1 /*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciTypeFlow.hpp"
28 #include "classfile/javaClasses.hpp"
29 #include "classfile/symbolTable.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/oopFactory.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/instanceKlass.hpp"
35 #include "oops/instanceMirrorKlass.hpp"
36 #include "oops/objArrayKlass.hpp"
37 #include "oops/typeArrayKlass.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/node.hpp"
40 #include "opto/opcodes.hpp"
41 #include "opto/type.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 #include "utilities/stringUtils.hpp"
44
45 // Portions of code courtesy of Clifford Click
46
47 // Optimization - Graph Style
48
49 // Dictionary of types shared among compilations.
50 Dict* Type::_shared_type_dict = nullptr;
51
52 // Array which maps compiler types to Basic Types
53 const Type::TypeInfo Type::_type_info[Type::lastype] = {
54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
64
65 #if defined(PPC64)
66 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
67 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
68 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
69 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
70 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
71 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
72 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
73 #elif defined(S390)
74 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
75 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
76 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
77 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
78 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
79 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
80 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
81 #else // all other
82 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
83 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
84 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
85 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
86 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
87 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
88 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ
89 #endif
90 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
91 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
92 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
93 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
94 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
95 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
96 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
97 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
98 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
99 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
100 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
101 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
102 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
103 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
104 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
105 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
106 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
107 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
108 };
109
110 // Map ideal registers (machine types) to ideal types
111 const Type *Type::mreg2type[_last_machine_leaf];
112
113 // Map basic types to canonical Type* pointers.
114 const Type* Type:: _const_basic_type[T_CONFLICT+1];
115
116 // Map basic types to constant-zero Types.
117 const Type* Type:: _zero_type[T_CONFLICT+1];
118
119 // Map basic types to array-body alias types.
120 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
121
122 //=============================================================================
123 // Convenience common pre-built types.
124 const Type *Type::ABIO; // State-of-machine only
125 const Type *Type::BOTTOM; // All values
126 const Type *Type::CONTROL; // Control only
127 const Type *Type::DOUBLE; // All doubles
128 const Type *Type::FLOAT; // All floats
129 const Type *Type::HALF; // Placeholder half of doublewide type
130 const Type *Type::MEMORY; // Abstract store only
131 const Type *Type::RETURN_ADDRESS;
132 const Type *Type::TOP; // No values in set
133
134 //------------------------------get_const_type---------------------------
135 const Type* Type::get_const_type(ciType* type) {
136 if (type == nullptr) {
137 return nullptr;
138 } else if (type->is_primitive_type()) {
139 return get_const_basic_type(type->basic_type());
140 } else {
141 return TypeOopPtr::make_from_klass(type->as_klass());
142 }
143 }
144
145 //---------------------------array_element_basic_type---------------------------------
146 // Mapping to the array element's basic type.
147 BasicType Type::array_element_basic_type() const {
148 BasicType bt = basic_type();
149 if (bt == T_INT) {
150 if (this == TypeInt::INT) return T_INT;
151 if (this == TypeInt::CHAR) return T_CHAR;
152 if (this == TypeInt::BYTE) return T_BYTE;
153 if (this == TypeInt::BOOL) return T_BOOLEAN;
154 if (this == TypeInt::SHORT) return T_SHORT;
155 return T_VOID;
156 }
157 return bt;
158 }
159
160 // For two instance arrays of same dimension, return the base element types.
161 // Otherwise or if the arrays have different dimensions, return null.
162 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
163 const TypeInstPtr **e1, const TypeInstPtr **e2) {
164
165 if (e1) *e1 = nullptr;
166 if (e2) *e2 = nullptr;
167 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
168 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
169
170 if (a1tap != nullptr && a2tap != nullptr) {
171 // Handle multidimensional arrays
172 const TypePtr* a1tp = a1tap->elem()->make_ptr();
173 const TypePtr* a2tp = a2tap->elem()->make_ptr();
174 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
175 a1tap = a1tp->is_aryptr();
176 a2tap = a2tp->is_aryptr();
177 a1tp = a1tap->elem()->make_ptr();
178 a2tp = a2tap->elem()->make_ptr();
179 }
180 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
181 if (e1) *e1 = a1tp->is_instptr();
182 if (e2) *e2 = a2tp->is_instptr();
183 }
184 }
185 }
186
187 //---------------------------get_typeflow_type---------------------------------
188 // Import a type produced by ciTypeFlow.
189 const Type* Type::get_typeflow_type(ciType* type) {
190 switch (type->basic_type()) {
191
192 case ciTypeFlow::StateVector::T_BOTTOM:
193 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
194 return Type::BOTTOM;
195
196 case ciTypeFlow::StateVector::T_TOP:
197 assert(type == ciTypeFlow::StateVector::top_type(), "");
198 return Type::TOP;
199
200 case ciTypeFlow::StateVector::T_NULL:
201 assert(type == ciTypeFlow::StateVector::null_type(), "");
202 return TypePtr::NULL_PTR;
203
204 case ciTypeFlow::StateVector::T_LONG2:
205 // The ciTypeFlow pass pushes a long, then the half.
206 // We do the same.
207 assert(type == ciTypeFlow::StateVector::long2_type(), "");
208 return TypeInt::TOP;
209
210 case ciTypeFlow::StateVector::T_DOUBLE2:
211 // The ciTypeFlow pass pushes double, then the half.
212 // Our convention is the same.
213 assert(type == ciTypeFlow::StateVector::double2_type(), "");
214 return Type::TOP;
215
216 case T_ADDRESS:
217 assert(type->is_return_address(), "");
218 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
219
220 default:
221 // make sure we did not mix up the cases:
222 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
223 assert(type != ciTypeFlow::StateVector::top_type(), "");
224 assert(type != ciTypeFlow::StateVector::null_type(), "");
225 assert(type != ciTypeFlow::StateVector::long2_type(), "");
226 assert(type != ciTypeFlow::StateVector::double2_type(), "");
227 assert(!type->is_return_address(), "");
228
229 return Type::get_const_type(type);
230 }
231 }
232
233
234 //-----------------------make_from_constant------------------------------------
235 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
236 int stable_dimension, bool is_narrow_oop,
237 bool is_autobox_cache) {
238 switch (constant.basic_type()) {
239 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
240 case T_CHAR: return TypeInt::make(constant.as_char());
241 case T_BYTE: return TypeInt::make(constant.as_byte());
242 case T_SHORT: return TypeInt::make(constant.as_short());
243 case T_INT: return TypeInt::make(constant.as_int());
244 case T_LONG: return TypeLong::make(constant.as_long());
245 case T_FLOAT: return TypeF::make(constant.as_float());
246 case T_DOUBLE: return TypeD::make(constant.as_double());
247 case T_ARRAY:
248 case T_OBJECT: {
249 const Type* con_type = nullptr;
250 ciObject* oop_constant = constant.as_object();
251 if (oop_constant->is_null_object()) {
252 con_type = Type::get_zero_type(T_OBJECT);
253 } else {
254 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
255 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
256 if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
257 con_type = con_type->is_aryptr()->cast_to_autobox_cache();
258 }
259 if (stable_dimension > 0) {
260 assert(FoldStableValues, "sanity");
261 assert(!con_type->is_zero_type(), "default value for stable field");
262 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
263 }
264 }
265 if (is_narrow_oop) {
266 con_type = con_type->make_narrowoop();
267 }
268 return con_type;
269 }
270 case T_ILLEGAL:
271 // Invalid ciConstant returned due to OutOfMemoryError in the CI
272 assert(Compile::current()->env()->failing(), "otherwise should not see this");
273 return nullptr;
274 default:
275 // Fall through to failure
276 return nullptr;
277 }
278 }
279
280 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
281 BasicType conbt = con.basic_type();
282 switch (conbt) {
283 case T_BOOLEAN: conbt = T_BYTE; break;
284 case T_ARRAY: conbt = T_OBJECT; break;
285 default: break;
286 }
287 switch (loadbt) {
288 case T_BOOLEAN: loadbt = T_BYTE; break;
289 case T_NARROWOOP: loadbt = T_OBJECT; break;
290 case T_ARRAY: loadbt = T_OBJECT; break;
291 case T_ADDRESS: loadbt = T_OBJECT; break;
292 default: break;
293 }
294 if (conbt == loadbt) {
295 if (is_unsigned && conbt == T_BYTE) {
296 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
297 return ciConstant(T_INT, con.as_int() & 0xFF);
298 } else {
299 return con;
300 }
301 }
302 if (conbt == T_SHORT && loadbt == T_CHAR) {
303 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
304 return ciConstant(T_INT, con.as_int() & 0xFFFF);
305 }
306 return ciConstant(); // T_ILLEGAL
307 }
308
309 // Try to constant-fold a stable array element.
310 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
311 BasicType loadbt, bool is_unsigned_load) {
312 // Decode the results of GraphKit::array_element_address.
313 ciConstant element_value = array->element_value_by_offset(off);
314 if (element_value.basic_type() == T_ILLEGAL) {
315 return nullptr; // wrong offset
316 }
317 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
318
319 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
320 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
321
322 if (con.is_valid() && // not a mismatched access
323 !con.is_null_or_zero()) { // not a default value
324 bool is_narrow_oop = (loadbt == T_NARROWOOP);
325 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
326 }
327 return nullptr;
328 }
329
330 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
331 ciField* field;
332 ciType* type = holder->java_mirror_type();
333 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
334 // Static field
335 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
336 } else {
337 // Instance field
338 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
339 }
340 if (field == nullptr) {
341 return nullptr; // Wrong offset
342 }
343 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
344 }
345
346 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
347 BasicType loadbt, bool is_unsigned_load) {
348 if (!field->is_constant()) {
349 return nullptr; // Non-constant field
350 }
351 ciConstant field_value;
352 if (field->is_static()) {
353 // final static field
354 field_value = field->constant_value();
355 } else if (holder != nullptr) {
356 // final or stable non-static field
357 // Treat final non-static fields of trusted classes (classes in
358 // java.lang.invoke and sun.invoke packages and subpackages) as
359 // compile time constants.
360 field_value = field->constant_value_of(holder);
361 }
362 if (!field_value.is_valid()) {
363 return nullptr; // Not a constant
364 }
365
366 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
367
368 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
369 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
370
371 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
372 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
373 bool is_narrow_oop = (loadbt == T_NARROWOOP);
374
375 const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
376 stable_dimension, is_narrow_oop,
377 field->is_autobox_cache());
378 if (con_type != nullptr && field->is_call_site_target()) {
379 ciCallSite* call_site = holder->as_call_site();
380 if (!call_site->is_fully_initialized_constant_call_site()) {
381 ciMethodHandle* target = con.as_object()->as_method_handle();
382 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
383 }
384 }
385 return con_type;
386 }
387
388 //------------------------------make-------------------------------------------
389 // Create a simple Type, with default empty symbol sets. Then hashcons it
390 // and look for an existing copy in the type dictionary.
391 const Type *Type::make( enum TYPES t ) {
392 return (new Type(t))->hashcons();
393 }
394
395 //------------------------------cmp--------------------------------------------
396 int Type::cmp( const Type *const t1, const Type *const t2 ) {
397 if( t1->_base != t2->_base )
398 return 1; // Missed badly
399 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
400 return !t1->eq(t2); // Return ZERO if equal
401 }
402
403 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
404 if (!include_speculative) {
405 return remove_speculative();
406 }
407 return this;
408 }
409
410 //------------------------------hash-------------------------------------------
411 int Type::uhash( const Type *const t ) {
412 return t->hash();
413 }
414
415 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
416 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
417 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
418
419 //--------------------------Initialize_shared----------------------------------
420 void Type::Initialize_shared(Compile* current) {
421 // This method does not need to be locked because the first system
422 // compilations (stub compilations) occur serially. If they are
423 // changed to proceed in parallel, then this section will need
424 // locking.
425
426 Arena* save = current->type_arena();
427 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
428
429 current->set_type_arena(shared_type_arena);
430 _shared_type_dict =
431 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
432 shared_type_arena, 128 );
433 current->set_type_dict(_shared_type_dict);
434
435 // Make shared pre-built types.
436 CONTROL = make(Control); // Control only
437 TOP = make(Top); // No values in set
438 MEMORY = make(Memory); // Abstract store only
439 ABIO = make(Abio); // State-of-machine only
440 RETURN_ADDRESS=make(Return_Address);
441 FLOAT = make(FloatBot); // All floats
442 DOUBLE = make(DoubleBot); // All doubles
443 BOTTOM = make(Bottom); // Everything
444 HALF = make(Half); // Placeholder half of doublewide type
445
446 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
447 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
448 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
449 TypeF::ONE = TypeF::make(1.0); // Float 1
450 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
451 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
452
453 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
454 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
455 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
456 TypeD::ONE = TypeD::make(1.0); // Double 1
457 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
458 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
459
460 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
461 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
462 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
463 TypeInt::ZERO = TypeInt::make( 0); // 0
464 TypeInt::ONE = TypeInt::make( 1); // 1
465 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
466 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
467 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
468 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
469 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
470 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
471 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
472 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
473 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
474 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
475 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
476 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
477 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
478 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
479 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
480 TypeInt::TYPE_DOMAIN = TypeInt::INT;
481 // CmpL is overloaded both as the bytecode computation returning
482 // a trinary (-1,0,+1) integer result AND as an efficient long
483 // compare returning optimizer ideal-type flags.
484 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
485 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
486 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
487 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
488 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
489
490 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
491 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
492 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
493 TypeLong::ZERO = TypeLong::make( 0); // 0
494 TypeLong::ONE = TypeLong::make( 1); // 1
495 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
496 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
497 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
498 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
499 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
500
501 const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
502 fboth[0] = Type::CONTROL;
503 fboth[1] = Type::CONTROL;
504 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
505
506 const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
507 ffalse[0] = Type::CONTROL;
508 ffalse[1] = Type::TOP;
509 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
510
511 const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
512 fneither[0] = Type::TOP;
513 fneither[1] = Type::TOP;
514 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
515
516 const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
517 ftrue[0] = Type::TOP;
518 ftrue[1] = Type::CONTROL;
519 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
520
521 const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
522 floop[0] = Type::CONTROL;
523 floop[1] = TypeInt::INT;
524 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
525
526 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
527 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
528 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
529
530 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
531 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
532
533 const Type **fmembar = TypeTuple::fields(0);
534 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
535
536 const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
537 fsc[0] = TypeInt::CC;
538 fsc[1] = Type::MEMORY;
539 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
540
541 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
542 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
543 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
544 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
545 false, 0, oopDesc::mark_offset_in_bytes());
546 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
547 false, 0, oopDesc::klass_offset_in_bytes());
548 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
549
550 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
551
552 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
553 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
554
555 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
556
557 mreg2type[Op_Node] = Type::BOTTOM;
558 mreg2type[Op_Set ] = 0;
559 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
560 mreg2type[Op_RegI] = TypeInt::INT;
561 mreg2type[Op_RegP] = TypePtr::BOTTOM;
562 mreg2type[Op_RegF] = Type::FLOAT;
563 mreg2type[Op_RegD] = Type::DOUBLE;
564 mreg2type[Op_RegL] = TypeLong::LONG;
565 mreg2type[Op_RegFlags] = TypeInt::CC;
566
567 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
568
569 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
570
571 #ifdef _LP64
572 if (UseCompressedOops) {
573 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
574 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
575 } else
576 #endif
577 {
578 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
579 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
580 }
581 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
582 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
583 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
584 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
585 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
586 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
587 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
588
589 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
590 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
591 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
592 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
593 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
594 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
595 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
596 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
597 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
598 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
599 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
600 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
601
602 TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
603 TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
604
605 const Type **fi2c = TypeTuple::fields(2);
606 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
607 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
608 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
609
610 const Type **intpair = TypeTuple::fields(2);
611 intpair[0] = TypeInt::INT;
612 intpair[1] = TypeInt::INT;
613 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
614
615 const Type **longpair = TypeTuple::fields(2);
616 longpair[0] = TypeLong::LONG;
617 longpair[1] = TypeLong::LONG;
618 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
619
620 const Type **intccpair = TypeTuple::fields(2);
621 intccpair[0] = TypeInt::INT;
622 intccpair[1] = TypeInt::CC;
623 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
624
625 const Type **longccpair = TypeTuple::fields(2);
626 longccpair[0] = TypeLong::LONG;
627 longccpair[1] = TypeInt::CC;
628 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
629
630 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
631 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
632 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
633 _const_basic_type[T_CHAR] = TypeInt::CHAR;
634 _const_basic_type[T_BYTE] = TypeInt::BYTE;
635 _const_basic_type[T_SHORT] = TypeInt::SHORT;
636 _const_basic_type[T_INT] = TypeInt::INT;
637 _const_basic_type[T_LONG] = TypeLong::LONG;
638 _const_basic_type[T_FLOAT] = Type::FLOAT;
639 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
640 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
641 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
642 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
643 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
644 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
645
646 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
647 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
648 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
649 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
650 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
651 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
652 _zero_type[T_INT] = TypeInt::ZERO;
653 _zero_type[T_LONG] = TypeLong::ZERO;
654 _zero_type[T_FLOAT] = TypeF::ZERO;
655 _zero_type[T_DOUBLE] = TypeD::ZERO;
656 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
657 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
658 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
659 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
660
661 // get_zero_type() should not happen for T_CONFLICT
662 _zero_type[T_CONFLICT]= nullptr;
663
664 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
665 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
666
667 if (Matcher::supports_scalable_vector()) {
668 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
669 }
670
671 // Vector predefined types, it needs initialized _const_basic_type[].
672 if (Matcher::vector_size_supported(T_BYTE,4)) {
673 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
674 }
675 if (Matcher::vector_size_supported(T_FLOAT,2)) {
676 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
677 }
678 if (Matcher::vector_size_supported(T_FLOAT,4)) {
679 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
680 }
681 if (Matcher::vector_size_supported(T_FLOAT,8)) {
682 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
683 }
684 if (Matcher::vector_size_supported(T_FLOAT,16)) {
685 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
686 }
687
688 mreg2type[Op_VecA] = TypeVect::VECTA;
689 mreg2type[Op_VecS] = TypeVect::VECTS;
690 mreg2type[Op_VecD] = TypeVect::VECTD;
691 mreg2type[Op_VecX] = TypeVect::VECTX;
692 mreg2type[Op_VecY] = TypeVect::VECTY;
693 mreg2type[Op_VecZ] = TypeVect::VECTZ;
694
695 // Restore working type arena.
696 current->set_type_arena(save);
697 current->set_type_dict(nullptr);
698 }
699
700 //------------------------------Initialize-------------------------------------
701 void Type::Initialize(Compile* current) {
702 assert(current->type_arena() != nullptr, "must have created type arena");
703
704 if (_shared_type_dict == nullptr) {
705 Initialize_shared(current);
706 }
707
708 Arena* type_arena = current->type_arena();
709
710 // Create the hash-cons'ing dictionary with top-level storage allocation
711 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
712 current->set_type_dict(tdic);
713 }
714
715 //------------------------------hashcons---------------------------------------
716 // Do the hash-cons trick. If the Type already exists in the type table,
717 // delete the current Type and return the existing Type. Otherwise stick the
718 // current Type in the Type table.
719 const Type *Type::hashcons(void) {
720 debug_only(base()); // Check the assertion in Type::base().
721 // Look up the Type in the Type dictionary
722 Dict *tdic = type_dict();
723 Type* old = (Type*)(tdic->Insert(this, this, false));
724 if( old ) { // Pre-existing Type?
725 if( old != this ) // Yes, this guy is not the pre-existing?
726 delete this; // Yes, Nuke this guy
727 assert( old->_dual, "" );
728 return old; // Return pre-existing
729 }
730
731 // Every type has a dual (to make my lattice symmetric).
732 // Since we just discovered a new Type, compute its dual right now.
733 assert( !_dual, "" ); // No dual yet
734 _dual = xdual(); // Compute the dual
735 if (cmp(this, _dual) == 0) { // Handle self-symmetric
736 if (_dual != this) {
737 delete _dual;
738 _dual = this;
739 }
740 return this;
741 }
742 assert( !_dual->_dual, "" ); // No reverse dual yet
743 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
744 // New Type, insert into Type table
745 tdic->Insert((void*)_dual,(void*)_dual);
746 ((Type*)_dual)->_dual = this; // Finish up being symmetric
747 #ifdef ASSERT
748 Type *dual_dual = (Type*)_dual->xdual();
749 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
750 delete dual_dual;
751 #endif
752 return this; // Return new Type
753 }
754
755 //------------------------------eq---------------------------------------------
756 // Structural equality check for Type representations
757 bool Type::eq( const Type * ) const {
758 return true; // Nothing else can go wrong
759 }
760
761 //------------------------------hash-------------------------------------------
762 // Type-specific hashing function.
