1 /* 2 * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledMethod.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/icBuffer.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/g1/heapRegion.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/linkResolver.hpp" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/threadCritical.hpp" 75 #include "runtime/threadWXSetters.inline.hpp" 76 #include "runtime/vframe.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vframe_hp.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/preserveException.hpp" 81 82 83 // For debugging purposes: 84 // To force FullGCALot inside a runtime function, add the following two lines 85 // 86 // Universe::release_fullgc_alot_dummy(); 87 // MarkSweep::invoke(0, "Debugging"); 88 // 89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 90 91 92 93 94 // Compiled code entry points 95 address OptoRuntime::_new_instance_Java = NULL; 96 address OptoRuntime::_new_array_Java = NULL; 97 address OptoRuntime::_new_array_nozero_Java = NULL; 98 address OptoRuntime::_multianewarray2_Java = NULL; 99 address OptoRuntime::_multianewarray3_Java = NULL; 100 address OptoRuntime::_multianewarray4_Java = NULL; 101 address OptoRuntime::_multianewarray5_Java = NULL; 102 address OptoRuntime::_multianewarrayN_Java = NULL; 103 address OptoRuntime::_vtable_must_compile_Java = NULL; 104 address OptoRuntime::_complete_monitor_locking_Java = NULL; 105 address OptoRuntime::_monitor_notify_Java = NULL; 106 address OptoRuntime::_monitor_notifyAll_Java = NULL; 107 address OptoRuntime::_rethrow_Java = NULL; 108 109 address OptoRuntime::_slow_arraycopy_Java = NULL; 110 address OptoRuntime::_register_finalizer_Java = NULL; 111 112 ExceptionBlob* OptoRuntime::_exception_blob; 113 114 // This should be called in an assertion at the start of OptoRuntime routines 115 // which are entered from compiled code (all of them) 116 #ifdef ASSERT 117 static bool check_compiled_frame(JavaThread* thread) { 118 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 119 RegisterMap map(thread, false); 120 frame caller = thread->last_frame().sender(&map); 121 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 122 return true; 123 } 124 #endif // ASSERT 125 126 127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 128 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 129 if (var == NULL) { return false; } 130 131 bool OptoRuntime::generate(ciEnv* env) { 132 133 generate_exception_blob(); 134 135 // Note: tls: Means fetching the return oop out of the thread-local storage 136 // 137 // variable/name type-function-gen , runtime method ,fncy_jp, tls,retpc 138 // ------------------------------------------------------------------------------------------------------------------------------- 139 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true, false); 140 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true, false); 141 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true, false); 142 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true, false); 143 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true, false); 144 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true, false); 145 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true, false); 146 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true, false); 147 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false); 148 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false); 149 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false); 150 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , true ); 151 152 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false); 153 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false); 154 155 return true; 156 } 157 158 #undef gen 159 160 161 // Helper method to do generation of RunTimeStub's 162 address OptoRuntime::generate_stub(ciEnv* env, 163 TypeFunc_generator gen, address C_function, 164 const char *name, int is_fancy_jump, 165 bool pass_tls, 166 bool return_pc) { 167 168 // Matching the default directive, we currently have no method to match. 169 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 170 ResourceMark rm; 171 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 172 DirectivesStack::release(directive); 173 return C.stub_entry_point(); 174 } 175 176 const char* OptoRuntime::stub_name(address entry) { 177 #ifndef PRODUCT 178 CodeBlob* cb = CodeCache::find_blob(entry); 179 RuntimeStub* rs =(RuntimeStub *)cb; 180 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 181 return rs->name(); 182 #else 183 // Fast implementation for product mode (maybe it should be inlined too) 184 return "runtime stub"; 185 #endif 186 } 187 188 189 //============================================================================= 190 // Opto compiler runtime routines 191 //============================================================================= 192 193 194 //=============================allocation====================================== 195 // We failed the fast-path allocation. Now we need to do a scavenge or GC 196 // and try allocation again. 197 198 // object allocation 199 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 200 JRT_BLOCK; 201 #ifndef PRODUCT 202 SharedRuntime::_new_instance_ctr++; // new instance requires GC 203 #endif 204 assert(check_compiled_frame(current), "incorrect caller"); 205 206 // These checks are cheap to make and support reflective allocation. 207 int lh = klass->layout_helper(); 208 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 209 Handle holder(current, klass->klass_holder()); // keep the klass alive 210 klass->check_valid_for_instantiation(false, THREAD); 211 if (!HAS_PENDING_EXCEPTION) { 212 InstanceKlass::cast(klass)->initialize(THREAD); 213 } 214 } 215 216 if (!HAS_PENDING_EXCEPTION) { 217 // Scavenge and allocate an instance. 218 Handle holder(current, klass->klass_holder()); // keep the klass alive 219 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 220 current->set_vm_result(result); 221 222 // Pass oops back through thread local storage. Our apparent type to Java 223 // is that we return an oop, but we can block on exit from this routine and 224 // a GC can trash the oop in C's return register. The generated stub will 225 // fetch the oop from TLS after any possible GC. 226 } 227 228 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 229 JRT_BLOCK_END; 230 231 // inform GC that we won't do card marks for initializing writes. 232 SharedRuntime::on_slowpath_allocation_exit(current); 233 JRT_END 234 235 236 // array allocation 237 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 238 JRT_BLOCK; 239 #ifndef PRODUCT 240 SharedRuntime::_new_array_ctr++; // new array requires GC 241 #endif 242 assert(check_compiled_frame(current), "incorrect caller"); 243 244 // Scavenge and allocate an instance. 245 oop result; 246 247 if (array_type->is_typeArray_klass()) { 248 // The oopFactory likes to work with the element type. 249 // (We could bypass the oopFactory, since it doesn't add much value.) 