1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/globals.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/interfaceSupport.inline.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "runtime/objectMonitor.hpp" 47 #include "runtime/objectMonitor.inline.hpp" 48 #include "runtime/orderAccess.hpp" 49 #include "runtime/osThread.hpp" 50 #include "runtime/perfData.hpp" 51 #include "runtime/safefetch.hpp" 52 #include "runtime/safepointMechanism.inline.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/thread.inline.hpp" 55 #include "services/threadService.hpp" 56 #include "utilities/dtrace.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/preserveException.hpp" 60 #if INCLUDE_JFR 61 #include "jfr/support/jfrFlush.hpp" 62 #endif 63 64 #ifdef DTRACE_ENABLED 65 66 // Only bother with this argument setup if dtrace is available 67 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 68 69 70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 71 char* bytes = NULL; \ 72 int len = 0; \ 73 jlong jtid = SharedRuntime::get_java_tid(thread); \ 74 Symbol* klassname = obj->klass()->name(); \ 75 if (klassname != NULL) { \ 76 bytes = (char*)klassname->bytes(); \ 77 len = klassname->utf8_length(); \ 78 } 79 80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 81 { \ 82 if (DTraceMonitorProbes) { \ 83 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 84 HOTSPOT_MONITOR_WAIT(jtid, \ 85 (monitor), bytes, len, (millis)); \ 86 } \ 87 } 88 89 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 90 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 91 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 92 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 93 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 94 95 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 96 { \ 97 if (DTraceMonitorProbes) { \ 98 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 99 HOTSPOT_MONITOR_##probe(jtid, \ 100 (uintptr_t)(monitor), bytes, len); \ 101 } \ 102 } 103 104 #else // ndef DTRACE_ENABLED 105 106 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 107 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 108 109 #endif // ndef DTRACE_ENABLED 110 111 // Tunables ... 112 // The knob* variables are effectively final. Once set they should 113 // never be modified hence. Consider using __read_mostly with GCC. 114 115 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool - 116 117 static int Knob_Bonus = 100; // spin success bonus 118 static int Knob_BonusB = 100; // spin success bonus 119 static int Knob_Penalty = 200; // spin failure penalty 120 static int Knob_Poverty = 1000; 121 static int Knob_FixedSpin = 0; 122 static int Knob_PreSpin = 10; // 20-100 likely better 123 124 DEBUG_ONLY(static volatile bool InitDone = false;) 125 126 OopStorage* ObjectMonitor::_oop_storage = NULL; 127 128 // ----------------------------------------------------------------------------- 129 // Theory of operations -- Monitors lists, thread residency, etc: 130 // 131 // * A thread acquires ownership of a monitor by successfully 132 // CAS()ing the _owner field from null to non-null. 133 // 134 // * Invariant: A thread appears on at most one monitor list -- 135 // cxq, EntryList or WaitSet -- at any one time. 136 // 137 // * Contending threads "push" themselves onto the cxq with CAS 138 // and then spin/park. 139 // 140 // * After a contending thread eventually acquires the lock it must 141 // dequeue itself from either the EntryList or the cxq. 142 // 143 // * The exiting thread identifies and unparks an "heir presumptive" 144 // tentative successor thread on the EntryList. Critically, the 145 // exiting thread doesn't unlink the successor thread from the EntryList. 146 // After having been unparked, the wakee will recontend for ownership of 147 // the monitor. The successor (wakee) will either acquire the lock or 148 // re-park itself. 149 // 150 // Succession is provided for by a policy of competitive handoff. 151 // The exiting thread does _not_ grant or pass ownership to the 152 // successor thread. (This is also referred to as "handoff" succession"). 153 // Instead the exiting thread releases ownership and possibly wakes 154 // a successor, so the successor can (re)compete for ownership of the lock. 155 // If the EntryList is empty but the cxq is populated the exiting 156 // thread will drain the cxq into the EntryList. It does so by 157 // by detaching the cxq (installing null with CAS) and folding 158 // the threads from the cxq into the EntryList. The EntryList is 159 // doubly linked, while the cxq is singly linked because of the 160 // CAS-based "push" used to enqueue recently arrived threads (RATs). 161 // 162 // * Concurrency invariants: 163 // 164 // -- only the monitor owner may access or mutate the EntryList. 165 // The mutex property of the monitor itself protects the EntryList 166 // from concurrent interference. 167 // -- Only the monitor owner may detach the cxq. 168 // 169 // * The monitor entry list operations avoid locks, but strictly speaking 170 // they're not lock-free. Enter is lock-free, exit is not. 171 // For a description of 'Methods and apparatus providing non-blocking access 172 // to a resource,' see U.S. Pat. No. 7844973. 173 // 174 // * The cxq can have multiple concurrent "pushers" but only one concurrent 175 // detaching thread. This mechanism is immune from the ABA corruption. 176 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 177 // 178 // * Taken together, the cxq and the EntryList constitute or form a 179 // single logical queue of threads stalled trying to acquire the lock. 180 // We use two distinct lists to improve the odds of a constant-time 181 // dequeue operation after acquisition (in the ::enter() epilogue) and 182 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 183 // A key desideratum is to minimize queue & monitor metadata manipulation 184 // that occurs while holding the monitor lock -- that is, we want to 185 // minimize monitor lock holds times. Note that even a small amount of 186 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 187 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 188 // locks and monitor metadata. 189 // 190 // Cxq points to the set of Recently Arrived Threads attempting entry. 191 // Because we push threads onto _cxq with CAS, the RATs must take the form of 192 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 193 // the unlocking thread notices that EntryList is null but _cxq is != null. 194 // 195 // The EntryList is ordered by the prevailing queue discipline and 196 // can be organized in any convenient fashion, such as a doubly-linked list or 197 // a circular doubly-linked list. Critically, we want insert and delete operations 198 // to operate in constant-time. If we need a priority queue then something akin 199 // to Solaris' sleepq would work nicely. Viz., 200 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 201 // Queue discipline is enforced at ::exit() time, when the unlocking thread 202 // drains the cxq into the EntryList, and orders or reorders the threads on the 203 // EntryList accordingly. 204 // 205 // Barring "lock barging", this mechanism provides fair cyclic ordering, 206 // somewhat similar to an elevator-scan. 207 // 208 // * The monitor synchronization subsystem avoids the use of native 209 // synchronization primitives except for the narrow platform-specific 210 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 211 // the semantics of park-unpark. Put another way, this monitor implementation 212 // depends only on atomic operations and park-unpark. The monitor subsystem 213 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 214 // underlying OS manages the READY<->RUN transitions. 215 // 216 // * Waiting threads reside on the WaitSet list -- wait() puts 217 // the caller onto the WaitSet. 218 // 219 // * notify() or notifyAll() simply transfers threads from the WaitSet to 220 // either the EntryList or cxq. Subsequent exit() operations will 221 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 222 // it's likely the notifyee would simply impale itself on the lock held 223 // by the notifier. 224 // 225 // * An interesting alternative is to encode cxq as (List,LockByte) where 226 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary 227 // variable, like _recursions, in the scheme. The threads or Events that form 228 // the list would have to be aligned in 256-byte addresses. A thread would 229 // try to acquire the lock or enqueue itself with CAS, but exiting threads 230 // could use a 1-0 protocol and simply STB to set the LockByte to 0. 231 // Note that is is *not* word-tearing, but it does presume that full-word 232 // CAS operations are coherent with intermix with STB operations. That's true 233 // on most common processors. 234 // 235 // * See also http://blogs.sun.com/dave 236 237 238 // Check that object() and set_object() are called from the right context: 239 static void check_object_context() { 240 #ifdef ASSERT 241 Thread* self = Thread::current(); 242 if (self->is_Java_thread()) { 243 // Mostly called from JavaThreads so sanity check the thread state. 244 JavaThread* jt = self->as_Java_thread(); 245 switch (jt->thread_state()) { 246 case _thread_in_vm: // the usual case 247 case _thread_in_Java: // during deopt 248 break; 249 default: 250 fatal("called from an unsafe thread state"); 251 } 252 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 253 } else { 254 // However, ThreadService::get_current_contended_monitor() 255 // can call here via the VMThread so sanity check it. 256 assert(self->is_VM_thread(), "must be"); 257 } 258 #endif // ASSERT 259 } 260 261 ObjectMonitor::ObjectMonitor(oop object) : 262 _header(markWord::zero()), 263 _object(_oop_storage, object), 264 _owner(NULL), 265 _previous_owner_tid(0), 266 _next_om(NULL), 267 _recursions(0), 268 _EntryList(NULL), 269 _cxq(NULL), 270 _succ(NULL), 271 _Responsible(NULL), 272 _Spinner(0), 273 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 274 _contentions(0), 275 _WaitSet(NULL), 276 _waiters(0), 277 _WaitSetLock(0) 278 { } 279 280 ObjectMonitor::~ObjectMonitor() { 281 _object.release(_oop_storage); 282 } 283 284 oop ObjectMonitor::object() const { 285 check_object_context(); 286 if (_object.is_null()) { 287 return NULL; 288 } 289 return _object.resolve(); 290 } 291 292 oop ObjectMonitor::object_peek() const { 293 if (_object.is_null()) { 294 return NULL; 295 } 296 return _object.peek(); 297 } 298 299 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 300 if (current->is_suspended()) { 301 _om->_recursions = 0; 302 _om->_succ = NULL; 303 // Don't need a full fence after clearing successor here because of the call to exit(). 304 _om->exit(current, false /* not_suspended */); 305 _om_exited = true; 306 307 current->set_current_pending_monitor(_om); 308 } 309 } 310 311 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 312 if (current->is_suspended()) { 313 if (_om->_succ == current) { 314 _om->_succ = NULL; 315 OrderAccess::fence(); // always do a full fence when successor is cleared 316 } 317 } 318 } 319 320 // ----------------------------------------------------------------------------- 321 // Enter support 322 323 bool ObjectMonitor::enter_for(JavaThread* locking_thread) { 324 // Used by ObjectSynchronizer::enter_for to enter for another thread. 325 // The monitor is private to or already owned by locking_thread which must be suspended. 326 // So this code may only contend with deflation. 327 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 328 329 // Block out deflation as soon as possible. 