1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "jvm.h" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/symbolTable.hpp" 29 #include "classfile/systemDictionary.hpp" 30 #include "classfile/vmClasses.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/nmethod.hpp" 34 #include "code/pcDesc.hpp" 35 #include "code/scopeDesc.hpp" 36 #include "compiler/compilationPolicy.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "interpreter/bytecode.hpp" 39 #include "interpreter/interpreter.hpp" 40 #include "interpreter/oopMapCache.hpp" 41 #include "memory/allocation.inline.hpp" 42 #include "memory/oopFactory.hpp" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "oops/constantPool.hpp" 46 #include "oops/method.hpp" 47 #include "oops/objArrayKlass.hpp" 48 #include "oops/objArrayOop.inline.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "oops/fieldStreams.inline.hpp" 51 #include "oops/typeArrayOop.inline.hpp" 52 #include "oops/verifyOopClosure.hpp" 53 #include "prims/jvmtiDeferredUpdates.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/vectorSupport.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/biasedLocking.hpp" 60 #include "runtime/deoptimization.hpp" 61 #include "runtime/escapeBarrier.hpp" 62 #include "runtime/fieldDescriptor.hpp" 63 #include "runtime/fieldDescriptor.inline.hpp" 64 #include "runtime/frame.inline.hpp" 65 #include "runtime/handles.inline.hpp" 66 #include "runtime/interfaceSupport.inline.hpp" 67 #include "runtime/jniHandles.inline.hpp" 68 #include "runtime/keepStackGCProcessed.hpp" 69 #include "runtime/objectMonitor.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/safepointVerifiers.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/signature.hpp" 74 #include "runtime/stackFrameStream.inline.hpp" 75 #include "runtime/stackWatermarkSet.hpp" 76 #include "runtime/stubRoutines.hpp" 77 #include "runtime/synchronizer.hpp" 78 #include "runtime/thread.hpp" 79 #include "runtime/threadSMR.hpp" 80 #include "runtime/threadWXSetters.inline.hpp" 81 #include "runtime/vframe.hpp" 82 #include "runtime/vframeArray.hpp" 83 #include "runtime/vframe_hp.hpp" 84 #include "runtime/vmOperations.hpp" 85 #include "utilities/events.hpp" 86 #include "utilities/macros.hpp" 87 #include "utilities/preserveException.hpp" 88 #include "utilities/xmlstream.hpp" 89 #if INCLUDE_JFR 90 #include "jfr/jfrEvents.hpp" 91 #include "jfr/metadata/jfrSerializer.hpp" 92 #endif 93 94 bool DeoptimizationMarker::_is_active = false; 95 96 Deoptimization::UnrollBlock::UnrollBlock(int size_of_deoptimized_frame, 97 int caller_adjustment, 98 int caller_actual_parameters, 99 int number_of_frames, 100 intptr_t* frame_sizes, 101 address* frame_pcs, 102 BasicType return_type, 103 int exec_mode) { 104 _size_of_deoptimized_frame = size_of_deoptimized_frame; 105 _caller_adjustment = caller_adjustment; 106 _caller_actual_parameters = caller_actual_parameters; 107 _number_of_frames = number_of_frames; 108 _frame_sizes = frame_sizes; 109 _frame_pcs = frame_pcs; 110 _register_block = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler); 111 _return_type = return_type; 112 _initial_info = 0; 113 // PD (x86 only) 114 _counter_temp = 0; 115 _unpack_kind = exec_mode; 116 _sender_sp_temp = 0; 117 118 _total_frame_sizes = size_of_frames(); 119 assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode"); 120 } 121 122 123 Deoptimization::UnrollBlock::~UnrollBlock() { 124 FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes); 125 FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs); 126 FREE_C_HEAP_ARRAY(intptr_t, _register_block); 127 } 128 129 130 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const { 131 assert(register_number < RegisterMap::reg_count, "checking register number"); 132 return &_register_block[register_number * 2]; 133 } 134 135 136 137 int Deoptimization::UnrollBlock::size_of_frames() const { 138 // Acount first for the adjustment of the initial frame 139 int result = _caller_adjustment; 140 for (int index = 0; index < number_of_frames(); index++) { 141 result += frame_sizes()[index]; 142 } 143 return result; 144 } 145 146 147 void Deoptimization::UnrollBlock::print() { 148 ResourceMark rm; 149 stringStream st; 150 st.print_cr("UnrollBlock"); 151 st.print_cr(" size_of_deoptimized_frame = %d", _size_of_deoptimized_frame); 152 st.print( " frame_sizes: "); 153 for (int index = 0; index < number_of_frames(); index++) { 154 st.print(INTX_FORMAT " ", frame_sizes()[index]); 155 } 156 st.cr(); 157 tty->print_raw(st.as_string()); 158 } 159 160 161 // In order to make fetch_unroll_info work properly with escape 162 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY. 163 // The actual reallocation of previously eliminated objects occurs in realloc_objects, 164 // which is called from the method fetch_unroll_info_helper below. 165 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode)) 166 // fetch_unroll_info() is called at the beginning of the deoptimization 167 // handler. Note this fact before we start generating temporary frames 168 // that can confuse an asynchronous stack walker. This counter is 169 // decremented at the end of unpack_frames(). 170 if (TraceDeoptimization) { 171 tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(current)); 172 } 173 current->inc_in_deopt_handler(); 174 175 if (exec_mode == Unpack_exception) { 176 // When we get here, a callee has thrown an exception into a deoptimized 177 // frame. That throw might have deferred stack watermark checking until 178 // after unwinding. So we deal with such deferred requests here. 179 StackWatermarkSet::after_unwind(current); 180 } 181 182 return fetch_unroll_info_helper(current, exec_mode); 183 JRT_END 184 185 #if COMPILER2_OR_JVMCI 186 #ifndef PRODUCT 187 // print information about reallocated objects 188 static void print_objects(JavaThread* deoptee_thread, 189 GrowableArray<ScopeValue*>* objects, bool realloc_failures) { 190 ResourceMark rm; 191 stringStream st; // change to logStream with logging 192 st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread)); 193 fieldDescriptor fd; 194 195 for (int i = 0; i < objects->length(); i++) { 196 ObjectValue* sv = (ObjectValue*) objects->at(i); 197 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 198 Handle obj = sv->value(); 199 200 st.print(" object <" INTPTR_FORMAT "> of type ", p2i(sv->value()())); 201 k->print_value_on(&st); 202 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 203 if (obj.is_null()) { 204 st.print(" allocation failed"); 205 } else { 206 st.print(" allocated (%d bytes)", obj->size() * HeapWordSize); 207 } 208 st.cr(); 209 210 if (Verbose && !obj.is_null()) { 211 k->oop_print_on(obj(), &st); 212 } 213 } 214 tty->print_raw(st.as_string()); 215 } 216 #endif 217 218 static bool rematerialize_objects(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method, 219 frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk, 220 bool& deoptimized_objects) { 221 bool realloc_failures = false; 222 assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames"); 223 224 JavaThread* deoptee_thread = chunk->at(0)->thread(); 225 assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread), 226 "a frame can only be deoptimized by the owner thread"); 227 228 GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects(); 229 230 // The flag return_oop() indicates call sites which return oop 231 // in compiled code. Such sites include java method calls, 232 // runtime calls (for example, used to allocate new objects/arrays 233 // on slow code path) and any other calls generated in compiled code. 234 // It is not guaranteed that we can get such information here only 235 // by analyzing bytecode in deoptimized frames. This is why this flag 236 // is set during method compilation (see Compile::Process_OopMap_Node()). 237 // If the previous frame was popped or if we are dispatching an exception, 238 // we don't have an oop result. 239 bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt); 240 Handle return_value; 241 if (save_oop_result) { 242 // Reallocation may trigger GC. If deoptimization happened on return from 243 // call which returns oop we need to save it since it is not in oopmap. 244 oop result = deoptee.saved_oop_result(&map); 245 assert(oopDesc::is_oop_or_null(result), "must be oop"); 246 return_value = Handle(thread, result); 247 assert(Universe::heap()->is_in_or_null(result), "must be heap pointer"); 248 if (TraceDeoptimization) { 249 tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread)); 250 } 251 } 252 if (objects != NULL) { 253 if (exec_mode == Deoptimization::Unpack_none) { 254 assert(thread->thread_state() == _thread_in_vm, "assumption"); 255 JavaThread* THREAD = thread; // For exception macros. 256 // Clear pending OOM if reallocation fails and return true indicating allocation failure 257 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true)); 258 deoptimized_objects = true; 259 } else { 260 JavaThread* current = thread; // For JRT_BLOCK 261 JRT_BLOCK 262 realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD); 263 JRT_END 264 } 265 bool skip_internal = (compiled_method != NULL) && !compiled_method->is_compiled_by_jvmci(); 266 Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal); 267 #ifndef PRODUCT 268 if (TraceDeoptimization) { 269 print_objects(deoptee_thread, objects, realloc_failures); 270 } 271 #endif 272 } 273 if (save_oop_result) { 274 // Restore result. 275 deoptee.set_saved_oop_result(&map, return_value()); 276 } 277 return realloc_failures; 278 } 279 280 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures, 281 frame& deoptee, int exec_mode, bool& deoptimized_objects) { 282 JavaThread* deoptee_thread = chunk->at(0)->thread(); 283 assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once"); 284 assert(thread == Thread::current(), "should be"); 285 HandleMark hm(thread); 286 #ifndef PRODUCT 287 bool first = true; 288 #endif 289 for (int i = 0; i < chunk->length(); i++) { 290 compiledVFrame* cvf = chunk->at(i); 291 assert (cvf->scope() != NULL,"expect only compiled java frames"); 292 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 293 if (monitors->is_nonempty()) { 294 bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee, 295 exec_mode, realloc_failures); 296 deoptimized_objects = deoptimized_objects || relocked; 297 #ifndef PRODUCT 298 if (PrintDeoptimizationDetails) { 299 ResourceMark rm; 300 stringStream st; 301 for (int j = 0; j < monitors->length(); j++) { 302 MonitorInfo* mi = monitors->at(j); 303 if (mi->eliminated()) { 304 if (first) { 305 first = false; 306 st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread)); 307 } 308 if (exec_mode == Deoptimization::Unpack_none) { 309 ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor(); 310 if (monitor != NULL && monitor->object() == mi->owner()) { 311 st.print_cr(" object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner())); 312 continue; 313 } 314 } 315 if (mi->owner_is_scalar_replaced()) { 316 Klass* k = java_lang_Class::as_Klass(mi->owner_klass()); 317 st.print_cr(" failed reallocation for klass %s", k->external_name()); 318 } else { 319 st.print_cr(" object <" INTPTR_FORMAT "> locked", p2i(mi->owner())); 320 } 321 } 322 } 323 tty->print_raw(st.as_string()); 324 } 325 #endif // !PRODUCT 326 } 327 } 328 } 329 330 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI. 331 // The given vframes cover one physical frame. 332 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, 333 bool& realloc_failures) { 334 frame deoptee = chunk->at(0)->fr(); 335 JavaThread* deoptee_thread = chunk->at(0)->thread(); 336 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 337 RegisterMap map(chunk->at(0)->register_map()); 338 bool deoptimized_objects = false; 339 340 bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false); 341 342 // Reallocate the non-escaping objects and restore their fields. 343 if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations) 344 || EliminateAutoBox || EnableVectorAggressiveReboxing)) { 345 realloc_failures = rematerialize_objects(thread, Unpack_none, cm, deoptee, map, chunk, deoptimized_objects); 346 } 347 348 // Revoke biases of objects with eliminated locks in the given frame. 349 Deoptimization::revoke_for_object_deoptimization(deoptee_thread, deoptee, &map, thread); 350 351 // MonitorInfo structures used in eliminate_locks are not GC safe. 352 NoSafepointVerifier no_safepoint; 353 354 // Now relock objects if synchronization on them was eliminated. 355 if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) { 356 restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects); 357 } 358 return deoptimized_objects; 359 } 360 #endif // COMPILER2_OR_JVMCI 361 362 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap) 363 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) { 364 // When we get here we are about to unwind the deoptee frame. In order to 365 // catch not yet safe to use frames, the following stack watermark barrier 366 // poll will make such frames safe to use. 367 StackWatermarkSet::before_unwind(current); 368 369 // Note: there is a safepoint safety issue here. No matter whether we enter 370 // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once 371 // the vframeArray is created. 