763 int Type::hash(void) const {
764 return _base;
765 }
766
767 //------------------------------is_finite--------------------------------------
768 // Has a finite value
769 bool Type::is_finite() const {
770 return false;
771 }
772
773 //------------------------------is_nan-----------------------------------------
774 // Is not a number (NaN)
775 bool Type::is_nan() const {
776 return false;
777 }
778
779 //----------------------interface_vs_oop---------------------------------------
780 #ifdef ASSERT
781 bool Type::interface_vs_oop_helper(const Type *t) const {
782 bool result = false;
783
784 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
785 const TypePtr* t_ptr = t->make_ptr();
786 if( this_ptr == nullptr || t_ptr == nullptr )
787 return result;
788
789 const TypeInstPtr* this_inst = this_ptr->isa_instptr();
790 const TypeInstPtr* t_inst = t_ptr->isa_instptr();
791 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
792 bool this_interface = this_inst->klass()->is_interface();
793 bool t_interface = t_inst->klass()->is_interface();
794 result = this_interface ^ t_interface;
795 }
796
797 return result;
798 }
799
800 bool Type::interface_vs_oop(const Type *t) const {
801 if (interface_vs_oop_helper(t)) {
802 return true;
803 }
804 // Now check the speculative parts as well
805 const TypePtr* this_spec = isa_ptr() != nullptr ? is_ptr()->speculative() : nullptr;
806 const TypePtr* t_spec = t->isa_ptr() != nullptr ? t->is_ptr()->speculative() : nullptr;
807 if (this_spec != nullptr && t_spec != nullptr) {
808 if (this_spec->interface_vs_oop_helper(t_spec)) {
809 return true;
810 }
811 return false;
812 }
813 if (this_spec != nullptr && this_spec->interface_vs_oop_helper(t)) {
814 return true;
815 }
816 if (t_spec != nullptr && interface_vs_oop_helper(t_spec)) {
817 return true;
818 }
819 return false;
820 }
821
822 #endif
823
824 void Type::check_symmetrical(const Type* t, const Type* mt) const {
825 #ifdef ASSERT
826 const Type* mt2 = t->xmeet(this);
827 if (mt != mt2) {
828 tty->print_cr("=== Meet Not Commutative ===");
829 tty->print("t = "); t->dump(); tty->cr();
830 tty->print("this = "); dump(); tty->cr();
831 tty->print("t meet this = "); mt2->dump(); tty->cr();
832 tty->print("this meet t = "); mt->dump(); tty->cr();
833 fatal("meet not commutative");
834 }
835 const Type* dual_join = mt->_dual;
836 const Type* t2t = dual_join->xmeet(t->_dual);
837 const Type* t2this = dual_join->xmeet(this->_dual);
838
839 // Interface meet Oop is Not Symmetric:
840 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
841 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
842
843 if (!interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual)) {
844 tty->print_cr("=== Meet Not Symmetric ===");
845 tty->print("t = "); t->dump(); tty->cr();
846 tty->print("this= "); dump(); tty->cr();
847 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
848
849 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
850 tty->print("this_dual= "); _dual->dump(); tty->cr();
851 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
852
853 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
854 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
855
856 fatal("meet not symmetric");
857 }
858 #endif
859 }
860
861 //------------------------------meet-------------------------------------------
862 // Compute the MEET of two types. NOT virtual. It enforces that meet is
863 // commutative and the lattice is symmetric.
864 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
865 if (isa_narrowoop() && t->isa_narrowoop()) {
866 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
867 return result->make_narrowoop();
868 }
869 if (isa_narrowklass() && t->isa_narrowklass()) {
870 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
871 return result->make_narrowklass();
872 }
873
874 const Type *this_t = maybe_remove_speculative(include_speculative);
875 t = t->maybe_remove_speculative(include_speculative);
876
877 const Type *mt = this_t->xmeet(t);
878 #ifdef ASSERT
879 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
880 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
881 Compile* C = Compile::current();
882 if (!C->_type_verify_symmetry) {
883 return mt;
884 }
885 this_t->check_symmetrical(t, mt);
886 // In the case of an array, computing the meet above, caused the
887 // computation of the meet of the elements which at verification
888 // time caused the computation of the meet of the dual of the
889 // elements. Computing the meet of the dual of the arrays here
890 // causes the meet of the dual of the elements to be computed which
891 // would cause the meet of the dual of the dual of the elements,
892 // that is the meet of the elements already computed above to be
893 // computed. Avoid redundant computations by requesting no
894 // verification.
895 C->_type_verify_symmetry = false;
896 const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
897 this_t->_dual->check_symmetrical(t->_dual, mt_dual);
898 assert(!C->_type_verify_symmetry, "shouldn't have changed");
899 C->_type_verify_symmetry = true;
900 #endif
901 return mt;
902 }
903
904 //------------------------------xmeet------------------------------------------
905 // Compute the MEET of two types. It returns a new Type object.
906 const Type *Type::xmeet( const Type *t ) const {
907 // Perform a fast test for common case; meeting the same types together.
908 if( this == t ) return this; // Meeting same type-rep?
909
910 // Meeting TOP with anything?
911 if( _base == Top ) return t;
912
913 // Meeting BOTTOM with anything?
914 if( _base == Bottom ) return BOTTOM;
915
916 // Current "this->_base" is one of: Bad, Multi, Control, Top,
917 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
918 switch (t->base()) { // Switch on original type
919
920 // Cut in half the number of cases I must handle. Only need cases for when
921 // the given enum "t->type" is less than or equal to the local enum "type".
922 case FloatCon:
923 case DoubleCon:
924 case Int:
925 case Long:
926 return t->xmeet(this);
927
928 case OopPtr:
929 return t->xmeet(this);
930
931 case InstPtr:
932 return t->xmeet(this);
933
934 case MetadataPtr:
935 case KlassPtr:
936 return t->xmeet(this);
937
938 case AryPtr:
939 return t->xmeet(this);
940
941 case NarrowOop:
942 return t->xmeet(this);
943
944 case NarrowKlass:
945 return t->xmeet(this);
946
947 case Bad: // Type check
948 default: // Bogus type not in lattice
949 typerr(t);
950 return Type::BOTTOM;
951
952 case Bottom: // Ye Olde Default
953 return t;
954
955 case FloatTop:
956 if( _base == FloatTop ) return this;
957 case FloatBot: // Float
958 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
959 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
960 typerr(t);
961 return Type::BOTTOM;
962
963 case DoubleTop:
964 if( _base == DoubleTop ) return this;
965 case DoubleBot: // Double
966 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
967 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
968 typerr(t);
969 return Type::BOTTOM;
970
971 // These next few cases must match exactly or it is a compile-time error.
972 case Control: // Control of code
973 case Abio: // State of world outside of program
974 case Memory:
975 if( _base == t->_base ) return this;
976 typerr(t);
977 return Type::BOTTOM;
978
979 case Top: // Top of the lattice
980 return this;
981 }
982
983 // The type is unchanged
984 return this;
985 }
986
987 //-----------------------------filter------------------------------------------
988 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
989 const Type* ft = join_helper(kills, include_speculative);
990 if (ft->empty())
991 return Type::TOP; // Canonical empty value
992 return ft;
993 }
994
995 //------------------------------xdual------------------------------------------
996
997 const Type *Type::xdual() const {
998 // Note: the base() accessor asserts the sanity of _base.
999 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1000 return new Type(_type_info[_base].dual_type);
1001 }
1002
1003 //------------------------------has_memory-------------------------------------
1004 bool Type::has_memory() const {
1005 Type::TYPES tx = base();
1006 if (tx == Memory) return true;
1007 if (tx == Tuple) {
1008 const TypeTuple *t = is_tuple();
1009 for (uint i=0; i < t->cnt(); i++) {
1010 tx = t->field_at(i)->base();
1011 if (tx == Memory) return true;
1012 }
1013 }
1014 return false;
1015 }
1016
1017 #ifndef PRODUCT
1018 //------------------------------dump2------------------------------------------
1019 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1020 st->print("%s", _type_info[_base].msg);
1021 }
1022
1023 //------------------------------dump-------------------------------------------
1024 void Type::dump_on(outputStream *st) const {
1025 ResourceMark rm;
1026 Dict d(cmpkey,hashkey); // Stop recursive type dumping
1027 dump2(d,1, st);
1028 if (is_ptr_to_narrowoop()) {
1029 st->print(" [narrow]");
1030 } else if (is_ptr_to_narrowklass()) {
1031 st->print(" [narrowklass]");
1032 }
1033 }
1034
1035 //-----------------------------------------------------------------------------
1036 const char* Type::str(const Type* t) {
1037 stringStream ss;
1038 t->dump_on(&ss);
1039 return ss.as_string();
1040 }
1041 #endif
1042
1043 //------------------------------singleton--------------------------------------
1044 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1045 // constants (Ldi nodes). Singletons are integer, float or double constants.
1046 bool Type::singleton(void) const {
1047 return _base == Top || _base == Half;
1048 }
1049
1050 //------------------------------empty------------------------------------------
1051 // TRUE if Type is a type with no values, FALSE otherwise.
1052 bool Type::empty(void) const {
1053 switch (_base) {
1054 case DoubleTop:
1055 case FloatTop:
1056 case Top:
1057 return true;
1058
1059 case Half:
1060 case Abio:
1061 case Return_Address:
1062 case Memory:
1063 case Bottom:
1064 case FloatBot:
1065 case DoubleBot:
1066 return false; // never a singleton, therefore never empty
1067
1068 default:
1069 ShouldNotReachHere();
1070 return false;
1071 }
1072 }
1073
1074 //------------------------------dump_stats-------------------------------------
1075 // Dump collected statistics to stderr
1076 #ifndef PRODUCT
1077 void Type::dump_stats() {
1078 tty->print("Types made: %d\n", type_dict()->Size());
1079 }
1080 #endif
1081
1082 //------------------------------category---------------------------------------
1083 #ifndef PRODUCT
1084 Type::Category Type::category() const {
1085 const TypeTuple* tuple;
1086 switch (base()) {
1087 case Type::Int:
1088 case Type::Long:
1089 case Type::Half:
1090 case Type::NarrowOop:
1091 case Type::NarrowKlass:
1092 case Type::Array:
1093 case Type::VectorA:
1094 case Type::VectorS:
1095 case Type::VectorD:
1096 case Type::VectorX:
1097 case Type::VectorY:
1098 case Type::VectorZ:
1099 case Type::VectorMask:
1100 case Type::AnyPtr:
1101 case Type::RawPtr:
1102 case Type::OopPtr:
1103 case Type::InstPtr:
1104 case Type::AryPtr:
1105 case Type::MetadataPtr:
1106 case Type::KlassPtr:
1107 case Type::Function:
1108 case Type::Return_Address:
1109 case Type::FloatTop:
1110 case Type::FloatCon:
1111 case Type::FloatBot:
1112 case Type::DoubleTop:
1113 case Type::DoubleCon:
1114 case Type::DoubleBot:
1115 return Category::Data;
1116 case Type::Memory:
1117 return Category::Memory;
1118 case Type::Control:
1119 return Category::Control;
1120 case Type::Top:
1121 case Type::Abio:
1122 case Type::Bottom:
1123 return Category::Other;
1124 case Type::Bad:
1125 case Type::lastype:
1126 return Category::Undef;
1127 case Type::Tuple:
1128 // Recursive case. Return CatMixed if the tuple contains types of
1129 // different categories (e.g. CallStaticJavaNode's type), or the specific
1130 // category if all types are of the same category (e.g. IfNode's type).
1131 tuple = is_tuple();
1132 if (tuple->cnt() == 0) {
1133 return Category::Undef;
1134 } else {
1135 Category first = tuple->field_at(0)->category();
1136 for (uint i = 1; i < tuple->cnt(); i++) {
1137 if (tuple->field_at(i)->category() != first) {
1138 return Category::Mixed;
1139 }
1140 }
1141 return first;
1142 }
1143 default:
1144 assert(false, "unmatched base type: all base types must be categorized");
1145 }
1146 return Category::Undef;
1147 }
1148 #endif
1149
1150 //------------------------------typerr-----------------------------------------
1151 void Type::typerr( const Type *t ) const {
1152 #ifndef PRODUCT
1153 tty->print("\nError mixing types: ");
1154 dump();
1155 tty->print(" and ");
1156 t->dump();
1157 tty->print("\n");
1158 #endif
1159 ShouldNotReachHere();
1160 }
1161
1162
1163 //=============================================================================
1164 // Convenience common pre-built types.
1165 const TypeF *TypeF::MAX; // Floating point max
1166 const TypeF *TypeF::MIN; // Floating point min
1167 const TypeF *TypeF::ZERO; // Floating point zero
1168 const TypeF *TypeF::ONE; // Floating point one
1169 const TypeF *TypeF::POS_INF; // Floating point positive infinity
1170 const TypeF *TypeF::NEG_INF; // Floating point negative infinity
1171
1172 //------------------------------make-------------------------------------------
1173 // Create a float constant
1174 const TypeF *TypeF::make(float f) {
1175 return (TypeF*)(new TypeF(f))->hashcons();
1176 }
1177
1178 //------------------------------meet-------------------------------------------
1179 // Compute the MEET of two types. It returns a new Type object.
1180 const Type *TypeF::xmeet( const Type *t ) const {
1181 // Perform a fast test for common case; meeting the same types together.
1182 if( this == t ) return this; // Meeting same type-rep?
1183
1184 // Current "this->_base" is FloatCon
1185 switch (t->base()) { // Switch on original type
1186 case AnyPtr: // Mixing with oops happens when javac
1187 case RawPtr: // reuses local variables
1188 case OopPtr:
1189 case InstPtr:
1190 case AryPtr:
1191 case MetadataPtr:
1192 case KlassPtr:
1193 case NarrowOop:
1194 case NarrowKlass:
1195 case Int:
1196 case Long:
1197 case DoubleTop:
1198 case DoubleCon:
1199 case DoubleBot:
1200 case Bottom: // Ye Olde Default
1201 return Type::BOTTOM;
1202
1203 case FloatBot:
1204 return t;
1205
1206 default: // All else is a mistake
1207 typerr(t);
1208
1209 case FloatCon: // Float-constant vs Float-constant?
1210 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
1211 // must compare bitwise as positive zero, negative zero and NaN have
1212 // all the same representation in C++
1213 return FLOAT; // Return generic float
1214 // Equal constants
1215 case Top:
1216 case FloatTop:
1217 break; // Return the float constant
1218 }
1219 return this; // Return the float constant
1220 }
1221
1222 //------------------------------xdual------------------------------------------
1223 // Dual: symmetric
1224 const Type *TypeF::xdual() const {
1225 return this;
1226 }
1227
1228 //------------------------------eq---------------------------------------------
1229 // Structural equality check for Type representations
1230 bool TypeF::eq(const Type *t) const {
1231 // Bitwise comparison to distinguish between +/-0. These values must be treated
1232 // as different to be consistent with C1 and the interpreter.
1233 return (jint_cast(_f) == jint_cast(t->getf()));
1234 }
1235
1236 //------------------------------hash-------------------------------------------
1237 // Type-specific hashing function.
1238 int TypeF::hash(void) const {
1239 return *(int*)(&_f);
1240 }
1241
1242 //------------------------------is_finite--------------------------------------
1243 // Has a finite value
1244 bool TypeF::is_finite() const {
1245 return g_isfinite(getf()) != 0;
1246 }
1247
1248 //------------------------------is_nan-----------------------------------------
1249 // Is not a number (NaN)
1250 bool TypeF::is_nan() const {
1251 return g_isnan(getf()) != 0;
1252 }
1253
1254 //------------------------------dump2------------------------------------------
1255 // Dump float constant Type
1256 #ifndef PRODUCT
1257 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1258 Type::dump2(d,depth, st);
1259 st->print("%f", _f);
1260 }
1261 #endif
1262
1263 //------------------------------singleton--------------------------------------
1264 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1265 // constants (Ldi nodes). Singletons are integer, float or double constants
1266 // or a single symbol.
1267 bool TypeF::singleton(void) const {
1268 return true; // Always a singleton
1269 }
1270
1271 bool TypeF::empty(void) const {
1272 return false; // always exactly a singleton
1273 }
1274
1275 //=============================================================================
1276 // Convenience common pre-built types.
1277 const TypeD *TypeD::MAX; // Floating point max
1278 const TypeD *TypeD::MIN; // Floating point min
1279 const TypeD *TypeD::ZERO; // Floating point zero
1280 const TypeD *TypeD::ONE; // Floating point one
1281 const TypeD *TypeD::POS_INF; // Floating point positive infinity
1282 const TypeD *TypeD::NEG_INF; // Floating point negative infinity
1283
1284 //------------------------------make-------------------------------------------
1285 const TypeD *TypeD::make(double d) {
1286 return (TypeD*)(new TypeD(d))->hashcons();
1287 }
1288
1289 //------------------------------meet-------------------------------------------
1290 // Compute the MEET of two types. It returns a new Type object.
1291 const Type *TypeD::xmeet( const Type *t ) const {
1292 // Perform a fast test for common case; meeting the same types together.
1293 if( this == t ) return this; // Meeting same type-rep?
1294
1295 // Current "this->_base" is DoubleCon
1296 switch (t->base()) { // Switch on original type
1297 case AnyPtr: // Mixing with oops happens when javac
1298 case RawPtr: // reuses local variables
1299 case OopPtr:
1300 case InstPtr:
1301 case AryPtr:
1302 case MetadataPtr:
1303 case KlassPtr:
1304 case NarrowOop:
1305 case NarrowKlass:
1306 case Int:
1307 case Long:
1308 case FloatTop:
1309 case FloatCon:
1310 case FloatBot:
1311 case Bottom: // Ye Olde Default
1312 return Type::BOTTOM;
1313
1314 case DoubleBot:
1315 return t;
1316
1317 default: // All else is a mistake
1318 typerr(t);
1319
1320 case DoubleCon: // Double-constant vs Double-constant?
1321 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
1322 return DOUBLE; // Return generic double
1323 case Top:
1324 case DoubleTop:
1325 break;
1326 }
1327 return this; // Return the double constant
1328 }
1329
1330 //------------------------------xdual------------------------------------------
1331 // Dual: symmetric
1332 const Type *TypeD::xdual() const {
1333 return this;
1334 }
1335
1336 //------------------------------eq---------------------------------------------
1337 // Structural equality check for Type representations
1338 bool TypeD::eq(const Type *t) const {
1339 // Bitwise comparison to distinguish between +/-0. These values must be treated
1340 // as different to be consistent with C1 and the interpreter.
1341 return (jlong_cast(_d) == jlong_cast(t->getd()));
1342 }
1343
1344 //------------------------------hash-------------------------------------------
1345 // Type-specific hashing function.
1346 int TypeD::hash(void) const {
1347 return *(int*)(&_d);
1348 }
1349
1350 //------------------------------is_finite--------------------------------------
1351 // Has a finite value
1352 bool TypeD::is_finite() const {
1353 return g_isfinite(getd()) != 0;
1354 }
1355
1356 //------------------------------is_nan-----------------------------------------
1357 // Is not a number (NaN)
1358 bool TypeD::is_nan() const {
1359 return g_isnan(getd()) != 0;
1360 }
1361
1362 //------------------------------dump2------------------------------------------
1363 // Dump double constant Type
1364 #ifndef PRODUCT
1365 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1366 Type::dump2(d,depth,st);
1367 st->print("%f", _d);
1368 }
1369 #endif
1370
1371 //------------------------------singleton--------------------------------------
1372 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1373 // constants (Ldi nodes). Singletons are integer, float or double constants
1374 // or a single symbol.
1375 bool TypeD::singleton(void) const {
1376 return true; // Always a singleton
1377 }
1378
1379 bool TypeD::empty(void) const {
1380 return false; // always exactly a singleton
1381 }
1382
1383 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1384 if (bt == T_INT) {
1385 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1386 }
1387 assert(bt == T_LONG, "basic type not an int or long");
1388 return TypeLong::make(lo, hi, w);
1389 }
1390
1391 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1392 if (bt == T_INT) {
1393 return is_int()->get_con();
1394 }
1395 assert(bt == T_LONG, "basic type not an int or long");
1396 return is_long()->get_con();
1397 }
1398
1399 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1400 if (bt == T_INT) {
1401 return TypeInt::INT;
1402 }
1403 assert(bt == T_LONG, "basic type not an int or long");
1404 return TypeLong::LONG;
1405 }
1406
1407 //=============================================================================
1408 // Convience common pre-built types.
1409 const TypeInt *TypeInt::MAX; // INT_MAX
1410 const TypeInt *TypeInt::MIN; // INT_MIN
1411 const TypeInt *TypeInt::MINUS_1;// -1
1412 const TypeInt *TypeInt::ZERO; // 0
1413 const TypeInt *TypeInt::ONE; // 1
1414 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
1415 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
1416 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
1417 const TypeInt *TypeInt::CC_GT; // [1] == ONE
1418 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
1419 const TypeInt *TypeInt::CC_LE; // [-1,0]
1420 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
1421 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
1422 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
1423 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
1424 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
1425 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
1426 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
1427 const TypeInt *TypeInt::INT; // 32-bit integers
1428 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1429 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1430
1431 //------------------------------TypeInt----------------------------------------
1432 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int), _lo(lo), _hi(hi), _widen(w) {
1433 }
1434
1435 //------------------------------make-------------------------------------------
1436 const TypeInt *TypeInt::make( jint lo ) {
1437 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1438 }
1439
1440 static int normalize_int_widen( jint lo, jint hi, int w ) {
1441 // Certain normalizations keep us sane when comparing types.
1442 // The 'SMALLINT' covers constants and also CC and its relatives.
1443 if (lo <= hi) {
1444 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
1445 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1446 } else {
1447 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
1448 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1449 }
1450 return w;
1451 }
1452
1453 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1454 w = normalize_int_widen(lo, hi, w);
1455 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1456 }
1457
1458 //------------------------------meet-------------------------------------------
1459 // Compute the MEET of two types. It returns a new Type representation object
1460 // with reference count equal to the number of Types pointing at it.
1461 // Caller should wrap a Types around it.
1462 const Type *TypeInt::xmeet( const Type *t ) const {
1463 // Perform a fast test for common case; meeting the same types together.
1464 if( this == t ) return this; // Meeting same type?
1465
1466 // Currently "this->_base" is a TypeInt
1467 switch (t->base()) { // Switch on original type
1468 case AnyPtr: // Mixing with oops happens when javac
1469 case RawPtr: // reuses local variables
1470 case OopPtr:
1471 case InstPtr:
1472 case AryPtr:
1473 case MetadataPtr:
1474 case KlassPtr:
1475 case NarrowOop:
1476 case NarrowKlass:
1477 case Long:
1478 case FloatTop:
1479 case FloatCon:
1480 case FloatBot:
1481 case DoubleTop:
1482 case DoubleCon:
1483 case DoubleBot:
1484 case Bottom: // Ye Olde Default
1485 return Type::BOTTOM;
1486 default: // All else is a mistake
1487 typerr(t);
1488 case Top: // No change
1489 return this;
1490 case Int: // Int vs Int?
