1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/threadCritical.hpp"
  75 #include "runtime/threadWXSetters.inline.hpp"
  76 #include "runtime/vframe.hpp"
  77 #include "runtime/vframeArray.hpp"
  78 #include "runtime/vframe_hp.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/preserveException.hpp"
  81 
  82 
  83 // For debugging purposes:
  84 //  To force FullGCALot inside a runtime function, add the following two lines
  85 //
  86 //  Universe::release_fullgc_alot_dummy();
  87 //  MarkSweep::invoke(0, "Debugging");
  88 //
  89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  90 
  91 
  92 
  93 
  94 // Compiled code entry points
  95 address OptoRuntime::_new_instance_Java                           = nullptr;
  96 address OptoRuntime::_new_array_Java                              = nullptr;
  97 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
  98 address OptoRuntime::_multianewarray2_Java                        = nullptr;
  99 address OptoRuntime::_multianewarray3_Java                        = nullptr;
 100 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 101 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 102 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 103 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 104 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 105 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 106 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 107 address OptoRuntime::_rethrow_Java                                = nullptr;
 108 
 109 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 110 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 111 
 112 ExceptionBlob* OptoRuntime::_exception_blob;
 113 
 114 // This should be called in an assertion at the start of OptoRuntime routines
 115 // which are entered from compiled code (all of them)
 116 #ifdef ASSERT
 117 static bool check_compiled_frame(JavaThread* thread) {
 118   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 119   RegisterMap map(thread, false);
 120   frame caller = thread->last_frame().sender(&map);
 121   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 122   return true;
 123 }
 124 #endif // ASSERT
 125 
 126 
 127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 128   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 129   if (var == nullptr) { return false; }
 130 
 131 bool OptoRuntime::generate(ciEnv* env) {
 132 
 133   generate_exception_blob();
 134 
 135   // Note: tls: Means fetching the return oop out of the thread-local storage
 136   //
 137   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 138   // -------------------------------------------------------------------------------------------------------------------------------
 139   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 140   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 141   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 142   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 143   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 144   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 145   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 146   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 147   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 148   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 149   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 150   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 151 
 152   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 153   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 154 
 155   return true;
 156 }
 157 
 158 #undef gen
 159 
 160 
 161 // Helper method to do generation of RunTimeStub's
 162 address OptoRuntime::generate_stub(ciEnv* env,
 163                                    TypeFunc_generator gen, address C_function,
 164                                    const char *name, int is_fancy_jump,
 165                                    bool pass_tls,
 166                                    bool return_pc) {
 167 
 168   // Matching the default directive, we currently have no method to match.
 169   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 170   ResourceMark rm;
 171   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 172   DirectivesStack::release(directive);
 173   return  C.stub_entry_point();
 174 }
 175 
 176 const char* OptoRuntime::stub_name(address entry) {
 177 #ifndef PRODUCT
 178   CodeBlob* cb = CodeCache::find_blob(entry);
 179   RuntimeStub* rs =(RuntimeStub *)cb;
 180   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 181   return rs->name();
 182 #else
 183   // Fast implementation for product mode (maybe it should be inlined too)
 184   return "runtime stub";
 185 #endif
 186 }
 187 
 188 
 189 //=============================================================================
 190 // Opto compiler runtime routines
 191 //=============================================================================
 192 
 193 
 194 //=============================allocation======================================
 195 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 196 // and try allocation again.
 197 
 198 // object allocation
 199 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 200   JRT_BLOCK;
 201 #ifndef PRODUCT
 202   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 203 #endif
 204   assert(check_compiled_frame(current), "incorrect caller");
 205 
 206   // These checks are cheap to make and support reflective allocation.
 207   int lh = klass->layout_helper();
 208   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 209     Handle holder(current, klass->klass_holder()); // keep the klass alive
 210     klass->check_valid_for_instantiation(false, THREAD);
 211     if (!HAS_PENDING_EXCEPTION) {
 212       InstanceKlass::cast(klass)->initialize(THREAD);
 213     }
 214   }
 215 
 216   if (!HAS_PENDING_EXCEPTION) {
 217     // Scavenge and allocate an instance.
 218     Handle holder(current, klass->klass_holder()); // keep the klass alive
 219     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 220     current->set_vm_result(result);
 221 
 222     // Pass oops back through thread local storage.  Our apparent type to Java
 223     // is that we return an oop, but we can block on exit from this routine and
 224     // a GC can trash the oop in C's return register.  The generated stub will
 225     // fetch the oop from TLS after any possible GC.
 226   }
 227 
 228   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 229   JRT_BLOCK_END;
 230 
 231   // inform GC that we won't do card marks for initializing writes.
 232   SharedRuntime::on_slowpath_allocation_exit(current);
 233 JRT_END
 234 
 235 
 236 // array allocation
 237 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 238   JRT_BLOCK;
 239 #ifndef PRODUCT
 240   SharedRuntime::_new_array_ctr++;            // new array requires GC
 241 #endif
 242   assert(check_compiled_frame(current), "incorrect caller");
 243 
 244   // Scavenge and allocate an instance.
 245   oop result;
 246 
 247   if (array_type->is_typeArray_klass()) {
 248     // The oopFactory likes to work with the element type.
 249     // (We could bypass the oopFactory, since it doesn't add much value.)
 250     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 251     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 252   } else {
 253     // Although the oopFactory likes to work with the elem_type,
 254     // the compiler prefers the array_type, since it must already have
 255     // that latter value in hand for the fast path.
 256     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 257     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 258     result = oopFactory::new_objArray(elem_type, len, THREAD);
 259   }
 260 
 261   // Pass oops back through thread local storage.  Our apparent type to Java
 262   // is that we return an oop, but we can block on exit from this routine and
 263   // a GC can trash the oop in C's return register.  The generated stub will
 264   // fetch the oop from TLS after any possible GC.
 265   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 266   current->set_vm_result(result);
 267   JRT_BLOCK_END;
 268 
 269   // inform GC that we won't do card marks for initializing writes.
 270   SharedRuntime::on_slowpath_allocation_exit(current);
 271 JRT_END
 272 
 273 // array allocation without zeroing
 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 275   JRT_BLOCK;
 276 #ifndef PRODUCT
 277   SharedRuntime::_new_array_ctr++;            // new array requires GC
 278 #endif
 279   assert(check_compiled_frame(current), "incorrect caller");
 280 
 281   // Scavenge and allocate an instance.
