1 /*
   2  * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/oopStorage.hpp"
  28 #include "gc/shared/oopStorageSet.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "jfr/support/jfrThreadId.hpp"
  31 #include "logging/log.hpp"
  32 #include "logging/logStream.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/mutexLocker.hpp"
  45 #include "runtime/objectMonitor.hpp"
  46 #include "runtime/objectMonitor.inline.hpp"
  47 #include "runtime/orderAccess.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/perfData.hpp"
  50 #include "runtime/safefetch.hpp"
  51 #include "runtime/safepointMechanism.inline.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/thread.inline.hpp"
  54 #include "services/threadService.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/macros.hpp"
  57 #include "utilities/preserveException.hpp"
  58 #if INCLUDE_JFR
  59 #include "jfr/support/jfrFlush.hpp"
  60 #endif
  61 
  62 #ifdef DTRACE_ENABLED
  63 
  64 // Only bother with this argument setup if dtrace is available
  65 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  66 
  67 
  68 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  69   char* bytes = NULL;                                                      \
  70   int len = 0;                                                             \
  71   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  72   Symbol* klassname = obj->klass()->name();                                \
  73   if (klassname != NULL) {                                                 \
  74     bytes = (char*)klassname->bytes();                                     \
  75     len = klassname->utf8_length();                                        \
  76   }
  77 
  78 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  79   {                                                                        \
  80     if (DTraceMonitorProbes) {                                             \
  81       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  82       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  83                            (monitor), bytes, len, (millis));               \
  84     }                                                                      \
  85   }
  86 
  87 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  88 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  89 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  90 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  91 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  92 
  93 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  94   {                                                                        \
  95     if (DTraceMonitorProbes) {                                             \
  96       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  97       HOTSPOT_MONITOR_##probe(jtid,                                        \
  98                               (uintptr_t)(monitor), bytes, len);           \
  99     }                                                                      \
 100   }
 101 
 102 #else //  ndef DTRACE_ENABLED
 103 
 104 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 105 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 106 
 107 #endif // ndef DTRACE_ENABLED
 108 
 109 // Tunables ...
 110 // The knob* variables are effectively final.  Once set they should
 111 // never be modified hence.  Consider using __read_mostly with GCC.
 112 
 113 int ObjectMonitor::Knob_SpinLimit    = 5000;    // derived by an external tool -
 114 
 115 static int Knob_Bonus               = 100;     // spin success bonus
 116 static int Knob_BonusB              = 100;     // spin success bonus
 117 static int Knob_Penalty             = 200;     // spin failure penalty
 118 static int Knob_Poverty             = 1000;
 119 static int Knob_FixedSpin           = 0;
 120 static int Knob_PreSpin             = 10;      // 20-100 likely better
 121 
 122 DEBUG_ONLY(static volatile bool InitDone = false;)
 123 
 124 OopStorage* ObjectMonitor::_oop_storage = NULL;
 125 
 126 // -----------------------------------------------------------------------------
 127 // Theory of operations -- Monitors lists, thread residency, etc:
 128 //
 129 // * A thread acquires ownership of a monitor by successfully
 130 //   CAS()ing the _owner field from null to non-null.
 131 //
 132 // * Invariant: A thread appears on at most one monitor list --
 133 //   cxq, EntryList or WaitSet -- at any one time.
 134 //
 135 // * Contending threads "push" themselves onto the cxq with CAS
 136 //   and then spin/park.
 137 //
 138 // * After a contending thread eventually acquires the lock it must
 139 //   dequeue itself from either the EntryList or the cxq.
 140 //
 141 // * The exiting thread identifies and unparks an "heir presumptive"
 142 //   tentative successor thread on the EntryList.  Critically, the
 143 //   exiting thread doesn't unlink the successor thread from the EntryList.
 144 //   After having been unparked, the wakee will recontend for ownership of
 145 //   the monitor.   The successor (wakee) will either acquire the lock or
 146 //   re-park itself.
 147 //
 148 //   Succession is provided for by a policy of competitive handoff.
 149 //   The exiting thread does _not_ grant or pass ownership to the
 150 //   successor thread.  (This is also referred to as "handoff" succession").
 151 //   Instead the exiting thread releases ownership and possibly wakes
 152 //   a successor, so the successor can (re)compete for ownership of the lock.
 153 //   If the EntryList is empty but the cxq is populated the exiting
 154 //   thread will drain the cxq into the EntryList.  It does so by
 155 //   by detaching the cxq (installing null with CAS) and folding
 156 //   the threads from the cxq into the EntryList.  The EntryList is
 157 //   doubly linked, while the cxq is singly linked because of the
 158 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 159 //
 160 // * Concurrency invariants:
 161 //
 162 //   -- only the monitor owner may access or mutate the EntryList.
 163 //      The mutex property of the monitor itself protects the EntryList
 164 //      from concurrent interference.
 165 //   -- Only the monitor owner may detach the cxq.
 166 //
 167 // * The monitor entry list operations avoid locks, but strictly speaking
 168 //   they're not lock-free.  Enter is lock-free, exit is not.
 169 //   For a description of 'Methods and apparatus providing non-blocking access
 170 //   to a resource,' see U.S. Pat. No. 7844973.
 171 //
 172 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 173 //   detaching thread.  This mechanism is immune from the ABA corruption.
 174 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 175 //
 176 // * Taken together, the cxq and the EntryList constitute or form a
 177 //   single logical queue of threads stalled trying to acquire the lock.
 178 //   We use two distinct lists to improve the odds of a constant-time
 179 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 180 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 181 //   A key desideratum is to minimize queue & monitor metadata manipulation
 182 //   that occurs while holding the monitor lock -- that is, we want to
 183 //   minimize monitor lock holds times.  Note that even a small amount of
 184 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 185 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 186 //   locks and monitor metadata.
 187 //
 188 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 189 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 190 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 191 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 192 //
 193 //   The EntryList is ordered by the prevailing queue discipline and
 194 //   can be organized in any convenient fashion, such as a doubly-linked list or
 195 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 196 //   to operate in constant-time.  If we need a priority queue then something akin
 197 //   to Solaris' sleepq would work nicely.  Viz.,
 198 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 199 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 200 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 201 //   EntryList accordingly.
 202 //
 203 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 204 //   somewhat similar to an elevator-scan.
 205 //
 206 // * The monitor synchronization subsystem avoids the use of native
 207 //   synchronization primitives except for the narrow platform-specific
 208 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 209 //   the semantics of park-unpark.  Put another way, this monitor implementation
 210 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 211 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 212 //   underlying OS manages the READY<->RUN transitions.
 213 //
 214 // * Waiting threads reside on the WaitSet list -- wait() puts
 215 //   the caller onto the WaitSet.
 216 //
 217 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 218 //   either the EntryList or cxq.  Subsequent exit() operations will
 219 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 220 //   it's likely the notifyee would simply impale itself on the lock held
 221 //   by the notifier.
 222 //
 223 // * An interesting alternative is to encode cxq as (List,LockByte) where
 224 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 225 //   variable, like _recursions, in the scheme.  The threads or Events that form
 226 //   the list would have to be aligned in 256-byte addresses.  A thread would
 227 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 228 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 229 //   Note that is is *not* word-tearing, but it does presume that full-word
 230 //   CAS operations are coherent with intermix with STB operations.  That's true
 231 //   on most common processors.
 232 //
 233 // * See also http://blogs.sun.com/dave
 234 
 235 
 236 // Check that object() and set_object() are called from the right context:
 237 static void check_object_context() {
 238 #ifdef ASSERT
 239   Thread* self = Thread::current();
 240   if (self->is_Java_thread()) {
 241     // Mostly called from JavaThreads so sanity check the thread state.
 242     JavaThread* jt = self->as_Java_thread();
 243     switch (jt->thread_state()) {
 244     case _thread_in_vm:    // the usual case
 245     case _thread_in_Java:  // during deopt
 246       break;
 247     default:
 248       fatal("called from an unsafe thread state");
 249     }
 250     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 251   } else {
 252     // However, ThreadService::get_current_contended_monitor()
 253     // can call here via the VMThread so sanity check it.
 254     assert(self->is_VM_thread(), "must be");
 255   }
 256 #endif // ASSERT
 257 }
 258 
 259 ObjectMonitor::ObjectMonitor(oop object) :
 260   _header(markWord::zero()),
 261   _object(_oop_storage, object),
 262   _owner(NULL),
 263   _previous_owner_tid(0),
 264   _next_om(NULL),
 265   _recursions(0),
 266   _EntryList(NULL),
 267   _cxq(NULL),
 268   _succ(NULL),
 269   _Responsible(NULL),
 270   _Spinner(0),
 271   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 272   _contentions(0),
 273   _WaitSet(NULL),
 274   _waiters(0),
 275   _WaitSetLock(0)
 276 { }
 277 
 278 ObjectMonitor::~ObjectMonitor() {
 279   _object.release(_oop_storage);
 280 }
 281 
 282 oop ObjectMonitor::object() const {
 283   check_object_context();
 284   if (_object.is_null()) {
 285     return NULL;
 286   }
 287   return _object.resolve();
 288 }
 289 
 290 oop ObjectMonitor::object_peek() const {
 291   if (_object.is_null()) {
 292     return NULL;
 293   }
 294   return _object.peek();
 295 }
 296 
 297 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 298   if (current->is_suspended()) {
 299     _om->_recursions = 0;
 300     _om->_succ = NULL;
 301     // Don't need a full fence after clearing successor here because of the call to exit().
 302     _om->exit(current, false /* not_suspended */);
 303     _om_exited = true;
 304 
 305     current->set_current_pending_monitor(_om);
 306   }
 307 }
 308 
 309 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 310   if (current->is_suspended()) {
 311     if (_om->_succ == current) {
 312       _om->_succ = NULL;
 313       OrderAccess::fence(); // always do a full fence when successor is cleared
 314     }
 315   }
 316 }
 317 
 318 // -----------------------------------------------------------------------------
 319 // Enter support
 320 
 321 bool ObjectMonitor::enter(JavaThread* current) {
 322   // The following code is ordered to check the most common cases first
 323   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 324 
 325   void* cur = try_set_owner_from(NULL, current);
 326   if (cur == NULL) {
 327     assert(_recursions == 0, "invariant");
 328     return true;
 329   }
 330 
 331   if (cur == current) {
 332     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 333     _recursions++;
 334     return true;
 335   }
 336 
 337   if (current->is_lock_owned((address)cur)) {
 338     assert(_recursions == 0, "internal state error");
 339     _recursions = 1;
 340     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
 341     return true;
 342   }
 343 
 344   // We've encountered genuine contention.