1491 break;
1492 }
1493
1494 // Expand covered set
1495 const TypeInt *r = t->is_int();
1496 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1497 }
1498
1499 //------------------------------xdual------------------------------------------
1500 // Dual: reverse hi & lo; flip widen
1501 const Type *TypeInt::xdual() const {
1502 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1503 return new TypeInt(_hi,_lo,w);
1504 }
1505
1506 //------------------------------widen------------------------------------------
1507 // Only happens for optimistic top-down optimizations.
1508 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1509 // Coming from TOP or such; no widening
1510 if( old->base() != Int ) return this;
1511 const TypeInt *ot = old->is_int();
1512
1513 // If new guy is equal to old guy, no widening
1514 if( _lo == ot->_lo && _hi == ot->_hi )
1515 return old;
1516
1517 // If new guy contains old, then we widened
1518 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1519 // New contains old
1520 // If new guy is already wider than old, no widening
1521 if( _widen > ot->_widen ) return this;
1522 // If old guy was a constant, do not bother
1523 if (ot->_lo == ot->_hi) return this;
1524 // Now widen new guy.
1525 // Check for widening too far
1526 if (_widen == WidenMax) {
1527 int max = max_jint;
1528 int min = min_jint;
1529 if (limit->isa_int()) {
1530 max = limit->is_int()->_hi;
1531 min = limit->is_int()->_lo;
1532 }
1533 if (min < _lo && _hi < max) {
1534 // If neither endpoint is extremal yet, push out the endpoint
1535 // which is closer to its respective limit.
1536 if (_lo >= 0 || // easy common case
1537 (juint)(_lo - min) >= (juint)(max - _hi)) {
1538 // Try to widen to an unsigned range type of 31 bits:
1539 return make(_lo, max, WidenMax);
1540 } else {
1541 return make(min, _hi, WidenMax);
1542 }
1543 }
1544 return TypeInt::INT;
1545 }
1546 // Returned widened new guy
1547 return make(_lo,_hi,_widen+1);
1548 }
1549
1550 // If old guy contains new, then we probably widened too far & dropped to
1551 // bottom. Return the wider fellow.
1552 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1553 return old;
1554
1555 //fatal("Integer value range is not subset");
1556 //return this;
1557 return TypeInt::INT;
1558 }
1559
1560 //------------------------------narrow---------------------------------------
1561 // Only happens for pessimistic optimizations.
1562 const Type *TypeInt::narrow( const Type *old ) const {
1563 if (_lo >= _hi) return this; // already narrow enough
1564 if (old == nullptr) return this;
1565 const TypeInt* ot = old->isa_int();
1566 if (ot == nullptr) return this;
1567 jint olo = ot->_lo;
1568 jint ohi = ot->_hi;
1569
1570 // If new guy is equal to old guy, no narrowing
1571 if (_lo == olo && _hi == ohi) return old;
1572
1573 // If old guy was maximum range, allow the narrowing
1574 if (olo == min_jint && ohi == max_jint) return this;
1575
1576 if (_lo < olo || _hi > ohi)
1577 return this; // doesn't narrow; pretty wierd
1578
1579 // The new type narrows the old type, so look for a "death march".
1580 // See comments on PhaseTransform::saturate.
1581 juint nrange = (juint)_hi - _lo;
1582 juint orange = (juint)ohi - olo;
1583 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1584 // Use the new type only if the range shrinks a lot.
1585 // We do not want the optimizer computing 2^31 point by point.
1586 return old;
1587 }
1588
1589 return this;
1590 }
1591
1592 //-----------------------------filter------------------------------------------
1593 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1594 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1595 if (ft == nullptr || ft->empty())
1596 return Type::TOP; // Canonical empty value
1597 if (ft->_widen < this->_widen) {
1598 // Do not allow the value of kill->_widen to affect the outcome.
1599 // The widen bits must be allowed to run freely through the graph.
1600 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1601 }
1602 return ft;
1603 }
1604
1605 //------------------------------eq---------------------------------------------
1606 // Structural equality check for Type representations
1607 bool TypeInt::eq( const Type *t ) const {
1608 const TypeInt *r = t->is_int(); // Handy access
1609 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1610 }
1611
1612 //------------------------------hash-------------------------------------------
1613 // Type-specific hashing function.
1614 int TypeInt::hash(void) const {
1615 return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1616 }
1617
1618 //------------------------------is_finite--------------------------------------
1619 // Has a finite value
1620 bool TypeInt::is_finite() const {
1621 return true;
1622 }
1623
1624 //------------------------------dump2------------------------------------------
1625 // Dump TypeInt
1626 #ifndef PRODUCT
1627 static const char* intname(char* buf, jint n) {
1628 if (n == min_jint)
1629 return "min";
1630 else if (n < min_jint + 10000)
1631 sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1632 else if (n == max_jint)
1633 return "max";
1634 else if (n > max_jint - 10000)
1635 sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1636 else
1637 sprintf(buf, INT32_FORMAT, n);
1638 return buf;
1639 }
1640
1641 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1642 char buf[40], buf2[40];
1643 if (_lo == min_jint && _hi == max_jint)
1644 st->print("int");
1645 else if (is_con())
1646 st->print("int:%s", intname(buf, get_con()));
1647 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1648 st->print("bool");
1649 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1650 st->print("byte");
1651 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1652 st->print("char");
1653 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1654 st->print("short");
1655 else if (_hi == max_jint)
1656 st->print("int:>=%s", intname(buf, _lo));
1657 else if (_lo == min_jint)
1658 st->print("int:<=%s", intname(buf, _hi));
1659 else
1660 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1661
1662 if (_widen != 0 && this != TypeInt::INT)
1663 st->print(":%.*s", _widen, "wwww");
1664 }
1665 #endif
1666
1667 //------------------------------singleton--------------------------------------
1668 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1669 // constants.
1670 bool TypeInt::singleton(void) const {
1671 return _lo >= _hi;
1672 }
1673
1674 bool TypeInt::empty(void) const {
1675 return _lo > _hi;
1676 }
1677
1678 //=============================================================================
1679 // Convenience common pre-built types.
1680 const TypeLong *TypeLong::MAX;
1681 const TypeLong *TypeLong::MIN;
1682 const TypeLong *TypeLong::MINUS_1;// -1
1683 const TypeLong *TypeLong::ZERO; // 0
1684 const TypeLong *TypeLong::ONE; // 1
1685 const TypeLong *TypeLong::POS; // >=0
1686 const TypeLong *TypeLong::LONG; // 64-bit integers
1687 const TypeLong *TypeLong::INT; // 32-bit subrange
1688 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1689 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1690
1691 //------------------------------TypeLong---------------------------------------
1692 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long), _lo(lo), _hi(hi), _widen(w) {
1693 }
1694
1695 //------------------------------make-------------------------------------------
1696 const TypeLong *TypeLong::make( jlong lo ) {
1697 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1698 }
1699
1700 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1701 // Certain normalizations keep us sane when comparing types.
1702 // The 'SMALLINT' covers constants.
1703 if (lo <= hi) {
1704 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
1705 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1706 } else {
1707 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
1708 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1709 }
1710 return w;
1711 }
1712
1713 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1714 w = normalize_long_widen(lo, hi, w);
1715 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1716 }
1717
1718
1719 //------------------------------meet-------------------------------------------
1720 // Compute the MEET of two types. It returns a new Type representation object
1721 // with reference count equal to the number of Types pointing at it.
1722 // Caller should wrap a Types around it.
1723 const Type *TypeLong::xmeet( const Type *t ) const {
1724 // Perform a fast test for common case; meeting the same types together.
1725 if( this == t ) return this; // Meeting same type?
1726
1727 // Currently "this->_base" is a TypeLong
1728 switch (t->base()) { // Switch on original type
1729 case AnyPtr: // Mixing with oops happens when javac
1730 case RawPtr: // reuses local variables
1731 case OopPtr:
1732 case InstPtr:
1733 case AryPtr:
1734 case MetadataPtr:
1735 case KlassPtr:
1736 case NarrowOop:
1737 case NarrowKlass:
1738 case Int:
1739 case FloatTop:
1740 case FloatCon:
1741 case FloatBot:
1742 case DoubleTop:
1743 case DoubleCon:
1744 case DoubleBot:
1745 case Bottom: // Ye Olde Default
1746 return Type::BOTTOM;
1747 default: // All else is a mistake
1748 typerr(t);
1749 case Top: // No change
1750 return this;
1751 case Long: // Long vs Long?
1752 break;
1753 }
1754
1755 // Expand covered set
1756 const TypeLong *r = t->is_long(); // Turn into a TypeLong
1757 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1758 }
1759
1760 //------------------------------xdual------------------------------------------
1761 // Dual: reverse hi & lo; flip widen
1762 const Type *TypeLong::xdual() const {
1763 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1764 return new TypeLong(_hi,_lo,w);
1765 }
1766
1767 //------------------------------widen------------------------------------------
1768 // Only happens for optimistic top-down optimizations.
1769 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1770 // Coming from TOP or such; no widening
1771 if( old->base() != Long ) return this;
1772 const TypeLong *ot = old->is_long();
1773
1774 // If new guy is equal to old guy, no widening
1775 if( _lo == ot->_lo && _hi == ot->_hi )
1776 return old;
1777
1778 // If new guy contains old, then we widened
1779 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1780 // New contains old
1781 // If new guy is already wider than old, no widening
1782 if( _widen > ot->_widen ) return this;
1783 // If old guy was a constant, do not bother
1784 if (ot->_lo == ot->_hi) return this;
1785 // Now widen new guy.
1786 // Check for widening too far
1787 if (_widen == WidenMax) {
1788 jlong max = max_jlong;
1789 jlong min = min_jlong;
1790 if (limit->isa_long()) {
1791 max = limit->is_long()->_hi;
1792 min = limit->is_long()->_lo;
1793 }
1794 if (min < _lo && _hi < max) {
1795 // If neither endpoint is extremal yet, push out the endpoint
1796 // which is closer to its respective limit.
1797 if (_lo >= 0 || // easy common case
1798 ((julong)_lo - min) >= ((julong)max - _hi)) {
1799 // Try to widen to an unsigned range type of 32/63 bits:
1800 if (max >= max_juint && _hi < max_juint)
1801 return make(_lo, max_juint, WidenMax);
1802 else
1803 return make(_lo, max, WidenMax);
1804 } else {
1805 return make(min, _hi, WidenMax);
1806 }
1807 }
1808 return TypeLong::LONG;
1809 }
1810 // Returned widened new guy
1811 return make(_lo,_hi,_widen+1);
1812 }
1813
1814 // If old guy contains new, then we probably widened too far & dropped to
1815 // bottom. Return the wider fellow.
1816 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1817 return old;
1818
1819 // fatal("Long value range is not subset");
1820 // return this;
1821 return TypeLong::LONG;
1822 }
1823
1824 //------------------------------narrow----------------------------------------
1825 // Only happens for pessimistic optimizations.
1826 const Type *TypeLong::narrow( const Type *old ) const {
1827 if (_lo >= _hi) return this; // already narrow enough
1828 if (old == nullptr) return this;
1829 const TypeLong* ot = old->isa_long();
1830 if (ot == nullptr) return this;
1831 jlong olo = ot->_lo;
1832 jlong ohi = ot->_hi;
1833
1834 // If new guy is equal to old guy, no narrowing
1835 if (_lo == olo && _hi == ohi) return old;
1836
1837 // If old guy was maximum range, allow the narrowing
1838 if (olo == min_jlong && ohi == max_jlong) return this;
1839
1840 if (_lo < olo || _hi > ohi)
1841 return this; // doesn't narrow; pretty wierd
1842
1843 // The new type narrows the old type, so look for a "death march".
1844 // See comments on PhaseTransform::saturate.
1845 julong nrange = _hi - _lo;
1846 julong orange = ohi - olo;
1847 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1848 // Use the new type only if the range shrinks a lot.
1849 // We do not want the optimizer computing 2^31 point by point.
1850 return old;
1851 }
1852
1853 return this;
1854 }
1855
1856 //-----------------------------filter------------------------------------------
1857 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1858 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1859 if (ft == nullptr || ft->empty())
1860 return Type::TOP; // Canonical empty value
1861 if (ft->_widen < this->_widen) {
1862 // Do not allow the value of kill->_widen to affect the outcome.
1863 // The widen bits must be allowed to run freely through the graph.
1864 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1865 }
1866 return ft;
1867 }
1868
1869 //------------------------------eq---------------------------------------------
1870 // Structural equality check for Type representations
1871 bool TypeLong::eq( const Type *t ) const {
1872 const TypeLong *r = t->is_long(); // Handy access
1873 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1874 }
1875
1876 //------------------------------hash-------------------------------------------
1877 // Type-specific hashing function.
1878 int TypeLong::hash(void) const {
1879 return (int)(_lo+_hi+_widen+(int)Type::Long);
1880 }
1881
1882 //------------------------------is_finite--------------------------------------
1883 // Has a finite value
1884 bool TypeLong::is_finite() const {
1885 return true;
1886 }
1887
1888 //------------------------------dump2------------------------------------------
1889 // Dump TypeLong
1890 #ifndef PRODUCT
1891 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1892 if (n > x) {
1893 if (n >= x + 10000) return nullptr;
1894 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1895 } else if (n < x) {
1896 if (n <= x - 10000) return nullptr;
1897 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1898 } else {
1899 return xname;
1900 }
1901 return buf;
1902 }
1903
1904 static const char* longname(char* buf, jlong n) {
1905 const char* str;
1906 if (n == min_jlong)
1907 return "min";
1908 else if (n < min_jlong + 10000)
1909 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1910 else if (n == max_jlong)
1911 return "max";
1912 else if (n > max_jlong - 10000)
1913 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1914 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != nullptr)
1915 return str;
1916 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != nullptr)
1917 return str;
1918 else if ((str = longnamenear(min_jint, "minint", buf, n)) != nullptr)
1919 return str;
1920 else
1921 sprintf(buf, JLONG_FORMAT, n);
1922 return buf;
1923 }
1924
1925 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1926 char buf[80], buf2[80];
1927 if (_lo == min_jlong && _hi == max_jlong)
1928 st->print("long");
1929 else if (is_con())
1930 st->print("long:%s", longname(buf, get_con()));
1931 else if (_hi == max_jlong)
1932 st->print("long:>=%s", longname(buf, _lo));
1933 else if (_lo == min_jlong)
1934 st->print("long:<=%s", longname(buf, _hi));
1935 else
1936 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1937
1938 if (_widen != 0 && this != TypeLong::LONG)
1939 st->print(":%.*s", _widen, "wwww");
1940 }
1941 #endif
1942
1943 //------------------------------singleton--------------------------------------
1944 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1945 // constants
1946 bool TypeLong::singleton(void) const {
1947 return _lo >= _hi;
1948 }
1949
1950 bool TypeLong::empty(void) const {
1951 return _lo > _hi;
1952 }
1953
1954 //=============================================================================
1955 // Convenience common pre-built types.
1956 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
1957 const TypeTuple *TypeTuple::IFFALSE;
1958 const TypeTuple *TypeTuple::IFTRUE;
1959 const TypeTuple *TypeTuple::IFNEITHER;
1960 const TypeTuple *TypeTuple::LOOPBODY;
1961 const TypeTuple *TypeTuple::MEMBAR;
1962 const TypeTuple *TypeTuple::STORECONDITIONAL;
1963 const TypeTuple *TypeTuple::START_I2C;
1964 const TypeTuple *TypeTuple::INT_PAIR;
1965 const TypeTuple *TypeTuple::LONG_PAIR;
1966 const TypeTuple *TypeTuple::INT_CC_PAIR;
1967 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1968
1969 //------------------------------make-------------------------------------------
1970 // Make a TypeTuple from the range of a method signature
1971 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1972 ciType* return_type = sig->return_type();
1973 uint arg_cnt = return_type->size();
1974 const Type **field_array = fields(arg_cnt);
1975 switch (return_type->basic_type()) {
1976 case T_LONG:
1977 field_array[TypeFunc::Parms] = TypeLong::LONG;
1978 field_array[TypeFunc::Parms+1] = Type::HALF;
1979 break;
1980 case T_DOUBLE:
1981 field_array[TypeFunc::Parms] = Type::DOUBLE;
1982 field_array[TypeFunc::Parms+1] = Type::HALF;
1983 break;
1984 case T_OBJECT:
1985 case T_ARRAY:
1986 case T_BOOLEAN:
1987 case T_CHAR:
1988 case T_FLOAT:
1989 case T_BYTE:
1990 case T_SHORT:
1991 case T_INT:
1992 field_array[TypeFunc::Parms] = get_const_type(return_type);
1993 break;
1994 case T_VOID:
1995 break;
1996 default:
1997 ShouldNotReachHere();
1998 }
1999 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2000 }
2001
2002 // Make a TypeTuple from the domain of a method signature
2003 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
2004 uint arg_cnt = sig->size();
2005
2006 uint pos = TypeFunc::Parms;
2007 const Type **field_array;
2008 if (recv != nullptr) {
2009 arg_cnt++;
2010 field_array = fields(arg_cnt);
2011 // Use get_const_type here because it respects UseUniqueSubclasses:
2012 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2013 } else {
2014 field_array = fields(arg_cnt);
2015 }
2016
2017 int i = 0;
2018 while (pos < TypeFunc::Parms + arg_cnt) {
2019 ciType* type = sig->type_at(i);
2020
2021 switch (type->basic_type()) {
2022 case T_LONG:
2023 field_array[pos++] = TypeLong::LONG;
2024 field_array[pos++] = Type::HALF;
2025 break;
2026 case T_DOUBLE:
2027 field_array[pos++] = Type::DOUBLE;
2028 field_array[pos++] = Type::HALF;
2029 break;
2030 case T_OBJECT:
2031 case T_ARRAY:
2032 case T_FLOAT:
2033 case T_INT:
2034 field_array[pos++] = get_const_type(type);
2035 break;
2036 case T_BOOLEAN:
2037 case T_CHAR:
2038 case T_BYTE:
2039 case T_SHORT:
2040 field_array[pos++] = TypeInt::INT;
2041 break;
2042 default:
2043 ShouldNotReachHere();
2044 }
2045 i++;
2046 }
2047
2048 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2049 }
2050
2051 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2052 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2053 }
2054
2055 //------------------------------fields-----------------------------------------
2056 // Subroutine call type with space allocated for argument types
2057 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2058 const Type **TypeTuple::fields( uint arg_cnt ) {
2059 const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2060 flds[TypeFunc::Control ] = Type::CONTROL;
2061 flds[TypeFunc::I_O ] = Type::ABIO;
2062 flds[TypeFunc::Memory ] = Type::MEMORY;
2063 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2064 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2065
2066 return flds;
2067 }
2068
2069 //------------------------------meet-------------------------------------------
2070 // Compute the MEET of two types. It returns a new Type object.
2071 const Type *TypeTuple::xmeet( const Type *t ) const {
2072 // Perform a fast test for common case; meeting the same types together.
2073 if( this == t ) return this; // Meeting same type-rep?
2074
2075 // Current "this->_base" is Tuple
2076 switch (t->base()) { // switch on original type
2077
2078 case Bottom: // Ye Olde Default
2079 return t;
2080
2081 default: // All else is a mistake
2082 typerr(t);
2083
2084 case Tuple: { // Meeting 2 signatures?
2085 const TypeTuple *x = t->is_tuple();
2086 assert( _cnt == x->_cnt, "" );
2087 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2088 for( uint i=0; i<_cnt; i++ )
2089 fields[i] = field_at(i)->xmeet( x->field_at(i) );
2090 return TypeTuple::make(_cnt,fields);
2091 }
2092 case Top:
2093 break;
2094 }
2095 return this; // Return the double constant
2096 }
2097
2098 //------------------------------xdual------------------------------------------
2099 // Dual: compute field-by-field dual
2100 const Type *TypeTuple::xdual() const {
2101 const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2102 for( uint i=0; i<_cnt; i++ )
2103 fields[i] = _fields[i]->dual();
2104 return new TypeTuple(_cnt,fields);
2105 }
2106
2107 //------------------------------eq---------------------------------------------
2108 // Structural equality check for Type representations
2109 bool TypeTuple::eq( const Type *t ) const {
2110 const TypeTuple *s = (const TypeTuple *)t;
2111 if (_cnt != s->_cnt) return false; // Unequal field counts
2112 for (uint i = 0; i < _cnt; i++)
2113 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
2114 return false; // Missed
2115 return true;
2116 }
2117
2118 //------------------------------hash-------------------------------------------
2119 // Type-specific hashing function.
2120 int TypeTuple::hash(void) const {
2121 intptr_t sum = _cnt;
2122 for( uint i=0; i<_cnt; i++ )
2123 sum += (intptr_t)_fields[i]; // Hash on pointers directly
2124 return sum;
2125 }
2126
2127 //------------------------------dump2------------------------------------------
2128 // Dump signature Type
2129 #ifndef PRODUCT
2130 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2131 st->print("{");
2132 if( !depth || d[this] ) { // Check for recursive print
2133 st->print("...}");
2134 return;
2135 }
2136 d.Insert((void*)this, (void*)this); // Stop recursion
2137 if( _cnt ) {
2138 uint i;
2139 for( i=0; i<_cnt-1; i++ ) {
2140 st->print("%d:", i);
2141 _fields[i]->dump2(d, depth-1, st);
2142 st->print(", ");
2143 }
2144 st->print("%d:", i);
2145 _fields[i]->dump2(d, depth-1, st);
2146 }
2147 st->print("}");
2148 }
2149 #endif
2150
2151 //------------------------------singleton--------------------------------------
2152 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2153 // constants (Ldi nodes). Singletons are integer, float or double constants
2154 // or a single symbol.
2155 bool TypeTuple::singleton(void) const {
2156 return false; // Never a singleton
2157 }
2158
2159 bool TypeTuple::empty(void) const {
2160 for( uint i=0; i<_cnt; i++ ) {
2161 if (_fields[i]->empty()) return true;
2162 }
2163 return false;
2164 }
2165
2166 //=============================================================================
2167 // Convenience common pre-built types.