250 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 251 result = oopFactory::new_typeArray(elem_type, len, THREAD); 252 } else { 253 // Although the oopFactory likes to work with the elem_type, 254 // the compiler prefers the array_type, since it must already have 255 // that latter value in hand for the fast path. 256 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 257 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 258 result = oopFactory::new_objArray(elem_type, len, THREAD); 259 } 260 261 // Pass oops back through thread local storage. Our apparent type to Java 262 // is that we return an oop, but we can block on exit from this routine and 263 // a GC can trash the oop in C's return register. The generated stub will 264 // fetch the oop from TLS after any possible GC. 265 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 266 current->set_vm_result(result); 267 JRT_BLOCK_END; 268 269 // inform GC that we won't do card marks for initializing writes. 270 SharedRuntime::on_slowpath_allocation_exit(current); 271 JRT_END 272 273 // array allocation without zeroing 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 275 JRT_BLOCK; 276 #ifndef PRODUCT 277 SharedRuntime::_new_array_ctr++; // new array requires GC 278 #endif 279 assert(check_compiled_frame(current), "incorrect caller"); 280 281 // Scavenge and allocate an instance. 282 oop result; 283 284 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 285 // The oopFactory likes to work with the element type. 286 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 287 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 288 289 // Pass oops back through thread local storage. Our apparent type to Java 290 // is that we return an oop, but we can block on exit from this routine and 291 // a GC can trash the oop in C's return register. The generated stub will 292 // fetch the oop from TLS after any possible GC. 293 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 294 current->set_vm_result(result); 295 JRT_BLOCK_END; 296 297 298 // inform GC that we won't do card marks for initializing writes. 299 SharedRuntime::on_slowpath_allocation_exit(current); 300 301 oop result = current->vm_result(); 302 if ((len > 0) && (result != NULL) && 303 is_deoptimized_caller_frame(current)) { 304 // Zero array here if the caller is deoptimized. 305 int size = TypeArrayKlass::cast(array_type)->oop_size(result); 306 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 307 const size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 308 // Align to next 8 bytes to avoid trashing arrays's length. 309 const size_t aligned_hs_bytes = align_up(hs_bytes, BytesPerLong); 310 HeapWord* obj = cast_from_oop<HeapWord*>(result); 311 if (aligned_hs_bytes > hs_bytes) { 312 Copy::zero_to_bytes(obj + hs_bytes, aligned_hs_bytes - hs_bytes); 313 } 314 // Optimized zeroing. 315 const size_t aligned_hs = aligned_hs_bytes / HeapWordSize; 316 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 317 } 318 319 JRT_END 320 321 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 322 323 // multianewarray for 2 dimensions 324 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 325 #ifndef PRODUCT 326 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 327 #endif 328 assert(check_compiled_frame(current), "incorrect caller"); 329 assert(elem_type->is_klass(), "not a class"); 330 jint dims[2]; 331 dims[0] = len1; 332 dims[1] = len2; 333 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 334 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 335 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 336 current->set_vm_result(obj); 337 JRT_END 338 339 // multianewarray for 3 dimensions 340 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 341 #ifndef PRODUCT 342 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 343 #endif 344 assert(check_compiled_frame(current), "incorrect caller"); 345 assert(elem_type->is_klass(), "not a class"); 346 jint dims[3]; 347 dims[0] = len1; 348 dims[1] = len2; 349 dims[2] = len3; 350 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 351 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 352 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 353 current->set_vm_result(obj); 354 JRT_END 355 356 // multianewarray for 4 dimensions 357 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 358 #ifndef PRODUCT 359 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 360 #endif 361 assert(check_compiled_frame(current), "incorrect caller"); 362 assert(elem_type->is_klass(), "not a class"); 363 jint dims[4]; 364 dims[0] = len1; 365 dims[1] = len2; 366 dims[2] = len3; 367 dims[3] = len4; 368 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 369 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 370 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 371 current->set_vm_result(obj); 372 JRT_END 373 374 // multianewarray for 5 dimensions 375 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 376 #ifndef PRODUCT 377 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 378 #endif 379 assert(check_compiled_frame(current), "incorrect caller"); 380 assert(elem_type->is_klass(), "not a class"); 381 jint dims[5]; 382 dims[0] = len1; 383 dims[1] = len2; 384 dims[2] = len3; 385 dims[3] = len4; 386 dims[4] = len5; 387 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 388 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 389 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 390 current->set_vm_result(obj); 391 JRT_END 392 393 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 394 assert(check_compiled_frame(current), "incorrect caller"); 395 assert(elem_type->is_klass(), "not a class"); 396 assert(oop(dims)->is_typeArray(), "not an array"); 397 398 ResourceMark rm; 399 jint len = dims->length(); 400 assert(len > 0, "Dimensions array should contain data"); 401 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 402 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 403 c_dims, len); 404 405 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 406 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 407 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 408 current->set_vm_result(obj); 409 JRT_END 410 411 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 412 413 // Very few notify/notifyAll operations find any threads on the waitset, so 414 // the dominant fast-path is to simply return. 415 // Relatedly, it's critical that notify/notifyAll be fast in order to 416 // reduce lock hold times. 417 if (!SafepointSynchronize::is_synchronizing()) { 418 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 419 return; 420 } 421 } 422 423 // This is the case the fast-path above isn't provisioned to handle. 424 // The fast-path is designed to handle frequently arising cases in an efficient manner. 425 // (The fast-path is just a degenerate variant of the slow-path). 426 // Perform the dreaded state transition and pass control into the slow-path. 427 JRT_BLOCK; 428 Handle h_obj(current, obj); 429 ObjectSynchronizer::notify(h_obj, CHECK); 430 JRT_BLOCK_END; 431 JRT_END 432 433 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 434 435 if (!SafepointSynchronize::is_synchronizing() ) { 436 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 437 return; 438 } 439 } 440 441 // This is the case the fast-path above isn't provisioned to handle. 442 // The fast-path is designed to handle frequently arising cases in an efficient manner. 443 // (The fast-path is just a degenerate variant of the slow-path). 