330 add_to_contentions(1); 331 332 bool success = false; 333 if (!is_being_async_deflated()) { 334 void* prev_owner = try_set_owner_from(nullptr, locking_thread); 335 336 if (prev_owner == nullptr) { 337 assert(_recursions == 0, "invariant"); 338 success = true; 339 } else if (prev_owner == locking_thread) { 340 _recursions++; 341 success = true; 342 } else if (prev_owner == DEFLATER_MARKER) { 343 // Racing with deflation. 344 prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread); 345 if (prev_owner == DEFLATER_MARKER) { 346 // Cancelled deflation. Increment contentions as part of the deflation protocol. 347 add_to_contentions(1); 348 success = true; 349 } else if (prev_owner == nullptr) { 350 // At this point we cannot race with deflation as we have both incremented 351 // contentions, seen contention > 0 and seen a DEFLATER_MARKER. 352 // success will only be false if this races with something other than 353 // deflation. 354 prev_owner = try_set_owner_from(nullptr, locking_thread); 355 success = prev_owner == nullptr; 356 } 357 } else if (LockingMode == LM_LEGACY && locking_thread->is_lock_owned((address)prev_owner)) { 358 assert(_recursions == 0, "must be"); 359 _recursions = 1; 360 set_owner_from_BasicLock(prev_owner, locking_thread); 361 success = true; 362 } 363 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 364 ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT, 365 p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner)); 366 } else { 367 // Async deflation is in progress and our contentions increment 368 // above lost the race to async deflation. Undo the work and 369 // force the caller to retry. 370 const oop l_object = object(); 371 if (l_object != nullptr) { 372 // Attempt to restore the header/dmw to the object's header so that 373 // we only retry once if the deflater thread happens to be slow. 374 install_displaced_markword_in_object(l_object); 375 } 376 } 377 378 add_to_contentions(-1); 379 380 assert(!success || owner_raw() == locking_thread, "must be"); 381 382 return success; 383 } 384 385 bool ObjectMonitor::enter(JavaThread* current) { 386 assert(current == JavaThread::current(), "must be"); 387 // The following code is ordered to check the most common cases first 388 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. 389 390 void* cur = try_set_owner_from(NULL, current); 391 if (cur == NULL) { 392 assert(_recursions == 0, "invariant"); 393 return true; 394 } 395 396 if (cur == current) { 397 // TODO-FIXME: check for integer overflow! BUGID 6557169. 398 _recursions++; 399 return true; 400 } 401 402 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 403 assert(_recursions == 0, "internal state error"); 404 _recursions = 1; 405 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 406 return true; 407 } 408 409 // We've encountered genuine contention. 410 assert(current->_Stalled == 0, "invariant"); 411 current->_Stalled = intptr_t(this); 412 413 // Try one round of spinning *before* enqueueing current 414 // and before going through the awkward and expensive state 415 // transitions. The following spin is strictly optional ... 416 // Note that if we acquire the monitor from an initial spin 417 // we forgo posting JVMTI events and firing DTRACE probes. 418 if (TrySpin(current) > 0) { 419 assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 420 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 421 assert(object()->mark() == markWord::encode(this), 422 "object mark must match encoded this: mark=" INTPTR_FORMAT 423 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), 424 markWord::encode(this).value()); 425 current->_Stalled = 0; 426 return true; 427 } 428 429 assert(owner_raw() != current, "invariant"); 430 assert(_succ != current, "invariant"); 431 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 432 assert(current->thread_state() != _thread_blocked, "invariant"); 433 434 // Keep track of contention for JVM/TI and M&M queries. 435 add_to_contentions(1); 436 if (is_being_async_deflated()) { 437 // Async deflation is in progress and our contentions increment 438 // above lost the race to async deflation. Undo the work and 439 // force the caller to retry. 440 const oop l_object = object(); 441 if (l_object != NULL) { 442 // Attempt to restore the header/dmw to the object's header so that 443 // we only retry once if the deflater thread happens to be slow. 444 install_displaced_markword_in_object(l_object); 445 } 446 current->_Stalled = 0; 447 add_to_contentions(-1); 448 return false; 449 } 450 451 JFR_ONLY(JfrConditionalFlushWithStacktrace<EventJavaMonitorEnter> flush(current);) 452 EventJavaMonitorEnter event; 453 if (event.is_started()) { 454 event.set_monitorClass(object()->klass()); 455 // Set an address that is 'unique enough', such that events close in 456 // time and with the same address are likely (but not guaranteed) to 457 // belong to the same object. 458 event.set_address((uintptr_t)this); 459 } 460 461 { // Change java thread status to indicate blocked on monitor enter. 462 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 463 464 assert(current->current_pending_monitor() == NULL, "invariant"); 465 current->set_current_pending_monitor(this); 466 467 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 468 if (JvmtiExport::should_post_monitor_contended_enter()) { 469 JvmtiExport::post_monitor_contended_enter(current, this); 470 471 // The current thread does not yet own the monitor and does not 472 // yet appear on any queues that would get it made the successor. 473 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 474 // handler cannot accidentally consume an unpark() meant for the 475 // ParkEvent associated with this ObjectMonitor. 476 } 477 478 OSThreadContendState osts(current->osthread()); 479 480 assert(current->thread_state() == _thread_in_vm, "invariant"); 481 482 for (;;) { 483 ExitOnSuspend eos(this); 484 { 485 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos); 486 EnterI(current); 487 current->set_current_pending_monitor(NULL); 488 // We can go to a safepoint at the end of this block. If we 489 // do a thread dump during that safepoint, then this thread will show 490 // as having "-locked" the monitor, but the OS and java.lang.Thread 491 // states will still report that the thread is blocked trying to 492 // acquire it. 493 // If there is a suspend request, ExitOnSuspend will exit the OM 494 // and set the OM as pending. 495 } 496 if (!eos.exited()) { 497 // ExitOnSuspend did not exit the OM 498 assert(owner_raw() == current, "invariant"); 499 break; 500 } 501 } 502 503 // We've just gotten past the enter-check-for-suspend dance and we now own 504 // the monitor free and clear. 505 } 506 507 add_to_contentions(-1); 508 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 509 current->_Stalled = 0; 510 511 // Must either set _recursions = 0 or ASSERT _recursions == 0. 512 assert(_recursions == 0, "invariant"); 513 assert(owner_raw() == current, "invariant"); 514 assert(_succ != current, "invariant"); 515 assert(object()->mark() == markWord::encode(this), "invariant"); 516 517 // The thread -- now the owner -- is back in vm mode. 518 // Report the glorious news via TI,DTrace and jvmstat. 519 // The probe effect is non-trivial. All the reportage occurs 520 // while we hold the monitor, increasing the length of the critical 521 // section. Amdahl's parallel speedup law comes vividly into play. 522 // 523 // Another option might be to aggregate the events (thread local or 524 // per-monitor aggregation) and defer reporting until a more opportune 525 // time -- such as next time some thread encounters contention but has 526 // yet to acquire the lock. While spinning that thread could 527 // spinning we could increment JVMStat counters, etc. 528 529 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 530 if (JvmtiExport::should_post_monitor_contended_entered()) { 531 JvmtiExport::post_monitor_contended_entered(current, this); 532 533 // The current thread already owns the monitor and is not going to 534 // call park() for the remainder of the monitor enter protocol. So 535 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 536 // event handler consumed an unpark() issued by the thread that 537 // just exited the monitor. 538 } 539 if (event.should_commit()) { 540 event.set_previousOwner((uintptr_t)_previous_owner_tid); 541 event.commit(); 542 } 543 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 544 return true; 545 } 546 547 // Caveat: TryLock() is not necessarily serializing if it returns failure. 548 // Callers must compensate as needed. 549 550 int ObjectMonitor::TryLock(JavaThread* current) { 551 void* own = owner_raw(); 552 if (own != NULL) return 0; 553 if (try_set_owner_from(NULL, current) == NULL) { 554 assert(_recursions == 0, "invariant"); 555 return 1; 556 } 557 // The lock had been free momentarily, but we lost the race to the lock. 558 // Interference -- the CAS failed. 559 // We can either return -1 or retry. 560 // Retry doesn't make as much sense because the lock was just acquired. 561 return -1; 562 } 563 564 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 565 // was deflated and false otherwise. 566 // 567 // The async deflation protocol sets owner to DEFLATER_MARKER and 568 // makes contentions negative as signals to contending threads that 569 // an async deflation is in progress. There are a number of checks 570 // as part of the protocol to make sure that the calling thread has 571 // not lost the race to a contending thread. 572 // 573 // The ObjectMonitor has been successfully async deflated when: 574 // (contentions < 0) 575 // Contending threads that see that condition know to retry their operation. 576 // 577 bool ObjectMonitor::deflate_monitor() { 578 if (is_busy()) { 579 // Easy checks are first - the ObjectMonitor is busy so no deflation. 580 return false; 581 } 582 583 if (ObjectSynchronizer::is_final_audit() && owner_is_DEFLATER_MARKER()) { 584 // The final audit can see an already deflated ObjectMonitor on the 585 // in-use list because MonitorList::unlink_deflated() might have 586 // blocked for the final safepoint before unlinking all the deflated 587 // monitors. 588 assert(contentions() < 0, "must be negative: contentions=%d", contentions()); 589 // Already returned 'true' when it was originally deflated. 590 return false; 591 } 592 593 const oop obj = object_peek(); 594 595 if (obj == NULL) { 596 // If the object died, we can recycle the monitor without racing with 597 // Java threads. The GC already broke the association with the object. 598 set_owner_from(NULL, DEFLATER_MARKER); 599 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 600 _contentions = -max_jint; 601 } else { 602 // Attempt async deflation protocol. 603 604 // Set a NULL owner to DEFLATER_MARKER to force any contending thread 605 // through the slow path. This is just the first part of the async 606 // deflation dance. 607 if (try_set_owner_from(NULL, DEFLATER_MARKER) != NULL) { 608 // The owner field is no longer NULL so we lost the race since the 609 // ObjectMonitor is now busy. 610 return false; 611 } 612 613 if (contentions() > 0 || _waiters != 0) { 614 // Another thread has raced to enter the ObjectMonitor after 615 // is_busy() above or has already entered and waited on 616 // it which makes it busy so no deflation. Restore owner to 617 // NULL if it is still DEFLATER_MARKER. 618 if (try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) { 619 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 620 add_to_contentions(-1); 621 } 622 return false; 623 } 624 625 // Make a zero contentions field negative to force any contending threads 626 // to retry. This is the second part of the async deflation dance. 