 282   oop result;
 283 
 284   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 285   // The oopFactory likes to work with the element type.
 286   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 287   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 288 
 289   // Pass oops back through thread local storage.  Our apparent type to Java
 290   // is that we return an oop, but we can block on exit from this routine and
 291   // a GC can trash the oop in C's return register.  The generated stub will
 292   // fetch the oop from TLS after any possible GC.
 293   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 294   current->set_vm_result(result);
 295   JRT_BLOCK_END;
 296 
 297 
 298   // inform GC that we won't do card marks for initializing writes.
 299   SharedRuntime::on_slowpath_allocation_exit(current);
 300 
 301   oop result = current->vm_result();
 302   if ((len > 0) && (result != nullptr) &&
 303       is_deoptimized_caller_frame(current)) {
 304     // Zero array here if the caller is deoptimized.
 305     int size = TypeArrayKlass::cast(array_type)->oop_size(result);
 306     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 307     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 308     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 309     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 310     if (!is_aligned(hs_bytes, BytesPerLong)) {
 311       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 312       hs_bytes += BytesPerInt;
 313     }
 314 
 315     // Optimized zeroing.
 316     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 317     const size_t aligned_hs = hs_bytes / BytesPerLong;
 318     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 319   }
 320 
 321 JRT_END
 322 
 323 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 324 
 325 // multianewarray for 2 dimensions
 326 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 327 #ifndef PRODUCT
 328   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 329 #endif
 330   assert(check_compiled_frame(current), "incorrect caller");
 331   assert(elem_type->is_klass(), "not a class");
 332   jint dims[2];
 333   dims[0] = len1;
 334   dims[1] = len2;
 335   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 336   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 337   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 338   current->set_vm_result(obj);
 339 JRT_END
 340 
 341 // multianewarray for 3 dimensions
 342 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 343 #ifndef PRODUCT
 344   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 345 #endif
 346   assert(check_compiled_frame(current), "incorrect caller");
 347   assert(elem_type->is_klass(), "not a class");
 348   jint dims[3];
 349   dims[0] = len1;
 350   dims[1] = len2;
 351   dims[2] = len3;
 352   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 353   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 354   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 355   current->set_vm_result(obj);
 356 JRT_END
 357 
 358 // multianewarray for 4 dimensions
 359 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 360 #ifndef PRODUCT
 361   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 362 #endif
 363   assert(check_compiled_frame(current), "incorrect caller");
 364   assert(elem_type->is_klass(), "not a class");
 365   jint dims[4];
 366   dims[0] = len1;
 367   dims[1] = len2;
 368   dims[2] = len3;
 369   dims[3] = len4;
 370   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 371   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 372   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 373   current->set_vm_result(obj);
 374 JRT_END
 375 
 376 // multianewarray for 5 dimensions
 377 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 378 #ifndef PRODUCT
 379   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 380 #endif
 381   assert(check_compiled_frame(current), "incorrect caller");
 382   assert(elem_type->is_klass(), "not a class");
 383   jint dims[5];
 384   dims[0] = len1;
 385   dims[1] = len2;
 386   dims[2] = len3;
 387   dims[3] = len4;
 388   dims[4] = len5;
 389   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 390   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 391   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 392   current->set_vm_result(obj);
 393 JRT_END
 394 
 395 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 396   assert(check_compiled_frame(current), "incorrect caller");
 397   assert(elem_type->is_klass(), "not a class");
 398   assert(oop(dims)->is_typeArray(), "not an array");
 399 
 400   ResourceMark rm;
 401   jint len = dims->length();
 402   assert(len > 0, "Dimensions array should contain data");
 403   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 404   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 405                                        c_dims, len);
 406 
 407   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 408   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 409   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 410   current->set_vm_result(obj);
 411 JRT_END
 412 
 413 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 414 
 415   // Very few notify/notifyAll operations find any threads on the waitset, so
 416   // the dominant fast-path is to simply return.
 417   // Relatedly, it's critical that notify/notifyAll be fast in order to
 418   // reduce lock hold times.
 419   if (!SafepointSynchronize::is_synchronizing()) {
 420     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 421       return;
 422     }
 423   }
 424 
 425   // This is the case the fast-path above isn't provisioned to handle.
 426   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 427   // (The fast-path is just a degenerate variant of the slow-path).
 428   // Perform the dreaded state transition and pass control into the slow-path.
 429   JRT_BLOCK;
 430   Handle h_obj(current, obj);
 431   ObjectSynchronizer::notify(h_obj, CHECK);
 432   JRT_BLOCK_END;
 433 JRT_END
 434 
 435 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 436 
 437   if (!SafepointSynchronize::is_synchronizing() ) {
 438     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 439       return;
 440     }
 441   }
 442 
 443   // This is the case the fast-path above isn't provisioned to handle.
 444   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 445   // (The fast-path is just a degenerate variant of the slow-path).
 446   // Perform the dreaded state transition and pass control into the slow-path.