444 // Perform the dreaded state transition and pass control into the slow-path. 445 JRT_BLOCK; 446 Handle h_obj(current, obj); 447 ObjectSynchronizer::notifyall(h_obj, CHECK); 448 JRT_BLOCK_END; 449 JRT_END 450 451 const TypeFunc *OptoRuntime::new_instance_Type() { 452 // create input type (domain) 453 const Type **fields = TypeTuple::fields(1); 454 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 455 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 456 457 // create result type (range) 458 fields = TypeTuple::fields(1); 459 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 460 461 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 462 463 return TypeFunc::make(domain, range); 464 } 465 466 467 const TypeFunc *OptoRuntime::athrow_Type() { 468 // create input type (domain) 469 const Type **fields = TypeTuple::fields(1); 470 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 471 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 472 473 // create result type (range) 474 fields = TypeTuple::fields(0); 475 476 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 477 478 return TypeFunc::make(domain, range); 479 } 480 481 482 const TypeFunc *OptoRuntime::new_array_Type() { 483 // create input type (domain) 484 const Type **fields = TypeTuple::fields(2); 485 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 486 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 487 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 488 489 // create result type (range) 490 fields = TypeTuple::fields(1); 491 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 492 493 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 494 495 return TypeFunc::make(domain, range); 496 } 497 498 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 499 // create input type (domain) 500 const int nargs = ndim + 1; 501 const Type **fields = TypeTuple::fields(nargs); 502 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 503 for( int i = 1; i < nargs; i++ ) 504 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 505 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 506 507 // create result type (range) 508 fields = TypeTuple::fields(1); 509 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 510 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 511 512 return TypeFunc::make(domain, range); 513 } 514 515 const TypeFunc *OptoRuntime::multianewarray2_Type() { 516 return multianewarray_Type(2); 517 } 518 519 const TypeFunc *OptoRuntime::multianewarray3_Type() { 520 return multianewarray_Type(3); 521 } 522 523 const TypeFunc *OptoRuntime::multianewarray4_Type() { 524 return multianewarray_Type(4); 525 } 526 527 const TypeFunc *OptoRuntime::multianewarray5_Type() { 528 return multianewarray_Type(5); 529 } 530 531 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 532 // create input type (domain) 533 const Type **fields = TypeTuple::fields(2); 534 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 535 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 536 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 537 538 // create result type (range) 539 fields = TypeTuple::fields(1); 540 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 541 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 542 543 return TypeFunc::make(domain, range); 544 } 545 546 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 547 // create input type (domain) 548 const Type **fields = TypeTuple::fields(1); 549 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 550 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 551 552 // create result type (range) 553 fields = TypeTuple::fields(0); 554 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 555 556 return TypeFunc::make(domain, range); 557 } 558 559 //----------------------------------------------------------------------------- 560 // Monitor Handling 561 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 562 // create input type (domain) 563 const Type **fields = TypeTuple::fields(2); 564 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 565 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 566 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 567 568 // create result type (range) 569 fields = TypeTuple::fields(0); 570 571 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 572 573 return TypeFunc::make(domain,range); 574 } 575 576 577 //----------------------------------------------------------------------------- 578 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 579 // create input type (domain) 580 const Type **fields = TypeTuple::fields(3); 581 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 582 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 583 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 584 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 585 586 // create result type (range) 587 fields = TypeTuple::fields(0); 588 589 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 590 591 return TypeFunc::make(domain, range); 592 } 593 594 const TypeFunc *OptoRuntime::monitor_notify_Type() { 595 // create input type (domain) 596 const Type **fields = TypeTuple::fields(1); 597 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 598 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 599 600 // create result type (range) 601 fields = TypeTuple::fields(0); 602 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 603 return TypeFunc::make(domain, range); 604 } 605 606 const TypeFunc* OptoRuntime::flush_windows_Type() { 607 // create input type (domain) 608 const Type** fields = TypeTuple::fields(1); 609 fields[TypeFunc::Parms+0] = NULL; // void 610 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 611 612 // create result type 613 fields = TypeTuple::fields(1); 614 fields[TypeFunc::Parms+0] = NULL; // void 615 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 616 617 return TypeFunc::make(domain, range); 618 } 619 620 const TypeFunc* OptoRuntime::l2f_Type() { 621 // create input type (domain) 622 const Type **fields = TypeTuple::fields(2); 623 fields[TypeFunc::Parms+0] = TypeLong::LONG; 624 fields[TypeFunc::Parms+1] = Type::HALF; 625 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 626 627 // create result type (range) 628 fields = TypeTuple::fields(1); 629 fields[TypeFunc::Parms+0] = Type::FLOAT; 630 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 631 632 return TypeFunc::make(domain, range); 633 } 634 635 const TypeFunc* OptoRuntime::modf_Type() { 636 const Type **fields = TypeTuple::fields(2); 637 fields[TypeFunc::Parms+0] = Type::FLOAT; 638 fields[TypeFunc::Parms+1] = Type::FLOAT; 639 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 640 641 // create result type (range) 642 fields = TypeTuple::fields(1); 643 fields[TypeFunc::Parms+0] = Type::FLOAT; 644 645 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 646 647 return TypeFunc::make(domain, range); 648 } 649 650 const TypeFunc *OptoRuntime::Math_D_D_Type() { 651 // create input type (domain) 652 const Type **fields = TypeTuple::fields(2); 653 // Symbol* name of class to be loaded 654 fields[TypeFunc::Parms+0] = Type::DOUBLE; 655 fields[TypeFunc::Parms+1] = Type::HALF; 656 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 657 658 // create result type (range) 659 fields = TypeTuple::fields(2); 660 fields[TypeFunc::Parms+0] = Type::DOUBLE; 661 fields[TypeFunc::Parms+1] = Type::HALF; 662 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 663 664 return TypeFunc::make(domain, range); 665 } 666 667 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 668 // create input type (domain) 669 const Type **fields = TypeTuple::fields(num_arg); 670 // Symbol* name of class to be loaded 671 assert(num_arg > 0, "must have at least 1 input"); 672 for (uint i = 0; i < num_arg; i++) { 673 fields[TypeFunc::Parms+i] = in_type; 674 } 675 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 676 677 // create result type (range) 678 const uint num_ret = 1; 679 