1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/handles.inline.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/mutexLocker.hpp" 45 #include "runtime/objectMonitor.hpp" 46 #include "runtime/objectMonitor.inline.hpp" 47 #include "runtime/orderAccess.hpp" 48 #include "runtime/osThread.hpp" 49 #include "runtime/perfData.hpp" 50 #include "runtime/safefetch.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/thread.inline.hpp" 54 #include "services/threadService.hpp" 55 #include "utilities/dtrace.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/preserveException.hpp" 58 #if INCLUDE_JFR 59 #include "jfr/support/jfrFlush.hpp" 60 #endif 61 62 #ifdef DTRACE_ENABLED 63 64 // Only bother with this argument setup if dtrace is available 65 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 66 67 68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 69 char* bytes = NULL; \ 70 int len = 0; \ 71 jlong jtid = SharedRuntime::get_java_tid(thread); \ 72 Symbol* klassname = obj->klass()->name(); \ 73 if (klassname != NULL) { \ 74 bytes = (char*)klassname->bytes(); \ 75 len = klassname->utf8_length(); \ 76 } 77 78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 79 { \ 80 if (DTraceMonitorProbes) { \ 81 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 82 HOTSPOT_MONITOR_WAIT(jtid, \ 83 (monitor), bytes, len, (millis)); \ 84 } \ 85 } 86 87 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 88 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 89 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 90 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 91 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 92 93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 94 { \ 95 if (DTraceMonitorProbes) { \ 96 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 97 HOTSPOT_MONITOR_##probe(jtid, \ 98 (uintptr_t)(monitor), bytes, len); \ 99 } \ 100 } 101 102 #else // ndef DTRACE_ENABLED 103 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 106 107 #endif // ndef DTRACE_ENABLED 108 109 // Tunables ... 110 // The knob* variables are effectively final. Once set they should 111 // never be modified hence. Consider using __read_mostly with GCC. 112 113 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool - 114 115 static int Knob_Bonus = 100; // spin success bonus 116 static int Knob_BonusB = 100; // spin success bonus 117 static int Knob_Penalty = 200; // spin failure penalty 118 static int Knob_Poverty = 1000; 119 static int Knob_FixedSpin = 0; 120 static int Knob_PreSpin = 10; // 20-100 likely better 121 122 DEBUG_ONLY(static volatile bool InitDone = false;) 123 124 OopStorage* ObjectMonitor::_oop_storage = NULL; 125 126 // ----------------------------------------------------------------------------- 127 // Theory of operations -- Monitors lists, thread residency, etc: 128 // 129 // * A thread acquires ownership of a monitor by successfully 130 // CAS()ing the _owner field from null to non-null. 131 // 132 // * Invariant: A thread appears on at most one monitor list -- 133 // cxq, EntryList or WaitSet -- at any one time. 134 // 135 // * Contending threads "push" themselves onto the cxq with CAS 136 // and then spin/park. 137 // 138 // * After a contending thread eventually acquires the lock it must 139 // dequeue itself from either the EntryList or the cxq. 140 // 141 // * The exiting thread identifies and unparks an "heir presumptive" 142 // tentative successor thread on the EntryList. Critically, the 143 // exiting thread doesn't unlink the successor thread from the EntryList. 144 // After having been unparked, the wakee will recontend for ownership of 145 // the monitor. The successor (wakee) will either acquire the lock or 146 // re-park itself. 147 // 148 // Succession is provided for by a policy of competitive handoff. 149 // The exiting thread does _not_ grant or pass ownership to the 150 // successor thread. (This is also referred to as "handoff" succession"). 151 // Instead the exiting thread releases ownership and possibly wakes 152 // a successor, so the successor can (re)compete for ownership of the lock. 153 // If the EntryList is empty but the cxq is populated the exiting 154 // thread will drain the cxq into the EntryList. It does so by 155 // by detaching the cxq (installing null with CAS) and folding 156 // the threads from the cxq into the EntryList. The EntryList is 157 // doubly linked, while the cxq is singly linked because of the 158 // CAS-based "push" used to enqueue recently arrived threads (RATs). 159 // 160 // * Concurrency invariants: 161 // 162 // -- only the monitor owner may access or mutate the EntryList. 163 // The mutex property of the monitor itself protects the EntryList 164 // from concurrent interference. 165 // -- Only the monitor owner may detach the cxq. 166 // 167 // * The monitor entry list operations avoid locks, but strictly speaking 168 // they're not lock-free. Enter is lock-free, exit is not. 169 // For a description of 'Methods and apparatus providing non-blocking access 170 // to a resource,' see U.S. Pat. No. 7844973. 171 // 172 // * The cxq can have multiple concurrent "pushers" but only one concurrent 173 // detaching thread. This mechanism is immune from the ABA corruption. 174 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 175 // 176 // * Taken together, the cxq and the EntryList constitute or form a 177 // single logical queue of threads stalled trying to acquire the lock. 178 // We use two distinct lists to improve the odds of a constant-time 179 // dequeue operation after acquisition (in the ::enter() epilogue) and 180 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 181 // A key desideratum is to minimize queue & monitor metadata manipulation 182 // that occurs while holding the monitor lock -- that is, we want to 183 // minimize monitor lock holds times. Note that even a small amount of 184 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 185 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 186 // locks and monitor metadata. 187 // 188 // Cxq points to the set of Recently Arrived Threads attempting entry. 189 // Because we push threads onto _cxq with CAS, the RATs must take the form of 190 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 191 // the unlocking thread notices that EntryList is null but _cxq is != null. 192 // 193 // The EntryList is ordered by the prevailing queue discipline and 194 // can be organized in any convenient fashion, such as a doubly-linked list or 195 // a circular doubly-linked list. Critically, we want insert and delete operations 196 // to operate in constant-time. If we need a priority queue then something akin 197 // to Solaris' sleepq would work nicely. Viz., 198 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 199 // Queue discipline is enforced at ::exit() time, when the unlocking thread 200 // drains the cxq into the EntryList, and orders or reorders the threads on the 201 // EntryList accordingly. 202 // 203 // Barring "lock barging", this mechanism provides fair cyclic ordering, 204 // somewhat similar to an elevator-scan. 205 // 206 // * The monitor synchronization subsystem avoids the use of native 207 // synchronization primitives except for the narrow platform-specific 208 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 209 // the semantics of park-unpark. Put another way, this monitor implementation 210 // depends only on atomic operations and park-unpark. The monitor subsystem 211 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 212 // underlying OS manages the READY<->RUN transitions. 213 // 214 // * Waiting threads reside on the WaitSet list -- wait() puts 215 // the caller onto the WaitSet. 216 // 217 // * notify() or notifyAll() simply transfers threads from the WaitSet to 218 // either the EntryList or cxq. Subsequent exit() operations will 219 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 220 // it's likely the notifyee would simply impale itself on the lock held 221 // by the notifier. 222 // 223 // * An interesting alternative is to encode cxq as (List,LockByte) where 224 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary 225 // variable, like _recursions, in the scheme. The threads or Events that form 226 // the list would have to be aligned in 256-byte addresses. A thread would 227 // try to acquire the lock or enqueue itself with CAS, but exiting threads 228 // could use a 1-0 protocol and simply STB to set the LockByte to 0. 229 // Note that is is *not* word-tearing, but it does presume that full-word 230 // CAS operations are coherent with intermix with STB operations. That's true 231 // on most common processors. 232 // 233 // * See also http://blogs.sun.com/dave 234 235 236 // Check that object() and set_object() are called from the right context: 237 static void check_object_context() { 238 #ifdef ASSERT 239 Thread* self = Thread::current(); 240 if (self->is_Java_thread()) { 241 // Mostly called from JavaThreads so sanity check the thread state. 242 JavaThread* jt = self->as_Java_thread(); 243 switch (jt->thread_state()) { 244 case _thread_in_vm: // the usual case 245 case _thread_in_Java: // during deopt 246 break; 247 default: 248 fatal("called from an unsafe thread state"); 249 } 250 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 251 } else { 252 // However, ThreadService::get_current_contended_monitor() 253 // can call here via the VMThread so sanity check it. 254 assert(self->is_VM_thread(), "must be"); 255 } 256 #endif // ASSERT 257 } 258 259 ObjectMonitor::ObjectMonitor(oop object) : 260 _header(markWord::zero()), 261 _object(_oop_storage, object), 262 _owner(NULL), 263 _previous_owner_tid(0), 264 _next_om(NULL), 265 _recursions(0), 266 _EntryList(NULL), 267 _cxq(NULL), 268 _succ(NULL), 269 _Responsible(NULL), 270 _Spinner(0), 271 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 272 _contentions(0), 273 _WaitSet(NULL), 274 _waiters(0), 275 _WaitSetLock(0) 276 { } 277 278 ObjectMonitor::~ObjectMonitor() { 279 _object.release(_oop_storage); 280 } 281 282 oop ObjectMonitor::object() const { 283 check_object_context(); 284 if (_object.is_null()) { 285 return NULL; 286 } 287 return _object.resolve(); 288 } 289 290 oop ObjectMonitor::object_peek() const { 291 if (_object.is_null()) { 292 return NULL; 293 } 294 return _object.peek(); 295 } 296 297 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 298 if (current->is_suspended()) { 299 _om->_recursions = 0; 300 _om->_succ = NULL; 301 // Don't need a full fence after clearing successor here because of the call to exit(). 302 _om->exit(current, false /* not_suspended */); 303 _om_exited = true; 304 305 current->set_current_pending_monitor(_om); 306 } 307 } 308 309 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 310 if (current->is_suspended()) { 311 if (_om->_succ == current) { 312 _om->_succ = NULL; 313 OrderAccess::fence(); // always do a full fence when successor is cleared 314 } 315 } 316 } 317 318 // ----------------------------------------------------------------------------- 319 // Enter support 320 321 bool ObjectMonitor::enter(JavaThread* current) { 322 // The following code is ordered to check the most common cases first 323 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. 