2168
2169 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2170 // Certain normalizations keep us sane when comparing types.
2171 // We do not want arrayOop variables to differ only by the wideness
2172 // of their index types. Pick minimum wideness, since that is the
2173 // forced wideness of small ranges anyway.
2174 if (size->_widen != Type::WidenMin)
2175 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2176 else
2177 return size;
2178 }
2179
2180 //------------------------------make-------------------------------------------
2181 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2182 if (UseCompressedOops && elem->isa_oopptr()) {
2183 elem = elem->make_narrowoop();
2184 }
2185 size = normalize_array_size(size);
2186 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2187 }
2188
2189 //------------------------------meet-------------------------------------------
2190 // Compute the MEET of two types. It returns a new Type object.
2191 const Type *TypeAry::xmeet( const Type *t ) const {
2192 // Perform a fast test for common case; meeting the same types together.
2193 if( this == t ) return this; // Meeting same type-rep?
2194
2195 // Current "this->_base" is Ary
2196 switch (t->base()) { // switch on original type
2197
2198 case Bottom: // Ye Olde Default
2199 return t;
2200
2201 default: // All else is a mistake
2202 typerr(t);
2203
2204 case Array: { // Meeting 2 arrays?
2205 const TypeAry *a = t->is_ary();
2206 return TypeAry::make(_elem->meet_speculative(a->_elem),
2207 _size->xmeet(a->_size)->is_int(),
2208 _stable && a->_stable);
2209 }
2210 case Top:
2211 break;
2212 }
2213 return this; // Return the double constant
2214 }
2215
2216 //------------------------------xdual------------------------------------------
2217 // Dual: compute field-by-field dual
2218 const Type *TypeAry::xdual() const {
2219 const TypeInt* size_dual = _size->dual()->is_int();
2220 size_dual = normalize_array_size(size_dual);
2221 return new TypeAry(_elem->dual(), size_dual, !_stable);
2222 }
2223
2224 //------------------------------eq---------------------------------------------
2225 // Structural equality check for Type representations
2226 bool TypeAry::eq( const Type *t ) const {
2227 const TypeAry *a = (const TypeAry*)t;
2228 return _elem == a->_elem &&
2229 _stable == a->_stable &&
2230 _size == a->_size;
2231 }
2232
2233 //------------------------------hash-------------------------------------------
2234 // Type-specific hashing function.
2235 int TypeAry::hash(void) const {
2236 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2237 }
2238
2239 /**
2240 * Return same type without a speculative part in the element
2241 */
2242 const Type* TypeAry::remove_speculative() const {
2243 return make(_elem->remove_speculative(), _size, _stable);
2244 }
2245
2246 /**
2247 * Return same type with cleaned up speculative part of element
2248 */
2249 const Type* TypeAry::cleanup_speculative() const {
2250 return make(_elem->cleanup_speculative(), _size, _stable);
2251 }
2252
2253 /**
2254 * Return same type but with a different inline depth (used for speculation)
2255 *
2256 * @param depth depth to meet with
2257 */
2258 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2259 if (!UseInlineDepthForSpeculativeTypes) {
2260 return this;
2261 }
2262 return make(AnyPtr, _ptr, _offset, _speculative, depth);
2263 }
2264
2265 //----------------------interface_vs_oop---------------------------------------
2266 #ifdef ASSERT
2267 bool TypeAry::interface_vs_oop(const Type *t) const {
2268 const TypeAry* t_ary = t->is_ary();
2269 if (t_ary) {
2270 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2271 const TypePtr* t_ptr = t_ary->_elem->make_ptr();
2272 if(this_ptr != nullptr && t_ptr != NULL) {
2273 return this_ptr->interface_vs_oop(t_ptr);
2274 }
2275 }
2276 return false;
2277 }
2278 #endif
2279
2280 //------------------------------dump2------------------------------------------
2281 #ifndef PRODUCT
2282 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2283 if (_stable) st->print("stable:");
2284 _elem->dump2(d, depth, st);
2285 st->print("[");
2286 _size->dump2(d, depth, st);
2287 st->print("]");
2288 }
2289 #endif
2290
2291 //------------------------------singleton--------------------------------------
2292 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2293 // constants (Ldi nodes). Singletons are integer, float or double constants
2294 // or a single symbol.
2295 bool TypeAry::singleton(void) const {
2296 return false; // Never a singleton
2297 }
2298
2299 bool TypeAry::empty(void) const {
2300 return _elem->empty() || _size->empty();
2301 }
2302
2303 //--------------------------ary_must_be_exact----------------------------------
2304 bool TypeAry::ary_must_be_exact() const {
2305 // This logic looks at the element type of an array, and returns true
2306 // if the element type is either a primitive or a final instance class.
2307 // In such cases, an array built on this ary must have no subclasses.
2308 if (_elem == BOTTOM) return false; // general array not exact
2309 if (_elem == TOP ) return false; // inverted general array not exact
2310 const TypeOopPtr* toop = nullptr;
2311 if (UseCompressedOops && _elem->isa_narrowoop()) {
2312 toop = _elem->make_ptr()->isa_oopptr();
2313 } else {
2314 toop = _elem->isa_oopptr();
2315 }
2316 if (!toop) return true; // a primitive type, like int
2317 ciKlass* tklass = toop->klass();
2318 if (tklass == NULL) return false; // unloaded class
2319 if (!tklass->is_loaded()) return false; // unloaded class
2320 const TypeInstPtr* tinst;
2321 if (_elem->isa_narrowoop())
2322 tinst = _elem->make_ptr()->isa_instptr();
2323 else
2324 tinst = _elem->isa_instptr();
2325 if (tinst)
2326 return tklass->as_instance_klass()->is_final();
2327 const TypeAryPtr* tap;
2328 if (_elem->isa_narrowoop())
2329 tap = _elem->make_ptr()->isa_aryptr();
2330 else
2331 tap = _elem->isa_aryptr();
2332 if (tap)
2333 return tap->ary()->ary_must_be_exact();
2334 return false;
2335 }
2336
2337 //==============================TypeVect=======================================
2338 // Convenience common pre-built types.
2339 const TypeVect *TypeVect::VECTA = nullptr; // vector length agnostic
2340 const TypeVect *TypeVect::VECTS = nullptr; // 32-bit vectors
2341 const TypeVect *TypeVect::VECTD = nullptr; // 64-bit vectors
2342 const TypeVect *TypeVect::VECTX = nullptr; // 128-bit vectors
2343 const TypeVect *TypeVect::VECTY = nullptr; // 256-bit vectors
2344 const TypeVect *TypeVect::VECTZ = nullptr; // 512-bit vectors
2345 const TypeVect *TypeVect::VECTMASK = nullptr; // predicate/mask vector
2346
2347 //------------------------------make-------------------------------------------
2348 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2349 BasicType elem_bt = elem->array_element_basic_type();
2350 assert(is_java_primitive(elem_bt), "only primitive types in vector");
2351 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2352 int size = length * type2aelembytes(elem_bt);
2353 switch (Matcher::vector_ideal_reg(size)) {
2354 case Op_VecA:
2355 return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2356 case Op_VecS:
2357 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2358 case Op_RegL:
2359 case Op_VecD:
2360 case Op_RegD:
2361 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2362 case Op_VecX:
2363 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2364 case Op_VecY:
2365 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2366 case Op_VecZ:
2367 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2368 }
2369 ShouldNotReachHere();
2370 return nullptr;
2371 }
2372
2373 const TypeVect *TypeVect::makemask(const Type* elem, uint length) {
2374 if (Matcher::has_predicated_vectors()) {
2375 const TypeVect* mtype = Matcher::predicate_reg_type(elem, length);
2376 return (TypeVect*)(const_cast<TypeVect*>(mtype))->hashcons();
2377 } else {
2378 return make(elem, length);
2379 }
2380 }
2381
2382 //------------------------------meet-------------------------------------------
2383 // Compute the MEET of two types. It returns a new Type object.
2384 const Type *TypeVect::xmeet( const Type *t ) const {
2385 // Perform a fast test for common case; meeting the same types together.
2386 if( this == t ) return this; // Meeting same type-rep?
2387
2388 // Current "this->_base" is Vector
2389 switch (t->base()) { // switch on original type
2390
2391 case Bottom: // Ye Olde Default
2392 return t;
2393
2394 default: // All else is a mistake
2395 typerr(t);
2396 case VectorMask: {
2397 const TypeVectMask* v = t->is_vectmask();
2398 assert( base() == v->base(), "");
2399 assert(length() == v->length(), "");
2400 assert(element_basic_type() == v->element_basic_type(), "");
2401 return TypeVect::makemask(_elem->xmeet(v->_elem), _length);
2402 }
2403 case VectorA:
2404 case VectorS:
2405 case VectorD:
2406 case VectorX:
2407 case VectorY:
2408 case VectorZ: { // Meeting 2 vectors?
2409 const TypeVect* v = t->is_vect();
2410 assert( base() == v->base(), "");
2411 assert(length() == v->length(), "");
2412 assert(element_basic_type() == v->element_basic_type(), "");
2413 return TypeVect::make(_elem->xmeet(v->_elem), _length);
2414 }
2415 case Top:
2416 break;
2417 }
2418 return this;
2419 }
2420
2421 //------------------------------xdual------------------------------------------
2422 // Dual: compute field-by-field dual
2423 const Type *TypeVect::xdual() const {
2424 return new TypeVect(base(), _elem->dual(), _length);
2425 }
2426
2427 //------------------------------eq---------------------------------------------
2428 // Structural equality check for Type representations
2429 bool TypeVect::eq(const Type *t) const {
2430 const TypeVect *v = t->is_vect();
2431 return (_elem == v->_elem) && (_length == v->_length);
2432 }
2433
2434 //------------------------------hash-------------------------------------------
2435 // Type-specific hashing function.
2436 int TypeVect::hash(void) const {
2437 return (intptr_t)_elem + (intptr_t)_length;
2438 }
2439
2440 //------------------------------singleton--------------------------------------
2441 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2442 // constants (Ldi nodes). Vector is singleton if all elements are the same
2443 // constant value (when vector is created with Replicate code).
2444 bool TypeVect::singleton(void) const {
2445 // There is no Con node for vectors yet.
2446 // return _elem->singleton();
2447 return false;
2448 }
2449
2450 bool TypeVect::empty(void) const {
2451 return _elem->empty();
2452 }
2453
2454 //------------------------------dump2------------------------------------------
2455 #ifndef PRODUCT
2456 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2457 switch (base()) {
2458 case VectorA:
2459 st->print("vectora["); break;
2460 case VectorS:
2461 st->print("vectors["); break;
2462 case VectorD:
2463 st->print("vectord["); break;
2464 case VectorX:
2465 st->print("vectorx["); break;
2466 case VectorY:
2467 st->print("vectory["); break;
2468 case VectorZ:
2469 st->print("vectorz["); break;
2470 case VectorMask:
2471 st->print("vectormask["); break;
2472 default:
2473 ShouldNotReachHere();
2474 }
2475 st->print("%d]:{", _length);
2476 _elem->dump2(d, depth, st);
2477 st->print("}");
2478 }
2479 #endif
2480
2481 bool TypeVectMask::eq(const Type *t) const {
2482 const TypeVectMask *v = t->is_vectmask();
2483 return (element_type() == v->element_type()) && (length() == v->length());
2484 }
2485
2486 const Type *TypeVectMask::xdual() const {
2487 return new TypeVectMask(element_type()->dual(), length());
2488 }
2489
2490 //=============================================================================
2491 // Convenience common pre-built types.
2492 const TypePtr *TypePtr::NULL_PTR;
2493 const TypePtr *TypePtr::NOTNULL;
2494 const TypePtr *TypePtr::BOTTOM;
2495
2496 //------------------------------meet-------------------------------------------
2497 // Meet over the PTR enum
2498 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2499 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2500 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2501 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2502 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2503 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2504 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2505 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2506 };
2507
2508 //------------------------------make-------------------------------------------
2509 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2510 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2511 }
2512
2513 //------------------------------cast_to_ptr_type-------------------------------
2514 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2515 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2516 if( ptr == _ptr ) return this;
2517 return make(_base, ptr, _offset, _speculative, _inline_depth);
2518 }
2519
2520 //------------------------------get_con----------------------------------------
2521 intptr_t TypePtr::get_con() const {
2522 assert( _ptr == Null, "" );
2523 return _offset;
2524 }
2525
2526 //------------------------------meet-------------------------------------------
2527 // Compute the MEET of two types. It returns a new Type object.
2528 const Type *TypePtr::xmeet(const Type *t) const {
2529 const Type* res = xmeet_helper(t);
2530 if (res->isa_ptr() == nullptr) {
2531 return res;
2532 }
2533
2534 const TypePtr* res_ptr = res->is_ptr();
2535 if (res_ptr->speculative() != nullptr) {
2536 // type->speculative() is null means that speculation is no better
2537 // than type, i.e. type->speculative() == type. So there are 2
2538 // ways to represent the fact that we have no useful speculative
2539 // data and we should use a single one to be able to test for
2540 // equality between types. Check whether type->speculative() ==
2541 // type and set speculative to null if it is the case.
2542 if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2543 return res_ptr->remove_speculative();
2544 }
2545 }
2546
2547 return res;
2548 }
2549
2550 const Type *TypePtr::xmeet_helper(const Type *t) const {
2551 // Perform a fast test for common case; meeting the same types together.
2552 if( this == t ) return this; // Meeting same type-rep?
2553
2554 // Current "this->_base" is AnyPtr
2555 switch (t->base()) { // switch on original type
2556 case Int: // Mixing ints & oops happens when javac
2557 case Long: // reuses local variables
2558 case FloatTop:
2559 case FloatCon:
2560 case FloatBot:
2561 case DoubleTop:
2562 case DoubleCon:
2563 case DoubleBot:
2564 case NarrowOop:
2565 case NarrowKlass:
2566 case Bottom: // Ye Olde Default
2567 return Type::BOTTOM;
2568 case Top:
2569 return this;
2570
2571 case AnyPtr: { // Meeting to AnyPtrs
2572 const TypePtr *tp = t->is_ptr();
2573 const TypePtr* speculative = xmeet_speculative(tp);
2574 int depth = meet_inline_depth(tp->inline_depth());
2575 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2576 }
2577 case RawPtr: // For these, flip the call around to cut down
2578 case OopPtr:
2579 case InstPtr: // on the cases I have to handle.
2580 case AryPtr:
2581 case MetadataPtr:
2582 case KlassPtr:
2583 return t->xmeet(this); // Call in reverse direction
2584 default: // All else is a mistake
2585 typerr(t);
2586
2587 }
2588 return this;
2589 }
2590
2591 //------------------------------meet_offset------------------------------------
2592 int TypePtr::meet_offset( int offset ) const {
2593 // Either is 'TOP' offset? Return the other offset!
2594 if( _offset == OffsetTop ) return offset;
2595 if( offset == OffsetTop ) return _offset;
2596 // If either is different, return 'BOTTOM' offset
2597 if( _offset != offset ) return OffsetBot;
2598 return _offset;
2599 }
2600
2601 //------------------------------dual_offset------------------------------------
2602 int TypePtr::dual_offset( ) const {
2603 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2604 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2605 return _offset; // Map everything else into self
2606 }
2607
2608 //------------------------------xdual------------------------------------------
2609 // Dual: compute field-by-field dual
2610 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2611 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2612 };
2613 const Type *TypePtr::xdual() const {
2614 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2615 }
2616
2617 //------------------------------xadd_offset------------------------------------
2618 int TypePtr::xadd_offset( intptr_t offset ) const {
2619 // Adding to 'TOP' offset? Return 'TOP'!
2620 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2621 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
2622 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2623 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2624 offset += (intptr_t)_offset;
2625 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2626
2627 // assert( _offset >= 0 && _offset+offset >= 0, "" );
2628 // It is possible to construct a negative offset during PhaseCCP
2629
2630 return (int)offset; // Sum valid offsets
2631 }
2632
2633 //------------------------------add_offset-------------------------------------
2634 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2635 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2636 }
2637
2638 //------------------------------eq---------------------------------------------
2639 // Structural equality check for Type representations
2640 bool TypePtr::eq( const Type *t ) const {
2641 const TypePtr *a = (const TypePtr*)t;
2642 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2643 }
2644
2645 //------------------------------hash-------------------------------------------
2646 // Type-specific hashing function.
2647 int TypePtr::hash(void) const {
2648 return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2649 ;
2650 }
2651
2652 /**
2653 * Return same type without a speculative part
2654 */
2655 const Type* TypePtr::remove_speculative() const {
2656 if (_speculative == nullptr) {
2657 return this;
2658 }
2659 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2660 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2661 }
2662
2663 /**
2664 * Return same type but drop speculative part if we know we won't use
2665 * it
2666 */
2667 const Type* TypePtr::cleanup_speculative() const {
2668 if (speculative() == nullptr) {
2669 return this;
2670 }
2671 const Type* no_spec = remove_speculative();
2672 // If this is NULL_PTR then we don't need the speculative type
2673 // (with_inline_depth in case the current type inline depth is
2674 // InlineDepthTop)
2675 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2676 return no_spec;
2677 }
2678 if (above_centerline(speculative()->ptr())) {
2679 return no_spec;
2680 }
2681 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2682 // If the speculative may be null and is an inexact klass then it
2683 // doesn't help
2684 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2685 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2686 return no_spec;
2687 }
2688 return this;
2689 }
2690
2691 /**
2692 * dual of the speculative part of the type
2693 */
2694 const TypePtr* TypePtr::dual_speculative() const {
2695 if (_speculative == nullptr) {
2696 return nullptr;
2697 }
2698 return _speculative->dual()->is_ptr();
2699 }
2700
2701 /**
2702 * meet of the speculative parts of 2 types
2703 *
2704 * @param other type to meet with
2705 */
2706 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2707 bool this_has_spec = (_speculative != nullptr);
2708 bool other_has_spec = (other->speculative() != nullptr);
2709
2710 if (!this_has_spec && !other_has_spec) {
2711 return nullptr;
2712 }
2713
2714 // If we are at a point where control flow meets and one branch has
2715 // a speculative type and the other has not, we meet the speculative
2716 // type of one branch with the actual type of the other. If the
2717 // actual type is exact and the speculative is as well, then the
2718 // result is a speculative type which is exact and we can continue
2719 // speculation further.
2720 const TypePtr* this_spec = _speculative;
2721 const TypePtr* other_spec = other->speculative();
2722
2723 if (!this_has_spec) {
2724 this_spec = this;
2725 }
2726
2727 if (!other_has_spec) {
2728 other_spec = other;
2729 }
2730
2731 return this_spec->meet(other_spec)->is_ptr();
2732 }
2733
2734 /**
2735 * dual of the inline depth for this type (used for speculation)
2736 */
2737 int TypePtr::dual_inline_depth() const {
2738 return -inline_depth();
2739 }
2740
2741 /**
2742 * meet of 2 inline depths (used for speculation)
2743 *
2744 * @param depth depth to meet with
2745 */
2746 int TypePtr::meet_inline_depth(int depth) const {
2747 return MAX2(inline_depth(), depth);
2748 }
2749
2750 /**
2751 * Are the speculative parts of 2 types equal?
2752 *
2753 * @param other type to compare this one to
2754 */
2755 bool TypePtr::eq_speculative(const TypePtr* other) const {
2756 if (_speculative == nullptr || other->speculative() == nullptr) {
2757 return _speculative == other->speculative();
2758 }
2759
2760 if (_speculative->base() != other->speculative()->base()) {
2761 return false;
2762 }
2763
2764 return _speculative->eq(other->speculative());
2765 }
2766
2767 /**
2768 * Hash of the speculative part of the type
2769 */
2770 int TypePtr::hash_speculative() const {
2771 if (_speculative == nullptr) {
2772 return 0;
2773 }
2774
2775 return _speculative->hash();
2776 }
2777
2778 /**
2779 * add offset to the speculative part of the type
2780 *
2781 * @param offset offset to add
2782 */
2783 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2784 if (_speculative == nullptr) {
2785 return nullptr;
2786 }
2787 return _speculative->add_offset(offset)->is_ptr();
2788 }
2789
2790 /**
2791 * return exact klass from the speculative type if there's one
2792 */
2793 ciKlass* TypePtr::speculative_type() const {
2794 if (_speculative != nullptr && _speculative->isa_oopptr()) {
2795 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2796 if (speculative->klass_is_exact()) {
2797 return speculative->klass();
2798 }
2799 }
2800 return nullptr;
2801 }
2802
2803 /**
2804 * return true if speculative type may be null
2805 */
2806 bool TypePtr::speculative_maybe_null() const {
2807 if (_speculative != nullptr) {
2808 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2809 return speculative->maybe_null();
2810 }
2811 return true;
2812 }
2813
2814 bool TypePtr::speculative_always_null() const {
2815 if (_speculative != nullptr) {
2816 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2817 return speculative == TypePtr::NULL_PTR;
2818 }
2819 return false;
2820 }
2821
2822 /**
2823 * Same as TypePtr::speculative_type() but return the klass only if
2824 * the speculative tells us is not null
2825 */
2826 ciKlass* TypePtr::speculative_type_not_null() const {
2827 if (speculative_maybe_null()) {
2828 return nullptr;
2829 }
2830 return speculative_type();
2831 }
2832
2833 /**
2834 * Check whether new profiling would improve speculative type
2835 *
2836 * @param exact_kls class from profiling
2837 * @param inline_depth inlining depth of profile point
2838 *
2839 * @return true if type profile is valuable
2840 */
2841 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2842 // no profiling?
2843 if (exact_kls == nullptr) {
2844 return false;
2845 }
2846 if (speculative() == TypePtr::NULL_PTR) {
2847 return false;
2848 }
2849 // no speculative type or non exact speculative type?
2850 if (speculative_type() == nullptr) {
2851 return true;
2852 }
2853 // If the node already has an exact speculative type keep it,
2854 // unless it was provided by profiling that is at a deeper
2855 // inlining level. Profiling at a higher inlining depth is
2856 // expected to be less accurate.
