1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/nmethod.hpp" 34 #include "code/pcDesc.hpp" 35 #include "code/scopeDesc.hpp" 36 #include "compiler/compilationPolicy.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/interpreter.hpp" 40 #include "interpreter/oopMapCache.hpp" 41 #include "memory/allocation.inline.hpp" 42 #include "memory/oopFactory.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "oops/constantPool.hpp" 46 #include "oops/method.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/objArrayOop.inline.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "oops/fieldStreams.inline.hpp" 51 #include "oops/typeArrayOop.inline.hpp" 52 #include "oops/verifyOopClosure.hpp" 53 #include "prims/jvmtiDeferredUpdates.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/vectorSupport.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/biasedLocking.hpp" 60 #include "runtime/deoptimization.hpp" 61 #include "runtime/escapeBarrier.hpp" 62 #include "runtime/fieldDescriptor.hpp" 63 #include "runtime/fieldDescriptor.inline.hpp" 64 #include "runtime/frame.inline.hpp" 65 #include "runtime/handles.inline.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/jniHandles.inline.hpp" 68 #include "runtime/keepStackGCProcessed.hpp" 69 #include "runtime/objectMonitor.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/safepointVerifiers.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/signature.hpp" 74 #include "runtime/stackFrameStream.inline.hpp" 75 #include "runtime/stackWatermarkSet.hpp" 76 #include "runtime/stubRoutines.hpp" 77 #include "runtime/thread.hpp" 78 #include "runtime/threadSMR.hpp" 79 #include "runtime/threadWXSetters.inline.hpp" 80 #include "runtime/vframe.hpp" 81 #include "runtime/vframeArray.hpp" 82 #include "runtime/vframe_hp.hpp" 83 #include "runtime/vmOperations.hpp" 84 #include "utilities/events.hpp" 85 #include "utilities/macros.hpp" 86 #include "utilities/preserveException.hpp" 87 #include "utilities/xmlstream.hpp" 88 #if INCLUDE_JFR 89 #include "jfr/jfrEvents.hpp" 90 #include "jfr/metadata/jfrSerializer.hpp" 91 #endif 92 93 bool DeoptimizationMarker::_is_active = false; 94 95 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 96 int caller_adjustment, 97 int caller_actual_parameters, 98 int number_of_frames, 99 intptr_t* frame_sizes, 100 address* frame_pcs, 101 BasicType return_type, 102 int exec_mode) { 103 _size_of_deoptimized_frame = size_of_deoptimized_frame; 104 _caller_adjustment = caller_adjustment; 105 _caller_actual_parameters = caller_actual_parameters; 106 _number_of_frames = number_of_frames; 107 _frame_sizes = frame_sizes; 108 _frame_pcs = frame_pcs; 109 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 110 _return_type = return_type; 111 _initial_info = 0; 112 // PD (x86 only) 113 _counter_temp = 0; 114 _unpack_kind = exec_mode; 115 _sender_sp_temp = 0; 116 117 _total_frame_sizes = size_of_frames(); 118 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 119 } 120 121 122 Deoptimization::UnrollBlock::~UnrollBlock() { 123 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 124 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 125 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 126 } 127 128 129 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const { 130 assert(register_number < RegisterMap::reg_count, "checking register number"); 131 return &_register_block[register_number * 2]; 132 } 133 134 135 136 int Deoptimization::UnrollBlock::size_of_frames() const { 137 // Acount first for the adjustment of the initial frame 138 int result = _caller_adjustment; 139 for (int index = 0; index < number_of_frames(); index++) { 140 result += frame_sizes()[index]; 141 } 142 return result; 143 } 144 145 146 void Deoptimization::UnrollBlock::print() { 147 ResourceMark rm; 148 stringStream st; 149 st.print_cr("UnrollBlock"); 150 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 151 st.print( " frame_sizes: "); 152 for (int index = 0; index < number_of_frames(); index++) { 153 st.print(INTX_FORMAT " ", frame_sizes()[index]); 154 } 155 st.cr(); 156 tty->print_raw(st.as_string()); 157 } 158 159 160 // In order to make fetch_unroll_info work properly with escape 161 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 162 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 163 // which is called from the method fetch_unroll_info_helper below. 164 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 165 // fetch_unroll_info() is called at the beginning of the deoptimization 166 // handler. Note this fact before we start generating temporary frames 167 // that can confuse an asynchronous stack walker. This counter is 168 // decremented at the end of unpack_frames(). 169 if (TraceDeoptimization) { 170 tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(current)); 171 } 172 current->inc_in_deopt_handler(); 173 174 if (exec_mode == Unpack_exception) { 175 // When we get here, a callee has thrown an exception into a deoptimized 176 // frame. That throw might have deferred stack watermark checking until 177 // after unwinding. So we deal with such deferred requests here. 178 StackWatermarkSet::after_unwind(current); 179 } 180 181 return fetch_unroll_info_helper(current, exec_mode); 182 JRT_END 183 184 #if COMPILER2_OR_JVMCI 185 #ifndef PRODUCT 186 // print information about reallocated objects 187 static void print_objects(JavaThread* deoptee_thread, 188 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 189 ResourceMark rm; 190 stringStream st; // change to logStream with logging 191 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 192 fieldDescriptor fd; 193 194 for (int i = 0; i < objects->length(); i++) { 195 ObjectValue* sv = (ObjectValue*) objects->at(i); 196 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 197 Handle obj = sv->value(); 198 199 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 200 k->print_value_on(&st); 201 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 202 if (obj.is_null()) { 203 st.print(" allocation failed"); 204 } else { 205 st.print(" allocated (%d bytes)", obj->size() * HeapWordSize); 206 } 207 st.cr(); 208 209 if (Verbose && !obj.is_null()) { 210 k->oop_print_on(obj(), &st); 211 } 212 } 213 tty->print_raw(st.as_string()); 214 } 215 #endif 216 217 static bool rematerialize_objects(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method, 218 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 219 bool& deoptimized_objects) { 220 bool realloc_failures = false; 221 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames"); 222 223 JavaThread* deoptee_thread = chunk->at(0)->thread(); 224 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 225 "a frame can only be deoptimized by the owner thread"); 226 227 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects(); 228 229 // The flag return_oop() indicates call sites which return oop 230 // in compiled code. Such sites include java method calls, 231 // runtime calls (for example, used to allocate new objects/arrays 232 // on slow code path) and any other calls generated in compiled code. 233 // It is not guaranteed that we can get such information here only 234 // by analyzing bytecode in deoptimized frames. This is why this flag 235 // is set during method compilation (see Compile::Process_OopMap_Node()). 236 // If the previous frame was popped or if we are dispatching an exception, 237 // we don't have an oop result. 238 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 239 Handle return_value; 240 if (save_oop_result) { 241 // Reallocation may trigger GC. If deoptimization happened on return from 242 // call which returns oop we need to save it since it is not in oopmap. 243 oop result = deoptee.saved_oop_result(&map); 244 assert(oopDesc::is_oop_or_null(result), "must be oop"); 245 return_value = Handle(thread, result); 246 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 247 if (TraceDeoptimization) { 248 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 249 } 250 } 251 if (objects != NULL) { 252 if (exec_mode == Deoptimization::Unpack_none) { 253 assert(thread->thread_state() == _thread_in_vm, "assumption"); 254 JavaThread* THREAD = thread; // For exception macros. 255 // Clear pending OOM if reallocation fails and return true indicating allocation failure 256 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 257 deoptimized_objects = true; 258 } else { 259 JavaThread* current = thread; // For JRT_BLOCK 260 JRT_BLOCK 261 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 262 JRT_END 263 } 264 bool skip_internal = (compiled_method != NULL) && !compiled_method->is_compiled_by_jvmci(); 265 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 266 #ifndef PRODUCT 267 if (TraceDeoptimization) { 268 print_objects(deoptee_thread, objects, realloc_failures); 269 } 270 #endif 271 } 272 if (save_oop_result) { 273 // Restore result. 274 deoptee.set_saved_oop_result(&map, return_value()); 275 } 276 return realloc_failures; 277 } 278 279 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 280 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 281 JavaThread* deoptee_thread = chunk->at(0)->thread(); 282 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 283 assert(thread == Thread::current(), "should be"); 284 HandleMark hm(thread); 285 #ifndef PRODUCT 286 bool first = true; 287 #endif 288 for (int i = 0; i < chunk->length(); i++) { 289 compiledVFrame* cvf = chunk->at(i); 290 assert (cvf->scope() != NULL,"expect only compiled java frames"); 291 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 292 if (monitors->is_nonempty()) { 293 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 294 exec_mode, realloc_failures); 295 deoptimized_objects = deoptimized_objects || relocked; 296 #ifndef PRODUCT 297 if (PrintDeoptimizationDetails) { 298 ResourceMark rm; 299 stringStream st; 300 for (int j = 0; j < monitors->length(); j++) { 301 MonitorInfo* mi = monitors->at(j); 302 if (mi->eliminated()) { 303 if (first) { 304 first = false; 305 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 306 } 307 if (exec_mode == Deoptimization::Unpack_none) { 308 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 309 if (monitor != NULL && monitor->object() == mi->owner()) { 310 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 311 continue; 312 } 313 } 314 if (mi->owner_is_scalar_replaced()) { 315 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 316 st.print_cr(" failed reallocation for klass %s", k->external_name()); 317 } else { 318 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 319 } 320 } 321 } 322 tty->print_raw(st.as_string()); 323 } 324 #endif // !PRODUCT 325 } 326 } 327 } 328 329 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 330 // The given vframes cover one physical frame. 331 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 332 bool& realloc_failures) { 333 frame deoptee = chunk->at(0)->fr(); 334 JavaThread* deoptee_thread = chunk->at(0)->thread(); 335 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 336 RegisterMap map(chunk->at(0)->register_map()); 337 bool deoptimized_objects = false; 338 339 bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false); 340 341 // Reallocate the non-escaping objects and restore their fields. 342 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 343 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 344 realloc_failures = rematerialize_objects(thread, Unpack_none, cm, deoptee, map, chunk, deoptimized_objects); 345 } 346 347 // Revoke biases of objects with eliminated locks in the given frame. 348 Deoptimization::revoke_for_object_deoptimization(deoptee_thread, deoptee, &map, thread); 349 350 // MonitorInfo structures used in eliminate_locks are not GC safe. 351 NoSafepointVerifier no_safepoint; 352 353 // Now relock objects if synchronization on them was eliminated. 354 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 355 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 356 } 357 return deoptimized_objects; 358 } 359 #endif // COMPILER2_OR_JVMCI 360 361 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 362 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 363 // When we get here we are about to unwind the deoptee frame. In order to 364 // catch not yet safe to use frames, the following stack watermark barrier 365 // poll will make such frames safe to use. 366 StackWatermarkSet::before_unwind(current); 367 368 // Note: there is a safepoint safety issue here. No matter whether we enter 369 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 370 // the vframeArray is created. 