 345   assert(current->_Stalled == 0, "invariant");
 346   current->_Stalled = intptr_t(this);
 347 
 348   // Try one round of spinning *before* enqueueing current
 349   // and before going through the awkward and expensive state
 350   // transitions.  The following spin is strictly optional ...
 351   // Note that if we acquire the monitor from an initial spin
 352   // we forgo posting JVMTI events and firing DTRACE probes.
 353   if (TrySpin(current) > 0) {
 354     assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 355     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 356     assert(object()->mark() == markWord::encode(this),
 357            "object mark must match encoded this: mark=" INTPTR_FORMAT
 358            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 359            markWord::encode(this).value());
 360     current->_Stalled = 0;
 361     return true;
 362   }
 363 
 364   assert(owner_raw() != current, "invariant");
 365   assert(_succ != current, "invariant");
 366   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 367   assert(current->thread_state() != _thread_blocked, "invariant");
 368 
 369   // Keep track of contention for JVM/TI and M&M queries.
 370   add_to_contentions(1);
 371   if (is_being_async_deflated()) {
 372     // Async deflation is in progress and our contentions increment
 373     // above lost the race to async deflation. Undo the work and
 374     // force the caller to retry.
 375     const oop l_object = object();
 376     if (l_object != NULL) {
 377       // Attempt to restore the header/dmw to the object's header so that
 378       // we only retry once if the deflater thread happens to be slow.
 379       install_displaced_markword_in_object(l_object);
 380     }
 381     current->_Stalled = 0;
 382     add_to_contentions(-1);
 383     return false;
 384   }
 385 
 386   JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(current);)
 387   EventJavaMonitorEnter event;
 388   if (event.is_started()) {
 389     event.set_monitorClass(object()->klass());
 390     // Set an address that is 'unique enough', such that events close in
 391     // time and with the same address are likely (but not guaranteed) to
 392     // belong to the same object.
 393     event.set_address((uintptr_t)this);
 394   }
 395 
 396   { // Change java thread status to indicate blocked on monitor enter.
 397     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 398 
 399     assert(current->current_pending_monitor() == NULL, "invariant");
 400     current->set_current_pending_monitor(this);
 401 
 402     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 403     if (JvmtiExport::should_post_monitor_contended_enter()) {
 404       JvmtiExport::post_monitor_contended_enter(current, this);
 405 
 406       // The current thread does not yet own the monitor and does not
 407       // yet appear on any queues that would get it made the successor.
 408       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 409       // handler cannot accidentally consume an unpark() meant for the
 410       // ParkEvent associated with this ObjectMonitor.
 411     }
 412 
 413     OSThreadContendState osts(current->osthread());
 414 
 415     assert(current->thread_state() == _thread_in_vm, "invariant");
 416 
 417     for (;;) {
 418       ExitOnSuspend eos(this);
 419       {
 420         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos);
 421         EnterI(current);
 422         current->set_current_pending_monitor(NULL);
 423         // We can go to a safepoint at the end of this block. If we
 424         // do a thread dump during that safepoint, then this thread will show
 425         // as having "-locked" the monitor, but the OS and java.lang.Thread
 426         // states will still report that the thread is blocked trying to
 427         // acquire it.
 428         // If there is a suspend request, ExitOnSuspend will exit the OM
 429         // and set the OM as pending.
 430       }
 431       if (!eos.exited()) {
 432         // ExitOnSuspend did not exit the OM
 433         assert(owner_raw() == current, "invariant");
 434         break;
 435       }
 436     }
 437 
 438     // We've just gotten past the enter-check-for-suspend dance and we now own
 439     // the monitor free and clear.
 440   }
 441 
 442   add_to_contentions(-1);
 443   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 444   current->_Stalled = 0;
 445 
 446   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 447   assert(_recursions == 0, "invariant");
 448   assert(owner_raw() == current, "invariant");
 449   assert(_succ != current, "invariant");
 450   assert(object()->mark() == markWord::encode(this), "invariant");
 451 
 452   // The thread -- now the owner -- is back in vm mode.
 453   // Report the glorious news via TI,DTrace and jvmstat.
 454   // The probe effect is non-trivial.  All the reportage occurs
 455   // while we hold the monitor, increasing the length of the critical
 456   // section.  Amdahl's parallel speedup law comes vividly into play.
 457   //
 458   // Another option might be to aggregate the events (thread local or
 459   // per-monitor aggregation) and defer reporting until a more opportune
 460   // time -- such as next time some thread encounters contention but has
 461   // yet to acquire the lock.  While spinning that thread could
 462   // spinning we could increment JVMStat counters, etc.
 463 
 464   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 465   if (JvmtiExport::should_post_monitor_contended_entered()) {
 466     JvmtiExport::post_monitor_contended_entered(current, this);
 467 
 468     // The current thread already owns the monitor and is not going to
 469     // call park() for the remainder of the monitor enter protocol. So
 470     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 471     // event handler consumed an unpark() issued by the thread that
 472     // just exited the monitor.
 473   }
 474   if (event.should_commit()) {
 475     event.set_previousOwner((uintptr_t)_previous_owner_tid);
 476     event.commit();
 477   }
 478   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 479   return true;
 480 }
 481 
 482 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 483 // Callers must compensate as needed.
 484 
 485 int ObjectMonitor::TryLock(JavaThread* current) {
 486   void* own = owner_raw();
 487   if (own != NULL) return 0;
 488   if (try_set_owner_from(NULL, current) == NULL) {
 489     assert(_recursions == 0, "invariant");
 490     return 1;
 491   }
 492   // The lock had been free momentarily, but we lost the race to the lock.
 493   // Interference -- the CAS failed.
 494   // We can either return -1 or retry.
 495   // Retry doesn't make as much sense because the lock was just acquired.
 496   return -1;
 497 }
 498 
 499 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 500 // was deflated and false otherwise.
 501 //
 502 // The async deflation protocol sets owner to DEFLATER_MARKER and
 503 // makes contentions negative as signals to contending threads that
 504 // an async deflation is in progress. There are a number of checks
 505 // as part of the protocol to make sure that the calling thread has
 506 // not lost the race to a contending thread.
 507 //
 508 // The ObjectMonitor has been successfully async deflated when:
 509 //   (contentions < 0)
 510 // Contending threads that see that condition know to retry their operation.
 511 //
 512 bool ObjectMonitor::deflate_monitor() {
 513   if (is_busy()) {
 514     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 515     return false;
 516   }
 517 
 518   if (ObjectSynchronizer::is_final_audit() && owner_is_DEFLATER_MARKER()) {
 519     // The final audit can see an already deflated ObjectMonitor on the
 520     // in-use list because MonitorList::unlink_deflated() might have
 521     // blocked for the final safepoint before unlinking all the deflated
 522     // monitors.
 523     assert(contentions() < 0, "must be negative: contentions=%d", contentions());
 524     // Already returned 'true' when it was originally deflated.
 525     return false;
 526   }
 527 
 528   const oop obj = object_peek();
 529 
 530   if (obj == NULL) {
 531     // If the object died, we can recycle the monitor without racing with
 532     // Java threads. The GC already broke the association with the object.
 533     set_owner_from(NULL, DEFLATER_MARKER);
 534     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 535     _contentions = -max_jint;
 536   } else {
 537     // Attempt async deflation protocol.
 538 
 539     // Set a NULL owner to DEFLATER_MARKER to force any contending thread
 540     // through the slow path. This is just the first part of the async
 541     // deflation dance.
 542     if (try_set_owner_from(NULL, DEFLATER_MARKER) != NULL) {
 543       // The owner field is no longer NULL so we lost the race since the
 544       // ObjectMonitor is now busy.
 545       return false;
 546     }
 547 
 548     if (contentions() > 0 || _waiters != 0) {
 549       // Another thread has raced to enter the ObjectMonitor after
 550       // is_busy() above or has already entered and waited on
 551       // it which makes it busy so no deflation. Restore owner to
 552       // NULL if it is still DEFLATER_MARKER.
 553       if (try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) {
 554         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 555         add_to_contentions(-1);
 556       }
 557       return false;
 558     }
 559 
 560     // Make a zero contentions field negative to force any contending threads
 561     // to retry. This is the second part of the async deflation dance.
 562     if (Atomic::cmpxchg(&_contentions, (jint)0, -max_jint) != 0) {
 563       // Contentions was no longer 0 so we lost the race since the
 564       // ObjectMonitor is now busy. Restore owner to NULL if it is
 565       // still DEFLATER_MARKER:
 566       if (try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) {
 567         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 568         add_to_contentions(-1);
 569       }
 570       return false;
 571     }
 572   }
 573 
 574   // Sanity checks for the races:
 575   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 576   guarantee(contentions() < 0, "must be negative: contentions=%d",
 577             contentions());
 578   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 579   guarantee(_cxq == NULL, "must be no contending threads: cxq="
 580             INTPTR_FORMAT, p2i(_cxq));
 581   guarantee(_EntryList == NULL,
 582             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 583             p2i(_EntryList));
 584 
 585   if (obj != NULL) {
 586     if (log_is_enabled(Trace, monitorinflation)) {
 587       ResourceMark rm;
 588       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 589                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 590                                   p2i(obj), obj->mark().value(),
 591                                   obj->klass()->external_name());
 592     }
 593 
 594     // Install the old mark word if nobody else has already done it.
 595     install_displaced_markword_in_object(obj);
 596   }
 597 
 598   // We leave owner == DEFLATER_MARKER and contentions < 0
 599   // to force any racing threads to retry.
 600   return true;  // Success, ObjectMonitor has been deflated.
 601 }
 602 
 603 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 604 // into the header of the object associated with the monitor. This
 605 // idempotent method is called by a thread that is deflating a
 606 // monitor and by other threads that have detected a race with the
 607 // deflation process.
 608 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 609   // This function must only be called when (owner == DEFLATER_MARKER
 610   // && contentions <= 0), but we can't guarantee that here because
 611   // those values could change when the ObjectMonitor gets moved from
 612   // the global free list to a per-thread free list.
 613 
 614   guarantee(obj != NULL, "must be non-NULL");
 615 
 616   // Separate loads in is_being_async_deflated(), which is almost always
 617   // called before this function, from the load of dmw/header below.
 618 
 619   // _contentions and dmw/header may get written by different threads.
