1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledMethod.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/icBuffer.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/g1/heapRegion.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/linkResolver.hpp" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/threadCritical.hpp" 75 #include "runtime/threadWXSetters.inline.hpp" 76 #include "runtime/vframe.hpp" 77 #include "runtime/vframeArray.hpp" 78 #include "runtime/vframe_hp.hpp" 79 #include "utilities/copy.hpp" 80 #include "utilities/preserveException.hpp" 81 82 83 // For debugging purposes: 84 // To force FullGCALot inside a runtime function, add the following two lines 85 // 86 // Universe::release_fullgc_alot_dummy(); 87 // MarkSweep::invoke(0, "Debugging"); 88 // 89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 90 91 92 93 94 // Compiled code entry points 95 address OptoRuntime::_new_instance_Java = nullptr; 96 address OptoRuntime::_new_array_Java = nullptr; 97 address OptoRuntime::_new_array_nozero_Java = nullptr; 98 address OptoRuntime::_multianewarray2_Java = nullptr; 99 address OptoRuntime::_multianewarray3_Java = nullptr; 100 address OptoRuntime::_multianewarray4_Java = nullptr; 101 address OptoRuntime::_multianewarray5_Java = nullptr; 102 address OptoRuntime::_multianewarrayN_Java = nullptr; 103 address OptoRuntime::_vtable_must_compile_Java = nullptr; 104 address OptoRuntime::_complete_monitor_locking_Java = nullptr; 105 address OptoRuntime::_monitor_notify_Java = nullptr; 106 address OptoRuntime::_monitor_notifyAll_Java = nullptr; 107 address OptoRuntime::_rethrow_Java = nullptr; 108 109 address OptoRuntime::_slow_arraycopy_Java = nullptr; 110 address OptoRuntime::_register_finalizer_Java = nullptr; 111 112 ExceptionBlob* OptoRuntime::_exception_blob; 113 114 // This should be called in an assertion at the start of OptoRuntime routines 115 // which are entered from compiled code (all of them) 116 #ifdef ASSERT 117 static bool check_compiled_frame(JavaThread* thread) { 118 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 119 RegisterMap map(thread, false); 120 frame caller = thread->last_frame().sender(&map); 121 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 122 return true; 123 } 124 #endif // ASSERT 125 126 127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 128 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 129 if (var == nullptr) { return false; } 130 131 bool OptoRuntime::generate(ciEnv* env) { 132 133 generate_exception_blob(); 134 135 // Note: tls: Means fetching the return oop out of the thread-local storage 136 // 137 // variable/name type-function-gen , runtime method ,fncy_jp, tls,retpc 138 // ------------------------------------------------------------------------------------------------------------------------------- 139 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true, false); 140 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true, false); 141 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true, false); 142 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true, false); 143 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true, false); 144 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true, false); 145 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true, false); 146 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true, false); 147 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false); 148 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false); 149 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false); 150 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , true ); 151 152 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false); 153 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false); 154 155 return true; 156 } 157 158 #undef gen 159 160 161 // Helper method to do generation of RunTimeStub's 162 address OptoRuntime::generate_stub(ciEnv* env, 163 TypeFunc_generator gen, address C_function, 164 const char *name, int is_fancy_jump, 165 bool pass_tls, 166 bool return_pc) { 167 168 // Matching the default directive, we currently have no method to match. 169 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 170 ResourceMark rm; 171 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 172 DirectivesStack::release(directive); 173 return C.stub_entry_point(); 174 } 175 176 const char* OptoRuntime::stub_name(address entry) { 177 #ifndef PRODUCT 178 CodeBlob* cb = CodeCache::find_blob(entry); 179 RuntimeStub* rs =(RuntimeStub *)cb; 180 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 181 return rs->name(); 182 #else 183 // Fast implementation for product mode (maybe it should be inlined too) 184 return "runtime stub"; 185 #endif 186 } 187 188 189 //============================================================================= 190 // Opto compiler runtime routines 191 //============================================================================= 192 193 194 //=============================allocation====================================== 195 // We failed the fast-path allocation. Now we need to do a scavenge or GC 196 // and try allocation again. 197 198 // object allocation 199 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 200 JRT_BLOCK; 201 #ifndef PRODUCT 202 SharedRuntime::_new_instance_ctr++; // new instance requires GC 203 #endif 204 assert(check_compiled_frame(current), "incorrect caller"); 205 206 // These checks are cheap to make and support reflective allocation. 207 int lh = klass->layout_helper(); 208 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 209 Handle holder(current, klass->klass_holder()); // keep the klass alive 210 klass->check_valid_for_instantiation(false, THREAD); 211 if (!HAS_PENDING_EXCEPTION) { 212 InstanceKlass::cast(klass)->initialize(THREAD); 213 } 214 } 215 216 if (!HAS_PENDING_EXCEPTION) { 217 // Scavenge and allocate an instance. 218 Handle holder(current, klass->klass_holder()); // keep the klass alive 219 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 220 current->set_vm_result(result); 221 222 // Pass oops back through thread local storage. Our apparent type to Java 223 // is that we return an oop, but we can block on exit from this routine and 224 // a GC can trash the oop in C's return register. The generated stub will 225 // fetch the oop from TLS after any possible GC. 226 } 227 228 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 229 JRT_BLOCK_END; 230 231 // inform GC that we won't do card marks for initializing writes. 232 SharedRuntime::on_slowpath_allocation_exit(current); 233 JRT_END 234 235 236 // array allocation 237 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 238 JRT_BLOCK; 239 #ifndef PRODUCT 240 SharedRuntime::_new_array_ctr++; // new array requires GC 241 #endif 242 assert(check_compiled_frame(current), "incorrect caller"); 243 244 // Scavenge and allocate an instance. 245 oop result; 246 247 if (array_type->is_typeArray_klass()) { 248 // The oopFactory likes to work with the element type. 249 // (We could bypass the oopFactory, since it doesn't add much value.) 