 447   JRT_BLOCK;
 448   Handle h_obj(current, obj);
 449   ObjectSynchronizer::notifyall(h_obj, CHECK);
 450   JRT_BLOCK_END;
 451 JRT_END
 452 
 453 const TypeFunc *OptoRuntime::new_instance_Type() {
 454   // create input type (domain)
 455   const Type **fields = TypeTuple::fields(1);
 456   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 457   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 458 
 459   // create result type (range)
 460   fields = TypeTuple::fields(1);
 461   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 462 
 463   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 464 
 465   return TypeFunc::make(domain, range);
 466 }
 467 
 468 
 469 const TypeFunc *OptoRuntime::athrow_Type() {
 470   // create input type (domain)
 471   const Type **fields = TypeTuple::fields(1);
 472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 473   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 474 
 475   // create result type (range)
 476   fields = TypeTuple::fields(0);
 477 
 478   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 479 
 480   return TypeFunc::make(domain, range);
 481 }
 482 
 483 
 484 const TypeFunc *OptoRuntime::new_array_Type() {
 485   // create input type (domain)
 486   const Type **fields = TypeTuple::fields(2);
 487   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 488   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 489   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 490 
 491   // create result type (range)
 492   fields = TypeTuple::fields(1);
 493   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 494 
 495   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 496 
 497   return TypeFunc::make(domain, range);
 498 }
 499 
 500 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 501   // create input type (domain)
 502   const int nargs = ndim + 1;
 503   const Type **fields = TypeTuple::fields(nargs);
 504   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 505   for( int i = 1; i < nargs; i++ )
 506     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 507   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 508 
 509   // create result type (range)
 510   fields = TypeTuple::fields(1);
 511   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 512   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 513 
 514   return TypeFunc::make(domain, range);
 515 }
 516 
 517 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 518   return multianewarray_Type(2);
 519 }
 520 
 521 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 522   return multianewarray_Type(3);
 523 }
 524 
 525 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 526   return multianewarray_Type(4);
 527 }
 528 
 529 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 530   return multianewarray_Type(5);
 531 }
 532 
 533 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 534   // create input type (domain)
 535   const Type **fields = TypeTuple::fields(2);
 536   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 537   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 538   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 539 
 540   // create result type (range)
 541   fields = TypeTuple::fields(1);
 542   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 543   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 544 
 545   return TypeFunc::make(domain, range);
 546 }
 547 
 548 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 549   // create input type (domain)
 550   const Type **fields = TypeTuple::fields(1);
 551   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 552   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 553 
 554   // create result type (range)
 555   fields = TypeTuple::fields(0);
 556   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 557 
 558   return TypeFunc::make(domain, range);
 559 }
 560 
 561 //-----------------------------------------------------------------------------
 562 // Monitor Handling
 563 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 564   // create input type (domain)
 565   const Type **fields = TypeTuple::fields(2);
 566   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 567   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 568   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 569 
 570   // create result type (range)
 571   fields = TypeTuple::fields(0);
 572 
 573   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 574 
 575   return TypeFunc::make(domain,range);
 576 }
 577 
 578 
 579 //-----------------------------------------------------------------------------
 580 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 581   // create input type (domain)
 582   const Type **fields = TypeTuple::fields(3);
 583   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 584   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 585   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 586   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 587 
 588   // create result type (range)
 589   fields = TypeTuple::fields(0);
 590 
 591   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 592 
 593   return TypeFunc::make(domain, range);
 594 }
 595 
 596 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 597   // create input type (domain)
 598   const Type **fields = TypeTuple::fields(1);
 599   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 600   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 601 
 602   // create result type (range)
 603   fields = TypeTuple::fields(0);
 604   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 605   return TypeFunc::make(domain, range);
 606 }
 607 
 608 const TypeFunc* OptoRuntime::flush_windows_Type() {
 609   // create input type (domain)
 610   const Type** fields = TypeTuple::fields(1);
 611   fields[TypeFunc::Parms+0] = nullptr; // void
 612   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 613 
 614   // create result type
 615   fields = TypeTuple::fields(1);
 616   fields[TypeFunc::Parms+0] = nullptr; // void
 617   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 618 
 619   return TypeFunc::make(domain, range);
 620 }
 621 
 622 const TypeFunc* OptoRuntime::l2f_Type() {
 623   // create input type (domain)
 624   const Type **fields = TypeTuple::fields(2);
 625   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 626   fields[TypeFunc::Parms+1] = Type::HALF;
 627   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 628 
 629   // create result type (range)
 630   fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = Type::FLOAT;
 632   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 633 
 634   return TypeFunc::make(domain, range);
 635 }
 636 
 637 const TypeFunc* OptoRuntime::modf_Type() {
 638   const Type **fields = TypeTuple::fields(2);
 639   fields[TypeFunc::Parms+0] = Type::FLOAT;
 640   fields[TypeFunc::Parms+1] = Type::FLOAT;
 641   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 642 
 643   // create result type (range)
 644   fields = TypeTuple::fields(1);
 645   fields[TypeFunc::Parms+0] = Type::FLOAT;
 646 
 647   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 648 
 649   return TypeFunc::make(domain, range);
 650 }
 651 
 652 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 653   // create input type (domain)
 654   const Type **fields = TypeTuple::fields(2);
 655   // Symbol* name of class to be loaded
 656   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 657   fields[TypeFunc::Parms+1] = Type::HALF;
 658   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 659 
 660   // create result type (range)
 661   fields = TypeTuple::fields(2);
 662   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 663   fields[TypeFunc::Parms+1] = Type::HALF;
 664   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 665 
 666   return TypeFunc::make(domain, range);
 667 }
 668 
 669 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 670   // create input type (domain)
 671   const Type **fields = TypeTuple::fields(num_arg);
 672   // Symbol* name of class to be loaded
 673   assert(num_arg > 0, "must have at least 1 input");
 674   for (uint i = 0; i < num_arg; i++) {
 675     fields[TypeFunc::Parms+i] = in_type;
 676   }
 677   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 678 
 679   // create result type (range)
 680   const uint num_ret = 1;
 681   fields = TypeTuple::fields(num_ret);
 682   fields[TypeFunc::Parms+0] = out_type;
 683   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 684 
 685   return TypeFunc::make(domain, range);
 686 }
 687 
 688 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 689   const Type **fields = TypeTuple::fields(4);
 690   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 691   fields[TypeFunc::Parms+1] = Type::HALF;
 692   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 693   fields[TypeFunc::Parms+3] = Type::HALF;
 694   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 695 
 696   // create result type (range)
 697   fields = TypeTuple::fields(2);
 698   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 699   fields[TypeFunc::Parms+1] = Type::HALF;
 700   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 701 
 702   return TypeFunc::make(domain, range);
 703 }
 704 
 705 //-------------- currentTimeMillis, currentTimeNanos, etc
 706 
 707 const TypeFunc* OptoRuntime::void_long_Type() {
 708   // create input type (domain)
 709   const Type **fields = TypeTuple::fields(0);
 710   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 711 
 712   // create result type (range)
 713   fields = TypeTuple::fields(2);
 714   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 715   fields[TypeFunc::Parms+1] = Type::HALF;
 716   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 717 
 718   return TypeFunc::make(domain, range);
 719 }
 720 
 721 // arraycopy stub variations:
 722 enum ArrayCopyType {
 723   ac_fast,                      // void(ptr, ptr, size_t)
 724   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 725   ac_slow,                      // void(ptr, int, ptr, int, int)
 726   ac_generic                    //  int(ptr, int, ptr, int, int)
 727 };
 728 
 729 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 730   // create input type (domain)
 731   int num_args      = (act == ac_fast ? 3 : 5);
 732   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 733   int argcnt = num_args;
 734   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 735   const Type** fields = TypeTuple::fields(argcnt);
 736   int argp = TypeFunc::Parms;
 737   fields[argp++] = TypePtr::NOTNULL;    // src
 738   if (num_size_args == 0) {
 739     fields[argp++] = TypeInt::INT;      // src_pos
 740   }
 741   fields[argp++] = TypePtr::NOTNULL;    // dest
 742   if (num_size_args == 0) {
 743     fields[argp++] = TypeInt::INT;      // dest_pos
 744     fields[argp++] = TypeInt::INT;      // length
 745   }
 746   while (num_size_args-- > 0) {
 747     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 748     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 749   }
 750   if (act == ac_checkcast) {
 751     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 752   }
 753   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 754   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 755 
 756   // create result type if needed
 757   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 758   fields = TypeTuple::fields(1);
 759   if (retcnt == 0)
 760     fields[TypeFunc::Parms+0] = nullptr; // void
 761   else
 762     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 763   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 764   return TypeFunc::make(domain, range);
 765 }
 766 
 767 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 768   // This signature is simple:  Two base pointers and a size_t.