627 if (Atomic::cmpxchg(&_contentions, (jint)0, -max_jint) != 0) { 628 // Contentions was no longer 0 so we lost the race since the 629 // ObjectMonitor is now busy. Restore owner to NULL if it is 630 // still DEFLATER_MARKER: 631 if (try_set_owner_from(DEFLATER_MARKER, NULL) != DEFLATER_MARKER) { 632 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 633 add_to_contentions(-1); 634 } 635 return false; 636 } 637 } 638 639 // Sanity checks for the races: 640 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 641 guarantee(contentions() < 0, "must be negative: contentions=%d", 642 contentions()); 643 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 644 guarantee(_cxq == NULL, "must be no contending threads: cxq=" 645 INTPTR_FORMAT, p2i(_cxq)); 646 guarantee(_EntryList == NULL, 647 "must be no entering threads: EntryList=" INTPTR_FORMAT, 648 p2i(_EntryList)); 649 650 if (obj != NULL) { 651 if (log_is_enabled(Trace, monitorinflation)) { 652 ResourceMark rm; 653 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 654 ", mark=" INTPTR_FORMAT ", type='%s'", 655 p2i(obj), obj->mark().value(), 656 obj->klass()->external_name()); 657 } 658 659 // Install the old mark word if nobody else has already done it. 660 install_displaced_markword_in_object(obj); 661 } 662 663 // We leave owner == DEFLATER_MARKER and contentions < 0 664 // to force any racing threads to retry. 665 return true; // Success, ObjectMonitor has been deflated. 666 } 667 668 // We might access the dead object headers for parsable heap walk, make sure 669 // headers are in correct shape, e.g. monitors deflated. 670 void ObjectMonitor::maybe_deflate_dead(oop* p) { 671 oop obj = *p; 672 assert(obj != NULL, "must not yet been cleared"); 673 markWord mark = obj->mark(); 674 if (mark.has_monitor()) { 675 ObjectMonitor* monitor = mark.monitor(); 676 if (p == monitor->_object.ptr_raw()) { 677 assert(monitor->object_peek() == obj, "lock object must match"); 678 markWord dmw = monitor->header(); 679 obj->set_mark(dmw); 680 } 681 } 682 } 683 684 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 685 // into the header of the object associated with the monitor. This 686 // idempotent method is called by a thread that is deflating a 687 // monitor and by other threads that have detected a race with the 688 // deflation process. 689 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 690 // This function must only be called when (owner == DEFLATER_MARKER 691 // && contentions <= 0), but we can't guarantee that here because 692 // those values could change when the ObjectMonitor gets moved from 693 // the global free list to a per-thread free list. 694 695 guarantee(obj != NULL, "must be non-NULL"); 696 697 // Separate loads in is_being_async_deflated(), which is almost always 698 // called before this function, from the load of dmw/header below. 699 700 // _contentions and dmw/header may get written by different threads. 701 // Make sure to observe them in the same order when having several observers. 702 OrderAccess::loadload_for_IRIW(); 703 704 const oop l_object = object_peek(); 705 if (l_object == NULL) { 706 // ObjectMonitor's object ref has already been cleared by async 707 // deflation or GC so we're done here. 708 return; 709 } 710 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 711 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 712 713 markWord dmw = header(); 714 // The dmw has to be neutral (not NULL, not locked and not marked). 715 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 716 717 // Install displaced mark word if the object's header still points 718 // to this ObjectMonitor. More than one racing caller to this function 719 // can rarely reach this point, but only one can win. 720 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 721 if (res != markWord::encode(this)) { 722 // This should be rare so log at the Info level when it happens. 723 log_info(monitorinflation)("install_displaced_markword_in_object: " 724 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 725 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 726 dmw.value(), markWord::encode(this).value(), 727 res.value()); 728 } 729 730 // Note: It does not matter which thread restored the header/dmw 731 // into the object's header. The thread deflating the monitor just 732 // wanted the object's header restored and it is. The threads that 733 // detected a race with the deflation process also wanted the 734 // object's header restored before they retry their operation and 735 // because it is restored they will only retry once. 736 } 737 738 // Convert the fields used by is_busy() to a string that can be 739 // used for diagnostic output. 740 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 741 ss->print("is_busy: waiters=%d, ", _waiters); 742 if (contentions() > 0) { 743 ss->print("contentions=%d, ", contentions()); 744 } else { 745 ss->print("contentions=0"); 746 } 747 if (!owner_is_DEFLATER_MARKER()) { 748 ss->print("owner=" INTPTR_FORMAT, p2i(owner_raw())); 749 } else { 750 // We report NULL instead of DEFLATER_MARKER here because is_busy() 751 // ignores DEFLATER_MARKER values. 752 ss->print("owner=" INTPTR_FORMAT, NULL_WORD); 753 } 754 ss->print(", cxq=" INTPTR_FORMAT ", EntryList=" INTPTR_FORMAT, p2i(_cxq), 755 p2i(_EntryList)); 756 return ss->base(); 757 } 758 759 #define MAX_RECHECK_INTERVAL 1000 760 761 void ObjectMonitor::EnterI(JavaThread* current) { 762 assert(current->thread_state() == _thread_blocked, "invariant"); 763 764 // Try the lock - TATAS 765 if (TryLock (current) > 0) { 766 assert(_succ != current, "invariant"); 767 assert(owner_raw() == current, "invariant"); 768 assert(_Responsible != current, "invariant"); 769 return; 770 } 771 772 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 773 // Cancelled the in-progress async deflation by changing owner from 774 // DEFLATER_MARKER to current. As part of the contended enter protocol, 775 // contentions was incremented to a positive value before EnterI() 776 // was called and that prevents the deflater thread from winning the 777 // last part of the 2-part async deflation protocol. After EnterI() 778 // returns to enter(), contentions is decremented because the caller 779 // now owns the monitor. We bump contentions an extra time here to 780 // prevent the deflater thread from winning the last part of the 781 // 2-part async deflation protocol after the regular decrement 782 // occurs in enter(). The deflater thread will decrement contentions 783 // after it recognizes that the async deflation was cancelled. 784 add_to_contentions(1); 785 assert(_succ != current, "invariant"); 786 assert(_Responsible != current, "invariant"); 787 return; 788 } 789 790 assert(InitDone, "Unexpectedly not initialized"); 791 792 // We try one round of spinning *before* enqueueing current. 793 // 794 // If the _owner is ready but OFFPROC we could use a YieldTo() 795 // operation to donate the remainder of this thread's quantum 796 // to the owner. This has subtle but beneficial affinity 797 // effects. 798 799 if (TrySpin(current) > 0) { 800 assert(owner_raw() == current, "invariant"); 801 assert(_succ != current, "invariant"); 802 assert(_Responsible != current, "invariant"); 803 return; 804 } 805 806 // The Spin failed -- Enqueue and park the thread ... 807 assert(_succ != current, "invariant"); 808 assert(owner_raw() != current, "invariant"); 809 assert(_Responsible != current, "invariant"); 810 811 // Enqueue "current" on ObjectMonitor's _cxq. 812 // 813 // Node acts as a proxy for current. 814 // As an aside, if were to ever rewrite the synchronization code mostly 815 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 816 // Java objects. This would avoid awkward lifecycle and liveness issues, 817 // as well as eliminate a subset of ABA issues. 818 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 819 820 ObjectWaiter node(current); 821 current->_ParkEvent->reset(); 822 node._prev = (ObjectWaiter*) 0xBAD; 823 node.TState = ObjectWaiter::TS_CXQ; 824 825 // Push "current" onto the front of the _cxq. 826 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 827 // Note that spinning tends to reduce the rate at which threads 828 // enqueue and dequeue on EntryList|cxq. 829 ObjectWaiter* nxt; 830 for (;;) { 831 node._next = nxt = _cxq; 832 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 833 834 // Interference - the CAS failed because _cxq changed. Just retry. 835 // As an optional optimization we retry the lock. 836 if (TryLock (current) > 0) { 837 assert(_succ != current, "invariant"); 838 assert(owner_raw() == current, "invariant"); 839 assert(_Responsible != current, "invariant"); 840 return; 841 } 842 } 843 844 // Check for cxq|EntryList edge transition to non-null. This indicates 845 // the onset of contention. While contention persists exiting threads 846 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit 847 // operations revert to the faster 1-0 mode. This enter operation may interleave 848 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we 849 // arrange for one of the contending thread to use a timed park() operations 850 // to detect and recover from the race. (Stranding is form of progress failure 851 // where the monitor is unlocked but all the contending threads remain parked). 852 // That is, at least one of the contended threads will periodically poll _owner. 853 // One of the contending threads will become the designated "Responsible" thread. 854 // The Responsible thread uses a timed park instead of a normal indefinite park 855 // operation -- it periodically wakes and checks for and recovers from potential 856 // strandings admitted by 1-0 exit operations. We need at most one Responsible 857 // thread per-monitor at any given moment. Only threads on cxq|EntryList may 858 // be responsible for a monitor. 859 // 860 // Currently, one of the contended threads takes on the added role of "Responsible". 861 // A viable alternative would be to use a dedicated "stranding checker" thread 862 // that periodically iterated over all the threads (or active monitors) and unparked 863 // successors where there was risk of stranding. This would help eliminate the 864 // timer scalability issues we see on some platforms as we'd only have one thread 865 // -- the checker -- parked on a timer. 866 867 if (nxt == NULL && _EntryList == NULL) { 868 // Try to assume the role of responsible thread for the monitor. 869 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } 870 Atomic::replace_if_null(&_Responsible, current); 871 } 872 873 // The lock might have been released while this thread was occupied queueing 874 // itself onto _cxq. To close the race and avoid "stranding" and 875 // progress-liveness failure we must resample-retry _owner before parking. 876 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 877 // In this case the ST-MEMBAR is accomplished with CAS(). 878 // 879 // TODO: Defer all thread state transitions until park-time. 880 // Since state transitions are heavy and inefficient we'd like 881 // to defer the state transitions until absolutely necessary, 882 // and in doing so avoid some transitions ... 883 884 int nWakeups = 0; 885 int recheckInterval = 1; 886 887 for (;;) { 888 889 if (TryLock(current) > 0) break; 890 assert(owner_raw() != current, "invariant"); 891 892 // park self 893 if (_Responsible == current) { 894 current->_ParkEvent->park((jlong) recheckInterval); 895 // Increase the recheckInterval, but clamp the value. 