1 /*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/javaClasses.hpp"
27 #include "jvm.h"
28 #include "classfile/stringTable.hpp"
29 #include "classfile/vmClasses.hpp"
30 #include "classfile/vmSymbols.hpp"
31 #include "code/codeCache.hpp"
32 #include "code/compiledIC.hpp"
33 #include "code/icBuffer.hpp"
34 #include "code/compiledMethod.inline.hpp"
35 #include "code/scopeDesc.hpp"
36 #include "code/vtableStubs.hpp"
37 #include "compiler/abstractCompiler.hpp"
38 #include "compiler/compileBroker.hpp"
39 #include "compiler/disassembler.hpp"
40 #include "gc/shared/barrierSet.hpp"
41 #include "gc/shared/collectedHeap.hpp"
42 #include "gc/shared/gcLocker.inline.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "interpreter/interpreterRuntime.hpp"
45 #include "jfr/jfrEvents.hpp"
46 #include "logging/log.hpp"
47 #include "memory/resourceArea.hpp"
48 #include "memory/universe.hpp"
49 #include "oops/compiledICHolder.inline.hpp"
50 #include "oops/klass.hpp"
51 #include "oops/method.inline.hpp"
52 #include "oops/objArrayKlass.hpp"
53 #include "oops/oop.inline.hpp"
54 #include "prims/forte.hpp"
55 #include "prims/jvmtiExport.hpp"
56 #include "prims/methodHandles.hpp"
57 #include "prims/nativeLookup.hpp"
58 #include "runtime/atomic.hpp"
59 #include "runtime/biasedLocking.hpp"
60 #include "runtime/frame.inline.hpp"
61 #include "runtime/handles.inline.hpp"
62 #include "runtime/init.hpp"
63 #include "runtime/interfaceSupport.inline.hpp"
64 #include "runtime/java.hpp"
65 #include "runtime/javaCalls.hpp"
66 #include "runtime/sharedRuntime.hpp"
67 #include "runtime/stackWatermarkSet.hpp"
68 #include "runtime/stubRoutines.hpp"
69 #include "runtime/synchronizer.hpp"
70 #include "runtime/vframe.inline.hpp"
71 #include "runtime/vframeArray.hpp"
72 #include "runtime/vm_version.hpp"
73 #include "utilities/copy.hpp"
74 #include "utilities/dtrace.hpp"
75 #include "utilities/events.hpp"
76 #include "utilities/hashtable.inline.hpp"
77 #include "utilities/macros.hpp"
78 #include "utilities/xmlstream.hpp"
79 #ifdef COMPILER1
80 #include "c1/c1_Runtime1.hpp"
81 #endif
82
83 // Shared stub locations
84 RuntimeStub* SharedRuntime::_wrong_method_blob;
85 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob;
86 RuntimeStub* SharedRuntime::_ic_miss_blob;
87 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob;
88 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob;
89 RuntimeStub* SharedRuntime::_resolve_static_call_blob;
90 address SharedRuntime::_resolve_static_call_entry;
91
92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
93 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
94 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob;
95 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob;
96
97 #ifdef COMPILER2
98 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob;
99 #endif // COMPILER2
100
101
102 //----------------------------generate_stubs-----------------------------------
103 void SharedRuntime::generate_stubs() {
104 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub");
105 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
106 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
107 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call");
108 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call");
109 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call");
110 _resolve_static_call_entry = _resolve_static_call_blob->entry_point();
111
112 AdapterHandlerLibrary::initialize();
113
114 #if COMPILER2_OR_JVMCI
115 // Vectors are generated only by C2 and JVMCI.