 620   // Make sure to observe them in the same order when having several observers.
 621   OrderAccess::loadload_for_IRIW();
 622 
 623   const oop l_object = object_peek();
 624   if (l_object == NULL) {
 625     // ObjectMonitor's object ref has already been cleared by async
 626     // deflation or GC so we're done here.
 627     return;
 628   }
 629   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 630          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 631 
 632   markWord dmw = header();
 633   // The dmw has to be neutral (not NULL, not locked and not marked).
 634   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 635 
 636   // Install displaced mark word if the object's header still points
 637   // to this ObjectMonitor. More than one racing caller to this function
 638   // can rarely reach this point, but only one can win.
 639   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 640   if (res != markWord::encode(this)) {
 641     // This should be rare so log at the Info level when it happens.
 642     log_info(monitorinflation)("install_displaced_markword_in_object: "
 643                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 644                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 645                                dmw.value(), markWord::encode(this).value(),
 646                                res.value());
 647   }
 648 
 649   // Note: It does not matter which thread restored the header/dmw
 650   // into the object's header. The thread deflating the monitor just
 651   // wanted the object's header restored and it is. The threads that
 652   // detected a race with the deflation process also wanted the
 653   // object's header restored before they retry their operation and
 654   // because it is restored they will only retry once.
 655 }
 656 
 657 // Convert the fields used by is_busy() to a string that can be
 658 // used for diagnostic output.
 659 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 660   ss->print("is_busy: waiters=%d, ", _waiters);
 661   if (contentions() > 0) {
 662     ss->print("contentions=%d, ", contentions());
 663   } else {
 664     ss->print("contentions=0");
 665   }
 666   if (!owner_is_DEFLATER_MARKER()) {
 667     ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw()));
 668   } else {
 669     // We report NULL instead of DEFLATER_MARKER here because is_busy()
 670     // ignores DEFLATER_MARKER values.
 671     ss->print("owner=" INTPTR_FORMAT, NULL_WORD);
 672   }
 673   ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq),
 674             p2i(_EntryList));
 675   return ss->base();
 676 }
 677 
 678 #define MAX_RECHECK_INTERVAL 1000
 679 
 680 void ObjectMonitor::EnterI(JavaThread* current) {
 681   assert(current->thread_state() == _thread_blocked, "invariant");
 682 
 683   // Try the lock - TATAS
 684   if (TryLock (current) > 0) {
 685     assert(_succ != current, "invariant");
 686     assert(owner_raw() == current, "invariant");
 687     assert(_Responsible != current, "invariant");
 688     return;
 689   }
 690 
 691   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 692     // Cancelled the in-progress async deflation by changing owner from
 693     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 694     // contentions was incremented to a positive value before EnterI()
 695     // was called and that prevents the deflater thread from winning the
 696     // last part of the 2-part async deflation protocol. After EnterI()
 697     // returns to enter(), contentions is decremented because the caller
 698     // now owns the monitor. We bump contentions an extra time here to
 699     // prevent the deflater thread from winning the last part of the
 700     // 2-part async deflation protocol after the regular decrement
 701     // occurs in enter(). The deflater thread will decrement contentions
 702     // after it recognizes that the async deflation was cancelled.
 703     add_to_contentions(1);
 704     assert(_succ != current, "invariant");
 705     assert(_Responsible != current, "invariant");
 706     return;
 707   }
 708 
 709   assert(InitDone, "Unexpectedly not initialized");
 710 
 711   // We try one round of spinning *before* enqueueing current.
 712   //
 713   // If the _owner is ready but OFFPROC we could use a YieldTo()
 714   // operation to donate the remainder of this thread's quantum
 715   // to the owner.  This has subtle but beneficial affinity
 716   // effects.
 717 
 718   if (TrySpin(current) > 0) {
 719     assert(owner_raw() == current, "invariant");
 720     assert(_succ != current, "invariant");
 721     assert(_Responsible != current, "invariant");
 722     return;
 723   }
 724 
 725   // The Spin failed -- Enqueue and park the thread ...
 726   assert(_succ != current, "invariant");
 727   assert(owner_raw() != current, "invariant");
 728   assert(_Responsible != current, "invariant");
 729 
 730   // Enqueue "current" on ObjectMonitor's _cxq.
 731   //
 732   // Node acts as a proxy for current.
 733   // As an aside, if were to ever rewrite the synchronization code mostly
 734   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 735   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 736   // as well as eliminate a subset of ABA issues.
 737   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 738 
 739   ObjectWaiter node(current);
 740   current->_ParkEvent->reset();
 741   node._prev   = (ObjectWaiter*) 0xBAD;
 742   node.TState  = ObjectWaiter::TS_CXQ;
 743 
 744   // Push "current" onto the front of the _cxq.
 745   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 746   // Note that spinning tends to reduce the rate at which threads
 747   // enqueue and dequeue on EntryList|cxq.
 748   ObjectWaiter* nxt;
 749   for (;;) {
 750     node._next = nxt = _cxq;
 751     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 752 
 753     // Interference - the CAS failed because _cxq changed.  Just retry.
 754     // As an optional optimization we retry the lock.
 755     if (TryLock (current) > 0) {
 756       assert(_succ != current, "invariant");
 757       assert(owner_raw() == current, "invariant");
 758       assert(_Responsible != current, "invariant");
 759       return;
 760     }
 761   }
 762 
 763   // Check for cxq|EntryList edge transition to non-null.  This indicates
 764   // the onset of contention.  While contention persists exiting threads
 765   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 766   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 767   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 768   // arrange for one of the contending thread to use a timed park() operations
 769   // to detect and recover from the race.  (Stranding is form of progress failure
 770   // where the monitor is unlocked but all the contending threads remain parked).
 771   // That is, at least one of the contended threads will periodically poll _owner.
 772   // One of the contending threads will become the designated "Responsible" thread.
 773   // The Responsible thread uses a timed park instead of a normal indefinite park
 774   // operation -- it periodically wakes and checks for and recovers from potential
 775   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 776   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 777   // be responsible for a monitor.
 778   //
 779   // Currently, one of the contended threads takes on the added role of "Responsible".
 780   // A viable alternative would be to use a dedicated "stranding checker" thread
 781   // that periodically iterated over all the threads (or active monitors) and unparked
 782   // successors where there was risk of stranding.  This would help eliminate the
 783   // timer scalability issues we see on some platforms as we'd only have one thread
 784   // -- the checker -- parked on a timer.
 785 
 786   if (nxt == NULL && _EntryList == NULL) {
 787     // Try to assume the role of responsible thread for the monitor.
 788     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 789     Atomic::replace_if_null(&_Responsible, current);
 790   }
 791 
 792   // The lock might have been released while this thread was occupied queueing
 793   // itself onto _cxq.  To close the race and avoid "stranding" and
 794   // progress-liveness failure we must resample-retry _owner before parking.
 795   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 796   // In this case the ST-MEMBAR is accomplished with CAS().
 797   //
 798   // TODO: Defer all thread state transitions until park-time.
 799   // Since state transitions are heavy and inefficient we'd like
 800   // to defer the state transitions until absolutely necessary,
 801   // and in doing so avoid some transitions ...
 802 
 803   int nWakeups = 0;
 804   int recheckInterval = 1;
 805 
 806   for (;;) {
 807 
 808     if (TryLock(current) > 0) break;
 809     assert(owner_raw() != current, "invariant");
 810 
 811     // park self
 812     if (_Responsible == current) {
 813       current->_ParkEvent->park((jlong) recheckInterval);
 814       // Increase the recheckInterval, but clamp the value.
 815       recheckInterval *= 8;
 816       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 817         recheckInterval = MAX_RECHECK_INTERVAL;
 818       }
 819     } else {
 820       current->_ParkEvent->park();
 821     }
 822 
 823     if (TryLock(current) > 0) break;
 824 
 825     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 826       // Cancelled the in-progress async deflation by changing owner from
 827       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 828       // contentions was incremented to a positive value before EnterI()
 829       // was called and that prevents the deflater thread from winning the
 830       // last part of the 2-part async deflation protocol. After EnterI()
 831       // returns to enter(), contentions is decremented because the caller
 832       // now owns the monitor. We bump contentions an extra time here to
 833       // prevent the deflater thread from winning the last part of the
 834       // 2-part async deflation protocol after the regular decrement
 835       // occurs in enter(). The deflater thread will decrement contentions
 836       // after it recognizes that the async deflation was cancelled.
 837       add_to_contentions(1);
 838       break;
 839     }
 840 
 841     // The lock is still contested.
 842     // Keep a tally of the # of futile wakeups.
 843     // Note that the counter is not protected by a lock or updated by atomics.
 844     // That is by design - we trade "lossy" counters which are exposed to
 845     // races during updates for a lower probe effect.
 846 
 847     // This PerfData object can be used in parallel with a safepoint.
 848     // See the work around in PerfDataManager::destroy().
 849     OM_PERFDATA_OP(FutileWakeups, inc());
 850     ++nWakeups;
 851 
 852     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
 853     // We can defer clearing _succ until after the spin completes
 854     // TrySpin() must tolerate being called with _succ == current.
 855     // Try yet another round of adaptive spinning.
 856     if (TrySpin(current) > 0) break;
 857 
 858     // We can find that we were unpark()ed and redesignated _succ while
 859     // we were spinning.  That's harmless.  If we iterate and call park(),
 860     // park() will consume the event and return immediately and we'll
 861     // just spin again.  This pattern can repeat, leaving _succ to simply
 862     // spin on a CPU.
 863 
 864     if (_succ == current) _succ = NULL;
 865 
 866     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 867     OrderAccess::fence();
 868   }
 869 
 870   // Egress :
 871   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 872   // Normally we'll find current on the EntryList .
 873   // From the perspective of the lock owner (this thread), the
 874   // EntryList is stable and cxq is prepend-only.
 875   // The head of cxq is volatile but the interior is stable.
 876   // In addition, current.TState is stable.
 877 
 878   assert(owner_raw() == current, "invariant");
 879 
 880   UnlinkAfterAcquire(current, &node);
 881   if (_succ == current) _succ = NULL;
 882 
 883   assert(_succ != current, "invariant");
 884   if (_Responsible == current) {
 885     _Responsible = NULL;
 886     OrderAccess::fence(); // Dekker pivot-point
 887 
 888     // We may leave threads on cxq|EntryList without a designated
 889     // "Responsible" thread.  This is benign.  When this thread subsequently
 890     // exits the monitor it can "see" such preexisting "old" threads --
 891     // threads that arrived on the cxq|EntryList before the fence, above --
 892     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 893     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 894     // non-null and elect a new "Responsible" timer thread.