324 325 void* cur = try_set_owner_from(NULL, current); 326 if (cur == NULL) { 327 assert(_recursions == 0, "invariant"); 328 return true; 329 } 330 331 if (cur == current) { 332 // TODO-FIXME: check for integer overflow! BUGID 6557169. 333 _recursions++; 334 return true; 335 } 336 337 if (current->is_lock_owned((address)cur)) { 338 assert(_recursions == 0, "internal state error"); 339 _recursions = 1; 340 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 341 return true; 342 } 343 344 // We've encountered genuine contention. 345 assert(current->_Stalled == 0, "invariant"); 346 current->_Stalled = intptr_t(this); 347 348 // Try one round of spinning *before* enqueueing current 349 // and before going through the awkward and expensive state 350 // transitions. The following spin is strictly optional ... 351 // Note that if we acquire the monitor from an initial spin 352 // we forgo posting JVMTI events and firing DTRACE probes. 353 if (TrySpin(current) > 0) { 354 assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 355 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 356 assert(object()->mark() == markWord::encode(this), 357 "object mark must match encoded this: mark=" INTPTR_FORMAT 358 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), 359 markWord::encode(this).value()); 360 current->_Stalled = 0; 361 return true; 362 } 363 364 assert(owner_raw() != current, "invariant"); 365 assert(_succ != current, "invariant"); 366 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 367 assert(current->thread_state() != _thread_blocked, "invariant"); 368 369 // Keep track of contention for JVM/TI and M&M queries. 370 add_to_contentions(1); 371 if (is_being_async_deflated()) { 372 // Async deflation is in progress and our contentions increment 373 // above lost the race to async deflation. Undo the work and 374 // force the caller to retry. 375 const oop l_object = object(); 376 if (l_object != NULL) { 377 // Attempt to restore the header/dmw to the object's header so that 378 // we only retry once if the deflater thread happens to be slow. 379 install_displaced_markword_in_object(l_object); 380 } 381 current->_Stalled = 0; 382 add_to_contentions(-1); 383 return false; 384 } 385 386 JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(current);) 387 EventJavaMonitorEnter event; 388 if (event.is_started()) { 389 event.set_monitorClass(object()->klass()); 390 // Set an address that is 'unique enough', such that events close in 391 // time and with the same address are likely (but not guaranteed) to 392 // belong to the same object. 393 event.set_address((uintptr_t)this); 394 } 395 396 { // Change java thread status to indicate blocked on monitor enter. 397 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 398 399 assert(current->current_pending_monitor() == NULL, "invariant"); 400 current->set_current_pending_monitor(this); 401 402 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 403 if (JvmtiExport::should_post_monitor_contended_enter()) { 404 JvmtiExport::post_monitor_contended_enter(current, this); 405 406 // The current thread does not yet own the monitor and does not 407 // yet appear on any queues that would get it made the successor. 408 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 409 // handler cannot accidentally consume an unpark() meant for the 410 // ParkEvent associated with this ObjectMonitor. 411 } 412 413 OSThreadContendState osts(current->osthread()); 414 415 assert(current->thread_state() == _thread_in_vm, "invariant"); 416 417 for (;;) { 418 ExitOnSuspend eos(this); 419 { 420 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos); 421 EnterI(current); 422 current->set_current_pending_monitor(NULL); 423 // We can go to a safepoint at the end of this block. If we 424 // do a thread dump during that safepoint, then this thread will show 425 // as having "-locked" the monitor, but the OS and java.lang.Thread 426 // states will still report that the thread is blocked trying to 427 // acquire it. 428 // If there is a suspend request, ExitOnSuspend will exit the OM 429 // and set the OM as pending. 430 } 431 if (!eos.exited()) { 432 // ExitOnSuspend did not exit the OM 433 assert(owner_raw() == current, "invariant"); 434 break; 435 } 436 } 437 438 // We've just gotten past the enter-check-for-suspend dance and we now own 439 // the monitor free and clear. 440 } 441 442 add_to_contentions(-1); 443 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 444 current->_Stalled = 0; 445 446 // Must either set _recursions = 0 or ASSERT _recursions == 0. 447 assert(_recursions == 0, "invariant"); 448 assert(owner_raw() == current, "invariant"); 449 assert(_succ != current, "invariant"); 450 assert(object()->mark() == markWord::encode(this), "invariant"); 451 452 // The thread -- now the owner -- is back in vm mode. 453 // Report the glorious news via TI,DTrace and jvmstat. 454 // The probe effect is non-trivial. All the reportage occurs 455 // while we hold the monitor, increasing the length of the critical 456 // section. Amdahl's parallel speedup law comes vividly into play. 457 // 458 // Another option might be to aggregate the events (thread local or 459 // per-monitor aggregation) and defer reporting until a more opportune 460 // time -- such as next time some thread encounters contention but has 461 // yet to acquire the lock. While spinning that thread could 462 // spinning we could increment JVMStat counters, etc. 463 464 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 465 if (JvmtiExport::should_post_monitor_contended_entered()) { 466 JvmtiExport::post_monitor_contended_entered(current, this); 467 468 // The current thread already owns the monitor and is not going to 469 // call park() for the remainder of the monitor enter protocol. So 470 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 471 // event handler consumed an unpark() issued by the thread that 472 // just exited the monitor. 473 } 474 if (event.should_commit()) { 475 event.set_previousOwner((uintptr_t)_previous_owner_tid); 476 event.commit(); 477 } 478 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 479 return true; 480 } 481 482 // Caveat: TryLock() is not necessarily serializing if it returns failure. 483 // Callers must compensate as needed. 484 485 int ObjectMonitor::TryLock(JavaThread* current) { 486 void* own = owner_raw(); 487 if (own != NULL) return 0; 488 if (try_set_owner_from(NULL, current) == NULL) { 489 assert(_recursions == 0, "invariant"); 490 return 1; 491 } 492 // The lock had been free momentarily, but we lost the race to the lock. 493 // Interference -- the CAS failed. 494 // We can either return -1 or retry. 495 // Retry doesn't make as much sense because the lock was just acquired. 496 return -1; 497 } 498 499 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 500 // was deflated and false otherwise. 501 // 502 // The async deflation protocol sets owner to DEFLATER_MARKER and 503 // makes contentions negative as signals to contending threads that 504 // an async deflation is in progress. There are a number of checks 505 // as part of the protocol to make sure that the calling thread has 506 // not lost the race to a contending thread. 507 // 508 // The ObjectMonitor has been successfully async deflated when: 509 // (contentions < 0) 510 // Contending threads that see that condition know to retry their operation. 511 // 512 bool ObjectMonitor::deflate_monitor() { 513 if (is_busy()) { 514 // Easy checks are first - the ObjectMonitor is busy so no deflation. 515 return false; 516 } 517 518 if (ObjectSynchronizer::is_final_audit() && owner_is_DEFLATER_MARKER()) { 519 // The final audit can see an already deflated ObjectMonitor on the 520 // in-use list because MonitorList::unlink_deflated() might have 521 // blocked for the final safepoint before unlinking all the deflated 522 // monitors. 523 assert(contentions() < 0, "must be negative: contentions=%d", contentions()); 524 // Already returned 'true' when it was originally deflated. 525 return false; 526 } 527 528 const oop obj = object_peek(); 529 530 if (obj == NULL) { 531 // If the object died, we can recycle the monitor without racing with 532 // Java threads. The GC already broke the association with the object. 533 set_owner_from(NULL, DEFLATER_MARKER); 534 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 535 _contentions = -max_jint; 536 } else { 537 // Attempt async deflation protocol. 538 539 // Set a NULL owner to DEFLATER_MARKER to force any contending thread 540 // through the slow path. This is just the first part of the async 541 // deflation dance. 542 if (try_set_owner_from(NULL, DEFLATER_MARKER) != NULL) { 543 // The owner field is no longer NULL so we lost the race since the 544 // ObjectMonitor is now busy. 545 return false; 546 } 547 548 if (contentions() > 0 || _waiters != 0) { 549 // Another thread has raced to enter the ObjectMonitor after 550 // is_busy() above or has already entered and waited on 551 // it which makes it busy so no deflation. Restore owner to 552 // NULL if it is still DEFLATER_MARKER. 553 if (try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) { 554 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 555 add_to_contentions(-1); 556 } 557 return false; 558 } 559 560 // Make a zero contentions field negative to force any contending threads 561 // to retry. This is the second part of the async deflation dance. 562 if (Atomic::cmpxchg(&_contentions, (jint)0, -max_jint) != 0) { 563 // Contentions was no longer 0 so we lost the race since the 564 // ObjectMonitor is now busy. Restore owner to NULL if it is 565 // still DEFLATER_MARKER: 566 if (try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) { 567 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 568 add_to_contentions(-1); 569 } 570 return false; 571 } 572 } 573 574 // Sanity checks for the races: 575 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 576 guarantee(contentions() < 0, "must be negative: contentions=%d", 577 contentions()); 578 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 579 guarantee(_cxq == NULL, "must be no contending threads: cxq=" 580 INTPTR_FORMAT, p2i(_cxq)); 581 guarantee(_EntryList == NULL, 582 "must be no entering threads: EntryList=" INTPTR_FORMAT, 583 p2i(_EntryList)); 584 585 if (obj != NULL) { 586 if (log_is_enabled(Trace, monitorinflation)) { 587 ResourceMark rm; 588 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 589 ", mark=" INTPTR_FORMAT ", type='%s'", 590 p2i(obj), obj->mark().value(), 591 obj->klass()->external_name()); 592 } 593 594 // Install the old mark word if nobody else has already done it. 595 install_displaced_markword_in_object(obj); 596 } 597 598 // We leave owner == DEFLATER_MARKER and contentions < 0 599 // to force any racing threads to retry. 600 return true; // Success, ObjectMonitor has been deflated. 601 } 602 603 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 604 // into the header of the object associated with the monitor. This 605 // idempotent method is called by a thread that is deflating a 606 // monitor and by other threads that have detected a race with the 607 // deflation process. 