116 bool support_wide = is_wide_vector(MaxVectorSize);
117 if (support_wide) {
118 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
119 }
120 #endif // COMPILER2_OR_JVMCI
121 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
122 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
123
124 generate_deopt_blob();
125
126 #ifdef COMPILER2
127 generate_uncommon_trap_blob();
128 #endif // COMPILER2
129 }
130
131 #include <math.h>
132
133 // Implementation of SharedRuntime
134
135 #ifndef PRODUCT
136 // For statistics
137 int SharedRuntime::_ic_miss_ctr = 0;
138 int SharedRuntime::_wrong_method_ctr = 0;
139 int SharedRuntime::_resolve_static_ctr = 0;
140 int SharedRuntime::_resolve_virtual_ctr = 0;
141 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
142 int SharedRuntime::_implicit_null_throws = 0;
143 int SharedRuntime::_implicit_div0_throws = 0;
144 int SharedRuntime::_throw_null_ctr = 0;
145
146 int64_t SharedRuntime::_nof_normal_calls = 0;
147 int64_t SharedRuntime::_nof_optimized_calls = 0;
148 int64_t SharedRuntime::_nof_inlined_calls = 0;
149 int64_t SharedRuntime::_nof_megamorphic_calls = 0;
150 int64_t SharedRuntime::_nof_static_calls = 0;
151 int64_t SharedRuntime::_nof_inlined_static_calls = 0;
152 int64_t SharedRuntime::_nof_interface_calls = 0;
153 int64_t SharedRuntime::_nof_optimized_interface_calls = 0;
154 int64_t SharedRuntime::_nof_inlined_interface_calls = 0;
155 int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0;
156
157 int SharedRuntime::_new_instance_ctr=0;
158 int SharedRuntime::_new_array_ctr=0;
159 int SharedRuntime::_multi1_ctr=0;
160 int SharedRuntime::_multi2_ctr=0;
161 int SharedRuntime::_multi3_ctr=0;
162 int SharedRuntime::_multi4_ctr=0;
163 int SharedRuntime::_multi5_ctr=0;
164 int SharedRuntime::_mon_enter_stub_ctr=0;
165 int SharedRuntime::_mon_exit_stub_ctr=0;
166 int SharedRuntime::_mon_enter_ctr=0;
167 int SharedRuntime::_mon_exit_ctr=0;
168 int SharedRuntime::_partial_subtype_ctr=0;
169 int SharedRuntime::_jbyte_array_copy_ctr=0;
170 int SharedRuntime::_jshort_array_copy_ctr=0;
171 int SharedRuntime::_jint_array_copy_ctr=0;
172 int SharedRuntime::_jlong_array_copy_ctr=0;
173 int SharedRuntime::_oop_array_copy_ctr=0;
174 int SharedRuntime::_checkcast_array_copy_ctr=0;
175 int SharedRuntime::_unsafe_array_copy_ctr=0;
176 int SharedRuntime::_generic_array_copy_ctr=0;
177 int SharedRuntime::_slow_array_copy_ctr=0;
178 int SharedRuntime::_find_handler_ctr=0;
179 int SharedRuntime::_rethrow_ctr=0;
180
181 int SharedRuntime::_ICmiss_index = 0;
182 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
184
185
186 void SharedRuntime::trace_ic_miss(address at) {
187 for (int i = 0; i < _ICmiss_index; i++) {
188 if (_ICmiss_at[i] == at) {
189 _ICmiss_count[i]++;
190 return;
191 }
192 }
193 int index = _ICmiss_index++;
194 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
195 _ICmiss_at[index] = at;
196 _ICmiss_count[index] = 1;
197 }
198
199 void SharedRuntime::print_ic_miss_histogram() {
200 if (ICMissHistogram) {
201 tty->print_cr("IC Miss Histogram:");
202 int tot_misses = 0;
203 for (int i = 0; i < _ICmiss_index; i++) {
204 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
205 tot_misses += _ICmiss_count[i];
206 }
207 tty->print_cr("Total IC misses: %7d", tot_misses);
208 }
209 }
210 #endif // PRODUCT
211
212
213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
214 return x * y;
215 JRT_END
216
217
218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
219 if (x == min_jlong && y == CONST64(-1)) {
220 return x;
221 } else {
222 return x / y;
223 }
224 JRT_END
225
226
227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
228 if (x == min_jlong && y == CONST64(-1)) {
229 return 0;
230 } else {
231 return x % y;
232 }
233 JRT_END
234
235
236 const juint float_sign_mask = 0x7FFFFFFF;
237 const juint float_infinity = 0x7F800000;
238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
239 const julong double_infinity = CONST64(0x7FF0000000000000);
240
241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y))
242 #ifdef _WIN64
243 // 64-bit Windows on amd64 returns the wrong values for
244 // infinity operands.