372 // 373 374 // Allocate our special deoptimization ResourceMark 375 DeoptResourceMark* dmark = new DeoptResourceMark(current); 376 assert(current->deopt_mark() == NULL, "Pending deopt!"); 377 current->set_deopt_mark(dmark); 378 379 frame stub_frame = current->last_frame(); // Makes stack walkable as side effect 380 RegisterMap map(current, true); 381 RegisterMap dummy_map(current, false); 382 // Now get the deoptee with a valid map 383 frame deoptee = stub_frame.sender(&map); 384 // Set the deoptee nmethod 385 assert(current->deopt_compiled_method() == NULL, "Pending deopt!"); 386 CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null(); 387 current->set_deopt_compiled_method(cm); 388 389 if (VerifyStack) { 390 current->validate_frame_layout(); 391 } 392 393 // Create a growable array of VFrames where each VFrame represents an inlined 394 // Java frame. This storage is allocated with the usual system arena. 395 assert(deoptee.is_compiled_frame(), "Wrong frame type"); 396 GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10); 397 vframe* vf = vframe::new_vframe(&deoptee, &map, current); 398 while (!vf->is_top()) { 399 assert(vf->is_compiled_frame(), "Wrong frame type"); 400 chunk->push(compiledVFrame::cast(vf)); 401 vf = vf->sender(); 402 } 403 assert(vf->is_compiled_frame(), "Wrong frame type"); 404 chunk->push(compiledVFrame::cast(vf)); 405 406 bool realloc_failures = false; 407 408 #if COMPILER2_OR_JVMCI 409 bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false); 410 411 // Reallocate the non-escaping objects and restore their fields. Then 412 // relock objects if synchronization on them was eliminated. 413 if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations) 414 || EliminateAutoBox || EnableVectorAggressiveReboxing )) { 415 bool unused; 416 realloc_failures = rematerialize_objects(current, exec_mode, cm, deoptee, map, chunk, unused); 417 } 418 #endif // COMPILER2_OR_JVMCI 419 420 // Revoke biases, done with in java state. 421 // No safepoints allowed after this 422 revoke_from_deopt_handler(current, deoptee, &map); 423 424 // Ensure that no safepoint is taken after pointers have been stored 425 // in fields of rematerialized objects. If a safepoint occurs from here on 426 // out the java state residing in the vframeArray will be missed. 427 // Locks may be rebaised in a safepoint. 428 NoSafepointVerifier no_safepoint; 429 430 #if COMPILER2_OR_JVMCI 431 if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) )) 432 && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) { 433 bool unused; 434 restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused); 435 } 436 #endif // COMPILER2_OR_JVMCI 437 438 ScopeDesc* trap_scope = chunk->at(0)->scope(); 439 Handle exceptionObject; 440 if (trap_scope->rethrow_exception()) { 441 if (PrintDeoptimizationDetails) { 442 tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci()); 443 } 444 GrowableArray<ScopeValue*>* expressions = trap_scope->expressions(); 445 guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw"); 446 ScopeValue* topOfStack = expressions->top(); 447 exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj(); 448 guarantee(exceptionObject() != NULL, "exception oop can not be null"); 449 } 450 451 vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures); 452 #if COMPILER2_OR_JVMCI 453 if (realloc_failures) { 454 pop_frames_failed_reallocs(current, array); 455 } 456 #endif 457 458 assert(current->vframe_array_head() == NULL, "Pending deopt!"); 459 current->set_vframe_array_head(array); 460 461 // Now that the vframeArray has been created if we have any deferred local writes 462 // added by jvmti then we can free up that structure as the data is now in the 463 // vframeArray 464 465 JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id()); 466 467 // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info. 468 CodeBlob* cb = stub_frame.cb(); 469 // Verify we have the right vframeArray 470 assert(cb->frame_size() >= 0, "Unexpected frame size"); 471 intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size(); 472 473 // If the deopt call site is a MethodHandle invoke call site we have 474 // to adjust the unpack_sp. 475 nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null(); 476 if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc())) 477 unpack_sp = deoptee.unextended_sp(); 478 479 #ifdef ASSERT 480 assert(cb->is_deoptimization_stub() || 481 cb->is_uncommon_trap_stub() || 482 strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 || 483 strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0, 484 "unexpected code blob: %s", cb->name()); 485 #endif 486 487 // This is a guarantee instead of an assert because if vframe doesn't match 488 // we will unpack the wrong deoptimized frame and wind up in strange places 489 // where it will be very difficult to figure out what went wrong. Better 490 // to die an early death here than some very obscure death later when the 491 // trail is cold. 492 // Note: on ia64 this guarantee can be fooled by frames with no memory stack 493 // in that it will fail to detect a problem when there is one. This needs 494 // more work in tiger timeframe. 495 guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack"); 496 497 int number_of_frames = array->frames(); 498 499 // Compute the vframes' sizes. Note that frame_sizes[] entries are ordered from outermost to innermost 500 // virtual activation, which is the reverse of the elements in the vframes array. 501 intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler); 502 // +1 because we always have an interpreter return address for the final slot. 503 address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler); 504 int popframe_extra_args = 0; 505 // Create an interpreter return address for the stub to use as its return 506 // address so the skeletal frames are perfectly walkable 507 frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0); 508 509 // PopFrame requires that the preserved incoming arguments from the recently-popped topmost 510 // activation be put back on the expression stack of the caller for reexecution 511 if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) { 512 popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words()); 513 } 514 515 // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized 516 // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather 517 // than simply use array->sender.pc(). This requires us to walk the current set of frames 518 // 519 frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame 520 deopt_sender = deopt_sender.sender(&dummy_map); // Now deoptee caller 521 522 // It's possible that the number of parameters at the call site is 523 // different than number of arguments in the callee when method 524 // handles are used. If the caller is interpreted get the real 525 // value so that the proper amount of space can be added to it's 526 // frame. 527 bool caller_was_method_handle = false; 528 if (deopt_sender.is_interpreted_frame()) { 529 methodHandle method(current, deopt_sender.interpreter_frame_method()); 530 Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci()); 531 if (cur.is_invokedynamic() || cur.is_invokehandle()) { 532 // Method handle invokes may involve fairly arbitrary chains of 533 // calls so it's impossible to know how much actual space the 534 // caller has for locals. 535 caller_was_method_handle = true; 536 } 537 } 538 539 // 540 // frame_sizes/frame_pcs[0] oldest frame (int or c2i) 541 // frame_sizes/frame_pcs[1] next oldest frame (int) 542 // frame_sizes/frame_pcs[n] youngest frame (int) 543 // 544 // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame 545 // owns the space for the return address to it's caller). Confusing ain't it. 546 // 547 // The vframe array can address vframes with indices running from 548 // 0.._frames-1. Index 0 is the youngest frame and _frame - 1 is the oldest (root) frame. 549 // When we create the skeletal frames we need the oldest frame to be in the zero slot 550 // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk. 551 // so things look a little strange in this loop. 552 // 553 int callee_parameters = 0; 554 int callee_locals = 0; 555 for (int index = 0; index < array->frames(); index++ ) { 556 // frame[number_of_frames - 1 ] = on_stack_size(youngest) 557 // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest)) 558 // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest))) 559 frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters, 560 callee_locals, 561 index == 0, 562 popframe_extra_args); 563 // This pc doesn't have to be perfect just good enough to identify the frame 564 // as interpreted so the skeleton frame will be walkable 565 // The correct pc will be set when the skeleton frame is completely filled out 566 // The final pc we store in the loop is wrong and will be overwritten below 567 frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset; 568 569 callee_parameters = array->element(index)->method()->size_of_parameters(); 570 callee_locals = array->element(index)->method()->max_locals(); 571 popframe_extra_args = 0; 572 } 573 574 // Compute whether the root vframe returns a float or double value. 575 BasicType return_type; 576 { 577 methodHandle method(current, array->element(0)->method()); 578 Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci()); 579 return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL; 580 } 581 582 // Compute information for handling adapters and adjusting the frame size of the caller. 583 int caller_adjustment = 0; 584 585 // Compute the amount the oldest interpreter frame will have to adjust 586 // its caller's stack by. If the caller is a compiled frame then 587 // we pretend that the callee has no parameters so that the 588 // extension counts for the full amount of locals and not just 589 // locals-parms. This is because without a c2i adapter the parm 590 // area as created by the compiled frame will not be usable by 591 // the interpreter. (Depending on the calling convention there 592 // may not even be enough space). 593 594 // QQQ I'd rather see this pushed down into last_frame_adjust 595 // and have it take the sender (aka caller). 596 597 if (deopt_sender.is_compiled_frame() || caller_was_method_handle) { 598 caller_adjustment = last_frame_adjust(0, callee_locals); 599 } else if (callee_locals > callee_parameters) { 600 // The caller frame may need extending to accommodate 601 // non-parameter locals of the first unpacked interpreted frame. 602 // Compute that adjustment. 603 caller_adjustment = last_frame_adjust(callee_parameters, callee_locals); 604 } 605 606 // If the sender is deoptimized the we must retrieve the address of the handler 607 // since the frame will "magically" show the original pc before the deopt 608 // and we'd undo the deopt. 609 610 frame_pcs[0] = deopt_sender.raw_pc(); 611 612 assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc"); 613 614 #if INCLUDE_JVMCI 615 if (exceptionObject() != NULL) { 616 current->set_exception_oop(exceptionObject()); 617 exec_mode = Unpack_exception; 618 } 619 #endif 620 621 if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) { 622 assert(current->has_pending_exception(), "should have thrown OOME"); 623 current->set_exception_oop(current->pending_exception()); 624 current->clear_pending_exception(); 625 exec_mode = Unpack_exception; 626 } 627 628 #if INCLUDE_JVMCI 629 if (current->frames_to_pop_failed_realloc() > 0) { 630 current->set_pending_monitorenter(false); 631 } 632 #endif 633 634 UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord, 635 caller_adjustment * BytesPerWord, 636 caller_was_method_handle ? 0 : callee_parameters, 637 number_of_frames, 638 frame_sizes, 639 frame_pcs, 640 return_type, 641 exec_mode); 642 // On some platforms, we need a way to pass some platform dependent 643 // information to the unpacking code so the skeletal frames come out 644 // correct (initial fp value, unextended sp, ...) 645 info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info()); 646 647 if (array->frames() > 1) { 648 if (VerifyStack && TraceDeoptimization) { 649 tty->print_cr("Deoptimizing method containing inlining"); 650 } 651 } 652 653 array->set_unroll_block(info); 654 return info; 655 } 656 657 // Called to cleanup deoptimization data structures in normal case 658 // after unpacking to stack and when stack overflow error occurs 659 void Deoptimization::cleanup_deopt_info(JavaThread *thread, 660 vframeArray *array) { 661 662 // Get array if coming from exception 663 if (array == NULL) { 664 array = thread->vframe_array_head(); 665 } 666 thread->set_vframe_array_head(NULL); 667 668 // Free the previous UnrollBlock 669 vframeArray* old_array = thread->vframe_array_last(); 670 thread->set_vframe_array_last(array); 671 672 if (old_array != NULL) { 673 UnrollBlock* old_info = old_array->unroll_block(); 674 old_array->set_unroll_block(NULL); 675 delete old_info; 676 delete old_array; 677 } 678 679 // Deallocate any resource creating in this routine and any ResourceObjs allocated 680 // inside the vframeArray (StackValueCollections) 681 682 delete thread->deopt_mark(); 683 thread->set_deopt_mark(NULL); 684 thread->set_deopt_compiled_method(NULL); 685 686 687 if (JvmtiExport::can_pop_frame()) { 688 // Regardless of whether we entered this routine with the pending 689 // popframe condition bit set, we should always clear it now 690 thread->clear_popframe_condition(); 691 } 692 693 // unpack_frames() is called at the end of the deoptimization handler 694 // and (in C2) at the end of the uncommon trap handler. Note this fact 695 // so that an asynchronous stack walker can work again. This counter is 696 // incremented at the beginning of fetch_unroll_info() and (in C2) at 697 // the beginning of uncommon_trap(). 