608 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 609 // This function must only be called when (owner == DEFLATER_MARKER 610 // && contentions <= 0), but we can't guarantee that here because 611 // those values could change when the ObjectMonitor gets moved from 612 // the global free list to a per-thread free list. 613 614 guarantee(obj != NULL, "must be non-NULL"); 615 616 // Separate loads in is_being_async_deflated(), which is almost always 617 // called before this function, from the load of dmw/header below. 618 619 // _contentions and dmw/header may get written by different threads. 620 // Make sure to observe them in the same order when having several observers. 621 OrderAccess::loadload_for_IRIW(); 622 623 const oop l_object = object_peek(); 624 if (l_object == NULL) { 625 // ObjectMonitor's object ref has already been cleared by async 626 // deflation or GC so we're done here. 627 return; 628 } 629 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 630 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 631 632 markWord dmw = header(); 633 // The dmw has to be neutral (not NULL, not locked and not marked). 634 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 635 636 // Install displaced mark word if the object's header still points 637 // to this ObjectMonitor. More than one racing caller to this function 638 // can rarely reach this point, but only one can win. 639 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 640 if (res != markWord::encode(this)) { 641 // This should be rare so log at the Info level when it happens. 642 log_info(monitorinflation)("install_displaced_markword_in_object: " 643 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 644 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 645 dmw.value(), markWord::encode(this).value(), 646 res.value()); 647 } 648 649 // Note: It does not matter which thread restored the header/dmw 650 // into the object's header. The thread deflating the monitor just 651 // wanted the object's header restored and it is. The threads that 652 // detected a race with the deflation process also wanted the 653 // object's header restored before they retry their operation and 654 // because it is restored they will only retry once. 655 } 656 657 // Convert the fields used by is_busy() to a string that can be 658 // used for diagnostic output. 659 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 660 ss->print("is_busy: waiters=%d, ", _waiters); 661 if (contentions() > 0) { 662 ss->print("contentions=%d, ", contentions()); 663 } else { 664 ss->print("contentions=0"); 665 } 666 if (!owner_is_DEFLATER_MARKER()) { 667 ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw())); 668 } else { 669 // We report NULL instead of DEFLATER_MARKER here because is_busy() 670 // ignores DEFLATER_MARKER values. 671 ss->print("owner=" INTPTR_FORMAT, NULL_WORD); 672 } 673 ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq), 674 p2i(_EntryList)); 675 return ss->base(); 676 } 677 678 #define MAX_RECHECK_INTERVAL 1000 679 680 void ObjectMonitor::EnterI(JavaThread* current) { 681 assert(current->thread_state() == _thread_blocked, "invariant"); 682 683 // Try the lock - TATAS 684 if (TryLock (current) > 0) { 685 assert(_succ != current, "invariant"); 686 assert(owner_raw() == current, "invariant"); 687 assert(_Responsible != current, "invariant"); 688 return; 689 } 690 691 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 692 // Cancelled the in-progress async deflation by changing owner from 693 // DEFLATER_MARKER to current. As part of the contended enter protocol, 694 // contentions was incremented to a positive value before EnterI() 695 // was called and that prevents the deflater thread from winning the 696 // last part of the 2-part async deflation protocol. After EnterI() 697 // returns to enter(), contentions is decremented because the caller 698 // now owns the monitor. We bump contentions an extra time here to 699 // prevent the deflater thread from winning the last part of the 700 // 2-part async deflation protocol after the regular decrement 701 // occurs in enter(). The deflater thread will decrement contentions 702 // after it recognizes that the async deflation was cancelled. 703 add_to_contentions(1); 704 assert(_succ != current, "invariant"); 705 assert(_Responsible != current, "invariant"); 706 return; 707 } 708 709 assert(InitDone, "Unexpectedly not initialized"); 710 711 // We try one round of spinning *before* enqueueing current. 712 // 713 // If the _owner is ready but OFFPROC we could use a YieldTo() 714 // operation to donate the remainder of this thread's quantum 715 // to the owner. This has subtle but beneficial affinity 716 // effects. 717 718 if (TrySpin(current) > 0) { 719 assert(owner_raw() == current, "invariant"); 720 assert(_succ != current, "invariant"); 721 assert(_Responsible != current, "invariant"); 722 return; 723 } 724 725 // The Spin failed -- Enqueue and park the thread ... 726 assert(_succ != current, "invariant"); 727 assert(owner_raw() != current, "invariant"); 728 assert(_Responsible != current, "invariant"); 729 730 // Enqueue "current" on ObjectMonitor's _cxq. 731 // 732 // Node acts as a proxy for current. 733 // As an aside, if were to ever rewrite the synchronization code mostly 734 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 735 // Java objects. This would avoid awkward lifecycle and liveness issues, 736 // as well as eliminate a subset of ABA issues. 737 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 738 739 ObjectWaiter node(current); 740 current->_ParkEvent->reset(); 741 node._prev = (ObjectWaiter*) 0xBAD; 742 node.TState = ObjectWaiter::TS_CXQ; 743 744 // Push "current" onto the front of the _cxq. 745 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 746 // Note that spinning tends to reduce the rate at which threads 747 // enqueue and dequeue on EntryList|cxq. 748 ObjectWaiter* nxt; 749 for (;;) { 750 node._next = nxt = _cxq; 751 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 752 753 // Interference - the CAS failed because _cxq changed. Just retry. 754 // As an optional optimization we retry the lock. 755 if (TryLock (current) > 0) { 756 assert(_succ != current, "invariant"); 757 assert(owner_raw() == current, "invariant"); 758 assert(_Responsible != current, "invariant"); 759 return; 760 } 761 } 762 763 // Check for cxq|EntryList edge transition to non-null. This indicates 764 // the onset of contention. While contention persists exiting threads 765 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit 766 // operations revert to the faster 1-0 mode. This enter operation may interleave 767 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we 768 // arrange for one of the contending thread to use a timed park() operations 769 // to detect and recover from the race. (Stranding is form of progress failure 770 // where the monitor is unlocked but all the contending threads remain parked). 771 // That is, at least one of the contended threads will periodically poll _owner. 772 // One of the contending threads will become the designated "Responsible" thread. 773 // The Responsible thread uses a timed park instead of a normal indefinite park 774 // operation -- it periodically wakes and checks for and recovers from potential 775 // strandings admitted by 1-0 exit operations. We need at most one Responsible 776 // thread per-monitor at any given moment. Only threads on cxq|EntryList may 777 // be responsible for a monitor. 778 // 779 // Currently, one of the contended threads takes on the added role of "Responsible". 780 // A viable alternative would be to use a dedicated "stranding checker" thread 781 // that periodically iterated over all the threads (or active monitors) and unparked 782 // successors where there was risk of stranding. This would help eliminate the 783 // timer scalability issues we see on some platforms as we'd only have one thread 784 // -- the checker -- parked on a timer. 785 786 if (nxt == NULL && _EntryList == NULL) { 787 // Try to assume the role of responsible thread for the monitor. 788 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } 789 Atomic::replace_if_null(&_Responsible, current); 790 } 791 792 // The lock might have been released while this thread was occupied queueing 793 // itself onto _cxq. To close the race and avoid "stranding" and 794 // progress-liveness failure we must resample-retry _owner before parking. 795 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 796 // In this case the ST-MEMBAR is accomplished with CAS(). 797 // 798 // TODO: Defer all thread state transitions until park-time. 799 // Since state transitions are heavy and inefficient we'd like 800 // to defer the state transitions until absolutely necessary, 801 // and in doing so avoid some transitions ... 802 803 int nWakeups = 0; 804 int recheckInterval = 1; 805 806 for (;;) { 807 808 if (TryLock(current) > 0) break; 809 assert(owner_raw() != current, "invariant"); 810 811 // park self 812 if (_Responsible == current) { 813 current->_ParkEvent->park((jlong) recheckInterval); 814 // Increase the recheckInterval, but clamp the value. 815 recheckInterval *= 8; 816 if (recheckInterval > MAX_RECHECK_INTERVAL) { 817 recheckInterval = MAX_RECHECK_INTERVAL; 818 } 819 } else { 820 current->_ParkEvent->park(); 821 } 822 823 if (TryLock(current) > 0) break; 824 825 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 826 // Cancelled the in-progress async deflation by changing owner from 827 // DEFLATER_MARKER to current. As part of the contended enter protocol, 828 // contentions was incremented to a positive value before EnterI() 829 // was called and that prevents the deflater thread from winning the 830 // last part of the 2-part async deflation protocol. After EnterI() 831 // returns to enter(), contentions is decremented because the caller 832 // now owns the monitor. We bump contentions an extra time here to 833 // prevent the deflater thread from winning the last part of the 834 // 2-part async deflation protocol after the regular decrement 835 // occurs in enter(). The deflater thread will decrement contentions 836 // after it recognizes that the async deflation was cancelled. 837 add_to_contentions(1); 838 break; 839 } 840 841 // The lock is still contested. 842 // Keep a tally of the # of futile wakeups. 843 // Note that the counter is not protected by a lock or updated by atomics. 844 // That is by design - we trade "lossy" counters which are exposed to 845 // races during updates for a lower probe effect. 846 847 // This PerfData object can be used in parallel with a safepoint. 848 // See the work around in PerfDataManager::destroy(). 849 OM_PERFDATA_OP(FutileWakeups, inc()); 850 ++nWakeups; 851 852 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 853 // We can defer clearing _succ until after the spin completes 854 // TrySpin() must tolerate being called with _succ == current. 855 // Try yet another round of adaptive spinning. 856 if (TrySpin(current) > 0) break; 857 858 // We can find that we were unpark()ed and redesignated _succ while 859 // we were spinning. That's harmless. If we iterate and call park(), 860 // park() will consume the event and return immediately and we'll 861 // just spin again. This pattern can repeat, leaving _succ to simply 862 // spin on a CPU. 863 864 if (_succ == current) _succ = NULL; 865 866 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 867 OrderAccess::fence(); 868 } 869 870 // Egress : 871 // current has acquired the lock -- Unlink current from the cxq or EntryList. 