371 // 372 373 // Allocate our special deoptimization ResourceMark 374 DeoptResourceMark* dmark = new DeoptResourceMark(current); 375 assert(current->deopt_mark() == NULL, "Pending deopt!"); 376 current->set_deopt_mark(dmark); 377 378 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 379 RegisterMap map(current, true); 380 RegisterMap dummy_map(current, false); 381 // Now get the deoptee with a valid map 382 frame deoptee = stub_frame.sender(&map); 383 // Set the deoptee nmethod 384 assert(current->deopt_compiled_method() == NULL, "Pending deopt!"); 385 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 386 current->set_deopt_compiled_method(cm); 387 388 if (VerifyStack) { 389 current->validate_frame_layout(); 390 } 391 392 // Create a growable array of VFrames where each VFrame represents an inlined 393 // Java frame. This storage is allocated with the usual system arena. 394 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 395 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 396 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 397 while (!vf->is_top()) { 398 assert(vf->is_compiled_frame(), "Wrong frame type"); 399 chunk->push(compiledVFrame::cast(vf)); 400 vf = vf->sender(); 401 } 402 assert(vf->is_compiled_frame(), "Wrong frame type"); 403 chunk->push(compiledVFrame::cast(vf)); 404 405 bool realloc_failures = false; 406 407 #if COMPILER2_OR_JVMCI 408 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 409 410 // Reallocate the non-escaping objects and restore their fields. Then 411 // relock objects if synchronization on them was eliminated. 412 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 413 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 414 bool unused; 415 realloc_failures = rematerialize_objects(current, exec_mode, cm, deoptee, map, chunk, unused); 416 } 417 #endif // COMPILER2_OR_JVMCI 418 419 // Revoke biases, done with in java state. 420 // No safepoints allowed after this 421 revoke_from_deopt_handler(current, deoptee, &map); 422 423 // Ensure that no safepoint is taken after pointers have been stored 424 // in fields of rematerialized objects. If a safepoint occurs from here on 425 // out the java state residing in the vframeArray will be missed. 426 // Locks may be rebaised in a safepoint. 427 NoSafepointVerifier no_safepoint; 428 429 #if COMPILER2_OR_JVMCI 430 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 431 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 432 bool unused; 433 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 434 } 435 #endif // COMPILER2_OR_JVMCI 436 437 ScopeDesc* trap_scope = chunk->at(0)->scope(); 438 Handle exceptionObject; 439 if (trap_scope->rethrow_exception()) { 440 if (PrintDeoptimizationDetails) { 441 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 442 } 443 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 444 guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw"); 445 ScopeValue* topOfStack = expressions->top(); 446 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 447 guarantee(exceptionObject() != NULL, "exception oop can not be null"); 448 } 449 450 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 451 #if COMPILER2_OR_JVMCI 452 if (realloc_failures) { 453 pop_frames_failed_reallocs(current, array); 454 } 455 #endif 456 457 assert(current->vframe_array_head() == NULL, "Pending deopt!"); 458 current->set_vframe_array_head(array); 459 460 // Now that the vframeArray has been created if we have any deferred local writes 461 // added by jvmti then we can free up that structure as the data is now in the 462 // vframeArray 463 464 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 465 466 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 467 CodeBlob* cb = stub_frame.cb(); 468 // Verify we have the right vframeArray 469 assert(cb->frame_size() >= 0, "Unexpected frame size"); 470 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 471 472 // If the deopt call site is a MethodHandle invoke call site we have 473 // to adjust the unpack_sp. 474 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 475 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc())) 476 unpack_sp = deoptee.unextended_sp(); 477 478 #ifdef ASSERT 479 assert(cb->is_deoptimization_stub() || 480 cb->is_uncommon_trap_stub() || 481 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 482 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 483 "unexpected code blob: %s", cb->name()); 484 #endif 485 486 // This is a guarantee instead of an assert because if vframe doesn't match 487 // we will unpack the wrong deoptimized frame and wind up in strange places 488 // where it will be very difficult to figure out what went wrong. Better 489 // to die an early death here than some very obscure death later when the 490 // trail is cold. 491 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 492 // in that it will fail to detect a problem when there is one. This needs 493 // more work in tiger timeframe. 494 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 495 496 int number_of_frames = array->frames(); 497 498 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 499 // virtual activation, which is the reverse of the elements in the vframes array. 500 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 501 // +1 because we always have an interpreter return address for the final slot. 502 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 503 int popframe_extra_args = 0; 504 // Create an interpreter return address for the stub to use as its return 505 // address so the skeletal frames are perfectly walkable 506 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 507 508 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 509 // activation be put back on the expression stack of the caller for reexecution 510 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 511 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 512 } 513 514 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 515 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 516 // than simply use array->sender.pc(). This requires us to walk the current set of frames 517 // 518 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 519 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 520 521 // It's possible that the number of parameters at the call site is 522 // different than number of arguments in the callee when method 523 // handles are used. If the caller is interpreted get the real 524 // value so that the proper amount of space can be added to it's 525 // frame. 526 bool caller_was_method_handle = false; 527 if (deopt_sender.is_interpreted_frame()) { 528 methodHandle method(current, deopt_sender.interpreter_frame_method()); 529 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 530 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 531 // Method handle invokes may involve fairly arbitrary chains of 532 // calls so it's impossible to know how much actual space the 533 // caller has for locals. 534 caller_was_method_handle = true; 535 } 536 } 537 538 // 539 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 540 // frame_sizes/frame_pcs[1] next oldest frame (int) 541 // frame_sizes/frame_pcs[n] youngest frame (int) 542 // 543 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 544 // owns the space for the return address to it's caller). Confusing ain't it. 545 // 546 // The vframe array can address vframes with indices running from 547 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 548 // When we create the skeletal frames we need the oldest frame to be in the zero slot 549 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 550 // so things look a little strange in this loop. 551 // 552 int callee_parameters = 0; 553 int callee_locals = 0; 554 for (int index = 0; index < array->frames(); index++ ) { 555 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 556 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 557 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 558 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 559 callee_locals, 560 index == 0, 561 popframe_extra_args); 562 // This pc doesn't have to be perfect just good enough to identify the frame 563 // as interpreted so the skeleton frame will be walkable 564 // The correct pc will be set when the skeleton frame is completely filled out 565 // The final pc we store in the loop is wrong and will be overwritten below 566 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 567 568 callee_parameters = array->element(index)->method()->size_of_parameters(); 569 callee_locals = array->element(index)->method()->max_locals(); 570 popframe_extra_args = 0; 571 } 572 573 // Compute whether the root vframe returns a float or double value. 574 BasicType return_type; 575 { 576 methodHandle method(current, array->element(0)->method()); 577 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 578 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 579 } 580 581 // Compute information for handling adapters and adjusting the frame size of the caller. 582 int caller_adjustment = 0; 583 584 // Compute the amount the oldest interpreter frame will have to adjust 585 // its caller's stack by. If the caller is a compiled frame then 586 // we pretend that the callee has no parameters so that the 587 // extension counts for the full amount of locals and not just 588 // locals-parms. This is because without a c2i adapter the parm 589 // area as created by the compiled frame will not be usable by 590 // the interpreter. (Depending on the calling convention there 591 // may not even be enough space). 592 593 // QQQ I'd rather see this pushed down into last_frame_adjust 594 // and have it take the sender (aka caller). 595 596 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) { 597 caller_adjustment = last_frame_adjust(0, callee_locals); 598 } else if (callee_locals > callee_parameters) { 599 // The caller frame may need extending to accommodate 600 // non-parameter locals of the first unpacked interpreted frame. 601 // Compute that adjustment. 602 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 603 } 604 605 // If the sender is deoptimized the we must retrieve the address of the handler 606 // since the frame will "magically" show the original pc before the deopt 607 // and we'd undo the deopt. 608 609 frame_pcs[0] = deopt_sender.raw_pc(); 610 611 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc"); 612 613 #if INCLUDE_JVMCI 614 if (exceptionObject() != NULL) { 615 current->set_exception_oop(exceptionObject()); 616 exec_mode = Unpack_exception; 617 } 618 #endif 619 620 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 621 assert(current->has_pending_exception(), "should have thrown OOME"); 622 current->set_exception_oop(current->pending_exception()); 623 current->clear_pending_exception(); 624 exec_mode = Unpack_exception; 625 } 626 627 #if INCLUDE_JVMCI 628 if (current->frames_to_pop_failed_realloc() > 0) { 629 current->set_pending_monitorenter(false); 630 } 631 #endif 632 633 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 634 caller_adjustment * BytesPerWord, 635 caller_was_method_handle ? 0 : callee_parameters, 636 number_of_frames, 637 frame_sizes, 638 frame_pcs, 639 return_type, 640 exec_mode); 641 // On some platforms, we need a way to pass some platform dependent 642 // information to the unpacking code so the skeletal frames come out 643 // correct (initial fp value, unextended sp, ...) 644 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 645 646 if (array->frames() > 1) { 647 if (VerifyStack && TraceDeoptimization) { 648 tty->print_cr("Deoptimizing method containing inlining"); 649 } 650 } 651 652 array->set_unroll_block(info); 653 return info; 654 } 655 656 // Called to cleanup deoptimization data structures in normal case 657 // after unpacking to stack and when stack overflow error occurs 658 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 659 vframeArray *array) { 660 661 // Get array if coming from exception 662 if (array == NULL) { 663 array = thread->vframe_array_head(); 664 } 665 thread->set_vframe_array_head(NULL); 666 667 // Free the previous UnrollBlock 668 vframeArray* old_array = thread->vframe_array_last(); 669 thread->set_vframe_array_last(array); 670 671 if (old_array != NULL) { 672 UnrollBlock* old_info = old_array->unroll_block(); 673 old_array->set_unroll_block(NULL); 674 delete old_info; 675 delete old_array; 676 } 677 678 // Deallocate any resource creating in this routine and any ResourceObjs allocated 679 // inside the vframeArray (StackValueCollections) 680 681 delete thread->deopt_mark(); 682 thread->set_deopt_mark(NULL); 683 thread->set_deopt_compiled_method(NULL); 684 685 686 if (JvmtiExport::can_pop_frame()) { 687 // Regardless of whether we entered this routine with the pending 688 // popframe condition bit set, we should always clear it now 689 thread->clear_popframe_condition(); 690 } 691 692 // unpack_frames() is called at the end of the deoptimization handler 693 // and (in C2) at the end of the uncommon trap handler. Note this fact 694 // so that an asynchronous stack walker can work again. This counter is 695 // incremented at the beginning of fetch_unroll_info() and (in C2) at 696 // the beginning of uncommon_trap(). 