 769   return make_arraycopy_Type(ac_fast);
 770 }
 771 
 772 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 773   // An extension of fast_arraycopy_Type which adds type checking.
 774   return make_arraycopy_Type(ac_checkcast);
 775 }
 776 
 777 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 778   // This signature is exactly the same as System.arraycopy.
 779   // There are no intptr_t (int/long) arguments.
 780   return make_arraycopy_Type(ac_slow);
 781 }
 782 
 783 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 784   // This signature is like System.arraycopy, except that it returns status.
 785   return make_arraycopy_Type(ac_generic);
 786 }
 787 
 788 
 789 const TypeFunc* OptoRuntime::array_fill_Type() {
 790   const Type** fields;
 791   int argp = TypeFunc::Parms;
 792   // create input type (domain): pointer, int, size_t
 793   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 794   fields[argp++] = TypePtr::NOTNULL;
 795   fields[argp++] = TypeInt::INT;
 796   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 797   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 798   const TypeTuple *domain = TypeTuple::make(argp, fields);
 799 
 800   // create result type
 801   fields = TypeTuple::fields(1);
 802   fields[TypeFunc::Parms+0] = nullptr; // void
 803   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 804 
 805   return TypeFunc::make(domain, range);
 806 }
 807 
 808 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 809 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 810   // create input type (domain)
 811   int num_args      = 3;
 812   int argcnt = num_args;
 813   const Type** fields = TypeTuple::fields(argcnt);
 814   int argp = TypeFunc::Parms;
 815   fields[argp++] = TypePtr::NOTNULL;    // src
 816   fields[argp++] = TypePtr::NOTNULL;    // dest
 817   fields[argp++] = TypePtr::NOTNULL;    // k array
 818   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 819   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 820 
 821   // no result type needed
 822   fields = TypeTuple::fields(1);
 823   fields[TypeFunc::Parms+0] = nullptr; // void
 824   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 825   return TypeFunc::make(domain, range);
 826 }
 827 
 828 /**
 829  * int updateBytesCRC32(int crc, byte* b, int len)
 830  */
 831 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 832   // create input type (domain)
 833   int num_args      = 3;
 834   int argcnt = num_args;
 835   const Type** fields = TypeTuple::fields(argcnt);
 836   int argp = TypeFunc::Parms;
 837   fields[argp++] = TypeInt::INT;        // crc
 838   fields[argp++] = TypePtr::NOTNULL;    // src
 839   fields[argp++] = TypeInt::INT;        // len
 840   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 841   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 842 
 843   // result type needed
 844   fields = TypeTuple::fields(1);
 845   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 846   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 847   return TypeFunc::make(domain, range);
 848 }
 849 
 850 /**
 851  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 852  */
 853 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 854   // create input type (domain)
 855   int num_args      = 4;
 856   int argcnt = num_args;
 857   const Type** fields = TypeTuple::fields(argcnt);
 858   int argp = TypeFunc::Parms;
 859   fields[argp++] = TypeInt::INT;        // crc
 860   fields[argp++] = TypePtr::NOTNULL;    // buf
 861   fields[argp++] = TypeInt::INT;        // len
 862   fields[argp++] = TypePtr::NOTNULL;    // table
 863   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 864   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 865 
 866   // result type needed
 867   fields = TypeTuple::fields(1);
 868   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 869   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 870   return TypeFunc::make(domain, range);
 871 }
 872 
 873 /**
 874 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 875 */
 876 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 877   // create input type (domain)
 878   int num_args      = 3;
 879   int argcnt = num_args;
 880   const Type** fields = TypeTuple::fields(argcnt);
 881   int argp = TypeFunc::Parms;
 882   fields[argp++] = TypeInt::INT;        // crc
 883   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 884   fields[argp++] = TypeInt::INT;        // len
 885   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 886   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 887 
 888   // result type needed
 889   fields = TypeTuple::fields(1);
 890   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 891   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 892   return TypeFunc::make(domain, range);
 893 }
 894 
 895 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 896 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 897   // create input type (domain)
 898   int num_args      = 5;
 899   int argcnt = num_args;
 900   const Type** fields = TypeTuple::fields(argcnt);
 901   int argp = TypeFunc::Parms;
 902   fields[argp++] = TypePtr::NOTNULL;    // src
 903   fields[argp++] = TypePtr::NOTNULL;    // dest
 904   fields[argp++] = TypePtr::NOTNULL;    // k array
 905   fields[argp++] = TypePtr::NOTNULL;    // r array
 906   fields[argp++] = TypeInt::INT;        // src len
 907   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 908   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 909 
 910   // returning cipher len (int)
 911   fields = TypeTuple::fields(1);
 912   fields[TypeFunc::Parms+0] = TypeInt::INT;
 913   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 914   return TypeFunc::make(domain, range);
 915 }
 916 
 917 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
 918 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
 919   // create input type (domain)
 920   int num_args = 4;
 921   int argcnt = num_args;
 922   const Type** fields = TypeTuple::fields(argcnt);
 923   int argp = TypeFunc::Parms;
 924   fields[argp++] = TypePtr::NOTNULL;    // src
 925   fields[argp++] = TypePtr::NOTNULL;    // dest
 926   fields[argp++] = TypePtr::NOTNULL;    // k array
 927   fields[argp++] = TypeInt::INT;        // src len
 928   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 929   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 930 
 931   // returning cipher len (int)
 932   fields = TypeTuple::fields(1);
 933   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 934   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 935   return TypeFunc::make(domain, range);
 936 }
 937 
 938 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 939 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 940   // create input type (domain)
 941   int num_args = 7;
 942   int argcnt = num_args;
 943   const Type** fields = TypeTuple::fields(argcnt);