896 recheckInterval *= 8; 897 if (recheckInterval > MAX_RECHECK_INTERVAL) { 898 recheckInterval = MAX_RECHECK_INTERVAL; 899 } 900 } else { 901 current->_ParkEvent->park(); 902 } 903 904 if (TryLock(current) > 0) break; 905 906 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 907 // Cancelled the in-progress async deflation by changing owner from 908 // DEFLATER_MARKER to current. As part of the contended enter protocol, 909 // contentions was incremented to a positive value before EnterI() 910 // was called and that prevents the deflater thread from winning the 911 // last part of the 2-part async deflation protocol. After EnterI() 912 // returns to enter(), contentions is decremented because the caller 913 // now owns the monitor. We bump contentions an extra time here to 914 // prevent the deflater thread from winning the last part of the 915 // 2-part async deflation protocol after the regular decrement 916 // occurs in enter(). The deflater thread will decrement contentions 917 // after it recognizes that the async deflation was cancelled. 918 add_to_contentions(1); 919 break; 920 } 921 922 // The lock is still contested. 923 // Keep a tally of the # of futile wakeups. 924 // Note that the counter is not protected by a lock or updated by atomics. 925 // That is by design - we trade "lossy" counters which are exposed to 926 // races during updates for a lower probe effect. 927 928 // This PerfData object can be used in parallel with a safepoint. 929 // See the work around in PerfDataManager::destroy(). 930 OM_PERFDATA_OP(FutileWakeups, inc()); 931 ++nWakeups; 932 933 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 934 // We can defer clearing _succ until after the spin completes 935 // TrySpin() must tolerate being called with _succ == current. 936 // Try yet another round of adaptive spinning. 937 if (TrySpin(current) > 0) break; 938 939 // We can find that we were unpark()ed and redesignated _succ while 940 // we were spinning. That's harmless. If we iterate and call park(), 941 // park() will consume the event and return immediately and we'll 942 // just spin again. This pattern can repeat, leaving _succ to simply 943 // spin on a CPU. 944 945 if (_succ == current) _succ = NULL; 946 947 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 948 OrderAccess::fence(); 949 } 950 951 // Egress : 952 // current has acquired the lock -- Unlink current from the cxq or EntryList. 953 // Normally we'll find current on the EntryList . 954 // From the perspective of the lock owner (this thread), the 955 // EntryList is stable and cxq is prepend-only. 956 // The head of cxq is volatile but the interior is stable. 957 // In addition, current.TState is stable. 958 959 assert(owner_raw() == current, "invariant"); 960 961 UnlinkAfterAcquire(current, &node); 962 if (_succ == current) _succ = NULL; 963 964 assert(_succ != current, "invariant"); 965 if (_Responsible == current) { 966 _Responsible = NULL; 967 OrderAccess::fence(); // Dekker pivot-point 968 969 // We may leave threads on cxq|EntryList without a designated 970 // "Responsible" thread. This is benign. When this thread subsequently 971 // exits the monitor it can "see" such preexisting "old" threads -- 972 // threads that arrived on the cxq|EntryList before the fence, above -- 973 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads 974 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible 975 // non-null and elect a new "Responsible" timer thread. 976 // 977 // This thread executes: 978 // ST Responsible=null; MEMBAR (in enter epilogue - here) 979 // LD cxq|EntryList (in subsequent exit) 980 // 981 // Entering threads in the slow/contended path execute: 982 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) 983 // The (ST cxq; MEMBAR) is accomplished with CAS(). 984 // 985 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent 986 // exit operation from floating above the ST Responsible=null. 987 } 988 989 // We've acquired ownership with CAS(). 990 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 991 // But since the CAS() this thread may have also stored into _succ, 992 // EntryList, cxq or Responsible. These meta-data updates must be 993 // visible __before this thread subsequently drops the lock. 994 // Consider what could occur if we didn't enforce this constraint -- 995 // STs to monitor meta-data and user-data could reorder with (become 996 // visible after) the ST in exit that drops ownership of the lock. 997 // Some other thread could then acquire the lock, but observe inconsistent 998 // or old monitor meta-data and heap data. That violates the JMM. 999 // To that end, the 1-0 exit() operation must have at least STST|LDST 1000 // "release" barrier semantics. Specifically, there must be at least a 1001 // STST|LDST barrier in exit() before the ST of null into _owner that drops 1002 // the lock. The barrier ensures that changes to monitor meta-data and data 1003 // protected by the lock will be visible before we release the lock, and 1004 // therefore before some other thread (CPU) has a chance to acquire the lock. 1005 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 1006 // 1007 // Critically, any prior STs to _succ or EntryList must be visible before 1008 // the ST of null into _owner in the *subsequent* (following) corresponding 1009 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily 1010 // execute a serializing instruction. 1011 1012 return; 1013 } 1014 1015 // ReenterI() is a specialized inline form of the latter half of the 1016 // contended slow-path from EnterI(). We use ReenterI() only for 1017 // monitor reentry in wait(). 1018 // 1019 // In the future we should reconcile EnterI() and ReenterI(). 1020 1021 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 1022 assert(current != NULL, "invariant"); 1023 assert(currentNode != NULL, "invariant"); 1024 assert(currentNode->_thread == current, "invariant"); 1025 assert(_waiters > 0, "invariant"); 1026 assert(object()->mark() == markWord::encode(this), "invariant"); 1027 1028 assert(current->thread_state() != _thread_blocked, "invariant"); 1029 1030 int nWakeups = 0; 1031 for (;;) { 1032 ObjectWaiter::TStates v = currentNode->TState; 1033 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1034 assert(owner_raw() != current, "invariant"); 1035 1036 if (TryLock(current) > 0) break; 1037 if (TrySpin(current) > 0) break; 1038 1039 { 1040 OSThreadContendState osts(current->osthread()); 1041 1042 assert(current->thread_state() == _thread_in_vm, "invariant"); 1043 1044 { 1045 ClearSuccOnSuspend csos(this); 1046 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos); 1047 current->_ParkEvent->park(); 1048 } 1049 } 1050 1051 // Try again, but just so we distinguish between futile wakeups and 1052 // successful wakeups. The following test isn't algorithmically 1053 // necessary, but it helps us maintain sensible statistics. 1054 if (TryLock(current) > 0) break; 1055 1056 // The lock is still contested. 1057 // Keep a tally of the # of futile wakeups. 1058 // Note that the counter is not protected by a lock or updated by atomics. 1059 // That is by design - we trade "lossy" counters which are exposed to 1060 // races during updates for a lower probe effect. 1061 ++nWakeups; 1062 1063 // Assuming this is not a spurious wakeup we'll normally 1064 // find that _succ == current. 1065 if (_succ == current) _succ = NULL; 1066 1067 // Invariant: after clearing _succ a contending thread 1068 // *must* retry _owner before parking. 1069 OrderAccess::fence(); 1070 1071 // This PerfData object can be used in parallel with a safepoint. 1072 // See the work around in PerfDataManager::destroy(). 1073 OM_PERFDATA_OP(FutileWakeups, inc()); 1074 } 1075 1076 // current has acquired the lock -- Unlink current from the cxq or EntryList . 1077 // Normally we'll find current on the EntryList. 1078 // Unlinking from the EntryList is constant-time and atomic-free. 1079 // From the perspective of the lock owner (this thread), the 1080 // EntryList is stable and cxq is prepend-only. 1081 // The head of cxq is volatile but the interior is stable. 1082 // In addition, current.TState is stable. 1083 1084 assert(owner_raw() == current, "invariant"); 1085 assert(object()->mark() == markWord::encode(this), "invariant"); 1086 UnlinkAfterAcquire(current, currentNode); 1087 if (_succ == current) _succ = NULL; 1088 assert(_succ != current, "invariant"); 1089 currentNode->TState = ObjectWaiter::TS_RUN; 1090 OrderAccess::fence(); // see comments at the end of EnterI() 1091 } 1092 1093 // By convention we unlink a contending thread from EntryList|cxq immediately 1094 // after the thread acquires the lock in ::enter(). Equally, we could defer 1095 // unlinking the thread until ::exit()-time. 1096 1097 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1098 assert(owner_raw() == current, "invariant"); 1099 assert(currentNode->_thread == current, "invariant"); 1100 1101 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1102 // Normal case: remove current from the DLL EntryList . 1103 // This is a constant-time operation. 1104 ObjectWaiter* nxt = currentNode->_next; 1105 ObjectWaiter* prv = currentNode->_prev; 1106 if (nxt != NULL) nxt->_prev = prv; 1107 if (prv != NULL) prv->_next = nxt; 1108 if (currentNode == _EntryList) _EntryList = nxt; 1109 assert(nxt == NULL || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1110 assert(prv == NULL || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1111 } else { 1112 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1113 // Inopportune interleaving -- current is still on the cxq. 1114 // This usually means the enqueue of self raced an exiting thread. 1115 // Normally we'll find current near the front of the cxq, so 1116 // dequeueing is typically fast. If needbe we can accelerate 1117 // this with some MCS/CHL-like bidirectional list hints and advisory 1118 // back-links so dequeueing from the interior will normally operate 1119 // in constant-time. 1120 // Dequeue current from either the head (with CAS) or from the interior 1121 // with a linear-time scan and normal non-atomic memory operations. 1122 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1123 // and then unlink current from EntryList. We have to drain eventually, 1124 // so it might as well be now. 1125 1126 ObjectWaiter* v = _cxq; 1127 assert(v != NULL, "invariant"); 1128 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1129 // The CAS above can fail from interference IFF a "RAT" arrived. 1130 // In that case current must be in the interior and can no longer be 1131 // at the head of cxq. 1132 if (v == currentNode) { 1133 assert(_cxq != v, "invariant"); 1134 v = _cxq; // CAS above failed - start scan at head of list 1135 } 1136 ObjectWaiter* p; 1137 ObjectWaiter* q = NULL; 1138 for (p = v; p != NULL && p != currentNode; p = p->_next) { 1139 q = p; 1140 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1141 } 1142 assert(v != currentNode, "invariant"); 1143 assert(p == currentNode, "Node not found on cxq"); 1144 assert(p != _cxq, "invariant"); 1145 assert(q != NULL, "invariant"); 1146 assert(q->_next == p, "invariant"); 1147 q->_next = p->_next; 1148 } 1149 } 1150 1151 #ifdef ASSERT 1152 // Diagnostic hygiene ... 1153 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1154 currentNode->_next = (ObjectWaiter*) 0xBAD; 1155 currentNode->TState = ObjectWaiter::TS_RUN; 1156 #endif 1157 } 1158 1159 // ----------------------------------------------------------------------------- 1160 // Exit support 1161 // 1162 // exit() 1163 // ~~~~~~ 1164 // Note that the collector can't reclaim the objectMonitor or deflate 1165 // the object out from underneath the thread calling ::exit() as the 1166 // thread calling ::exit() never transitions to a stable state. 1167 // This inhibits GC, which in turn inhibits asynchronous (and 1168 // inopportune) reclamation of "this". 1169 // 1170 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1171 // There's one exception to the claim above, however. EnterI() can call 1172 // exit() to drop a lock if the acquirer has been externally suspended. 