697 thread->dec_in_deopt_handler(); 698 } 699 700 // Moved from cpu directories because none of the cpus has callee save values. 701 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 702 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 703 704 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 705 // the days we had adapter frames. When we deoptimize a situation where a 706 // compiled caller calls a compiled caller will have registers it expects 707 // to survive the call to the callee. If we deoptimize the callee the only 708 // way we can restore these registers is to have the oldest interpreter 709 // frame that we create restore these values. That is what this routine 710 // will accomplish. 711 712 // At the moment we have modified c2 to not have any callee save registers 713 // so this problem does not exist and this routine is just a place holder. 714 715 assert(f->is_interpreted_frame(), "must be interpreted"); 716 } 717 718 #ifndef PRODUCT 719 static bool falls_through(Bytecodes::Code bc) { 720 switch (bc) { 721 // List may be incomplete. Here we really only care about bytecodes where compiled code 722 // can deoptimize. 723 case Bytecodes::_goto: 724 case Bytecodes::_goto_w: 725 case Bytecodes::_athrow: 726 return false; 727 default: 728 return true; 729 } 730 } 731 #endif 732 733 // Return BasicType of value being returned 734 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 735 736 // We are already active in the special DeoptResourceMark any ResourceObj's we 737 // allocate will be freed at the end of the routine. 738 739 // JRT_LEAF methods don't normally allocate handles and there is a 740 // NoHandleMark to enforce that. It is actually safe to use Handles 741 // in a JRT_LEAF method, and sometimes desirable, but to do so we 742 // must use ResetNoHandleMark to bypass the NoHandleMark, and 743 // then use a HandleMark to ensure any Handles we do create are 744 // cleaned up in this scope. 745 ResetNoHandleMark rnhm; 746 HandleMark hm(thread); 747 748 frame stub_frame = thread->last_frame(); 749 750 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 751 // must point to the vframeArray for the unpack frame. 752 vframeArray* array = thread->vframe_array_head(); 753 754 #ifndef PRODUCT 755 if (TraceDeoptimization) { 756 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", 757 p2i(thread), p2i(array), exec_mode); 758 } 759 #endif 760 Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d", 761 p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode); 762 763 UnrollBlock* info = array->unroll_block(); 764 765 // We set the last_Java frame. But the stack isn't really parsable here. So we 766 // clear it to make sure JFR understands not to try and walk stacks from events 767 // in here. 768 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 769 thread->frame_anchor()->set_last_Java_sp(NULL); 770 771 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 772 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 773 774 thread->frame_anchor()->set_last_Java_sp(sp); 775 776 BasicType bt = info->return_type(); 777 778 // If we have an exception pending, claim that the return type is an oop 779 // so the deopt_blob does not overwrite the exception_oop. 780 781 if (exec_mode == Unpack_exception) 782 bt = T_OBJECT; 783 784 // Cleanup thread deopt data 785 cleanup_deopt_info(thread, array); 786 787 #ifndef PRODUCT 788 if (VerifyStack) { 789 ResourceMark res_mark; 790 // Clear pending exception to not break verification code (restored afterwards) 791 PreserveExceptionMark pm(thread); 792 793 thread->validate_frame_layout(); 794 795 // Verify that the just-unpacked frames match the interpreter's 796 // notions of expression stack and locals 797 vframeArray* cur_array = thread->vframe_array_last(); 798 RegisterMap rm(thread, false); 799 rm.set_include_argument_oops(false); 800 bool is_top_frame = true; 801 int callee_size_of_parameters = 0; 802 int callee_max_locals = 0; 803 for (int i = 0; i < cur_array->frames(); i++) { 804 vframeArrayElement* el = cur_array->element(i); 805 frame* iframe = el->iframe(); 806 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 807 808 // Get the oop map for this bci 809 InterpreterOopMap mask; 810 int cur_invoke_parameter_size = 0; 811 bool try_next_mask = false; 812 int next_mask_expression_stack_size = -1; 813 int top_frame_expression_stack_adjustment = 0; 814 methodHandle mh(thread, iframe->interpreter_frame_method()); 815 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 816 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 817 int max_bci = mh->code_size(); 818 // Get to the next bytecode if possible 819 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 820 // Check to see if we can grab the number of outgoing arguments 821 // at an uncommon trap for an invoke (where the compiler 822 // generates debug info before the invoke has executed) 823 Bytecodes::Code cur_code = str.next(); 824 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 825 if (Bytecodes::is_invoke(cur_code)) { 826 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 827 cur_invoke_parameter_size = invoke.size_of_parameters(); 828 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 829 callee_size_of_parameters++; 830 } 831 } 832 if (str.bci() < max_bci) { 833 next_code = str.next(); 834 if (next_code >= 0) { 835 // The interpreter oop map generator reports results before 836 // the current bytecode has executed except in the case of 837 // calls. It seems to be hard to tell whether the compiler 838 // has emitted debug information matching the "state before" 839 // a given bytecode or the state after, so we try both 840 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 841 // Get expression stack size for the next bytecode 842 InterpreterOopMap next_mask; 843 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 844 next_mask_expression_stack_size = next_mask.expression_stack_size(); 845 if (Bytecodes::is_invoke(next_code)) { 846 Bytecode_invoke invoke(mh, str.bci()); 847 next_mask_expression_stack_size += invoke.size_of_parameters(); 848 } 849 // Need to subtract off the size of the result type of 850 // the bytecode because this is not described in the 851 // debug info but returned to the interpreter in the TOS 852 // caching register 853 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 854 if (bytecode_result_type != T_ILLEGAL) { 855 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 856 } 857 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 858 try_next_mask = true; 859 } 860 } 861 } 862 863 // Verify stack depth and oops in frame 864 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 865 if (!( 866 /* SPARC */ 867 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 868 /* x86 */ 869 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 870 (try_next_mask && 871 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 872 top_frame_expression_stack_adjustment))) || 873 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 874 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 875 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 876 )) { 877 { 878 // Print out some information that will help us debug the problem 879 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 880 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 881 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 882 if (try_next_mask) { 883 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 884 } 885 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 886 iframe->interpreter_frame_expression_stack_size()); 887 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 888 tty->print_cr(" try_next_mask = %d", try_next_mask); 889 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 890 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 891 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 892 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 893 tty->print_cr(" exec_mode = %d", exec_mode); 894 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 895 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 896 tty->print_cr(" Interpreted frames:"); 897 for (int k = 0; k < cur_array->frames(); k++) { 898 vframeArrayElement* el = cur_array->element(k); 899 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 900 } 901 cur_array->print_on_2(tty); 902 } 903 guarantee(false, "wrong number of expression stack elements during deopt"); 904 } 905 VerifyOopClosure verify; 906 iframe->oops_interpreted_do(&verify, &rm, false); 907 callee_size_of_parameters = mh->size_of_parameters(); 908 callee_max_locals = mh->max_locals(); 909 is_top_frame = false; 910 } 911 } 912 #endif /* !PRODUCT */ 913 914 return bt; 915 JRT_END 916 917 class DeoptimizeMarkedClosure : public HandshakeClosure { 918 public: 919 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 920 void do_thread(Thread* thread) { 921 JavaThread* jt = thread->as_Java_thread(); 922 jt->deoptimize_marked_methods(); 923 } 924 }; 925 926 void Deoptimization::deoptimize_all_marked(nmethod* nmethod_only) { 927 ResourceMark rm; 928 DeoptimizationMarker dm; 929 930 // Make the dependent methods not entrant 931 if (nmethod_only != NULL) { 932 nmethod_only->mark_for_deoptimization(); 933 nmethod_only->make_not_entrant(); 934 } else { 935 MutexLocker mu(SafepointSynchronize::is_at_safepoint() ? NULL : CodeCache_lock, Mutex::_no_safepoint_check_flag); 936 CodeCache::make_marked_nmethods_not_entrant(); 937 } 938 939 DeoptimizeMarkedClosure deopt; 940 if (SafepointSynchronize::is_at_safepoint()) { 941 Threads::java_threads_do(&deopt); 942 } else { 943 Handshake::execute(&deopt); 944 } 945 } 946 947 Deoptimization::DeoptAction Deoptimization::_unloaded_action 948 = Deoptimization::Action_reinterpret; 949 950 #if COMPILER2_OR_JVMCI 951 template<typename CacheType> 952 class BoxCacheBase : public CHeapObj<mtCompiler> { 953 protected: 954 static InstanceKlass* find_cache_klass(Symbol* klass_name) { 955 ResourceMark rm; 956 char* klass_name_str = klass_name->as_C_string(); 957 InstanceKlass* ik = SystemDictionary::find_instance_klass(klass_name, Handle(), Handle()); 958 guarantee(ik != NULL, "%s must be loaded", klass_name_str); 959 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 960 CacheType::compute_offsets(ik); 961 return ik; 962 } 963 }; 964 965 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 966 PrimitiveType _low; 967 PrimitiveType _high; 968 jobject _cache; 969 protected: 970 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 971 BoxCache(Thread* thread) { 972 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol()); 973 objArrayOop cache = CacheType::cache(ik); 974 assert(cache->length() > 0, "Empty cache"); 975 _low = BoxType::value(cache->obj_at(0)); 976 _high = _low + cache->length() - 1; 977 _cache = JNIHandles::make_global(Handle(thread, cache)); 978 } 979 ~BoxCache() { 980 JNIHandles::destroy_global(_cache); 981 } 982 public: 983 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 984 if (_singleton == NULL) { 985 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 986 if (!Atomic::replace_if_null(&_singleton, s)) { 987 delete s; 988 } 989 } 990 return _singleton; 991 } 992 oop lookup(PrimitiveType value) { 993 if (_low <= value && value <= _high) { 994 int offset = value - _low; 995 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 996 } 997 return NULL; 998 } 999 oop lookup_raw(intptr_t raw_value) { 1000 // Have to cast to avoid little/big-endian problems. 1001 if (sizeof(PrimitiveType) > sizeof(jint)) { 1002 jlong value = (jlong)raw_value; 1003 return lookup(value); 1004 } 1005 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1006 return lookup(value); 1007 } 1008 }; 1009 1010 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1011 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1012 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1013 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1014 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1015 1016 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL; 1017 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL; 1018 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL; 1019 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL; 1020 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL; 1021 1022 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1023 jobject _true_cache; 1024 jobject _false_cache; 1025 protected: 1026 static BooleanBoxCache *_singleton; 1027 BooleanBoxCache(Thread *thread) { 1028 InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol()); 1029 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1030 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1031 } 1032 ~BooleanBoxCache() { 1033 JNIHandles::destroy_global(_true_cache); 1034 JNIHandles::destroy_global(_false_cache); 1035 } 1036 public: 1037 static BooleanBoxCache* singleton(Thread* thread) { 1038 if (_singleton == NULL) { 1039 BooleanBoxCache* s = new BooleanBoxCache(thread); 1040 if (!Atomic::replace_if_null(&_singleton, s)) { 1041 delete s; 1042 } 1043 } 1044 return _singleton; 1045 } 1046 oop lookup_raw(intptr_t raw_value) { 1047 // Have to cast to avoid little/big-endian problems. 