 895     //
 896     // This thread executes:
 897     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 898     //    LD cxq|EntryList               (in subsequent exit)
 899     //
 900     // Entering threads in the slow/contended path execute:
 901     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 902     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 903     //
 904     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 905     // exit operation from floating above the ST Responsible=null.
 906   }
 907 
 908   // We've acquired ownership with CAS().
 909   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 910   // But since the CAS() this thread may have also stored into _succ,
 911   // EntryList, cxq or Responsible.  These meta-data updates must be
 912   // visible __before this thread subsequently drops the lock.
 913   // Consider what could occur if we didn't enforce this constraint --
 914   // STs to monitor meta-data and user-data could reorder with (become
 915   // visible after) the ST in exit that drops ownership of the lock.
 916   // Some other thread could then acquire the lock, but observe inconsistent
 917   // or old monitor meta-data and heap data.  That violates the JMM.
 918   // To that end, the 1-0 exit() operation must have at least STST|LDST
 919   // "release" barrier semantics.  Specifically, there must be at least a
 920   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 921   // the lock.   The barrier ensures that changes to monitor meta-data and data
 922   // protected by the lock will be visible before we release the lock, and
 923   // therefore before some other thread (CPU) has a chance to acquire the lock.
 924   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 925   //
 926   // Critically, any prior STs to _succ or EntryList must be visible before
 927   // the ST of null into _owner in the *subsequent* (following) corresponding
 928   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 929   // execute a serializing instruction.
 930 
 931   return;
 932 }
 933 
 934 // ReenterI() is a specialized inline form of the latter half of the
 935 // contended slow-path from EnterI().  We use ReenterI() only for
 936 // monitor reentry in wait().
 937 //
 938 // In the future we should reconcile EnterI() and ReenterI().
 939 
 940 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
 941   assert(current != NULL, "invariant");
 942   assert(currentNode != NULL, "invariant");
 943   assert(currentNode->_thread == current, "invariant");
 944   assert(_waiters > 0, "invariant");
 945   assert(object()->mark() == markWord::encode(this), "invariant");
 946 
 947   assert(current->thread_state() != _thread_blocked, "invariant");
 948 
 949   int nWakeups = 0;
 950   for (;;) {
 951     ObjectWaiter::TStates v = currentNode->TState;
 952     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 953     assert(owner_raw() != current, "invariant");
 954 
 955     if (TryLock(current) > 0) break;
 956     if (TrySpin(current) > 0) break;
 957 
 958     {
 959       OSThreadContendState osts(current->osthread());
 960 
 961       assert(current->thread_state() == _thread_in_vm, "invariant");
 962 
 963       {
 964         ClearSuccOnSuspend csos(this);
 965         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos);
 966         current->_ParkEvent->park();
 967       }
 968     }
 969 
 970     // Try again, but just so we distinguish between futile wakeups and
 971     // successful wakeups.  The following test isn't algorithmically
 972     // necessary, but it helps us maintain sensible statistics.
 973     if (TryLock(current) > 0) break;
 974 
 975     // The lock is still contested.
 976     // Keep a tally of the # of futile wakeups.
 977     // Note that the counter is not protected by a lock or updated by atomics.
 978     // That is by design - we trade "lossy" counters which are exposed to
 979     // races during updates for a lower probe effect.
 980     ++nWakeups;
 981 
 982     // Assuming this is not a spurious wakeup we'll normally
 983     // find that _succ == current.
 984     if (_succ == current) _succ = NULL;
 985 
 986     // Invariant: after clearing _succ a contending thread
 987     // *must* retry  _owner before parking.
 988     OrderAccess::fence();
 989 
 990     // This PerfData object can be used in parallel with a safepoint.
 991     // See the work around in PerfDataManager::destroy().
 992     OM_PERFDATA_OP(FutileWakeups, inc());
 993   }
 994 
 995   // current has acquired the lock -- Unlink current from the cxq or EntryList .
 996   // Normally we'll find current on the EntryList.
 997   // Unlinking from the EntryList is constant-time and atomic-free.
 998   // From the perspective of the lock owner (this thread), the
 999   // EntryList is stable and cxq is prepend-only.
1000   // The head of cxq is volatile but the interior is stable.
1001   // In addition, current.TState is stable.
1002 
1003   assert(owner_raw() == current, "invariant");
1004   assert(object()->mark() == markWord::encode(this), "invariant");
1005   UnlinkAfterAcquire(current, currentNode);
1006   if (_succ == current) _succ = NULL;
1007   assert(_succ != current, "invariant");
1008   currentNode->TState = ObjectWaiter::TS_RUN;
1009   OrderAccess::fence();      // see comments at the end of EnterI()
1010 }
1011 
1012 // By convention we unlink a contending thread from EntryList|cxq immediately
1013 // after the thread acquires the lock in ::enter().  Equally, we could defer
1014 // unlinking the thread until ::exit()-time.
1015 
1016 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1017   assert(owner_raw() == current, "invariant");
1018   assert(currentNode->_thread == current, "invariant");
1019 
1020   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1021     // Normal case: remove current from the DLL EntryList .
1022     // This is a constant-time operation.
1023     ObjectWaiter* nxt = currentNode->_next;
1024     ObjectWaiter* prv = currentNode->_prev;
1025     if (nxt != NULL) nxt->_prev = prv;
1026     if (prv != NULL) prv->_next = nxt;
1027     if (currentNode == _EntryList) _EntryList = nxt;
1028     assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1029     assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1030   } else {
1031     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1032     // Inopportune interleaving -- current is still on the cxq.
1033     // This usually means the enqueue of self raced an exiting thread.
1034     // Normally we'll find current near the front of the cxq, so
1035     // dequeueing is typically fast.  If needbe we can accelerate
1036     // this with some MCS/CHL-like bidirectional list hints and advisory
1037     // back-links so dequeueing from the interior will normally operate
1038     // in constant-time.
1039     // Dequeue current from either the head (with CAS) or from the interior
1040     // with a linear-time scan and normal non-atomic memory operations.
1041     // CONSIDER: if current is on the cxq then simply drain cxq into EntryList
1042     // and then unlink current from EntryList.  We have to drain eventually,
1043     // so it might as well be now.
1044 
1045     ObjectWaiter* v = _cxq;
1046     assert(v != NULL, "invariant");
1047     if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) {
1048       // The CAS above can fail from interference IFF a "RAT" arrived.
1049       // In that case current must be in the interior and can no longer be
1050       // at the head of cxq.
1051       if (v == currentNode) {
1052         assert(_cxq != v, "invariant");
1053         v = _cxq;          // CAS above failed - start scan at head of list
1054       }
1055       ObjectWaiter* p;
1056       ObjectWaiter* q = NULL;
1057       for (p = v; p != NULL && p != currentNode; p = p->_next) {
1058         q = p;
1059         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
1060       }
1061       assert(v != currentNode, "invariant");
1062       assert(p == currentNode, "Node not found on cxq");
1063       assert(p != _cxq, "invariant");
1064       assert(q != NULL, "invariant");
1065       assert(q->_next == p, "invariant");
1066       q->_next = p->_next;
1067     }
1068   }
1069 
1070 #ifdef ASSERT
1071   // Diagnostic hygiene ...
1072   currentNode->_prev  = (ObjectWaiter*) 0xBAD;
1073   currentNode->_next  = (ObjectWaiter*) 0xBAD;
1074   currentNode->TState = ObjectWaiter::TS_RUN;
1075 #endif
1076 }
1077 
1078 // -----------------------------------------------------------------------------
1079 // Exit support
1080 //
1081 // exit()
1082 // ~~~~~~
1083 // Note that the collector can't reclaim the objectMonitor or deflate
1084 // the object out from underneath the thread calling ::exit() as the
1085 // thread calling ::exit() never transitions to a stable state.
1086 // This inhibits GC, which in turn inhibits asynchronous (and
1087 // inopportune) reclamation of "this".
1088 //
1089 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1090 // There's one exception to the claim above, however.  EnterI() can call
1091 // exit() to drop a lock if the acquirer has been externally suspended.
1092 // In that case exit() is called with _thread_state == _thread_blocked,
1093 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1094 //
1095 // 1-0 exit
1096 // ~~~~~~~~
1097 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
1098 // the fast-path operators have been optimized so the common ::exit()
1099 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
1100 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
1101 // greatly improves latency -- MEMBAR and CAS having considerable local
1102 // latency on modern processors -- but at the cost of "stranding".  Absent the
1103 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
1104 // ::enter() path, resulting in the entering thread being stranding
1105 // and a progress-liveness failure.   Stranding is extremely rare.
1106 // We use timers (timed park operations) & periodic polling to detect
1107 // and recover from stranding.  Potentially stranded threads periodically
1108 // wake up and poll the lock.  See the usage of the _Responsible variable.
1109 //
1110 // The CAS() in enter provides for safety and exclusion, while the CAS or
1111 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
1112 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
1113 // We detect and recover from stranding with timers.
1114 //
1115 // If a thread transiently strands it'll park until (a) another
1116 // thread acquires the lock and then drops the lock, at which time the
1117 // exiting thread will notice and unpark the stranded thread, or, (b)
1118 // the timer expires.  If the lock is high traffic then the stranding latency
1119 // will be low due to (a).  If the lock is low traffic then the odds of
1120 // stranding are lower, although the worst-case stranding latency
1121 // is longer.  Critically, we don't want to put excessive load in the
1122 // platform's timer subsystem.  We want to minimize both the timer injection
1123 // rate (timers created/sec) as well as the number of timers active at
1124 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1125 // the integral of the # of active timers at any instant over time).
1126 // Both impinge on OS scalability.  Given that, at most one thread parked on
1127 // a monitor will use a timer.
1128 //
1129 // There is also the risk of a futile wake-up. If we drop the lock
1130 // another thread can reacquire the lock immediately, and we can
1131 // then wake a thread unnecessarily. This is benign, and we've
1132 // structured the code so the windows are short and the frequency
1133 // of such futile wakups is low.
1134 
1135 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1136   void* cur = owner_raw();
1137   if (current != cur) {
1138     if (current->is_lock_owned((address)cur)) {
1139       assert(_recursions == 0, "invariant");
1140       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1141       _recursions = 0;
1142     } else {
1143       // Apparent unbalanced locking ...