1173 // In that case exit() is called with _thread_state == _thread_blocked, 1174 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1175 // 1176 // 1-0 exit 1177 // ~~~~~~~~ 1178 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of 1179 // the fast-path operators have been optimized so the common ::exit() 1180 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). 1181 // The code emitted by fast_unlock() elides the usual MEMBAR. This 1182 // greatly improves latency -- MEMBAR and CAS having considerable local 1183 // latency on modern processors -- but at the cost of "stranding". Absent the 1184 // MEMBAR, a thread in fast_unlock() can race a thread in the slow 1185 // ::enter() path, resulting in the entering thread being stranding 1186 // and a progress-liveness failure. Stranding is extremely rare. 1187 // We use timers (timed park operations) & periodic polling to detect 1188 // and recover from stranding. Potentially stranded threads periodically 1189 // wake up and poll the lock. See the usage of the _Responsible variable. 1190 // 1191 // The CAS() in enter provides for safety and exclusion, while the CAS or 1192 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking 1193 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. 1194 // We detect and recover from stranding with timers. 1195 // 1196 // If a thread transiently strands it'll park until (a) another 1197 // thread acquires the lock and then drops the lock, at which time the 1198 // exiting thread will notice and unpark the stranded thread, or, (b) 1199 // the timer expires. If the lock is high traffic then the stranding latency 1200 // will be low due to (a). If the lock is low traffic then the odds of 1201 // stranding are lower, although the worst-case stranding latency 1202 // is longer. Critically, we don't want to put excessive load in the 1203 // platform's timer subsystem. We want to minimize both the timer injection 1204 // rate (timers created/sec) as well as the number of timers active at 1205 // any one time. (more precisely, we want to minimize timer-seconds, which is 1206 // the integral of the # of active timers at any instant over time). 1207 // Both impinge on OS scalability. Given that, at most one thread parked on 1208 // a monitor will use a timer. 1209 // 1210 // There is also the risk of a futile wake-up. If we drop the lock 1211 // another thread can reacquire the lock immediately, and we can 1212 // then wake a thread unnecessarily. This is benign, and we've 1213 // structured the code so the windows are short and the frequency 1214 // of such futile wakups is low. 1215 1216 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1217 void* cur = owner_raw(); 1218 if (current != cur) { 1219 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1220 assert(_recursions == 0, "invariant"); 1221 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1222 _recursions = 0; 1223 } else { 1224 // Apparent unbalanced locking ... 1225 // Naively we'd like to throw IllegalMonitorStateException. 1226 // As a practical matter we can neither allocate nor throw an 1227 // exception as ::exit() can be called from leaf routines. 1228 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1229 // Upon deeper reflection, however, in a properly run JVM the only 1230 // way we should encounter this situation is in the presence of 1231 // unbalanced JNI locking. TODO: CheckJNICalls. 1232 // See also: CR4414101 1233 #ifdef ASSERT 1234 LogStreamHandle(Error, monitorinflation) lsh; 1235 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1236 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1237 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1238 print_debug_style_on(&lsh); 1239 assert(false, "Non-balanced monitor enter/exit!"); 1240 #endif 1241 return; 1242 } 1243 } 1244 1245 if (_recursions != 0) { 1246 _recursions--; // this is simple recursive enter 1247 return; 1248 } 1249 1250 // Invariant: after setting Responsible=null an thread must execute 1251 // a MEMBAR or other serializing instruction before fetching EntryList|cxq. 1252 _Responsible = NULL; 1253 1254 #if INCLUDE_JFR 1255 // get the owner's thread id for the MonitorEnter event 1256 // if it is enabled and the thread isn't suspended 1257 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1258 _previous_owner_tid = JFR_THREAD_ID(current); 1259 } 1260 #endif 1261 1262 for (;;) { 1263 assert(current == owner_raw(), "invariant"); 1264 1265 // Drop the lock. 1266 // release semantics: prior loads and stores from within the critical section 1267 // must not float (reorder) past the following store that drops the lock. 1268 // Uses a storeload to separate release_store(owner) from the 1269 // successor check. The try_set_owner() below uses cmpxchg() so 1270 // we get the fence down there. 1271 release_clear_owner(current); 1272 OrderAccess::storeload(); 1273 1274 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != NULL) { 1275 return; 1276 } 1277 // Other threads are blocked trying to acquire the lock. 1278 1279 // Normally the exiting thread is responsible for ensuring succession, 1280 // but if other successors are ready or other entering threads are spinning 1281 // then this thread can simply store NULL into _owner and exit without 1282 // waking a successor. The existence of spinners or ready successors 1283 // guarantees proper succession (liveness). Responsibility passes to the 1284 // ready or running successors. The exiting thread delegates the duty. 1285 // More precisely, if a successor already exists this thread is absolved 1286 // of the responsibility of waking (unparking) one. 1287 // 1288 // The _succ variable is critical to reducing futile wakeup frequency. 1289 // _succ identifies the "heir presumptive" thread that has been made 1290 // ready (unparked) but that has not yet run. We need only one such 1291 // successor thread to guarantee progress. 1292 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1293 // section 3.3 "Futile Wakeup Throttling" for details. 1294 // 1295 // Note that spinners in Enter() also set _succ non-null. 1296 // In the current implementation spinners opportunistically set 1297 // _succ so that exiting threads might avoid waking a successor. 1298 // Another less appealing alternative would be for the exiting thread 1299 // to drop the lock and then spin briefly to see if a spinner managed 1300 // to acquire the lock. If so, the exiting thread could exit 1301 // immediately without waking a successor, otherwise the exiting 1302 // thread would need to dequeue and wake a successor. 1303 // (Note that we'd need to make the post-drop spin short, but no 1304 // shorter than the worst-case round-trip cache-line migration time. 1305 // The dropped lock needs to become visible to the spinner, and then 1306 // the acquisition of the lock by the spinner must become visible to 1307 // the exiting thread). 1308 1309 // It appears that an heir-presumptive (successor) must be made ready. 1310 // Only the current lock owner can manipulate the EntryList or 1311 // drain _cxq, so we need to reacquire the lock. If we fail 1312 // to reacquire the lock the responsibility for ensuring succession 1313 // falls to the new owner. 1314 // 1315 if (try_set_owner_from(NULL, current) != NULL) { 1316 return; 1317 } 1318 1319 guarantee(owner_raw() == current, "invariant"); 1320 1321 ObjectWaiter* w = NULL; 1322 1323 w = _EntryList; 1324 if (w != NULL) { 1325 // I'd like to write: guarantee (w->_thread != current). 1326 // But in practice an exiting thread may find itself on the EntryList. 1327 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1328 // then calls exit(). Exit release the lock by setting O._owner to NULL. 1329 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1330 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1331 // release the lock "O". T2 resumes immediately after the ST of null into 1332 // _owner, above. T2 notices that the EntryList is populated, so it 1333 // reacquires the lock and then finds itself on the EntryList. 1334 // Given all that, we have to tolerate the circumstance where "w" is 1335 // associated with current. 1336 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1337 ExitEpilog(current, w); 1338 return; 1339 } 1340 1341 // If we find that both _cxq and EntryList are null then just 1342 // re-run the exit protocol from the top. 1343 w = _cxq; 1344 if (w == NULL) continue; 1345 1346 // Drain _cxq into EntryList - bulk transfer. 1347 // First, detach _cxq. 1348 // The following loop is tantamount to: w = swap(&cxq, NULL) 1349 for (;;) { 1350 assert(w != NULL, "Invariant"); 1351 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)NULL); 1352 if (u == w) break; 1353 w = u; 1354 } 1355 1356 assert(w != NULL, "invariant"); 1357 assert(_EntryList == NULL, "invariant"); 1358 1359 // Convert the LIFO SLL anchored by _cxq into a DLL. 1360 // The list reorganization step operates in O(LENGTH(w)) time. 1361 // It's critical that this step operate quickly as 1362 // "current" still holds the outer-lock, restricting parallelism 1363 // and effectively lengthening the critical section. 1364 // Invariant: s chases t chases u. 1365 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1366 // we have faster access to the tail. 1367 1368 _EntryList = w; 1369 ObjectWaiter* q = NULL; 1370 ObjectWaiter* p; 1371 for (p = w; p != NULL; p = p->_next) { 1372 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1373 p->TState = ObjectWaiter::TS_ENTER; 1374 p->_prev = q; 1375 q = p; 1376 } 1377 1378 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = NULL 1379 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1380 1381 // See if we can abdicate to a spinner instead of waking a thread. 1382 // A primary goal of the implementation is to reduce the 1383 // context-switch rate. 1384 if (_succ != NULL) continue; 1385 1386 w = _EntryList; 1387 if (w != NULL) { 1388 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1389 ExitEpilog(current, w); 1390 return; 1391 } 1392 } 1393 } 1394 1395 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1396 assert(owner_raw() == current, "invariant"); 1397 1398 // Exit protocol: 1399 // 1. ST _succ = wakee 1400 // 2. membar #loadstore|#storestore; 1401 // 2. ST _owner = NULL 1402 // 3. unpark(wakee) 1403 1404 _succ = Wakee->_thread; 1405 ParkEvent * Trigger = Wakee->_event; 1406 1407 // Hygiene -- once we've set _owner = NULL we can't safely dereference Wakee again. 1408 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1409 // out-of-scope (non-extant). 1410 Wakee = NULL; 1411 1412 // Drop the lock. 1413 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1414 release_clear_owner(current); 1415 OrderAccess::fence(); 1416 1417 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1418 Trigger->unpark(); 1419 1420 // Maintain stats and report events to JVMTI 1421 OM_PERFDATA_OP(Parks, inc()); 1422 } 1423 1424 1425 // ----------------------------------------------------------------------------- 1426 // Class Loader deadlock handling. 1427 // 1428 // complete_exit exits a lock returning recursion count 1429 // complete_exit/reenter operate as a wait without waiting 1430 // complete_exit requires an inflated monitor 1431 // The _owner field is not always the Thread addr even with an 1432 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1433 // thread due to contention. 1434 intx ObjectMonitor::complete_exit(JavaThread* current) { 1435 assert(InitDone, "Unexpectedly not initialized"); 1436 1437 void* cur = owner_raw(); 1438 if (current != cur) { 1439 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1440 assert(_recursions == 0, "internal state error"); 1441 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1442 _recursions = 0; 1443 } 1444 } 1445 1446 guarantee(current == owner_raw(), "complete_exit not owner"); 1447 intx save = _recursions; // record the old recursion count 1448 _recursions = 0; // set the recursion level to be 0 1449 exit(current); // exit the monitor 1450 guarantee(owner_raw() != current, "invariant"); 1451 return save; 1452 } 1453 1454 // reenter() enters a lock and sets recursion count 1455 // complete_exit/reenter operate as a wait without waiting 1456 bool ObjectMonitor::reenter(intx recursions, JavaThread* current) { 1457 1458 guarantee(owner_raw() != current, "reenter already owner"); 1459 if (!enter(current)) { 1460 return false; 1461 } 1462 // Entered the monitor. 