698 thread->dec_in_deopt_handler(); 699 } 700 701 // Moved from cpu directories because none of the cpus has callee save values. 702 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp. 703 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) { 704 705 // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in 706 // the days we had adapter frames. When we deoptimize a situation where a 707 // compiled caller calls a compiled caller will have registers it expects 708 // to survive the call to the callee. If we deoptimize the callee the only 709 // way we can restore these registers is to have the oldest interpreter 710 // frame that we create restore these values. That is what this routine 711 // will accomplish. 712 713 // At the moment we have modified c2 to not have any callee save registers 714 // so this problem does not exist and this routine is just a place holder. 715 716 assert(f->is_interpreted_frame(), "must be interpreted"); 717 } 718 719 #ifndef PRODUCT 720 static bool falls_through(Bytecodes::Code bc) { 721 switch (bc) { 722 // List may be incomplete. Here we really only care about bytecodes where compiled code 723 // can deoptimize. 724 case Bytecodes::_goto: 725 case Bytecodes::_goto_w: 726 case Bytecodes::_athrow: 727 return false; 728 default: 729 return true; 730 } 731 } 732 #endif 733 734 // Return BasicType of value being returned 735 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)) 736 737 // We are already active in the special DeoptResourceMark any ResourceObj's we 738 // allocate will be freed at the end of the routine. 739 740 // JRT_LEAF methods don't normally allocate handles and there is a 741 // NoHandleMark to enforce that. It is actually safe to use Handles 742 // in a JRT_LEAF method, and sometimes desirable, but to do so we 743 // must use ResetNoHandleMark to bypass the NoHandleMark, and 744 // then use a HandleMark to ensure any Handles we do create are 745 // cleaned up in this scope. 746 ResetNoHandleMark rnhm; 747 HandleMark hm(thread); 748 749 frame stub_frame = thread->last_frame(); 750 751 // Since the frame to unpack is the top frame of this thread, the vframe_array_head 752 // must point to the vframeArray for the unpack frame. 753 vframeArray* array = thread->vframe_array_head(); 754 755 #ifndef PRODUCT 756 if (TraceDeoptimization) { 757 tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d", 758 p2i(thread), p2i(array), exec_mode); 759 } 760 #endif 761 Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d", 762 p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode); 763 764 UnrollBlock* info = array->unroll_block(); 765 766 // We set the last_Java frame. But the stack isn't really parsable here. So we 767 // clear it to make sure JFR understands not to try and walk stacks from events 768 // in here. 769 intptr_t* sp = thread->frame_anchor()->last_Java_sp(); 770 thread->frame_anchor()->set_last_Java_sp(NULL); 771 772 // Unpack the interpreter frames and any adapter frame (c2 only) we might create. 773 array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters()); 774 775 thread->frame_anchor()->set_last_Java_sp(sp); 776 777 BasicType bt = info->return_type(); 778 779 // If we have an exception pending, claim that the return type is an oop 780 // so the deopt_blob does not overwrite the exception_oop. 781 782 if (exec_mode == Unpack_exception) 783 bt = T_OBJECT; 784 785 // Cleanup thread deopt data 786 cleanup_deopt_info(thread, array); 787 788 #ifndef PRODUCT 789 if (VerifyStack) { 790 ResourceMark res_mark; 791 // Clear pending exception to not break verification code (restored afterwards) 792 PreserveExceptionMark pm(thread); 793 794 thread->validate_frame_layout(); 795 796 // Verify that the just-unpacked frames match the interpreter's 797 // notions of expression stack and locals 798 vframeArray* cur_array = thread->vframe_array_last(); 799 RegisterMap rm(thread, false); 800 rm.set_include_argument_oops(false); 801 bool is_top_frame = true; 802 int callee_size_of_parameters = 0; 803 int callee_max_locals = 0; 804 for (int i = 0; i < cur_array->frames(); i++) { 805 vframeArrayElement* el = cur_array->element(i); 806 frame* iframe = el->iframe(); 807 guarantee(iframe->is_interpreted_frame(), "Wrong frame type"); 808 809 // Get the oop map for this bci 810 InterpreterOopMap mask; 811 int cur_invoke_parameter_size = 0; 812 bool try_next_mask = false; 813 int next_mask_expression_stack_size = -1; 814 int top_frame_expression_stack_adjustment = 0; 815 methodHandle mh(thread, iframe->interpreter_frame_method()); 816 OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask); 817 BytecodeStream str(mh, iframe->interpreter_frame_bci()); 818 int max_bci = mh->code_size(); 819 // Get to the next bytecode if possible 820 assert(str.bci() < max_bci, "bci in interpreter frame out of bounds"); 821 // Check to see if we can grab the number of outgoing arguments 822 // at an uncommon trap for an invoke (where the compiler 823 // generates debug info before the invoke has executed) 824 Bytecodes::Code cur_code = str.next(); 825 Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere; 826 if (Bytecodes::is_invoke(cur_code)) { 827 Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci()); 828 cur_invoke_parameter_size = invoke.size_of_parameters(); 829 if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) { 830 callee_size_of_parameters++; 831 } 832 } 833 if (str.bci() < max_bci) { 834 next_code = str.next(); 835 if (next_code >= 0) { 836 // The interpreter oop map generator reports results before 837 // the current bytecode has executed except in the case of 838 // calls. It seems to be hard to tell whether the compiler 839 // has emitted debug information matching the "state before" 840 // a given bytecode or the state after, so we try both 841 if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) { 842 // Get expression stack size for the next bytecode 843 InterpreterOopMap next_mask; 844 OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask); 845 next_mask_expression_stack_size = next_mask.expression_stack_size(); 846 if (Bytecodes::is_invoke(next_code)) { 847 Bytecode_invoke invoke(mh, str.bci()); 848 next_mask_expression_stack_size += invoke.size_of_parameters(); 849 } 850 // Need to subtract off the size of the result type of 851 // the bytecode because this is not described in the 852 // debug info but returned to the interpreter in the TOS 853 // caching register 854 BasicType bytecode_result_type = Bytecodes::result_type(cur_code); 855 if (bytecode_result_type != T_ILLEGAL) { 856 top_frame_expression_stack_adjustment = type2size[bytecode_result_type]; 857 } 858 assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive"); 859 try_next_mask = true; 860 } 861 } 862 } 863 864 // Verify stack depth and oops in frame 865 // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc) 866 if (!( 867 /* SPARC */ 868 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) || 869 /* x86 */ 870 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) || 871 (try_next_mask && 872 (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size - 873 top_frame_expression_stack_adjustment))) || 874 (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) || 875 (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) && 876 (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size)) 877 )) { 878 { 879 // Print out some information that will help us debug the problem 880 tty->print_cr("Wrong number of expression stack elements during deoptimization"); 881 tty->print_cr(" Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1); 882 tty->print_cr(" Current code %s", Bytecodes::name(cur_code)); 883 if (try_next_mask) { 884 tty->print_cr(" Next code %s", Bytecodes::name(next_code)); 885 } 886 tty->print_cr(" Fabricated interpreter frame had %d expression stack elements", 887 iframe->interpreter_frame_expression_stack_size()); 888 tty->print_cr(" Interpreter oop map had %d expression stack elements", mask.expression_stack_size()); 889 tty->print_cr(" try_next_mask = %d", try_next_mask); 890 tty->print_cr(" next_mask_expression_stack_size = %d", next_mask_expression_stack_size); 891 tty->print_cr(" callee_size_of_parameters = %d", callee_size_of_parameters); 892 tty->print_cr(" callee_max_locals = %d", callee_max_locals); 893 tty->print_cr(" top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment); 894 tty->print_cr(" exec_mode = %d", exec_mode); 895 tty->print_cr(" cur_invoke_parameter_size = %d", cur_invoke_parameter_size); 896 tty->print_cr(" Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id()); 897 tty->print_cr(" Interpreted frames:"); 898 for (int k = 0; k < cur_array->frames(); k++) { 899 vframeArrayElement* el = cur_array->element(k); 900 tty->print_cr(" %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci()); 901 } 902 cur_array->print_on_2(tty); 903 } 904 guarantee(false, "wrong number of expression stack elements during deopt"); 905 } 906 VerifyOopClosure verify; 907 iframe->oops_interpreted_do(&verify, &rm, false); 908 callee_size_of_parameters = mh->size_of_parameters(); 909 callee_max_locals = mh->max_locals(); 910 is_top_frame = false; 911 } 912 } 913 #endif /* !PRODUCT */ 914 915 return bt; 916 JRT_END 917 918 class DeoptimizeMarkedClosure : public HandshakeClosure { 919 public: 920 DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {} 921 void do_thread(Thread* thread) { 922 JavaThread* jt = thread->as_Java_thread(); 923 jt->deoptimize_marked_methods(); 924 } 925 }; 926 927 void Deoptimization::deoptimize_all_marked(nmethod* nmethod_only) { 928 ResourceMark rm; 929 DeoptimizationMarker dm; 930 931 // Make the dependent methods not entrant 932 if (nmethod_only != NULL) { 933 nmethod_only->mark_for_deoptimization(); 934 nmethod_only->make_not_entrant(); 935 } else { 936 MutexLocker mu(SafepointSynchronize::is_at_safepoint() ? NULL : CodeCache_lock, Mutex::_no_safepoint_check_flag); 937 CodeCache::make_marked_nmethods_not_entrant(); 938 } 939 940 DeoptimizeMarkedClosure deopt; 941 if (SafepointSynchronize::is_at_safepoint()) { 942 Threads::java_threads_do(&deopt); 943 } else { 944 Handshake::execute(&deopt); 945 } 946 } 947 948 Deoptimization::DeoptAction Deoptimization::_unloaded_action 949 = Deoptimization::Action_reinterpret; 950 951 #if COMPILER2_OR_JVMCI 952 template<typename CacheType> 953 class BoxCacheBase : public CHeapObj<mtCompiler> { 954 protected: 955 static InstanceKlass* find_cache_klass(Symbol* klass_name) { 956 ResourceMark rm; 957 char* klass_name_str = klass_name->as_C_string(); 958 InstanceKlass* ik = SystemDictionary::find_instance_klass(klass_name, Handle(), Handle()); 959 guarantee(ik != NULL, "%s must be loaded", klass_name_str); 960 guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str); 961 CacheType::compute_offsets(ik); 962 return ik; 963 } 964 }; 965 966 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache : public BoxCacheBase<CacheType> { 967 PrimitiveType _low; 968 PrimitiveType _high; 969 jobject _cache; 970 protected: 971 static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton; 972 BoxCache(Thread* thread) { 973 InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol()); 974 objArrayOop cache = CacheType::cache(ik); 975 assert(cache->length() > 0, "Empty cache"); 976 _low = BoxType::value(cache->obj_at(0)); 977 _high = _low + cache->length() - 1; 978 _cache = JNIHandles::make_global(Handle(thread, cache)); 979 } 980 ~BoxCache() { 981 JNIHandles::destroy_global(_cache); 982 } 983 public: 984 static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) { 985 if (_singleton == NULL) { 986 BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread); 987 if (!Atomic::replace_if_null(&_singleton, s)) { 988 delete s; 989 } 990 } 991 return _singleton; 992 } 993 oop lookup(PrimitiveType value) { 994 if (_low <= value && value <= _high) { 995 int offset = value - _low; 996 return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset); 997 } 998 return NULL; 999 } 1000 oop lookup_raw(intptr_t raw_value) { 1001 // Have to cast to avoid little/big-endian problems. 1002 if (sizeof(PrimitiveType) > sizeof(jint)) { 1003 jlong value = (jlong)raw_value; 1004 return lookup(value); 1005 } 1006 PrimitiveType value = (PrimitiveType)*((jint*)&raw_value); 1007 return lookup(value); 1008 } 1009 }; 1010 1011 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache; 1012 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache; 1013 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache; 1014 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache; 1015 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache; 1016 1017 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL; 1018 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL; 1019 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL; 1020 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL; 1021 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL; 1022 1023 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> { 1024 jobject _true_cache; 1025 jobject _false_cache; 1026 protected: 1027 static BooleanBoxCache *_singleton; 1028 BooleanBoxCache(Thread *thread) { 1029 InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol()); 1030 _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik))); 1031 _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik))); 1032 } 1033 ~BooleanBoxCache() { 1034 JNIHandles::destroy_global(_true_cache); 1035 JNIHandles::destroy_global(_false_cache); 1036 } 1037 public: 1038 static BooleanBoxCache* singleton(Thread* thread) { 1039 if (_singleton == NULL) { 1040 BooleanBoxCache* s = new BooleanBoxCache(thread); 1041 if (!Atomic::replace_if_null(&_singleton, s)) { 1042 delete s; 1043 } 1044 } 1045 return _singleton; 1046 } 1047 oop lookup_raw(intptr_t raw_value) { 1048 // Have to cast to avoid little/big-endian problems. 