1144       // Naively we'd like to throw IllegalMonitorStateException.
1145       // As a practical matter we can neither allocate nor throw an
1146       // exception as ::exit() can be called from leaf routines.
1147       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1148       // Upon deeper reflection, however, in a properly run JVM the only
1149       // way we should encounter this situation is in the presence of
1150       // unbalanced JNI locking. TODO: CheckJNICalls.
1151       // See also: CR4414101
1152 #ifdef ASSERT
1153       LogStreamHandle(Error, monitorinflation) lsh;
1154       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1155                     " is exiting an ObjectMonitor it does not own.", p2i(current));
1156       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1157       print_debug_style_on(&lsh);
1158       assert(false, "Non-balanced monitor enter/exit!");
1159 #endif
1160       return;
1161     }
1162   }
1163 
1164   if (_recursions != 0) {
1165     _recursions--;        // this is simple recursive enter
1166     return;
1167   }
1168 
1169   // Invariant: after setting Responsible=null an thread must execute
1170   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1171   _Responsible = NULL;
1172 
1173 #if INCLUDE_JFR
1174   // get the owner's thread id for the MonitorEnter event
1175   // if it is enabled and the thread isn't suspended
1176   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1177     _previous_owner_tid = JFR_THREAD_ID(current);
1178   }
1179 #endif
1180 
1181   for (;;) {
1182     assert(current == owner_raw(), "invariant");
1183 
1184     // Drop the lock.
1185     // release semantics: prior loads and stores from within the critical section
1186     // must not float (reorder) past the following store that drops the lock.
1187     // Uses a storeload to separate release_store(owner) from the
1188     // successor check. The try_set_owner() below uses cmpxchg() so
1189     // we get the fence down there.
1190     release_clear_owner(current);
1191     OrderAccess::storeload();
1192 
1193     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) {
1194       return;
1195     }
1196     // Other threads are blocked trying to acquire the lock.
1197 
1198     // Normally the exiting thread is responsible for ensuring succession,
1199     // but if other successors are ready or other entering threads are spinning
1200     // then this thread can simply store NULL into _owner and exit without
1201     // waking a successor.  The existence of spinners or ready successors
1202     // guarantees proper succession (liveness).  Responsibility passes to the
1203     // ready or running successors.  The exiting thread delegates the duty.
1204     // More precisely, if a successor already exists this thread is absolved
1205     // of the responsibility of waking (unparking) one.
1206     //
1207     // The _succ variable is critical to reducing futile wakeup frequency.
1208     // _succ identifies the "heir presumptive" thread that has been made
1209     // ready (unparked) but that has not yet run.  We need only one such
1210     // successor thread to guarantee progress.
1211     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1212     // section 3.3 "Futile Wakeup Throttling" for details.
1213     //
1214     // Note that spinners in Enter() also set _succ non-null.
1215     // In the current implementation spinners opportunistically set
1216     // _succ so that exiting threads might avoid waking a successor.
1217     // Another less appealing alternative would be for the exiting thread
1218     // to drop the lock and then spin briefly to see if a spinner managed
1219     // to acquire the lock.  If so, the exiting thread could exit
1220     // immediately without waking a successor, otherwise the exiting
1221     // thread would need to dequeue and wake a successor.
1222     // (Note that we'd need to make the post-drop spin short, but no
1223     // shorter than the worst-case round-trip cache-line migration time.
1224     // The dropped lock needs to become visible to the spinner, and then
1225     // the acquisition of the lock by the spinner must become visible to
1226     // the exiting thread).
1227 
1228     // It appears that an heir-presumptive (successor) must be made ready.
1229     // Only the current lock owner can manipulate the EntryList or
1230     // drain _cxq, so we need to reacquire the lock.  If we fail
1231     // to reacquire the lock the responsibility for ensuring succession
1232     // falls to the new owner.
1233     //
1234     if (try_set_owner_from(NULL, current) != NULL) {
1235       return;
1236     }
1237 
1238     guarantee(owner_raw() == current, "invariant");
1239 
1240     ObjectWaiter* w = NULL;
1241 
1242     w = _EntryList;
1243     if (w != NULL) {
1244       // I'd like to write: guarantee (w->_thread != current).
1245       // But in practice an exiting thread may find itself on the EntryList.
1246       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1247       // then calls exit().  Exit release the lock by setting O._owner to NULL.
1248       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1249       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1250       // release the lock "O".  T2 resumes immediately after the ST of null into
1251       // _owner, above.  T2 notices that the EntryList is populated, so it
1252       // reacquires the lock and then finds itself on the EntryList.
1253       // Given all that, we have to tolerate the circumstance where "w" is
1254       // associated with current.
1255       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1256       ExitEpilog(current, w);
1257       return;
1258     }
1259 
1260     // If we find that both _cxq and EntryList are null then just
1261     // re-run the exit protocol from the top.
1262     w = _cxq;
1263     if (w == NULL) continue;
1264 
1265     // Drain _cxq into EntryList - bulk transfer.
1266     // First, detach _cxq.
1267     // The following loop is tantamount to: w = swap(&cxq, NULL)
1268     for (;;) {
1269       assert(w != NULL, "Invariant");
1270       ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL);
1271       if (u == w) break;
1272       w = u;
1273     }
1274 
1275     assert(w != NULL, "invariant");
1276     assert(_EntryList == NULL, "invariant");
1277 
1278     // Convert the LIFO SLL anchored by _cxq into a DLL.
1279     // The list reorganization step operates in O(LENGTH(w)) time.
1280     // It's critical that this step operate quickly as
1281     // "current" still holds the outer-lock, restricting parallelism
1282     // and effectively lengthening the critical section.
1283     // Invariant: s chases t chases u.
1284     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1285     // we have faster access to the tail.
1286 
1287     _EntryList = w;
1288     ObjectWaiter* q = NULL;
1289     ObjectWaiter* p;
1290     for (p = w; p != NULL; p = p->_next) {
1291       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1292       p->TState = ObjectWaiter::TS_ENTER;
1293       p->_prev = q;
1294       q = p;
1295     }
1296 
1297     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL
1298     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1299 
1300     // See if we can abdicate to a spinner instead of waking a thread.
1301     // A primary goal of the implementation is to reduce the
1302     // context-switch rate.
1303     if (_succ != NULL) continue;
1304 
1305     w = _EntryList;
1306     if (w != NULL) {
1307       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1308       ExitEpilog(current, w);
1309       return;
1310     }
1311   }
1312 }
1313 
1314 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1315   assert(owner_raw() == current, "invariant");
1316 
1317   // Exit protocol:
1318   // 1. ST _succ = wakee
1319   // 2. membar #loadstore|#storestore;
1320   // 2. ST _owner = NULL
1321   // 3. unpark(wakee)
1322 
1323   _succ = Wakee->_thread;
1324   ParkEvent * Trigger = Wakee->_event;
1325 
1326   // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again.
1327   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1328   // out-of-scope (non-extant).
1329   Wakee  = NULL;
1330 
1331   // Drop the lock.
1332   // Uses a fence to separate release_store(owner) from the LD in unpark().
1333   release_clear_owner(current);
1334   OrderAccess::fence();
1335 
1336   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1337   Trigger->unpark();
1338 
1339   // Maintain stats and report events to JVMTI
1340   OM_PERFDATA_OP(Parks, inc());
1341 }
1342 
1343 
1344 // -----------------------------------------------------------------------------
1345 // Class Loader deadlock handling.
1346 //
1347 // complete_exit exits a lock returning recursion count
1348 // complete_exit/reenter operate as a wait without waiting
1349 // complete_exit requires an inflated monitor
1350 // The _owner field is not always the Thread addr even with an
1351 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1352 // thread due to contention.
1353 intx ObjectMonitor::complete_exit(JavaThread* current) {
1354   assert(InitDone, "Unexpectedly not initialized");
1355 
1356   void* cur = owner_raw();
1357   if (current != cur) {
1358     if (current->is_lock_owned((address)cur)) {
1359       assert(_recursions == 0, "internal state error");
1360       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1361       _recursions = 0;
1362     }
1363   }
1364 
1365   guarantee(current == owner_raw(), "complete_exit not owner");
1366   intx save = _recursions; // record the old recursion count
1367   _recursions = 0;         // set the recursion level to be 0
1368   exit(current);           // exit the monitor
1369   guarantee(owner_raw() != current, "invariant");
1370   return save;
1371 }
1372 
1373 // reenter() enters a lock and sets recursion count
1374 // complete_exit/reenter operate as a wait without waiting
1375 bool ObjectMonitor::reenter(intx recursions, JavaThread* current) {
1376 
1377   guarantee(owner_raw() != current, "reenter already owner");
1378   if (!enter(current)) {
1379     return false;
1380   }
1381   // Entered the monitor.
1382   guarantee(_recursions == 0, "reenter recursion");
1383   _recursions = recursions;
1384   return true;
1385 }
1386 
1387 // Checks that the current THREAD owns this monitor and causes an
1388 // immediate return if it doesn't. We don't use the CHECK macro
1389 // because we want the IMSE to be the only exception that is thrown
1390 // from the call site when false is returned. Any other pending
1391 // exception is ignored.
1392 #define CHECK_OWNER()                                                  \
1393   do {                                                                 \
1394     if (!check_owner(THREAD)) {                                        \
1395        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1396        return;                                                         \
1397      }                                                                 \
1398   } while (false)
1399 
1400 // Returns true if the specified thread owns the ObjectMonitor.
1401 // Otherwise returns false and throws IllegalMonitorStateException
1402 // (IMSE). If there is a pending exception and the specified thread
1403 // is not the owner, that exception will be replaced by the IMSE.
1404 bool ObjectMonitor::check_owner(TRAPS) {
1405   JavaThread* current = THREAD;
1406   void* cur = owner_raw();
1407   if (cur == current) {
1408     return true;
1409   }
1410   if (current->is_lock_owned((address)cur)) {
1411     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1412     _recursions = 0;
1413     return true;
1414   }
1415   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1416              "current thread is not owner", false);
1417 }
1418 
1419 static inline bool is_excluded(const Klass* monitor_klass) {
1420   assert(monitor_klass != nullptr, "invariant");
1421   NOT_JFR_RETURN_(false);
1422   JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name());
1423 }
1424 
1425 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1426                                     ObjectMonitor* monitor,
1427                                     jlong notifier_tid,
1428                                     jlong timeout,
1429                                     bool timedout) {
1430   assert(event != NULL, "invariant");
1431   assert(monitor != NULL, "invariant");
1432   const Klass* monitor_klass = monitor->object()->klass();
1433   if (is_excluded(monitor_klass)) {
1434     return;
1435   }
1436   event->set_monitorClass(monitor_klass);
1437   event->set_timeout(timeout);
1438   // Set an address that is 'unique enough', such that events close in
1439   // time and with the same address are likely (but not guaranteed) to
1440   // belong to the same object.