2857 if (_speculative->inline_depth() == InlineDepthBottom) {
2858 return false;
2859 }
2860 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2861 return inline_depth < _speculative->inline_depth();
2862 }
2863
2864 /**
2865 * Check whether new profiling would improve ptr (= tells us it is non
2866 * null)
2867 *
2868 * @param ptr_kind always null or not null?
2869 *
2870 * @return true if ptr profile is valuable
2871 */
2872 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2873 // profiling doesn't tell us anything useful
2874 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2875 return false;
2876 }
2877 // We already know this is not null
2878 if (!this->maybe_null()) {
2879 return false;
2880 }
2881 // We already know the speculative type cannot be null
2882 if (!speculative_maybe_null()) {
2883 return false;
2884 }
2885 // We already know this is always null
2886 if (this == TypePtr::NULL_PTR) {
2887 return false;
2888 }
2889 // We already know the speculative type is always null
2890 if (speculative_always_null()) {
2891 return false;
2892 }
2893 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2894 return false;
2895 }
2896 return true;
2897 }
2898
2899 //------------------------------dump2------------------------------------------
2900 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2901 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2902 };
2903
2904 #ifndef PRODUCT
2905 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2906 if( _ptr == Null ) st->print("null");
2907 else st->print("%s *", ptr_msg[_ptr]);
2908 if( _offset == OffsetTop ) st->print("+top");
2909 else if( _offset == OffsetBot ) st->print("+bot");
2910 else if( _offset ) st->print("+%d", _offset);
2911 dump_inline_depth(st);
2912 dump_speculative(st);
2913 }
2914
2915 /**
2916 *dump the speculative part of the type
2917 */
2918 void TypePtr::dump_speculative(outputStream *st) const {
2919 if (_speculative != nullptr) {
2920 st->print(" (speculative=");
2921 _speculative->dump_on(st);
2922 st->print(")");
2923 }
2924 }
2925
2926 /**
2927 *dump the inline depth of the type
2928 */
2929 void TypePtr::dump_inline_depth(outputStream *st) const {
2930 if (_inline_depth != InlineDepthBottom) {
2931 if (_inline_depth == InlineDepthTop) {
2932 st->print(" (inline_depth=InlineDepthTop)");
2933 } else {
2934 st->print(" (inline_depth=%d)", _inline_depth);
2935 }
2936 }
2937 }
2938 #endif
2939
2940 //------------------------------singleton--------------------------------------
2941 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2942 // constants
2943 bool TypePtr::singleton(void) const {
2944 // TopPTR, Null, AnyNull, Constant are all singletons
2945 return (_offset != OffsetBot) && !below_centerline(_ptr);
2946 }
2947
2948 bool TypePtr::empty(void) const {
2949 return (_offset == OffsetTop) || above_centerline(_ptr);
2950 }
2951
2952 //=============================================================================
2953 // Convenience common pre-built types.
2954 const TypeRawPtr *TypeRawPtr::BOTTOM;
2955 const TypeRawPtr *TypeRawPtr::NOTNULL;
2956
2957 //------------------------------make-------------------------------------------
2958 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2959 assert( ptr != Constant, "what is the constant?" );
2960 assert( ptr != Null, "Use TypePtr for null" );
2961 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2962 }
2963
2964 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2965 assert( bits, "Use TypePtr for null" );
2966 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2967 }
2968
2969 //------------------------------cast_to_ptr_type-------------------------------
2970 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2971 assert( ptr != Constant, "what is the constant?" );
2972 assert( ptr != Null, "Use TypePtr for null" );
2973 assert( _bits==0, "Why cast a constant address?");
2974 if( ptr == _ptr ) return this;
2975 return make(ptr);
2976 }
2977
2978 //------------------------------get_con----------------------------------------
2979 intptr_t TypeRawPtr::get_con() const {
2980 assert( _ptr == Null || _ptr == Constant, "" );
2981 return (intptr_t)_bits;
2982 }
2983
2984 //------------------------------meet-------------------------------------------
2985 // Compute the MEET of two types. It returns a new Type object.
2986 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2987 // Perform a fast test for common case; meeting the same types together.
2988 if( this == t ) return this; // Meeting same type-rep?
2989
2990 // Current "this->_base" is RawPtr
2991 switch( t->base() ) { // switch on original type
2992 case Bottom: // Ye Olde Default
2993 return t;
2994 case Top:
2995 return this;
2996 case AnyPtr: // Meeting to AnyPtrs
2997 break;
2998 case RawPtr: { // might be top, bot, any/not or constant
2999 enum PTR tptr = t->is_ptr()->ptr();
3000 enum PTR ptr = meet_ptr( tptr );
3001 if( ptr == Constant ) { // Cannot be equal constants, so...
3002 if( tptr == Constant && _ptr != Constant) return t;
3003 if( _ptr == Constant && tptr != Constant) return this;
3004 ptr = NotNull; // Fall down in lattice
3005 }
3006 return make( ptr );
3007 }
3008
3009 case OopPtr:
3010 case InstPtr:
3011 case AryPtr:
3012 case MetadataPtr:
3013 case KlassPtr:
3014 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3015 default: // All else is a mistake
3016 typerr(t);
3017 }
3018
3019 // Found an AnyPtr type vs self-RawPtr type
3020 const TypePtr *tp = t->is_ptr();
3021 switch (tp->ptr()) {
3022 case TypePtr::TopPTR: return this;
3023 case TypePtr::BotPTR: return t;
3024 case TypePtr::Null:
3025 if( _ptr == TypePtr::TopPTR ) return t;
3026 return TypeRawPtr::BOTTOM;
3027 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3028 case TypePtr::AnyNull:
3029 if( _ptr == TypePtr::Constant) return this;
3030 return make( meet_ptr(TypePtr::AnyNull) );
3031 default: ShouldNotReachHere();
3032 }
3033 return this;
3034 }
3035
3036 //------------------------------xdual------------------------------------------
3037 // Dual: compute field-by-field dual
3038 const Type *TypeRawPtr::xdual() const {
3039 return new TypeRawPtr( dual_ptr(), _bits );
3040 }
3041
3042 //------------------------------add_offset-------------------------------------
3043 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3044 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3045 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3046 if( offset == 0 ) return this; // No change
3047 switch (_ptr) {
3048 case TypePtr::TopPTR:
3049 case TypePtr::BotPTR:
3050 case TypePtr::NotNull:
3051 return this;
3052 case TypePtr::Null:
3053 case TypePtr::Constant: {
3054 address bits = _bits+offset;
3055 if ( bits == 0 ) return TypePtr::NULL_PTR;
3056 return make( bits );
3057 }
3058 default: ShouldNotReachHere();
3059 }
3060 return nullptr; // Lint noise
3061 }
3062
3063 //------------------------------eq---------------------------------------------
3064 // Structural equality check for Type representations
3065 bool TypeRawPtr::eq( const Type *t ) const {
3066 const TypeRawPtr *a = (const TypeRawPtr*)t;
3067 return _bits == a->_bits && TypePtr::eq(t);
3068 }
3069
3070 //------------------------------hash-------------------------------------------
3071 // Type-specific hashing function.
3072 int TypeRawPtr::hash(void) const {
3073 return (intptr_t)_bits + TypePtr::hash();
3074 }
3075
3076 //------------------------------dump2------------------------------------------
3077 #ifndef PRODUCT
3078 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3079 if( _ptr == Constant )
3080 st->print(INTPTR_FORMAT, p2i(_bits));
3081 else
3082 st->print("rawptr:%s", ptr_msg[_ptr]);
3083 }
3084 #endif
3085
3086 //=============================================================================
3087 // Convenience common pre-built type.
3088 const TypeOopPtr *TypeOopPtr::BOTTOM;
3089
3090 //------------------------------TypeOopPtr-------------------------------------
3091 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
3092 int instance_id, const TypePtr* speculative, int inline_depth)
3093 : TypePtr(t, ptr, offset, speculative, inline_depth),
3094 _const_oop(o), _klass(k),
3095 _klass_is_exact(xk),
3096 _is_ptr_to_narrowoop(false),
3097 _is_ptr_to_narrowklass(false),
3098 _is_ptr_to_boxed_value(false),
3099 _instance_id(instance_id) {
3100 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3101 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3102 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3103 }
3104 #ifdef _LP64
3105 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3106 if (_offset == oopDesc::klass_offset_in_bytes()) {
3107 _is_ptr_to_narrowklass = UseCompressedClassPointers;
3108 } else if (klass() == nullptr) {
3109 // Array with unknown body type
3110 assert(this->isa_aryptr(), "only arrays without klass");
3111 _is_ptr_to_narrowoop = UseCompressedOops;
3112 } else if (this->isa_aryptr()) {
3113 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3114 _offset != arrayOopDesc::length_offset_in_bytes());
3115 } else if (klass()->is_instance_klass()) {
3116 ciInstanceKlass* ik = klass()->as_instance_klass();
3117 ciField* field = NULL;
3118 if (this->isa_klassptr()) {
3119 // Perm objects don't use compressed references
3120 } else if (_offset == OffsetBot || _offset == OffsetTop) {
3121 // unsafe access
3122 _is_ptr_to_narrowoop = UseCompressedOops;
3123 } else {
3124 assert(this->isa_instptr(), "must be an instance ptr.");
3125
3126 if (klass() == ciEnv::current()->Class_klass() &&
3127 (_offset == java_lang_Class::klass_offset() ||
3128 _offset == java_lang_Class::array_klass_offset())) {
3129 // Special hidden fields from the Class.
3130 assert(this->isa_instptr(), "must be an instance ptr.");
3131 _is_ptr_to_narrowoop = false;
3132 } else if (klass() == ciEnv::current()->Class_klass() &&
3133 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3134 // Static fields
3135 ciField* field = nullptr;
3136 if (const_oop() != nullptr) {
3137 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3138 field = k->get_field_by_offset(_offset, true);
3139 }
3140 if (field != nullptr) {
3141 BasicType basic_elem_type = field->layout_type();
3142 _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3143 } else {
3144 // unsafe access
3145 _is_ptr_to_narrowoop = UseCompressedOops;
3146 }
3147 } else {
3148 // Instance fields which contains a compressed oop references.
3149 field = ik->get_field_by_offset(_offset, false);
3150 if (field != nullptr) {
3151 BasicType basic_elem_type = field->layout_type();
3152 _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3153 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3154 // Compile::find_alias_type() cast exactness on all types to verify
3155 // that it does not affect alias type.
3156 _is_ptr_to_narrowoop = UseCompressedOops;
3157 } else {
3158 // Type for the copy start in LibraryCallKit::inline_native_clone().
3159 _is_ptr_to_narrowoop = UseCompressedOops;
3160 }
3161 }
3162 }
3163 }
3164 }
3165 #endif
3166 }
3167
3168 //------------------------------make-------------------------------------------
3169 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3170 const TypePtr* speculative, int inline_depth) {
3171 assert(ptr != Constant, "no constant generic pointers");
3172 ciKlass* k = Compile::current()->env()->Object_klass();
3173 bool xk = false;
3174 ciObject* o = nullptr;
3175 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3176 }
3177
3178
3179 //------------------------------cast_to_ptr_type-------------------------------
3180 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3181 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3182 if( ptr == _ptr ) return this;
3183 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3184 }
3185
3186 //-----------------------------cast_to_instance_id----------------------------
3187 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3188 // There are no instances of a general oop.
3189 // Return self unchanged.
3190 return this;
3191 }
3192
3193 //-----------------------------cast_to_exactness-------------------------------
3194 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3195 // There is no such thing as an exact general oop.
3196 // Return self unchanged.
3197 return this;
3198 }
3199
3200
3201 //------------------------------as_klass_type----------------------------------
3202 // Return the klass type corresponding to this instance or array type.
3203 // It is the type that is loaded from an object of this type.
3204 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3205 ciKlass* k = klass();
3206 bool xk = klass_is_exact();
3207 if (k == nullptr)
3208 return TypeKlassPtr::OBJECT;
3209 else
3210 return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3211 }
3212
3213 //------------------------------meet-------------------------------------------
3214 // Compute the MEET of two types. It returns a new Type object.
3215 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3216 // Perform a fast test for common case; meeting the same types together.
3217 if( this == t ) return this; // Meeting same type-rep?
3218
3219 // Current "this->_base" is OopPtr
3220 switch (t->base()) { // switch on original type
3221
3222 case Int: // Mixing ints & oops happens when javac
3223 case Long: // reuses local variables
3224 case FloatTop:
3225 case FloatCon:
3226 case FloatBot:
3227 case DoubleTop:
3228 case DoubleCon:
3229 case DoubleBot:
3230 case NarrowOop:
3231 case NarrowKlass:
3232 case Bottom: // Ye Olde Default
3233 return Type::BOTTOM;
3234 case Top:
3235 return this;
3236
3237 default: // All else is a mistake
3238 typerr(t);
3239
3240 case RawPtr:
3241 case MetadataPtr:
3242 case KlassPtr:
3243 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3244
3245 case AnyPtr: {
3246 // Found an AnyPtr type vs self-OopPtr type
3247 const TypePtr *tp = t->is_ptr();
3248 int offset = meet_offset(tp->offset());
3249 PTR ptr = meet_ptr(tp->ptr());
3250 const TypePtr* speculative = xmeet_speculative(tp);
3251 int depth = meet_inline_depth(tp->inline_depth());
3252 switch (tp->ptr()) {
3253 case Null:
3254 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3255 // else fall through:
3256 case TopPTR:
3257 case AnyNull: {
3258 int instance_id = meet_instance_id(InstanceTop);
3259 return make(ptr, offset, instance_id, speculative, depth);
3260 }
3261 case BotPTR:
3262 case NotNull:
3263 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3264 default: typerr(t);
3265 }
3266 }
3267
3268 case OopPtr: { // Meeting to other OopPtrs
3269 const TypeOopPtr *tp = t->is_oopptr();
3270 int instance_id = meet_instance_id(tp->instance_id());
3271 const TypePtr* speculative = xmeet_speculative(tp);
3272 int depth = meet_inline_depth(tp->inline_depth());
3273 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3274 }
3275
3276 case InstPtr: // For these, flip the call around to cut down
3277 case AryPtr:
3278 return t->xmeet(this); // Call in reverse direction
3279
3280 } // End of switch
3281 return this; // Return the double constant
3282 }
3283
3284
3285 //------------------------------xdual------------------------------------------
3286 // Dual of a pure heap pointer. No relevant klass or oop information.
3287 const Type *TypeOopPtr::xdual() const {
3288 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3289 assert(const_oop() == nullptr, "no constants here");
3290 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3291 }
3292
3293 //--------------------------make_from_klass_common-----------------------------
3294 // Computes the element-type given a klass.
3295 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3296 if (klass->is_instance_klass()) {
3297 Compile* C = Compile::current();
3298 Dependencies* deps = C->dependencies();
3299 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3300 // Element is an instance
3301 bool klass_is_exact = false;
3302 if (klass->is_loaded()) {
3303 // Try to set klass_is_exact.
3304 ciInstanceKlass* ik = klass->as_instance_klass();
3305 klass_is_exact = ik->is_final();
3306 if (!klass_is_exact && klass_change
3307 && deps != nullptr && UseUniqueSubclasses) {
3308 ciInstanceKlass* sub = ik->unique_concrete_subklass();
3309 if (sub != nullptr) {
3310 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3311 klass = ik = sub;
3312 klass_is_exact = sub->is_final();
3313 }
3314 }
3315 if (!klass_is_exact && try_for_exact && deps != nullptr &&
3316 !ik->is_interface() && !ik->has_subklass()) {
3317 // Add a dependence; if concrete subclass added we need to recompile
3318 deps->assert_leaf_type(ik);
3319 klass_is_exact = true;
3320 }
3321 }
3322 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, nullptr, 0);
3323 } else if (klass->is_obj_array_klass()) {
3324 // Element is an object array. Recursively call ourself.
3325 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3326 bool xk = etype->klass_is_exact();
3327 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3328 // We used to pass NotNull in here, asserting that the sub-arrays
3329 // are all not-null. This is not true in generally, as code can
3330 // slam nulls down in the subarrays.
3331 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3332 return arr;
3333 } else if (klass->is_type_array_klass()) {
3334 // Element is an typeArray
3335 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3336 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3337 // We used to pass NotNull in here, asserting that the array pointer
3338 // is not-null. That was not true in general.
3339 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3340 return arr;
3341 } else {
3342 ShouldNotReachHere();
3343 return nullptr;
3344 }
3345 }
3346
3347 //------------------------------make_from_constant-----------------------------
3348 // Make a java pointer from an oop constant
3349 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3350 assert(!o->is_null_object(), "null object not yet handled here.");
3351
3352 const bool make_constant = require_constant || o->should_be_constant();
3353
3354 ciKlass* klass = o->klass();
3355 if (klass->is_instance_klass()) {
3356 // Element is an instance
3357 if (make_constant) {
3358 return TypeInstPtr::make(o);
3359 } else {
3360 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3361 }
3362 } else if (klass->is_obj_array_klass()) {
3363 // Element is an object array. Recursively call ourself.
3364 const TypeOopPtr *etype =
3365 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3366 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3367 // We used to pass NotNull in here, asserting that the sub-arrays
3368 // are all not-null. This is not true in generally, as code can
3369 // slam nulls down in the subarrays.
3370 if (make_constant) {
3371 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3372 } else {
3373 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3374 }
3375 } else if (klass->is_type_array_klass()) {
3376 // Element is an typeArray
3377 const Type* etype =
3378 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3379 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3380 // We used to pass NotNull in here, asserting that the array pointer
3381 // is not-null. That was not true in general.
3382 if (make_constant) {
3383 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3384 } else {
3385 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3386 }
3387 }
3388
3389 fatal("unhandled object type");
3390 return nullptr;
3391 }
3392
3393 //------------------------------get_con----------------------------------------
3394 intptr_t TypeOopPtr::get_con() const {
3395 assert( _ptr == Null || _ptr == Constant, "" );
3396 assert( _offset >= 0, "" );
3397
3398 if (_offset != 0) {
3399 // After being ported to the compiler interface, the compiler no longer
3400 // directly manipulates the addresses of oops. Rather, it only has a pointer
3401 // to a handle at compile time. This handle is embedded in the generated
3402 // code and dereferenced at the time the nmethod is made. Until that time,
3403 // it is not reasonable to do arithmetic with the addresses of oops (we don't
3404 // have access to the addresses!). This does not seem to currently happen,
3405 // but this assertion here is to help prevent its occurence.
3406 tty->print_cr("Found oop constant with non-zero offset");
3407 ShouldNotReachHere();
3408 }
3409
3410 return (intptr_t)const_oop()->constant_encoding();
3411 }
3412
3413
3414 //-----------------------------filter------------------------------------------
3415 // Do not allow interface-vs.-noninterface joins to collapse to top.
3416 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3417
3418 const Type* ft = join_helper(kills, include_speculative);
3419 const TypeInstPtr* ftip = ft->isa_instptr();
3420 const TypeInstPtr* ktip = kills->isa_instptr();
3421
3422 if (ft->empty()) {
3423 // Check for evil case of 'this' being a class and 'kills' expecting an
3424 // interface. This can happen because the bytecodes do not contain
3425 // enough type info to distinguish a Java-level interface variable
3426 // from a Java-level object variable. If we meet 2 classes which
3427 // both implement interface I, but their meet is at 'j/l/O' which
3428 // doesn't implement I, we have no way to tell if the result should
3429 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows
3430 // into a Phi which "knows" it's an Interface type we'll have to
3431 // uplift the type.
3432 if (!empty()) {
3433 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3434 return kills; // Uplift to interface
3435 }
3436 // Also check for evil cases of 'this' being a class array
3437 // and 'kills' expecting an array of interfaces.
3438 Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3439 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3440 return kills; // Uplift to array of interface
3441 }
3442 }
3443
3444 return Type::TOP; // Canonical empty value
3445 }
3446
3447 // If we have an interface-typed Phi or cast and we narrow to a class type,
3448 // the join should report back the class. However, if we have a J/L/Object
3449 // class-typed Phi and an interface flows in, it's possible that the meet &
3450 // join report an interface back out. This isn't possible but happens
3451 // because the type system doesn't interact well with interfaces.
3452 if (ftip != NULL && ktip != NULL &&
3453 ftip->is_loaded() && ftip->klass()->is_interface() &&
3454 ktip->is_loaded() && !ktip->klass()->is_interface()) {
3455 assert(!ftip->klass_is_exact(), "interface could not be exact");
3456 return ktip->cast_to_ptr_type(ftip->ptr());
3457 }
3458
3459 return ft;
3460 }
3461
3462 //------------------------------eq---------------------------------------------
3463 // Structural equality check for Type representations
3464 bool TypeOopPtr::eq( const Type *t ) const {
3465 const TypeOopPtr *a = (const TypeOopPtr*)t;
3466 if (_klass_is_exact != a->_klass_is_exact ||
3467 _instance_id != a->_instance_id) return false;
3468 ciObject* one = const_oop();
3469 ciObject* two = a->const_oop();
3470 if (one == nullptr || two == nullptr) {
3471 return (one == two) && TypePtr::eq(t);
3472 } else {
3473 return one->equals(two) && TypePtr::eq(t);
3474 }
3475 }
3476
3477 //------------------------------hash-------------------------------------------
3478 // Type-specific hashing function.
3479 int TypeOopPtr::hash(void) const {
3480 return
3481 java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3482 java_add((jint)_instance_id, (jint)TypePtr::hash()));
3483 }
3484
3485 //------------------------------dump2------------------------------------------
3486 #ifndef PRODUCT
3487 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3488 st->print("oopptr:%s", ptr_msg[_ptr]);
3489 if( _klass_is_exact ) st->print(":exact");
3490 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3491 switch( _offset ) {
3492 case OffsetTop: st->print("+top"); break;
3493 case OffsetBot: st->print("+any"); break;
3494 case 0: break;
3495 default: st->print("+%d",_offset); break;
3496 }
3497 if (_instance_id == InstanceTop)
3498 st->print(",iid=top");
3499 else if (_instance_id != InstanceBot)
3500 st->print(",iid=%d",_instance_id);
3501
3502 dump_inline_depth(st);
3503 dump_speculative(st);
3504 }
3505 #endif
3506
3507 //------------------------------singleton--------------------------------------
3508 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3509 // constants
3510 bool TypeOopPtr::singleton(void) const {
3511 // detune optimizer to not generate constant oop + constant offset as a constant!