1048 jboolean value = (jboolean)*((jint*)&raw_value); 1049 return lookup(value); 1050 } 1051 oop lookup(jboolean value) { 1052 if (value != 0) { 1053 return JNIHandles::resolve_non_null(_true_cache); 1054 } 1055 return JNIHandles::resolve_non_null(_false_cache); 1056 } 1057 }; 1058 1059 BooleanBoxCache* BooleanBoxCache::_singleton = NULL; 1060 1061 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) { 1062 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1063 BasicType box_type = vmClasses::box_klass_type(k); 1064 if (box_type != T_OBJECT) { 1065 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1066 switch(box_type) { 1067 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1068 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1069 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1070 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1071 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1072 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1073 default:; 1074 } 1075 } 1076 return NULL; 1077 } 1078 1079 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1080 Handle pending_exception(THREAD, thread->pending_exception()); 1081 const char* exception_file = thread->exception_file(); 1082 int exception_line = thread->exception_line(); 1083 thread->clear_pending_exception(); 1084 1085 bool failures = false; 1086 1087 for (int i = 0; i < objects->length(); i++) { 1088 assert(objects->at(i)->is_object(), "invalid debug information"); 1089 ObjectValue* sv = (ObjectValue*) objects->at(i); 1090 1091 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1092 oop obj = NULL; 1093 1094 if (k->is_instance_klass()) { 1095 if (sv->is_auto_box()) { 1096 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1097 obj = get_cached_box(abv, fr, reg_map, THREAD); 1098 if (obj != NULL) { 1099 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1100 abv->set_cached(true); 1101 } 1102 } 1103 1104 InstanceKlass* ik = InstanceKlass::cast(k); 1105 if (obj == NULL) { 1106 #ifdef COMPILER2 1107 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1108 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1109 } else { 1110 obj = ik->allocate_instance(THREAD); 1111 } 1112 #else 1113 obj = ik->allocate_instance(THREAD); 1114 #endif // COMPILER2 1115 } 1116 } else if (k->is_typeArray_klass()) { 1117 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1118 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1119 int len = sv->field_size() / type2size[ak->element_type()]; 1120 obj = ak->allocate(len, THREAD); 1121 } else if (k->is_objArray_klass()) { 1122 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1123 obj = ak->allocate(sv->field_size(), THREAD); 1124 } 1125 1126 if (obj == NULL) { 1127 failures = true; 1128 } 1129 1130 assert(sv->value().is_null(), "redundant reallocation"); 1131 assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception"); 1132 CLEAR_PENDING_EXCEPTION; 1133 sv->set_value(obj); 1134 } 1135 1136 if (failures) { 1137 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1138 } else if (pending_exception.not_null()) { 1139 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1140 } 1141 1142 return failures; 1143 } 1144 1145 #if INCLUDE_JVMCI 1146 /** 1147 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1148 * we need to somehow be able to recover the actual kind to be able to write the correct 1149 * amount of bytes. 1150 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1151 * the entries at index n + 1 to n + i are 'markers'. 1152 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1153 * expected form of the array would be: 1154 * 1155 * {b0, b1, b2, b3, INT, marker, b6, b7} 1156 * 1157 * Thus, in order to get back the size of the entry, we simply need to count the number 1158 * of marked entries 1159 * 1160 * @param virtualArray the virtualized byte array 1161 * @param i index of the virtual entry we are recovering 1162 * @return The number of bytes the entry spans 1163 */ 1164 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1165 int index = i; 1166 while (++index < virtualArray->field_size() && 1167 virtualArray->field_at(index)->is_marker()) {} 1168 return index - i; 1169 } 1170 1171 /** 1172 * If there was a guarantee for byte array to always start aligned to a long, we could 1173 * do a simple check on the parity of the index. Unfortunately, that is not always the 1174 * case. Thus, we check alignment of the actual address we are writing to. 1175 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1176 * write a long to index 3. 1177 */ 1178 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1179 jbyte* res = obj->byte_at_addr(index); 1180 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1181 return res; 1182 } 1183 1184 static void byte_array_put(typeArrayOop obj, intptr_t val, int index, int byte_count) { 1185 switch (byte_count) { 1186 case 1: 1187 obj->byte_at_put(index, (jbyte) *((jint *) &val)); 1188 break; 1189 case 2: 1190 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) *((jint *) &val); 1191 break; 1192 case 4: 1193 *((jint *) check_alignment_get_addr(obj, index, 4)) = (jint) *((jint *) &val); 1194 break; 1195 case 8: 1196 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) *((jlong *) &val); 1197 break; 1198 default: 1199 ShouldNotReachHere(); 1200 } 1201 } 1202 #endif // INCLUDE_JVMCI 1203 1204 1205 // restore elements of an eliminated type array 1206 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1207 int index = 0; 1208 intptr_t val; 1209 1210 for (int i = 0; i < sv->field_size(); i++) { 1211 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1212 switch(type) { 1213 case T_LONG: case T_DOUBLE: { 1214 assert(value->type() == T_INT, "Agreement."); 1215 StackValue* low = 1216 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1217 #ifdef _LP64 1218 jlong res = (jlong)low->get_int(); 1219 #else 1220 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1221 #endif 1222 obj->long_at_put(index, res); 1223 break; 1224 } 1225 1226 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1227 case T_INT: case T_FLOAT: { // 4 bytes. 1228 assert(value->type() == T_INT, "Agreement."); 1229 bool big_value = false; 1230 if (i + 1 < sv->field_size() && type == T_INT) { 1231 if (sv->field_at(i)->is_location()) { 1232 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1233 if (type == Location::dbl || type == Location::lng) { 1234 big_value = true; 1235 } 1236 } else if (sv->field_at(i)->is_constant_int()) { 1237 ScopeValue* next_scope_field = sv->field_at(i + 1); 1238 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1239 big_value = true; 1240 } 1241 } 1242 } 1243 1244 if (big_value) { 1245 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1246 #ifdef _LP64 1247 jlong res = (jlong)low->get_int(); 1248 #else 1249 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1250 #endif 1251 obj->int_at_put(index, (jint)*((jint*)&res)); 1252 obj->int_at_put(++index, (jint)*(((jint*)&res) + 1)); 1253 } else { 1254 val = value->get_int(); 1255 obj->int_at_put(index, (jint)*((jint*)&val)); 1256 } 1257 break; 1258 } 1259 1260 case T_SHORT: 1261 assert(value->type() == T_INT, "Agreement."); 1262 val = value->get_int(); 1263 obj->short_at_put(index, (jshort)*((jint*)&val)); 1264 break; 1265 1266 case T_CHAR: 1267 assert(value->type() == T_INT, "Agreement."); 1268 val = value->get_int(); 1269 obj->char_at_put(index, (jchar)*((jint*)&val)); 1270 break; 1271 1272 case T_BYTE: { 1273 assert(value->type() == T_INT, "Agreement."); 1274 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1275 val = value->get_int(); 1276 #if INCLUDE_JVMCI 1277 int byte_count = count_number_of_bytes_for_entry(sv, i); 1278 byte_array_put(obj, val, index, byte_count); 1279 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1280 i += byte_count - 1; // Balance the loop counter. 1281 index += byte_count; 1282 // index has been updated so continue at top of loop 1283 continue; 1284 #else 1285 obj->byte_at_put(index, (jbyte)*((jint*)&val)); 1286 break; 1287 #endif // INCLUDE_JVMCI 1288 } 1289 1290 case T_BOOLEAN: { 1291 assert(value->type() == T_INT, "Agreement."); 1292 val = value->get_int(); 1293 obj->bool_at_put(index, (jboolean)*((jint*)&val)); 1294 break; 1295 } 1296 1297 default: 1298 ShouldNotReachHere(); 1299 } 1300 index++; 1301 } 1302 } 1303 1304 // restore fields of an eliminated object array 1305 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1306 for (int i = 0; i < sv->field_size(); i++) { 1307 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1308 assert(value->type() == T_OBJECT, "object element expected"); 1309 obj->obj_at_put(i, value->get_obj()()); 1310 } 1311 } 1312 1313 class ReassignedField { 1314 public: 1315 int _offset; 1316 BasicType _type; 1317 public: 1318 ReassignedField() { 1319 _offset = 0; 1320 _type = T_ILLEGAL; 1321 } 1322 }; 1323 1324 int compare(ReassignedField* left, ReassignedField* right) { 1325 return left->_offset - right->_offset; 1326 } 1327 1328 // Restore fields of an eliminated instance object using the same field order 1329 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1330 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1331 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1332 InstanceKlass* ik = klass; 1333 while (ik != NULL) { 1334 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1335 if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) { 1336 ReassignedField field; 1337 field._offset = fs.offset(); 1338 field._type = Signature::basic_type(fs.signature()); 1339 fields->append(field); 1340 } 1341 } 1342 ik = ik->superklass(); 1343 } 1344 fields->sort(compare); 1345 for (int i = 0; i < fields->length(); i++) { 1346 intptr_t val; 1347 ScopeValue* scope_field = sv->field_at(svIndex); 1348 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1349 int offset = fields->at(i)._offset; 1350 BasicType type = fields->at(i)._type; 1351 switch (type) { 1352 case T_OBJECT: case T_ARRAY: 1353 assert(value->type() == T_OBJECT, "Agreement."); 1354 obj->obj_field_put(offset, value->get_obj()()); 1355 break; 1356 1357 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1358 case T_INT: case T_FLOAT: { // 4 bytes. 1359 assert(value->type() == T_INT, "Agreement."); 1360 bool big_value = false; 1361 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1362 if (scope_field->is_location()) { 1363 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1364 if (type == Location::dbl || type == Location::lng) { 1365 big_value = true; 1366 } 1367 } 1368 if (scope_field->is_constant_int()) { 1369 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1370 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1371 big_value = true; 1372 } 1373 } 1374 } 1375 1376 if (big_value) { 1377 i++; 1378 assert(i < fields->length(), "second T_INT field needed"); 1379 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1380 } else { 1381 val = value->get_int(); 1382 obj->int_field_put(offset, (jint)*((jint*)&val)); 1383 break; 1384 } 1385 } 1386 /* no break */ 1387 1388 case T_LONG: case T_DOUBLE: { 1389 assert(value->type() == T_INT, "Agreement."); 1390 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1391 #ifdef _LP64 1392 jlong res = (jlong)low->get_int(); 1393 #else 1394 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1395 #endif 1396 obj->long_field_put(offset, res); 1397 break; 1398 } 1399 1400 case T_SHORT: 1401 assert(value->type() == T_INT, "Agreement."); 1402 val = value->get_int(); 1403 obj->short_field_put(offset, (jshort)*((jint*)&val)); 1404 break; 1405 1406 case T_CHAR: 1407 assert(value->type() == T_INT, "Agreement."); 1408 val = value->get_int(); 1409 obj->char_field_put(offset, (jchar)*((jint*)&val)); 1410 break; 1411 1412 case T_BYTE: 1413 assert(value->type() == T_INT, "Agreement."); 1414 val = value->get_int(); 1415 obj->byte_field_put(offset, (jbyte)*((jint*)&val)); 1416 break; 1417 1418 case T_BOOLEAN: 1419 assert(value->type() == T_INT, "Agreement."); 1420 val = value->get_int(); 1421 obj->bool_field_put(offset, (jboolean)*((jint*)&val)); 1422 break; 1423 1424 default: 1425 ShouldNotReachHere(); 1426 } 1427 svIndex++; 1428 } 1429 return svIndex; 1430 } 1431 1432 // restore fields of all eliminated objects and arrays 1433 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1434 for (int i = 0; i < objects->length(); i++) { 1435 ObjectValue* sv = (ObjectValue*) objects->at(i); 1436 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1437 Handle obj = sv->value(); 1438 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1439 if (PrintDeoptimizationDetails) { 1440 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1441 } 1442 if (obj.is_null()) { 1443 continue; 1444 } 1445 1446 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1447 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1448 continue; 1449 } 1450 #ifdef COMPILER2 1451 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1452 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1453 ScopeValue* payload = sv->field_at(0); 1454 if (payload->is_location() && 1455 payload->as_LocationValue()->location().type() == Location::vector) { 1456 if (PrintDeoptimizationDetails) { 1457 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1458 if (Verbose) { 1459 Handle obj = sv->value(); 1460 k->oop_print_on(obj(), tty); 1461 } 1462 } 1463 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1464 } 1465 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1466 // which could be restored after vector object allocation. 