1049 jboolean value = (jboolean)*((jint*)&raw_value); 1050 return lookup(value); 1051 } 1052 oop lookup(jboolean value) { 1053 if (value != 0) { 1054 return JNIHandles::resolve_non_null(_true_cache); 1055 } 1056 return JNIHandles::resolve_non_null(_false_cache); 1057 } 1058 }; 1059 1060 BooleanBoxCache* BooleanBoxCache::_singleton = NULL; 1061 1062 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) { 1063 Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()()); 1064 BasicType box_type = vmClasses::box_klass_type(k); 1065 if (box_type != T_OBJECT) { 1066 StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0)); 1067 switch(box_type) { 1068 case T_INT: return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1069 case T_CHAR: return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1070 case T_SHORT: return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1071 case T_BYTE: return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1072 case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1073 case T_LONG: return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int()); 1074 default:; 1075 } 1076 } 1077 return NULL; 1078 } 1079 1080 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) { 1081 Handle pending_exception(THREAD, thread->pending_exception()); 1082 const char* exception_file = thread->exception_file(); 1083 int exception_line = thread->exception_line(); 1084 thread->clear_pending_exception(); 1085 1086 bool failures = false; 1087 1088 for (int i = 0; i < objects->length(); i++) { 1089 assert(objects->at(i)->is_object(), "invalid debug information"); 1090 ObjectValue* sv = (ObjectValue*) objects->at(i); 1091 1092 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1093 oop obj = NULL; 1094 1095 if (k->is_instance_klass()) { 1096 if (sv->is_auto_box()) { 1097 AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv; 1098 obj = get_cached_box(abv, fr, reg_map, THREAD); 1099 if (obj != NULL) { 1100 // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it. 1101 abv->set_cached(true); 1102 } 1103 } 1104 1105 InstanceKlass* ik = InstanceKlass::cast(k); 1106 if (obj == NULL) { 1107 #ifdef COMPILER2 1108 if (EnableVectorSupport && VectorSupport::is_vector(ik)) { 1109 obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD); 1110 } else { 1111 obj = ik->allocate_instance(THREAD); 1112 } 1113 #else 1114 obj = ik->allocate_instance(THREAD); 1115 #endif // COMPILER2 1116 } 1117 } else if (k->is_typeArray_klass()) { 1118 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1119 assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length"); 1120 int len = sv->field_size() / type2size[ak->element_type()]; 1121 obj = ak->allocate(len, THREAD); 1122 } else if (k->is_objArray_klass()) { 1123 ObjArrayKlass* ak = ObjArrayKlass::cast(k); 1124 obj = ak->allocate(sv->field_size(), THREAD); 1125 } 1126 1127 if (obj == NULL) { 1128 failures = true; 1129 } 1130 1131 assert(sv->value().is_null(), "redundant reallocation"); 1132 assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception"); 1133 CLEAR_PENDING_EXCEPTION; 1134 sv->set_value(obj); 1135 } 1136 1137 if (failures) { 1138 THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures); 1139 } else if (pending_exception.not_null()) { 1140 thread->set_pending_exception(pending_exception(), exception_file, exception_line); 1141 } 1142 1143 return failures; 1144 } 1145 1146 #if INCLUDE_JVMCI 1147 /** 1148 * For primitive types whose kind gets "erased" at runtime (shorts become stack ints), 1149 * we need to somehow be able to recover the actual kind to be able to write the correct 1150 * amount of bytes. 1151 * For that purpose, this method assumes that, for an entry spanning n bytes at index i, 1152 * the entries at index n + 1 to n + i are 'markers'. 1153 * For example, if we were writing a short at index 4 of a byte array of size 8, the 1154 * expected form of the array would be: 1155 * 1156 * {b0, b1, b2, b3, INT, marker, b6, b7} 1157 * 1158 * Thus, in order to get back the size of the entry, we simply need to count the number 1159 * of marked entries 1160 * 1161 * @param virtualArray the virtualized byte array 1162 * @param i index of the virtual entry we are recovering 1163 * @return The number of bytes the entry spans 1164 */ 1165 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) { 1166 int index = i; 1167 while (++index < virtualArray->field_size() && 1168 virtualArray->field_at(index)->is_marker()) {} 1169 return index - i; 1170 } 1171 1172 /** 1173 * If there was a guarantee for byte array to always start aligned to a long, we could 1174 * do a simple check on the parity of the index. Unfortunately, that is not always the 1175 * case. Thus, we check alignment of the actual address we are writing to. 1176 * In the unlikely case index 0 is 5-aligned for example, it would then be possible to 1177 * write a long to index 3. 1178 */ 1179 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) { 1180 jbyte* res = obj->byte_at_addr(index); 1181 assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write"); 1182 return res; 1183 } 1184 1185 static void byte_array_put(typeArrayOop obj, intptr_t val, int index, int byte_count) { 1186 switch (byte_count) { 1187 case 1: 1188 obj->byte_at_put(index, (jbyte) *((jint *) &val)); 1189 break; 1190 case 2: 1191 *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) *((jint *) &val); 1192 break; 1193 case 4: 1194 *((jint *) check_alignment_get_addr(obj, index, 4)) = (jint) *((jint *) &val); 1195 break; 1196 case 8: 1197 *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) *((jlong *) &val); 1198 break; 1199 default: 1200 ShouldNotReachHere(); 1201 } 1202 } 1203 #endif // INCLUDE_JVMCI 1204 1205 1206 // restore elements of an eliminated type array 1207 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) { 1208 int index = 0; 1209 intptr_t val; 1210 1211 for (int i = 0; i < sv->field_size(); i++) { 1212 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1213 switch(type) { 1214 case T_LONG: case T_DOUBLE: { 1215 assert(value->type() == T_INT, "Agreement."); 1216 StackValue* low = 1217 StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1218 #ifdef _LP64 1219 jlong res = (jlong)low->get_int(); 1220 #else 1221 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1222 #endif 1223 obj->long_at_put(index, res); 1224 break; 1225 } 1226 1227 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1228 case T_INT: case T_FLOAT: { // 4 bytes. 1229 assert(value->type() == T_INT, "Agreement."); 1230 bool big_value = false; 1231 if (i + 1 < sv->field_size() && type == T_INT) { 1232 if (sv->field_at(i)->is_location()) { 1233 Location::Type type = ((LocationValue*) sv->field_at(i))->location().type(); 1234 if (type == Location::dbl || type == Location::lng) { 1235 big_value = true; 1236 } 1237 } else if (sv->field_at(i)->is_constant_int()) { 1238 ScopeValue* next_scope_field = sv->field_at(i + 1); 1239 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1240 big_value = true; 1241 } 1242 } 1243 } 1244 1245 if (big_value) { 1246 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i)); 1247 #ifdef _LP64 1248 jlong res = (jlong)low->get_int(); 1249 #else 1250 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1251 #endif 1252 obj->int_at_put(index, (jint)*((jint*)&res)); 1253 obj->int_at_put(++index, (jint)*(((jint*)&res) + 1)); 1254 } else { 1255 val = value->get_int(); 1256 obj->int_at_put(index, (jint)*((jint*)&val)); 1257 } 1258 break; 1259 } 1260 1261 case T_SHORT: 1262 assert(value->type() == T_INT, "Agreement."); 1263 val = value->get_int(); 1264 obj->short_at_put(index, (jshort)*((jint*)&val)); 1265 break; 1266 1267 case T_CHAR: 1268 assert(value->type() == T_INT, "Agreement."); 1269 val = value->get_int(); 1270 obj->char_at_put(index, (jchar)*((jint*)&val)); 1271 break; 1272 1273 case T_BYTE: { 1274 assert(value->type() == T_INT, "Agreement."); 1275 // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'. 1276 val = value->get_int(); 1277 #if INCLUDE_JVMCI 1278 int byte_count = count_number_of_bytes_for_entry(sv, i); 1279 byte_array_put(obj, val, index, byte_count); 1280 // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip. 1281 i += byte_count - 1; // Balance the loop counter. 1282 index += byte_count; 1283 // index has been updated so continue at top of loop 1284 continue; 1285 #else 1286 obj->byte_at_put(index, (jbyte)*((jint*)&val)); 1287 break; 1288 #endif // INCLUDE_JVMCI 1289 } 1290 1291 case T_BOOLEAN: { 1292 assert(value->type() == T_INT, "Agreement."); 1293 val = value->get_int(); 1294 obj->bool_at_put(index, (jboolean)*((jint*)&val)); 1295 break; 1296 } 1297 1298 default: 1299 ShouldNotReachHere(); 1300 } 1301 index++; 1302 } 1303 } 1304 1305 // restore fields of an eliminated object array 1306 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) { 1307 for (int i = 0; i < sv->field_size(); i++) { 1308 StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i)); 1309 assert(value->type() == T_OBJECT, "object element expected"); 1310 obj->obj_at_put(i, value->get_obj()()); 1311 } 1312 } 1313 1314 class ReassignedField { 1315 public: 1316 int _offset; 1317 BasicType _type; 1318 public: 1319 ReassignedField() { 1320 _offset = 0; 1321 _type = T_ILLEGAL; 1322 } 1323 }; 1324 1325 int compare(ReassignedField* left, ReassignedField* right) { 1326 return left->_offset - right->_offset; 1327 } 1328 1329 // Restore fields of an eliminated instance object using the same field order 1330 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true) 1331 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) { 1332 GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>(); 1333 InstanceKlass* ik = klass; 1334 while (ik != NULL) { 1335 for (AllFieldStream fs(ik); !fs.done(); fs.next()) { 1336 if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) { 1337 ReassignedField field; 1338 field._offset = fs.offset(); 1339 field._type = Signature::basic_type(fs.signature()); 1340 fields->append(field); 1341 } 1342 } 1343 ik = ik->superklass(); 1344 } 1345 fields->sort(compare); 1346 for (int i = 0; i < fields->length(); i++) { 1347 intptr_t val; 1348 ScopeValue* scope_field = sv->field_at(svIndex); 1349 StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field); 1350 int offset = fields->at(i)._offset; 1351 BasicType type = fields->at(i)._type; 1352 switch (type) { 1353 case T_OBJECT: case T_ARRAY: 1354 assert(value->type() == T_OBJECT, "Agreement."); 1355 obj->obj_field_put(offset, value->get_obj()()); 1356 break; 1357 1358 // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem. 1359 case T_INT: case T_FLOAT: { // 4 bytes. 1360 assert(value->type() == T_INT, "Agreement."); 1361 bool big_value = false; 1362 if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) { 1363 if (scope_field->is_location()) { 1364 Location::Type type = ((LocationValue*) scope_field)->location().type(); 1365 if (type == Location::dbl || type == Location::lng) { 1366 big_value = true; 1367 } 1368 } 1369 if (scope_field->is_constant_int()) { 1370 ScopeValue* next_scope_field = sv->field_at(svIndex + 1); 1371 if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) { 1372 big_value = true; 1373 } 1374 } 1375 } 1376 1377 if (big_value) { 1378 i++; 1379 assert(i < fields->length(), "second T_INT field needed"); 1380 assert(fields->at(i)._type == T_INT, "T_INT field needed"); 1381 } else { 1382 val = value->get_int(); 1383 obj->int_field_put(offset, (jint)*((jint*)&val)); 1384 break; 1385 } 1386 } 1387 /* no break */ 1388 1389 case T_LONG: case T_DOUBLE: { 1390 assert(value->type() == T_INT, "Agreement."); 1391 StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex)); 1392 #ifdef _LP64 1393 jlong res = (jlong)low->get_int(); 1394 #else 1395 jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int()); 1396 #endif 1397 obj->long_field_put(offset, res); 1398 break; 1399 } 1400 1401 case T_SHORT: 1402 assert(value->type() == T_INT, "Agreement."); 1403 val = value->get_int(); 1404 obj->short_field_put(offset, (jshort)*((jint*)&val)); 1405 break; 1406 1407 case T_CHAR: 1408 assert(value->type() == T_INT, "Agreement."); 1409 val = value->get_int(); 1410 obj->char_field_put(offset, (jchar)*((jint*)&val)); 1411 break; 1412 1413 case T_BYTE: 1414 assert(value->type() == T_INT, "Agreement."); 1415 val = value->get_int(); 1416 obj->byte_field_put(offset, (jbyte)*((jint*)&val)); 1417 break; 1418 1419 case T_BOOLEAN: 1420 assert(value->type() == T_INT, "Agreement."); 1421 val = value->get_int(); 1422 obj->bool_field_put(offset, (jboolean)*((jint*)&val)); 1423 break; 1424 1425 default: 1426 ShouldNotReachHere(); 1427 } 1428 svIndex++; 1429 } 1430 return svIndex; 1431 } 1432 1433 // restore fields of all eliminated objects and arrays 1434 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) { 1435 for (int i = 0; i < objects->length(); i++) { 1436 ObjectValue* sv = (ObjectValue*) objects->at(i); 1437 Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()); 1438 Handle obj = sv->value(); 1439 assert(obj.not_null() || realloc_failures, "reallocation was missed"); 1440 if (PrintDeoptimizationDetails) { 1441 tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string()); 1442 } 1443 if (obj.is_null()) { 1444 continue; 1445 } 1446 1447 // Don't reassign fields of boxes that came from a cache. Caches may be in CDS. 1448 if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) { 1449 continue; 1450 } 1451 #ifdef COMPILER2 1452 if (EnableVectorSupport && VectorSupport::is_vector(k)) { 1453 assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string()); 1454 ScopeValue* payload = sv->field_at(0); 1455 if (payload->is_location() && 1456 payload->as_LocationValue()->location().type() == Location::vector) { 1457 if (PrintDeoptimizationDetails) { 1458 tty->print_cr("skip field reassignment for this vector - it should be assigned already"); 1459 if (Verbose) { 1460 Handle obj = sv->value(); 1461 k->oop_print_on(obj(), tty); 1462 } 1463 } 1464 continue; // Such vector's value was already restored in VectorSupport::allocate_vector(). 