3512 // TopPTR, Null, AnyNull, Constant are all singletons
3513 return (_offset == 0) && !below_centerline(_ptr);
3514 }
3515
3516 //------------------------------add_offset-------------------------------------
3517 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3518 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3519 }
3520
3521 /**
3522 * Return same type without a speculative part
3523 */
3524 const Type* TypeOopPtr::remove_speculative() const {
3525 if (_speculative == nullptr) {
3526 return this;
3527 }
3528 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3529 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3530 }
3531
3532 /**
3533 * Return same type but drop speculative part if we know we won't use
3534 * it
3535 */
3536 const Type* TypeOopPtr::cleanup_speculative() const {
3537 // If the klass is exact and the ptr is not null then there's
3538 // nothing that the speculative type can help us with
3539 if (klass_is_exact() && !maybe_null()) {
3540 return remove_speculative();
3541 }
3542 return TypePtr::cleanup_speculative();
3543 }
3544
3545 /**
3546 * Return same type but with a different inline depth (used for speculation)
3547 *
3548 * @param depth depth to meet with
3549 */
3550 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3551 if (!UseInlineDepthForSpeculativeTypes) {
3552 return this;
3553 }
3554 return make(_ptr, _offset, _instance_id, _speculative, depth);
3555 }
3556
3557 //------------------------------with_instance_id--------------------------------
3558 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3559 assert(_instance_id != -1, "should be known");
3560 return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3561 }
3562
3563 //------------------------------meet_instance_id--------------------------------
3564 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3565 // Either is 'TOP' instance? Return the other instance!
3566 if( _instance_id == InstanceTop ) return instance_id;
3567 if( instance_id == InstanceTop ) return _instance_id;
3568 // If either is different, return 'BOTTOM' instance
3569 if( _instance_id != instance_id ) return InstanceBot;
3570 return _instance_id;
3571 }
3572
3573 //------------------------------dual_instance_id--------------------------------
3574 int TypeOopPtr::dual_instance_id( ) const {
3575 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3576 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3577 return _instance_id; // Map everything else into self
3578 }
3579
3580 /**
3581 * Check whether new profiling would improve speculative type
3582 *
3583 * @param exact_kls class from profiling
3584 * @param inline_depth inlining depth of profile point
3585 *
3586 * @return true if type profile is valuable
3587 */
3588 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3589 // no way to improve an already exact type
3590 if (klass_is_exact()) {
3591 return false;
3592 }
3593 return TypePtr::would_improve_type(exact_kls, inline_depth);
3594 }
3595
3596 //=============================================================================
3597 // Convenience common pre-built types.
3598 const TypeInstPtr *TypeInstPtr::NOTNULL;
3599 const TypeInstPtr *TypeInstPtr::BOTTOM;
3600 const TypeInstPtr *TypeInstPtr::MIRROR;
3601 const TypeInstPtr *TypeInstPtr::MARK;
3602 const TypeInstPtr *TypeInstPtr::KLASS;
3603
3604 //------------------------------TypeInstPtr-------------------------------------
3605 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3606 int instance_id, const TypePtr* speculative, int inline_depth)
3607 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3608 _name(k->name()) {
3609 assert(k != nullptr &&
3610 (k->is_loaded() || o == nullptr),
3611 "cannot have constants with non-loaded klass");
3612 };
3613
3614 //------------------------------make-------------------------------------------
3615 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3616 ciKlass* k,
3617 bool xk,
3618 ciObject* o,
3619 int offset,
3620 int instance_id,
3621 const TypePtr* speculative,
3622 int inline_depth) {
3623 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3624 // Either const_oop() is null or else ptr is Constant
3625 assert( (!o && ptr != Constant) || (o && ptr == Constant),
3626 "constant pointers must have a value supplied" );
3627 // Ptr is never Null
3628 assert( ptr != Null, "null pointers are not typed" );
3629
3630 assert(instance_id <= 0 || xk, "instances are always exactly typed");
3631 if (ptr == Constant) {
3632 // Note: This case includes meta-object constants, such as methods.
3633 xk = true;
3634 } else if (k->is_loaded()) {
3635 ciInstanceKlass* ik = k->as_instance_klass();
3636 if (!xk && ik->is_final()) xk = true; // no inexact final klass
3637 if (xk && ik->is_interface()) xk = false; // no exact interface
3638 }
3639
3640 // Now hash this baby
3641 TypeInstPtr *result =
3642 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3643
3644 return result;
3645 }
3646
3647 /**
3648 * Create constant type for a constant boxed value
3649 */
3650 const Type* TypeInstPtr::get_const_boxed_value() const {
3651 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3652 assert((const_oop() != nullptr), "should be called only for constant object");
3653 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3654 BasicType bt = constant.basic_type();
3655 switch (bt) {
3656 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
3657 case T_INT: return TypeInt::make(constant.as_int());
3658 case T_CHAR: return TypeInt::make(constant.as_char());
3659 case T_BYTE: return TypeInt::make(constant.as_byte());
3660 case T_SHORT: return TypeInt::make(constant.as_short());
3661 case T_FLOAT: return TypeF::make(constant.as_float());
3662 case T_DOUBLE: return TypeD::make(constant.as_double());
3663 case T_LONG: return TypeLong::make(constant.as_long());
3664 default: break;
3665 }
3666 fatal("Invalid boxed value type '%s'", type2name(bt));
3667 return nullptr;
3668 }
3669
3670 //------------------------------cast_to_ptr_type-------------------------------
3671 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3672 if( ptr == _ptr ) return this;
3673 // Reconstruct _sig info here since not a problem with later lazy
3674 // construction, _sig will show up on demand.
3675 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3676 }
3677
3678
3679 //-----------------------------cast_to_exactness-------------------------------
3680 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3681 if( klass_is_exact == _klass_is_exact ) return this;
3682 if (!_klass->is_loaded()) return this;
3683 ciInstanceKlass* ik = _klass->as_instance_klass();
3684 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
3685 if( ik->is_interface() ) return this; // cannot set xk
3686 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3687 }
3688
3689 //-----------------------------cast_to_instance_id----------------------------
3690 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3691 if( instance_id == _instance_id ) return this;
3692 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3693 }
3694
3695 //------------------------------xmeet_unloaded---------------------------------
3696 // Compute the MEET of two InstPtrs when at least one is unloaded.
3697 // Assume classes are different since called after check for same name/class-loader
3698 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3699 int off = meet_offset(tinst->offset());
3700 PTR ptr = meet_ptr(tinst->ptr());
3701 int instance_id = meet_instance_id(tinst->instance_id());
3702 const TypePtr* speculative = xmeet_speculative(tinst);
3703 int depth = meet_inline_depth(tinst->inline_depth());
3704
3705 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
3706 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
3707 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3708 //
3709 // Meet unloaded class with java/lang/Object
3710 //
3711 // Meet
3712 // | Unloaded Class
3713 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
3714 // ===================================================================
3715 // TOP | ..........................Unloaded......................|
3716 // AnyNull | U-AN |................Unloaded......................|
3717 // Constant | ... O-NN .................................. | O-BOT |
3718 // NotNull | ... O-NN .................................. | O-BOT |
3719 // BOTTOM | ........................Object-BOTTOM ..................|
3720 //
3721 assert(loaded->ptr() != TypePtr::Null, "insanity check");
3722 //
3723 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3724 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, nullptr, off, instance_id, speculative, depth); }
3725 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3726 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3727 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3728 else { return TypeInstPtr::NOTNULL; }
3729 }
3730 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3731
3732 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3733 }
3734
3735 // Both are unloaded, not the same class, not Object
3736 // Or meet unloaded with a different loaded class, not java/lang/Object
3737 if( ptr != TypePtr::BotPTR ) {
3738 return TypeInstPtr::NOTNULL;
3739 }
3740 return TypeInstPtr::BOTTOM;
3741 }
3742
3743
3744 //------------------------------meet-------------------------------------------
3745 // Compute the MEET of two types. It returns a new Type object.
3746 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3747 // Perform a fast test for common case; meeting the same types together.
3748 if( this == t ) return this; // Meeting same type-rep?
3749
3750 // Current "this->_base" is Pointer
3751 switch (t->base()) { // switch on original type
3752
3753 case Int: // Mixing ints & oops happens when javac
3754 case Long: // reuses local variables
3755 case FloatTop:
3756 case FloatCon:
3757 case FloatBot:
3758 case DoubleTop:
3759 case DoubleCon:
3760 case DoubleBot:
3761 case NarrowOop:
3762 case NarrowKlass:
3763 case Bottom: // Ye Olde Default
3764 return Type::BOTTOM;
3765 case Top:
3766 return this;
3767
3768 default: // All else is a mistake
3769 typerr(t);
3770
3771 case MetadataPtr:
3772 case KlassPtr:
3773 case RawPtr: return TypePtr::BOTTOM;
3774
3775 case AryPtr: { // All arrays inherit from Object class
3776 // Call in reverse direction to avoid duplication
3777 return t->is_aryptr()->xmeet_helper(this);
3778 }
3779
3780 case OopPtr: { // Meeting to OopPtrs
3781 // Found a OopPtr type vs self-InstPtr type
3782 const TypeOopPtr *tp = t->is_oopptr();
3783 int offset = meet_offset(tp->offset());
3784 PTR ptr = meet_ptr(tp->ptr());
3785 switch (tp->ptr()) {
3786 case TopPTR:
3787 case AnyNull: {
3788 int instance_id = meet_instance_id(InstanceTop);
3789 const TypePtr* speculative = xmeet_speculative(tp);
3790 int depth = meet_inline_depth(tp->inline_depth());
3791 return make(ptr, klass(), klass_is_exact(),
3792 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
3793 }
3794 case NotNull:
3795 case BotPTR: {
3796 int instance_id = meet_instance_id(tp->instance_id());
3797 const TypePtr* speculative = xmeet_speculative(tp);
3798 int depth = meet_inline_depth(tp->inline_depth());
3799 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3800 }
3801 default: typerr(t);
3802 }
3803 }
3804
3805 case AnyPtr: { // Meeting to AnyPtrs
3806 // Found an AnyPtr type vs self-InstPtr type
3807 const TypePtr *tp = t->is_ptr();
3808 int offset = meet_offset(tp->offset());
3809 PTR ptr = meet_ptr(tp->ptr());
3810 int instance_id = meet_instance_id(InstanceTop);
3811 const TypePtr* speculative = xmeet_speculative(tp);
3812 int depth = meet_inline_depth(tp->inline_depth());
3813 switch (tp->ptr()) {
3814 case Null:
3815 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3816 // else fall through to AnyNull
3817 case TopPTR:
3818 case AnyNull: {
3819 return make(ptr, klass(), klass_is_exact(),
3820 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
3821 }
3822 case NotNull:
3823 case BotPTR:
3824 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3825 default: typerr(t);
3826 }
3827 }
3828
3829 /*
3830 A-top }
3831 / | \ } Tops
3832 B-top A-any C-top }
3833 | / | \ | } Any-nulls
3834 B-any | C-any }
3835 | | |
3836 B-con A-con C-con } constants; not comparable across classes
3837 | | |
3838 B-not | C-not }
3839 | \ | / | } not-nulls
3840 B-bot A-not C-bot }
3841 \ | / } Bottoms
3842 A-bot }
3843 */
3844
3845 case InstPtr: { // Meeting 2 Oops?
3846 // Found an InstPtr sub-type vs self-InstPtr type
3847 const TypeInstPtr *tinst = t->is_instptr();
3848 int off = meet_offset( tinst->offset() );
3849 PTR ptr = meet_ptr( tinst->ptr() );
3850 int instance_id = meet_instance_id(tinst->instance_id());
3851 const TypePtr* speculative = xmeet_speculative(tinst);
3852 int depth = meet_inline_depth(tinst->inline_depth());
3853
3854 // Check for easy case; klasses are equal (and perhaps not loaded!)
3855 // If we have constants, then we created oops so classes are loaded
3856 // and we can handle the constants further down. This case handles
3857 // both-not-loaded or both-loaded classes
3858 if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3859 return make(ptr, klass(), klass_is_exact(), nullptr, off, instance_id, speculative, depth);
3860 }
3861
3862 // Classes require inspection in the Java klass hierarchy. Must be loaded.
3863 ciKlass* tinst_klass = tinst->klass();
3864 ciKlass* this_klass = this->klass();
3865 bool tinst_xk = tinst->klass_is_exact();
3866 bool this_xk = this->klass_is_exact();
3867 if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3868 // One of these classes has not been loaded
3869 const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3870 #ifndef PRODUCT
3871 if( PrintOpto && Verbose ) {
3872 tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3873 tty->print(" this == "); this->dump(); tty->cr();
3874 tty->print(" tinst == "); tinst->dump(); tty->cr();
3875 }
3876 #endif
3877 return unloaded_meet;
3878 }
3879
3880 // Handle mixing oops and interfaces first.
3881 if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3882 tinst_klass == ciEnv::current()->Object_klass())) {
3883 ciKlass *tmp = tinst_klass; // Swap interface around
3884 tinst_klass = this_klass;
3885 this_klass = tmp;
3886 bool tmp2 = tinst_xk;
3887 tinst_xk = this_xk;
3888 this_xk = tmp2;
3889 }
3890 if (tinst_klass->is_interface() &&
3891 !(this_klass->is_interface() ||
3892 // Treat java/lang/Object as an honorary interface,
3893 // because we need a bottom for the interface hierarchy.
3894 this_klass == ciEnv::current()->Object_klass())) {
3895 // Oop meets interface!
3896
3897 // See if the oop subtypes (implements) interface.
3898 ciKlass *k;
3899 bool xk;
3900 if( this_klass->is_subtype_of( tinst_klass ) ) {
3901 // Oop indeed subtypes. Now keep oop or interface depending
3902 // on whether we are both above the centerline or either is
3903 // below the centerline. If we are on the centerline
3904 // (e.g., Constant vs. AnyNull interface), use the constant.
3905 k = below_centerline(ptr) ? tinst_klass : this_klass;
3906 // If we are keeping this_klass, keep its exactness too.
3907 xk = below_centerline(ptr) ? tinst_xk : this_xk;
3908 } else { // Does not implement, fall to Object
3909 // Oop does not implement interface, so mixing falls to Object
3910 // just like the verifier does (if both are above the
3911 // centerline fall to interface)
3912 k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3913 xk = above_centerline(ptr) ? tinst_xk : false;
3914 // Watch out for Constant vs. AnyNull interface.
3915 if (ptr == Constant) {
3916 ptr = NotNull; // forget it was a constant
3917 }
3918 if (instance_id > 0) {
3919 instance_id = InstanceBot;
3920 }
3921 }
3922 ciObject* o = nullptr; // the Constant value, if any
3923 if (ptr == Constant) {
3924 // Find out which constant.
3925 o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3926 }
3927 return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3928 }
3929
3930 // Either oop vs oop or interface vs interface or interface vs Object
3931
3932 // !!! Here's how the symmetry requirement breaks down into invariants:
3933 // If we split one up & one down AND they subtype, take the down man.
3934 // If we split one up & one down AND they do NOT subtype, "fall hard".
3935 // If both are up and they subtype, take the subtype class.
3936 // If both are up and they do NOT subtype, "fall hard".
3937 // If both are down and they subtype, take the supertype class.
3938 // If both are down and they do NOT subtype, "fall hard".
3939 // Constants treated as down.
3940
3941 // Now, reorder the above list; observe that both-down+subtype is also
3942 // "fall hard"; "fall hard" becomes the default case:
3943 // If we split one up & one down AND they subtype, take the down man.
3944 // If both are up and they subtype, take the subtype class.
3945
3946 // If both are down and they subtype, "fall hard".
3947 // If both are down and they do NOT subtype, "fall hard".
3948 // If both are up and they do NOT subtype, "fall hard".
3949 // If we split one up & one down AND they do NOT subtype, "fall hard".
3950
3951 // If a proper subtype is exact, and we return it, we return it exactly.
3952 // If a proper supertype is exact, there can be no subtyping relationship!
3953 // If both types are equal to the subtype, exactness is and-ed below the
3954 // centerline and or-ed above it. (N.B. Constants are always exact.)
3955
3956 // Check for subtyping:
3957 ciKlass *subtype = nullptr;
3958 bool subtype_exact = false;
3959 if( tinst_klass->equals(this_klass) ) {
3960 subtype = this_klass;
3961 subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
3962 } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3963 subtype = this_klass; // Pick subtyping class
3964 subtype_exact = this_xk;
3965 } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3966 subtype = tinst_klass; // Pick subtyping class
3967 subtype_exact = tinst_xk;
3968 }
3969
3970 if( subtype ) {
3971 if( above_centerline(ptr) ) { // both are up?
3972 this_klass = tinst_klass = subtype;
3973 this_xk = tinst_xk = subtype_exact;
3974 } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3975 this_klass = tinst_klass; // tinst is down; keep down man
3976 this_xk = tinst_xk;
3977 } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3978 tinst_klass = this_klass; // this is down; keep down man
3979 tinst_xk = this_xk;
3980 } else {
3981 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
3982 }
3983 }
3984
3985 // Check for classes now being equal
3986 if (tinst_klass->equals(this_klass)) {
3987 // If the klasses are equal, the constants may still differ. Fall to
3988 // NotNull if they do (neither constant is null; that is a special case
3989 // handled elsewhere).
3990 ciObject* o = nullptr; // Assume not constant when done
3991 ciObject* this_oop = const_oop();
3992 ciObject* tinst_oop = tinst->const_oop();
3993 if( ptr == Constant ) {
3994 if (this_oop != nullptr && tinst_oop != nullptr &&
3995 this_oop->equals(tinst_oop) )
3996 o = this_oop;
3997 else if (above_centerline(this ->_ptr))
3998 o = tinst_oop;
3999 else if (above_centerline(tinst ->_ptr))
4000 o = this_oop;
4001 else
4002 ptr = NotNull;
4003 }
4004 return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4005 } // Else classes are not equal
4006
4007 // Since klasses are different, we require a LCA in the Java
4008 // class hierarchy - which means we have to fall to at least NotNull.
4009 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4010 ptr = NotNull;
4011 }
4012 instance_id = InstanceBot;
4013
4014 // Now we find the LCA of Java classes
4015 ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4016 return make(ptr, k, false, nullptr, off, instance_id, speculative, depth);
4017 } // End of case InstPtr
4018
4019 } // End of switch
4020 return this; // Return the double constant
4021 }
4022
4023
4024 //------------------------java_mirror_type--------------------------------------
4025 ciType* TypeInstPtr::java_mirror_type() const {
4026 // must be a singleton type
4027 if( const_oop() == nullptr ) return nullptr;
4028
4029 // must be of type java.lang.Class
4030 if( klass() != ciEnv::current()->Class_klass() ) return nullptr;
4031
4032 return const_oop()->as_instance()->java_mirror_type();
4033 }
4034
4035
4036 //------------------------------xdual------------------------------------------
4037 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
4038 // inheritance mechanism.
4039 const Type *TypeInstPtr::xdual() const {
4040 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4041 }
4042
4043 //------------------------------eq---------------------------------------------
4044 // Structural equality check for Type representations
4045 bool TypeInstPtr::eq( const Type *t ) const {
4046 const TypeInstPtr *p = t->is_instptr();
4047 return
4048 klass()->equals(p->klass()) &&
4049 TypeOopPtr::eq(p); // Check sub-type stuff
4050 }
4051
4052 //------------------------------hash-------------------------------------------
4053 // Type-specific hashing function.
4054 int TypeInstPtr::hash(void) const {
4055 int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4056 return hash;
4057 }
4058
4059 //------------------------------dump2------------------------------------------
4060 // Dump oop Type
4061 #ifndef PRODUCT
4062 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4063 // Print the name of the klass.
4064 klass()->print_name_on(st);
4065
4066 switch( _ptr ) {
4067 case Constant:
4068 if (WizardMode || Verbose) {
4069 ResourceMark rm;
4070 stringStream ss;
4071
4072 st->print(" ");
4073 const_oop()->print_oop(&ss);
4074 // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4075 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4076 char* buf = ss.as_string(/* c_heap= */false);
4077 StringUtils::replace_no_expand(buf, "\n", "");
4078 st->print_raw(buf);
4079 }
4080 case BotPTR:
4081 if (!WizardMode && !Verbose) {
4082 if( _klass_is_exact ) st->print(":exact");
4083 break;
4084 }
4085 case TopPTR:
4086 case AnyNull:
4087 case NotNull:
4088 st->print(":%s", ptr_msg[_ptr]);
4089 if( _klass_is_exact ) st->print(":exact");
4090 break;
4091 default:
4092 break;
4093 }
4094
4095 if( _offset ) { // Dump offset, if any
4096 if( _offset == OffsetBot ) st->print("+any");
4097 else if( _offset == OffsetTop ) st->print("+unknown");
4098 else st->print("+%d", _offset);
4099 }
4100
4101 st->print(" *");
4102 if (_instance_id == InstanceTop)
4103 st->print(",iid=top");
4104 else if (_instance_id != InstanceBot)
4105 st->print(",iid=%d",_instance_id);
4106
4107 dump_inline_depth(st);
4108 dump_speculative(st);
4109 }
4110 #endif
4111
4112 //------------------------------add_offset-------------------------------------
4113 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4114 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4115 _instance_id, add_offset_speculative(offset), _inline_depth);
4116 }
4117
4118 const Type *TypeInstPtr::remove_speculative() const {
4119 if (_speculative == nullptr) {
4120 return this;
4121 }
4122 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4123 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4124 _instance_id, nullptr, _inline_depth);
4125 }
4126
4127 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4128 if (!UseInlineDepthForSpeculativeTypes) {
4129 return this;
4130 }
4131 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4132 }
4133
4134 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4135 assert(is_known_instance(), "should be known");
4136 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4137 }
4138
4139 //=============================================================================
4140 // Convenience common pre-built types.