 944   int argp = TypeFunc::Parms;
 945   fields[argp++] = TypePtr::NOTNULL; // src
 946   fields[argp++] = TypePtr::NOTNULL; // dest
 947   fields[argp++] = TypePtr::NOTNULL; // k array
 948   fields[argp++] = TypePtr::NOTNULL; // counter array
 949   fields[argp++] = TypeInt::INT; // src len
 950   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 951   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 952   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 953   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 954   // returning cipher len (int)
 955   fields = TypeTuple::fields(1);
 956   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 957   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 958   return TypeFunc::make(domain, range);
 959 }
 960 
 961 /*
 962  * void implCompress(byte[] buf, int ofs)
 963  */
 964 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
 965   // create input type (domain)
 966   int num_args = is_sha3 ? 3 : 2;
 967   int argcnt = num_args;
 968   const Type** fields = TypeTuple::fields(argcnt);
 969   int argp = TypeFunc::Parms;
 970   fields[argp++] = TypePtr::NOTNULL; // buf
 971   fields[argp++] = TypePtr::NOTNULL; // state
 972   if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
 973   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 974   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 975 
 976   // no result type needed
 977   fields = TypeTuple::fields(1);
 978   fields[TypeFunc::Parms+0] = nullptr; // void
 979   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 980   return TypeFunc::make(domain, range);
 981 }
 982 
 983 /*
 984  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 985  */
 986 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
 987   // create input type (domain)
 988   int num_args = is_sha3 ? 5 : 4;
 989   int argcnt = num_args;
 990   const Type** fields = TypeTuple::fields(argcnt);
 991   int argp = TypeFunc::Parms;
 992   fields[argp++] = TypePtr::NOTNULL; // buf
 993   fields[argp++] = TypePtr::NOTNULL; // state
 994   if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
 995   fields[argp++] = TypeInt::INT;     // ofs
 996   fields[argp++] = TypeInt::INT;     // limit
 997   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 998   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 999 
1000   // returning ofs (int)
1001   fields = TypeTuple::fields(1);
1002   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1003   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1004   return TypeFunc::make(domain, range);
1005 }
1006 
1007 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1008   // create input type (domain)
1009   int num_args      = 6;
1010   int argcnt = num_args;
1011   const Type** fields = TypeTuple::fields(argcnt);
1012   int argp = TypeFunc::Parms;
1013   fields[argp++] = TypePtr::NOTNULL;    // x
1014   fields[argp++] = TypeInt::INT;        // xlen
1015   fields[argp++] = TypePtr::NOTNULL;    // y
1016   fields[argp++] = TypeInt::INT;        // ylen
1017   fields[argp++] = TypePtr::NOTNULL;    // z
1018   fields[argp++] = TypeInt::INT;        // zlen
1019   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1020   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1021 
1022   // no result type needed
1023   fields = TypeTuple::fields(1);
1024   fields[TypeFunc::Parms+0] = nullptr;
1025   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1026   return TypeFunc::make(domain, range);
1027 }
1028 
1029 const TypeFunc* OptoRuntime::squareToLen_Type() {
1030   // create input type (domain)
1031   int num_args      = 4;
1032   int argcnt = num_args;
1033   const Type** fields = TypeTuple::fields(argcnt);
1034   int argp = TypeFunc::Parms;
1035   fields[argp++] = TypePtr::NOTNULL;    // x
1036   fields[argp++] = TypeInt::INT;        // len
1037   fields[argp++] = TypePtr::NOTNULL;    // z
1038   fields[argp++] = TypeInt::INT;        // zlen
1039   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1040   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1041 
1042   // no result type needed
1043   fields = TypeTuple::fields(1);
1044   fields[TypeFunc::Parms+0] = nullptr;
1045   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1046   return TypeFunc::make(domain, range);
1047 }
1048 
1049 // for mulAdd calls, 2 pointers and 3 ints, returning int
1050 const TypeFunc* OptoRuntime::mulAdd_Type() {
1051   // create input type (domain)
1052   int num_args      = 5;
1053   int argcnt = num_args;
1054   const Type** fields = TypeTuple::fields(argcnt);
1055   int argp = TypeFunc::Parms;
1056   fields[argp++] = TypePtr::NOTNULL;    // out
1057   fields[argp++] = TypePtr::NOTNULL;    // in
1058   fields[argp++] = TypeInt::INT;        // offset
1059   fields[argp++] = TypeInt::INT;        // len
1060   fields[argp++] = TypeInt::INT;        // k
1061   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1062   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1063 
1064   // returning carry (int)
1065   fields = TypeTuple::fields(1);
1066   fields[TypeFunc::Parms+0] = TypeInt::INT;
1067   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1068   return TypeFunc::make(domain, range);
1069 }
1070 
1071 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1072   // create input type (domain)
1073   int num_args      = 7;
1074   int argcnt = num_args;
1075   const Type** fields = TypeTuple::fields(argcnt);
1076   int argp = TypeFunc::Parms;
1077   fields[argp++] = TypePtr::NOTNULL;    // a
1078   fields[argp++] = TypePtr::NOTNULL;    // b
1079   fields[argp++] = TypePtr::NOTNULL;    // n
1080   fields[argp++] = TypeInt::INT;        // len
1081   fields[argp++] = TypeLong::LONG;      // inv
1082   fields[argp++] = Type::HALF;
1083   fields[argp++] = TypePtr::NOTNULL;    // result
1084   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1085   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1086 
1087   // result type needed
1088   fields = TypeTuple::fields(1);
1089   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1090 
1091   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1092   return TypeFunc::make(domain, range);
1093 }
1094 
1095 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1096   // create input type (domain)
1097   int num_args      = 6;
1098   int argcnt = num_args;
1099   const Type** fields = TypeTuple::fields(argcnt);
1100   int argp = TypeFunc::Parms;
1101   fields[argp++] = TypePtr::NOTNULL;    // a
1102   fields[argp++] = TypePtr::NOTNULL;    // n
1103   fields[argp++] = TypeInt::INT;        // len
1104   fields[argp++] = TypeLong::LONG;      // inv
1105   fields[argp++] = Type::HALF;
1106   fields[argp++] = TypePtr::NOTNULL;    // result
1107   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1108   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1109 
1110   // result type needed
1111   fields = TypeTuple::fields(1);