fields = TypeTuple::fields(num_ret); 680 fields[TypeFunc::Parms+0] = out_type; 681 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 682 683 return TypeFunc::make(domain, range); 684 } 685 686 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 687 const Type **fields = TypeTuple::fields(4); 688 fields[TypeFunc::Parms+0] = Type::DOUBLE; 689 fields[TypeFunc::Parms+1] = Type::HALF; 690 fields[TypeFunc::Parms+2] = Type::DOUBLE; 691 fields[TypeFunc::Parms+3] = Type::HALF; 692 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 693 694 // create result type (range) 695 fields = TypeTuple::fields(2); 696 fields[TypeFunc::Parms+0] = Type::DOUBLE; 697 fields[TypeFunc::Parms+1] = Type::HALF; 698 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 699 700 return TypeFunc::make(domain, range); 701 } 702 703 //-------------- currentTimeMillis, currentTimeNanos, etc 704 705 const TypeFunc* OptoRuntime::void_long_Type() { 706 // create input type (domain) 707 const Type **fields = TypeTuple::fields(0); 708 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 709 710 // create result type (range) 711 fields = TypeTuple::fields(2); 712 fields[TypeFunc::Parms+0] = TypeLong::LONG; 713 fields[TypeFunc::Parms+1] = Type::HALF; 714 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 715 716 return TypeFunc::make(domain, range); 717 } 718 719 // arraycopy stub variations: 720 enum ArrayCopyType { 721 ac_fast, // void(ptr, ptr, size_t) 722 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 723 ac_slow, // void(ptr, int, ptr, int, int) 724 ac_generic // int(ptr, int, ptr, int, int) 725 }; 726 727 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 728 // create input type (domain) 729 int num_args = (act == ac_fast ? 3 : 5); 730 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 731 int argcnt = num_args; 732 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 733 const Type** fields = TypeTuple::fields(argcnt); 734 int argp = TypeFunc::Parms; 735 fields[argp++] = TypePtr::NOTNULL; // src 736 if (num_size_args == 0) { 737 fields[argp++] = TypeInt::INT; // src_pos 738 } 739 fields[argp++] = TypePtr::NOTNULL; // dest 740 if (num_size_args == 0) { 741 fields[argp++] = TypeInt::INT; // dest_pos 742 fields[argp++] = TypeInt::INT; // length 743 } 744 while (num_size_args-- > 0) { 745 fields[argp++] = TypeX_X; // size in whatevers (size_t) 746 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 747 } 748 if (act == ac_checkcast) { 749 fields[argp++] = TypePtr::NOTNULL; // super_klass 750 } 751 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 752 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 753 754 // create result type if needed 755 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 756 fields = TypeTuple::fields(1); 757 if (retcnt == 0) 758 fields[TypeFunc::Parms+0] = NULL; // void 759 else 760 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 761 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 762 return TypeFunc::make(domain, range); 763 } 764 765 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 766 // This signature is simple: Two base pointers and a size_t. 767 return make_arraycopy_Type(ac_fast); 768 } 769 770 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 771 // An extension of fast_arraycopy_Type which adds type checking. 772 return make_arraycopy_Type(ac_checkcast); 773 } 774 775 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 776 // This signature is exactly the same as System.arraycopy. 777 // There are no intptr_t (int/long) arguments. 778 return make_arraycopy_Type(ac_slow); 779 } 780 781 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 782 // This signature is like System.arraycopy, except that it returns status. 783 return make_arraycopy_Type(ac_generic); 784 } 785 786 787 const TypeFunc* OptoRuntime::array_fill_Type() { 788 const Type** fields; 789 int argp = TypeFunc::Parms; 790 // create input type (domain): pointer, int, size_t 791 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 792 fields[argp++] = TypePtr::NOTNULL; 793 fields[argp++] = TypeInt::INT; 794 fields[argp++] = TypeX_X; // size in whatevers (size_t) 795 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 796 const TypeTuple *domain = TypeTuple::make(argp, fields); 797 798 // create result type 799 fields = TypeTuple::fields(1); 800 fields[TypeFunc::Parms+0] = NULL; // void 801 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 802 803 return TypeFunc::make(domain, range); 804 } 805 806 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 807 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 808 // create input type (domain) 809 int num_args = 3; 810 int argcnt = num_args; 811 const Type** fields = TypeTuple::fields(argcnt); 812 int argp = TypeFunc::Parms; 813 fields[argp++] = TypePtr::NOTNULL; // src 814 fields[argp++] = TypePtr::NOTNULL; // dest 815 fields[argp++] = TypePtr::NOTNULL; // k array 816 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 817 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 818 819 // no result type needed 820 fields = TypeTuple::fields(1); 821 fields[TypeFunc::Parms+0] = NULL; // void 822 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 823 return TypeFunc::make(domain, range); 824 } 825 826 /** 827 * int updateBytesCRC32(int crc, byte* b, int len) 828 */ 829 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 830 // create input type (domain) 831 int num_args = 3; 832 int argcnt = num_args; 833 const Type** fields = TypeTuple::fields(argcnt); 834 int argp = TypeFunc::Parms; 835 fields[argp++] = TypeInt::INT; // crc 836 fields[argp++] = TypePtr::NOTNULL; // src 837 fields[argp++] = TypeInt::INT; // len 838 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 839 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 840 841 // result type needed 842 fields = TypeTuple::fields(1); 843 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 844 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 845 return TypeFunc::make(domain, range); 846 } 847 848 /** 849 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 850 */ 851 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 852 // create input type (domain) 853 int num_args = 4; 854 int argcnt = num_args; 855 const Type** fields = TypeTuple::fields(argcnt); 856 int argp = TypeFunc::Parms; 857 fields[argp++] = TypeInt::INT; // crc 858 fields[argp++] = TypePtr::NOTNULL; // buf 859 fields[argp++] = TypeInt::INT; // len 860 fields[argp++] = TypePtr::NOTNULL; // table 861 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 862 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 863 864 // result type needed 865 fields = TypeTuple::fields(1); 866 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 867 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 868 return TypeFunc::make(domain, range); 869 } 870 871 /** 872 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 873 */ 874 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 875 // create input type (domain) 876 int num_args = 3; 877 int argcnt = num_args; 878 const Type** fields = TypeTuple::fields(argcnt); 879 int argp = TypeFunc::Parms; 880 fields[argp++] = TypeInt::INT; // crc 881 fields[argp++] = TypePtr::NOTNULL; // src + offset 882 fields[argp++] = TypeInt::INT; // len 883 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 884 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 885 886 // result type needed 887 fields = TypeTuple::fields(1); 888 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 