1465 } 1466 // Else fall-through to do assignment for scalar-replaced boxed vector representation 1467 // which could be restored after vector object allocation. 1468 } 1469 #endif 1470 if (k->is_instance_klass()) { 1471 InstanceKlass* ik = InstanceKlass::cast(k); 1472 reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal); 1473 } else if (k->is_typeArray_klass()) { 1474 TypeArrayKlass* ak = TypeArrayKlass::cast(k); 1475 reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type()); 1476 } else if (k->is_objArray_klass()) { 1477 reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj()); 1478 } 1479 } 1480 } 1481 1482 1483 // relock objects for which synchronization was eliminated 1484 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors, 1485 JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) { 1486 bool relocked_objects = false; 1487 for (int i = 0; i < monitors->length(); i++) { 1488 MonitorInfo* mon_info = monitors->at(i); 1489 if (mon_info->eliminated()) { 1490 assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed"); 1491 relocked_objects = true; 1492 if (!mon_info->owner_is_scalar_replaced()) { 1493 Handle obj(thread, mon_info->owner()); 1494 markWord mark = obj->mark(); 1495 if (UseBiasedLocking && mark.has_bias_pattern()) { 1496 // New allocated objects may have the mark set to anonymously biased. 1497 // Also the deoptimized method may called methods with synchronization 1498 // where the thread-local object is bias locked to the current thread. 1499 assert(mark.is_biased_anonymously() || 1500 mark.biased_locker() == deoptee_thread, "should be locked to current thread"); 1501 // Reset mark word to unbiased prototype. 1502 markWord unbiased_prototype = markWord::prototype().set_age(mark.age()); 1503 obj->set_mark(unbiased_prototype); 1504 } else if (exec_mode == Unpack_none) { 1505 if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) { 1506 // With exec_mode == Unpack_none obj may be thread local and locked in 1507 // a callee frame. In this case the bias was revoked before in revoke_for_object_deoptimization(). 1508 // Make the lock in the callee a recursive lock and restore the displaced header. 1509 markWord dmw = mark.displaced_mark_helper(); 1510 mark.locker()->set_displaced_header(markWord::encode((BasicLock*) NULL)); 1511 obj->set_mark(dmw); 1512 } 1513 if (mark.has_monitor()) { 1514 // defer relocking if the deoptee thread is currently waiting for obj 1515 ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor(); 1516 if (waiting_monitor != NULL && waiting_monitor->object() == obj()) { 1517 assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization"); 1518 mon_info->lock()->set_displaced_header(markWord::unused_mark()); 1519 JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread); 1520 continue; 1521 } 1522 } 1523 } 1524 if (LockingMode == LM_LIGHTWEIGHT && exec_mode == Unpack_none) { 1525 // We have lost information about the correct state of the lock stack. 1526 // Inflate the locks instead. Enter then inflate to avoid races with 1527 // deflation. 1528 ObjectSynchronizer::enter_for(obj, nullptr, deoptee_thread); 1529 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1530 ObjectMonitor* mon = ObjectSynchronizer::inflate_for(deoptee_thread, obj(), ObjectSynchronizer::inflate_cause_vm_internal); 1531 assert(mon->owner() == deoptee_thread, "must be"); 1532 } else { 1533 BasicLock* lock = mon_info->lock(); 1534 ObjectSynchronizer::enter_for(obj, lock, deoptee_thread); 1535 assert(mon_info->owner()->is_locked(), "object must be locked now"); 1536 } 1537 } 1538 } 1539 } 1540 return relocked_objects; 1541 } 1542 #endif // COMPILER2_OR_JVMCI 1543 1544 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) { 1545 Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp())); 1546 1547 #ifndef PRODUCT 1548 if (PrintDeoptimizationDetails) { 1549 ResourceMark rm; 1550 stringStream st; 1551 st.print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread)); 1552 fr.print_on(&st); 1553 st.print_cr(" Virtual frames (innermost first):"); 1554 for (int index = 0; index < chunk->length(); index++) { 1555 compiledVFrame* vf = chunk->at(index); 1556 st.print(" %2d - ", index); 1557 vf->print_value_on(&st); 1558 int bci = chunk->at(index)->raw_bci(); 1559 const char* code_name; 1560 if (bci == SynchronizationEntryBCI) { 1561 code_name = "sync entry"; 1562 } else { 1563 Bytecodes::Code code = vf->method()->code_at(bci); 1564 code_name = Bytecodes::name(code); 1565 } 1566 st.print(" - %s", code_name); 1567 st.print_cr(" @ bci %d ", bci); 1568 if (Verbose) { 1569 vf->print_on(&st); 1570 st.cr(); 1571 } 1572 } 1573 tty->print_raw(st.as_string()); 1574 } 1575 #endif 1576 1577 // Register map for next frame (used for stack crawl). We capture 1578 // the state of the deopt'ing frame's caller. Thus if we need to 1579 // stuff a C2I adapter we can properly fill in the callee-save 1580 // register locations. 1581 frame caller = fr.sender(reg_map); 1582 int frame_size = caller.sp() - fr.sp(); 1583 1584 frame sender = caller; 1585 1586 // Since the Java thread being deoptimized will eventually adjust it's own stack, 1587 // the vframeArray containing the unpacking information is allocated in the C heap. 1588 // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames(). 1589 vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures); 1590 1591 // Compare the vframeArray to the collected vframes 1592 assert(array->structural_compare(thread, chunk), "just checking"); 1593 1594 #ifndef PRODUCT 1595 if (PrintDeoptimizationDetails) { 1596 tty->print_cr(" Created vframeArray " INTPTR_FORMAT, p2i(array)); 1597 } 1598 #endif // PRODUCT 1599 1600 return array; 1601 } 1602 1603 #if COMPILER2_OR_JVMCI 1604 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) { 1605 // Reallocation of some scalar replaced objects failed. Record 1606 // that we need to pop all the interpreter frames for the 1607 // deoptimized compiled frame. 1608 assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?"); 1609 thread->set_frames_to_pop_failed_realloc(array->frames()); 1610 // Unlock all monitors here otherwise the interpreter will see a 1611 // mix of locked and unlocked monitors (because of failed 1612 // reallocations of synchronized objects) and be confused. 1613 for (int i = 0; i < array->frames(); i++) { 1614 MonitorChunk* monitors = array->element(i)->monitors(); 1615 if (monitors != NULL) { 1616 for (int j = 0; j < monitors->number_of_monitors(); j++) { 1617 BasicObjectLock* src = monitors->at(j); 1618 if (src->obj() != NULL) { 1619 ObjectSynchronizer::exit(src->obj(), src->lock(), thread); 1620 } 1621 } 1622 array->element(i)->free_monitors(thread); 1623 #ifdef ASSERT 1624 array->element(i)->set_removed_monitors(); 1625 #endif 1626 } 1627 } 1628 } 1629 #endif 1630 1631 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke, 1632 bool only_eliminated) { 1633 GrowableArray<MonitorInfo*>* monitors = cvf->monitors(); 1634 Thread* thread = Thread::current(); 1635 for (int i = 0; i < monitors->length(); i++) { 1636 MonitorInfo* mon_info = monitors->at(i); 1637 if (mon_info->eliminated() == only_eliminated && 1638 !mon_info->owner_is_scalar_replaced() && 1639 mon_info->owner() != NULL) { 1640 objects_to_revoke->append(Handle(thread, mon_info->owner())); 1641 } 1642 } 1643 } 1644 1645 static void get_monitors_from_stack(GrowableArray<Handle>* objects_to_revoke, JavaThread* thread, 1646 frame fr, RegisterMap* map, bool only_eliminated) { 1647 // Unfortunately we don't have a RegisterMap available in most of 1648 // the places we want to call this routine so we need to walk the 1649 // stack again to update the register map. 1650 if (map == NULL || !map->update_map()) { 1651 StackFrameStream sfs(thread, true /* update */, true /* process_frames */); 1652 bool found = false; 1653 while (!found && !sfs.is_done()) { 1654 frame* cur = sfs.current(); 1655 sfs.next(); 1656 found = cur->id() == fr.id(); 1657 } 1658 assert(found, "frame to be deoptimized not found on target thread's stack"); 1659 map = sfs.register_map(); 1660 } 1661 1662 vframe* vf = vframe::new_vframe(&fr, map, thread); 1663 compiledVFrame* cvf = compiledVFrame::cast(vf); 1664 // Revoke monitors' biases in all scopes 1665 while (!cvf->is_top()) { 1666 collect_monitors(cvf, objects_to_revoke, only_eliminated); 1667 cvf = compiledVFrame::cast(cvf->sender()); 1668 } 1669 collect_monitors(cvf, objects_to_revoke, only_eliminated); 1670 } 1671 1672 void Deoptimization::revoke_from_deopt_handler(JavaThread* thread, frame fr, RegisterMap* map) { 1673 if (!UseBiasedLocking) { 1674 return; 1675 } 1676 assert(thread == Thread::current(), "should be"); 1677 ResourceMark rm(thread); 1678 HandleMark hm(thread); 1679 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1680 get_monitors_from_stack(objects_to_revoke, thread, fr, map, false); 1681 1682 int len = objects_to_revoke->length(); 1683 for (int i = 0; i < len; i++) { 1684 oop obj = (objects_to_revoke->at(i))(); 1685 BiasedLocking::revoke_own_lock(thread, objects_to_revoke->at(i)); 1686 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 1687 } 1688 } 1689 1690 // Revoke the bias of objects with eliminated locking to prepare subsequent relocking. 1691 void Deoptimization::revoke_for_object_deoptimization(JavaThread* deoptee_thread, frame fr, 1692 RegisterMap* map, JavaThread* thread) { 1693 if (!UseBiasedLocking) { 1694 return; 1695 } 1696 GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>(); 1697 assert(KeepStackGCProcessedMark::stack_is_kept_gc_processed(deoptee_thread), "must be"); 1698 // Collect monitors but only those with eliminated locking. 1699 get_monitors_from_stack(objects_to_revoke, deoptee_thread, fr, map, true); 1700 1701 int len = objects_to_revoke->length(); 1702 for (int i = 0; i < len; i++) { 1703 oop obj = (objects_to_revoke->at(i))(); 1704 markWord mark = obj->mark(); 1705 if (!mark.has_bias_pattern() || 1706 mark.is_biased_anonymously() || // eliminated locking does not bias an object if it wasn't before 1707 !obj->klass()->prototype_header().has_bias_pattern() || // bulk revoke ignores eliminated monitors 1708 (obj->klass()->prototype_header().bias_epoch() != mark.bias_epoch())) { // bulk rebias ignores eliminated monitors 1709 // We reach here regularly if there's just eliminated locking on obj. 1710 // We must not call BiasedLocking::revoke_own_lock() in this case, as we 1711 // would hit assertions because it is a prerequisite that there has to be 1712 // non-eliminated locking on obj by deoptee_thread. 1713 // Luckily we don't have to revoke here because obj has to be a 1714 // non-escaping obj and can be relocked without revoking the bias. See 1715 // Deoptimization::relock_objects(). 1716 continue; 1717 } 1718 BiasedLocking::revoke(thread, objects_to_revoke->at(i)); 1719 assert(!objects_to_revoke->at(i)->mark().has_bias_pattern(), "biases should be revoked by now"); 1720 } 1721 } 1722 1723 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) { 1724 assert(fr.can_be_deoptimized(), "checking frame type"); 1725 1726 gather_statistics(reason, Action_none, Bytecodes::_illegal); 1727 1728 if (LogCompilation && xtty != NULL) { 1729 CompiledMethod* cm = fr.cb()->as_compiled_method_or_null(); 1730 assert(cm != NULL, "only compiled methods can deopt"); 1731 1732 ttyLocker ttyl; 1733 xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc())); 1734 cm->log_identity(xtty); 1735 xtty->end_head(); 1736 for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) { 1737 xtty->begin_elem("jvms bci='%d'", sd->bci()); 1738 xtty->method(sd->method()); 1739 xtty->end_elem(); 1740 if (sd->is_top()) break; 1741 } 1742 xtty->tail("deoptimized"); 1743 } 1744 1745 // Patch the compiled method so that when execution returns to it we will 1746 // deopt the execution state and return to the interpreter. 1747 fr.deoptimize(thread); 1748 } 1749 1750 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) { 1751 // Deoptimize only if the frame comes from compile code. 1752 // Do not deoptimize the frame which is already patched 1753 // during the execution of the loops below. 