872 // Normally we'll find current on the EntryList . 873 // From the perspective of the lock owner (this thread), the 874 // EntryList is stable and cxq is prepend-only. 875 // The head of cxq is volatile but the interior is stable. 876 // In addition, current.TState is stable. 877 878 assert(owner_raw() == current, "invariant"); 879 880 UnlinkAfterAcquire(current, &node); 881 if (_succ == current) _succ = NULL; 882 883 assert(_succ != current, "invariant"); 884 if (_Responsible == current) { 885 _Responsible = NULL; 886 OrderAccess::fence(); // Dekker pivot-point 887 888 // We may leave threads on cxq|EntryList without a designated 889 // "Responsible" thread. This is benign. When this thread subsequently 890 // exits the monitor it can "see" such preexisting "old" threads -- 891 // threads that arrived on the cxq|EntryList before the fence, above -- 892 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads 893 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible 894 // non-null and elect a new "Responsible" timer thread. 895 // 896 // This thread executes: 897 // ST Responsible=null; MEMBAR (in enter epilogue - here) 898 // LD cxq|EntryList (in subsequent exit) 899 // 900 // Entering threads in the slow/contended path execute: 901 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) 902 // The (ST cxq; MEMBAR) is accomplished with CAS(). 903 // 904 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent 905 // exit operation from floating above the ST Responsible=null. 906 } 907 908 // We've acquired ownership with CAS(). 909 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 910 // But since the CAS() this thread may have also stored into _succ, 911 // EntryList, cxq or Responsible. These meta-data updates must be 912 // visible __before this thread subsequently drops the lock. 913 // Consider what could occur if we didn't enforce this constraint -- 914 // STs to monitor meta-data and user-data could reorder with (become 915 // visible after) the ST in exit that drops ownership of the lock. 916 // Some other thread could then acquire the lock, but observe inconsistent 917 // or old monitor meta-data and heap data. That violates the JMM. 918 // To that end, the 1-0 exit() operation must have at least STST|LDST 919 // "release" barrier semantics. Specifically, there must be at least a 920 // STST|LDST barrier in exit() before the ST of null into _owner that drops 921 // the lock. The barrier ensures that changes to monitor meta-data and data 922 // protected by the lock will be visible before we release the lock, and 923 // therefore before some other thread (CPU) has a chance to acquire the lock. 924 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 925 // 926 // Critically, any prior STs to _succ or EntryList must be visible before 927 // the ST of null into _owner in the *subsequent* (following) corresponding 928 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily 929 // execute a serializing instruction. 930 931 return; 932 } 933 934 // ReenterI() is a specialized inline form of the latter half of the 935 // contended slow-path from EnterI(). We use ReenterI() only for 936 // monitor reentry in wait(). 937 // 938 // In the future we should reconcile EnterI() and ReenterI(). 939 940 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 941 assert(current != NULL, "invariant"); 942 assert(currentNode != NULL, "invariant"); 943 assert(currentNode->_thread == current, "invariant"); 944 assert(_waiters > 0, "invariant"); 945 assert(object()->mark() == markWord::encode(this), "invariant"); 946 947 assert(current->thread_state() != _thread_blocked, "invariant"); 948 949 int nWakeups = 0; 950 for (;;) { 951 ObjectWaiter::TStates v = currentNode->TState; 952 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 953 assert(owner_raw() != current, "invariant"); 954 955 if (TryLock(current) > 0) break; 956 if (TrySpin(current) > 0) break; 957 958 { 959 OSThreadContendState osts(current->osthread()); 960 961 assert(current->thread_state() == _thread_in_vm, "invariant"); 962 963 { 964 ClearSuccOnSuspend csos(this); 965 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos); 966 current->_ParkEvent->park(); 967 } 968 } 969 970 // Try again, but just so we distinguish between futile wakeups and 971 // successful wakeups. The following test isn't algorithmically 972 // necessary, but it helps us maintain sensible statistics. 973 if (TryLock(current) > 0) break; 974 975 // The lock is still contested. 976 // Keep a tally of the # of futile wakeups. 977 // Note that the counter is not protected by a lock or updated by atomics. 978 // That is by design - we trade "lossy" counters which are exposed to 979 // races during updates for a lower probe effect. 980 ++nWakeups; 981 982 // Assuming this is not a spurious wakeup we'll normally 983 // find that _succ == current. 984 if (_succ == current) _succ = NULL; 985 986 // Invariant: after clearing _succ a contending thread 987 // *must* retry _owner before parking. 988 OrderAccess::fence(); 989 990 // This PerfData object can be used in parallel with a safepoint. 991 // See the work around in PerfDataManager::destroy(). 992 OM_PERFDATA_OP(FutileWakeups, inc()); 993 } 994 995 // current has acquired the lock -- Unlink current from the cxq or EntryList . 996 // Normally we'll find current on the EntryList. 997 // Unlinking from the EntryList is constant-time and atomic-free. 998 // From the perspective of the lock owner (this thread), the 999 // EntryList is stable and cxq is prepend-only. 1000 // The head of cxq is volatile but the interior is stable. 1001 // In addition, current.TState is stable. 1002 1003 assert(owner_raw() == current, "invariant"); 1004 assert(object()->mark() == markWord::encode(this), "invariant"); 1005 UnlinkAfterAcquire(current, currentNode); 1006 if (_succ == current) _succ = NULL; 1007 assert(_succ != current, "invariant"); 1008 currentNode->TState = ObjectWaiter::TS_RUN; 1009 OrderAccess::fence(); // see comments at the end of EnterI() 1010 } 1011 1012 // By convention we unlink a contending thread from EntryList|cxq immediately 1013 // after the thread acquires the lock in ::enter(). Equally, we could defer 1014 // unlinking the thread until ::exit()-time. 1015 1016 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1017 assert(owner_raw() == current, "invariant"); 1018 assert(currentNode->_thread == current, "invariant"); 1019 1020 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1021 // Normal case: remove current from the DLL EntryList . 1022 // This is a constant-time operation. 1023 ObjectWaiter* nxt = currentNode->_next; 1024 ObjectWaiter* prv = currentNode->_prev; 1025 if (nxt != NULL) nxt->_prev = prv; 1026 if (prv != NULL) prv->_next = nxt; 1027 if (currentNode == _EntryList) _EntryList = nxt; 1028 assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1029 assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1030 } else { 1031 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1032 // Inopportune interleaving -- current is still on the cxq. 1033 // This usually means the enqueue of self raced an exiting thread. 1034 // Normally we'll find current near the front of the cxq, so 1035 // dequeueing is typically fast. If needbe we can accelerate 1036 // this with some MCS/CHL-like bidirectional list hints and advisory 1037 // back-links so dequeueing from the interior will normally operate 1038 // in constant-time. 1039 // Dequeue current from either the head (with CAS) or from the interior 1040 // with a linear-time scan and normal non-atomic memory operations. 1041 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1042 // and then unlink current from EntryList. We have to drain eventually, 1043 // so it might as well be now. 1044 1045 ObjectWaiter* v = _cxq; 1046 assert(v != NULL, "invariant"); 1047 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1048 // The CAS above can fail from interference IFF a "RAT" arrived. 1049 // In that case current must be in the interior and can no longer be 1050 // at the head of cxq. 1051 if (v == currentNode) { 1052 assert(_cxq != v, "invariant"); 1053 v = _cxq; // CAS above failed - start scan at head of list 1054 } 1055 ObjectWaiter* p; 1056 ObjectWaiter* q = NULL; 1057 for (p = v; p != NULL && p != currentNode; p = p->_next) { 1058 q = p; 1059 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1060 } 1061 assert(v != currentNode, "invariant"); 1062 assert(p == currentNode, "Node not found on cxq"); 1063 assert(p != _cxq, "invariant"); 1064 assert(q != NULL, "invariant"); 1065 assert(q->_next == p, "invariant"); 1066 q->_next = p->_next; 1067 } 1068 } 1069 1070 #ifdef ASSERT 1071 // Diagnostic hygiene ... 1072 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1073 currentNode->_next = (ObjectWaiter*) 0xBAD; 1074 currentNode->TState = ObjectWaiter::TS_RUN; 1075 #endif 1076 } 1077 1078 // ----------------------------------------------------------------------------- 1079 // Exit support 1080 // 1081 // exit() 1082 // ~~~~~~ 1083 // Note that the collector can't reclaim the objectMonitor or deflate 1084 // the object out from underneath the thread calling ::exit() as the 1085 // thread calling ::exit() never transitions to a stable state. 1086 // This inhibits GC, which in turn inhibits asynchronous (and 1087 // inopportune) reclamation of "this". 1088 // 1089 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1090 // There's one exception to the claim above, however. EnterI() can call 1091 // exit() to drop a lock if the acquirer has been externally suspended. 1092 // In that case exit() is called with _thread_state == _thread_blocked, 1093 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1094 // 1095 // 1-0 exit 1096 // ~~~~~~~~ 1097 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of 1098 // the fast-path operators have been optimized so the common ::exit() 1099 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). 1100 // The code emitted by fast_unlock() elides the usual MEMBAR. This 1101 // greatly improves latency -- MEMBAR and CAS having considerable local 1102 // latency on modern processors -- but at the cost of "stranding". Absent the 1103 // MEMBAR, a thread in fast_unlock() can race a thread in the slow 1104 // ::enter() path, resulting in the entering thread being stranding 1105 // and a progress-liveness failure. Stranding is extremely rare. 1106 // We use timers (timed park operations) & periodic polling to detect 1107 // and recover from stranding. Potentially stranded threads periodically 1108 // wake up and poll the lock. See the usage of the _Responsible variable. 1109 // 1110 // The CAS() in enter provides for safety and exclusion, while the CAS or 1111 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking 1112 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. 1113 // We detect and recover from stranding with timers. 