889 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 890 return TypeFunc::make(domain, range); 891 } 892 893 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 894 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 895 // create input type (domain) 896 int num_args = 5; 897 int argcnt = num_args; 898 const Type** fields = TypeTuple::fields(argcnt); 899 int argp = TypeFunc::Parms; 900 fields[argp++] = TypePtr::NOTNULL; // src 901 fields[argp++] = TypePtr::NOTNULL; // dest 902 fields[argp++] = TypePtr::NOTNULL; // k array 903 fields[argp++] = TypePtr::NOTNULL; // r array 904 fields[argp++] = TypeInt::INT; // src len 905 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 906 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 907 908 // returning cipher len (int) 909 fields = TypeTuple::fields(1); 910 fields[TypeFunc::Parms+0] = TypeInt::INT; 911 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 912 return TypeFunc::make(domain, range); 913 } 914 915 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 916 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 917 // create input type (domain) 918 int num_args = 4; 919 int argcnt = num_args; 920 const Type** fields = TypeTuple::fields(argcnt); 921 int argp = TypeFunc::Parms; 922 fields[argp++] = TypePtr::NOTNULL; // src 923 fields[argp++] = TypePtr::NOTNULL; // dest 924 fields[argp++] = TypePtr::NOTNULL; // k array 925 fields[argp++] = TypeInt::INT; // src len 926 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 927 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 928 929 // returning cipher len (int) 930 fields = TypeTuple::fields(1); 931 fields[TypeFunc::Parms + 0] = TypeInt::INT; 932 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 933 return TypeFunc::make(domain, range); 934 } 935 936 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 937 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 938 // create input type (domain) 939 int num_args = 7; 940 int argcnt = num_args; 941 const Type** fields = TypeTuple::fields(argcnt); 942 int argp = TypeFunc::Parms; 943 fields[argp++] = TypePtr::NOTNULL; // src 944 fields[argp++] = TypePtr::NOTNULL; // dest 945 fields[argp++] = TypePtr::NOTNULL; // k array 946 fields[argp++] = TypePtr::NOTNULL; // counter array 947 fields[argp++] = TypeInt::INT; // src len 948 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 949 fields[argp++] = TypePtr::NOTNULL; // saved used addr 950 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 951 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 952 // returning cipher len (int) 953 fields = TypeTuple::fields(1); 954 fields[TypeFunc::Parms + 0] = TypeInt::INT; 955 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 956 return TypeFunc::make(domain, range); 957 } 958 959 /* 960 * void implCompress(byte[] buf, int ofs) 961 */ 962 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 963 // create input type (domain) 964 int num_args = is_sha3 ? 3 : 2; 965 int argcnt = num_args; 966 const Type** fields = TypeTuple::fields(argcnt); 967 int argp = TypeFunc::Parms; 968 fields[argp++] = TypePtr::NOTNULL; // buf 969 fields[argp++] = TypePtr::NOTNULL; // state 970 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length 971 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 972 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 973 974 // no result type needed 975 fields = TypeTuple::fields(1); 976 fields[TypeFunc::Parms+0] = NULL; // void 977 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 978 return TypeFunc::make(domain, range); 979 } 980 981 /* 982 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 983 */ 984 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 985 // create input type (domain) 986 int num_args = is_sha3 ? 5 : 4; 987 int argcnt = num_args; 988 const Type** fields = TypeTuple::fields(argcnt); 989 int argp = TypeFunc::Parms; 990 fields[argp++] = TypePtr::NOTNULL; // buf 991 fields[argp++] = TypePtr::NOTNULL; // state 992 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length 993 fields[argp++] = TypeInt::INT; // ofs 994 fields[argp++] = TypeInt::INT; // limit 995 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 996 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 997 998 // returning ofs (int) 999 fields = TypeTuple::fields(1); 1000 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1001 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1002 return TypeFunc::make(domain, range); 1003 } 1004 1005 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1006 // create input type (domain) 1007 int num_args = 6; 1008 int argcnt = num_args; 1009 const Type** fields = TypeTuple::fields(argcnt); 1010 int argp = TypeFunc::Parms; 1011 fields[argp++] = TypePtr::NOTNULL; // x 1012 fields[argp++] = TypeInt::INT; // xlen 1013 fields[argp++] = TypePtr::NOTNULL; // y 1014 fields[argp++] = TypeInt::INT; // ylen 1015 fields[argp++] = TypePtr::NOTNULL; // z 1016 fields[argp++] = TypeInt::INT; // zlen 1017 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1018 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1019 1020 // no result type needed 1021 fields = TypeTuple::fields(1); 1022 fields[TypeFunc::Parms+0] = NULL; 1023 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1024 return TypeFunc::make(domain, range); 1025 } 1026 1027 const TypeFunc* OptoRuntime::squareToLen_Type() { 1028 // create input type (domain) 1029 int num_args = 4; 1030 int argcnt = num_args; 1031 const Type** fields = TypeTuple::fields(argcnt); 1032 int argp = TypeFunc::Parms; 1033 fields[argp++] = TypePtr::NOTNULL; // x 1034 fields[argp++] = TypeInt::INT; // len 1035 fields[argp++] = TypePtr::NOTNULL; // z 1036 fields[argp++] = TypeInt::INT; // zlen 1037 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1038 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1039 1040 // no result type needed 1041 fields = TypeTuple::fields(1); 1042 fields[TypeFunc::Parms+0] = NULL; 1043 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1044 return TypeFunc::make(domain, range); 1045 } 1046 1047 // for mulAdd calls, 2 pointers and 3 ints, returning int 1048 const TypeFunc* OptoRuntime::mulAdd_Type() { 1049 // create input type (domain) 1050 int num_args = 5; 1051 int argcnt = num_args; 1052 const Type** fields = TypeTuple::fields(argcnt); 1053 int argp = TypeFunc::Parms; 1054 fields[argp++] = TypePtr::NOTNULL; // out 1055 fields[argp++] = TypePtr::NOTNULL; // in 1056 fields[argp++] = TypeInt::INT; // offset 1057 fields[argp++] = TypeInt::INT; // len 1058 fields[argp++] = TypeInt::INT; // k 1059 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1060 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1061 1062 // returning carry (int) 1063 fields = TypeTuple::fields(1); 1064 fields[TypeFunc::Parms+0] = TypeInt::INT; 1065 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1066 return TypeFunc::make(domain, range); 1067 } 1068 1069 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1070 // create input type (domain) 1071 int num_args = 7; 1072 int argcnt = num_args; 1073 const Type** fields = TypeTuple::fields(argcnt); 1074 int argp = TypeFunc::Parms; 1075 fields[argp++] = TypePtr::NOTNULL; // a 1076 fields[argp++] = TypePtr::NOTNULL; // b 1077 fields[argp++] = TypePtr::NOTNULL; // n 1078 fields[argp++] = TypeInt::INT; // len 1079 fields[argp++] = TypeLong::LONG; // inv 1080 fields[argp++] = Type::HALF; 1081 fields[argp++] = TypePtr::NOTNULL; // result 1082 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1083 