250 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 251 result = oopFactory::new_typeArray(elem_type, len, THREAD); 252 } else { 253 // Although the oopFactory likes to work with the elem_type, 254 // the compiler prefers the array_type, since it must already have 255 // that latter value in hand for the fast path. 256 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 257 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 258 result = oopFactory::new_objArray(elem_type, len, THREAD); 259 } 260 261 // Pass oops back through thread local storage. Our apparent type to Java 262 // is that we return an oop, but we can block on exit from this routine and 263 // a GC can trash the oop in C's return register. The generated stub will 264 // fetch the oop from TLS after any possible GC. 265 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 266 current->set_vm_result(result); 267 JRT_BLOCK_END; 268 269 // inform GC that we won't do card marks for initializing writes. 270 SharedRuntime::on_slowpath_allocation_exit(current); 271 JRT_END 272 273 // array allocation without zeroing 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 275 JRT_BLOCK; 276 #ifndef PRODUCT 277 SharedRuntime::_new_array_ctr++; // new array requires GC 278 #endif 279 assert(check_compiled_frame(current), "incorrect caller"); 280 281 // Scavenge and allocate an instance. 282 oop result; 283 284 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 285 // The oopFactory likes to work with the element type. 286 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 287 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 288 289 // Pass oops back through thread local storage. Our apparent type to Java 290 // is that we return an oop, but we can block on exit from this routine and 291 // a GC can trash the oop in C's return register. The generated stub will 292 // fetch the oop from TLS after any possible GC. 293 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 294 current->set_vm_result(result); 295 JRT_BLOCK_END; 296 297 298 // inform GC that we won't do card marks for initializing writes. 299 SharedRuntime::on_slowpath_allocation_exit(current); 300 301 oop result = current->vm_result(); 302 if ((len > 0) && (result != nullptr) && 303 is_deoptimized_caller_frame(current)) { 304 // Zero array here if the caller is deoptimized. 305 int size = TypeArrayKlass::cast(array_type)->oop_size(result); 306 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 307 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 308 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 309 HeapWord* obj = cast_from_oop<HeapWord*>(result); 310 if (!is_aligned(hs_bytes, BytesPerLong)) { 311 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 312 hs_bytes += BytesPerInt; 313 } 314 315 // Optimized zeroing. 316 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 317 const size_t aligned_hs = hs_bytes / BytesPerLong; 318 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 319 } 320 321 JRT_END 322 323 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 324 325 // multianewarray for 2 dimensions 326 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 327 #ifndef PRODUCT 328 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 329 #endif 330 assert(check_compiled_frame(current), "incorrect caller"); 331 assert(elem_type->is_klass(), "not a class"); 332 jint dims[2]; 333 dims[0] = len1; 334 dims[1] = len2; 335 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 336 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 337 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 338 current->set_vm_result(obj); 339 JRT_END 340 341 // multianewarray for 3 dimensions 342 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 343 #ifndef PRODUCT 344 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 345 #endif 346 assert(check_compiled_frame(current), "incorrect caller"); 347 assert(elem_type->is_klass(), "not a class"); 348 jint dims[3]; 349 dims[0] = len1; 350 dims[1] = len2; 351 dims[2] = len3; 352 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 353 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 354 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 355 current->set_vm_result(obj); 356 JRT_END 357 358 // multianewarray for 4 dimensions 359 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 360 #ifndef PRODUCT 361 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 362 #endif 363 assert(check_compiled_frame(current), "incorrect caller"); 364 assert(elem_type->is_klass(), "not a class"); 365 jint dims[4]; 366 dims[0] = len1; 367 dims[1] = len2; 368 dims[2] = len3; 369 dims[3] = len4; 370 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 371 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 372 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 373 current->set_vm_result(obj); 374 JRT_END 375 376 // multianewarray for 5 dimensions 377 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 378 #ifndef PRODUCT 379 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 380 #endif 381 assert(check_compiled_frame(current), "incorrect caller"); 382 assert(elem_type->is_klass(), "not a class"); 383 jint dims[5]; 384 dims[0] = len1; 385 dims[1] = len2; 386 dims[2] = len3; 387 dims[3] = len4; 388 dims[4] = len5; 389 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 390 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 391 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 392 current->set_vm_result(obj); 393 JRT_END 394 395 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 396 assert(check_compiled_frame(current), "incorrect caller"); 397 assert(elem_type->is_klass(), "not a class"); 398 assert(oop(dims)->is_typeArray(), "not an array"); 399 400 ResourceMark rm; 401 jint len = dims->length(); 402 assert(len > 0, "Dimensions array should contain data"); 403 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 404 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 405 c_dims, len); 406 407 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 408 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 409 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 410 current->set_vm_result(obj); 411 JRT_END 412 413 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 414 415 // Very few notify/notifyAll operations find any threads on the waitset, so 416 // the dominant fast-path is to simply return. 417 // Relatedly, it's critical that notify/notifyAll be fast in order to 418 // reduce lock hold times. 419 if (!SafepointSynchronize::is_synchronizing()) { 420 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 421 return; 422 } 423 } 424 425 // This is the case the fast-path above isn't provisioned to handle. 426 // The fast-path is designed to handle frequently arising cases in an efficient manner. 427 // (The fast-path is just a degenerate variant of the slow-path). 428 // Perform the dreaded state transition and pass control into the slow-path. 429 JRT_BLOCK; 430 Handle h_obj(current, obj); 431 ObjectSynchronizer::notify(h_obj, CHECK); 432 JRT_BLOCK_END; 433 JRT_END 434 435 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 436 437 if (!SafepointSynchronize::is_synchronizing() ) { 438 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 439 return; 440 } 441 } 442 443 // This is the case the fast-path above isn't provisioned to handle. 444 // The fast-path is designed to handle frequently arising cases in an efficient manner. 445 // (The fast-path is just a degenerate variant of the slow-path). 