1754 if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) { 1755 return; 1756 } 1757 ResourceMark rm; 1758 DeoptimizationMarker dm; 1759 deoptimize_single_frame(thread, fr, reason); 1760 } 1761 1762 #if INCLUDE_JVMCI 1763 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) { 1764 // there is no exception handler for this pc => deoptimize 1765 cm->make_not_entrant(); 1766 1767 // Use Deoptimization::deoptimize for all of its side-effects: 1768 // gathering traps statistics, logging... 1769 // it also patches the return pc but we do not care about that 1770 // since we return a continuation to the deopt_blob below. 1771 JavaThread* thread = JavaThread::current(); 1772 RegisterMap reg_map(thread, false); 1773 frame runtime_frame = thread->last_frame(); 1774 frame caller_frame = runtime_frame.sender(®_map); 1775 assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method"); 1776 vframe* vf = vframe::new_vframe(&caller_frame, ®_map, thread); 1777 compiledVFrame* cvf = compiledVFrame::cast(vf); 1778 ScopeDesc* imm_scope = cvf->scope(); 1779 MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true); 1780 if (imm_mdo != NULL) { 1781 ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), NULL); 1782 if (pdata != NULL && pdata->is_BitData()) { 1783 BitData* bit_data = (BitData*) pdata; 1784 bit_data->set_exception_seen(); 1785 } 1786 } 1787 1788 Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler); 1789 1790 MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, cm->method()), true); 1791 if (trap_mdo != NULL) { 1792 trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler); 1793 } 1794 1795 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls(); 1796 } 1797 #endif 1798 1799 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1800 assert(thread == Thread::current() || 1801 thread->is_handshake_safe_for(Thread::current()) || 1802 SafepointSynchronize::is_at_safepoint(), 1803 "can only deoptimize other thread at a safepoint/handshake"); 1804 // Compute frame and register map based on thread and sp. 1805 RegisterMap reg_map(thread, false); 1806 frame fr = thread->last_frame(); 1807 while (fr.id() != id) { 1808 fr = fr.sender(®_map); 1809 } 1810 deoptimize(thread, fr, reason); 1811 } 1812 1813 1814 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) { 1815 Thread* current = Thread::current(); 1816 if (thread == current || thread->is_handshake_safe_for(current)) { 1817 Deoptimization::deoptimize_frame_internal(thread, id, reason); 1818 } else { 1819 VM_DeoptimizeFrame deopt(thread, id, reason); 1820 VMThread::execute(&deopt); 1821 } 1822 } 1823 1824 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) { 1825 deoptimize_frame(thread, id, Reason_constraint); 1826 } 1827 1828 // JVMTI PopFrame support 1829 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address)) 1830 { 1831 thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address); 1832 } 1833 JRT_END 1834 1835 MethodData* 1836 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m, 1837 bool create_if_missing) { 1838 JavaThread* THREAD = thread; // For exception macros. 1839 MethodData* mdo = m()->method_data(); 1840 if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) { 1841 // Build an MDO. Ignore errors like OutOfMemory; 1842 // that simply means we won't have an MDO to update. 1843 Method::build_interpreter_method_data(m, THREAD); 1844 if (HAS_PENDING_EXCEPTION) { 1845 // Only metaspace OOM is expected. No Java code executed. 1846 assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here"); 1847 CLEAR_PENDING_EXCEPTION; 1848 } 1849 mdo = m()->method_data(); 1850 } 1851 return mdo; 1852 } 1853 1854 #if COMPILER2_OR_JVMCI 1855 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) { 1856 // In case of an unresolved klass entry, load the class. 1857 // This path is exercised from case _ldc in Parse::do_one_bytecode, 1858 // and probably nowhere else. 1859 // Even that case would benefit from simply re-interpreting the 1860 // bytecode, without paying special attention to the class index. 1861 // So this whole "class index" feature should probably be removed. 1862 1863 if (constant_pool->tag_at(index).is_unresolved_klass()) { 1864 Klass* tk = constant_pool->klass_at(index, THREAD); 1865 if (HAS_PENDING_EXCEPTION) { 1866 // Exception happened during classloading. We ignore the exception here, since it 1867 // is going to be rethrown since the current activation is going to be deoptimized and 1868 // the interpreter will re-execute the bytecode. 1869 // Do not clear probable Async Exceptions. 1870 CLEAR_PENDING_NONASYNC_EXCEPTION; 1871 // Class loading called java code which may have caused a stack 1872 // overflow. If the exception was thrown right before the return 1873 // to the runtime the stack is no longer guarded. Reguard the 1874 // stack otherwise if we return to the uncommon trap blob and the 1875 // stack bang causes a stack overflow we crash. 1876 JavaThread* jt = THREAD; 1877 bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed(); 1878 assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash"); 1879 } 1880 return; 1881 } 1882 1883 assert(!constant_pool->tag_at(index).is_symbol(), 1884 "no symbolic names here, please"); 1885 } 1886 1887 #if INCLUDE_JFR 1888 1889 class DeoptReasonSerializer : public JfrSerializer { 1890 public: 1891 void serialize(JfrCheckpointWriter& writer) { 1892 writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1) 1893 for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) { 1894 writer.write_key((u8)i); 1895 writer.write(Deoptimization::trap_reason_name(i)); 1896 } 1897 } 1898 }; 1899 1900 class DeoptActionSerializer : public JfrSerializer { 1901 public: 1902 void serialize(JfrCheckpointWriter& writer) { 1903 static const u4 nof_actions = Deoptimization::Action_LIMIT; 1904 writer.write_count(nof_actions); 1905 for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) { 1906 writer.write_key(i); 1907 writer.write(Deoptimization::trap_action_name((int)i)); 1908 } 1909 } 1910 }; 1911 1912 static void register_serializers() { 1913 static int critical_section = 0; 1914 if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) { 1915 return; 1916 } 1917 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer()); 1918 JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer()); 1919 } 1920 1921 static void post_deoptimization_event(CompiledMethod* nm, 1922 const Method* method, 1923 int trap_bci, 1924 int instruction, 1925 Deoptimization::DeoptReason reason, 1926 Deoptimization::DeoptAction action) { 1927 assert(nm != NULL, "invariant"); 1928 assert(method != NULL, "invariant"); 1929 if (EventDeoptimization::is_enabled()) { 1930 static bool serializers_registered = false; 1931 if (!serializers_registered) { 1932 register_serializers(); 1933 serializers_registered = true; 1934 } 1935 EventDeoptimization event; 1936 event.set_compileId(nm->compile_id()); 1937 event.set_compiler(nm->compiler_type()); 1938 event.set_method(method); 1939 event.set_lineNumber(method->line_number_from_bci(trap_bci)); 1940 event.set_bci(trap_bci); 1941 event.set_instruction(instruction); 1942 event.set_reason(reason); 1943 event.set_action(action); 1944 event.commit(); 1945 } 1946 } 1947 1948 #endif // INCLUDE_JFR 1949 1950 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) { 1951 HandleMark hm(current); 1952 1953 // uncommon_trap() is called at the beginning of the uncommon trap 1954 // handler. Note this fact before we start generating temporary frames 1955 // that can confuse an asynchronous stack walker. This counter is 1956 // decremented at the end of unpack_frames(). 1957 current->inc_in_deopt_handler(); 1958 1959 // We need to update the map if we have biased locking. 1960 #if INCLUDE_JVMCI 1961 // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid 1962 RegisterMap reg_map(current, true); 1963 #else 1964 RegisterMap reg_map(current, UseBiasedLocking); 1965 #endif 1966 frame stub_frame = current->last_frame(); 1967 frame fr = stub_frame.sender(®_map); 1968 // Make sure the calling nmethod is not getting deoptimized and removed 1969 // before we are done with it. 1970 nmethodLocker nl(fr.pc()); 1971 1972 // Log a message 1973 Events::log_deopt_message(current, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT, 1974 trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin()); 1975 1976 { 1977 ResourceMark rm; 1978 1979 DeoptReason reason = trap_request_reason(trap_request); 1980 DeoptAction action = trap_request_action(trap_request); 1981 #if INCLUDE_JVMCI 1982 int debug_id = trap_request_debug_id(trap_request); 1983 #endif 1984 jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1 1985 1986 vframe* vf = vframe::new_vframe(&fr, ®_map, current); 1987 compiledVFrame* cvf = compiledVFrame::cast(vf); 1988 1989 CompiledMethod* nm = cvf->code(); 1990 1991 ScopeDesc* trap_scope = cvf->scope(); 1992 1993 bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint); 1994 1995 if (TraceDeoptimization || is_receiver_constraint_failure) { 1996 tty->print_cr(" bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string() 1997 #if INCLUDE_JVMCI 1998 , debug_id 1999 #endif 2000 ); 2001 } 2002 2003 methodHandle trap_method(current, trap_scope->method()); 2004 int trap_bci = trap_scope->bci(); 2005 #if INCLUDE_JVMCI 2006 jlong speculation = current->pending_failed_speculation(); 2007 if (nm->is_compiled_by_jvmci()) { 2008 nm->as_nmethod()->update_speculation(current); 2009 } else { 2010 assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers"); 2011 } 2012 2013 if (trap_bci == SynchronizationEntryBCI) { 2014 trap_bci = 0; 2015 current->set_pending_monitorenter(true); 2016 } 2017 2018 if (reason == Deoptimization::Reason_transfer_to_interpreter) { 2019 current->set_pending_transfer_to_interpreter(true); 2020 } 2021 #endif 2022 2023 Bytecodes::Code trap_bc = trap_method->java_code_at(trap_bci); 2024 // Record this event in the histogram. 2025 gather_statistics(reason, action, trap_bc); 2026 2027 // Ensure that we can record deopt. history: 2028 // Need MDO to record RTM code generation state. 2029 bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking ); 2030 2031 methodHandle profiled_method; 2032 #if INCLUDE_JVMCI 2033 if (nm->is_compiled_by_jvmci()) { 2034 profiled_method = methodHandle(current, nm->method()); 2035 } else { 2036 profiled_method = trap_method; 2037 } 2038 #else 2039 profiled_method = trap_method; 2040 #endif 2041 2042 MethodData* trap_mdo = 2043 get_method_data(current, profiled_method, create_if_missing); 2044 2045 JFR_ONLY(post_deoptimization_event(nm, trap_method(), trap_bci, trap_bc, reason, action);) 2046 2047 // Log a message 2048 Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s", 2049 trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()), 2050 trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name()); 2051 2052 // Print a bunch of diagnostics, if requested. 2053 if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) { 2054 ResourceMark rm; 2055 ttyLocker ttyl; 2056 char buf[100]; 2057 if (xtty != NULL) { 2058 xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s", 2059 os::current_thread_id(), 2060 format_trap_request(buf, sizeof(buf), trap_request)); 2061 #if INCLUDE_JVMCI 2062 if (speculation != 0) { 2063 xtty->print(" speculation='" JLONG_FORMAT "'", speculation); 2064 } 2065 #endif 2066 nm->log_identity(xtty); 2067 } 2068 Symbol* class_name = NULL; 2069 bool unresolved = false; 2070 if (unloaded_class_index >= 0) { 2071 constantPoolHandle constants (current, trap_method->constants()); 2072 if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) { 2073 class_name = constants->klass_name_at(unloaded_class_index); 2074 unresolved = true; 2075 if (xtty != NULL) 2076 xtty->print(" unresolved='1'"); 2077 } else if (constants->tag_at(unloaded_class_index).is_symbol()) { 2078 class_name = constants->symbol_at(unloaded_class_index); 2079 } 2080 if (xtty != NULL) 2081 xtty->name(class_name); 2082 } 2083 if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) { 2084 // Dump the relevant MDO state. 2085 // This is the deopt count for the current reason, any previous 2086 // reasons or recompiles seen at this point. 2087 int dcnt = trap_mdo->trap_count(reason); 2088 if (dcnt != 0) 2089 xtty->print(" count='%d'", dcnt); 2090 ProfileData* pdata = trap_mdo->bci_to_data(trap_bci); 2091 int dos = (pdata == NULL)? 0: pdata->trap_state(); 2092 if (dos != 0) { 2093 xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos)); 2094 if (trap_state_is_recompiled(dos)) { 2095 int recnt2 = trap_mdo->overflow_recompile_count(); 2096 if (recnt2 != 0) 2097 xtty->print(" recompiles2='%d'", recnt2); 2098 } 2099 } 2100 } 2101 if (xtty != NULL) { 2102 xtty->stamp(); 2103 xtty->end_head(); 2104 } 2105 if (TraceDeoptimization) { // make noise on the tty 2106 tty->print("Uncommon trap occurred in"); 2107 nm->method()->print_short_name(tty); 2108 tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id()); 2109 #if INCLUDE_JVMCI 2110 if (nm->is_nmethod()) { 2111 const char* installed_code_name = nm->as_nmethod()->jvmci_name(); 2112 if (installed_code_name != NULL) { 2113 tty->print(" (JVMCI: installed code name=%s) ", installed_code_name); 2114 } 2115 } 2116 #endif 2117 tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"), 2118 p2i(fr.pc()), 2119 os::current_thread_id(), 2120 trap_reason_name(reason), 2121 trap_action_name(action), 2122 unloaded_class_index 2123 #if INCLUDE_JVMCI 2124 , debug_id 2125 #endif 2126 ); 2127 if (class_name != NULL) { 2128 tty->print(unresolved ? " unresolved class: " : " symbol: "); 2129 class_name->print_symbol_on(tty); 2130 } 2131 tty->cr(); 2132 } 2133 if (xtty != NULL) { 2134 // Log the precise location of the trap. 2135 for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) { 2136 xtty->begin_elem("jvms bci='%d'", sd->bci()); 2137 xtty->method(sd->method()); 2138 xtty->end_elem(); 2139 if (sd->is_top()) break; 2140 } 2141 xtty->tail("uncommon_trap"); 2142 } 2143 } 2144 // (End diagnostic printout.) 