1467 } 1468 #endif 1469 if (k->is_instance_klass()) { 1470 InstanceKlass* ik = InstanceKlass::cast(k); 1471 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1472 } else if (k->is_typeArray_klass()) { 1473 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1474 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1475 } else if (k->is_objArray_klass()) { 1476 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1477 } 1478 } 1479 } 1480 1481 1482 // relock objects for which synchronization was eliminated 1483 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1484 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1485 bool relocked_objects = false; 1486 for (int i = 0; i < monitors->length(); i++) { 1487 MonitorInfo* mon_info = monitors->at(i); 1488 if (mon_info->eliminated()) { 1489 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1490 relocked_objects = true; 1491 if (!mon_info->owner_is_scalar_replaced()) { 1492 Handle obj(thread, mon_info->owner()); 1493 markWord mark = obj->mark(); 1494 if (UseBiasedLocking && mark.has_bias_pattern()) { 1495 // New allocated objects may have the mark set to anonymously biased. 1496 // Also the deoptimized method may called methods with synchronization 1497 // where the thread-local object is bias locked to the current thread. 1498 assert(mark.is_biased_anonymously() || 1499 mark.biased_locker() == deoptee_thread, "should be locked to current thread"); 1500 // Reset mark word to unbiased prototype. 1501 markWord unbiased_prototype = markWord::prototype().set_age(mark.age()); 1502 obj->set_mark(unbiased_prototype); 1503 } else if (exec_mode == Unpack_none) { 1504 if (mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1505 // With exec_mode == Unpack_none obj may be thread local and locked in 1506 // a callee frame. In this case the bias was revoked before in revoke_for_object_deoptimization(). 1507 // Make the lock in the callee a recursive lock and restore the displaced header. 1508 markWord dmw = mark.displaced_mark_helper(); 1509 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) NULL)); 1510 obj->set_mark(dmw); 1511 } 1512 if (mark.has_monitor()) { 1513 // defer relocking if the deoptee thread is currently waiting for obj 1514 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1515 if (waiting_monitor != NULL && waiting_monitor->object() == obj()) { 1516 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1517 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1518 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1519 continue; 1520 } 1521 } 1522 } 1523 BasicLock* lock = mon_info->lock(); 1524 ObjectSynchronizer::enter(obj, lock, deoptee_thread); 1525 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1526 } 1527 } 1528 } 1529 return relocked_objects; 1530 } 1531 #endif // COMPILER2_OR_JVMCI 1532 1533 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1534 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1535 1536 #ifndef PRODUCT 1537 if (PrintDeoptimizationDetails) { 1538 ResourceMark rm; 1539 stringStream st; 1540 st.print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread)); 1541 fr.print_on(&st); 1542 st.print_cr(" Virtual frames (innermost first):"); 1543 for (int index = 0; index < chunk->length(); index++) { 1544 compiledVFrame* vf = chunk->at(index); 1545 st.print(" %2d - ", index); 1546 vf->print_value_on(&st); 1547 int bci = chunk->at(index)->raw_bci(); 1548 const char* code_name; 1549 if (bci == SynchronizationEntryBCI) { 1550 code_name = "sync entry"; 1551 } else { 1552 Bytecodes::Code code = vf->method()->code_at(bci); 1553 code_name = Bytecodes::name(code); 1554 } 1555 st.print(" - %s", code_name); 1556 st.print_cr(" @ bci %d ", bci); 1557 if (Verbose) { 1558 vf->print_on(&st); 1559 st.cr(); 1560 } 1561 } 1562 tty->print_raw(st.as_string()); 1563 } 1564 #endif 1565 1566 // Register map for next frame (used for stack crawl). We capture 1567 // the state of the deopt'ing frame's caller. Thus if we need to 1568 // stuff a C2I adapter we can properly fill in the callee-save 1569 // register locations. 1570 frame caller = fr.sender(reg_map); 1571 int frame_size = caller.sp() - fr.sp(); 1572 1573 frame sender = caller; 1574 1575 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1576 // the vframeArray containing the unpacking information is allocated in the C heap. 1577 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1578 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1579 1580 // Compare the vframeArray to the collected vframes 1581 assert(array->structural_compare(thread, chunk), "just checking"); 1582 1583 #ifndef PRODUCT 1584 if (PrintDeoptimizationDetails) { 1585 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, p2i(array)); 1586 } 1587 #endif // PRODUCT 1588 1589 return array; 1590 } 1591 1592 #if COMPILER2_OR_JVMCI 1593 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1594 // Reallocation of some scalar replaced objects failed. Record 1595 // that we need to pop all the interpreter frames for the 1596 // deoptimized compiled frame. 1597 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1598 thread->set_frames_to_pop_failed_realloc(array->frames()); 1599 // Unlock all monitors here otherwise the interpreter will see a 1600 // mix of locked and unlocked monitors (because of failed 1601 // reallocations of synchronized objects) and be confused. 1602 for (int i = 0; i < array->frames(); i++) { 1603 MonitorChunk* monitors = array->element(i)->monitors(); 1604 if (monitors != NULL) { 1605 for (int j = 0; j < monitors->number_of_monitors(); j++) { 1606 BasicObjectLock* src = monitors->at(j); 1607 if (src->obj() != NULL) { 1608 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1609 } 1610 } 1611 array->element(i)->free_monitors(thread); 1612 #ifdef ASSERT 1613 array->element(i)->set_removed_monitors(); 1614 #endif 1615 } 1616 } 1617 } 1618 #endif 1619 1620 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke, 1621 bool only_eliminated) { 1622 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 1623 Thread* thread = Thread::current(); 1624 for (int i = 0; i < monitors->length(); i++) { 1625 MonitorInfo* mon_info = monitors->at(i); 1626 if (mon_info->eliminated() == only_eliminated && 1627 !mon_info->owner_is_scalar_replaced() && 1628 mon_info->owner() != NULL) { 1629 objects_to_revoke->append(Handle(thread, mon_info->owner())); 1630 } 1631 } 1632 } 1633 1634 static void get_monitors_from_stack(GrowableArray<Handle>* objects_to_revoke, JavaThread* thread, 1635 frame fr, RegisterMap* map, bool only_eliminated) { 1636 // Unfortunately we don't have a RegisterMap available in most of 1637 // the places we want to call this routine so we need to walk the 1638 // stack again to update the register map. 1639 if (map == NULL || !map->update_map()) { 1640 StackFrameStream sfs(thread, true /* update */, true /* process_frames */); 1641 bool found = false; 1642 while (!found && !sfs.is_done()) { 1643 frame* cur = sfs.current(); 1644 sfs.next(); 1645 found = cur->id() == fr.id(); 1646 } 1647 assert(found, "frame to be deoptimized not found on target thread's stack"); 1648 map = sfs.register_map(); 1649 } 1650 1651 vframe* vf = vframe::new_vframe(&fr, map, thread); 1652 compiledVFrame* cvf = compiledVFrame::cast(vf); 1653 // Revoke monitors' biases in all scopes 1654 while (!cvf->is_top()) { 1655 collect_monitors(cvf, objects_to_revoke, only_eliminated); 1656 cvf = compiledVFrame::cast(cvf->sender()); 1657 } 1658 collect_monitors(cvf, objects_to_revoke, only_eliminated); 1659 } 1660 1661 void Deoptimization::revoke_from_deopt_handler(JavaThread* thread, frame fr, RegisterMap* map) { 1662 if (!UseBiasedLocking) { 1663 return; 1664 } 1665 assert(thread == Thread::current(), "should be"); 1666 ResourceMark rm(thread); 1667 HandleMark hm(thread); 1668 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1669 get_monitors_from_stack(objects_to_revoke, thread, fr, map, false); 1670 1671 int len = objects_to_revoke->length(); 1672 for (int i = 0; i < len; i++) { 1673 oop obj = (objects_to_revoke->at(i))(); 1674 BiasedLocking::revoke_own_lock(thread, objects_to_revoke->at(i)); 1675 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 1676 } 1677 } 1678 1679 // Revoke the bias of objects with eliminated locking to prepare subsequent relocking. 1680 void Deoptimization::revoke_for_object_deoptimization(JavaThread* deoptee_thread, frame fr, 1681 RegisterMap* map, JavaThread* thread) { 1682 if (!UseBiasedLocking) { 1683 return; 1684 } 1685 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1686 assert(KeepStackGCProcessedMark::stack_is_kept_gc_processed(deoptee_thread), "must be"); 1687 // Collect monitors but only those with eliminated locking. 1688 get_monitors_from_stack(objects_to_revoke, deoptee_thread, fr, map, true); 1689 1690 int len = objects_to_revoke->length(); 1691 for (int i = 0; i < len; i++) { 1692 oop obj = (objects_to_revoke->at(i))(); 1693 markWord mark = obj->mark(); 1694 if (!mark.has_bias_pattern() || 1695 mark.is_biased_anonymously() || // eliminated locking does not bias an object if it wasn't before 1696 !obj->klass()->prototype_header().has_bias_pattern() || // bulk revoke ignores eliminated monitors 1697 (obj->klass()->prototype_header().bias_epoch() != mark.bias_epoch())) { // bulk rebias ignores eliminated monitors 1698 // We reach here regularly if there's just eliminated locking on obj. 1699 // We must not call BiasedLocking::revoke_own_lock() in this case, as we 1700 // would hit assertions because it is a prerequisite that there has to be 1701 // non-eliminated locking on obj by deoptee_thread. 1702 // Luckily we don't have to revoke here because obj has to be a 1703 // non-escaping obj and can be relocked without revoking the bias. See 1704 // Deoptimization::relock_objects(). 1705 continue; 1706 } 1707 BiasedLocking::revoke(thread, objects_to_revoke->at(i)); 1708 assert(!objects_to_revoke->at(i)->mark().has_bias_pattern(), "biases should be revoked by now"); 1709 } 1710 } 1711 1712 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1713 assert(fr.can_be_deoptimized(), "checking frame type"); 1714 1715 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1716 1717 if (LogCompilation && xtty != NULL) { 1718 CompiledMethod* cm = fr.cb()->as_compiled_method_or_null(); 1719 assert(cm != NULL, "only compiled methods can deopt"); 1720 1721 ttyLocker ttyl; 1722 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1723 cm->log_identity(xtty); 1724 xtty->end_head(); 1725 for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1726 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1727 xtty->method(sd->method()); 1728 xtty->end_elem(); 1729 if (sd->is_top()) break; 1730 } 1731 xtty->tail("deoptimized"); 1732 } 1733 1734 // Patch the compiled method so that when execution returns to it we will 1735 // deopt the execution state and return to the interpreter. 1736 fr.deoptimize(thread); 1737 } 1738 1739 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1740 // Deoptimize only if the frame comes from compile code. 1741 // Do not deoptimize the frame which is already patched 1742 // during the execution of the loops below. 1743 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1744 return; 1745 } 1746 ResourceMark rm; 1747 DeoptimizationMarker dm; 1748 deoptimize_single_frame(thread, fr, reason); 1749 } 1750 1751 #if INCLUDE_JVMCI 1752 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) { 1753 // there is no exception handler for this pc => deoptimize 1754 cm->make_not_entrant(); 1755 1756 // Use Deoptimization::deoptimize for all of its side-effects: 1757 // gathering traps statistics, logging... 1758 // it also patches the return pc but we do not care about that 1759 // since we return a continuation to the deopt_blob below. 