446 // Perform the dreaded state transition and pass control into the slow-path. 447 JRT_BLOCK; 448 Handle h_obj(current, obj); 449 ObjectSynchronizer::notifyall(h_obj, CHECK); 450 JRT_BLOCK_END; 451 JRT_END 452 453 const TypeFunc *OptoRuntime::new_instance_Type() { 454 // create input type (domain) 455 const Type **fields = TypeTuple::fields(1); 456 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 457 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 458 459 // create result type (range) 460 fields = TypeTuple::fields(1); 461 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 462 463 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 464 465 return TypeFunc::make(domain, range); 466 } 467 468 469 const TypeFunc *OptoRuntime::athrow_Type() { 470 // create input type (domain) 471 const Type **fields = TypeTuple::fields(1); 472 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 473 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 474 475 // create result type (range) 476 fields = TypeTuple::fields(0); 477 478 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 479 480 return TypeFunc::make(domain, range); 481 } 482 483 484 const TypeFunc *OptoRuntime::new_array_Type() { 485 // create input type (domain) 486 const Type **fields = TypeTuple::fields(2); 487 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 488 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 489 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 490 491 // create result type (range) 492 fields = TypeTuple::fields(1); 493 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 494 495 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 496 497 return TypeFunc::make(domain, range); 498 } 499 500 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 501 // create input type (domain) 502 const int nargs = ndim + 1; 503 const Type **fields = TypeTuple::fields(nargs); 504 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 505 for( int i = 1; i < nargs; i++ ) 506 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 507 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 508 509 // create result type (range) 510 fields = TypeTuple::fields(1); 511 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 512 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 513 514 return TypeFunc::make(domain, range); 515 } 516 517 const TypeFunc *OptoRuntime::multianewarray2_Type() { 518 return multianewarray_Type(2); 519 } 520 521 const TypeFunc *OptoRuntime::multianewarray3_Type() { 522 return multianewarray_Type(3); 523 } 524 525 const TypeFunc *OptoRuntime::multianewarray4_Type() { 526 return multianewarray_Type(4); 527 } 528 529 const TypeFunc *OptoRuntime::multianewarray5_Type() { 530 return multianewarray_Type(5); 531 } 532 533 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 534 // create input type (domain) 535 const Type **fields = TypeTuple::fields(2); 536 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 537 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 538 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 539 540 // create result type (range) 541 fields = TypeTuple::fields(1); 542 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 543 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 544 545 return TypeFunc::make(domain, range); 546 } 547 548 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 549 // create input type (domain) 550 const Type **fields = TypeTuple::fields(1); 551 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 552 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 553 554 // create result type (range) 555 fields = TypeTuple::fields(0); 556 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 557 558 return TypeFunc::make(domain, range); 559 } 560 561 //----------------------------------------------------------------------------- 562 // Monitor Handling 563 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 564 // create input type (domain) 565 const Type **fields = TypeTuple::fields(2); 566 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 567 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 568 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 569 570 // create result type (range) 571 fields = TypeTuple::fields(0); 572 573 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 574 575 return TypeFunc::make(domain,range); 576 } 577 578 579 //----------------------------------------------------------------------------- 580 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 581 // create input type (domain) 582 const Type **fields = TypeTuple::fields(3); 583 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 584 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 585 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 586 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 587 588 // create result type (range) 589 fields = TypeTuple::fields(0); 590 591 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 592 593 return TypeFunc::make(domain, range); 594 } 595 596 const TypeFunc *OptoRuntime::monitor_notify_Type() { 597 // create input type (domain) 598 const Type **fields = TypeTuple::fields(1); 599 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 600 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 601 602 // create result type (range) 603 fields = TypeTuple::fields(0); 604 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 605 return TypeFunc::make(domain, range); 606 } 607 608 const TypeFunc* OptoRuntime::flush_windows_Type() { 609 // create input type (domain) 610 const Type** fields = TypeTuple::fields(1); 611 fields[TypeFunc::Parms+0] = nullptr; // void 612 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 613 614 // create result type 615 fields = TypeTuple::fields(1); 616 fields[TypeFunc::Parms+0] = nullptr; // void 617 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 618 619 return TypeFunc::make(domain, range); 620 } 621 622 const TypeFunc* OptoRuntime::l2f_Type() { 623 // create input type (domain) 624 const Type **fields = TypeTuple::fields(2); 625 fields[TypeFunc::Parms+0] = TypeLong::LONG; 626 fields[TypeFunc::Parms+1] = Type::HALF; 627 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 628 629 // create result type (range) 630 fields = TypeTuple::fields(1); 631 fields[TypeFunc::Parms+0] = Type::FLOAT; 632 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 633 634 return TypeFunc::make(domain, range); 635 } 636 637 const TypeFunc* OptoRuntime::modf_Type() { 638 const Type **fields = TypeTuple::fields(2); 639 fields[TypeFunc::Parms+0] = Type::FLOAT; 640 fields[TypeFunc::Parms+1] = Type::FLOAT; 641 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 642 643 // create result type (range) 644 fields = TypeTuple::fields(1); 645 fields[TypeFunc::Parms+0] = Type::FLOAT; 646 647 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 648 649 return TypeFunc::make(domain, range); 650 } 651 652 const TypeFunc *OptoRuntime::Math_D_D_Type() { 653 // create input type (domain) 654 const Type **fields = TypeTuple::fields(2); 655 // Symbol* name of class to be loaded 656 fields[TypeFunc::Parms+0] = Type::DOUBLE; 657 fields[TypeFunc::Parms+1] = Type::HALF; 658 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 659 660 // create result type (range) 661 fields = TypeTuple::fields(2); 662 fields[TypeFunc::Parms+0] = Type::DOUBLE; 663 fields[TypeFunc::Parms+1] = Type::HALF; 664 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 665 666 return TypeFunc::make(domain, range); 667 } 668 669 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 670 // create input type (domain) 671 const Type **fields = TypeTuple::fields(num_arg); 672 // Symbol* name of class to be loaded 673 assert(num_arg > 0, "must have at least 1 input"); 674 for (uint i = 0; i < num_arg; i++) { 675 fields[TypeFunc::Parms+i] = in_type; 676 } 677 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 678 679 // create result type (range) 680 const uint num_ret = 1; 681 fields = TypeTuple::fields(num_ret); 682 fields[TypeFunc::Parms+0] = out_type; 683 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 684 685 return TypeFunc::make(domain, range); 686 } 687 688 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 689 const Type **fields = TypeTuple::fields(4); 690 fields[TypeFunc::Parms+0] = Type::DOUBLE; 691 fields[TypeFunc::Parms+1] = Type::HALF; 692 fields[TypeFunc::Parms+2] = Type::DOUBLE; 693 fields[TypeFunc::Parms+3] = Type::HALF; 694 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 695 696 // create result type (range) 697 fields = TypeTuple::fields(2); 698 fields[TypeFunc::Parms+0] = Type::DOUBLE; 699 fields[TypeFunc::Parms+1] = Type::HALF; 700 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 701 702 return TypeFunc::make(domain, range); 703 } 704 705 //-------------- currentTimeMillis, currentTimeNanos, etc 706 707 const TypeFunc* OptoRuntime::void_long_Type() { 708 // create input type (domain) 709 const Type **fields = TypeTuple::fields(0); 710 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 711 712 // create result type (range) 713 fields = TypeTuple::fields(2); 714 fields[TypeFunc::Parms+0] = TypeLong::LONG; 715 fields[TypeFunc::Parms+1] = Type::HALF; 716 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 717 718 return TypeFunc::make(domain, range); 719 } 720 721 // arraycopy stub variations: 722 enum ArrayCopyType { 723 ac_fast, // void(ptr, ptr, size_t) 724 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 725 ac_slow, // void(ptr, int, ptr, int, int) 726 ac_generic // int(ptr, int, ptr, int, int) 727 }; 728 729 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 730 // create input type (domain) 731 int num_args = (act == ac_fast ? 3 : 5); 732 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 733 int argcnt = num_args; 734 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 735 const Type** fields = TypeTuple::fields(argcnt); 736 int argp = TypeFunc::Parms; 737 fields[argp++] = TypePtr::NOTNULL; // src 738 if (num_size_args == 0) { 739 fields[argp++] = TypeInt::INT; // src_pos 740 } 741 fields[argp++] = TypePtr::NOTNULL; // dest 742 if (num_size_args == 0) { 743 fields[argp++] = TypeInt::INT; // dest_pos 744 fields[argp++] = TypeInt::INT; // length 745 } 746 while (num_size_args-- > 0) { 747 fields[argp++] = TypeX_X; // size in whatevers (size_t) 748 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 749 } 750 if (act == ac_checkcast) { 751 fields[argp++] = TypePtr::NOTNULL; // super_klass 752 } 753 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 754 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 755 756 // create result type if needed 757 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 758 fields = TypeTuple::fields(1); 759 if (retcnt == 0) 760 fields[TypeFunc::Parms+0] = nullptr; // void 761 else 762 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 763 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 764 return TypeFunc::make(domain, range); 765 } 766 767 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 768 // This signature is simple: Two base pointers and a size_t. 769 return make_arraycopy_Type(ac_fast); 770 } 771 772 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 773 // An extension of fast_arraycopy_Type which adds type checking. 774 return make_arraycopy_Type(ac_checkcast); 775 } 776 777 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 778 // This signature is exactly the same as System.arraycopy. 779 // There are no intptr_t (int/long) arguments. 780 return make_arraycopy_Type(ac_slow); 781 } 782 783 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 784 // This signature is like System.arraycopy, except that it returns status. 785 return make_arraycopy_Type(ac_generic); 786 } 787 788 789 const TypeFunc* OptoRuntime::array_fill_Type() { 790 const Type** fields; 791 int argp = TypeFunc::Parms; 792 // create input type (domain): pointer, int, size_t 793 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 794 fields[argp++] = TypePtr::NOTNULL; 795 fields[argp++] = TypeInt::INT; 796 fields[argp++] = TypeX_X; // size in whatevers (size_t) 797 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 798 const TypeTuple *domain = TypeTuple::make(argp, fields); 799 800 // create result type 801 fields = TypeTuple::fields(1); 802 fields[TypeFunc::Parms+0] = nullptr; // void 803 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 804 805 return TypeFunc::make(domain, range); 806 } 807 808 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 809 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 810 // create input type (domain) 811 int num_args = 3; 812 int argcnt = num_args; 813 const Type** fields = TypeTuple::fields(argcnt); 814 int argp = TypeFunc::Parms; 815 fields[argp++] = TypePtr::NOTNULL; // src 816 fields[argp++] = TypePtr::NOTNULL; // dest 817 fields[argp++] = TypePtr::NOTNULL; // k array 818 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 819 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 820 821 // no result type needed 822 fields = TypeTuple::fields(1); 823 fields[TypeFunc::Parms+0] = nullptr; // void 824 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 825 return TypeFunc::make(domain, range); 826 } 827 828 /** 829 * int updateBytesCRC32(int crc, byte* b, int len) 830 */ 831 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 832 // create input type (domain) 833 int num_args = 3; 834 int argcnt = num_args; 835 const Type** fields = TypeTuple::fields(argcnt); 836 int argp = TypeFunc::Parms; 837 fields[argp++] = TypeInt::INT; // crc 838 fields[argp++] = TypePtr::NOTNULL; // src 839 fields[argp++] = TypeInt::INT; // len 840 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 841 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 842 843 // result type needed 844 fields = TypeTuple::fields(1); 845 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 846 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 847 return TypeFunc::make(domain, range); 848 } 849 850 /** 851 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 852 */ 853 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 854 // create input type (domain) 855 int num_args = 4; 856 int argcnt = num_args; 857 const Type** fields = TypeTuple::fields(argcnt); 858 int argp = TypeFunc::Parms; 859 fields[argp++] = TypeInt::INT; // crc 860 fields[argp++] = TypePtr::NOTNULL; // buf 861 fields[argp++] = TypeInt::INT; // len 862 fields[argp++] = TypePtr::NOTNULL; // table 863 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 864 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 865 866 // result type needed 867 fields = TypeTuple::fields(1); 868 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 869 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 870 return TypeFunc::make(domain, range); 871 } 872 873 /** 874 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 875 */ 876 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 877 // create input type (domain) 878 int num_args = 3; 879 int argcnt = num_args; 880 const Type** fields = TypeTuple::fields(argcnt); 881 int argp = TypeFunc::Parms; 882 fields[argp++] = TypeInt::INT; // crc 883 fields[argp++] = TypePtr::NOTNULL; // src + offset 884 fields[argp++] = TypeInt::INT; // len 885 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 886 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 887 888 // result type needed 889 fields = TypeTuple::fields(1); 890 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 891 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 892 return TypeFunc::make(domain, range); 893 } 894 895 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 896 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 897 // create input type (domain) 898 int num_args = 5; 899 int argcnt = num_args; 900 const Type** fields = TypeTuple::fields(argcnt); 901 int argp = TypeFunc::Parms; 902 fields[argp++] = TypePtr::NOTNULL; // src 903 fields[argp++] = TypePtr::NOTNULL; // dest 904 fields[argp++] = TypePtr::NOTNULL; // k array 905 fields[argp++] = TypePtr::NOTNULL; // r array 906 fields[argp++] = TypeInt::INT; // src len 907 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 908 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 909 910 // returning cipher len (int) 911 fields = TypeTuple::fields(1); 912 fields[TypeFunc::Parms+0] = TypeInt::INT; 913 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 914 return TypeFunc::make(domain, range); 915 } 916 917 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 918 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 919 // create input type (domain) 920 int num_args = 4; 921 int argcnt = num_args; 922 const Type** fields = TypeTuple::fields(argcnt); 923 int argp = TypeFunc::Parms; 924 fields[argp++] = TypePtr::NOTNULL; // src 925 fields[argp++] = TypePtr::NOTNULL; // dest 926 fields[argp++] = TypePtr::NOTNULL; // k array 927 fields[argp++] = TypeInt::INT; // src len 928 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 929 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 930 931 // returning cipher len (int) 932 fields = TypeTuple::fields(1); 933 fields[TypeFunc::Parms + 0] = TypeInt::INT; 934 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 935 return TypeFunc::make(domain, range); 936 } 937 938 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 939 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 940 // create input type (domain) 941 int num_args = 7; 942 int argcnt = num_args; 943 const Type** fields = TypeTuple::fields(argcnt); 944 int argp = TypeFunc::Parms; 945 fields[argp++] = TypePtr::NOTNULL; // src 946 fields[argp++] = TypePtr::NOTNULL; // dest 947 fields[argp++] = TypePtr::NOTNULL; // k array 948 fields[argp++] = TypePtr::NOTNULL; // counter array 949 fields[argp++] = TypeInt::INT; // src len 950 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 951 fields[argp++] = TypePtr::NOTNULL; // saved used addr 952 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 953 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 954 // returning cipher len (int) 955 fields = TypeTuple::fields(1); 956 fields[TypeFunc::Parms + 0] = TypeInt::INT; 957 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 958 return TypeFunc::make(domain, range); 959 } 960 961 /* 962 * void implCompress(byte[] buf, int ofs) 963 */ 964 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 965 // create input type (domain) 966 int num_args = is_sha3 ? 3 : 2; 967 int argcnt = num_args; 968 const Type** fields = TypeTuple::fields(argcnt); 969 int argp = TypeFunc::Parms; 970 fields[argp++] = TypePtr::NOTNULL; // buf 971 fields[argp++] = TypePtr::NOTNULL; // state 972 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length 973 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 974 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 975 976 // no result type needed 977 fields = TypeTuple::fields(1); 978 fields[TypeFunc::Parms+0] = nullptr; // void 979 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 980 return TypeFunc::make(domain, range); 981 } 982 983 /* 984 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 985 */ 986 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 987 // create input type (domain) 988 int num_args = is_sha3 ? 5 : 4; 989 int argcnt = num_args; 990 const Type** fields = TypeTuple::fields(argcnt); 991 int argp = TypeFunc::Parms; 992 fields[argp++] = TypePtr::NOTNULL; // buf 993 fields[argp++] = TypePtr::NOTNULL; // state 994 if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length 995 fields[argp++] = TypeInt::INT; // ofs 996 fields[argp++] = TypeInt::INT; // limit 997 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 998 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 999 1000 // returning ofs (int) 1001 fields = TypeTuple::fields(1); 1002 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1003 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1004 return TypeFunc::make(domain, range); 1005 } 1006 1007 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1008 // create input type (domain) 1009 int num_args = 6; 1010 int argcnt = num_args; 1011 const Type** fields = TypeTuple::fields(argcnt); 1012 int argp = TypeFunc::Parms; 1013 fields[argp++] = TypePtr::NOTNULL; // x 1014 fields[argp++] = TypeInt::INT; // xlen 1015 fields[argp++] = TypePtr::NOTNULL; // y 1016 fields[argp++] = TypeInt::INT; // ylen 1017 fields[argp++] = TypePtr::NOTNULL; // z 1018 fields[argp++] = TypeInt::INT; // zlen 1019 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1020 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1021 1022 // no result type needed 1023 fields = TypeTuple::fields(1); 1024 fields[TypeFunc::Parms+0] = nullptr; 1025 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1026 return TypeFunc::make(domain, range); 1027 } 1028 1029 const TypeFunc* OptoRuntime::squareToLen_Type() { 1030 // create input type (domain) 1031 int num_args = 4; 1032 int argcnt = num_args; 1033 const Type** fields = TypeTuple::fields(argcnt); 1034 int argp = TypeFunc::Parms; 1035 fields[argp++] = TypePtr::NOTNULL; // x 1036 fields[argp++] = TypeInt::INT; // len 1037 fields[argp++] = TypePtr::NOTNULL; // z 1038 fields[argp++] = TypeInt::INT; // zlen 1039 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1040 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1041 1042 // no result type needed 1043 fields = TypeTuple::fields(1); 1044 fields[TypeFunc::Parms+0] = nullptr; 1045 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1046 return TypeFunc::make(domain, range); 1047 } 1048 1049 // for mulAdd calls, 2 pointers and 3 ints, returning int 1050 const TypeFunc* OptoRuntime::mulAdd_Type() { 1051 // create input type (domain) 1052 int num_args = 5; 1053 int argcnt = num_args; 1054 const Type** fields = TypeTuple::fields(argcnt); 1055 int argp = TypeFunc::Parms; 1056 fields[argp++] = TypePtr::NOTNULL; // out 1057 fields[argp++] = TypePtr::NOTNULL; // in 1058 fields[argp++] = TypeInt::INT; // offset 1059 fields[argp++] = TypeInt::INT; // len 1060 fields[argp++] = TypeInt::INT; // k 1061 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1062 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1063 1064 // returning carry (int) 1065 fields = TypeTuple::fields(1); 1066 fields[TypeFunc::Parms+0] = TypeInt::INT; 1067 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1068 return TypeFunc::make(domain, range); 1069 } 1070 1071 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1072 // create input type (domain) 1073 int num_args = 7; 1074 int argcnt = num_args; 1075 const Type** fields = TypeTuple::fields(argcnt); 1076 int argp = TypeFunc::Parms; 1077 fields[argp++] = TypePtr::NOTNULL; // a 1078 fields[argp++] = TypePtr::NOTNULL; // b 1079 fields[argp++] = TypePtr::NOTNULL; // n 1080 fields[argp++] = TypeInt::INT; // len 1081 fields[argp++] = TypeLong::LONG; // inv 1082 fields[argp++] = Type::HALF; 1083 