1463 guarantee(_recursions == 0, "reenter recursion"); 1464 _recursions = recursions; 1465 return true; 1466 } 1467 1468 // Checks that the current THREAD owns this monitor and causes an 1469 // immediate return if it doesn't. We don't use the CHECK macro 1470 // because we want the IMSE to be the only exception that is thrown 1471 // from the call site when false is returned. Any other pending 1472 // exception is ignored. 1473 #define CHECK_OWNER() \ 1474 do { \ 1475 if (!check_owner(THREAD)) { \ 1476 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1477 return; \ 1478 } \ 1479 } while (false) 1480 1481 // Returns true if the specified thread owns the ObjectMonitor. 1482 // Otherwise returns false and throws IllegalMonitorStateException 1483 // (IMSE). If there is a pending exception and the specified thread 1484 // is not the owner, that exception will be replaced by the IMSE. 1485 bool ObjectMonitor::check_owner(TRAPS) { 1486 JavaThread* current = THREAD; 1487 void* cur = owner_raw(); 1488 assert(cur != anon_owner_ptr(), "no anon owner here"); 1489 if (cur == current) { 1490 return true; 1491 } 1492 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1493 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1494 _recursions = 0; 1495 return true; 1496 } 1497 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1498 "current thread is not owner", false); 1499 } 1500 1501 static inline bool is_excluded(const Klass* monitor_klass) { 1502 assert(monitor_klass != nullptr, "invariant"); 1503 NOT_JFR_RETURN_(false); 1504 JFR_ONLY(return vmSymbols::jfr_chunk_rotation_monitor() == monitor_klass->name()); 1505 } 1506 1507 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1508 ObjectMonitor* monitor, 1509 jlong notifier_tid, 1510 jlong timeout, 1511 bool timedout) { 1512 assert(event != NULL, "invariant"); 1513 assert(monitor != NULL, "invariant"); 1514 const Klass* monitor_klass = monitor->object()->klass(); 1515 if (is_excluded(monitor_klass)) { 1516 return; 1517 } 1518 event->set_monitorClass(monitor_klass); 1519 event->set_timeout(timeout); 1520 // Set an address that is 'unique enough', such that events close in 1521 // time and with the same address are likely (but not guaranteed) to 1522 // belong to the same object. 1523 event->set_address((uintptr_t)monitor); 1524 event->set_notifier(notifier_tid); 1525 event->set_timedOut(timedout); 1526 event->commit(); 1527 } 1528 1529 // ----------------------------------------------------------------------------- 1530 // Wait/Notify/NotifyAll 1531 // 1532 // Note: a subset of changes to ObjectMonitor::wait() 1533 // will need to be replicated in complete_exit 1534 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1535 JavaThread* current = THREAD; 1536 1537 assert(InitDone, "Unexpectedly not initialized"); 1538 1539 CHECK_OWNER(); // Throws IMSE if not owner. 1540 1541 EventJavaMonitorWait event; 1542 1543 // check for a pending interrupt 1544 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1545 // post monitor waited event. Note that this is past-tense, we are done waiting. 1546 if (JvmtiExport::should_post_monitor_waited()) { 1547 // Note: 'false' parameter is passed here because the 1548 // wait was not timed out due to thread interrupt. 1549 JvmtiExport::post_monitor_waited(current, this, false); 1550 1551 // In this short circuit of the monitor wait protocol, the 1552 // current thread never drops ownership of the monitor and 1553 // never gets added to the wait queue so the current thread 1554 // cannot be made the successor. This means that the 1555 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1556 // consume an unpark() meant for the ParkEvent associated with 1557 // this ObjectMonitor. 1558 } 1559 if (event.should_commit()) { 1560 post_monitor_wait_event(&event, this, 0, millis, false); 1561 } 1562 THROW(vmSymbols::java_lang_InterruptedException()); 1563 return; 1564 } 1565 1566 assert(current->_Stalled == 0, "invariant"); 1567 current->_Stalled = intptr_t(this); 1568 current->set_current_waiting_monitor(this); 1569 1570 // create a node to be put into the queue 1571 // Critically, after we reset() the event but prior to park(), we must check 1572 // for a pending interrupt. 1573 ObjectWaiter node(current); 1574 node.TState = ObjectWaiter::TS_WAIT; 1575 current->_ParkEvent->reset(); 1576 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1577 1578 // Enter the waiting queue, which is a circular doubly linked list in this case 1579 // but it could be a priority queue or any data structure. 1580 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1581 // by the the owner of the monitor *except* in the case where park() 1582 // returns because of a timeout of interrupt. Contention is exceptionally rare 1583 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1584 1585 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1586 AddWaiter(&node); 1587 Thread::SpinRelease(&_WaitSetLock); 1588 1589 _Responsible = NULL; 1590 1591 intx save = _recursions; // record the old recursion count 1592 _waiters++; // increment the number of waiters 1593 _recursions = 0; // set the recursion level to be 1 1594 exit(current); // exit the monitor 1595 guarantee(owner_raw() != current, "invariant"); 1596 1597 // The thread is on the WaitSet list - now park() it. 1598 // On MP systems it's conceivable that a brief spin before we park 1599 // could be profitable. 1600 // 1601 // TODO-FIXME: change the following logic to a loop of the form 1602 // while (!timeout && !interrupted && _notified == 0) park() 1603 1604 int ret = OS_OK; 1605 int WasNotified = 0; 1606 1607 // Need to check interrupt state whilst still _thread_in_vm 1608 bool interrupted = interruptible && current->is_interrupted(false); 1609 1610 { // State transition wrappers 1611 OSThread* osthread = current->osthread(); 1612 OSThreadWaitState osts(osthread, true); 1613 1614 assert(current->thread_state() == _thread_in_vm, "invariant"); 1615 1616 { 1617 ClearSuccOnSuspend csos(this); 1618 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos); 1619 if (interrupted || HAS_PENDING_EXCEPTION) { 1620 // Intentionally empty 1621 } else if (node._notified == 0) { 1622 if (millis <= 0) { 1623 current->_ParkEvent->park(); 1624 } else { 1625 ret = current->_ParkEvent->park(millis); 1626 } 1627 } 1628 } 1629 1630 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1631 // from the WaitSet to the EntryList. 1632 // See if we need to remove Node from the WaitSet. 1633 // We use double-checked locking to avoid grabbing _WaitSetLock 1634 // if the thread is not on the wait queue. 1635 // 1636 // Note that we don't need a fence before the fetch of TState. 1637 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1638 // written by the is thread. (perhaps the fetch might even be satisfied 1639 // by a look-aside into the processor's own store buffer, although given 1640 // the length of the code path between the prior ST and this load that's 1641 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1642 // then we'll acquire the lock and then re-fetch a fresh TState value. 1643 // That is, we fail toward safety. 1644 1645 if (node.TState == ObjectWaiter::TS_WAIT) { 1646 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1647 if (node.TState == ObjectWaiter::TS_WAIT) { 1648 DequeueSpecificWaiter(&node); // unlink from WaitSet 1649 assert(node._notified == 0, "invariant"); 1650 node.TState = ObjectWaiter::TS_RUN; 1651 } 1652 Thread::SpinRelease(&_WaitSetLock); 1653 } 1654 1655 // The thread is now either on off-list (TS_RUN), 1656 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1657 // The Node's TState variable is stable from the perspective of this thread. 1658 // No other threads will asynchronously modify TState. 1659 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1660 OrderAccess::loadload(); 1661 if (_succ == current) _succ = NULL; 1662 WasNotified = node._notified; 1663 1664 // Reentry phase -- reacquire the monitor. 1665 // re-enter contended monitor after object.wait(). 1666 // retain OBJECT_WAIT state until re-enter successfully completes 1667 // Thread state is thread_in_vm and oop access is again safe, 1668 // although the raw address of the object may have changed. 1669 // (Don't cache naked oops over safepoints, of course). 1670 1671 // post monitor waited event. Note that this is past-tense, we are done waiting. 1672 if (JvmtiExport::should_post_monitor_waited()) { 1673 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1674 1675 if (node._notified != 0 && _succ == current) { 1676 // In this part of the monitor wait-notify-reenter protocol it 1677 // is possible (and normal) for another thread to do a fastpath 1678 // monitor enter-exit while this thread is still trying to get 1679 // to the reenter portion of the protocol. 1680 // 1681 // The ObjectMonitor was notified and the current thread is 1682 // the successor which also means that an unpark() has already 1683 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1684 // consume the unpark() that was done when the successor was 1685 // set because the same ParkEvent is shared between Java 1686 // monitors and JVM/TI RawMonitors (for now). 1687 // 1688 // We redo the unpark() to ensure forward progress, i.e., we 1689 // don't want all pending threads hanging (parked) with none 1690 // entering the unlocked monitor. 1691 node._event->unpark(); 1692 } 1693 } 1694 1695 if (event.should_commit()) { 1696 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1697 } 1698 1699 OrderAccess::fence(); 1700 1701 assert(current->_Stalled != 0, "invariant"); 1702 current->_Stalled = 0; 1703 1704 assert(owner_raw() != current, "invariant"); 1705 ObjectWaiter::TStates v = node.TState; 1706 if (v == ObjectWaiter::TS_RUN) { 1707 enter(current); 1708 } else { 1709 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1710 ReenterI(current, &node); 1711 node.wait_reenter_end(this); 1712 } 1713 1714 // current has reacquired the lock. 1715 // Lifecycle - the node representing current must not appear on any queues. 1716 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1717 // want residual elements associated with this thread left on any lists. 1718 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1719 assert(owner_raw() == current, "invariant"); 1720 assert(_succ != current, "invariant"); 1721 } // OSThreadWaitState() 1722 1723 current->set_current_waiting_monitor(NULL); 1724 1725 guarantee(_recursions == 0, "invariant"); 1726 _recursions = save // restore the old recursion count 1727 + JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); // increased by the deferred relock count 1728 _waiters--; // decrement the number of waiters 1729 1730 // Verify a few postconditions 1731 assert(owner_raw() == current, "invariant"); 1732 assert(_succ != current, "invariant"); 1733 assert(object()->mark() == markWord::encode(this), "invariant"); 1734 1735 // check if the notification happened 1736 if (!WasNotified) { 1737 // no, it could be timeout or Thread.interrupt() or both 1738 // check for interrupt event, otherwise it is timeout 1739 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1740 THROW(vmSymbols::java_lang_InterruptedException()); 1741 } 1742 } 1743 1744 // NOTE: Spurious wake up will be consider as timeout. 