1760 JavaThread* thread = JavaThread::current(); 1761 RegisterMap reg_map(thread, false); 1762 frame runtime_frame = thread->last_frame(); 1763 frame caller_frame = runtime_frame.sender(®_map); 1764 assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method"); 1765 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1766 compiledVFrame* cvf = compiledVFrame::cast(vf); 1767 ScopeDesc* imm_scope = cvf->scope(); 1768 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1769 if (imm_mdo != NULL) { 1770 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), NULL); 1771 if (pdata != NULL && pdata->is_BitData()) { 1772 BitData* bit_data = (BitData*) pdata; 1773 bit_data->set_exception_seen(); 1774 } 1775 } 1776 1777 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1778 1779 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true); 1780 if (trap_mdo != NULL) { 1781 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1782 } 1783 1784 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1785 } 1786 #endif 1787 1788 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1789 assert(thread == Thread::current() || 1790 thread->is_handshake_safe_for(Thread::current()) || 1791 SafepointSynchronize::is_at_safepoint(), 1792 "can only deoptimize other thread at a safepoint/handshake"); 1793 // Compute frame and register map based on thread and sp. 1794 RegisterMap reg_map(thread, false); 1795 frame fr = thread->last_frame(); 1796 while (fr.id() != id) { 1797 fr = fr.sender(®_map); 1798 } 1799 deoptimize(thread, fr, reason); 1800 } 1801 1802 1803 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1804 Thread* current = Thread::current(); 1805 if (thread == current || thread->is_handshake_safe_for(current)) { 1806 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1807 } else { 1808 VM_DeoptimizeFrame deopt(thread, id, reason); 1809 VMThread::execute(&deopt); 1810 } 1811 } 1812 1813 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1814 deoptimize_frame(thread, id, Reason_constraint); 1815 } 1816 1817 // JVMTI PopFrame support 1818 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1819 { 1820 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1821 } 1822 JRT_END 1823 1824 MethodData* 1825 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1826 bool create_if_missing) { 1827 JavaThread* THREAD = thread; // For exception macros. 1828 MethodData* mdo = m()->method_data(); 1829 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) { 1830 // Build an MDO. Ignore errors like OutOfMemory; 1831 // that simply means we won't have an MDO to update. 1832 Method::build_interpreter_method_data(m, THREAD); 1833 if (HAS_PENDING_EXCEPTION) { 1834 // Only metaspace OOM is expected. No Java code executed. 1835 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1836 CLEAR_PENDING_EXCEPTION; 1837 } 1838 mdo = m()->method_data(); 1839 } 1840 return mdo; 1841 } 1842 1843 #if COMPILER2_OR_JVMCI 1844 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1845 // In case of an unresolved klass entry, load the class. 1846 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1847 // and probably nowhere else. 1848 // Even that case would benefit from simply re-interpreting the 1849 // bytecode, without paying special attention to the class index. 1850 // So this whole "class index" feature should probably be removed. 1851 1852 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1853 Klass* tk = constant_pool->klass_at(index, THREAD); 1854 if (HAS_PENDING_EXCEPTION) { 1855 // Exception happened during classloading. We ignore the exception here, since it 1856 // is going to be rethrown since the current activation is going to be deoptimized and 1857 // the interpreter will re-execute the bytecode. 1858 // Do not clear probable Async Exceptions. 1859 CLEAR_PENDING_NONASYNC_EXCEPTION; 1860 // Class loading called java code which may have caused a stack 1861 // overflow. If the exception was thrown right before the return 1862 // to the runtime the stack is no longer guarded. Reguard the 1863 // stack otherwise if we return to the uncommon trap blob and the 1864 // stack bang causes a stack overflow we crash. 1865 JavaThread* jt = THREAD; 1866 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1867 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1868 } 1869 return; 1870 } 1871 1872 assert(!constant_pool->tag_at(index).is_symbol(), 1873 "no symbolic names here, please"); 1874 } 1875 1876 #if INCLUDE_JFR 1877 1878 class DeoptReasonSerializer : public JfrSerializer { 1879 public: 1880 void serialize(JfrCheckpointWriter& writer) { 1881 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1882 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1883 writer.write_key((u8)i); 1884 writer.write(Deoptimization::trap_reason_name(i)); 1885 } 1886 } 1887 }; 1888 1889 class DeoptActionSerializer : public JfrSerializer { 1890 public: 1891 void serialize(JfrCheckpointWriter& writer) { 1892 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1893 writer.write_count(nof_actions); 1894 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1895 writer.write_key(i); 1896 writer.write(Deoptimization::trap_action_name((int)i)); 1897 } 1898 } 1899 }; 1900 1901 static void register_serializers() { 1902 static int critical_section = 0; 1903 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1904 return; 1905 } 1906 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1907 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1908 } 1909 1910 static void post_deoptimization_event(CompiledMethod* nm, 1911 const Method* method, 1912 int trap_bci, 1913 int instruction, 1914 Deoptimization::DeoptReason reason, 1915 Deoptimization::DeoptAction action) { 1916 assert(nm != NULL, "invariant"); 1917 assert(method != NULL, "invariant"); 1918 if (EventDeoptimization::is_enabled()) { 1919 static bool serializers_registered = false; 1920 if (!serializers_registered) { 1921 register_serializers(); 1922 serializers_registered = true; 1923 } 1924 EventDeoptimization event; 1925 event.set_compileId(nm->compile_id()); 1926 event.set_compiler(nm->compiler_type()); 1927 event.set_method(method); 1928 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1929 event.set_bci(trap_bci); 1930 event.set_instruction(instruction); 1931 event.set_reason(reason); 1932 event.set_action(action); 1933 event.commit(); 1934 } 1935 } 1936 1937 #endif // INCLUDE_JFR 1938 1939 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 1940 HandleMark hm(current); 1941 1942 // uncommon_trap() is called at the beginning of the uncommon trap 1943 // handler. Note this fact before we start generating temporary frames 1944 // that can confuse an asynchronous stack walker. This counter is 1945 // decremented at the end of unpack_frames(). 1946 current->inc_in_deopt_handler(); 1947 1948 // We need to update the map if we have biased locking. 1949 #if INCLUDE_JVMCI 1950 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 1951 RegisterMap reg_map(current, true); 1952 #else 1953 RegisterMap reg_map(current, UseBiasedLocking); 1954 #endif 1955 frame stub_frame = current->last_frame(); 1956 frame fr = stub_frame.sender(®_map); 1957 // Make sure the calling nmethod is not getting deoptimized and removed 1958 // before we are done with it. 1959 nmethodLocker nl(fr.pc()); 1960 1961 // Log a message 1962 Events::log_deopt_message(current, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 1963 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 1964 1965 { 1966 ResourceMark rm; 1967 1968 DeoptReason reason = trap_request_reason(trap_request); 1969 DeoptAction action = trap_request_action(trap_request); 1970 #if INCLUDE_JVMCI 1971 int debug_id = trap_request_debug_id(trap_request); 1972 #endif 1973 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 1974 1975 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 1976 compiledVFrame* cvf = compiledVFrame::cast(vf); 1977 1978 CompiledMethod* nm = cvf->code(); 1979 1980 ScopeDesc* trap_scope = cvf->scope(); 1981 1982 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 1983 1984 if (TraceDeoptimization || is_receiver_constraint_failure) { 1985 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 1986 #if INCLUDE_JVMCI 1987 , debug_id 1988 #endif 1989 ); 1990 } 1991 1992 methodHandle trap_method(current, trap_scope->method()); 1993 int trap_bci = trap_scope->bci(); 1994 #if INCLUDE_JVMCI 1995 jlong speculation = current->pending_failed_speculation(); 1996 if (nm->is_compiled_by_jvmci()) { 1997 nm->as_nmethod()->update_speculation(current); 1998 } else { 1999 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2000 } 2001 2002 if (trap_bci == SynchronizationEntryBCI) { 2003 trap_bci = 0; 2004 current->set_pending_monitorenter(true); 2005 } 2006 2007 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2008 current->set_pending_transfer_to_interpreter(true); 2009 } 2010 #endif 2011 2012 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2013 // Record this event in the histogram. 2014 gather_statistics(reason, action, trap_bc); 2015 2016 // Ensure that we can record deopt. history: 2017 // Need MDO to record RTM code generation state. 2018 bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking ); 2019 2020 methodHandle profiled_method; 2021 #if INCLUDE_JVMCI 2022 if (nm->is_compiled_by_jvmci()) { 2023 profiled_method = methodHandle(current, nm->method()); 2024 } else { 2025 profiled_method = trap_method; 2026 } 2027 #else 2028 profiled_method = trap_method; 2029 #endif 2030 2031 MethodData* trap_mdo = 2032 get_method_data(current, profiled_method, create_if_missing); 2033 2034 JFR_ONLY(post_deoptimization_event(nm, trap_method(), trap_bci, trap_bc, reason, action);) 2035 2036 // Log a message 2037 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2038 trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()), 2039 trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2040 2041 // Print a bunch of diagnostics, if requested. 2042 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2043 ResourceMark rm; 2044 ttyLocker ttyl; 2045 char buf[100]; 2046 if (xtty != NULL) { 2047 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 2048 os::current_thread_id(), 2049 format_trap_request(buf, sizeof(buf), trap_request)); 2050 #if INCLUDE_JVMCI 2051 if (speculation != 0) { 2052 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2053 } 2054 #endif 2055 nm->log_identity(xtty); 2056 } 2057 Symbol* class_name = NULL; 2058 bool unresolved = false; 2059 if (unloaded_class_index >= 0) { 2060 constantPoolHandle constants (current, trap_method->constants()); 2061 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2062 class_name = constants->klass_name_at(unloaded_class_index); 2063 unresolved = true; 2064 if (xtty != NULL) 2065 xtty->print(" unresolved='1'"); 2066 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2067 class_name = constants->symbol_at(unloaded_class_index); 2068 } 2069 if (xtty != NULL) 2070 xtty->name(class_name); 2071 } 2072 if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) { 2073 // Dump the relevant MDO state. 2074 // This is the deopt count for the current reason, any previous 2075 // reasons or recompiles seen at this point. 2076 int dcnt = trap_mdo->trap_count(reason); 2077 if (dcnt != 0) 2078 xtty->print(" count='%d'", dcnt); 2079 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2080 int dos = (pdata == NULL)? 0: pdata->trap_state(); 2081 if (dos != 0) { 2082 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2083 if (trap_state_is_recompiled(dos)) { 2084 int recnt2 = trap_mdo->overflow_recompile_count(); 2085 if (recnt2 != 0) 2086 xtty->print(" recompiles2='%d'", recnt2); 2087 } 2088 } 2089 } 2090 if (xtty != NULL) { 2091 xtty->stamp(); 2092 xtty->end_head(); 2093 } 2094 if (TraceDeoptimization) { // make noise on the tty 2095 tty->print("Uncommon trap occurred in"); 2096 nm->method()->print_short_name(tty); 2097 tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2098 #if INCLUDE_JVMCI 2099 if (nm->is_nmethod()) { 2100 const char* installed_code_name = nm->as_nmethod()->jvmci_name(); 2101 if (installed_code_name != NULL) { 2102 tty->print(" (JVMCI: installed code name=%s) ", installed_code_name); 2103 } 2104 } 2105 #endif 2106 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2107 p2i(fr.pc()), 2108 os::current_thread_id(), 2109 trap_reason_name(reason), 2110 trap_action_name(action), 2111 unloaded_class_index 2112 #if INCLUDE_JVMCI 2113 , debug_id 2114 #endif 2115 ); 2116 if (class_name != NULL) { 2117 tty->print(unresolved ? " unresolved class: " : " symbol: "); 2118 class_name->print_symbol_on(tty); 2119 } 2120 tty->cr(); 2121 } 2122 if (xtty != NULL) { 2123 // Log the precise location of the trap. 2124 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2125 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2126 xtty->method(sd->method()); 2127 xtty->end_elem(); 2128 if (sd->is_top()) break; 2129 } 2130 xtty->tail("uncommon_trap"); 2131 } 2132 } 2133 // (End diagnostic printout.) 