fields[argp++] = TypePtr::NOTNULL; // result 1084 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1085 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1086 1087 // result type needed 1088 fields = TypeTuple::fields(1); 1089 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1090 1091 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1092 return TypeFunc::make(domain, range); 1093 } 1094 1095 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1096 // create input type (domain) 1097 int num_args = 6; 1098 int argcnt = num_args; 1099 const Type** fields = TypeTuple::fields(argcnt); 1100 int argp = TypeFunc::Parms; 1101 fields[argp++] = TypePtr::NOTNULL; // a 1102 fields[argp++] = TypePtr::NOTNULL; // n 1103 fields[argp++] = TypeInt::INT; // len 1104 fields[argp++] = TypeLong::LONG; // inv 1105 fields[argp++] = Type::HALF; 1106 fields[argp++] = TypePtr::NOTNULL; // result 1107 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1108 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1109 1110 // result type needed 1111 fields = TypeTuple::fields(1); 1112 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1113 1114 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1115 return TypeFunc::make(domain, range); 1116 } 1117 1118 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1119 int argcnt = 5; 1120 const Type** fields = TypeTuple::fields(argcnt); 1121 int argp = TypeFunc::Parms; 1122 fields[argp++] = TypePtr::NOTNULL; // newArr 1123 fields[argp++] = TypePtr::NOTNULL; // oldArr 1124 fields[argp++] = TypeInt::INT; // newIdx 1125 fields[argp++] = TypeInt::INT; // shiftCount 1126 fields[argp++] = TypeInt::INT; // numIter 1127 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1128 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1129 1130 // no result type needed 1131 fields = TypeTuple::fields(1); 1132 fields[TypeFunc::Parms + 0] = nullptr; 1133 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1134 return TypeFunc::make(domain, range); 1135 } 1136 1137 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1138 // create input type (domain) 1139 int num_args = 4; 1140 int argcnt = num_args; 1141 const Type** fields = TypeTuple::fields(argcnt); 1142 int argp = TypeFunc::Parms; 1143 fields[argp++] = TypePtr::NOTNULL; // obja 1144 fields[argp++] = TypePtr::NOTNULL; // objb 1145 fields[argp++] = TypeInt::INT; // length, number of elements 1146 fields[argp++] = TypeInt::INT; // log2scale, element size 1147 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1148 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1149 1150 //return mismatch index (int) 1151 fields = TypeTuple::fields(1); 1152 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1153 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1154 return TypeFunc::make(domain, range); 1155 } 1156 1157 // GHASH block processing 1158 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1159 int argcnt = 4; 1160 1161 const Type** fields = TypeTuple::fields(argcnt); 1162 int argp = TypeFunc::Parms; 1163 fields[argp++] = TypePtr::NOTNULL; // state 1164 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1165 fields[argp++] = TypePtr::NOTNULL; // data 1166 fields[argp++] = TypeInt::INT; // blocks 1167 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1168 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1169 1170 // result type needed 1171 fields = TypeTuple::fields(1); 1172 fields[TypeFunc::Parms+0] = nullptr; // void 1173 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1174 return TypeFunc::make(domain, range); 1175 } 1176 // Base64 encode function 1177 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1178 int argcnt = 6; 1179 1180 const Type** fields = TypeTuple::fields(argcnt); 1181 int argp = TypeFunc::Parms; 1182 fields[argp++] = TypePtr::NOTNULL; // src array 1183 fields[argp++] = TypeInt::INT; // offset 1184 fields[argp++] = TypeInt::INT; // length 1185 fields[argp++] = TypePtr::NOTNULL; // dest array 1186 fields[argp++] = TypeInt::INT; // dp 1187 fields[argp++] = TypeInt::BOOL; // isURL 1188 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1189 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1190 1191 // result type needed 1192 fields = TypeTuple::fields(1); 1193 fields[TypeFunc::Parms + 0] = nullptr; // void 1194 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1195 return TypeFunc::make(domain, range); 1196 } 1197 // Base64 decode function 1198 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1199 int argcnt = 7; 1200 1201 const Type** fields = TypeTuple::fields(argcnt); 1202 int argp = TypeFunc::Parms; 1203 fields[argp++] = TypePtr::NOTNULL; // src array 1204 fields[argp++] = TypeInt::INT; // src offset 1205 fields[argp++] = TypeInt::INT; // src length 1206 fields[argp++] = TypePtr::NOTNULL; // dest array 1207 fields[argp++] = TypeInt::INT; // dest offset 1208 fields[argp++] = TypeInt::BOOL; // isURL 1209 fields[argp++] = TypeInt::BOOL; // isMIME 1210 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1211 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1212 1213 // result type needed 1214 fields = TypeTuple::fields(1); 1215 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1216 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1217 return TypeFunc::make(domain, range); 1218 } 1219 1220 //------------- Interpreter state access for on stack replacement 1221 const TypeFunc* OptoRuntime::osr_end_Type() { 1222 // create input type (domain) 1223 const Type **fields = TypeTuple::fields(1); 1224 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1225 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1226 1227 // create result type 1228 fields = TypeTuple::fields(1); 1229 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1230 fields[TypeFunc::Parms+0] = nullptr; // void 1231 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1232 return TypeFunc::make(domain, range); 1233 } 1234 1235 //------------------------------------------------------------------------------------- 1236 // register policy 1237 1238 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1239 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1240 switch (register_save_policy[reg]) { 1241 case 'C': return false; //SOC 1242 case 'E': return true ; //SOE 1243 case 'N': return false; //NS 1244 case 'A': return false; //AS 1245 } 1246 ShouldNotReachHere(); 1247 return false; 1248 } 1249 1250 //----------------------------------------------------------------------- 1251 // Exceptions 1252 // 1253 1254 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1255 1256 // The method is an entry that is always called by a C++ method not 1257 // directly from compiled code. Compiled code will call the C++ method following. 1258 // We can't allow async exception to be installed during exception processing. 1259 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1260 // Do not confuse exception_oop with pending_exception. The exception_oop 1261 // is only used to pass arguments into the method. Not for general 1262 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1263 // the runtime stubs checks this on exit. 1264 assert(current->exception_oop() != nullptr, "exception oop is found"); 1265 address handler_address = nullptr; 1266 1267 Handle exception(current, current->exception_oop()); 1268 address pc = current->exception_pc(); 1269 1270 // Clear out the exception oop and pc since looking up an 1271 // exception handler can cause class loading, which might throw an 1272 // exception and those fields are expected to be clear during 1273 // normal bytecode execution. 