2145 2146 if (is_receiver_constraint_failure) { 2147 fatal("missing receiver type check"); 2148 } 2149 2150 // Load class if necessary 2151 if (unloaded_class_index >= 0) { 2152 constantPoolHandle constants(current, trap_method->constants()); 2153 load_class_by_index(constants, unloaded_class_index, THREAD); 2154 } 2155 2156 // Flush the nmethod if necessary and desirable. 2157 // 2158 // We need to avoid situations where we are re-flushing the nmethod 2159 // because of a hot deoptimization site. Repeated flushes at the same 2160 // point need to be detected by the compiler and avoided. If the compiler 2161 // cannot avoid them (or has a bug and "refuses" to avoid them), this 2162 // module must take measures to avoid an infinite cycle of recompilation 2163 // and deoptimization. There are several such measures: 2164 // 2165 // 1. If a recompilation is ordered a second time at some site X 2166 // and for the same reason R, the action is adjusted to 'reinterpret', 2167 // to give the interpreter time to exercise the method more thoroughly. 2168 // If this happens, the method's overflow_recompile_count is incremented. 2169 // 2170 // 2. If the compiler fails to reduce the deoptimization rate, then 2171 // the method's overflow_recompile_count will begin to exceed the set 2172 // limit PerBytecodeRecompilationCutoff. If this happens, the action 2173 // is adjusted to 'make_not_compilable', and the method is abandoned 2174 // to the interpreter. This is a performance hit for hot methods, 2175 // but is better than a disastrous infinite cycle of recompilations. 2176 // (Actually, only the method containing the site X is abandoned.) 2177 // 2178 // 3. In parallel with the previous measures, if the total number of 2179 // recompilations of a method exceeds the much larger set limit 2180 // PerMethodRecompilationCutoff, the method is abandoned. 2181 // This should only happen if the method is very large and has 2182 // many "lukewarm" deoptimizations. The code which enforces this 2183 // limit is elsewhere (class nmethod, class Method). 2184 // 2185 // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance 2186 // to recompile at each bytecode independently of the per-BCI cutoff. 2187 // 2188 // The decision to update code is up to the compiler, and is encoded 2189 // in the Action_xxx code. If the compiler requests Action_none 2190 // no trap state is changed, no compiled code is changed, and the 2191 // computation suffers along in the interpreter. 2192 // 2193 // The other action codes specify various tactics for decompilation 2194 // and recompilation. Action_maybe_recompile is the loosest, and 2195 // allows the compiled code to stay around until enough traps are seen, 2196 // and until the compiler gets around to recompiling the trapping method. 2197 // 2198 // The other actions cause immediate removal of the present code. 2199 2200 // Traps caused by injected profile shouldn't pollute trap counts. 2201 bool injected_profile_trap = trap_method->has_injected_profile() && 2202 (reason == Reason_intrinsic || reason == Reason_unreached); 2203 2204 bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap; 2205 bool make_not_entrant = false; 2206 bool make_not_compilable = false; 2207 bool reprofile = false; 2208 switch (action) { 2209 case Action_none: 2210 // Keep the old code. 2211 update_trap_state = false; 2212 break; 2213 case Action_maybe_recompile: 2214 // Do not need to invalidate the present code, but we can 2215 // initiate another 2216 // Start compiler without (necessarily) invalidating the nmethod. 2217 // The system will tolerate the old code, but new code should be 2218 // generated when possible. 2219 break; 2220 case Action_reinterpret: 2221 // Go back into the interpreter for a while, and then consider 2222 // recompiling form scratch. 2223 make_not_entrant = true; 2224 // Reset invocation counter for outer most method. 2225 // This will allow the interpreter to exercise the bytecodes 2226 // for a while before recompiling. 2227 // By contrast, Action_make_not_entrant is immediate. 2228 // 2229 // Note that the compiler will track null_check, null_assert, 2230 // range_check, and class_check events and log them as if they 2231 // had been traps taken from compiled code. This will update 2232 // the MDO trap history so that the next compilation will 2233 // properly detect hot trap sites. 2234 reprofile = true; 2235 break; 2236 case Action_make_not_entrant: 2237 // Request immediate recompilation, and get rid of the old code. 2238 // Make them not entrant, so next time they are called they get 2239 // recompiled. Unloaded classes are loaded now so recompile before next 2240 // time they are called. Same for uninitialized. The interpreter will 2241 // link the missing class, if any. 2242 make_not_entrant = true; 2243 break; 2244 case Action_make_not_compilable: 2245 // Give up on compiling this method at all. 2246 make_not_entrant = true; 2247 make_not_compilable = true; 2248 break; 2249 default: 2250 ShouldNotReachHere(); 2251 } 2252 2253 // Setting +ProfileTraps fixes the following, on all platforms: 2254 // 4852688: ProfileInterpreter is off by default for ia64. The result is 2255 // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the 2256 // recompile relies on a MethodData* to record heroic opt failures. 2257 2258 // Whether the interpreter is producing MDO data or not, we also need 2259 // to use the MDO to detect hot deoptimization points and control 2260 // aggressive optimization. 2261 bool inc_recompile_count = false; 2262 ProfileData* pdata = NULL; 2263 if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != NULL) { 2264 assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity"); 2265 uint this_trap_count = 0; 2266 bool maybe_prior_trap = false; 2267 bool maybe_prior_recompile = false; 2268 pdata = query_update_method_data(trap_mdo, trap_bci, reason, true, 2269 #if INCLUDE_JVMCI 2270 nm->is_compiled_by_jvmci() && nm->is_osr_method(), 2271 #endif 2272 nm->method(), 2273 //outputs: 2274 this_trap_count, 2275 maybe_prior_trap, 2276 maybe_prior_recompile); 2277 // Because the interpreter also counts null, div0, range, and class 2278 // checks, these traps from compiled code are double-counted. 2279 // This is harmless; it just means that the PerXTrapLimit values 2280 // are in effect a little smaller than they look. 2281 2282 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2283 if (per_bc_reason != Reason_none) { 2284 // Now take action based on the partially known per-BCI history. 2285 if (maybe_prior_trap 2286 && this_trap_count >= (uint)PerBytecodeTrapLimit) { 2287 // If there are too many traps at this BCI, force a recompile. 2288 // This will allow the compiler to see the limit overflow, and 2289 // take corrective action, if possible. The compiler generally 2290 // does not use the exact PerBytecodeTrapLimit value, but instead 2291 // changes its tactics if it sees any traps at all. This provides 2292 // a little hysteresis, delaying a recompile until a trap happens 2293 // several times. 2294 // 2295 // Actually, since there is only one bit of counter per BCI, 2296 // the possible per-BCI counts are {0,1,(per-method count)}. 2297 // This produces accurate results if in fact there is only 2298 // one hot trap site, but begins to get fuzzy if there are 2299 // many sites. For example, if there are ten sites each 2300 // trapping two or more times, they each get the blame for 2301 // all of their traps. 2302 make_not_entrant = true; 2303 } 2304 2305 // Detect repeated recompilation at the same BCI, and enforce a limit. 2306 if (make_not_entrant && maybe_prior_recompile) { 2307 // More than one recompile at this point. 2308 inc_recompile_count = maybe_prior_trap; 2309 } 2310 } else { 2311 // For reasons which are not recorded per-bytecode, we simply 2312 // force recompiles unconditionally. 2313 // (Note that PerMethodRecompilationCutoff is enforced elsewhere.) 2314 make_not_entrant = true; 2315 } 2316 2317 // Go back to the compiler if there are too many traps in this method. 2318 if (this_trap_count >= per_method_trap_limit(reason)) { 2319 // If there are too many traps in this method, force a recompile. 2320 // This will allow the compiler to see the limit overflow, and 2321 // take corrective action, if possible. 2322 // (This condition is an unlikely backstop only, because the 2323 // PerBytecodeTrapLimit is more likely to take effect first, 2324 // if it is applicable.) 2325 make_not_entrant = true; 2326 } 2327 2328 // Here's more hysteresis: If there has been a recompile at 2329 // this trap point already, run the method in the interpreter 2330 // for a while to exercise it more thoroughly. 2331 if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) { 2332 reprofile = true; 2333 } 2334 } 2335 2336 // Take requested actions on the method: 2337 2338 // Recompile 2339 if (make_not_entrant) { 2340 if (!nm->make_not_entrant()) { 2341 return; // the call did not change nmethod's state 2342 } 2343 2344 if (pdata != NULL) { 2345 // Record the recompilation event, if any. 2346 int tstate0 = pdata->trap_state(); 2347 int tstate1 = trap_state_set_recompiled(tstate0, true); 2348 if (tstate1 != tstate0) 2349 pdata->set_trap_state(tstate1); 2350 } 2351 2352 #if INCLUDE_RTM_OPT 2353 // Restart collecting RTM locking abort statistic if the method 2354 // is recompiled for a reason other than RTM state change. 2355 // Assume that in new recompiled code the statistic could be different, 2356 // for example, due to different inlining. 2357 if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) && 2358 UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) { 2359 trap_mdo->atomic_set_rtm_state(ProfileRTM); 2360 } 2361 #endif 2362 // For code aging we count traps separately here, using make_not_entrant() 2363 // as a guard against simultaneous deopts in multiple threads. 2364 if (reason == Reason_tenured && trap_mdo != NULL) { 2365 trap_mdo->inc_tenure_traps(); 2366 } 2367 } 2368 2369 if (inc_recompile_count) { 2370 trap_mdo->inc_overflow_recompile_count(); 2371 if ((uint)trap_mdo->overflow_recompile_count() > 2372 (uint)PerBytecodeRecompilationCutoff) { 2373 // Give up on the method containing the bad BCI. 2374 if (trap_method() == nm->method()) { 2375 make_not_compilable = true; 2376 } else { 2377 trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization); 2378 // But give grace to the enclosing nm->method(). 2379 } 2380 } 2381 } 2382 2383 // Reprofile 2384 if (reprofile) { 2385 CompilationPolicy::reprofile(trap_scope, nm->is_osr_method()); 2386 } 2387 2388 // Give up compiling 2389 if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) { 2390 assert(make_not_entrant, "consistent"); 2391 nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization); 2392 } 2393 2394 } // Free marked resources 2395 2396 } 2397 JRT_END 2398 2399 ProfileData* 2400 Deoptimization::query_update_method_data(MethodData* trap_mdo, 2401 int trap_bci, 2402 Deoptimization::DeoptReason reason, 2403 bool update_total_trap_count, 2404 #if INCLUDE_JVMCI 2405 bool is_osr, 2406 #endif 2407 Method* compiled_method, 2408 //outputs: 2409 uint& ret_this_trap_count, 2410 bool& ret_maybe_prior_trap, 2411 bool& ret_maybe_prior_recompile) { 2412 bool maybe_prior_trap = false; 2413 bool maybe_prior_recompile = false; 2414 uint this_trap_count = 0; 2415 if (update_total_trap_count) { 2416 uint idx = reason; 2417 #if INCLUDE_JVMCI 2418 if (is_osr) { 2419 // Upper half of history array used for traps in OSR compilations 2420 idx += Reason_TRAP_HISTORY_LENGTH; 2421 } 2422 #endif 2423 uint prior_trap_count = trap_mdo->trap_count(idx); 2424 this_trap_count = trap_mdo->inc_trap_count(idx); 2425 2426 // If the runtime cannot find a place to store trap history, 2427 // it is estimated based on the general condition of the method. 2428 // If the method has ever been recompiled, or has ever incurred 2429 // a trap with the present reason , then this BCI is assumed 2430 // (pessimistically) to be the culprit. 2431 maybe_prior_trap = (prior_trap_count != 0); 2432 maybe_prior_recompile = (trap_mdo->decompile_count() != 0); 2433 } 2434 ProfileData* pdata = NULL; 2435 2436 2437 // For reasons which are recorded per bytecode, we check per-BCI data. 2438 DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason); 2439 assert(per_bc_reason != Reason_none || update_total_trap_count, "must be"); 2440 if (per_bc_reason != Reason_none) { 2441 // Find the profile data for this BCI. If there isn't one, 2442 // try to allocate one from the MDO's set of spares. 2443 // This will let us detect a repeated trap at this point. 2444 pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL); 2445 2446 if (pdata != NULL) { 2447 if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) { 2448 if (LogCompilation && xtty != NULL) { 2449 ttyLocker ttyl; 2450 // no more room for speculative traps in this MDO 2451 xtty->elem("speculative_traps_oom"); 2452 } 2453 } 2454 // Query the trap state of this profile datum. 