1745 // Monitor notify has precedence over thread interrupt. 1746 } 1747 1748 1749 // Consider: 1750 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1751 // then instead of transferring a thread from the WaitSet to the EntryList 1752 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1753 1754 void ObjectMonitor::INotify(JavaThread* current) { 1755 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1756 ObjectWaiter* iterator = DequeueWaiter(); 1757 if (iterator != NULL) { 1758 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1759 guarantee(iterator->_notified == 0, "invariant"); 1760 // Disposition - what might we do with iterator ? 1761 // a. add it directly to the EntryList - either tail (policy == 1) 1762 // or head (policy == 0). 1763 // b. push it onto the front of the _cxq (policy == 2). 1764 // For now we use (b). 1765 1766 iterator->TState = ObjectWaiter::TS_ENTER; 1767 1768 iterator->_notified = 1; 1769 iterator->_notifier_tid = JFR_THREAD_ID(current); 1770 1771 ObjectWaiter* list = _EntryList; 1772 if (list != NULL) { 1773 assert(list->_prev == NULL, "invariant"); 1774 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1775 assert(list != iterator, "invariant"); 1776 } 1777 1778 // prepend to cxq 1779 if (list == NULL) { 1780 iterator->_next = iterator->_prev = NULL; 1781 _EntryList = iterator; 1782 } else { 1783 iterator->TState = ObjectWaiter::TS_CXQ; 1784 for (;;) { 1785 ObjectWaiter* front = _cxq; 1786 iterator->_next = front; 1787 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1788 break; 1789 } 1790 } 1791 } 1792 1793 // _WaitSetLock protects the wait queue, not the EntryList. We could 1794 // move the add-to-EntryList operation, above, outside the critical section 1795 // protected by _WaitSetLock. In practice that's not useful. With the 1796 // exception of wait() timeouts and interrupts the monitor owner 1797 // is the only thread that grabs _WaitSetLock. There's almost no contention 1798 // on _WaitSetLock so it's not profitable to reduce the length of the 1799 // critical section. 1800 1801 iterator->wait_reenter_begin(this); 1802 } 1803 Thread::SpinRelease(&_WaitSetLock); 1804 } 1805 1806 // Consider: a not-uncommon synchronization bug is to use notify() when 1807 // notifyAll() is more appropriate, potentially resulting in stranded 1808 // threads; this is one example of a lost wakeup. A useful diagnostic 1809 // option is to force all notify() operations to behave as notifyAll(). 1810 // 1811 // Note: We can also detect many such problems with a "minimum wait". 1812 // When the "minimum wait" is set to a small non-zero timeout value 1813 // and the program does not hang whereas it did absent "minimum wait", 1814 // that suggests a lost wakeup bug. 1815 1816 void ObjectMonitor::notify(TRAPS) { 1817 JavaThread* current = THREAD; 1818 CHECK_OWNER(); // Throws IMSE if not owner. 1819 if (_WaitSet == NULL) { 1820 return; 1821 } 1822 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1823 INotify(current); 1824 OM_PERFDATA_OP(Notifications, inc(1)); 1825 } 1826 1827 1828 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1829 // from the waitset to the EntryList. This could be done more efficiently with a 1830 // single bulk transfer but in practice it's not time-critical. Beware too, 1831 // that in prepend-mode we invert the order of the waiters. Let's say that the 1832 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1833 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1834 1835 void ObjectMonitor::notifyAll(TRAPS) { 1836 JavaThread* current = THREAD; 1837 CHECK_OWNER(); // Throws IMSE if not owner. 1838 if (_WaitSet == NULL) { 1839 return; 1840 } 1841 1842 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1843 int tally = 0; 1844 while (_WaitSet != NULL) { 1845 tally++; 1846 INotify(current); 1847 } 1848 1849 OM_PERFDATA_OP(Notifications, inc(tally)); 1850 } 1851 1852 // ----------------------------------------------------------------------------- 1853 // Adaptive Spinning Support 1854 // 1855 // Adaptive spin-then-block - rational spinning 1856 // 1857 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 1858 // algorithm. On high order SMP systems it would be better to start with 1859 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 1860 // a contending thread could enqueue itself on the cxq and then spin locally 1861 // on a thread-specific variable such as its ParkEvent._Event flag. 1862 // That's left as an exercise for the reader. Note that global spinning is 1863 // not problematic on Niagara, as the L2 cache serves the interconnect and 1864 // has both low latency and massive bandwidth. 1865 // 1866 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 1867 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 1868 // (duration) or we can fix the count at approximately the duration of 1869 // a context switch and vary the frequency. Of course we could also 1870 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 1871 // For a description of 'Adaptive spin-then-block mutual exclusion in 1872 // multi-threaded processing,' see U.S. Pat. No. 8046758. 1873 // 1874 // This implementation varies the duration "D", where D varies with 1875 // the success rate of recent spin attempts. (D is capped at approximately 1876 // length of a round-trip context switch). The success rate for recent 1877 // spin attempts is a good predictor of the success rate of future spin 1878 // attempts. The mechanism adapts automatically to varying critical 1879 // section length (lock modality), system load and degree of parallelism. 1880 // D is maintained per-monitor in _SpinDuration and is initialized 1881 // optimistically. Spin frequency is fixed at 100%. 1882 // 1883 // Note that _SpinDuration is volatile, but we update it without locks 1884 // or atomics. The code is designed so that _SpinDuration stays within 1885 // a reasonable range even in the presence of races. The arithmetic 1886 // operations on _SpinDuration are closed over the domain of legal values, 1887 // so at worst a race will install and older but still legal value. 1888 // At the very worst this introduces some apparent non-determinism. 1889 // We might spin when we shouldn't or vice-versa, but since the spin 1890 // count are relatively short, even in the worst case, the effect is harmless. 1891 // 1892 // Care must be taken that a low "D" value does not become an 1893 // an absorbing state. Transient spinning failures -- when spinning 1894 // is overall profitable -- should not cause the system to converge 1895 // on low "D" values. We want spinning to be stable and predictable 1896 // and fairly responsive to change and at the same time we don't want 1897 // it to oscillate, become metastable, be "too" non-deterministic, 1898 // or converge on or enter undesirable stable absorbing states. 1899 // 1900 // We implement a feedback-based control system -- using past behavior 1901 // to predict future behavior. We face two issues: (a) if the 1902 // input signal is random then the spin predictor won't provide optimal 1903 // results, and (b) if the signal frequency is too high then the control 1904 // system, which has some natural response lag, will "chase" the signal. 1905 // (b) can arise from multimodal lock hold times. Transient preemption 1906 // can also result in apparent bimodal lock hold times. 1907 // Although sub-optimal, neither condition is particularly harmful, as 1908 // in the worst-case we'll spin when we shouldn't or vice-versa. 1909 // The maximum spin duration is rather short so the failure modes aren't bad. 1910 // To be conservative, I've tuned the gain in system to bias toward 1911 // _not spinning. Relatedly, the system can sometimes enter a mode where it 1912 // "rings" or oscillates between spinning and not spinning. This happens 1913 // when spinning is just on the cusp of profitability, however, so the 1914 // situation is not dire. The state is benign -- there's no need to add 1915 // hysteresis control to damp the transition rate between spinning and 1916 // not spinning. 1917 1918 // Spinning: Fixed frequency (100%), vary duration 1919 int ObjectMonitor::TrySpin(JavaThread* current) { 1920 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 1921 int ctr = Knob_FixedSpin; 1922 if (ctr != 0) { 1923 while (--ctr >= 0) { 1924 if (TryLock(current) > 0) return 1; 1925 SpinPause(); 1926 } 1927 return 0; 1928 } 1929 1930 for (ctr = Knob_PreSpin + 1; --ctr >= 0;) { 1931 if (TryLock(current) > 0) { 1932 // Increase _SpinDuration ... 1933 // Note that we don't clamp SpinDuration precisely at SpinLimit. 1934 // Raising _SpurDuration to the poverty line is key. 1935 int x = _SpinDuration; 1936 if (x < Knob_SpinLimit) { 1937 if (x < Knob_Poverty) x = Knob_Poverty; 1938 _SpinDuration = x + Knob_BonusB; 1939 } 1940 return 1; 1941 } 1942 SpinPause(); 1943 } 1944 1945 // Admission control - verify preconditions for spinning 1946 // 1947 // We always spin a little bit, just to prevent _SpinDuration == 0 from 1948 // becoming an absorbing state. Put another way, we spin briefly to 1949 // sample, just in case the system load, parallelism, contention, or lock 1950 // modality changed. 1951 // 1952 // Consider the following alternative: 1953 // Periodically set _SpinDuration = _SpinLimit and try a long/full 1954 // spin attempt. "Periodically" might mean after a tally of 1955 // the # of failed spin attempts (or iterations) reaches some threshold. 1956 // This takes us into the realm of 1-out-of-N spinning, where we 1957 // hold the duration constant but vary the frequency. 1958 1959 ctr = _SpinDuration; 1960 if (ctr <= 0) return 0; 1961 1962 if (NotRunnable(current, (JavaThread*) owner_raw())) { 1963 return 0; 1964 } 1965 1966 // We're good to spin ... spin ingress. 1967 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 1968 // when preparing to LD...CAS _owner, etc and the CAS is likely 1969 // to succeed. 1970 if (_succ == NULL) { 1971 _succ = current; 1972 } 1973 Thread* prv = NULL; 1974 1975 // There are three ways to exit the following loop: 1976 // 1. A successful spin where this thread has acquired the lock. 1977 // 2. Spin failure with prejudice 1978 // 3. Spin failure without prejudice 1979 1980 while (--ctr >= 0) { 1981 1982 // Periodic polling -- Check for pending GC 1983 // Threads may spin while they're unsafe. 1984 // We don't want spinning threads to delay the JVM from reaching 1985 // a stop-the-world safepoint or to steal cycles from GC. 1986 // If we detect a pending safepoint we abort in order that 1987 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 1988 // this thread, if safe, doesn't steal cycles from GC. 1989 // This is in keeping with the "no loitering in runtime" rule. 1990 // We periodically check to see if there's a safepoint pending. 1991 if ((ctr & 0xFF) == 0) { 1992 if (SafepointMechanism::should_process(current)) { 1993 goto Abort; // abrupt spin egress 1994 } 1995 SpinPause(); 1996 } 1997 1998 // Probe _owner with TATAS 1999 // If this thread observes the monitor transition or flicker 2000 // from locked to unlocked to locked, then the odds that this 2001 // thread will acquire the lock in this spin attempt go down 2002 // considerably. The same argument applies if the CAS fails 2003 // or if we observe _owner change from one non-null value to 2004 // another non-null value. In such cases we might abort 2005 // the spin without prejudice or apply a "penalty" to the 2006 // spin count-down variable "ctr", reducing it by 100, say. 2007 2008 JavaThread* ox = (JavaThread*) owner_raw(); 2009 if (ox == NULL) { 2010 ox = (JavaThread*)try_set_owner_from(NULL, current); 2011 if (ox == NULL) { 2012 // The CAS succeeded -- this thread acquired ownership 2013 // Take care of some bookkeeping to exit spin state. 