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1084 1085 // result type needed 1086 fields = TypeTuple::fields(1); 1087 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1088 1089 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1090 return TypeFunc::make(domain, range); 1091 } 1092 1093 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1094 // create input type (domain) 1095 int num_args = 6; 1096 int argcnt = num_args; 1097 const Type** fields = TypeTuple::fields(argcnt); 1098 int argp = TypeFunc::Parms; 1099 fields[argp++] = TypePtr::NOTNULL; // a 1100 fields[argp++] = TypePtr::NOTNULL; // n 1101 fields[argp++] = TypeInt::INT; // len 1102 fields[argp++] = TypeLong::LONG; // inv 1103 fields[argp++] = Type::HALF; 1104 fields[argp++] = TypePtr::NOTNULL; // result 1105 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1106 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1107 1108 // result type needed 1109 fields = TypeTuple::fields(1); 1110 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1111 1112 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1113 return TypeFunc::make(domain, range); 1114 } 1115 1116 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1117 int argcnt = 5; 1118 const Type** fields = TypeTuple::fields(argcnt); 1119 int argp = TypeFunc::Parms; 1120 fields[argp++] = TypePtr::NOTNULL; // newArr 1121 fields[argp++] = TypePtr::NOTNULL; // oldArr 1122 fields[argp++] = TypeInt::INT; // newIdx 1123 fields[argp++] = TypeInt::INT; // shiftCount 1124 fields[argp++] = TypeInt::INT; // numIter 1125 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1126 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1127 1128 // no result type needed 1129 fields = TypeTuple::fields(1); 1130 fields[TypeFunc::Parms + 0] = NULL; 1131 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1132 return TypeFunc::make(domain, range); 1133 } 1134 1135 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1136 // create input type (domain) 1137 int num_args = 4; 1138 int argcnt = num_args; 1139 const Type** fields = TypeTuple::fields(argcnt); 1140 int argp = TypeFunc::Parms; 1141 fields[argp++] = TypePtr::NOTNULL; // obja 1142 fields[argp++] = TypePtr::NOTNULL; // objb 1143 fields[argp++] = TypeInt::INT; // length, number of elements 1144 fields[argp++] = TypeInt::INT; // log2scale, element size 1145 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1146 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1147 1148 //return mismatch index (int) 1149 fields = TypeTuple::fields(1); 1150 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1151 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1152 return TypeFunc::make(domain, range); 1153 } 1154 1155 // GHASH block processing 1156 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1157 int argcnt = 4; 1158 1159 const Type** fields = TypeTuple::fields(argcnt); 1160 int argp = TypeFunc::Parms; 1161 fields[argp++] = TypePtr::NOTNULL; // state 1162 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1163 fields[argp++] = TypePtr::NOTNULL; // data 1164 fields[argp++] = TypeInt::INT; // blocks 1165 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1166 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1167 1168 // result type needed 1169 fields = TypeTuple::fields(1); 1170 fields[TypeFunc::Parms+0] = NULL; // void 1171 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1172 return TypeFunc::make(domain, range); 1173 } 1174 // Base64 encode function 1175 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1176 int argcnt = 6; 1177 1178 const Type** fields = TypeTuple::fields(argcnt); 1179 int argp = TypeFunc::Parms; 1180 fields[argp++] = TypePtr::NOTNULL; // src array 1181 fields[argp++] = TypeInt::INT; // offset 1182 fields[argp++] = TypeInt::INT; // length 1183 fields[argp++] = TypePtr::NOTNULL; // dest array 1184 fields[argp++] = TypeInt::INT; // dp 1185 fields[argp++] = TypeInt::BOOL; // isURL 1186 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1187 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1188 1189 // result type needed 1190 fields = TypeTuple::fields(1); 1191 fields[TypeFunc::Parms + 0] = NULL; // void 1192 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1193 return TypeFunc::make(domain, range); 1194 } 1195 // Base64 decode function 1196 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1197 int argcnt = 7; 1198 1199 const Type** fields = TypeTuple::fields(argcnt); 1200 int argp = TypeFunc::Parms; 1201 fields[argp++] = TypePtr::NOTNULL; // src array 1202 fields[argp++] = TypeInt::INT; // src offset 1203 fields[argp++] = TypeInt::INT; // src length 1204 fields[argp++] = TypePtr::NOTNULL; // dest array 1205 fields[argp++] = TypeInt::INT; // dest offset 1206 fields[argp++] = TypeInt::BOOL; // isURL 1207 fields[argp++] = TypeInt::BOOL; // isMIME 1208 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1209 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1210 1211 // result type needed 1212 fields = TypeTuple::fields(1); 1213 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1214 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1215 return TypeFunc::make(domain, range); 1216 } 1217 1218 //------------- Interpreter state access for on stack replacement 1219 const TypeFunc* OptoRuntime::osr_end_Type() { 1220 // create input type (domain) 1221 const Type **fields = TypeTuple::fields(1); 1222 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1223 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1224 1225 // create result type 1226 fields = TypeTuple::fields(1); 1227 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1228 fields[TypeFunc::Parms+0] = NULL; // void 1229 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1230 return TypeFunc::make(domain, range); 1231 } 1232 1233 //------------------------------------------------------------------------------------- 1234 // register policy 1235 1236 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1237 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1238 switch (register_save_policy[reg]) { 1239 case 'C': return false; //SOC 1240 case 'E': return true ; //SOE 1241 case 'N': return false; //NS 1242 case 'A': return false; //AS 1243 } 1244 ShouldNotReachHere(); 1245 return false; 1246 } 1247 1248 //----------------------------------------------------------------------- 1249 // Exceptions 1250 // 1251 1252 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1253 1254 // The method is an entry that is always called by a C++ method not 1255 // directly from compiled code. Compiled code will call the C++ method following. 1256 // We can't allow async exception to be installed during exception processing. 1257 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1258 // Do not confuse exception_oop with pending_exception. The exception_oop 1259 // is only used to pass arguments into the method. Not for general 1260 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1261 // the runtime stubs checks this on exit. 1262 assert(current->exception_oop() != NULL, "exception oop is found"); 1263 address handler_address = NULL; 1264 1265 Handle exception(current, current->exception_oop()); 1266 address pc = current->exception_pc(); 1267 1268 // Clear out the exception oop and pc since looking up an 1269 // exception handler can cause class loading, which might throw an 1270 // exception and those fields are expected to be clear during 1271 // normal bytecode execution. 