1441   event->set_address((uintptr_t)monitor);
1442   event->set_notifier(notifier_tid);
1443   event->set_timedOut(timedout);
1444   event->commit();
1445 }
1446 
1447 // -----------------------------------------------------------------------------
1448 // Wait/Notify/NotifyAll
1449 //
1450 // Note: a subset of changes to ObjectMonitor::wait()
1451 // will need to be replicated in complete_exit
1452 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1453   JavaThread* current = THREAD;
1454 
1455   assert(InitDone, "Unexpectedly not initialized");
1456 
1457   CHECK_OWNER();  // Throws IMSE if not owner.
1458 
1459   EventJavaMonitorWait event;
1460 
1461   // check for a pending interrupt
1462   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1463     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1464     if (JvmtiExport::should_post_monitor_waited()) {
1465       // Note: 'false' parameter is passed here because the
1466       // wait was not timed out due to thread interrupt.
1467       JvmtiExport::post_monitor_waited(current, this, false);
1468 
1469       // In this short circuit of the monitor wait protocol, the
1470       // current thread never drops ownership of the monitor and
1471       // never gets added to the wait queue so the current thread
1472       // cannot be made the successor. This means that the
1473       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1474       // consume an unpark() meant for the ParkEvent associated with
1475       // this ObjectMonitor.
1476     }
1477     if (event.should_commit()) {
1478       post_monitor_wait_event(&event, this, 0, millis, false);
1479     }
1480     THROW(vmSymbols::java_lang_InterruptedException());
1481     return;
1482   }
1483 
1484   assert(current->_Stalled == 0, "invariant");
1485   current->_Stalled = intptr_t(this);
1486   current->set_current_waiting_monitor(this);
1487 
1488   // create a node to be put into the queue
1489   // Critically, after we reset() the event but prior to park(), we must check
1490   // for a pending interrupt.
1491   ObjectWaiter node(current);
1492   node.TState = ObjectWaiter::TS_WAIT;
1493   current->_ParkEvent->reset();
1494   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1495 
1496   // Enter the waiting queue, which is a circular doubly linked list in this case
1497   // but it could be a priority queue or any data structure.
1498   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1499   // by the the owner of the monitor *except* in the case where park()
1500   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1501   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1502 
1503   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1504   AddWaiter(&node);
1505   Thread::SpinRelease(&_WaitSetLock);
1506 
1507   _Responsible = NULL;
1508 
1509   intx save = _recursions;     // record the old recursion count
1510   _waiters++;                  // increment the number of waiters
1511   _recursions = 0;             // set the recursion level to be 1
1512   exit(current);               // exit the monitor
1513   guarantee(owner_raw() != current, "invariant");
1514 
1515   // The thread is on the WaitSet list - now park() it.
1516   // On MP systems it's conceivable that a brief spin before we park
1517   // could be profitable.
1518   //
1519   // TODO-FIXME: change the following logic to a loop of the form
1520   //   while (!timeout && !interrupted && _notified == 0) park()
1521 
1522   int ret = OS_OK;
1523   int WasNotified = 0;
1524 
1525   // Need to check interrupt state whilst still _thread_in_vm
1526   bool interrupted = interruptible && current->is_interrupted(false);
1527 
1528   { // State transition wrappers
1529     OSThread* osthread = current->osthread();
1530     OSThreadWaitState osts(osthread, true);
1531 
1532     assert(current->thread_state() == _thread_in_vm, "invariant");
1533 
1534     {
1535       ClearSuccOnSuspend csos(this);
1536       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos);
1537       if (interrupted || HAS_PENDING_EXCEPTION) {
1538         // Intentionally empty
1539       } else if (node._notified == 0) {
1540         if (millis <= 0) {
1541           current->_ParkEvent->park();
1542         } else {
1543           ret = current->_ParkEvent->park(millis);
1544         }
1545       }
1546     }
1547 
1548     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1549     // from the WaitSet to the EntryList.
1550     // See if we need to remove Node from the WaitSet.
1551     // We use double-checked locking to avoid grabbing _WaitSetLock
1552     // if the thread is not on the wait queue.
1553     //
1554     // Note that we don't need a fence before the fetch of TState.
1555     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1556     // written by the is thread. (perhaps the fetch might even be satisfied
1557     // by a look-aside into the processor's own store buffer, although given
1558     // the length of the code path between the prior ST and this load that's
1559     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1560     // then we'll acquire the lock and then re-fetch a fresh TState value.
1561     // That is, we fail toward safety.
1562 
1563     if (node.TState == ObjectWaiter::TS_WAIT) {
1564       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1565       if (node.TState == ObjectWaiter::TS_WAIT) {
1566         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1567         assert(node._notified == 0, "invariant");
1568         node.TState = ObjectWaiter::TS_RUN;
1569       }
1570       Thread::SpinRelease(&_WaitSetLock);
1571     }
1572 
1573     // The thread is now either on off-list (TS_RUN),
1574     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1575     // The Node's TState variable is stable from the perspective of this thread.
1576     // No other threads will asynchronously modify TState.
1577     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1578     OrderAccess::loadload();
1579     if (_succ == current) _succ = NULL;
1580     WasNotified = node._notified;
1581 
1582     // Reentry phase -- reacquire the monitor.
1583     // re-enter contended monitor after object.wait().
1584     // retain OBJECT_WAIT state until re-enter successfully completes
1585     // Thread state is thread_in_vm and oop access is again safe,
1586     // although the raw address of the object may have changed.
1587     // (Don't cache naked oops over safepoints, of course).
1588 
1589     // post monitor waited event. Note that this is past-tense, we are done waiting.
1590     if (JvmtiExport::should_post_monitor_waited()) {
1591       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1592 
1593       if (node._notified != 0 && _succ == current) {
1594         // In this part of the monitor wait-notify-reenter protocol it
1595         // is possible (and normal) for another thread to do a fastpath
1596         // monitor enter-exit while this thread is still trying to get
1597         // to the reenter portion of the protocol.
1598         //
1599         // The ObjectMonitor was notified and the current thread is
1600         // the successor which also means that an unpark() has already
1601         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1602         // consume the unpark() that was done when the successor was
1603         // set because the same ParkEvent is shared between Java
1604         // monitors and JVM/TI RawMonitors (for now).
1605         //
1606         // We redo the unpark() to ensure forward progress, i.e., we
1607         // don't want all pending threads hanging (parked) with none
1608         // entering the unlocked monitor.
1609         node._event->unpark();
1610       }
1611     }
1612 
1613     if (event.should_commit()) {
1614       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1615     }
1616 
1617     OrderAccess::fence();
1618 
1619     assert(current->_Stalled != 0, "invariant");
1620     current->_Stalled = 0;
1621 
1622     assert(owner_raw() != current, "invariant");
1623     ObjectWaiter::TStates v = node.TState;
1624     if (v == ObjectWaiter::TS_RUN) {
1625       enter(current);
1626     } else {
1627       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1628       ReenterI(current, &node);
1629       node.wait_reenter_end(this);
1630     }
1631 
1632     // current has reacquired the lock.
1633     // Lifecycle - the node representing current must not appear on any queues.
1634     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1635     // want residual elements associated with this thread left on any lists.
1636     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1637     assert(owner_raw() == current, "invariant");
1638     assert(_succ != current, "invariant");
1639   } // OSThreadWaitState()
1640 
1641   current->set_current_waiting_monitor(NULL);
1642 
1643   guarantee(_recursions == 0, "invariant");
1644   _recursions = save      // restore the old recursion count
1645                 + JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); //  increased by the deferred relock count
1646   _waiters--;             // decrement the number of waiters
1647 
1648   // Verify a few postconditions
1649   assert(owner_raw() == current, "invariant");
1650   assert(_succ != current, "invariant");
1651   assert(object()->mark() == markWord::encode(this), "invariant");
1652 
1653   // check if the notification happened
1654   if (!WasNotified) {
1655     // no, it could be timeout or Thread.interrupt() or both
1656     // check for interrupt event, otherwise it is timeout
1657     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1658       THROW(vmSymbols::java_lang_InterruptedException());
1659     }
1660   }
1661 
1662   // NOTE: Spurious wake up will be consider as timeout.
1663   // Monitor notify has precedence over thread interrupt.
1664 }
1665 
1666 
1667 // Consider:
1668 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1669 // then instead of transferring a thread from the WaitSet to the EntryList
1670 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1671 
1672 void ObjectMonitor::INotify(JavaThread* current) {
1673   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1674   ObjectWaiter* iterator = DequeueWaiter();
1675   if (iterator != NULL) {
1676     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1677     guarantee(iterator->_notified == 0, "invariant");
1678     // Disposition - what might we do with iterator ?
1679     // a.  add it directly to the EntryList - either tail (policy == 1)
1680     //     or head (policy == 0).
1681     // b.  push it onto the front of the _cxq (policy == 2).
1682     // For now we use (b).
1683 
1684     iterator->TState = ObjectWaiter::TS_ENTER;
1685 
1686     iterator->_notified = 1;
1687     iterator->_notifier_tid = JFR_THREAD_ID(current);
1688 
1689     ObjectWaiter* list = _EntryList;
1690     if (list != NULL) {
1691       assert(list->_prev == NULL, "invariant");
1692       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1693       assert(list != iterator, "invariant");
1694     }
1695 
1696     // prepend to cxq
1697     if (list == NULL) {
1698       iterator->_next = iterator->_prev = NULL;
1699       _EntryList = iterator;
1700     } else {
1701       iterator->TState = ObjectWaiter::TS_CXQ;
1702       for (;;) {
1703         ObjectWaiter* front = _cxq;
1704         iterator->_next = front;
1705         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1706           break;
1707         }
1708       }
1709     }
1710 
1711     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1712     // move the add-to-EntryList operation, above, outside the critical section
1713     // protected by _WaitSetLock.  In practice that's not useful.  With the
1714     // exception of  wait() timeouts and interrupts the monitor owner
1715     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1716     // on _WaitSetLock so it's not profitable to reduce the length of the
1717     // critical section.