1114 // 1115 // If a thread transiently strands it'll park until (a) another 1116 // thread acquires the lock and then drops the lock, at which time the 1117 // exiting thread will notice and unpark the stranded thread, or, (b) 1118 // the timer expires. If the lock is high traffic then the stranding latency 1119 // will be low due to (a). If the lock is low traffic then the odds of 1120 // stranding are lower, although the worst-case stranding latency 1121 // is longer. Critically, we don't want to put excessive load in the 1122 // platform's timer subsystem. We want to minimize both the timer injection 1123 // rate (timers created/sec) as well as the number of timers active at 1124 // any one time. (more precisely, we want to minimize timer-seconds, which is 1125 // the integral of the # of active timers at any instant over time). 1126 // Both impinge on OS scalability. Given that, at most one thread parked on 1127 // a monitor will use a timer. 1128 // 1129 // There is also the risk of a futile wake-up. If we drop the lock 1130 // another thread can reacquire the lock immediately, and we can 1131 // then wake a thread unnecessarily. This is benign, and we've 1132 // structured the code so the windows are short and the frequency 1133 // of such futile wakups is low. 1134 1135 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1136 void* cur = owner_raw(); 1137 if (current != cur) { 1138 if (current->is_lock_owned((address)cur)) { 1139 assert(_recursions == 0, "invariant"); 1140 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1141 _recursions = 0; 1142 } else { 1143 // Apparent unbalanced locking ... 1144 // Naively we'd like to throw IllegalMonitorStateException. 1145 // As a practical matter we can neither allocate nor throw an 1146 // exception as ::exit() can be called from leaf routines. 1147 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1148 // Upon deeper reflection, however, in a properly run JVM the only 1149 // way we should encounter this situation is in the presence of 1150 // unbalanced JNI locking. TODO: CheckJNICalls. 1151 // See also: CR4414101 1152 #ifdef ASSERT 1153 LogStreamHandle(Error, monitorinflation) lsh; 1154 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1155 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1156 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1157 print_debug_style_on(&lsh); 1158 assert(false, "Non-balanced monitor enter/exit!"); 1159 #endif 1160 return; 1161 } 1162 } 1163 1164 if (_recursions != 0) { 1165 _recursions--; // this is simple recursive enter 1166 return; 1167 } 1168 1169 // Invariant: after setting Responsible=null an thread must execute 1170 // a MEMBAR or other serializing instruction before fetching EntryList|cxq. 1171 _Responsible = NULL; 1172 1173 #if INCLUDE_JFR 1174 // get the owner's thread id for the MonitorEnter event 1175 // if it is enabled and the thread isn't suspended 1176 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1177 _previous_owner_tid = JFR_THREAD_ID(current); 1178 } 1179 #endif 1180 1181 for (;;) { 1182 assert(current == owner_raw(), "invariant"); 1183 1184 // Drop the lock. 1185 // release semantics: prior loads and stores from within the critical section 1186 // must not float (reorder) past the following store that drops the lock. 1187 // Uses a storeload to separate release_store(owner) from the 1188 // successor check. The try_set_owner() below uses cmpxchg() so 1189 // we get the fence down there. 1190 release_clear_owner(current); 1191 OrderAccess::storeload(); 1192 1193 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) { 1194 return; 1195 } 1196 // Other threads are blocked trying to acquire the lock. 1197 1198 // Normally the exiting thread is responsible for ensuring succession, 1199 // but if other successors are ready or other entering threads are spinning 1200 // then this thread can simply store NULL into _owner and exit without 1201 // waking a successor. The existence of spinners or ready successors 1202 // guarantees proper succession (liveness). Responsibility passes to the 1203 // ready or running successors. The exiting thread delegates the duty. 1204 // More precisely, if a successor already exists this thread is absolved 1205 // of the responsibility of waking (unparking) one. 1206 // 1207 // The _succ variable is critical to reducing futile wakeup frequency. 1208 // _succ identifies the "heir presumptive" thread that has been made 1209 // ready (unparked) but that has not yet run. We need only one such 1210 // successor thread to guarantee progress. 1211 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1212 // section 3.3 "Futile Wakeup Throttling" for details. 1213 // 1214 // Note that spinners in Enter() also set _succ non-null. 1215 // In the current implementation spinners opportunistically set 1216 // _succ so that exiting threads might avoid waking a successor. 1217 // Another less appealing alternative would be for the exiting thread 1218 // to drop the lock and then spin briefly to see if a spinner managed 1219 // to acquire the lock. If so, the exiting thread could exit 1220 // immediately without waking a successor, otherwise the exiting 1221 // thread would need to dequeue and wake a successor. 1222 // (Note that we'd need to make the post-drop spin short, but no 1223 // shorter than the worst-case round-trip cache-line migration time. 1224 // The dropped lock needs to become visible to the spinner, and then 1225 // the acquisition of the lock by the spinner must become visible to 1226 // the exiting thread). 1227 1228 // It appears that an heir-presumptive (successor) must be made ready. 1229 // Only the current lock owner can manipulate the EntryList or 1230 // drain _cxq, so we need to reacquire the lock. If we fail 1231 // to reacquire the lock the responsibility for ensuring succession 1232 // falls to the new owner. 1233 // 1234 if (try_set_owner_from(NULL, current) != NULL) { 1235 return; 1236 } 1237 1238 guarantee(owner_raw() == current, "invariant"); 1239 1240 ObjectWaiter* w = NULL; 1241 1242 w = _EntryList; 1243 if (w != NULL) { 1244 // I'd like to write: guarantee (w->_thread != current). 1245 // But in practice an exiting thread may find itself on the EntryList. 1246 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1247 // then calls exit(). Exit release the lock by setting O._owner to NULL. 1248 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1249 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1250 // release the lock "O". T2 resumes immediately after the ST of null into 1251 // _owner, above. T2 notices that the EntryList is populated, so it 1252 // reacquires the lock and then finds itself on the EntryList. 1253 // Given all that, we have to tolerate the circumstance where "w" is 1254 // associated with current. 1255 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1256 ExitEpilog(current, w); 1257 return; 1258 } 1259 1260 // If we find that both _cxq and EntryList are null then just 1261 // re-run the exit protocol from the top. 1262 w = _cxq; 1263 if (w == NULL) continue; 1264 1265 // Drain _cxq into EntryList - bulk transfer. 1266 // First, detach _cxq. 1267 // The following loop is tantamount to: w = swap(&cxq, NULL) 1268 for (;;) { 1269 assert(w != NULL, "Invariant"); 1270 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL); 1271 if (u == w) break; 1272 w = u; 1273 } 1274 1275 assert(w != NULL, "invariant"); 1276 assert(_EntryList == NULL, "invariant"); 1277 1278 // Convert the LIFO SLL anchored by _cxq into a DLL. 1279 // The list reorganization step operates in O(LENGTH(w)) time. 1280 // It's critical that this step operate quickly as 1281 // "current" still holds the outer-lock, restricting parallelism 1282 // and effectively lengthening the critical section. 1283 // Invariant: s chases t chases u. 1284 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1285 // we have faster access to the tail. 1286 1287 _EntryList = w; 1288 ObjectWaiter* q = NULL; 1289 ObjectWaiter* p; 1290 for (p = w; p != NULL; p = p->_next) { 1291 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1292 p->TState = ObjectWaiter::TS_ENTER; 1293 p->_prev = q; 1294 q = p; 1295 } 1296 1297 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL 1298 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1299 1300 // See if we can abdicate to a spinner instead of waking a thread. 1301 // A primary goal of the implementation is to reduce the 1302 // context-switch rate. 1303 if (_succ != NULL) continue; 1304 1305 w = _EntryList; 1306 if (w != NULL) { 1307 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1308 ExitEpilog(current, w); 1309 return; 1310 } 1311 } 1312 } 1313 1314 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1315 assert(owner_raw() == current, "invariant"); 1316 1317 // Exit protocol: 1318 // 1. ST _succ = wakee 1319 // 2. membar #loadstore|#storestore; 1320 // 2. ST _owner = NULL 1321 // 3. unpark(wakee) 1322 1323 _succ = Wakee->_thread; 1324 ParkEvent * Trigger = Wakee->_event; 1325 1326 // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again. 1327 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1328 // out-of-scope (non-extant). 1329 Wakee = NULL; 1330 1331 // Drop the lock. 1332 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1333 release_clear_owner(current); 1334 OrderAccess::fence(); 1335 1336 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1337 Trigger->unpark(); 1338 1339 // Maintain stats and report events to JVMTI 1340 OM_PERFDATA_OP(Parks, inc()); 1341 } 1342 1343 1344 // ----------------------------------------------------------------------------- 1345 // Class Loader deadlock handling. 1346 // 1347 // complete_exit exits a lock returning recursion count 1348 // complete_exit/reenter operate as a wait without waiting 1349 // complete_exit requires an inflated monitor 1350 // The _owner field is not always the Thread addr even with an 1351 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1352 // thread due to contention. 1353 intx ObjectMonitor::complete_exit(JavaThread* current) { 1354 assert(InitDone, "Unexpectedly not initialized"); 1355 1356 void* cur = owner_raw(); 1357 if (current != cur) { 1358 if (current->is_lock_owned((address)cur)) { 1359 assert(_recursions == 0, "internal state error"); 1360 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1361 _recursions = 0; 1362 } 1363 } 1364 1365 guarantee(current == owner_raw(), "complete_exit not owner"); 1366 intx save = _recursions; // record the old recursion count 1367 _recursions = 0; // set the recursion level to be 0 1368 exit(current); // exit the monitor 1369 guarantee(owner_raw() != current, "invariant"); 1370 return save; 1371 } 1372 1373 // reenter() enters a lock and sets recursion count 1374 // complete_exit/reenter operate as a wait without waiting 1375 bool ObjectMonitor::reenter(intx recursions, JavaThread* current) { 1376 1377 guarantee(owner_raw() != current, "reenter already owner"); 1378 if (!enter(current)) { 1379 return false; 1380 } 1381 // Entered the monitor. 1382 guarantee(_recursions == 0, "reenter recursion"); 1383 _recursions = recursions; 1384 return true; 1385 } 1386 1387 // Checks that the current THREAD owns this monitor and causes an 1388 // immediate return if it doesn't. We don't use the CHECK macro 1389 // because we want the IMSE to be the only exception that is thrown 1390 // from the call site when false is returned. Any other pending 1391 // exception is ignored. 1392 #define CHECK_OWNER() \ 1393 do { \ 1394 if (!check_owner(THREAD)) { \ 1395 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1396 return; \ 1397 } \ 1398 } while (false) 1399 1400 // Returns true if the specified thread owns the ObjectMonitor. 