1272 current->clear_exception_oop_and_pc(); 1273 1274 LogTarget(Info, exceptions) lt; 1275 if (lt.is_enabled()) { 1276 ResourceMark rm; 1277 LogStream ls(lt); 1278 trace_exception(&ls, exception(), pc, ""); 1279 } 1280 1281 // for AbortVMOnException flag 1282 Exceptions::debug_check_abort(exception); 1283 1284 #ifdef ASSERT 1285 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1286 // should throw an exception here 1287 ShouldNotReachHere(); 1288 } 1289 #endif 1290 1291 // new exception handling: this method is entered only from adapters 1292 // exceptions from compiled java methods are handled in compiled code 1293 // using rethrow node 1294 1295 nm = CodeCache::find_nmethod(pc); 1296 assert(nm != NULL, "No NMethod found"); 1297 if (nm->is_native_method()) { 1298 fatal("Native method should not have path to exception handling"); 1299 } else { 1300 // we are switching to old paradigm: search for exception handler in caller_frame 1301 // instead in exception handler of caller_frame.sender() 1302 1303 if (JvmtiExport::can_post_on_exceptions()) { 1304 // "Full-speed catching" is not necessary here, 1305 // since we're notifying the VM on every catch. 1306 // Force deoptimization and the rest of the lookup 1307 // will be fine. 1308 deoptimize_caller_frame(current); 1309 } 1310 1311 // Check the stack guard pages. If enabled, look for handler in this frame; 1312 // otherwise, forcibly unwind the frame. 1313 // 1314 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1315 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1316 bool deopting = false; 1317 if (nm->is_deopt_pc(pc)) { 1318 deopting = true; 1319 RegisterMap map(current, false); 1320 frame deoptee = current->last_frame().sender(&map); 1321 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1322 // Adjust the pc back to the original throwing pc 1323 pc = deoptee.pc(); 1324 } 1325 1326 // If we are forcing an unwind because of stack overflow then deopt is 1327 // irrelevant since we are throwing the frame away anyway. 1328 1329 if (deopting && !force_unwind) { 1330 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1331 } else { 1332 1333 handler_address = 1334 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1335 1336 if (handler_address == NULL) { 1337 bool recursive_exception = false; 1338 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1339 assert (handler_address != NULL, "must have compiled handler"); 1340 // Update the exception cache only when the unwind was not forced 1341 // and there didn't happen another exception during the computation of the 1342 // compiled exception handler. Checking for exception oop equality is not 1343 // sufficient because some exceptions are pre-allocated and reused. 1344 if (!force_unwind && !recursive_exception) { 1345 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1346 } 1347 } else { 1348 #ifdef ASSERT 1349 bool recursive_exception = false; 1350 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1351 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1352 p2i(handler_address), p2i(computed_address)); 1353 #endif 1354 } 1355 } 1356 1357 current->set_exception_pc(pc); 1358 current->set_exception_handler_pc(handler_address); 1359 1360 // Check if the exception PC is a MethodHandle call site. 1361 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1362 } 1363 1364 // Restore correct return pc. Was saved above. 1365 current->set_exception_oop(exception()); 1366 return handler_address; 1367 1368 JRT_END 1369 1370 // We are entering here from exception_blob 1371 // If there is a compiled exception handler in this method, we will continue there; 1372 // otherwise we will unwind the stack and continue at the caller of top frame method 1373 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1374 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1375 // we looked up the handler for has been deoptimized in the meantime. If it has been 1376 // we must not use the handler and instead return the deopt blob. 1377 address OptoRuntime::handle_exception_C(JavaThread* current) { 1378 // 1379 // We are in Java not VM and in debug mode we have a NoHandleMark 1380 // 1381 #ifndef PRODUCT 1382 SharedRuntime::_find_handler_ctr++; // find exception handler 1383 #endif 1384 debug_only(NoHandleMark __hm;) 1385 nmethod* nm = NULL; 1386 address handler_address = NULL; 1387 { 1388 // Enter the VM 1389 1390 ResetNoHandleMark rnhm; 1391 handler_address = handle_exception_C_helper(current, nm); 1392 } 1393 1394 // Back in java: Use no oops, DON'T safepoint 1395 1396 // Now check to see if the handler we are returning is in a now 1397 // deoptimized frame 1398 1399 if (nm != NULL) { 1400 RegisterMap map(current, false); 1401 frame caller = current->last_frame().sender(&map); 1402 #ifdef ASSERT 1403 assert(caller.is_compiled_frame(), "must be"); 1404 #endif // ASSERT 1405 if (caller.is_deoptimized_frame()) { 1406 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1407 } 1408 } 1409 return handler_address; 1410 } 1411 1412 //------------------------------rethrow---------------------------------------- 1413 // We get here after compiled code has executed a 'RethrowNode'. The callee 1414 // is either throwing or rethrowing an exception. The callee-save registers 1415 // have been restored, synchronized objects have been unlocked and the callee 1416 // stack frame has been removed. The return address was passed in. 1417 // Exception oop is passed as the 1st argument. This routine is then called 1418 // from the stub. On exit, we know where to jump in the caller's code. 1419 // After this C code exits, the stub will pop his frame and end in a jump 1420 // (instead of a return). We enter the caller's default handler. 1421 // 1422 // This must be JRT_LEAF: 1423 // - caller will not change its state as we cannot block on exit, 1424 // therefore raw_exception_handler_for_return_address is all it takes 1425 // to handle deoptimized blobs 1426 // 1427 // However, there needs to be a safepoint check in the middle! So compiled 1428 // safepoints are completely watertight. 1429 // 1430 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1431 // 1432 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1433 // 1434 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1435 1436 // Enable WXWrite: the function called directly by compiled code. 1437 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread)); 1438 1439 // The frame we rethrow the exception to might not have been processed by the GC yet. 1440 // The stack watermark barrier takes care of detecting that and ensuring the frame 1441 // has updated oops. 1442 StackWatermarkSet::after_unwind(thread); 1443 1444 #ifndef PRODUCT 1445 SharedRuntime::_rethrow_ctr++; // count rethrows 1446 #endif 1447 assert (exception != NULL, "should have thrown a NULLPointerException"); 1448 #ifdef ASSERT 1449 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1450 // should throw an exception here 1451 ShouldNotReachHere(); 1452 } 1453 #endif 1454 1455 thread->set_vm_result(exception); 1456 // Frame not compiled (handles deoptimization blob) 1457 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1458 } 1459 1460 1461 const TypeFunc *OptoRuntime::rethrow_Type() { 1462 // create input type (domain) 1463 const Type **fields = TypeTuple::fields(1); 1464 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1465 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1466 1467 // create result type (range) 1468 fields = TypeTuple::fields(1); 1469 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1470 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1471 1472 return TypeFunc::make(domain, range); 1473 } 1474 1475 1476 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1477 // Deoptimize the caller before continuing, as the compiled 1478 // exception handler table may not be valid. 