1718 
1719     iterator->wait_reenter_begin(this);
1720   }
1721   Thread::SpinRelease(&_WaitSetLock);
1722 }
1723 
1724 // Consider: a not-uncommon synchronization bug is to use notify() when
1725 // notifyAll() is more appropriate, potentially resulting in stranded
1726 // threads; this is one example of a lost wakeup. A useful diagnostic
1727 // option is to force all notify() operations to behave as notifyAll().
1728 //
1729 // Note: We can also detect many such problems with a "minimum wait".
1730 // When the "minimum wait" is set to a small non-zero timeout value
1731 // and the program does not hang whereas it did absent "minimum wait",
1732 // that suggests a lost wakeup bug.
1733 
1734 void ObjectMonitor::notify(TRAPS) {
1735   JavaThread* current = THREAD;
1736   CHECK_OWNER();  // Throws IMSE if not owner.
1737   if (_WaitSet == NULL) {
1738     return;
1739   }
1740   DTRACE_MONITOR_PROBE(notify, this, object(), current);
1741   INotify(current);
1742   OM_PERFDATA_OP(Notifications, inc(1));
1743 }
1744 
1745 
1746 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1747 // from the waitset to the EntryList. This could be done more efficiently with a
1748 // single bulk transfer but in practice it's not time-critical. Beware too,
1749 // that in prepend-mode we invert the order of the waiters. Let's say that the
1750 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1751 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1752 
1753 void ObjectMonitor::notifyAll(TRAPS) {
1754   JavaThread* current = THREAD;
1755   CHECK_OWNER();  // Throws IMSE if not owner.
1756   if (_WaitSet == NULL) {
1757     return;
1758   }
1759 
1760   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
1761   int tally = 0;
1762   while (_WaitSet != NULL) {
1763     tally++;
1764     INotify(current);
1765   }
1766 
1767   OM_PERFDATA_OP(Notifications, inc(tally));
1768 }
1769 
1770 // -----------------------------------------------------------------------------
1771 // Adaptive Spinning Support
1772 //
1773 // Adaptive spin-then-block - rational spinning
1774 //
1775 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1776 // algorithm.  On high order SMP systems it would be better to start with
1777 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1778 // a contending thread could enqueue itself on the cxq and then spin locally
1779 // on a thread-specific variable such as its ParkEvent._Event flag.
1780 // That's left as an exercise for the reader.  Note that global spinning is
1781 // not problematic on Niagara, as the L2 cache serves the interconnect and
1782 // has both low latency and massive bandwidth.
1783 //
1784 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1785 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1786 // (duration) or we can fix the count at approximately the duration of
1787 // a context switch and vary the frequency.   Of course we could also
1788 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1789 // For a description of 'Adaptive spin-then-block mutual exclusion in
1790 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1791 //
1792 // This implementation varies the duration "D", where D varies with
1793 // the success rate of recent spin attempts. (D is capped at approximately
1794 // length of a round-trip context switch).  The success rate for recent
1795 // spin attempts is a good predictor of the success rate of future spin
1796 // attempts.  The mechanism adapts automatically to varying critical
1797 // section length (lock modality), system load and degree of parallelism.
1798 // D is maintained per-monitor in _SpinDuration and is initialized
1799 // optimistically.  Spin frequency is fixed at 100%.
1800 //
1801 // Note that _SpinDuration is volatile, but we update it without locks
1802 // or atomics.  The code is designed so that _SpinDuration stays within
1803 // a reasonable range even in the presence of races.  The arithmetic
1804 // operations on _SpinDuration are closed over the domain of legal values,
1805 // so at worst a race will install and older but still legal value.
1806 // At the very worst this introduces some apparent non-determinism.
1807 // We might spin when we shouldn't or vice-versa, but since the spin
1808 // count are relatively short, even in the worst case, the effect is harmless.
1809 //
1810 // Care must be taken that a low "D" value does not become an
1811 // an absorbing state.  Transient spinning failures -- when spinning
1812 // is overall profitable -- should not cause the system to converge
1813 // on low "D" values.  We want spinning to be stable and predictable
1814 // and fairly responsive to change and at the same time we don't want
1815 // it to oscillate, become metastable, be "too" non-deterministic,
1816 // or converge on or enter undesirable stable absorbing states.
1817 //
1818 // We implement a feedback-based control system -- using past behavior
1819 // to predict future behavior.  We face two issues: (a) if the
1820 // input signal is random then the spin predictor won't provide optimal
1821 // results, and (b) if the signal frequency is too high then the control
1822 // system, which has some natural response lag, will "chase" the signal.
1823 // (b) can arise from multimodal lock hold times.  Transient preemption
1824 // can also result in apparent bimodal lock hold times.
1825 // Although sub-optimal, neither condition is particularly harmful, as
1826 // in the worst-case we'll spin when we shouldn't or vice-versa.
1827 // The maximum spin duration is rather short so the failure modes aren't bad.
1828 // To be conservative, I've tuned the gain in system to bias toward
1829 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1830 // "rings" or oscillates between spinning and not spinning.  This happens
1831 // when spinning is just on the cusp of profitability, however, so the
1832 // situation is not dire.  The state is benign -- there's no need to add
1833 // hysteresis control to damp the transition rate between spinning and
1834 // not spinning.
1835 
1836 // Spinning: Fixed frequency (100%), vary duration
1837 int ObjectMonitor::TrySpin(JavaThread* current) {
1838   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1839   int ctr = Knob_FixedSpin;
1840   if (ctr != 0) {
1841     while (--ctr >= 0) {
1842       if (TryLock(current) > 0) return 1;
1843       SpinPause();
1844     }
1845     return 0;
1846   }
1847 
1848   for (ctr = Knob_PreSpin + 1; --ctr >= 0;) {
1849     if (TryLock(current) > 0) {
1850       // Increase _SpinDuration ...
1851       // Note that we don't clamp SpinDuration precisely at SpinLimit.
1852       // Raising _SpurDuration to the poverty line is key.
1853       int x = _SpinDuration;
1854       if (x < Knob_SpinLimit) {
1855         if (x < Knob_Poverty) x = Knob_Poverty;
1856         _SpinDuration = x + Knob_BonusB;
1857       }
1858       return 1;
1859     }
1860     SpinPause();
1861   }
1862 
1863   // Admission control - verify preconditions for spinning
1864   //
1865   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1866   // becoming an absorbing state.  Put another way, we spin briefly to
1867   // sample, just in case the system load, parallelism, contention, or lock
1868   // modality changed.
1869   //
1870   // Consider the following alternative:
1871   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1872   // spin attempt.  "Periodically" might mean after a tally of
1873   // the # of failed spin attempts (or iterations) reaches some threshold.
1874   // This takes us into the realm of 1-out-of-N spinning, where we
1875   // hold the duration constant but vary the frequency.
1876 
1877   ctr = _SpinDuration;
1878   if (ctr <= 0) return 0;
1879 
1880   if (NotRunnable(current, (JavaThread*) owner_raw())) {
1881     return 0;
1882   }
1883 
1884   // We're good to spin ... spin ingress.
1885   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1886   // when preparing to LD...CAS _owner, etc and the CAS is likely
1887   // to succeed.
1888   if (_succ == NULL) {
1889     _succ = current;
1890   }
1891   Thread* prv = NULL;
1892 
1893   // There are three ways to exit the following loop:
1894   // 1.  A successful spin where this thread has acquired the lock.
1895   // 2.  Spin failure with prejudice
1896   // 3.  Spin failure without prejudice
1897 
1898   while (--ctr >= 0) {
1899 
1900     // Periodic polling -- Check for pending GC
1901     // Threads may spin while they're unsafe.
1902     // We don't want spinning threads to delay the JVM from reaching
1903     // a stop-the-world safepoint or to steal cycles from GC.
1904     // If we detect a pending safepoint we abort in order that
1905     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1906     // this thread, if safe, doesn't steal cycles from GC.
1907     // This is in keeping with the "no loitering in runtime" rule.
1908     // We periodically check to see if there's a safepoint pending.
1909     if ((ctr & 0xFF) == 0) {
1910       if (SafepointMechanism::should_process(current)) {
1911         goto Abort;           // abrupt spin egress
1912       }
1913       SpinPause();
1914     }
1915 
1916     // Probe _owner with TATAS
1917     // If this thread observes the monitor transition or flicker
1918     // from locked to unlocked to locked, then the odds that this
1919     // thread will acquire the lock in this spin attempt go down
1920     // considerably.  The same argument applies if the CAS fails
1921     // or if we observe _owner change from one non-null value to
1922     // another non-null value.   In such cases we might abort
1923     // the spin without prejudice or apply a "penalty" to the
1924     // spin count-down variable "ctr", reducing it by 100, say.
1925 
1926     JavaThread* ox = (JavaThread*) owner_raw();
1927     if (ox == NULL) {
1928       ox = (JavaThread*)try_set_owner_from(NULL, current);
1929       if (ox == NULL) {
1930         // The CAS succeeded -- this thread acquired ownership
1931         // Take care of some bookkeeping to exit spin state.
1932         if (_succ == current) {
1933           _succ = NULL;
1934         }
1935 
1936         // Increase _SpinDuration :
1937         // The spin was successful (profitable) so we tend toward
1938         // longer spin attempts in the future.
1939         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1940         // If we acquired the lock early in the spin cycle it
1941         // makes sense to increase _SpinDuration proportionally.
1942         // Note that we don't clamp SpinDuration precisely at SpinLimit.
1943         int x = _SpinDuration;
1944         if (x < Knob_SpinLimit) {
1945           if (x < Knob_Poverty) x = Knob_Poverty;
1946           _SpinDuration = x + Knob_Bonus;
1947         }
1948         return 1;
1949       }
1950 
1951       // The CAS failed ... we can take any of the following actions:
1952       // * penalize: ctr -= CASPenalty
1953       // * exit spin with prejudice -- goto Abort;
1954       // * exit spin without prejudice.
1955       // * Since CAS is high-latency, retry again immediately.
1956       prv = ox;
1957       goto Abort;
1958     }
1959 
1960     // Did lock ownership change hands ?
1961     if (ox != prv && prv != NULL) {
1962       goto Abort;
1963     }
1964     prv = ox;
1965 
1966     // Abort the spin if the owner is not executing.
1967     // The owner must be executing in order to drop the lock.
1968     // Spinning while the owner is OFFPROC is idiocy.