1401 // Otherwise returns false and throws IllegalMonitorStateException 1402 // (IMSE). If there is a pending exception and the specified thread 1403 // is not the owner, that exception will be replaced by the IMSE. 1404 bool ObjectMonitor::check_owner(TRAPS) { 1405 JavaThread* current = THREAD; 1406 void* cur = owner_raw(); 1407 if (cur == current) { 1408 return true; 1409 } 1410 if (current->is_lock_owned((address)cur)) { 1411 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1412 _recursions = 0; 1413 return true; 1414 } 1415 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1416 "current thread is not owner", false); 1417 } 1418 1419 static inline bool is_excluded(const Klass* monitor_klass) { 1420 assert(monitor_klass != nullptr, "invariant"); 1421 NOT_JFR_RETURN_(false); 1422 JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name()); 1423 } 1424 1425 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1426 ObjectMonitor* monitor, 1427 jlong notifier_tid, 1428 jlong timeout, 1429 bool timedout) { 1430 assert(event != NULL, "invariant"); 1431 assert(monitor != NULL, "invariant"); 1432 const Klass* monitor_klass = monitor->object()->klass(); 1433 if (is_excluded(monitor_klass)) { 1434 return; 1435 } 1436 event->set_monitorClass(monitor_klass); 1437 event->set_timeout(timeout); 1438 // Set an address that is 'unique enough', such that events close in 1439 // time and with the same address are likely (but not guaranteed) to 1440 // belong to the same object. 1441 event->set_address((uintptr_t)monitor); 1442 event->set_notifier(notifier_tid); 1443 event->set_timedOut(timedout); 1444 event->commit(); 1445 } 1446 1447 // ----------------------------------------------------------------------------- 1448 // Wait/Notify/NotifyAll 1449 // 1450 // Note: a subset of changes to ObjectMonitor::wait() 1451 // will need to be replicated in complete_exit 1452 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1453 JavaThread* current = THREAD; 1454 1455 assert(InitDone, "Unexpectedly not initialized"); 1456 1457 CHECK_OWNER(); // Throws IMSE if not owner. 1458 1459 EventJavaMonitorWait event; 1460 1461 // check for a pending interrupt 1462 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1463 // post monitor waited event. Note that this is past-tense, we are done waiting. 1464 if (JvmtiExport::should_post_monitor_waited()) { 1465 // Note: 'false' parameter is passed here because the 1466 // wait was not timed out due to thread interrupt. 1467 JvmtiExport::post_monitor_waited(current, this, false); 1468 1469 // In this short circuit of the monitor wait protocol, the 1470 // current thread never drops ownership of the monitor and 1471 // never gets added to the wait queue so the current thread 1472 // cannot be made the successor. This means that the 1473 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1474 // consume an unpark() meant for the ParkEvent associated with 1475 // this ObjectMonitor. 1476 } 1477 if (event.should_commit()) { 1478 post_monitor_wait_event(&event, this, 0, millis, false); 1479 } 1480 THROW(vmSymbols::java_lang_InterruptedException()); 1481 return; 1482 } 1483 1484 assert(current->_Stalled == 0, "invariant"); 1485 current->_Stalled = intptr_t(this); 1486 current->set_current_waiting_monitor(this); 1487 1488 // create a node to be put into the queue 1489 // Critically, after we reset() the event but prior to park(), we must check 1490 // for a pending interrupt. 1491 ObjectWaiter node(current); 1492 node.TState = ObjectWaiter::TS_WAIT; 1493 current->_ParkEvent->reset(); 1494 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1495 1496 // Enter the waiting queue, which is a circular doubly linked list in this case 1497 // but it could be a priority queue or any data structure. 1498 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1499 // by the the owner of the monitor *except* in the case where park() 1500 // returns because of a timeout of interrupt. Contention is exceptionally rare 1501 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1502 1503 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1504 AddWaiter(&node); 1505 Thread::SpinRelease(&_WaitSetLock); 1506 1507 _Responsible = NULL; 1508 1509 intx save = _recursions; // record the old recursion count 1510 _waiters++; // increment the number of waiters 1511 _recursions = 0; // set the recursion level to be 1 1512 exit(current); // exit the monitor 1513 guarantee(owner_raw() != current, "invariant"); 1514 1515 // The thread is on the WaitSet list - now park() it. 1516 // On MP systems it's conceivable that a brief spin before we park 1517 // could be profitable. 1518 // 1519 // TODO-FIXME: change the following logic to a loop of the form 1520 // while (!timeout && !interrupted && _notified == 0) park() 1521 1522 int ret = OS_OK; 1523 int WasNotified = 0; 1524 1525 // Need to check interrupt state whilst still _thread_in_vm 1526 bool interrupted = interruptible && current->is_interrupted(false); 1527 1528 { // State transition wrappers 1529 OSThread* osthread = current->osthread(); 1530 OSThreadWaitState osts(osthread, true); 1531 1532 assert(current->thread_state() == _thread_in_vm, "invariant"); 1533 1534 { 1535 ClearSuccOnSuspend csos(this); 1536 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos); 1537 if (interrupted || HAS_PENDING_EXCEPTION) { 1538 // Intentionally empty 1539 } else if (node._notified == 0) { 1540 if (millis <= 0) { 1541 current->_ParkEvent->park(); 1542 } else { 1543 ret = current->_ParkEvent->park(millis); 1544 } 1545 } 1546 } 1547 1548 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1549 // from the WaitSet to the EntryList. 1550 // See if we need to remove Node from the WaitSet. 1551 // We use double-checked locking to avoid grabbing _WaitSetLock 1552 // if the thread is not on the wait queue. 1553 // 1554 // Note that we don't need a fence before the fetch of TState. 1555 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1556 // written by the is thread. (perhaps the fetch might even be satisfied 1557 // by a look-aside into the processor's own store buffer, although given 1558 // the length of the code path between the prior ST and this load that's 1559 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1560 // then we'll acquire the lock and then re-fetch a fresh TState value. 1561 // That is, we fail toward safety. 1562 1563 if (node.TState == ObjectWaiter::TS_WAIT) { 1564 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1565 if (node.TState == ObjectWaiter::TS_WAIT) { 1566 DequeueSpecificWaiter(&node); // unlink from WaitSet 1567 assert(node._notified == 0, "invariant"); 1568 node.TState = ObjectWaiter::TS_RUN; 1569 } 1570 Thread::SpinRelease(&_WaitSetLock); 1571 } 1572 1573 // The thread is now either on off-list (TS_RUN), 1574 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1575 // The Node's TState variable is stable from the perspective of this thread. 1576 // No other threads will asynchronously modify TState. 1577 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1578 OrderAccess::loadload(); 1579 if (_succ == current) _succ = NULL; 1580 WasNotified = node._notified; 1581 1582 // Reentry phase -- reacquire the monitor. 1583 // re-enter contended monitor after object.wait(). 1584 // retain OBJECT_WAIT state until re-enter successfully completes 1585 // Thread state is thread_in_vm and oop access is again safe, 1586 // although the raw address of the object may have changed. 1587 // (Don't cache naked oops over safepoints, of course). 1588 1589 // post monitor waited event. Note that this is past-tense, we are done waiting. 1590 if (JvmtiExport::should_post_monitor_waited()) { 1591 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1592 1593 if (node._notified != 0 && _succ == current) { 1594 // In this part of the monitor wait-notify-reenter protocol it 1595 // is possible (and normal) for another thread to do a fastpath 1596 // monitor enter-exit while this thread is still trying to get 1597 // to the reenter portion of the protocol. 1598 // 1599 // The ObjectMonitor was notified and the current thread is 1600 // the successor which also means that an unpark() has already 1601 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1602 // consume the unpark() that was done when the successor was 1603 // set because the same ParkEvent is shared between Java 1604 // monitors and JVM/TI RawMonitors (for now). 1605 // 1606 // We redo the unpark() to ensure forward progress, i.e., we 1607 // don't want all pending threads hanging (parked) with none 1608 // entering the unlocked monitor. 1609 node._event->unpark(); 1610 } 1611 } 1612 1613 if (event.should_commit()) { 1614 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1615 } 1616 1617 OrderAccess::fence(); 1618 1619 assert(current->_Stalled != 0, "invariant"); 1620 current->_Stalled = 0; 1621 1622 assert(owner_raw() != current, "invariant"); 1623 ObjectWaiter::TStates v = node.TState; 1624 if (v == ObjectWaiter::TS_RUN) { 1625 enter(current); 1626 } else { 1627 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1628 ReenterI(current, &node); 1629 node.wait_reenter_end(this); 1630 } 1631 1632 // current has reacquired the lock. 1633 // Lifecycle - the node representing current must not appear on any queues. 1634 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1635 // want residual elements associated with this thread left on any lists. 1636 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1637 assert(owner_raw() == current, "invariant"); 1638 assert(_succ != current, "invariant"); 1639 } // OSThreadWaitState() 1640 1641 current->set_current_waiting_monitor(NULL); 1642 1643 guarantee(_recursions == 0, "invariant"); 1644 _recursions = save // restore the old recursion count 1645 + JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); // increased by the deferred relock count 1646 _waiters--; // decrement the number of waiters 1647 1648 // Verify a few postconditions 1649 assert(owner_raw() == current, "invariant"); 1650 assert(_succ != current, "invariant"); 1651 assert(object()->mark() == markWord::encode(this), "invariant"); 1652 1653 // check if the notification happened 1654 if (!WasNotified) { 1655 // no, it could be timeout or Thread.interrupt() or both 1656 // check for interrupt event, otherwise it is timeout 1657 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1658 THROW(vmSymbols::java_lang_InterruptedException()); 1659 } 1660 } 1661 1662 // NOTE: Spurious wake up will be consider as timeout. 1663 // Monitor notify has precedence over thread interrupt. 1664 } 1665 1666 1667 // Consider: 1668 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1669 // then instead of transferring a thread from the WaitSet to the EntryList 1670 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1671 1672 void ObjectMonitor::INotify(JavaThread* current) { 1673 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1674 ObjectWaiter* iterator = DequeueWaiter(); 1675 if (iterator != NULL) { 1676 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1677 guarantee(iterator->_notified == 0, "invariant"); 1678 // Disposition - what might we do with iterator ? 1679 // a. add it directly to the EntryList - either tail (policy == 1) 1680 // or head (policy == 0). 1681 // b. push it onto the front of the _cxq (policy == 2). 