop->print_value_on(&tempst);
1680 tempst.print(" in ");
1681 CodeBlob* blob = CodeCache::find_blob(exception_pc);
1682 if (blob->is_compiled()) {
1683 CompiledMethod* cm = blob->as_compiled_method_or_null();
1684 cm->method()->print_value_on(&tempst);
1685 } else if (blob->is_runtime_stub()) {
1686 tempst.print("<runtime-stub>");
1687 } else {
1688 tempst.print("<unknown>");
1689 }
1690 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc));
1691 tempst.print("]");
1692
1693 st->print_raw_cr(tempst.as_string());
1694 }