2455 int tstate0 = pdata->trap_state(); 2456 if (!trap_state_has_reason(tstate0, per_bc_reason)) 2457 maybe_prior_trap = false; 2458 if (!trap_state_is_recompiled(tstate0)) 2459 maybe_prior_recompile = false; 2460 2461 // Update the trap state of this profile datum. 2462 int tstate1 = tstate0; 2463 // Record the reason. 2464 tstate1 = trap_state_add_reason(tstate1, per_bc_reason); 2465 // Store the updated state on the MDO, for next time. 2466 if (tstate1 != tstate0) 2467 pdata->set_trap_state(tstate1); 2468 } else { 2469 if (LogCompilation && xtty != NULL) { 2470 ttyLocker ttyl; 2471 // Missing MDP? Leave a small complaint in the log. 2472 xtty->elem("missing_mdp bci='%d'", trap_bci); 2473 } 2474 } 2475 } 2476 2477 // Return results: 2478 ret_this_trap_count = this_trap_count; 2479 ret_maybe_prior_trap = maybe_prior_trap; 2480 ret_maybe_prior_recompile = maybe_prior_recompile; 2481 return pdata; 2482 } 2483 2484 void 2485 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2486 ResourceMark rm; 2487 // Ignored outputs: 2488 uint ignore_this_trap_count; 2489 bool ignore_maybe_prior_trap; 2490 bool ignore_maybe_prior_recompile; 2491 assert(!reason_is_speculate(reason), "reason speculate only used by compiler"); 2492 // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts 2493 bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler); 2494 query_update_method_data(trap_mdo, trap_bci, 2495 (DeoptReason)reason, 2496 update_total_counts, 2497 #if INCLUDE_JVMCI 2498 false, 2499 #endif 2500 NULL, 2501 ignore_this_trap_count, 2502 ignore_maybe_prior_trap, 2503 ignore_maybe_prior_recompile); 2504 } 2505 2506 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) { 2507 // Enable WXWrite: current function is called from methods compiled by C2 directly 2508 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 2509 2510 if (TraceDeoptimization) { 2511 tty->print("Uncommon trap "); 2512 } 2513 // Still in Java no safepoints 2514 { 2515 // This enters VM and may safepoint 2516 uncommon_trap_inner(current, trap_request); 2517 } 2518 HandleMark hm(current); 2519 return fetch_unroll_info_helper(current, exec_mode); 2520 } 2521 2522 // Local derived constants. 2523 // Further breakdown of DataLayout::trap_state, as promised by DataLayout. 2524 const int DS_REASON_MASK = ((uint)DataLayout::trap_mask) >> 1; 2525 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK; 2526 2527 //---------------------------trap_state_reason--------------------------------- 2528 Deoptimization::DeoptReason 2529 Deoptimization::trap_state_reason(int trap_state) { 2530 // This assert provides the link between the width of DataLayout::trap_bits 2531 // and the encoding of "recorded" reasons. It ensures there are enough 2532 // bits to store all needed reasons in the per-BCI MDO profile. 2533 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2534 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2535 trap_state -= recompile_bit; 2536 if (trap_state == DS_REASON_MASK) { 2537 return Reason_many; 2538 } else { 2539 assert((int)Reason_none == 0, "state=0 => Reason_none"); 2540 return (DeoptReason)trap_state; 2541 } 2542 } 2543 //-------------------------trap_state_has_reason------------------------------- 2544 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2545 assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason"); 2546 assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits"); 2547 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2548 trap_state -= recompile_bit; 2549 if (trap_state == DS_REASON_MASK) { 2550 return -1; // true, unspecifically (bottom of state lattice) 2551 } else if (trap_state == reason) { 2552 return 1; // true, definitely 2553 } else if (trap_state == 0) { 2554 return 0; // false, definitely (top of state lattice) 2555 } else { 2556 return 0; // false, definitely 2557 } 2558 } 2559 //-------------------------trap_state_add_reason------------------------------- 2560 int Deoptimization::trap_state_add_reason(int trap_state, int reason) { 2561 assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason"); 2562 int recompile_bit = (trap_state & DS_RECOMPILE_BIT); 2563 trap_state -= recompile_bit; 2564 if (trap_state == DS_REASON_MASK) { 2565 return trap_state + recompile_bit; // already at state lattice bottom 2566 } else if (trap_state == reason) { 2567 return trap_state + recompile_bit; // the condition is already true 2568 } else if (trap_state == 0) { 2569 return reason + recompile_bit; // no condition has yet been true 2570 } else { 2571 return DS_REASON_MASK + recompile_bit; // fall to state lattice bottom 2572 } 2573 } 2574 //-----------------------trap_state_is_recompiled------------------------------ 2575 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2576 return (trap_state & DS_RECOMPILE_BIT) != 0; 2577 } 2578 //-----------------------trap_state_set_recompiled----------------------------- 2579 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) { 2580 if (z) return trap_state | DS_RECOMPILE_BIT; 2581 else return trap_state & ~DS_RECOMPILE_BIT; 2582 } 2583 //---------------------------format_trap_state--------------------------------- 2584 // This is used for debugging and diagnostics, including LogFile output. 2585 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2586 int trap_state) { 2587 assert(buflen > 0, "sanity"); 2588 DeoptReason reason = trap_state_reason(trap_state); 2589 bool recomp_flag = trap_state_is_recompiled(trap_state); 2590 // Re-encode the state from its decoded components. 2591 int decoded_state = 0; 2592 if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many) 2593 decoded_state = trap_state_add_reason(decoded_state, reason); 2594 if (recomp_flag) 2595 decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag); 2596 // If the state re-encodes properly, format it symbolically. 2597 // Because this routine is used for debugging and diagnostics, 2598 // be robust even if the state is a strange value. 2599 size_t len; 2600 if (decoded_state != trap_state) { 2601 // Random buggy state that doesn't decode?? 2602 len = jio_snprintf(buf, buflen, "#%d", trap_state); 2603 } else { 2604 len = jio_snprintf(buf, buflen, "%s%s", 2605 trap_reason_name(reason), 2606 recomp_flag ? " recompiled" : ""); 2607 } 2608 return buf; 2609 } 2610 2611 2612 //--------------------------------statics-------------------------------------- 2613 const char* Deoptimization::_trap_reason_name[] = { 2614 // Note: Keep this in sync. with enum DeoptReason. 2615 "none", 2616 "null_check", 2617 "null_assert" JVMCI_ONLY("_or_unreached0"), 2618 "range_check", 2619 "class_check", 2620 "array_check", 2621 "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"), 2622 "bimorphic" JVMCI_ONLY("_or_optimized_type_check"), 2623 "profile_predicate", 2624 "unloaded", 2625 "uninitialized", 2626 "initialized", 2627 "unreached", 2628 "unhandled", 2629 "constraint", 2630 "div0_check", 2631 "age", 2632 "predicate", 2633 "loop_limit_check", 2634 "speculate_class_check", 2635 "speculate_null_check", 2636 "speculate_null_assert", 2637 "rtm_state_change", 2638 "unstable_if", 2639 "unstable_fused_if", 2640 "receiver_constraint", 2641 #if INCLUDE_JVMCI 2642 "aliasing", 2643 "transfer_to_interpreter", 2644 "not_compiled_exception_handler", 2645 "unresolved", 2646 "jsr_mismatch", 2647 #endif 2648 "tenured" 2649 }; 2650 const char* Deoptimization::_trap_action_name[] = { 2651 // Note: Keep this in sync. with enum DeoptAction. 2652 "none", 2653 "maybe_recompile", 2654 "reinterpret", 2655 "make_not_entrant", 2656 "make_not_compilable" 2657 }; 2658 2659 const char* Deoptimization::trap_reason_name(int reason) { 2660 // Check that every reason has a name 2661 STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT); 2662 2663 if (reason == Reason_many) return "many"; 2664 if ((uint)reason < Reason_LIMIT) 2665 return _trap_reason_name[reason]; 2666 static char buf[20]; 2667 sprintf(buf, "reason%d", reason); 2668 return buf; 2669 } 2670 const char* Deoptimization::trap_action_name(int action) { 2671 // Check that every action has a name 2672 STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT); 2673 2674 if ((uint)action < Action_LIMIT) 2675 return _trap_action_name[action]; 2676 static char buf[20]; 2677 sprintf(buf, "action%d", action); 2678 return buf; 2679 } 2680 2681 // This is used for debugging and diagnostics, including LogFile output. 2682 const char* Deoptimization::format_trap_request(char* buf, size_t buflen, 2683 int trap_request) { 2684 jint unloaded_class_index = trap_request_index(trap_request); 2685 const char* reason = trap_reason_name(trap_request_reason(trap_request)); 2686 const char* action = trap_action_name(trap_request_action(trap_request)); 2687 #if INCLUDE_JVMCI 2688 int debug_id = trap_request_debug_id(trap_request); 2689 #endif 2690 size_t len; 2691 if (unloaded_class_index < 0) { 2692 len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"), 2693 reason, action 2694 #if INCLUDE_JVMCI 2695 ,debug_id 2696 #endif 2697 ); 2698 } else { 2699 len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"), 2700 reason, action, unloaded_class_index 2701 #if INCLUDE_JVMCI 2702 ,debug_id 2703 #endif 2704 ); 2705 } 2706 return buf; 2707 } 2708 2709 juint Deoptimization::_deoptimization_hist 2710 [Deoptimization::Reason_LIMIT] 2711 [1 + Deoptimization::Action_LIMIT] 2712 [Deoptimization::BC_CASE_LIMIT] 2713 = {0}; 2714 2715 enum { 2716 LSB_BITS = 8, 2717 LSB_MASK = right_n_bits(LSB_BITS) 2718 }; 2719 2720 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2721 Bytecodes::Code bc) { 2722 assert(reason >= 0 && reason < Reason_LIMIT, "oob"); 2723 assert(action >= 0 && action < Action_LIMIT, "oob"); 2724 _deoptimization_hist[Reason_none][0][0] += 1; // total 2725 _deoptimization_hist[reason][0][0] += 1; // per-reason total 2726 juint* cases = _deoptimization_hist[reason][1+action]; 2727 juint* bc_counter_addr = NULL; 2728 juint bc_counter = 0; 2729 // Look for an unused counter, or an exact match to this BC. 2730 if (bc != Bytecodes::_illegal) { 2731 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2732 juint* counter_addr = &cases[bc_case]; 2733 juint counter = *counter_addr; 2734 if ((counter == 0 && bc_counter_addr == NULL) 2735 || (Bytecodes::Code)(counter & LSB_MASK) == bc) { 2736 // this counter is either free or is already devoted to this BC 2737 bc_counter_addr = counter_addr; 2738 bc_counter = counter | bc; 2739 } 2740 } 2741 } 2742 if (bc_counter_addr == NULL) { 2743 // Overflow, or no given bytecode. 2744 bc_counter_addr = &cases[BC_CASE_LIMIT-1]; 2745 bc_counter = (*bc_counter_addr & ~LSB_MASK); // clear LSB 2746 } 2747 *bc_counter_addr = bc_counter + (1 << LSB_BITS); 2748 } 2749 2750 jint Deoptimization::total_deoptimization_count() { 2751 return _deoptimization_hist[Reason_none][0][0]; 2752 } 2753 2754 void Deoptimization::print_statistics() { 2755 juint total = total_deoptimization_count(); 2756 juint account = total; 2757 if (total != 0) { 2758 ttyLocker ttyl; 2759 if (xtty != NULL) xtty->head("statistics type='deoptimization'"); 2760 tty->print_cr("Deoptimization traps recorded:"); 2761 #define PRINT_STAT_LINE(name, r) \ 2762 tty->print_cr(" %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name); 2763 PRINT_STAT_LINE("total", total); 2764 // For each non-zero entry in the histogram, print the reason, 2765 // the action, and (if specifically known) the type of bytecode. 2766 for (int reason = 0; reason < Reason_LIMIT; reason++) { 2767 for (int action = 0; action < Action_LIMIT; action++) { 2768 juint* cases = _deoptimization_hist[reason][1+action]; 2769 for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) { 2770 juint counter = cases[bc_case]; 2771 if (counter != 0) { 2772 char name[1*K]; 2773 Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK); 2774 if (bc_case == BC_CASE_LIMIT && (int)bc == 0) 2775 bc = Bytecodes::_illegal; 2776 sprintf(name, "%s/%s/%s", 2777 trap_reason_name(reason), 2778 trap_action_name(action), 2779 Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other"); 2780 juint r = counter >> LSB_BITS; 2781 tty->print_cr(" %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total); 2782 account -= r; 2783 } 2784 } 2785 } 2786 } 2787 if (account != 0) { 2788 PRINT_STAT_LINE("unaccounted", account); 2789 } 2790 #undef PRINT_STAT_LINE 2791 if (xtty != NULL) xtty->tail("statistics"); 2792 } 2793 } 2794 2795 #else // COMPILER2_OR_JVMCI 2796 2797 2798 // Stubs for C1 only system. 2799 bool Deoptimization::trap_state_is_recompiled(int trap_state) { 2800 return false; 2801 } 2802 2803 const char* Deoptimization::trap_reason_name(int reason) { 2804 return "unknown"; 2805 } 2806 2807 void Deoptimization::print_statistics() { 2808 // no output 2809 } 2810 2811 void 2812 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) { 2813 // no udpate 2814 } 2815 2816 int Deoptimization::trap_state_has_reason(int trap_state, int reason) { 2817 return 0; 2818 } 2819 2820 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action, 2821 Bytecodes::Code bc) { 2822 // no update 2823 } 2824 2825 const char* Deoptimization::format_trap_state(char* buf, size_t buflen, 2826 int trap_state) { 2827 jio_snprintf(buf, buflen, "#%d", trap_state); 2828 return buf; 2829 } 2830 2831 #endif // COMPILER2_OR_JVMCI