1682 // For now we use (b). 1683 1684 iterator->TState = ObjectWaiter::TS_ENTER; 1685 1686 iterator->_notified = 1; 1687 iterator->_notifier_tid = JFR_THREAD_ID(current); 1688 1689 ObjectWaiter* list = _EntryList; 1690 if (list != NULL) { 1691 assert(list->_prev == NULL, "invariant"); 1692 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1693 assert(list != iterator, "invariant"); 1694 } 1695 1696 // prepend to cxq 1697 if (list == NULL) { 1698 iterator->_next = iterator->_prev = NULL; 1699 _EntryList = iterator; 1700 } else { 1701 iterator->TState = ObjectWaiter::TS_CXQ; 1702 for (;;) { 1703 ObjectWaiter* front = _cxq; 1704 iterator->_next = front; 1705 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1706 break; 1707 } 1708 } 1709 } 1710 1711 // _WaitSetLock protects the wait queue, not the EntryList. We could 1712 // move the add-to-EntryList operation, above, outside the critical section 1713 // protected by _WaitSetLock. In practice that's not useful. With the 1714 // exception of wait() timeouts and interrupts the monitor owner 1715 // is the only thread that grabs _WaitSetLock. There's almost no contention 1716 // on _WaitSetLock so it's not profitable to reduce the length of the 1717 // critical section. 1718 1719 iterator->wait_reenter_begin(this); 1720 } 1721 Thread::SpinRelease(&_WaitSetLock); 1722 } 1723 1724 // Consider: a not-uncommon synchronization bug is to use notify() when 1725 // notifyAll() is more appropriate, potentially resulting in stranded 1726 // threads; this is one example of a lost wakeup. A useful diagnostic 1727 // option is to force all notify() operations to behave as notifyAll(). 1728 // 1729 // Note: We can also detect many such problems with a "minimum wait". 1730 // When the "minimum wait" is set to a small non-zero timeout value 1731 // and the program does not hang whereas it did absent "minimum wait", 1732 // that suggests a lost wakeup bug. 1733 1734 void ObjectMonitor::notify(TRAPS) { 1735 JavaThread* current = THREAD; 1736 CHECK_OWNER(); // Throws IMSE if not owner. 1737 if (_WaitSet == NULL) { 1738 return; 1739 } 1740 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1741 INotify(current); 1742 OM_PERFDATA_OP(Notifications, inc(1)); 1743 } 1744 1745 1746 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1747 // from the waitset to the EntryList. This could be done more efficiently with a 1748 // single bulk transfer but in practice it's not time-critical. Beware too, 1749 // that in prepend-mode we invert the order of the waiters. Let's say that the 1750 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1751 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1752 1753 void ObjectMonitor::notifyAll(TRAPS) { 1754 JavaThread* current = THREAD; 1755 CHECK_OWNER(); // Throws IMSE if not owner. 1756 if (_WaitSet == NULL) { 1757 return; 1758 } 1759 1760 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1761 int tally = 0; 1762 while (_WaitSet != NULL) { 1763 tally++; 1764 INotify(current); 1765 } 1766 1767 OM_PERFDATA_OP(Notifications, inc(tally)); 1768 } 1769 1770 // ----------------------------------------------------------------------------- 1771 // Adaptive Spinning Support 1772 // 1773 // Adaptive spin-then-block - rational spinning 1774 // 1775 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 1776 // algorithm. On high order SMP systems it would be better to start with 1777 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 1778 // a contending thread could enqueue itself on the cxq and then spin locally 1779 // on a thread-specific variable such as its ParkEvent._Event flag. 1780 // That's left as an exercise for the reader. Note that global spinning is 1781 // not problematic on Niagara, as the L2 cache serves the interconnect and 1782 // has both low latency and massive bandwidth. 1783 // 1784 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 1785 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 1786 // (duration) or we can fix the count at approximately the duration of 1787 // a context switch and vary the frequency. Of course we could also 1788 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 1789 // For a description of 'Adaptive spin-then-block mutual exclusion in 1790 // multi-threaded processing,' see U.S. Pat. No. 8046758. 1791 // 1792 // This implementation varies the duration "D", where D varies with 1793 // the success rate of recent spin attempts. (D is capped at approximately 1794 // length of a round-trip context switch). The success rate for recent 1795 // spin attempts is a good predictor of the success rate of future spin 1796 // attempts. The mechanism adapts automatically to varying critical 1797 // section length (lock modality), system load and degree of parallelism. 1798 // D is maintained per-monitor in _SpinDuration and is initialized 1799 // optimistically. Spin frequency is fixed at 100%. 1800 // 1801 // Note that _SpinDuration is volatile, but we update it without locks 1802 // or atomics. The code is designed so that _SpinDuration stays within 1803 // a reasonable range even in the presence of races. The arithmetic 1804 // operations on _SpinDuration are closed over the domain of legal values, 1805 // so at worst a race will install and older but still legal value. 1806 // At the very worst this introduces some apparent non-determinism. 1807 // We might spin when we shouldn't or vice-versa, but since the spin 1808 // count are relatively short, even in the worst case, the effect is harmless. 1809 // 1810 // Care must be taken that a low "D" value does not become an 1811 // an absorbing state. Transient spinning failures -- when spinning 1812 // is overall profitable -- should not cause the system to converge 1813 // on low "D" values. We want spinning to be stable and predictable 1814 // and fairly responsive to change and at the same time we don't want 1815 // it to oscillate, become metastable, be "too" non-deterministic, 1816 // or converge on or enter undesirable stable absorbing states. 1817 // 1818 // We implement a feedback-based control system -- using past behavior 1819 // to predict future behavior. We face two issues: (a) if the 1820 // input signal is random then the spin predictor won't provide optimal 1821 // results, and (b) if the signal frequency is too high then the control 1822 // system, which has some natural response lag, will "chase" the signal. 1823 // (b) can arise from multimodal lock hold times. Transient preemption 1824 // can also result in apparent bimodal lock hold times. 1825 // Although sub-optimal, neither condition is particularly harmful, as 1826 // in the worst-case we'll spin when we shouldn't or vice-versa. 1827 // The maximum spin duration is rather short so the failure modes aren't bad. 1828 // To be conservative, I've tuned the gain in system to bias toward 1829 // _not spinning. Relatedly, the system can sometimes enter a mode where it 1830 // "rings" or oscillates between spinning and not spinning. This happens 1831 // when spinning is just on the cusp of profitability, however, so the 1832 // situation is not dire. The state is benign -- there's no need to add 1833 // hysteresis control to damp the transition rate between spinning and 1834 // not spinning. 1835 1836 // Spinning: Fixed frequency (100%), vary duration 1837 int ObjectMonitor::TrySpin(JavaThread* current) { 1838 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 1839 int ctr = Knob_FixedSpin; 1840 if (ctr != 0) { 1841 while (--ctr >= 0) { 1842 if (TryLock(current) > 0) return 1; 1843 SpinPause(); 1844 } 1845 return 0; 1846 } 1847 1848 for (ctr = Knob_PreSpin + 1; --ctr >= 0;) { 1849 if (TryLock(current) > 0) { 1850 // Increase _SpinDuration ... 1851 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1852 // Raising _SpurDuration to the poverty line is key. 1853 int x = _SpinDuration; 1854 if (x < Knob_SpinLimit) { 1855 if (x < Knob_Poverty) x = Knob_Poverty; 1856 _SpinDuration = x + Knob_BonusB; 1857 } 1858 return 1; 1859 } 1860 SpinPause(); 1861 } 1862 1863 // Admission control - verify preconditions for spinning 1864 // 1865 // We always spin a little bit, just to prevent _SpinDuration == 0 from 1866 // becoming an absorbing state. Put another way, we spin briefly to 1867 // sample, just in case the system load, parallelism, contention, or lock 1868 // modality changed. 1869 // 1870 // Consider the following alternative: 1871 // Periodically set _SpinDuration = _SpinLimit and try a long/full 1872 // spin attempt. "Periodically" might mean after a tally of 1873 // the # of failed spin attempts (or iterations) reaches some threshold. 1874 // This takes us into the realm of 1-out-of-N spinning, where we 1875 // hold the duration constant but vary the frequency. 1876 1877 ctr = _SpinDuration; 1878 if (ctr <= 0) return 0; 1879 1880 if (NotRunnable(current, (JavaThread*) owner_raw())) { 1881 return 0; 1882 } 1883 1884 // We're good to spin ... spin ingress. 1885 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 1886 // when preparing to LD...CAS _owner, etc and the CAS is likely 1887 // to succeed. 1888 if (_succ == NULL) { 1889 _succ = current; 1890 } 1891 Thread* prv = NULL; 1892 1893 // There are three ways to exit the following loop: 1894 // 1. A successful spin where this thread has acquired the lock. 1895 // 2. Spin failure with prejudice 1896 // 3. Spin failure without prejudice 1897 1898 while (--ctr >= 0) { 1899 1900 // Periodic polling -- Check for pending GC 1901 // Threads may spin while they're unsafe. 1902 // We don't want spinning threads to delay the JVM from reaching 1903 // a stop-the-world safepoint or to steal cycles from GC. 1904 // If we detect a pending safepoint we abort in order that 1905 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 1906 // this thread, if safe, doesn't steal cycles from GC. 1907 // This is in keeping with the "no loitering in runtime" rule. 1908 // We periodically check to see if there's a safepoint pending. 1909 if ((ctr & 0xFF) == 0) { 1910 if (SafepointMechanism::should_process(current)) { 1911 goto Abort; // abrupt spin egress 1912 } 1913 SpinPause(); 1914 } 1915 1916 // Probe _owner with TATAS 1917 // If this thread observes the monitor transition or flicker 1918 // from locked to unlocked to locked, then the odds that this 1919 // thread will acquire the lock in this spin attempt go down 1920 // considerably. The same argument applies if the CAS fails 1921 // or if we observe _owner change from one non-null value to 1922 // another non-null value. In such cases we might abort 1923 // the spin without prejudice or apply a "penalty" to the 1924 // spin count-down variable "ctr", reducing it by 100, say. 1925 1926 JavaThread* ox = (JavaThread*) owner_raw(); 1927 if (ox == NULL) { 1928 ox = (JavaThread*)try_set_owner_from(NULL, current); 1929 if (ox == NULL) { 1930 // The CAS succeeded -- this thread acquired ownership 1931 // Take care of some bookkeeping to exit spin state. 1932 if (_succ == current) { 1933 _succ = NULL; 1934 } 1935 1936 // Increase _SpinDuration : 1937 // The spin was successful (profitable) so we tend toward 1938 // longer spin attempts in the future. 1939 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 1940 // If we acquired the lock early in the spin cycle it 1941 // makes sense to increase _SpinDuration proportionally. 