1969     // Consider: ctr -= RunnablePenalty ;
1970     if (NotRunnable(current, ox)) {
1971       goto Abort;
1972     }
1973     if (_succ == NULL) {
1974       _succ = current;
1975     }
1976   }
1977 
1978   // Spin failed with prejudice -- reduce _SpinDuration.
1979   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1980   // AIMD is globally stable.
1981   {
1982     int x = _SpinDuration;
1983     if (x > 0) {
1984       // Consider an AIMD scheme like: x -= (x >> 3) + 100
1985       // This is globally sample and tends to damp the response.
1986       x -= Knob_Penalty;
1987       if (x < 0) x = 0;
1988       _SpinDuration = x;
1989     }
1990   }
1991 
1992  Abort:
1993   if (_succ == current) {
1994     _succ = NULL;
1995     // Invariant: after setting succ=null a contending thread
1996     // must recheck-retry _owner before parking.  This usually happens
1997     // in the normal usage of TrySpin(), but it's safest
1998     // to make TrySpin() as foolproof as possible.
1999     OrderAccess::fence();
2000     if (TryLock(current) > 0) return 1;
2001   }
2002   return 0;
2003 }
2004 
2005 // NotRunnable() -- informed spinning
2006 //
2007 // Don't bother spinning if the owner is not eligible to drop the lock.
2008 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm.
2009 // The thread must be runnable in order to drop the lock in timely fashion.
2010 // If the _owner is not runnable then spinning will not likely be
2011 // successful (profitable).
2012 //
2013 // Beware -- the thread referenced by _owner could have died
2014 // so a simply fetch from _owner->_thread_state might trap.
2015 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state.
2016 // Because of the lifecycle issues, the _thread_state values
2017 // observed by NotRunnable() might be garbage.  NotRunnable must
2018 // tolerate this and consider the observed _thread_state value
2019 // as advisory.
2020 //
2021 // Beware too, that _owner is sometimes a BasicLock address and sometimes
2022 // a thread pointer.
2023 // Alternately, we might tag the type (thread pointer vs basiclock pointer)
2024 // with the LSB of _owner.  Another option would be to probabilistically probe
2025 // the putative _owner->TypeTag value.
2026 //
2027 // Checking _thread_state isn't perfect.  Even if the thread is
2028 // in_java it might be blocked on a page-fault or have been preempted
2029 // and sitting on a ready/dispatch queue.
2030 //
2031 // The return value from NotRunnable() is *advisory* -- the
2032 // result is based on sampling and is not necessarily coherent.
2033 // The caller must tolerate false-negative and false-positive errors.
2034 // Spinning, in general, is probabilistic anyway.
2035 
2036 
2037 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) {
2038   // Check ox->TypeTag == 2BAD.
2039   if (ox == NULL) return 0;
2040 
2041   // Avoid transitive spinning ...
2042   // Say T1 spins or blocks trying to acquire L.  T1._Stalled is set to L.
2043   // Immediately after T1 acquires L it's possible that T2, also
2044   // spinning on L, will see L.Owner=T1 and T1._Stalled=L.
2045   // This occurs transiently after T1 acquired L but before
2046   // T1 managed to clear T1.Stalled.  T2 does not need to abort
2047   // its spin in this circumstance.
2048   intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1));
2049 
2050   if (BlockedOn == 1) return 1;
2051   if (BlockedOn != 0) {
2052     return BlockedOn != intptr_t(this) && owner_raw() == ox;
2053   }
2054 
2055   assert(sizeof(ox->_thread_state == sizeof(int)), "invariant");
2056   int jst = SafeFetch32((int *) &ox->_thread_state, -1);;
2057   // consider also: jst != _thread_in_Java -- but that's overspecific.
2058   return jst == _thread_blocked || jst == _thread_in_native;
2059 }
2060 
2061 
2062 // -----------------------------------------------------------------------------
2063 // WaitSet management ...
2064 
2065 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2066   _next     = NULL;
2067   _prev     = NULL;
2068   _notified = 0;
2069   _notifier_tid = 0;
2070   TState    = TS_RUN;
2071   _thread   = current;
2072   _event    = _thread->_ParkEvent;
2073   _active   = false;
2074   assert(_event != NULL, "invariant");
2075 }
2076 
2077 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2078   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2079 }
2080 
2081 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2082   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2083 }
2084 
2085 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2086   assert(node != NULL, "should not add NULL node");
2087   assert(node->_prev == NULL, "node already in list");
2088   assert(node->_next == NULL, "node already in list");
2089   // put node at end of queue (circular doubly linked list)
2090   if (_WaitSet == NULL) {
2091     _WaitSet = node;
2092     node->_prev = node;
2093     node->_next = node;
2094   } else {
2095     ObjectWaiter* head = _WaitSet;
2096     ObjectWaiter* tail = head->_prev;
2097     assert(tail->_next == head, "invariant check");
2098     tail->_next = node;
2099     head->_prev = node;
2100     node->_next = head;
2101     node->_prev = tail;
2102   }
2103 }
2104 
2105 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2106   // dequeue the very first waiter
2107   ObjectWaiter* waiter = _WaitSet;
2108   if (waiter) {
2109     DequeueSpecificWaiter(waiter);
2110   }
2111   return waiter;
2112 }
2113 
2114 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2115   assert(node != NULL, "should not dequeue NULL node");
2116   assert(node->_prev != NULL, "node already removed from list");
2117   assert(node->_next != NULL, "node already removed from list");
2118   // when the waiter has woken up because of interrupt,
2119   // timeout or other spurious wake-up, dequeue the
2120   // waiter from waiting list
2121   ObjectWaiter* next = node->_next;
2122   if (next == node) {
2123     assert(node->_prev == node, "invariant check");
2124     _WaitSet = NULL;
2125   } else {
2126     ObjectWaiter* prev = node->_prev;
2127     assert(prev->_next == node, "invariant check");
2128     assert(next->_prev == node, "invariant check");
2129     next->_prev = prev;
2130     prev->_next = next;
2131     if (_WaitSet == node) {
2132       _WaitSet = next;
2133     }
2134   }
2135   node->_next = NULL;
2136   node->_prev = NULL;
2137 }
2138 
2139 // -----------------------------------------------------------------------------
2140 // PerfData support
2141 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = NULL;
2142 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = NULL;
2143 PerfCounter * ObjectMonitor::_sync_Parks                       = NULL;
2144 PerfCounter * ObjectMonitor::_sync_Notifications               = NULL;
2145 PerfCounter * ObjectMonitor::_sync_Inflations                  = NULL;
2146 PerfCounter * ObjectMonitor::_sync_Deflations                  = NULL;
2147 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = NULL;
2148 
2149 // One-shot global initialization for the sync subsystem.
2150 // We could also defer initialization and initialize on-demand
2151 // the first time we call ObjectSynchronizer::inflate().
2152 // Initialization would be protected - like so many things - by
2153 // the MonitorCache_lock.
2154 
2155 void ObjectMonitor::Initialize() {
2156   assert(!InitDone, "invariant");
2157 
2158   if (!os::is_MP()) {
2159     Knob_SpinLimit = 0;
2160     Knob_PreSpin   = 0;
2161     Knob_FixedSpin = -1;
2162   }
2163 
2164   if (UsePerfData) {
2165     EXCEPTION_MARK;
2166 #define NEWPERFCOUNTER(n)                                                \
2167   {                                                                      \
2168     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2169                                         CHECK);                          \
2170   }
2171 #define NEWPERFVARIABLE(n)                                                \
2172   {                                                                       \
2173     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2174                                          CHECK);                          \
2175   }
2176     NEWPERFCOUNTER(_sync_Inflations);
2177     NEWPERFCOUNTER(_sync_Deflations);
2178     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2179     NEWPERFCOUNTER(_sync_FutileWakeups);
2180     NEWPERFCOUNTER(_sync_Parks);
2181     NEWPERFCOUNTER(_sync_Notifications);
2182     NEWPERFVARIABLE(_sync_MonExtant);
2183 #undef NEWPERFCOUNTER
2184 #undef NEWPERFVARIABLE
2185   }
2186 
2187   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2188 
2189   DEBUG_ONLY(InitDone = true;)
2190 }
2191 
2192 void ObjectMonitor::print_on(outputStream* st) const {
2193   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2194   st->print("{contentions=0x%08x,waiters=0x%08x"
2195             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2196             contentions(), waiters(), recursions(),
2197             p2i(owner()));
2198 }
2199 void ObjectMonitor::print() const { print_on(tty); }
2200 
2201 #ifdef ASSERT
2202 // Print the ObjectMonitor like a debugger would:
2203 //
2204 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2205 //   _header = 0x0000000000000001
2206 //   _object = 0x000000070ff45fd0
2207 //   _pad_buf0 = {
2208 //     [0] = '\0'
2209 //     ...
2210 //     [43] = '\0'
2211 //   }
2212 //   _owner = 0x0000000000000000
2213 //   _previous_owner_tid = 0
2214 //   _pad_buf1 = {
2215 //     [0] = '\0'
2216 //     ...
2217 //     [47] = '\0'
2218 //   }
2219 //   _next_om = 0x0000000000000000
2220 //   _recursions = 0
2221 //   _EntryList = 0x0000000000000000
2222 //   _cxq = 0x0000000000000000
2223 //   _succ = 0x0000000000000000
2224 //   _Responsible = 0x0000000000000000
2225 //   _Spinner = 0
2226 //   _SpinDuration = 5000
2227 //   _contentions = 0
2228 //   _WaitSet = 0x0000700009756248
2229 //   _waiters = 1
2230 //   _WaitSetLock = 0
2231 // }
2232 //
2233 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2234   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2235   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2236   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2237   st->print_cr("  _pad_buf0 = {");
2238   st->print_cr("    [0] = '\\0'");
2239   st->print_cr("    ...");
2240   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2241   st->print_cr("  }");
2242   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(owner_raw()));
2243   st->print_cr("  _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid);
2244   st->print_cr("  _pad_buf1 = {");
2245   st->print_cr("    [0] = '\\0'");
2246   st->print_cr("    ...");
2247   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2248   st->print_cr("  }");
2249   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2250   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2251   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2252   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2253   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2254   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2255   st->print_cr("  _Spinner = %d", _Spinner);
2256   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2257   st->print_cr("  _contentions = %d", contentions());
2258   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2259   st->print_cr("  _waiters = %d", _waiters);
2260   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2261   st->print_cr("}");
2262 }
2263 #endif