1274 current->clear_exception_oop_and_pc(); 1275 1276 LogTarget(Info, exceptions) lt; 1277 if (lt.is_enabled()) { 1278 ResourceMark rm; 1279 LogStream ls(lt); 1280 trace_exception(&ls, exception(), pc, ""); 1281 } 1282 1283 // for AbortVMOnException flag 1284 Exceptions::debug_check_abort(exception); 1285 1286 #ifdef ASSERT 1287 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1288 // should throw an exception here 1289 ShouldNotReachHere(); 1290 } 1291 #endif 1292 1293 // new exception handling: this method is entered only from adapters 1294 // exceptions from compiled java methods are handled in compiled code 1295 // using rethrow node 1296 1297 nm = CodeCache::find_nmethod(pc); 1298 assert(nm != nullptr, "No NMethod found"); 1299 if (nm->is_native_method()) { 1300 fatal("Native method should not have path to exception handling"); 1301 } else { 1302 // we are switching to old paradigm: search for exception handler in caller_frame 1303 // instead in exception handler of caller_frame.sender() 1304 1305 if (JvmtiExport::can_post_on_exceptions()) { 1306 // "Full-speed catching" is not necessary here, 1307 // since we're notifying the VM on every catch. 1308 // Force deoptimization and the rest of the lookup 1309 // will be fine. 1310 deoptimize_caller_frame(current); 1311 } 1312 1313 // Check the stack guard pages. If enabled, look for handler in this frame; 1314 // otherwise, forcibly unwind the frame. 1315 // 1316 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1317 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1318 bool deopting = false; 1319 if (nm->is_deopt_pc(pc)) { 1320 deopting = true; 1321 RegisterMap map(current, false); 1322 frame deoptee = current->last_frame().sender(&map); 1323 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1324 // Adjust the pc back to the original throwing pc 1325 pc = deoptee.pc(); 1326 } 1327 1328 // If we are forcing an unwind because of stack overflow then deopt is 1329 // irrelevant since we are throwing the frame away anyway. 1330 1331 if (deopting && !force_unwind) { 1332 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1333 } else { 1334 1335 handler_address = 1336 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1337 1338 if (handler_address == nullptr) { 1339 bool recursive_exception = false; 1340 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1341 assert (handler_address != nullptr, "must have compiled handler"); 1342 // Update the exception cache only when the unwind was not forced 1343 // and there didn't happen another exception during the computation of the 1344 // compiled exception handler. Checking for exception oop equality is not 1345 // sufficient because some exceptions are pre-allocated and reused. 1346 if (!force_unwind && !recursive_exception) { 1347 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1348 } 1349 } else { 1350 #ifdef ASSERT 1351 bool recursive_exception = false; 1352 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1353 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1354 p2i(handler_address), p2i(computed_address)); 1355 #endif 1356 } 1357 } 1358 1359 current->set_exception_pc(pc); 1360 current->set_exception_handler_pc(handler_address); 1361 1362 // Check if the exception PC is a MethodHandle call site. 1363 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1364 } 1365 1366 // Restore correct return pc. Was saved above. 1367 current->set_exception_oop(exception()); 1368 return handler_address; 1369 1370 JRT_END 1371 1372 // We are entering here from exception_blob 1373 // If there is a compiled exception handler in this method, we will continue there; 1374 // otherwise we will unwind the stack and continue at the caller of top frame method 1375 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1376 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1377 // we looked up the handler for has been deoptimized in the meantime. If it has been 1378 // we must not use the handler and instead return the deopt blob. 1379 address OptoRuntime::handle_exception_C(JavaThread* current) { 1380 // 1381 // We are in Java not VM and in debug mode we have a NoHandleMark 1382 // 1383 #ifndef PRODUCT 1384 SharedRuntime::_find_handler_ctr++; // find exception handler 1385 #endif 1386 debug_only(NoHandleMark __hm;) 1387 nmethod* nm = nullptr; 1388 address handler_address = nullptr; 1389 { 1390 // Enter the VM 1391 1392 ResetNoHandleMark rnhm; 1393 handler_address = handle_exception_C_helper(current, nm); 1394 } 1395 1396 // Back in java: Use no oops, DON'T safepoint 1397 1398 // Now check to see if the handler we are returning is in a now 1399 // deoptimized frame 1400 1401 if (nm != nullptr) { 1402 RegisterMap map(current, false); 1403 frame caller = current->last_frame().sender(&map); 1404 #ifdef ASSERT 1405 assert(caller.is_compiled_frame(), "must be"); 1406 #endif // ASSERT 1407 if (caller.is_deoptimized_frame()) { 1408 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1409 } 1410 } 1411 return handler_address; 1412 } 1413 1414 //------------------------------rethrow---------------------------------------- 1415 // We get here after compiled code has executed a 'RethrowNode'. The callee 1416 // is either throwing or rethrowing an exception. The callee-save registers 1417 // have been restored, synchronized objects have been unlocked and the callee 1418 // stack frame has been removed. The return address was passed in. 1419 // Exception oop is passed as the 1st argument. This routine is then called 1420 // from the stub. On exit, we know where to jump in the caller's code. 1421 // After this C code exits, the stub will pop his frame and end in a jump 1422 // (instead of a return). We enter the caller's default handler. 1423 // 1424 // This must be JRT_LEAF: 1425 // - caller will not change its state as we cannot block on exit, 1426 // therefore raw_exception_handler_for_return_address is all it takes 1427 // to handle deoptimized blobs 1428 // 1429 // However, there needs to be a safepoint check in the middle! So compiled 1430 // safepoints are completely watertight. 1431 // 1432 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1433 // 1434 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1435 // 1436 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1437 // The frame we rethrow the exception to might not have been processed by the GC yet. 1438 // The stack watermark barrier takes care of detecting that and ensuring the frame 1439 // has updated oops. 1440 StackWatermarkSet::after_unwind(thread); 1441 1442 #ifndef PRODUCT 1443 SharedRuntime::_rethrow_ctr++; // count rethrows 1444 #endif 1445 assert (exception != nullptr, "should have thrown a NullPointerException"); 1446 #ifdef ASSERT 1447 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1448 // should throw an exception here 1449 ShouldNotReachHere(); 1450 } 1451 #endif 1452 1453 thread->set_vm_result(exception); 1454 // Frame not compiled (handles deoptimization blob) 1455 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1456 } 1457 1458 1459 const TypeFunc *OptoRuntime::rethrow_Type() { 1460 // create input type (domain) 1461 const Type **fields = TypeTuple::fields(1); 1462 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1463 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1464 1465 // create result type (range) 1466 fields = TypeTuple::fields(1); 1467 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1468 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1469 1470 return TypeFunc::make(domain, range); 1471 } 1472 1473 1474 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1475 // Deoptimize the caller before continuing, as the compiled 1476 // exception handler table may not be valid. 