4141 const TypeAryPtr *TypeAryPtr::RANGE;
4142 const TypeAryPtr *TypeAryPtr::OOPS;
4143 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4144 const TypeAryPtr *TypeAryPtr::BYTES;
4145 const TypeAryPtr *TypeAryPtr::SHORTS;
4146 const TypeAryPtr *TypeAryPtr::CHARS;
4147 const TypeAryPtr *TypeAryPtr::INTS;
4148 const TypeAryPtr *TypeAryPtr::LONGS;
4149 const TypeAryPtr *TypeAryPtr::FLOATS;
4150 const TypeAryPtr *TypeAryPtr::DOUBLES;
4151
4152 //------------------------------make-------------------------------------------
4153 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4154 int instance_id, const TypePtr* speculative, int inline_depth) {
4155 assert(!(k == nullptr && ary->_elem->isa_int()),
4156 "integral arrays must be pre-equipped with a class");
4157 if (!xk) xk = ary->ary_must_be_exact();
4158 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4159 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4160 }
4161
4162 //------------------------------make-------------------------------------------
4163 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4164 int instance_id, const TypePtr* speculative, int inline_depth,
4165 bool is_autobox_cache) {
4166 assert(!(k == nullptr && ary->_elem->isa_int()),
4167 "integral arrays must be pre-equipped with a class");
4168 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4169 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact();
4170 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4171 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4172 }
4173
4174 //------------------------------cast_to_ptr_type-------------------------------
4175 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4176 if( ptr == _ptr ) return this;
4177 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4178 }
4179
4180
4181 //-----------------------------cast_to_exactness-------------------------------
4182 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4183 if( klass_is_exact == _klass_is_exact ) return this;
4184 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
4185 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4186 }
4187
4188 //-----------------------------cast_to_instance_id----------------------------
4189 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4190 if( instance_id == _instance_id ) return this;
4191 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4192 }
4193
4194
4195 //-----------------------------max_array_length-------------------------------
4196 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4197 jint TypeAryPtr::max_array_length(BasicType etype) {
4198 if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4199 if (etype == T_NARROWOOP) {
4200 etype = T_OBJECT;
4201 } else if (etype == T_ILLEGAL) { // bottom[]
4202 etype = T_BYTE; // will produce conservatively high value
4203 } else {
4204 fatal("not an element type: %s", type2name(etype));
4205 }
4206 }
4207 return arrayOopDesc::max_array_length(etype);
4208 }
4209
4210 //-----------------------------narrow_size_type-------------------------------
4211 // Narrow the given size type to the index range for the given array base type.
4212 // Return null if the resulting int type becomes empty.
4213 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4214 jint hi = size->_hi;
4215 jint lo = size->_lo;
4216 jint min_lo = 0;
4217 jint max_hi = max_array_length(elem()->basic_type());
4218 //if (index_not_size) --max_hi; // type of a valid array index, FTR
4219 bool chg = false;
4220 if (lo < min_lo) {
4221 lo = min_lo;
4222 if (size->is_con()) {
4223 hi = lo;
4224 }
4225 chg = true;
4226 }
4227 if (hi > max_hi) {
4228 hi = max_hi;
4229 if (size->is_con()) {
4230 lo = hi;
4231 }
4232 chg = true;
4233 }
4234 // Negative length arrays will produce weird intermediate dead fast-path code
4235 if (lo > hi)
4236 return TypeInt::ZERO;
4237 if (!chg)
4238 return size;
4239 return TypeInt::make(lo, hi, Type::WidenMin);
4240 }
4241
4242 //-------------------------------cast_to_size----------------------------------
4243 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4244 assert(new_size != nullptr, "");
4245 new_size = narrow_size_type(new_size);
4246 if (new_size == size()) return this;
4247 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4248 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4249 }
4250
4251 //------------------------------cast_to_stable---------------------------------
4252 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4253 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4254 return this;
4255
4256 const Type* elem = this->elem();
4257 const TypePtr* elem_ptr = elem->make_ptr();
4258
4259 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4260 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4261 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4262 }
4263
4264 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4265
4266 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4267 }
4268
4269 //-----------------------------stable_dimension--------------------------------
4270 int TypeAryPtr::stable_dimension() const {
4271 if (!is_stable()) return 0;
4272 int dim = 1;
4273 const TypePtr* elem_ptr = elem()->make_ptr();
4274 if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4275 dim += elem_ptr->is_aryptr()->stable_dimension();
4276 return dim;
4277 }
4278
4279 //----------------------cast_to_autobox_cache-----------------------------------
4280 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4281 if (is_autobox_cache()) return this;
4282 const TypeOopPtr* etype = elem()->make_oopptr();
4283 if (etype == nullptr) return this;
4284 // The pointers in the autobox arrays are always non-null.
4285 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4286 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4287 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4288 }
4289
4290 //------------------------------eq---------------------------------------------
4291 // Structural equality check for Type representations
4292 bool TypeAryPtr::eq( const Type *t ) const {
4293 const TypeAryPtr *p = t->is_aryptr();
4294 return
4295 _ary == p->_ary && // Check array
4296 TypeOopPtr::eq(p); // Check sub-parts
4297 }
4298
4299 //------------------------------hash-------------------------------------------
4300 // Type-specific hashing function.
4301 int TypeAryPtr::hash(void) const {
4302 return (intptr_t)_ary + TypeOopPtr::hash();
4303 }
4304
4305 //------------------------------meet-------------------------------------------
4306 // Compute the MEET of two types. It returns a new Type object.
4307 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4308 // Perform a fast test for common case; meeting the same types together.
4309 if( this == t ) return this; // Meeting same type-rep?
4310 // Current "this->_base" is Pointer
4311 switch (t->base()) { // switch on original type
4312
4313 // Mixing ints & oops happens when javac reuses local variables
4314 case Int:
4315 case Long:
4316 case FloatTop:
4317 case FloatCon:
4318 case FloatBot:
4319 case DoubleTop:
4320 case DoubleCon:
4321 case DoubleBot:
4322 case NarrowOop:
4323 case NarrowKlass:
4324 case Bottom: // Ye Olde Default
4325 return Type::BOTTOM;
4326 case Top:
4327 return this;
4328
4329 default: // All else is a mistake
4330 typerr(t);
4331
4332 case OopPtr: { // Meeting to OopPtrs
4333 // Found a OopPtr type vs self-AryPtr type
4334 const TypeOopPtr *tp = t->is_oopptr();
4335 int offset = meet_offset(tp->offset());
4336 PTR ptr = meet_ptr(tp->ptr());
4337 int depth = meet_inline_depth(tp->inline_depth());
4338 const TypePtr* speculative = xmeet_speculative(tp);
4339 switch (tp->ptr()) {
4340 case TopPTR:
4341 case AnyNull: {
4342 int instance_id = meet_instance_id(InstanceTop);
4343 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4344 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4345 }
4346 case BotPTR:
4347 case NotNull: {
4348 int instance_id = meet_instance_id(tp->instance_id());
4349 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4350 }
4351 default: ShouldNotReachHere();
4352 }
4353 }
4354
4355 case AnyPtr: { // Meeting two AnyPtrs
4356 // Found an AnyPtr type vs self-AryPtr type
4357 const TypePtr *tp = t->is_ptr();
4358 int offset = meet_offset(tp->offset());
4359 PTR ptr = meet_ptr(tp->ptr());
4360 const TypePtr* speculative = xmeet_speculative(tp);
4361 int depth = meet_inline_depth(tp->inline_depth());
4362 switch (tp->ptr()) {
4363 case TopPTR:
4364 return this;
4365 case BotPTR:
4366 case NotNull:
4367 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4368 case Null:
4369 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4370 // else fall through to AnyNull
4371 case AnyNull: {
4372 int instance_id = meet_instance_id(InstanceTop);
4373 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4374 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4375 }
4376 default: ShouldNotReachHere();
4377 }
4378 }
4379
4380 case MetadataPtr:
4381 case KlassPtr:
4382 case RawPtr: return TypePtr::BOTTOM;
4383
4384 case AryPtr: { // Meeting 2 references?
4385 const TypeAryPtr *tap = t->is_aryptr();
4386 int off = meet_offset(tap->offset());
4387 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4388 PTR ptr = meet_ptr(tap->ptr());
4389 int instance_id = meet_instance_id(tap->instance_id());
4390 const TypePtr* speculative = xmeet_speculative(tap);
4391 int depth = meet_inline_depth(tap->inline_depth());
4392 ciKlass* lazy_klass = nullptr;
4393 if (tary->_elem->isa_int()) {
4394 // Integral array element types have irrelevant lattice relations.
4395 // It is the klass that determines array layout, not the element type.
4396 if (_klass == nullptr)
4397 lazy_klass = tap->_klass;
4398 else if (tap->_klass == nullptr || tap->_klass == _klass) {
4399 lazy_klass = _klass;
4400 } else {
4401 // Something like byte[int+] meets char[int+].
4402 // This must fall to bottom, not (int[-128..65535])[int+].
4403 instance_id = InstanceBot;
4404 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4405 }
4406 } else // Non integral arrays.
4407 // Must fall to bottom if exact klasses in upper lattice
4408 // are not equal or super klass is exact.
4409 if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4410 // meet with top[] and bottom[] are processed further down:
4411 tap->_klass != nullptr && this->_klass != nullptr &&
4412 // both are exact and not equal:
4413 ((tap->_klass_is_exact && this->_klass_is_exact) ||
4414 // 'tap' is exact and super or unrelated:
4415 (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4416 // 'this' is exact and super or unrelated:
4417 (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4418 if (above_centerline(ptr) || (tary->_elem->make_ptr() && above_centerline(tary->_elem->make_ptr()->_ptr))) {
4419 tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4420 }
4421 return make(NotNull, nullptr, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4422 }
4423
4424 bool xk = false;
4425 switch (tap->ptr()) {
4426 case AnyNull:
4427 case TopPTR:
4428 // Compute new klass on demand, do not use tap->_klass
4429 if (below_centerline(this->_ptr)) {
4430 xk = this->_klass_is_exact;
4431 } else {
4432 xk = (tap->_klass_is_exact || this->_klass_is_exact);
4433 }
4434 return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4435 case Constant: {
4436 ciObject* o = const_oop();
4437 if( _ptr == Constant ) {
4438 if( tap->const_oop() != nullptr && !o->equals(tap->const_oop()) ) {
4439 xk = (klass() == tap->klass());
4440 ptr = NotNull;
4441 o = nullptr;
4442 instance_id = InstanceBot;
4443 } else {
4444 xk = true;
4445 }
4446 } else if(above_centerline(_ptr)) {
4447 o = tap->const_oop();
4448 xk = true;
4449 } else {
4450 // Only precise for identical arrays
4451 xk = this->_klass_is_exact && (klass() == tap->klass());
4452 }
4453 return make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4454 }
4455 case NotNull:
4456 case BotPTR:
4457 // Compute new klass on demand, do not use tap->_klass
4458 if (above_centerline(this->_ptr)) {
4459 xk = tap->_klass_is_exact;
4460 } else {
4461 xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4462 (klass() == tap->klass()); // Only precise for identical arrays
4463 }
4464 return make(ptr, nullptr, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4465 default: ShouldNotReachHere();
4466 }
4467 }
4468
4469 // All arrays inherit from Object class
4470 case InstPtr: {
4471 const TypeInstPtr *tp = t->is_instptr();
4472 int offset = meet_offset(tp->offset());
4473 PTR ptr = meet_ptr(tp->ptr());
4474 int instance_id = meet_instance_id(tp->instance_id());
4475 const TypePtr* speculative = xmeet_speculative(tp);
4476 int depth = meet_inline_depth(tp->inline_depth());
4477 switch (ptr) {
4478 case TopPTR:
4479 case AnyNull: // Fall 'down' to dual of object klass
4480 // For instances when a subclass meets a superclass we fall
4481 // below the centerline when the superclass is exact. We need to
4482 // do the same here.
4483 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4484 return make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4485 } else {
4486 // cannot subclass, so the meet has to fall badly below the centerline
4487 ptr = NotNull;
4488 instance_id = InstanceBot;
4489 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, nullptr,offset, instance_id, speculative, depth);
4490 }
4491 case Constant:
4492 case NotNull:
4493 case BotPTR: // Fall down to object klass
4494 // LCA is object_klass, but if we subclass from the top we can do better
4495 if (above_centerline(tp->ptr())) {
4496 // If 'tp' is above the centerline and it is Object class
4497 // then we can subclass in the Java class hierarchy.
4498 // For instances when a subclass meets a superclass we fall
4499 // below the centerline when the superclass is exact. We need
4500 // to do the same here.
4501 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4502 // that is, my array type is a subtype of 'tp' klass
4503 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4504 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4505 }
4506 }
4507 // The other case cannot happen, since t cannot be a subtype of an array.
4508 // The meet falls down to Object class below centerline.
4509 if (ptr == Constant) {
4510 ptr = NotNull;
4511 }
4512 if (instance_id > 0) {
4513 instance_id = InstanceBot;
4514 }
4515 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, nullptr, offset, instance_id, speculative, depth);
4516 default: typerr(t);
4517 }
4518 }
4519 }
4520 return this; // Lint noise
4521 }
4522
4523 //------------------------------xdual------------------------------------------
4524 // Dual: compute field-by-field dual
4525 const Type *TypeAryPtr::xdual() const {
4526 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4527 }
4528
4529 //----------------------interface_vs_oop---------------------------------------
4530 #ifdef ASSERT
4531 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4532 const TypeAryPtr* t_aryptr = t->isa_aryptr();
4533 if (t_aryptr) {
4534 return _ary->interface_vs_oop(t_aryptr->_ary);
4535 }
4536 return false;
4537 }
4538 #endif
4539
4540 //------------------------------dump2------------------------------------------
4541 #ifndef PRODUCT
4542 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4543 _ary->dump2(d,depth,st);
4544 switch( _ptr ) {
4545 case Constant:
4546 const_oop()->print(st);
4547 break;
4548 case BotPTR:
4549 if (!WizardMode && !Verbose) {
4550 if( _klass_is_exact ) st->print(":exact");
4551 break;
4552 }
4553 case TopPTR:
4554 case AnyNull:
4555 case NotNull:
4556 st->print(":%s", ptr_msg[_ptr]);
4557 if( _klass_is_exact ) st->print(":exact");
4558 break;
4559 default:
4560 break;
4561 }
4562
4563 if( _offset != 0 ) {
4564 int header_size = objArrayOopDesc::header_size() * wordSize;
4565 if( _offset == OffsetTop ) st->print("+undefined");
4566 else if( _offset == OffsetBot ) st->print("+any");
4567 else if( _offset < header_size ) st->print("+%d", _offset);
4568 else {
4569 BasicType basic_elem_type = elem()->basic_type();
4570 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4571 int elem_size = type2aelembytes(basic_elem_type);
4572 st->print("[%d]", (_offset - array_base)/elem_size);
4573 }
4574 }
4575 st->print(" *");
4576 if (_instance_id == InstanceTop)
4577 st->print(",iid=top");
4578 else if (_instance_id != InstanceBot)
4579 st->print(",iid=%d",_instance_id);
4580
4581 dump_inline_depth(st);
4582 dump_speculative(st);
4583 }
4584 #endif
4585
4586 bool TypeAryPtr::empty(void) const {
4587 if (_ary->empty()) return true;
4588 return TypeOopPtr::empty();
4589 }
4590
4591 //------------------------------add_offset-------------------------------------
4592 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4593 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4594 }
4595
4596 const Type *TypeAryPtr::remove_speculative() const {
4597 if (_speculative == nullptr) {
4598 return this;
4599 }
4600 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4601 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
4602 }
4603
4604 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4605 if (!UseInlineDepthForSpeculativeTypes) {
4606 return this;
4607 }
4608 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4609 }
4610
4611 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4612 assert(is_known_instance(), "should be known");
4613 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4614 }
4615
4616 //=============================================================================
4617
4618 //------------------------------hash-------------------------------------------
4619 // Type-specific hashing function.
4620 int TypeNarrowPtr::hash(void) const {
4621 return _ptrtype->hash() + 7;
4622 }
4623
4624 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
4625 return _ptrtype->singleton();
4626 }
4627
4628 bool TypeNarrowPtr::empty(void) const {
4629 return _ptrtype->empty();
4630 }
4631
4632 intptr_t TypeNarrowPtr::get_con() const {
4633 return _ptrtype->get_con();
4634 }
4635
4636 bool TypeNarrowPtr::eq( const Type *t ) const {
4637 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4638 if (tc != nullptr) {
4639 if (_ptrtype->base() != tc->_ptrtype->base()) {
4640 return false;
4641 }
4642 return tc->_ptrtype->eq(_ptrtype);
4643 }
4644 return false;
4645 }
4646
4647 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
4648 const TypePtr* odual = _ptrtype->dual()->is_ptr();
4649 return make_same_narrowptr(odual);
4650 }
4651
4652
4653 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4654 if (isa_same_narrowptr(kills)) {
4655 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4656 if (ft->empty())
4657 return Type::TOP; // Canonical empty value
4658 if (ft->isa_ptr()) {
4659 return make_hash_same_narrowptr(ft->isa_ptr());
4660 }
4661 return ft;
4662 } else if (kills->isa_ptr()) {
4663 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4664 if (ft->empty())
4665 return Type::TOP; // Canonical empty value
4666 return ft;
4667 } else {
4668 return Type::TOP;
4669 }
4670 }
4671
4672 //------------------------------xmeet------------------------------------------
4673 // Compute the MEET of two types. It returns a new Type object.
4674 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4675 // Perform a fast test for common case; meeting the same types together.
4676 if( this == t ) return this; // Meeting same type-rep?
4677
4678 if (t->base() == base()) {
4679 const Type* result = _ptrtype->xmeet(t->make_ptr());
4680 if (result->isa_ptr()) {
4681 return make_hash_same_narrowptr(result->is_ptr());
4682 }
4683 return result;
4684 }
4685
4686 // Current "this->_base" is NarrowKlass or NarrowOop
4687 switch (t->base()) { // switch on original type
4688
4689 case Int: // Mixing ints & oops happens when javac
4690 case Long: // reuses local variables
4691 case FloatTop:
4692 case FloatCon:
4693 case FloatBot:
4694 case DoubleTop:
4695 case DoubleCon:
4696 case DoubleBot:
4697 case AnyPtr:
4698 case RawPtr:
4699 case OopPtr:
4700 case InstPtr:
4701 case AryPtr:
4702 case MetadataPtr:
4703 case KlassPtr:
4704 case NarrowOop:
4705 case NarrowKlass:
4706
4707 case Bottom: // Ye Olde Default
4708 return Type::BOTTOM;
4709 case Top:
4710 return this;
4711
4712 default: // All else is a mistake
4713 typerr(t);
4714
4715 } // End of switch
4716
4717 return this;
4718 }
4719
4720 #ifndef PRODUCT
4721 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4722 _ptrtype->dump2(d, depth, st);
4723 }
4724 #endif
4725
4726 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4727 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4728
4729
4730 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4731 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4732 }
4733
4734 const Type* TypeNarrowOop::remove_speculative() const {
4735 return make(_ptrtype->remove_speculative()->is_ptr());
4736 }
4737
4738 const Type* TypeNarrowOop::cleanup_speculative() const {
4739 return make(_ptrtype->cleanup_speculative()->is_ptr());
4740 }
4741
4742 #ifndef PRODUCT
4743 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4744 st->print("narrowoop: ");
4745 TypeNarrowPtr::dump2(d, depth, st);
4746 }
4747 #endif
4748
4749 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4750
4751 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4752 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4753 }
4754
4755 #ifndef PRODUCT
4756 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4757 st->print("narrowklass: ");
4758 TypeNarrowPtr::dump2(d, depth, st);
4759 }
4760 #endif
4761
4762
4763 //------------------------------eq---------------------------------------------
4764 // Structural equality check for Type representations
4765 bool TypeMetadataPtr::eq( const Type *t ) const {
4766 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4767 ciMetadata* one = metadata();
4768 ciMetadata* two = a->metadata();
4769 if (one == nullptr || two == nullptr) {
4770 return (one == two) && TypePtr::eq(t);
4771 } else {
4772 return one->equals(two) && TypePtr::eq(t);
4773 }
4774 }
4775
4776 //------------------------------hash-------------------------------------------
4777 // Type-specific hashing function.
4778 int TypeMetadataPtr::hash(void) const {
4779 return
4780 (metadata() ? metadata()->hash() : 0) +
4781 TypePtr::hash();
4782 }
4783
4784 //------------------------------singleton--------------------------------------
4785 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
4786 // constants
4787 bool TypeMetadataPtr::singleton(void) const {
4788 // detune optimizer to not generate constant metadata + constant offset as a constant!
4789 // TopPTR, Null, AnyNull, Constant are all singletons
4790 return (_offset == 0) && !below_centerline(_ptr);
4791 }
4792
4793 //------------------------------add_offset-------------------------------------
4794 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4795 return make( _ptr, _metadata, xadd_offset(offset));
4796 }
4797
4798 //-----------------------------filter------------------------------------------
4799 // Do not allow interface-vs.-noninterface joins to collapse to top.
4800 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4801 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4802 if (ft == nullptr || ft->empty())
4803 return Type::TOP; // Canonical empty value
4804 return ft;
4805 }
4806
4807 //------------------------------get_con----------------------------------------
4808 intptr_t TypeMetadataPtr::get_con() const {
4809 assert( _ptr == Null || _ptr == Constant, "" );
4810 assert( _offset >= 0, "" );
4811
4812 if (_offset != 0) {
4813 // After being ported to the compiler interface, the compiler no longer
4814 // directly manipulates the addresses of oops. Rather, it only has a pointer
4815 // to a handle at compile time. This handle is embedded in the generated
4816 // code and dereferenced at the time the nmethod is made. Until that time,
4817 // it is not reasonable to do arithmetic with the addresses of oops (we don't
4818 // have access to the addresses!). This does not seem to currently happen,
4819 // but this assertion here is to help prevent its occurence.