2134 2135 if (is_receiver_constraint_failure) { 2136 fatal("missing receiver type check"); 2137 } 2138 2139 // Load class if necessary 2140 if (unloaded_class_index >= 0) { 2141 constantPoolHandle constants(current, trap_method->constants()); 2142 load_class_by_index(constants, unloaded_class_index, THREAD); 2143 } 2144 2145 // Flush the nmethod if necessary and desirable. 2146 // 2147 // We need to avoid situations where we are re-flushing the nmethod 2148 // because of a hot deoptimization site. Repeated flushes at the same 2149 // point need to be detected by the compiler and avoided. If the compiler 2150 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2151 // module must take measures to avoid an infinite cycle of recompilation 2152 // and deoptimization. There are several such measures: 2153 // 2154 // 1. If a recompilation is ordered a second time at some site X 2155 // and for the same reason R, the action is adjusted to 'reinterpret', 2156 // to give the interpreter time to exercise the method more thoroughly. 2157 // If this happens, the method's overflow_recompile_count is incremented. 2158 // 2159 // 2. If the compiler fails to reduce the deoptimization rate, then 2160 // the method's overflow_recompile_count will begin to exceed the set 2161 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2162 // is adjusted to 'make_not_compilable', and the method is abandoned 2163 // to the interpreter. This is a performance hit for hot methods, 2164 // but is better than a disastrous infinite cycle of recompilations. 2165 // (Actually, only the method containing the site X is abandoned.) 2166 // 2167 // 3. In parallel with the previous measures, if the total number of 2168 // recompilations of a method exceeds the much larger set limit 2169 // PerMethodRecompilationCutoff, the method is abandoned. 2170 // This should only happen if the method is very large and has 2171 // many "lukewarm" deoptimizations. The code which enforces this 2172 // limit is elsewhere (class nmethod, class Method). 2173 // 2174 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2175 // to recompile at each bytecode independently of the per-BCI cutoff. 2176 // 2177 // The decision to update code is up to the compiler, and is encoded 2178 // in the Action_xxx code. If the compiler requests Action_none 2179 // no trap state is changed, no compiled code is changed, and the 2180 // computation suffers along in the interpreter. 2181 // 2182 // The other action codes specify various tactics for decompilation 2183 // and recompilation. Action_maybe_recompile is the loosest, and 2184 // allows the compiled code to stay around until enough traps are seen, 2185 // and until the compiler gets around to recompiling the trapping method. 2186 // 2187 // The other actions cause immediate removal of the present code. 2188 2189 // Traps caused by injected profile shouldn't pollute trap counts. 2190 bool injected_profile_trap = trap_method->has_injected_profile() && 2191 (reason == Reason_intrinsic || reason == Reason_unreached); 2192 2193 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2194 bool make_not_entrant = false; 2195 bool make_not_compilable = false; 2196 bool reprofile = false; 2197 switch (action) { 2198 case Action_none: 2199 // Keep the old code. 2200 update_trap_state = false; 2201 break; 2202 case Action_maybe_recompile: 2203 // Do not need to invalidate the present code, but we can 2204 // initiate another 2205 // Start compiler without (necessarily) invalidating the nmethod. 2206 // The system will tolerate the old code, but new code should be 2207 // generated when possible. 2208 break; 2209 case Action_reinterpret: 2210 // Go back into the interpreter for a while, and then consider 2211 // recompiling form scratch. 2212 make_not_entrant = true; 2213 // Reset invocation counter for outer most method. 2214 // This will allow the interpreter to exercise the bytecodes 2215 // for a while before recompiling. 2216 // By contrast, Action_make_not_entrant is immediate. 2217 // 2218 // Note that the compiler will track null_check, null_assert, 2219 // range_check, and class_check events and log them as if they 2220 // had been traps taken from compiled code. This will update 2221 // the MDO trap history so that the next compilation will 2222 // properly detect hot trap sites. 2223 reprofile = true; 2224 break; 2225 case Action_make_not_entrant: 2226 // Request immediate recompilation, and get rid of the old code. 2227 // Make them not entrant, so next time they are called they get 2228 // recompiled. Unloaded classes are loaded now so recompile before next 2229 // time they are called. Same for uninitialized. The interpreter will 2230 // link the missing class, if any. 2231 make_not_entrant = true; 2232 break; 2233 case Action_make_not_compilable: 2234 // Give up on compiling this method at all. 2235 make_not_entrant = true; 2236 make_not_compilable = true; 2237 break; 2238 default: 2239 ShouldNotReachHere(); 2240 } 2241 2242 // Setting +ProfileTraps fixes the following, on all platforms: 2243 // 4852688: ProfileInterpreter is off by default for ia64. The result is 2244 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2245 // recompile relies on a MethodData* to record heroic opt failures. 2246 2247 // Whether the interpreter is producing MDO data or not, we also need 2248 // to use the MDO to detect hot deoptimization points and control 2249 // aggressive optimization. 2250 bool inc_recompile_count = false; 2251 ProfileData* pdata = NULL; 2252 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != NULL) { 2253 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2254 uint this_trap_count = 0; 2255 bool maybe_prior_trap = false; 2256 bool maybe_prior_recompile = false; 2257 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2258 #if INCLUDE_JVMCI 2259 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2260 #endif 2261 nm->method(), 2262 //outputs: 2263 this_trap_count, 2264 maybe_prior_trap, 2265 maybe_prior_recompile); 2266 // Because the interpreter also counts null, div0, range, and class 2267 // checks, these traps from compiled code are double-counted. 2268 // This is harmless; it just means that the PerXTrapLimit values 2269 // are in effect a little smaller than they look. 2270 2271 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2272 if (per_bc_reason != Reason_none) { 2273 // Now take action based on the partially known per-BCI history. 2274 if (maybe_prior_trap 2275 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2276 // If there are too many traps at this BCI, force a recompile. 2277 // This will allow the compiler to see the limit overflow, and 2278 // take corrective action, if possible. The compiler generally 2279 // does not use the exact PerBytecodeTrapLimit value, but instead 2280 // changes its tactics if it sees any traps at all. This provides 2281 // a little hysteresis, delaying a recompile until a trap happens 2282 // several times. 2283 // 2284 // Actually, since there is only one bit of counter per BCI, 2285 // the possible per-BCI counts are {0,1,(per-method count)}. 2286 // This produces accurate results if in fact there is only 2287 // one hot trap site, but begins to get fuzzy if there are 2288 // many sites. For example, if there are ten sites each 2289 // trapping two or more times, they each get the blame for 2290 // all of their traps. 2291 make_not_entrant = true; 2292 } 2293 2294 // Detect repeated recompilation at the same BCI, and enforce a limit. 2295 if (make_not_entrant && maybe_prior_recompile) { 2296 // More than one recompile at this point. 2297 inc_recompile_count = maybe_prior_trap; 2298 } 2299 } else { 2300 // For reasons which are not recorded per-bytecode, we simply 2301 // force recompiles unconditionally. 2302 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2303 make_not_entrant = true; 2304 } 2305 2306 // Go back to the compiler if there are too many traps in this method. 2307 if (this_trap_count >= per_method_trap_limit(reason)) { 2308 // If there are too many traps in this method, force a recompile. 2309 // This will allow the compiler to see the limit overflow, and 2310 // take corrective action, if possible. 2311 // (This condition is an unlikely backstop only, because the 2312 // PerBytecodeTrapLimit is more likely to take effect first, 2313 // if it is applicable.) 2314 make_not_entrant = true; 2315 } 2316 2317 // Here's more hysteresis: If there has been a recompile at 2318 // this trap point already, run the method in the interpreter 2319 // for a while to exercise it more thoroughly. 2320 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2321 reprofile = true; 2322 } 2323 } 2324 2325 // Take requested actions on the method: 2326 2327 // Recompile 2328 if (make_not_entrant) { 2329 if (!nm->make_not_entrant()) { 2330 return; // the call did not change nmethod's state 2331 } 2332 2333 if (pdata != NULL) { 2334 // Record the recompilation event, if any. 2335 int tstate0 = pdata->trap_state(); 2336 int tstate1 = trap_state_set_recompiled(tstate0, true); 2337 if (tstate1 != tstate0) 2338 pdata->set_trap_state(tstate1); 2339 } 2340 2341 #if INCLUDE_RTM_OPT 2342 // Restart collecting RTM locking abort statistic if the method 2343 // is recompiled for a reason other than RTM state change. 2344 // Assume that in new recompiled code the statistic could be different, 2345 // for example, due to different inlining. 2346 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) && 2347 UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) { 2348 trap_mdo->atomic_set_rtm_state(ProfileRTM); 2349 } 2350 #endif 2351 // For code aging we count traps separately here, using make_not_entrant() 2352 // as a guard against simultaneous deopts in multiple threads. 2353 if (reason == Reason_tenured && trap_mdo != NULL) { 2354 trap_mdo->inc_tenure_traps(); 2355 } 2356 } 2357 2358 if (inc_recompile_count) { 2359 trap_mdo->inc_overflow_recompile_count(); 2360 if ((uint)trap_mdo->overflow_recompile_count() > 2361 (uint)PerBytecodeRecompilationCutoff) { 2362 // Give up on the method containing the bad BCI. 2363 if (trap_method() == nm->method()) { 2364 make_not_compilable = true; 2365 } else { 2366 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2367 // But give grace to the enclosing nm->method(). 2368 } 2369 } 2370 } 2371 2372 // Reprofile 2373 if (reprofile) { 2374 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2375 } 2376 2377 // Give up compiling 2378 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2379 assert(make_not_entrant, "consistent"); 2380 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2381 } 2382 2383 } // Free marked resources 2384 2385 } 2386 JRT_END 2387 2388 ProfileData* 2389 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2390 int trap_bci, 2391 Deoptimization::DeoptReason reason, 2392 bool update_total_trap_count, 2393 #if INCLUDE_JVMCI 2394 bool is_osr, 2395 #endif 2396 Method* compiled_method, 2397 //outputs: 2398 uint& ret_this_trap_count, 2399 bool& ret_maybe_prior_trap, 2400 bool& ret_maybe_prior_recompile) { 2401 bool maybe_prior_trap = false; 2402 bool maybe_prior_recompile = false; 2403 uint this_trap_count = 0; 2404 if (update_total_trap_count) { 2405 uint idx = reason; 2406 #if INCLUDE_JVMCI 2407 if (is_osr) { 2408 // Upper half of history array used for traps in OSR compilations 2409 idx += Reason_TRAP_HISTORY_LENGTH; 2410 } 2411 #endif 2412 uint prior_trap_count = trap_mdo->trap_count(idx); 2413 this_trap_count = trap_mdo->inc_trap_count(idx); 2414 2415 // If the runtime cannot find a place to store trap history, 2416 // it is estimated based on the general condition of the method. 2417 // If the method has ever been recompiled, or has ever incurred 2418 // a trap with the present reason , then this BCI is assumed 2419 // (pessimistically) to be the culprit. 2420 maybe_prior_trap = (prior_trap_count != 0); 2421 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2422 } 2423 ProfileData* pdata = NULL; 2424 2425 2426 // For reasons which are recorded per bytecode, we check per-BCI data. 2427 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2428 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2429 if (per_bc_reason != Reason_none) { 2430 // Find the profile data for this BCI. If there isn't one, 2431 // try to allocate one from the MDO's set of spares. 2432 // This will let us detect a repeated trap at this point. 2433 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL); 2434 2435 if (pdata != NULL) { 2436 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2437 if (LogCompilation && xtty != NULL) { 2438 ttyLocker ttyl; 2439 // no more room for speculative traps in this MDO 2440 xtty->elem("speculative_traps_oom"); 2441 } 2442 } 2443 // Query the trap state of this profile datum. 