1479 if (!StressCompiledExceptionHandlers && doit) { 1480 deoptimize_caller_frame(thread); 1481 } 1482 } 1483 1484 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1485 // Called from within the owner thread, so no need for safepoint 1486 RegisterMap reg_map(thread); 1487 frame stub_frame = thread->last_frame(); 1488 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1489 frame caller_frame = stub_frame.sender(®_map); 1490 1491 // Deoptimize the caller frame. 1492 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1493 } 1494 1495 1496 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1497 // Called from within the owner thread, so no need for safepoint 1498 RegisterMap reg_map(thread); 1499 frame stub_frame = thread->last_frame(); 1500 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1501 frame caller_frame = stub_frame.sender(®_map); 1502 return caller_frame.is_deoptimized_frame(); 1503 } 1504 1505 1506 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1507 // create input type (domain) 1508 const Type **fields = TypeTuple::fields(1); 1509 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1510 // // The JavaThread* is passed to each routine as the last argument 1511 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1512 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1513 1514 // create result type (range) 1515 fields = TypeTuple::fields(0); 1516 1517 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1518 1519 return TypeFunc::make(domain,range); 1520 } 1521 1522 #if INCLUDE_JFR 1523 const TypeFunc *OptoRuntime::get_class_id_intrinsic_Type() { 1524 // create input type (domain) 1525 const Type **fields = TypeTuple::fields(1); 1526 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1527 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1528 1529 // create result type (range) 1530 fields = TypeTuple::fields(0); 1531 1532 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1533 1534 return TypeFunc::make(domain,range); 1535 } 1536 #endif 1537 1538 //----------------------------------------------------------------------------- 1539 // Dtrace support. entry and exit probes have the same signature 1540 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1541 // create input type (domain) 1542 const Type **fields = TypeTuple::fields(2); 1543 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1544 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1545 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1546 1547 // create result type (range) 1548 fields = TypeTuple::fields(0); 1549 1550 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1551 1552 return TypeFunc::make(domain,range); 1553 } 1554 1555 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1556 // create input type (domain) 1557 const Type **fields = TypeTuple::fields(2); 1558 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1559 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1560 1561 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1562 1563 // create result type (range) 1564 fields = TypeTuple::fields(0); 1565 1566 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1567 1568 return TypeFunc::make(domain,range); 1569 } 1570 1571 1572 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current)) 1573 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1574 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1575 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1576 JRT_END 1577 1578 //----------------------------------------------------------------------------- 1579 1580 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1581 1582 // 1583 // dump the collected NamedCounters. 1584 // 1585 void OptoRuntime::print_named_counters() { 1586 int total_lock_count = 0; 1587 int eliminated_lock_count = 0; 1588 1589 NamedCounter* c = _named_counters; 1590 while (c) { 1591 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1592 int count = c->count(); 1593 if (count > 0) { 1594 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1595 if (Verbose) { 1596 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1597 } 1598 total_lock_count += count; 1599 if (eliminated) { 1600 eliminated_lock_count += count; 1601 } 1602 } 1603 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1604 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1605 if (blc->nonzero()) { 1606 tty->print_cr("%s", c->name()); 1607 blc->print_on(tty); 1608 } 1609 #if INCLUDE_RTM_OPT 1610 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1611 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1612 if (rlc->nonzero()) { 1613 tty->print_cr("%s", c->name()); 1614 rlc->print_on(tty); 1615 } 1616 #endif 1617 } 1618 c = c->next(); 1619 } 1620 if (total_lock_count > 0) { 1621 tty->print_cr("dynamic locks: %d", total_lock_count); 1622 if (eliminated_lock_count) { 1623 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1624 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1625 } 1626 } 1627 } 1628 1629 // 1630 // Allocate a new NamedCounter. The JVMState is used to generate the 1631 // name which consists of method@line for the inlining tree. 1632 // 1633 1634 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1635 int max_depth = youngest_jvms->depth(); 1636 1637 // Visit scopes from youngest to oldest. 1638 bool first = true; 1639 stringStream st; 1640 for (int depth = max_depth; depth >= 1; depth--) { 1641 JVMState* jvms = youngest_jvms->of_depth(depth); 1642 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1643 if (!first) { 1644 st.print(" "); 1645 } else { 1646 first = false; 1647 } 1648 int bci = jvms->bci(); 1649 if (bci < 0) bci = 0; 1650 if (m != NULL) { 1651 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1652 } else { 1653 st.print("no method"); 1654 } 1655 st.print("@%d", bci); 1656 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1657 } 1658 NamedCounter* c; 1659 if (tag == NamedCounter::BiasedLockingCounter) { 1660 c = new BiasedLockingNamedCounter(st.as_string()); 1661 } else if (tag == NamedCounter::RTMLockingCounter) { 1662 c = new RTMLockingNamedCounter(st.as_string()); 1663 } else { 1664 c = new NamedCounter(st.as_string(), tag); 1665 } 1666 1667 // atomically add the new counter to the head of the list. We only 1668 // add counters so this is safe. 1669 NamedCounter* head; 1670 do { 1671 c->set_next(NULL); 1672 head = _named_counters; 1673 c->set_next(head); 1674 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1675 return c; 1676 } 1677 1678 int trace_exception_counter = 0; 1679 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1680 trace_exception_counter++; 1681 stringStream tempst; 1682 1683 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1684 exception_oop->print_value_on(&tempst); 1685 tempst.print(" in "); 1686 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1687 if (blob->is_compiled()) { 1688 CompiledMethod* cm = blob->as_compiled_method_or_null(); 1689 cm->method()->print_value_on(&tempst); 1690 } else if (blob->is_runtime_stub()) { 1691 tempst.print("<runtime-stub>"); 1692 } else { 1693 tempst.print("<unknown>"); 1694 } 1695 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1696 tempst.print("]"); 1697 1698 st->print_raw_cr(tempst.as_string()); 1699 }