4820 tty->print_cr("Found oop constant with non-zero offset");
4821 ShouldNotReachHere();
4822 }
4823
4824 return (intptr_t)metadata()->constant_encoding();
4825 }
4826
4827 //------------------------------cast_to_ptr_type-------------------------------
4828 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4829 if( ptr == _ptr ) return this;
4830 return make(ptr, metadata(), _offset);
4831 }
4832
4833 //------------------------------meet-------------------------------------------
4834 // Compute the MEET of two types. It returns a new Type object.
4835 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4836 // Perform a fast test for common case; meeting the same types together.
4837 if( this == t ) return this; // Meeting same type-rep?
4838
4839 // Current "this->_base" is OopPtr
4840 switch (t->base()) { // switch on original type
4841
4842 case Int: // Mixing ints & oops happens when javac
4843 case Long: // reuses local variables
4844 case FloatTop:
4845 case FloatCon:
4846 case FloatBot:
4847 case DoubleTop:
4848 case DoubleCon:
4849 case DoubleBot:
4850 case NarrowOop:
4851 case NarrowKlass:
4852 case Bottom: // Ye Olde Default
4853 return Type::BOTTOM;
4854 case Top:
4855 return this;
4856
4857 default: // All else is a mistake
4858 typerr(t);
4859
4860 case AnyPtr: {
4861 // Found an AnyPtr type vs self-OopPtr type
4862 const TypePtr *tp = t->is_ptr();
4863 int offset = meet_offset(tp->offset());
4864 PTR ptr = meet_ptr(tp->ptr());
4865 switch (tp->ptr()) {
4866 case Null:
4867 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4868 // else fall through:
4869 case TopPTR:
4870 case AnyNull: {
4871 return make(ptr, _metadata, offset);
4872 }
4873 case BotPTR:
4874 case NotNull:
4875 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4876 default: typerr(t);
4877 }
4878 }
4879
4880 case RawPtr:
4881 case KlassPtr:
4882 case OopPtr:
4883 case InstPtr:
4884 case AryPtr:
4885 return TypePtr::BOTTOM; // Oop meet raw is not well defined
4886
4887 case MetadataPtr: {
4888 const TypeMetadataPtr *tp = t->is_metadataptr();
4889 int offset = meet_offset(tp->offset());
4890 PTR tptr = tp->ptr();
4891 PTR ptr = meet_ptr(tptr);
4892 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4893 if (tptr == TopPTR || _ptr == TopPTR ||
4894 metadata()->equals(tp->metadata())) {
4895 return make(ptr, md, offset);
4896 }
4897 // metadata is different
4898 if( ptr == Constant ) { // Cannot be equal constants, so...
4899 if( tptr == Constant && _ptr != Constant) return t;
4900 if( _ptr == Constant && tptr != Constant) return this;
4901 ptr = NotNull; // Fall down in lattice
4902 }
4903 return make(ptr, nullptr, offset);
4904 break;
4905 }
4906 } // End of switch
4907 return this; // Return the double constant
4908 }
4909
4910
4911 //------------------------------xdual------------------------------------------
4912 // Dual of a pure metadata pointer.
4913 const Type *TypeMetadataPtr::xdual() const {
4914 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4915 }
4916
4917 //------------------------------dump2------------------------------------------
4918 #ifndef PRODUCT
4919 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4920 st->print("metadataptr:%s", ptr_msg[_ptr]);
4921 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4922 switch( _offset ) {
4923 case OffsetTop: st->print("+top"); break;
4924 case OffsetBot: st->print("+any"); break;
4925 case 0: break;
4926 default: st->print("+%d",_offset); break;
4927 }
4928 }
4929 #endif
4930
4931
4932 //=============================================================================
4933 // Convenience common pre-built type.
4934 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4935
4936 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4937 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4938 }
4939
4940 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4941 return make(Constant, m, 0);
4942 }
4943 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4944 return make(Constant, m, 0);
4945 }
4946
4947 //------------------------------make-------------------------------------------
4948 // Create a meta data constant
4949 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4950 assert(m == nullptr || !m->is_klass(), "wrong type");
4951 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4952 }
4953
4954
4955 //=============================================================================
4956 // Convenience common pre-built types.
4957
4958 // Not-null object klass or below
4959 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4960 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4961
4962 //------------------------------TypeKlassPtr-----------------------------------
4963 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4964 : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4965 }
4966
4967 //------------------------------make-------------------------------------------
4968 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4969 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4970 assert( k != nullptr, "Expect a non-nullptr klass");
4971 assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4972 TypeKlassPtr *r =
4973 (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4974
4975 return r;
4976 }
4977
4978 //------------------------------eq---------------------------------------------
4979 // Structural equality check for Type representations
4980 bool TypeKlassPtr::eq( const Type *t ) const {
4981 const TypeKlassPtr *p = t->is_klassptr();
4982 return
4983 klass()->equals(p->klass()) &&
4984 TypePtr::eq(p);
4985 }
4986
4987 //------------------------------hash-------------------------------------------
4988 // Type-specific hashing function.
4989 int TypeKlassPtr::hash(void) const {
4990 return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4991 }
4992
4993 //------------------------------singleton--------------------------------------
4994 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
4995 // constants
4996 bool TypeKlassPtr::singleton(void) const {
4997 // detune optimizer to not generate constant klass + constant offset as a constant!
4998 // TopPTR, Null, AnyNull, Constant are all singletons
4999 return (_offset == 0) && !below_centerline(_ptr);
5000 }
5001
5002 // Do not allow interface-vs.-noninterface joins to collapse to top.
5003 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5004 // logic here mirrors the one from TypeOopPtr::filter. See comments
5005 // there.
5006 const Type* ft = join_helper(kills, include_speculative);
5007 const TypeKlassPtr* ftkp = ft->isa_klassptr();
5008 const TypeKlassPtr* ktkp = kills->isa_klassptr();
5009
5010 if (ft->empty()) {
5011 if (!empty() && ktkp != nullptr && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5012 return kills; // Uplift to interface
5013
5014 return Type::TOP; // Canonical empty value
5015 }
5016
5017 // Interface klass type could be exact in opposite to interface type,
5018 // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5019 if (ftkp != nullptr && ktkp != nullptr &&
5020 ftkp->is_loaded() && ftkp->klass()->is_interface() &&
5021 !ftkp->klass_is_exact() && // Keep exact interface klass
5022 ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5023 return ktkp->cast_to_ptr_type(ftkp->ptr());
5024 }
5025
5026 return ft;
5027 }
5028
5029 //----------------------compute_klass------------------------------------------
5030 // Compute the defining klass for this class
5031 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5032 // Compute _klass based on element type.
5033 ciKlass* k_ary = nullptr;
5034 const TypeInstPtr *tinst;
5035 const TypeAryPtr *tary;
5036 const Type* el = elem();
5037 if (el->isa_narrowoop()) {
5038 el = el->make_ptr();
5039 }
5040
5041 // Get element klass
5042 if ((tinst = el->isa_instptr()) != nullptr) {
5043 // Compute array klass from element klass
5044 k_ary = ciObjArrayKlass::make(tinst->klass());
5045 } else if ((tary = el->isa_aryptr()) != nullptr) {
5046 // Compute array klass from element klass
5047 ciKlass* k_elem = tary->klass();
5048 // If element type is something like bottom[], k_elem will be null.
5049 if (k_elem != nullptr)
5050 k_ary = ciObjArrayKlass::make(k_elem);
5051 } else if ((el->base() == Type::Top) ||
5052 (el->base() == Type::Bottom)) {
5053 // element type of Bottom occurs from meet of basic type
5054 // and object; Top occurs when doing join on Bottom.
5055 // Leave k_ary at null.
5056 } else {
5057 // Cannot compute array klass directly from basic type,
5058 // since subtypes of TypeInt all have basic type T_INT.
5059 #ifdef ASSERT
5060 if (verify && el->isa_int()) {
5061 // Check simple cases when verifying klass.
5062 BasicType bt = T_ILLEGAL;
5063 if (el == TypeInt::BYTE) {
5064 bt = T_BYTE;
5065 } else if (el == TypeInt::SHORT) {
5066 bt = T_SHORT;
5067 } else if (el == TypeInt::CHAR) {
5068 bt = T_CHAR;
5069 } else if (el == TypeInt::INT) {
5070 bt = T_INT;
5071 } else {
5072 return _klass; // just return specified klass
5073 }
5074 return ciTypeArrayKlass::make(bt);
5075 }
5076 #endif
5077 assert(!el->isa_int(),
5078 "integral arrays must be pre-equipped with a class");
5079 // Compute array klass directly from basic type
5080 k_ary = ciTypeArrayKlass::make(el->basic_type());
5081 }
5082 return k_ary;
5083 }
5084
5085 //------------------------------klass------------------------------------------
5086 // Return the defining klass for this class
5087 ciKlass* TypeAryPtr::klass() const {
5088 if( _klass ) return _klass; // Return cached value, if possible
5089
5090 // Oops, need to compute _klass and cache it
5091 ciKlass* k_ary = compute_klass();
5092
5093 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5094 // The _klass field acts as a cache of the underlying
5095 // ciKlass for this array type. In order to set the field,
5096 // we need to cast away const-ness.
5097 //
5098 // IMPORTANT NOTE: we *never* set the _klass field for the
5099 // type TypeAryPtr::OOPS. This Type is shared between all
5100 // active compilations. However, the ciKlass which represents
5101 // this Type is *not* shared between compilations, so caching
5102 // this value would result in fetching a dangling pointer.
5103 //
5104 // Recomputing the underlying ciKlass for each request is
5105 // a bit less efficient than caching, but calls to
5106 // TypeAryPtr::OOPS->klass() are not common enough to matter.
5107 ((TypeAryPtr*)this)->_klass = k_ary;
5108 if (UseCompressedOops && k_ary != nullptr && k_ary->is_obj_array_klass() &&
5109 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5110 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5111 }
5112 }
5113 return k_ary;
5114 }
5115
5116
5117 //------------------------------add_offset-------------------------------------
5118 // Access internals of klass object
5119 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5120 return make( _ptr, klass(), xadd_offset(offset) );
5121 }
5122
5123 //------------------------------cast_to_ptr_type-------------------------------
5124 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5125 assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5126 if( ptr == _ptr ) return this;
5127 return make(ptr, _klass, _offset);
5128 }
5129
5130
5131 //-----------------------------cast_to_exactness-------------------------------
5132 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5133 if( klass_is_exact == _klass_is_exact ) return this;
5134 return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5135 }
5136
5137
5138 //-----------------------------as_instance_type--------------------------------
5139 // Corresponding type for an instance of the given class.
5140 // It will be NotNull, and exact if and only if the klass type is exact.
5141 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5142 ciKlass* k = klass();
5143 bool xk = klass_is_exact();
5144 //return TypeInstPtr::make(TypePtr::NotNull, k, xk, nullptr, 0);
5145 const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5146 guarantee(toop != nullptr, "need type for given klass");
5147 toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5148 return toop->cast_to_exactness(xk)->is_oopptr();
5149 }
5150
5151
5152 //------------------------------xmeet------------------------------------------
5153 // Compute the MEET of two types, return a new Type object.
5154 const Type *TypeKlassPtr::xmeet( const Type *t ) const {
5155 // Perform a fast test for common case; meeting the same types together.
5156 if( this == t ) return this; // Meeting same type-rep?
5157
5158 // Current "this->_base" is Pointer
5159 switch (t->base()) { // switch on original type
5160
5161 case Int: // Mixing ints & oops happens when javac
5162 case Long: // reuses local variables
5163 case FloatTop:
5164 case FloatCon:
5165 case FloatBot:
5166 case DoubleTop:
5167 case DoubleCon:
5168 case DoubleBot:
5169 case NarrowOop:
5170 case NarrowKlass:
5171 case Bottom: // Ye Olde Default
5172 return Type::BOTTOM;
5173 case Top:
5174 return this;
5175
5176 default: // All else is a mistake
5177 typerr(t);
5178
5179 case AnyPtr: { // Meeting to AnyPtrs
5180 // Found an AnyPtr type vs self-KlassPtr type
5181 const TypePtr *tp = t->is_ptr();
5182 int offset = meet_offset(tp->offset());
5183 PTR ptr = meet_ptr(tp->ptr());
5184 switch (tp->ptr()) {
5185 case TopPTR:
5186 return this;
5187 case Null:
5188 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5189 case AnyNull:
5190 return make( ptr, klass(), offset );
5191 case BotPTR:
5192 case NotNull:
5193 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5194 default: typerr(t);
5195 }
5196 }
5197
5198 case RawPtr:
5199 case MetadataPtr:
5200 case OopPtr:
5201 case AryPtr: // Meet with AryPtr
5202 case InstPtr: // Meet with InstPtr
5203 return TypePtr::BOTTOM;
5204
5205 //
5206 // A-top }
5207 // / | \ } Tops
5208 // B-top A-any C-top }
5209 // | / | \ | } Any-nulls
5210 // B-any | C-any }
5211 // | | |
5212 // B-con A-con C-con } constants; not comparable across classes
5213 // | | |
5214 // B-not | C-not }
5215 // | \ | / | } not-nulls
5216 // B-bot A-not C-bot }
5217 // \ | / } Bottoms
5218 // A-bot }
5219 //
5220
5221 case KlassPtr: { // Meet two KlassPtr types
5222 const TypeKlassPtr *tkls = t->is_klassptr();
5223 int off = meet_offset(tkls->offset());
5224 PTR ptr = meet_ptr(tkls->ptr());
5225
5226 // Check for easy case; klasses are equal (and perhaps not loaded!)
5227 // If we have constants, then we created oops so classes are loaded
5228 // and we can handle the constants further down. This case handles
5229 // not-loaded classes
5230 if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5231 return make( ptr, klass(), off );
5232 }
5233
5234 // Classes require inspection in the Java klass hierarchy. Must be loaded.
5235 ciKlass* tkls_klass = tkls->klass();
5236 ciKlass* this_klass = this->klass();
5237 assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5238 assert( this_klass->is_loaded(), "This class should have been loaded.");
5239
5240 // If 'this' type is above the centerline and is a superclass of the
5241 // other, we can treat 'this' as having the same type as the other.
5242 if ((above_centerline(this->ptr())) &&
5243 tkls_klass->is_subtype_of(this_klass)) {
5244 this_klass = tkls_klass;
5245 }
5246 // If 'tinst' type is above the centerline and is a superclass of the
5247 // other, we can treat 'tinst' as having the same type as the other.
5248 if ((above_centerline(tkls->ptr())) &&
5249 this_klass->is_subtype_of(tkls_klass)) {
5250 tkls_klass = this_klass;
5251 }
5252
5253 // Check for classes now being equal
5254 if (tkls_klass->equals(this_klass)) {
5255 // If the klasses are equal, the constants may still differ. Fall to
5256 // NotNull if they do (neither constant is null; that is a special case
5257 // handled elsewhere).
5258 if( ptr == Constant ) {
5259 if (this->_ptr == Constant && tkls->_ptr == Constant &&
5260 this->klass()->equals(tkls->klass()));
5261 else if (above_centerline(this->ptr()));
5262 else if (above_centerline(tkls->ptr()));
5263 else
5264 ptr = NotNull;
5265 }
5266 return make( ptr, this_klass, off );
5267 } // Else classes are not equal
5268
5269 // Since klasses are different, we require the LCA in the Java
5270 // class hierarchy - which means we have to fall to at least NotNull.
5271 if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5272 ptr = NotNull;
5273 // Now we find the LCA of Java classes
5274 ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5275 return make( ptr, k, off );
5276 } // End of case KlassPtr
5277
5278 } // End of switch
5279 return this; // Return the double constant
5280 }
5281
5282 //------------------------------xdual------------------------------------------
5283 // Dual: compute field-by-field dual
5284 const Type *TypeKlassPtr::xdual() const {
5285 return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5286 }
5287
5288 //------------------------------get_con----------------------------------------
5289 intptr_t TypeKlassPtr::get_con() const {
5290 assert( _ptr == Null || _ptr == Constant, "" );
5291 assert( _offset >= 0, "" );
5292
5293 if (_offset != 0) {
5294 // After being ported to the compiler interface, the compiler no longer
5295 // directly manipulates the addresses of oops. Rather, it only has a pointer
5296 // to a handle at compile time. This handle is embedded in the generated
5297 // code and dereferenced at the time the nmethod is made. Until that time,
5298 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5299 // have access to the addresses!). This does not seem to currently happen,
5300 // but this assertion here is to help prevent its occurence.
5301 tty->print_cr("Found oop constant with non-zero offset");
5302 ShouldNotReachHere();
5303 }
5304
5305 return (intptr_t)klass()->constant_encoding();
5306 }
5307 //------------------------------dump2------------------------------------------
5308 // Dump Klass Type
5309 #ifndef PRODUCT
5310 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5311 switch( _ptr ) {
5312 case Constant:
5313 st->print("precise ");
5314 case NotNull:
5315 {
5316 const char *name = klass()->name()->as_utf8();
5317 if( name ) {
5318 st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5319 } else {
5320 ShouldNotReachHere();
5321 }
5322 }
5323 case BotPTR:
5324 if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5325 case TopPTR:
5326 case AnyNull:
5327 st->print(":%s", ptr_msg[_ptr]);
5328 if( _klass_is_exact ) st->print(":exact");
5329 break;
5330 default:
5331 break;
5332 }
5333
5334 if( _offset ) { // Dump offset, if any
5335 if( _offset == OffsetBot ) { st->print("+any"); }
5336 else if( _offset == OffsetTop ) { st->print("+unknown"); }
5337 else { st->print("+%d", _offset); }
5338 }
5339
5340 st->print(" *");
5341 }
5342 #endif
5343
5344
5345
5346 //=============================================================================
5347 // Convenience common pre-built types.
5348
5349 //------------------------------make-------------------------------------------
5350 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5351 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5352 }
5353
5354 //------------------------------make-------------------------------------------
5355 const TypeFunc *TypeFunc::make(ciMethod* method) {
5356 Compile* C = Compile::current();
5357 const TypeFunc* tf = C->last_tf(method); // check cache
5358 if (tf != nullptr) return tf; // The hit rate here is almost 50%.
5359 const TypeTuple *domain;
5360 if (method->is_static()) {
5361 domain = TypeTuple::make_domain(nullptr, method->signature());
5362 } else {
5363 domain = TypeTuple::make_domain(method->holder(), method->signature());
5364 }
5365 const TypeTuple *range = TypeTuple::make_range(method->signature());
5366 tf = TypeFunc::make(domain, range);
5367 C->set_last_tf(method, tf); // fill cache
5368 return tf;
5369 }
5370
5371 //------------------------------meet-------------------------------------------
5372 // Compute the MEET of two types. It returns a new Type object.
5373 const Type *TypeFunc::xmeet( const Type *t ) const {
5374 // Perform a fast test for common case; meeting the same types together.
5375 if( this == t ) return this; // Meeting same type-rep?
5376
5377 // Current "this->_base" is Func
5378 switch (t->base()) { // switch on original type
5379
5380 case Bottom: // Ye Olde Default
5381 return t;
5382
5383 default: // All else is a mistake
5384 typerr(t);
5385
5386 case Top:
5387 break;
5388 }
5389 return this; // Return the double constant
5390 }
5391
5392 //------------------------------xdual------------------------------------------
5393 // Dual: compute field-by-field dual
5394 const Type *TypeFunc::xdual() const {
5395 return this;
5396 }
5397
5398 //------------------------------eq---------------------------------------------
5399 // Structural equality check for Type representations
5400 bool TypeFunc::eq( const Type *t ) const {
5401 const TypeFunc *a = (const TypeFunc*)t;
5402 return _domain == a->_domain &&
5403 _range == a->_range;
5404 }
5405
5406 //------------------------------hash-------------------------------------------
5407 // Type-specific hashing function.
5408 int TypeFunc::hash(void) const {
5409 return (intptr_t)_domain + (intptr_t)_range;
5410 }
5411
5412 //------------------------------dump2------------------------------------------
5413 // Dump Function Type
5414 #ifndef PRODUCT
5415 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5416 if( _range->cnt() <= Parms )
5417 st->print("void");
5418 else {
5419 uint i;
5420 for (i = Parms; i < _range->cnt()-1; i++) {
5421 _range->field_at(i)->dump2(d,depth,st);
5422 st->print("/");
5423 }
5424 _range->field_at(i)->dump2(d,depth,st);
5425 }
5426 st->print(" ");
5427 st->print("( ");
5428 if( !depth || d[this] ) { // Check for recursive dump
5429 st->print("...)");
5430 return;
5431 }
5432 d.Insert((void*)this,(void*)this); // Stop recursion
5433 if (Parms < _domain->cnt())
5434 _domain->field_at(Parms)->dump2(d,depth-1,st);
5435 for (uint i = Parms+1; i < _domain->cnt(); i++) {
5436 st->print(", ");
5437 _domain->field_at(i)->dump2(d,depth-1,st);
5438 }
5439 st->print(" )");
5440 }
5441 #endif
5442
5443 //------------------------------singleton--------------------------------------
5444 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5445 // constants (Ldi nodes). Singletons are integer, float or double constants
5446 // or a single symbol.
5447 bool TypeFunc::singleton(void) const {
5448 return false; // Never a singleton
5449 }
5450
5451 bool TypeFunc::empty(void) const {
5452 return false; // Never empty
5453 }
5454
5455
5456 BasicType TypeFunc::return_type() const{
5457 if (range()->cnt() == TypeFunc::Parms) {
5458 return T_VOID;
5459 }
5460 return range()->field_at(TypeFunc::Parms)->basic_type();
5461 }
--- EOF ---