1112   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1113 
1114   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1115   return TypeFunc::make(domain, range);
1116 }
1117 
1118 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1119   int argcnt = 5;
1120   const Type** fields = TypeTuple::fields(argcnt);
1121   int argp = TypeFunc::Parms;
1122   fields[argp++] = TypePtr::NOTNULL;    // newArr
1123   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1124   fields[argp++] = TypeInt::INT;        // newIdx
1125   fields[argp++] = TypeInt::INT;        // shiftCount
1126   fields[argp++] = TypeInt::INT;        // numIter
1127   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1128   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1129 
1130   // no result type needed
1131   fields = TypeTuple::fields(1);
1132   fields[TypeFunc::Parms + 0] = nullptr;
1133   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1134   return TypeFunc::make(domain, range);
1135 }
1136 
1137 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1138   // create input type (domain)
1139   int num_args = 4;
1140   int argcnt = num_args;
1141   const Type** fields = TypeTuple::fields(argcnt);
1142   int argp = TypeFunc::Parms;
1143   fields[argp++] = TypePtr::NOTNULL;    // obja
1144   fields[argp++] = TypePtr::NOTNULL;    // objb
1145   fields[argp++] = TypeInt::INT;        // length, number of elements
1146   fields[argp++] = TypeInt::INT;        // log2scale, element size
1147   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1148   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1149 
1150   //return mismatch index (int)
1151   fields = TypeTuple::fields(1);
1152   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1153   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1154   return TypeFunc::make(domain, range);
1155 }
1156 
1157 // GHASH block processing
1158 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1159     int argcnt = 4;
1160 
1161     const Type** fields = TypeTuple::fields(argcnt);
1162     int argp = TypeFunc::Parms;
1163     fields[argp++] = TypePtr::NOTNULL;    // state
1164     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1165     fields[argp++] = TypePtr::NOTNULL;    // data
1166     fields[argp++] = TypeInt::INT;        // blocks
1167     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1168     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1169 
1170     // result type needed
1171     fields = TypeTuple::fields(1);
1172     fields[TypeFunc::Parms+0] = nullptr; // void
1173     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1174     return TypeFunc::make(domain, range);
1175 }
1176 // Base64 encode function
1177 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1178   int argcnt = 6;
1179 
1180   const Type** fields = TypeTuple::fields(argcnt);
1181   int argp = TypeFunc::Parms;
1182   fields[argp++] = TypePtr::NOTNULL;    // src array
1183   fields[argp++] = TypeInt::INT;        // offset
1184   fields[argp++] = TypeInt::INT;        // length
1185   fields[argp++] = TypePtr::NOTNULL;    // dest array
1186   fields[argp++] = TypeInt::INT;       // dp
1187   fields[argp++] = TypeInt::BOOL;       // isURL
1188   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1189   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1190 
1191   // result type needed
1192   fields = TypeTuple::fields(1);
1193   fields[TypeFunc::Parms + 0] = nullptr; // void
1194   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1195   return TypeFunc::make(domain, range);
1196 }
1197 // Base64 decode function
1198 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1199   int argcnt = 7;
1200 
1201   const Type** fields = TypeTuple::fields(argcnt);
1202   int argp = TypeFunc::Parms;
1203   fields[argp++] = TypePtr::NOTNULL;    // src array
1204   fields[argp++] = TypeInt::INT;        // src offset
1205   fields[argp++] = TypeInt::INT;        // src length
1206   fields[argp++] = TypePtr::NOTNULL;    // dest array
1207   fields[argp++] = TypeInt::INT;        // dest offset
1208   fields[argp++] = TypeInt::BOOL;       // isURL
1209   fields[argp++] = TypeInt::BOOL;       // isMIME
1210   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1211   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1212 
1213   // result type needed
1214   fields = TypeTuple::fields(1);
1215   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1216   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1217   return TypeFunc::make(domain, range);
1218 }
1219 
1220 //------------- Interpreter state access for on stack replacement
1221 const TypeFunc* OptoRuntime::osr_end_Type() {
1222   // create input type (domain)
1223   const Type **fields = TypeTuple::fields(1);
1224   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1225   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1226 
1227   // create result type
1228   fields = TypeTuple::fields(1);
1229   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1230   fields[TypeFunc::Parms+0] = nullptr; // void
1231   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1232   return TypeFunc::make(domain, range);
1233 }
1234 
1235 //-------------------------------------------------------------------------------------
1236 // register policy
1237 
1238 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1239   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1240   switch (register_save_policy[reg]) {
1241     case 'C': return false; //SOC
1242     case 'E': return true ; //SOE
1243     case 'N': return false; //NS
1244     case 'A': return false; //AS
1245   }
1246   ShouldNotReachHere();
1247   return false;
1248 }
1249 
1250 //-----------------------------------------------------------------------
1251 // Exceptions
1252 //
1253 
1254 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1255 
1256 // The method is an entry that is always called by a C++ method not
1257 // directly from compiled code. Compiled code will call the C++ method following.
1258 // We can't allow async exception to be installed during  exception processing.
1259 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1260   // Do not confuse exception_oop with pending_exception. The exception_oop
1261   // is only used to pass arguments into the method. Not for general
1262   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1263   // the runtime stubs checks this on exit.
1264   assert(current->exception_oop() != nullptr, "exception oop is found");
1265   address handler_address = nullptr;
1266 
1267   Handle exception(current, current->exception_oop());
1268   address pc = current->exception_pc();
1269 
1270   // Clear out the exception oop and pc since looking up an
1271   // exception handler can cause class loading, which might throw an
1272   // exception and those fields are expected to be clear during
1273   // normal bytecode execution.