245 union { jfloat f; juint i; } xbits, ybits;
246 xbits.f = x;
247 ybits.f = y;
248 // x Mod Infinity == x unless x is infinity
249 if (((xbits.i & float_sign_mask) != float_infinity) &&
250 ((ybits.i & float_sign_mask) == float_infinity) ) {
251 return x;
252 }
253 return ((jfloat)fmod_winx64((double)x, (double)y));
254 #else
255 return ((jfloat)fmod((double)x,(double)y));
256 #endif
257 JRT_END
258
259
260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
261 #ifdef _WIN64
262 union { jdouble d; julong l; } xbits, ybits;
263 xbits.d = x;
264 ybits.d = y;
265 // x Mod Infinity == x unless x is infinity
266 if (((xbits.l & double_sign_mask) != double_infinity) &&
267 ((ybits.l & double_sign_mask) == double_infinity) ) {
268 return x;
269 }
270 return ((jdouble)fmod_winx64((double)x, (double)y));
271 #else
272 return ((jdouble)fmod((double)x,(double)y));
273 #endif
274 JRT_END
275
276 #ifdef __SOFTFP__
277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
278 return x + y;
279 JRT_END
280
281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
282 return x - y;
283 JRT_END
284
285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
286 return x * y;
287 JRT_END
288
289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
290 return x / y;
291 JRT_END
292
293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
294 return x + y;
295 JRT_END
296
297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
298 return x - y;
299 JRT_END
300
301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
302 return x * y;
303 JRT_END
304
305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
306 return x / y;
307 JRT_END
308
309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
310 return (jfloat)x;
311 JRT_END
312
313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
314 return (jdouble)x;
315 JRT_END
316
317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
318 return (jdouble)x;
319 JRT_END
320
321 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y))
322 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/
323 JRT_END
324
325 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y))
326 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
327 JRT_END
328
329 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y))
330 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
331 JRT_END
332
333 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y))
334 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */
335 JRT_END
336
337 // Functions to return the opposite of the aeabi functions for nan.
338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
339 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
340 JRT_END
341
342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
343 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
344 JRT_END
345
346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
347 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
348 JRT_END
349
350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
351 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
352 JRT_END
353
354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
355 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
356 JRT_END
357
358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
359 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
360 JRT_END
361
362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
363 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
364 JRT_END
365
366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
367 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
368 JRT_END
369
370 // Intrinsics make gcc generate code for these.
371 float SharedRuntime::fneg(float f) {
372 return -f;
373 }
374
375 double SharedRuntime::dneg(double f) {
376 return -f;
377 }
378
379 #endif // __SOFTFP__
380
381 #if defined(__SOFTFP__) || defined(E500V2)
382 // Intrinsics make gcc generate code for these.