2014 if (_succ == current) { 2015 _succ = NULL; 2016 } 2017 2018 // Increase _SpinDuration : 2019 // The spin was successful (profitable) so we tend toward 2020 // longer spin attempts in the future. 2021 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 2022 // If we acquired the lock early in the spin cycle it 2023 // makes sense to increase _SpinDuration proportionally. 2024 // Note that we don't clamp SpinDuration precisely at SpinLimit. 2025 int x = _SpinDuration; 2026 if (x < Knob_SpinLimit) { 2027 if (x < Knob_Poverty) x = Knob_Poverty; 2028 _SpinDuration = x + Knob_Bonus; 2029 } 2030 return 1; 2031 } 2032 2033 // The CAS failed ... we can take any of the following actions: 2034 // * penalize: ctr -= CASPenalty 2035 // * exit spin with prejudice -- goto Abort; 2036 // * exit spin without prejudice. 2037 // * Since CAS is high-latency, retry again immediately. 2038 prv = ox; 2039 goto Abort; 2040 } 2041 2042 // Did lock ownership change hands ? 2043 if (ox != prv && prv != NULL) { 2044 goto Abort; 2045 } 2046 prv = ox; 2047 2048 // Abort the spin if the owner is not executing. 2049 // The owner must be executing in order to drop the lock. 2050 // Spinning while the owner is OFFPROC is idiocy. 2051 // Consider: ctr -= RunnablePenalty ; 2052 if (NotRunnable(current, ox)) { 2053 goto Abort; 2054 } 2055 if (_succ == NULL) { 2056 _succ = current; 2057 } 2058 } 2059 2060 // Spin failed with prejudice -- reduce _SpinDuration. 2061 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 2062 // AIMD is globally stable. 2063 { 2064 int x = _SpinDuration; 2065 if (x > 0) { 2066 // Consider an AIMD scheme like: x -= (x >> 3) + 100 2067 // This is globally sample and tends to damp the response. 2068 x -= Knob_Penalty; 2069 if (x < 0) x = 0; 2070 _SpinDuration = x; 2071 } 2072 } 2073 2074 Abort: 2075 if (_succ == current) { 2076 _succ = NULL; 2077 // Invariant: after setting succ=null a contending thread 2078 // must recheck-retry _owner before parking. This usually happens 2079 // in the normal usage of TrySpin(), but it's safest 2080 // to make TrySpin() as foolproof as possible. 2081 OrderAccess::fence(); 2082 if (TryLock(current) > 0) return 1; 2083 } 2084 return 0; 2085 } 2086 2087 // NotRunnable() -- informed spinning 2088 // 2089 // Don't bother spinning if the owner is not eligible to drop the lock. 2090 // Spin only if the owner thread is _thread_in_Java or _thread_in_vm. 2091 // The thread must be runnable in order to drop the lock in timely fashion. 2092 // If the _owner is not runnable then spinning will not likely be 2093 // successful (profitable). 2094 // 2095 // Beware -- the thread referenced by _owner could have died 2096 // so a simply fetch from _owner->_thread_state might trap. 2097 // Instead, we use SafeFetchXX() to safely LD _owner->_thread_state. 2098 // Because of the lifecycle issues, the _thread_state values 2099 // observed by NotRunnable() might be garbage. NotRunnable must 2100 // tolerate this and consider the observed _thread_state value 2101 // as advisory. 2102 // 2103 // Beware too, that _owner is sometimes a BasicLock address and sometimes 2104 // a thread pointer. 2105 // Alternately, we might tag the type (thread pointer vs basiclock pointer) 2106 // with the LSB of _owner. Another option would be to probabilistically probe 2107 // the putative _owner->TypeTag value. 2108 // 2109 // Checking _thread_state isn't perfect. Even if the thread is 2110 // in_java it might be blocked on a page-fault or have been preempted 2111 // and sitting on a ready/dispatch queue. 2112 // 2113 // The return value from NotRunnable() is *advisory* -- the 2114 // result is based on sampling and is not necessarily coherent. 2115 // The caller must tolerate false-negative and false-positive errors. 2116 // Spinning, in general, is probabilistic anyway. 2117 2118 2119 int ObjectMonitor::NotRunnable(JavaThread* current, JavaThread* ox) { 2120 // Check ox->TypeTag == 2BAD. 2121 if (ox == NULL) return 0; 2122 2123 // Avoid transitive spinning ... 2124 // Say T1 spins or blocks trying to acquire L. T1._Stalled is set to L. 2125 // Immediately after T1 acquires L it's possible that T2, also 2126 // spinning on L, will see L.Owner=T1 and T1._Stalled=L. 2127 // This occurs transiently after T1 acquired L but before 2128 // T1 managed to clear T1.Stalled. T2 does not need to abort 2129 // its spin in this circumstance. 2130 intptr_t BlockedOn = SafeFetchN((intptr_t *) &ox->_Stalled, intptr_t(1)); 2131 2132 if (BlockedOn == 1) return 1; 2133 if (BlockedOn != 0) { 2134 return BlockedOn != intptr_t(this) && owner_raw() == ox; 2135 } 2136 2137 assert(sizeof(ox->_thread_state == sizeof(int)), "invariant"); 2138 int jst = SafeFetch32((int *) &ox->_thread_state, -1);; 2139 // consider also: jst != _thread_in_Java -- but that's overspecific. 2140 return jst == _thread_blocked || jst == _thread_in_native; 2141 } 2142 2143 2144 // ----------------------------------------------------------------------------- 2145 // WaitSet management ... 2146 2147 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2148 _next = NULL; 2149 _prev = NULL; 2150 _notified = 0; 2151 _notifier_tid = 0; 2152 TState = TS_RUN; 2153 _thread = current; 2154 _event = _thread->_ParkEvent; 2155 _active = false; 2156 assert(_event != NULL, "invariant"); 2157 } 2158 2159 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2160 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2161 } 2162 2163 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2164 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2165 } 2166 2167 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2168 assert(node != NULL, "should not add NULL node"); 2169 assert(node->_prev == NULL, "node already in list"); 2170 assert(node->_next == NULL, "node already in list"); 2171 // put node at end of queue (circular doubly linked list) 2172 if (_WaitSet == NULL) { 2173 _WaitSet = node; 2174 node->_prev = node; 2175 node->_next = node; 2176 } else { 2177 ObjectWaiter* head = _WaitSet; 2178 ObjectWaiter* tail = head->_prev; 2179 assert(tail->_next == head, "invariant check"); 2180 tail->_next = node; 2181 head->_prev = node; 2182 node->_next = head; 2183 node->_prev = tail; 2184 } 2185 } 2186 2187 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2188 // dequeue the very first waiter 2189 ObjectWaiter* waiter = _WaitSet; 2190 if (waiter) { 2191 DequeueSpecificWaiter(waiter); 2192 } 2193 return waiter; 2194 } 2195 2196 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2197 assert(node != NULL, "should not dequeue NULL node"); 2198 assert(node->_prev != NULL, "node already removed from list"); 2199 assert(node->_next != NULL, "node already removed from list"); 2200 // when the waiter has woken up because of interrupt, 2201 // timeout or other spurious wake-up, dequeue the 2202 // waiter from waiting list 2203 ObjectWaiter* next = node->_next; 2204 if (next == node) { 2205 assert(node->_prev == node, "invariant check"); 2206 _WaitSet = NULL; 2207 } else { 2208 ObjectWaiter* prev = node->_prev; 2209 assert(prev->_next == node, "invariant check"); 2210 assert(next->_prev == node, "invariant check"); 2211 next->_prev = prev; 2212 prev->_next = next; 2213 if (_WaitSet == node) { 2214 _WaitSet = next; 2215 } 2216 } 2217 node->_next = NULL; 2218 node->_prev = NULL; 2219 } 2220 2221 // ----------------------------------------------------------------------------- 2222 // PerfData support 2223 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = NULL; 2224 PerfCounter * ObjectMonitor::_sync_FutileWakeups = NULL; 2225 PerfCounter * ObjectMonitor::_sync_Parks = NULL; 2226 PerfCounter * ObjectMonitor::_sync_Notifications = NULL; 2227 PerfCounter * ObjectMonitor::_sync_Inflations = NULL; 2228 PerfCounter * ObjectMonitor::_sync_Deflations = NULL; 2229 PerfLongVariable * ObjectMonitor::_sync_MonExtant = NULL; 2230 2231 // One-shot global initialization for the sync subsystem. 2232 // We could also defer initialization and initialize on-demand 2233 // the first time we call ObjectSynchronizer::inflate(). 2234 // Initialization would be protected - like so many things - by 2235 // the MonitorCache_lock. 2236 2237 void ObjectMonitor::Initialize() { 2238 assert(!InitDone, "invariant"); 2239 2240 if (!os::is_MP()) { 2241 Knob_SpinLimit = 0; 2242 Knob_PreSpin = 0; 2243 Knob_FixedSpin = -1; 2244 } 2245 2246 if (UsePerfData) { 2247 EXCEPTION_MARK; 2248 #define NEWPERFCOUNTER(n) \ 2249 { \ 2250 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2251 CHECK); \ 2252 } 2253 #define NEWPERFVARIABLE(n) \ 2254 { \ 2255 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2256 CHECK); \ 2257 } 2258 NEWPERFCOUNTER(_sync_Inflations); 2259 NEWPERFCOUNTER(_sync_Deflations); 2260 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2261 NEWPERFCOUNTER(_sync_FutileWakeups); 2262 NEWPERFCOUNTER(_sync_Parks); 2263 NEWPERFCOUNTER(_sync_Notifications); 2264 NEWPERFVARIABLE(_sync_MonExtant); 2265 #undef NEWPERFCOUNTER 2266 #undef NEWPERFVARIABLE 2267 } 2268 2269 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2270 2271 DEBUG_ONLY(InitDone = true;) 2272 } 2273 2274 void ObjectMonitor::print_on(outputStream* st) const { 2275 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2276 st->print("{contentions=0x%08x,waiters=0x%08x" 2277 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2278 contentions(), waiters(), recursions(), 2279 p2i(owner())); 2280 } 2281 void ObjectMonitor::print() const { print_on(tty); } 2282 2283 #ifdef ASSERT 2284 // Print the ObjectMonitor like a debugger would: 2285 // 2286 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2287 // _header = 0x0000000000000001 2288 // _object = 0x000000070ff45fd0 2289 // _pad_buf0 = { 2290 // [0] = '\0' 2291 // ... 2292 // [43] = '\0' 2293 // } 2294 // _owner = 0x0000000000000000 2295 // _previous_owner_tid = 0 2296 // _pad_buf1 = { 2297 // [0] = '\0' 2298 // ... 2299 // [47] = '\0' 2300 // } 2301 // _next_om = 0x0000000000000000 2302 // _recursions = 0 2303 // _EntryList = 0x0000000000000000 2304 // _cxq = 0x0000000000000000 2305 // _succ = 0x0000000000000000 2306 // _Responsible = 0x0000000000000000 2307 // _Spinner = 0 2308 // _SpinDuration = 5000 2309 // _contentions = 0 2310 // _WaitSet = 0x0000700009756248 2311 // _waiters = 1 2312 // _WaitSetLock = 0 2313 // } 2314 // 2315 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2316 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2317 st->print_cr(" _header = " INTPTR_FORMAT, header().value()); 2318 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2319 st->print_cr(" _pad_buf0 = {"); 2320 st->print_cr(" [0] = '\\0'"); 2321 st->print_cr(" ..."); 2322 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2323 st->print_cr(" }"); 2324 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2325 st->print_cr(" _previous_owner_tid = " JLONG_FORMAT, _previous_owner_tid); 2326 st->print_cr(" _pad_buf1 = {"); 2327 st->print_cr(" [0] = '\\0'"); 2328 st->print_cr(" ..."); 2329 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2330 st->print_cr(" }"); 2331 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2332 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2333 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2334 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2335 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2336 st->print_cr(" _Responsible = " INTPTR_FORMAT, p2i(_Responsible)); 2337 st->print_cr(" _Spinner = %d", _Spinner); 2338 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2339 st->print_cr(" _contentions = %d", contentions()); 2340 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2341 st->print_cr(" _waiters = %d", _waiters); 2342 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2343 st->print_cr("}"); 2344 } 2345 #endif