1274   current->clear_exception_oop_and_pc();
1275 
1276   LogTarget(Info, exceptions) lt;
1277   if (lt.is_enabled()) {
1278     ResourceMark rm;
1279     LogStream ls(lt);
1280     trace_exception(&ls, exception(), pc, "");
1281   }
1282 
1283   // for AbortVMOnException flag
1284   Exceptions::debug_check_abort(exception);
1285 
1286 #ifdef ASSERT
1287   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1288     // should throw an exception here
1289     ShouldNotReachHere();
1290   }
1291 #endif
1292 
1293   // new exception handling: this method is entered only from adapters
1294   // exceptions from compiled java methods are handled in compiled code
1295   // using rethrow node
1296 
1297   nm = CodeCache::find_nmethod(pc);
1298   assert(nm != nullptr, "No NMethod found");
1299   if (nm->is_native_method()) {
1300     fatal("Native method should not have path to exception handling");
1301   } else {
1302     // we are switching to old paradigm: search for exception handler in caller_frame
1303     // instead in exception handler of caller_frame.sender()
1304 
1305     if (JvmtiExport::can_post_on_exceptions()) {
1306       // "Full-speed catching" is not necessary here,
1307       // since we're notifying the VM on every catch.
1308       // Force deoptimization and the rest of the lookup
1309       // will be fine.
1310       deoptimize_caller_frame(current);
1311     }
1312 
1313     // Check the stack guard pages.  If enabled, look for handler in this frame;
1314     // otherwise, forcibly unwind the frame.
1315     //
1316     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1317     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1318     bool deopting = false;
1319     if (nm->is_deopt_pc(pc)) {
1320       deopting = true;
1321       RegisterMap map(current, false);
1322       frame deoptee = current->last_frame().sender(&map);
1323       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1324       // Adjust the pc back to the original throwing pc
1325       pc = deoptee.pc();
1326     }
1327 
1328     // If we are forcing an unwind because of stack overflow then deopt is
1329     // irrelevant since we are throwing the frame away anyway.
1330 
1331     if (deopting && !force_unwind) {
1332       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1333     } else {
1334 
1335       handler_address =
1336         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1337 
1338       if (handler_address == nullptr) {
1339         bool recursive_exception = false;
1340         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1341         assert (handler_address != nullptr, "must have compiled handler");
1342         // Update the exception cache only when the unwind was not forced
1343         // and there didn't happen another exception during the computation of the
1344         // compiled exception handler. Checking for exception oop equality is not
1345         // sufficient because some exceptions are pre-allocated and reused.
1346         if (!force_unwind && !recursive_exception) {
1347           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1348         }
1349       } else {
1350 #ifdef ASSERT
1351         bool recursive_exception = false;
1352         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1353         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1354                  p2i(handler_address), p2i(computed_address));
1355 #endif
1356       }
1357     }
1358 
1359     current->set_exception_pc(pc);
1360     current->set_exception_handler_pc(handler_address);
1361 
1362     // Check if the exception PC is a MethodHandle call site.
1363     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1364   }
1365 
1366   // Restore correct return pc.  Was saved above.
1367   current->set_exception_oop(exception());
1368   return handler_address;
1369 
1370 JRT_END
1371 
1372 // We are entering here from exception_blob
1373 // If there is a compiled exception handler in this method, we will continue there;
1374 // otherwise we will unwind the stack and continue at the caller of top frame method
1375 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1376 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1377 // we looked up the handler for has been deoptimized in the meantime. If it has been
1378 // we must not use the handler and instead return the deopt blob.
1379 address OptoRuntime::handle_exception_C(JavaThread* current) {
1380 //
1381 // We are in Java not VM and in debug mode we have a NoHandleMark
1382 //
1383 #ifndef PRODUCT
1384   SharedRuntime::_find_handler_ctr++;          // find exception handler
1385 #endif
1386   debug_only(NoHandleMark __hm;)
1387   nmethod* nm = nullptr;
1388   address handler_address = nullptr;
1389   {
1390     // Enter the VM
1391 
1392     ResetNoHandleMark rnhm;
1393     handler_address = handle_exception_C_helper(current, nm);
1394   }
1395 
1396   // Back in java: Use no oops, DON'T safepoint
1397 
1398   // Now check to see if the handler we are returning is in a now
1399   // deoptimized frame
1400 
1401   if (nm != nullptr) {
1402     RegisterMap map(current, false);
1403     frame caller = current->last_frame().sender(&map);
1404 #ifdef ASSERT
1405     assert(caller.is_compiled_frame(), "must be");
1406 #endif // ASSERT
1407     if (caller.is_deoptimized_frame()) {
1408       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1409     }
1410   }
1411   return handler_address;
1412 }
1413 
1414 //------------------------------rethrow----------------------------------------
1415 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1416 // is either throwing or rethrowing an exception.  The callee-save registers
1417 // have been restored, synchronized objects have been unlocked and the callee
1418 // stack frame has been removed.  The return address was passed in.
1419 // Exception oop is passed as the 1st argument.  This routine is then called
1420 // from the stub.  On exit, we know where to jump in the caller's code.
1421 // After this C code exits, the stub will pop his frame and end in a jump
1422 // (instead of a return).  We enter the caller's default handler.
1423 //
1424 // This must be JRT_LEAF:
1425 //     - caller will not change its state as we cannot block on exit,
1426 //       therefore raw_exception_handler_for_return_address is all it takes
1427 //       to handle deoptimized blobs
1428 //
1429 // However, there needs to be a safepoint check in the middle!  So compiled
1430 // safepoints are completely watertight.
1431 //
1432 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1433 //
1434 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1435 //
1436 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1437   // The frame we rethrow the exception to might not have been processed by the GC yet.
1438   // The stack watermark barrier takes care of detecting that and ensuring the frame
1439   // has updated oops.
1440   StackWatermarkSet::after_unwind(thread);
1441 
1442 #ifndef PRODUCT
1443   SharedRuntime::_rethrow_ctr++;               // count rethrows
1444 #endif
1445   assert (exception != nullptr, "should have thrown a NullPointerException");
1446 #ifdef ASSERT
1447   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1448     // should throw an exception here
1449     ShouldNotReachHere();
1450   }
1451 #endif
1452 
1453   thread->set_vm_result(exception);
1454   // Frame not compiled (handles deoptimization blob)
1455   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1456 }
1457 
1458 
1459 const TypeFunc *OptoRuntime::rethrow_Type() {
1460   // create input type (domain)
1461   const Type **fields = TypeTuple::fields(1);
1462   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1463   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1464 
1465   // create result type (range)
1466   fields = TypeTuple::fields(1);
1467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1468   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1469 
1470   return TypeFunc::make(domain, range);
1471 }
1472 
1473 
1474 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1475   // Deoptimize the caller before continuing, as the compiled
1476   // exception handler table may not be valid.