2444 int tstate0 = pdata->trap_state(); 2445 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2446 maybe_prior_trap = false; 2447 if (!trap_state_is_recompiled(tstate0)) 2448 maybe_prior_recompile = false; 2449 2450 // Update the trap state of this profile datum. 2451 int tstate1 = tstate0; 2452 // Record the reason. 2453 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2454 // Store the updated state on the MDO, for next time. 2455 if (tstate1 != tstate0) 2456 pdata->set_trap_state(tstate1); 2457 } else { 2458 if (LogCompilation && xtty != NULL) { 2459 ttyLocker ttyl; 2460 // Missing MDP? Leave a small complaint in the log. 2461 xtty->elem("missing_mdp bci='%d'", trap_bci); 2462 } 2463 } 2464 } 2465 2466 // Return results: 2467 ret_this_trap_count = this_trap_count; 2468 ret_maybe_prior_trap = maybe_prior_trap; 2469 ret_maybe_prior_recompile = maybe_prior_recompile; 2470 return pdata; 2471 } 2472 2473 void 2474 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2475 ResourceMark rm; 2476 // Ignored outputs: 2477 uint ignore_this_trap_count; 2478 bool ignore_maybe_prior_trap; 2479 bool ignore_maybe_prior_recompile; 2480 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2481 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2482 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2483 query_update_method_data(trap_mdo, trap_bci, 2484 (DeoptReason)reason, 2485 update_total_counts, 2486 #if INCLUDE_JVMCI 2487 false, 2488 #endif 2489 NULL, 2490 ignore_this_trap_count, 2491 ignore_maybe_prior_trap, 2492 ignore_maybe_prior_recompile); 2493 } 2494 2495 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2496 // Enable WXWrite: current function is called from methods compiled by C2 directly 2497 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2498 2499 if (TraceDeoptimization) { 2500 tty->print("Uncommon trap "); 2501 } 2502 // Still in Java no safepoints 2503 { 2504 // This enters VM and may safepoint 2505 uncommon_trap_inner(current, trap_request); 2506 } 2507 HandleMark hm(current); 2508 return fetch_unroll_info_helper(current, exec_mode); 2509 } 2510 2511 // Local derived constants. 2512 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2513 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2514 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2515 2516 //---------------------------trap_state_reason--------------------------------- 2517 Deoptimization::DeoptReason 2518 Deoptimization::trap_state_reason(int trap_state) { 2519 // This assert provides the link between the width of DataLayout::trap_bits 2520 // and the encoding of "recorded" reasons. It ensures there are enough 2521 // bits to store all needed reasons in the per-BCI MDO profile. 2522 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2523 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2524 trap_state -= recompile_bit; 2525 if (trap_state == DS_REASON_MASK) { 2526 return Reason_many; 2527 } else { 2528 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2529 return (DeoptReason)trap_state; 2530 } 2531 } 2532 //-------------------------trap_state_has_reason------------------------------- 2533 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2534 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2535 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2536 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2537 trap_state -= recompile_bit; 2538 if (trap_state == DS_REASON_MASK) { 2539 return -1; // true, unspecifically (bottom of state lattice) 2540 } else if (trap_state == reason) { 2541 return 1; // true, definitely 2542 } else if (trap_state == 0) { 2543 return 0; // false, definitely (top of state lattice) 2544 } else { 2545 return 0; // false, definitely 2546 } 2547 } 2548 //-------------------------trap_state_add_reason------------------------------- 2549 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2550 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2551 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2552 trap_state -= recompile_bit; 2553 if (trap_state == DS_REASON_MASK) { 2554 return trap_state + recompile_bit; // already at state lattice bottom 2555 } else if (trap_state == reason) { 2556 return trap_state + recompile_bit; // the condition is already true 2557 } else if (trap_state == 0) { 2558 return reason + recompile_bit; // no condition has yet been true 2559 } else { 2560 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2561 } 2562 } 2563 //-----------------------trap_state_is_recompiled------------------------------ 2564 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2565 return (trap_state & DS_RECOMPILE_BIT) != 0; 2566 } 2567 //-----------------------trap_state_set_recompiled----------------------------- 2568 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2569 if (z) return trap_state | DS_RECOMPILE_BIT; 2570 else return trap_state & ~DS_RECOMPILE_BIT; 2571 } 2572 //---------------------------format_trap_state--------------------------------- 2573 // This is used for debugging and diagnostics, including LogFile output. 2574 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2575 int trap_state) { 2576 assert(buflen > 0, "sanity"); 2577 DeoptReason reason = trap_state_reason(trap_state); 2578 bool recomp_flag = trap_state_is_recompiled(trap_state); 2579 // Re-encode the state from its decoded components. 2580 int decoded_state = 0; 2581 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2582 decoded_state = trap_state_add_reason(decoded_state, reason); 2583 if (recomp_flag) 2584 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2585 // If the state re-encodes properly, format it symbolically. 2586 // Because this routine is used for debugging and diagnostics, 2587 // be robust even if the state is a strange value. 2588 size_t len; 2589 if (decoded_state != trap_state) { 2590 // Random buggy state that doesn't decode?? 2591 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2592 } else { 2593 len = jio_snprintf(buf, buflen, "%s%s", 2594 trap_reason_name(reason), 2595 recomp_flag ? " recompiled" : ""); 2596 } 2597 return buf; 2598 } 2599 2600 2601 //--------------------------------statics-------------------------------------- 2602 const char* Deoptimization::_trap_reason_name[] = { 2603 // Note: Keep this in sync. with enum DeoptReason. 2604 "none", 2605 "null_check", 2606 "null_assert" JVMCI_ONLY("_or_unreached0"), 2607 "range_check", 2608 "class_check", 2609 "array_check", 2610 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2611 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2612 "profile_predicate", 2613 "unloaded", 2614 "uninitialized", 2615 "initialized", 2616 "unreached", 2617 "unhandled", 2618 "constraint", 2619 "div0_check", 2620 "age", 2621 "predicate", 2622 "loop_limit_check", 2623 "speculate_class_check", 2624 "speculate_null_check", 2625 "speculate_null_assert", 2626 "rtm_state_change", 2627 "unstable_if", 2628 "unstable_fused_if", 2629 "receiver_constraint", 2630 #if INCLUDE_JVMCI 2631 "aliasing", 2632 "transfer_to_interpreter", 2633 "not_compiled_exception_handler", 2634 "unresolved", 2635 "jsr_mismatch", 2636 #endif 2637 "tenured" 2638 }; 2639 const char* Deoptimization::_trap_action_name[] = { 2640 // Note: Keep this in sync. with enum DeoptAction. 2641 "none", 2642 "maybe_recompile", 2643 "reinterpret", 2644 "make_not_entrant", 2645 "make_not_compilable" 2646 }; 2647 2648 const char* Deoptimization::trap_reason_name(int reason) { 2649 // Check that every reason has a name 2650 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2651 2652 if (reason == Reason_many) return "many"; 2653 if ((uint)reason < Reason_LIMIT) 2654 return _trap_reason_name[reason]; 2655 static char buf[20]; 2656 sprintf(buf, "reason%d", reason); 2657 return buf; 2658 } 2659 const char* Deoptimization::trap_action_name(int action) { 2660 // Check that every action has a name 2661 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2662 2663 if ((uint)action < Action_LIMIT) 2664 return _trap_action_name[action]; 2665 static char buf[20]; 2666 sprintf(buf, "action%d", action); 2667 return buf; 2668 } 2669 2670 // This is used for debugging and diagnostics, including LogFile output. 2671 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2672 int trap_request) { 2673 jint unloaded_class_index = trap_request_index(trap_request); 2674 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2675 const char* action = trap_action_name(trap_request_action(trap_request)); 2676 #if INCLUDE_JVMCI 2677 int debug_id = trap_request_debug_id(trap_request); 2678 #endif 2679 size_t len; 2680 if (unloaded_class_index < 0) { 2681 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2682 reason, action 2683 #if INCLUDE_JVMCI 2684 ,debug_id 2685 #endif 2686 ); 2687 } else { 2688 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2689 reason, action, unloaded_class_index 2690 #if INCLUDE_JVMCI 2691 ,debug_id 2692 #endif 2693 ); 2694 } 2695 return buf; 2696 } 2697 2698 juint Deoptimization::_deoptimization_hist 2699 [Deoptimization::Reason_LIMIT] 2700 [1 + Deoptimization::Action_LIMIT] 2701 [Deoptimization::BC_CASE_LIMIT] 2702 = {0}; 2703 2704 enum { 2705 LSB_BITS = 8, 2706 LSB_MASK = right_n_bits(LSB_BITS) 2707 }; 2708 2709 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2710 Bytecodes::Code bc) { 2711 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2712 assert(action >= 0 && action < Action_LIMIT, "oob"); 2713 _deoptimization_hist[Reason_none][0][0] += 1; // total 2714 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2715 juint* cases = _deoptimization_hist[reason][1+action]; 2716 juint* bc_counter_addr = NULL; 2717 juint bc_counter = 0; 2718 // Look for an unused counter, or an exact match to this BC. 2719 if (bc != Bytecodes::_illegal) { 2720 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2721 juint* counter_addr = &cases[bc_case]; 2722 juint counter = *counter_addr; 2723 if ((counter == 0 && bc_counter_addr == NULL) 2724 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2725 // this counter is either free or is already devoted to this BC 2726 bc_counter_addr = counter_addr; 2727 bc_counter = counter | bc; 2728 } 2729 } 2730 } 2731 if (bc_counter_addr == NULL) { 2732 // Overflow, or no given bytecode. 2733 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2734 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2735 } 2736 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2737 } 2738 2739 jint Deoptimization::total_deoptimization_count() { 2740 return _deoptimization_hist[Reason_none][0][0]; 2741 } 2742 2743 void Deoptimization::print_statistics() { 2744 juint total = total_deoptimization_count(); 2745 juint account = total; 2746 if (total != 0) { 2747 ttyLocker ttyl; 2748 if (xtty != NULL) xtty->head("statistics type='deoptimization'"); 2749 tty->print_cr("Deoptimization traps recorded:"); 2750 #define PRINT_STAT_LINE(name, r) \ 2751 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2752 PRINT_STAT_LINE("total", total); 2753 // For each non-zero entry in the histogram, print the reason, 2754 // the action, and (if specifically known) the type of bytecode. 2755 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2756 for (int action = 0; action < Action_LIMIT; action++) { 2757 juint* cases = _deoptimization_hist[reason][1+action]; 2758 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2759 juint counter = cases[bc_case]; 2760 if (counter != 0) { 2761 char name[1*K]; 2762 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2763 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2764 bc = Bytecodes::_illegal; 2765 sprintf(name, "%s/%s/%s", 2766 trap_reason_name(reason), 2767 trap_action_name(action), 2768 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2769 juint r = counter >> LSB_BITS; 2770 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2771 account -= r; 2772 } 2773 } 2774 } 2775 } 2776 if (account != 0) { 2777 PRINT_STAT_LINE("unaccounted", account); 2778 } 2779 #undef PRINT_STAT_LINE 2780 if (xtty != NULL) xtty->tail("statistics"); 2781 } 2782 } 2783 2784 #else // COMPILER2_OR_JVMCI 2785 2786 2787 // Stubs for C1 only system. 2788 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2789 return false; 2790 } 2791 2792 const char* Deoptimization::trap_reason_name(int reason) { 2793 return "unknown"; 2794 } 2795 2796 void Deoptimization::print_statistics() { 2797 // no output 2798 } 2799 2800 void 2801 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2802 // no udpate 2803 } 2804 2805 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2806 return 0; 2807 } 2808 2809 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2810 Bytecodes::Code bc) { 2811 // no update 2812 } 2813 2814 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2815 int trap_state) { 2816 jio_snprintf(buf, buflen, "#%d", trap_state); 2817 return buf; 2818 } 2819 2820 #endif // COMPILER2_OR_JVMCI