1942 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1943 int x = _SpinDuration; 1944 if (x < Knob_SpinLimit) { 1945 if (x < Knob_Poverty) x = Knob_Poverty; 1946 _SpinDuration = x + Knob_Bonus; 1947 } 1948 return 1; 1949 } 1950 1951 // The CAS failed ... we can take any of the following actions: 1952 // * penalize: ctr -= CASPenalty 1953 // * exit spin with prejudice -- goto Abort; 1954 // * exit spin without prejudice. 1955 // * Since CAS is high-latency, retry again immediately. 1956 prv = ox; 1957 goto Abort; 1958 } 1959 1960 // Did lock ownership change hands ? 1961 if (ox != prv && prv != NULL) { 1962 goto Abort; 1963 } 1964 prv = ox; 1965 1966 // Abort the spin if the owner is not executing. 1967 // The owner must be executing in order to drop the lock. 1968 // Spinning while the owner is OFFPROC is idiocy. 1969 // Consider: ctr -= RunnablePenalty ; 1970 if (NotRunnable(current, ox)) { 1971 goto Abort; 1972 } 1973 if (_succ == NULL) { 1974 _succ = current; 1975 } 1976 } 1977 1978 // Spin failed with prejudice -- reduce _SpinDuration. 1979 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 1980 // AIMD is globally stable. 1981 { 1982 int x = _SpinDuration; 1983 if (x > 0) { 1984 // Consider an AIMD scheme like: x -= (x >> 3) + 100 1985 // This is globally sample and tends to damp the response. 1986 x -= Knob_Penalty; 1987 if (x < 0) x = 0; 1988 _SpinDuration = x; 1989 } 1990 } 1991 1992 Abort: 1993 if (_succ == current) { 1994 _succ = NULL; 1995 // Invariant: after setting succ=null a contending thread 1996 // must recheck-retry _owner before parking. This usually happens 1997 // in the normal usage of TrySpin(), but it's safest 1998 // to make TrySpin() as foolproof as possible. 1999 OrderAccess::fence(); 2000 if (TryLock(current) > 0) return 1; 2001 } 2002 return 0; 2003 } 2004 2005 // NotRunnable() -- informed spinning 2006 // 2007 // Don't bother spinning if the owner is not eligible to drop the lock. 2008 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm. 2009 // The thread must be runnable in order to drop the lock in timely fashion. 2010 // If the _owner is not runnable then spinning will not likely be 2011 // successful (profitable). 2012 // 2013 // Beware -- the thread referenced by _owner could have died 2014 // so a simply fetch from _owner->_thread_state might trap. 2015 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state. 2016 // Because of the lifecycle issues, the _thread_state values 2017 // observed by NotRunnable() might be garbage. NotRunnable must 2018 // tolerate this and consider the observed _thread_state value 2019 // as advisory. 2020 // 2021 // Beware too, that _owner is sometimes a BasicLock address and sometimes 2022 // a thread pointer. 2023 // Alternately, we might tag the type (thread pointer vs basiclock pointer) 2024 // with the LSB of _owner. Another option would be to probabilistically probe 2025 // the putative _owner->TypeTag value. 2026 // 2027 // Checking _thread_state isn't perfect. Even if the thread is 2028 // in_java it might be blocked on a page-fault or have been preempted 2029 // and sitting on a ready/dispatch queue. 2030 // 2031 // The return value from NotRunnable() is *advisory* -- the 2032 // result is based on sampling and is not necessarily coherent. 2033 // The caller must tolerate false-negative and false-positive errors. 2034 // Spinning, in general, is probabilistic anyway. 2035 2036 2037 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) { 2038 // Check ox->TypeTag == 2BAD. 2039 if (ox == NULL) return 0; 2040 2041 // Avoid transitive spinning ... 2042 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L. 2043 // Immediately after T1 acquires L it's possible that T2, also 2044 // spinning on L, will see L.Owner=T1 and T1._Stalled=L. 2045 // This occurs transiently after T1 acquired L but before 2046 // T1 managed to clear T1.Stalled. T2 does not need to abort 2047 // its spin in this circumstance. 2048 intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1)); 2049 2050 if (BlockedOn == 1) return 1; 2051 if (BlockedOn != 0) { 2052 return BlockedOn != intptr_t(this) && owner_raw() == ox; 2053 } 2054 2055 assert(sizeof(ox->_thread_state == sizeof(int)), "invariant"); 2056 int jst = SafeFetch32((int *) &ox->_thread_state, -1);; 2057 // consider also: jst != _thread_in_Java -- but that's overspecific. 2058 return jst == _thread_blocked || jst == _thread_in_native; 2059 } 2060 2061 2062 // ----------------------------------------------------------------------------- 2063 // WaitSet management ... 2064 2065 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2066 _next = NULL; 2067 _prev = NULL; 2068 _notified = 0; 2069 _notifier_tid = 0; 2070 TState = TS_RUN; 2071 _thread = current; 2072 _event = _thread->_ParkEvent; 2073 _active = false; 2074 assert(_event != NULL, "invariant"); 2075 } 2076 2077 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2078 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2079 } 2080 2081 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2082 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2083 } 2084 2085 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2086 assert(node != NULL, "should not add NULL node"); 2087 assert(node->_prev == NULL, "node already in list"); 2088 assert(node->_next == NULL, "node already in list"); 2089 // put node at end of queue (circular doubly linked list) 2090 if (_WaitSet == NULL) { 2091 _WaitSet = node; 2092 node->_prev = node; 2093 node->_next = node; 2094 } else { 2095 ObjectWaiter* head = _WaitSet; 2096 ObjectWaiter* tail = head->_prev; 2097 assert(tail->_next == head, "invariant check"); 2098 tail->_next = node; 2099 head->_prev = node; 2100 node->_next = head; 2101 node->_prev = tail; 2102 } 2103 } 2104 2105 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2106 // dequeue the very first waiter 2107 ObjectWaiter* waiter = _WaitSet; 2108 if (waiter) { 2109 DequeueSpecificWaiter(waiter); 2110 } 2111 return waiter; 2112 } 2113 2114 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2115 assert(node != NULL, "should not dequeue NULL node"); 2116 assert(node->_prev != NULL, "node already removed from list"); 2117 assert(node->_next != NULL, "node already removed from list"); 2118 // when the waiter has woken up because of interrupt, 2119 // timeout or other spurious wake-up, dequeue the 2120 // waiter from waiting list 2121 ObjectWaiter* next = node->_next; 2122 if (next == node) { 2123 assert(node->_prev == node, "invariant check"); 2124 _WaitSet = NULL; 2125 } else { 2126 ObjectWaiter* prev = node->_prev; 2127 assert(prev->_next == node, "invariant check"); 2128 assert(next->_prev == node, "invariant check"); 2129 next->_prev = prev; 2130 prev->_next = next; 2131 if (_WaitSet == node) { 2132 _WaitSet = next; 2133 } 2134 } 2135 node->_next = NULL; 2136 node->_prev = NULL; 2137 } 2138 2139 // ----------------------------------------------------------------------------- 2140 // PerfData support 2141 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = NULL; 2142 PerfCounter * ObjectMonitor::_sync_FutileWakeups = NULL; 2143 PerfCounter * ObjectMonitor::_sync_Parks = NULL; 2144 PerfCounter * ObjectMonitor::_sync_Notifications = NULL; 2145 PerfCounter * ObjectMonitor::_sync_Inflations = NULL; 2146 PerfCounter * ObjectMonitor::_sync_Deflations = NULL; 2147 PerfLongVariable * ObjectMonitor::_sync_MonExtant = NULL; 2148 2149 // One-shot global initialization for the sync subsystem. 2150 // We could also defer initialization and initialize on-demand 2151 // the first time we call ObjectSynchronizer::inflate(). 2152 // Initialization would be protected - like so many things - by 2153 // the MonitorCache_lock. 2154 2155 void ObjectMonitor::Initialize() { 2156 assert(!InitDone, "invariant"); 2157 2158 if (!os::is_MP()) { 2159 Knob_SpinLimit = 0; 2160 Knob_PreSpin = 0; 2161 Knob_FixedSpin = -1; 2162 } 2163 2164 if (UsePerfData) { 2165 EXCEPTION_MARK; 2166 #define NEWPERFCOUNTER(n) \ 2167 { \ 2168 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2169 CHECK); \ 2170 } 2171 #define NEWPERFVARIABLE(n) \ 2172 { \ 2173 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2174 CHECK); \ 2175 } 2176 NEWPERFCOUNTER(_sync_Inflations); 2177 NEWPERFCOUNTER(_sync_Deflations); 2178 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2179 NEWPERFCOUNTER(_sync_FutileWakeups); 2180 NEWPERFCOUNTER(_sync_Parks); 2181 NEWPERFCOUNTER(_sync_Notifications); 2182 NEWPERFVARIABLE(_sync_MonExtant); 2183 #undef NEWPERFCOUNTER 2184 #undef NEWPERFVARIABLE 2185 } 2186 2187 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2188 2189 DEBUG_ONLY(InitDone = true;) 2190 } 2191 2192 void ObjectMonitor::print_on(outputStream* st) const { 2193 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2194 st->print("{contentions=0x%08x,waiters=0x%08x" 2195 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2196 contentions(), waiters(), recursions(), 2197 p2i(owner())); 2198 } 2199 void ObjectMonitor::print() const { print_on(tty); } 2200 2201 #ifdef ASSERT 2202 // Print the ObjectMonitor like a debugger would: 2203 // 2204 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2205 // _header = 0x0000000000000001 2206 // _object = 0x000000070ff45fd0 2207 // _pad_buf0 = { 2208 // [0] = '\0' 2209 // ... 2210 // [43] = '\0' 2211 // } 2212 // _owner = 0x0000000000000000 2213 // _previous_owner_tid = 0 2214 // _pad_buf1 = { 2215 // [0] = '\0' 2216 // ... 2217 // [47] = '\0' 2218 // } 2219 // _next_om = 0x0000000000000000 2220 // _recursions = 0 2221 // _EntryList = 0x0000000000000000 2222 // _cxq = 0x0000000000000000 2223 // _succ = 0x0000000000000000 2224 // _Responsible = 0x0000000000000000 2225 // _Spinner = 0 2226 // _SpinDuration = 5000 2227 // _contentions = 0 2228 // _WaitSet = 0x0000700009756248 2229 // _waiters = 1 2230 // _WaitSetLock = 0 2231 // } 2232 // 2233 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2234 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2235 st->print_cr(" _header = " INTPTR_FORMAT, header().value()); 2236 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2237 st->print_cr(" _pad_buf0 = {"); 2238 st->print_cr(" [0] = '\\0'"); 2239 st->print_cr(" ..."); 2240 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2241 st->print_cr(" }"); 2242 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2243 st->print_cr(" _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid); 2244 st->print_cr(" _pad_buf1 = {"); 2245 st->print_cr(" [0] = '\\0'"); 2246 st->print_cr(" ..."); 2247 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2248 st->print_cr(" }"); 2249 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2250 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2251 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2252 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2253 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2254 st->print_cr(" _Responsible = " INTPTR_FORMAT, p2i(_Responsible)); 2255 st->print_cr(" _Spinner = %d", _Spinner); 2256 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2257 st->print_cr(" _contentions = %d", contentions()); 2258 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2259 st->print_cr(" _waiters = %d", _waiters); 2260 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2261 st->print_cr("}"); 2262 } 2263 #endif