1477   if (!StressCompiledExceptionHandlers && doit) {
1478     deoptimize_caller_frame(thread);
1479   }
1480 }
1481 
1482 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1483   // Called from within the owner thread, so no need for safepoint
1484   RegisterMap reg_map(thread);
1485   frame stub_frame = thread->last_frame();
1486   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1487   frame caller_frame = stub_frame.sender(&reg_map);
1488 
1489   // Deoptimize the caller frame.
1490   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1491 }
1492 
1493 
1494 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1495   // Called from within the owner thread, so no need for safepoint
1496   RegisterMap reg_map(thread);
1497   frame stub_frame = thread->last_frame();
1498   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1499   frame caller_frame = stub_frame.sender(&reg_map);
1500   return caller_frame.is_deoptimized_frame();
1501 }
1502 
1503 
1504 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1505   // create input type (domain)
1506   const Type **fields = TypeTuple::fields(1);
1507   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1508   // // The JavaThread* is passed to each routine as the last argument
1509   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1510   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1511 
1512   // create result type (range)
1513   fields = TypeTuple::fields(0);
1514 
1515   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1516 
1517   return TypeFunc::make(domain,range);
1518 }
1519 
1520 #if INCLUDE_JFR
1521 const TypeFunc *OptoRuntime::get_class_id_intrinsic_Type() {
1522   // create input type (domain)
1523   const Type **fields = TypeTuple::fields(1);
1524   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1525   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1526 
1527   // create result type (range)
1528   fields = TypeTuple::fields(0);
1529 
1530   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1531 
1532   return TypeFunc::make(domain,range);
1533 }
1534 #endif
1535 
1536 //-----------------------------------------------------------------------------
1537 // Dtrace support.  entry and exit probes have the same signature
1538 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1539   // create input type (domain)
1540   const Type **fields = TypeTuple::fields(2);
1541   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1542   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1544 
1545   // create result type (range)
1546   fields = TypeTuple::fields(0);
1547 
1548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1549 
1550   return TypeFunc::make(domain,range);
1551 }
1552 
1553 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1554   // create input type (domain)
1555   const Type **fields = TypeTuple::fields(2);
1556   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1557   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1558 
1559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1560 
1561   // create result type (range)
1562   fields = TypeTuple::fields(0);
1563 
1564   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1565 
1566   return TypeFunc::make(domain,range);
1567 }
1568 
1569 
1570 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1571   assert(oopDesc::is_oop(obj), "must be a valid oop");
1572   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1573   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1574 JRT_END
1575 
1576 //-----------------------------------------------------------------------------
1577 
1578 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1579 
1580 //
1581 // dump the collected NamedCounters.
1582 //
1583 void OptoRuntime::print_named_counters() {
1584   int total_lock_count = 0;
1585   int eliminated_lock_count = 0;
1586 
1587   NamedCounter* c = _named_counters;
1588   while (c) {
1589     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1590       int count = c->count();
1591       if (count > 0) {
1592         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1593         if (Verbose) {
1594           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1595         }
1596         total_lock_count += count;
1597         if (eliminated) {
1598           eliminated_lock_count += count;
1599         }
1600       }
1601     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1602       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1603       if (blc->nonzero()) {
1604         tty->print_cr("%s", c->name());
1605         blc->print_on(tty);
1606       }
1607 #if INCLUDE_RTM_OPT
1608     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1609       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1610       if (rlc->nonzero()) {
1611         tty->print_cr("%s", c->name());
1612         rlc->print_on(tty);
1613       }
1614 #endif
1615     }
1616     c = c->next();
1617   }
1618   if (total_lock_count > 0) {
1619     tty->print_cr("dynamic locks: %d", total_lock_count);
1620     if (eliminated_lock_count) {
1621       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1622                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1623     }
1624   }
1625 }
1626 
1627 //
1628 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1629 //  name which consists of method@line for the inlining tree.
1630 //
1631 
1632 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1633   int max_depth = youngest_jvms->depth();
1634 
1635   // Visit scopes from youngest to oldest.
1636   bool first = true;
1637   stringStream st;
1638   for (int depth = max_depth; depth >= 1; depth--) {
1639     JVMState* jvms = youngest_jvms->of_depth(depth);
1640     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1641     if (!first) {
1642       st.print(" ");
1643     } else {
1644       first = false;
1645     }
1646     int bci = jvms->bci();
1647     if (bci < 0) bci = 0;
1648     if (m != nullptr) {
1649       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1650     } else {
1651       st.print("no method");
1652     }
1653     st.print("@%d", bci);
1654     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1655   }
1656   NamedCounter* c;
1657   if (tag == NamedCounter::BiasedLockingCounter) {
1658     c = new BiasedLockingNamedCounter(st.as_string());
1659   } else if (tag == NamedCounter::RTMLockingCounter) {
1660     c = new RTMLockingNamedCounter(st.as_string());
1661   } else {
1662     c = new NamedCounter(st.as_string(), tag);
1663   }
1664 
1665   // atomically add the new counter to the head of the list.  We only
1666   // add counters so this is safe.
1667   NamedCounter* head;
1668   do {
1669     c->set_next(nullptr);
1670     head = _named_counters;
1671     c->set_next(head);
1672   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1673   return c;
1674 }
1675 
1676 int trace_exception_counter = 0;
1677 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1678   trace_exception_counter++;
1679   stringStream tempst;
1680 
1681   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1682   exception_oop->print_value_on(&tempst);
1683   tempst.print(" in ");
1684   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1685   if (blob->is_compiled()) {
1686     CompiledMethod* cm = blob->as_compiled_method_or_null();
1687     cm->method()->print_value_on(&tempst);
1688   } else if (blob->is_runtime_stub()) {
1689     tempst.print("<runtime-stub>");
1690   } else {
1691     tempst.print("<unknown>");
1692   }
1693   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1694   tempst.print("]");
1695 
1696   st->print_raw_cr(tempst.as_string());
1697 }