1477 if (!StressCompiledExceptionHandlers && doit) { 1478 deoptimize_caller_frame(thread); 1479 } 1480 } 1481 1482 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1483 // Called from within the owner thread, so no need for safepoint 1484 RegisterMap reg_map(thread); 1485 frame stub_frame = thread->last_frame(); 1486 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1487 frame caller_frame = stub_frame.sender(®_map); 1488 1489 // Deoptimize the caller frame. 1490 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1491 } 1492 1493 1494 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1495 // Called from within the owner thread, so no need for safepoint 1496 RegisterMap reg_map(thread); 1497 frame stub_frame = thread->last_frame(); 1498 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1499 frame caller_frame = stub_frame.sender(®_map); 1500 return caller_frame.is_deoptimized_frame(); 1501 } 1502 1503 1504 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1505 // create input type (domain) 1506 const Type **fields = TypeTuple::fields(1); 1507 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1508 // // The JavaThread* is passed to each routine as the last argument 1509 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1510 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1511 1512 // create result type (range) 1513 fields = TypeTuple::fields(0); 1514 1515 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1516 1517 return TypeFunc::make(domain,range); 1518 } 1519 1520 #if INCLUDE_JFR 1521 const TypeFunc *OptoRuntime::get_class_id_intrinsic_Type() { 1522 // create input type (domain) 1523 const Type **fields = TypeTuple::fields(1); 1524 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1525 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1526 1527 // create result type (range) 1528 fields = TypeTuple::fields(0); 1529 1530 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1531 1532 return TypeFunc::make(domain,range); 1533 } 1534 #endif 1535 1536 //----------------------------------------------------------------------------- 1537 // Dtrace support. entry and exit probes have the same signature 1538 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1539 // create input type (domain) 1540 const Type **fields = TypeTuple::fields(2); 1541 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1542 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1543 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1544 1545 // create result type (range) 1546 fields = TypeTuple::fields(0); 1547 1548 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1549 1550 return TypeFunc::make(domain,range); 1551 } 1552 1553 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1554 // create input type (domain) 1555 const Type **fields = TypeTuple::fields(2); 1556 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1557 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1558 1559 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1560 1561 // create result type (range) 1562 fields = TypeTuple::fields(0); 1563 1564 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1565 1566 return TypeFunc::make(domain,range); 1567 } 1568 1569 1570 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current)) 1571 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1572 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1573 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1574 JRT_END 1575 1576 //----------------------------------------------------------------------------- 1577 1578 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 1579 1580 // 1581 // dump the collected NamedCounters. 1582 // 1583 void OptoRuntime::print_named_counters() { 1584 int total_lock_count = 0; 1585 int eliminated_lock_count = 0; 1586 1587 NamedCounter* c = _named_counters; 1588 while (c) { 1589 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1590 int count = c->count(); 1591 if (count > 0) { 1592 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1593 if (Verbose) { 1594 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1595 } 1596 total_lock_count += count; 1597 if (eliminated) { 1598 eliminated_lock_count += count; 1599 } 1600 } 1601 } else if (c->tag() == NamedCounter::BiasedLockingCounter) { 1602 BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters(); 1603 if (blc->nonzero()) { 1604 tty->print_cr("%s", c->name()); 1605 blc->print_on(tty); 1606 } 1607 #if INCLUDE_RTM_OPT 1608 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1609 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1610 if (rlc->nonzero()) { 1611 tty->print_cr("%s", c->name()); 1612 rlc->print_on(tty); 1613 } 1614 #endif 1615 } 1616 c = c->next(); 1617 } 1618 if (total_lock_count > 0) { 1619 tty->print_cr("dynamic locks: %d", total_lock_count); 1620 if (eliminated_lock_count) { 1621 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1622 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1623 } 1624 } 1625 } 1626 1627 // 1628 // Allocate a new NamedCounter. The JVMState is used to generate the 1629 // name which consists of method@line for the inlining tree. 1630 // 1631 1632 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1633 int max_depth = youngest_jvms->depth(); 1634 1635 // Visit scopes from youngest to oldest. 1636 bool first = true; 1637 stringStream st; 1638 for (int depth = max_depth; depth >= 1; depth--) { 1639 JVMState* jvms = youngest_jvms->of_depth(depth); 1640 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 1641 if (!first) { 1642 st.print(" "); 1643 } else { 1644 first = false; 1645 } 1646 int bci = jvms->bci(); 1647 if (bci < 0) bci = 0; 1648 if (m != nullptr) { 1649 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1650 } else { 1651 st.print("no method"); 1652 } 1653 st.print("@%d", bci); 1654 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1655 } 1656 NamedCounter* c; 1657 if (tag == NamedCounter::BiasedLockingCounter) { 1658 c = new BiasedLockingNamedCounter(st.as_string()); 1659 } else if (tag == NamedCounter::RTMLockingCounter) { 1660 c = new RTMLockingNamedCounter(st.as_string()); 1661 } else { 1662 c = new NamedCounter(st.as_string(), tag); 1663 } 1664 1665 // atomically add the new counter to the head of the list. We only 1666 // add counters so this is safe. 1667 NamedCounter* head; 1668 do { 1669 c->set_next(nullptr); 1670 head = _named_counters; 1671 c->set_next(head); 1672 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1673 return c; 1674 } 1675 1676 int trace_exception_counter = 0; 1677 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1678 trace_exception_counter++; 1679 stringStream tempst; 1680 1681 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1682 exception_oop->print_value_on(&tempst); 1683 tempst.print(" in "); 1684 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1685 if (blob->is_compiled()) { 1686 CompiledMethod* cm = blob->as_compiled_method_or_null(); 1687 cm->method()->print_value_on(&tempst); 1688 } else if (blob->is_runtime_stub()) { 1689 tempst.print("<runtime-stub>"); 1690 } else { 1691 tempst.print("<unknown>"); 1692 } 1693 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1694 tempst.print("]"); 1695 1696 st->print_raw_cr(tempst.as_string()); 1697 }