383 double SharedRuntime::dabs(double f) {
384 return (f <= (double)0.0) ? (double)0.0 - f : f;
385 }
386
387 #endif
388
389 #if defined(__SOFTFP__) || defined(PPC)
390 double SharedRuntime::dsqrt(double f) {
391 return sqrt(f);
392 }
393 #endif
394
395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x))
396 if (g_isnan(x))
397 return 0;
398 if (x >= (jfloat) max_jint)
399 return max_jint;
400 if (x <= (jfloat) min_jint)
401 return min_jint;
402 return (jint) x;
403 JRT_END
404
405
406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x))
407 if (g_isnan(x))
408 return 0;
409 if (x >= (jfloat) max_jlong)
410 return max_jlong;
411 if (x <= (jfloat) min_jlong)
412 return min_jlong;
413 return (jlong) x;
414 JRT_END
415
416
417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
418 if (g_isnan(x))
419 return 0;
420 if (x >= (jdouble) max_jint)
421 return max_jint;
422 if (x <= (jdouble) min_jint)
423 return min_jint;
424 return (jint) x;
425 JRT_END
426
427
428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
429 if (g_isnan(x))
430 return 0;
431 if (x >= (jdouble) max_jlong)
432 return max_jlong;
433 if (x <= (jdouble) min_jlong)
434 return min_jlong;
435 return (jlong) x;
436 JRT_END
437
438
439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
440 return (jfloat)x;
441 JRT_END
442
443
444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
445 return (jfloat)x;
446 JRT_END
447
448
449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
450 return (jdouble)x;
451 JRT_END
452
453 // Exception handling across interpreter/compiler boundaries
454 //
455 // exception_handler_for_return_address(...) returns the continuation address.
456 // The continuation address is the entry point of the exception handler of the
457 // previous frame depending on the return address.
458
459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) {
460 // Note: This is called when we have unwound the frame of the callee that did
461 // throw an exception. So far, no check has been performed by the StackWatermarkSet.
462 // Notably, the stack is not walkable at this point, and hence the check must
463 // be deferred until later. Specifically, any of the handlers returned here in
464 // this function, will get dispatched to, and call deferred checks to
465 // StackWatermarkSet::after_unwind at a point where the stack is walkable.
466 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
467 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
468
469 // Reset method handle flag.
470 current->set_is_method_handle_return(false);
471
472 #if INCLUDE_JVMCI
473 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
474 // and other exception handler continuations do not read it
475 current->set_exception_pc(NULL);
476 #endif // INCLUDE_JVMCI
477
478 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc
479 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
480
481 // The fastest case first
482 CodeBlob* blob = CodeCache::find_blob(return_address);
483 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
484 if (nm != NULL) {
485 // Set flag if return address is a method handle call site.
486 current->set_is_method_handle_return(nm->is_method_handle_return(return_address));
487 // native nmethods don't have exception handlers
488 assert(!nm->is_native_method(), "no exception handler");
489 assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
490 if (nm->is_deopt_pc(return_address)) {
491 // If we come here because of a stack overflow, the stack may be
492 // unguarded. Reguard the stack otherwise if we return to the
493 // deopt blob and the stack bang causes a stack overflow we
494 // crash.
495 StackOverflow* overflow_state = current->stack_overflow_state();
496 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed();
497 if (overflow_state->reserved_stack_activation() != current->stack_base()) {
498 overflow_state->set_reserved_stack_activation(current->stack_base());
499 }
500 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
501 // The deferred StackWatermarkSet::after_unwind check will be performed in
502 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception)
503 return SharedRuntime::deopt_blob()->unpack_with_exception();
504 } else {
505 // The deferred StackWatermarkSet::after_unwind check will be performed in
506 // * OptoRuntime::rethrow_C for C2 code
507 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code
508 return nm->exception_begin();
509 }
510 }
511
512 // Entry code
513 if (StubRoutines::returns_to_call_stub(return_address)) {
514 // The deferred StackWatermarkSet::after_unwind check will be performed in
515 // JavaCallWrapper::~JavaCallWrapper
516 return StubRoutines::catch_exception_entry();
517 }
518 if (blob != NULL && blob->is_optimized_entry_blob()) {
519 return ((OptimizedEntryBlob*)blob)->exception_handler();
520 }
521 // Interpreted code
522 if (Interpreter::contains(return_address)) {
523 // The deferred StackWatermarkSet::after_unwind check will be performed in
524 // InterpreterRuntime::exception_handler_for_exception
525 return Interpreter::rethrow_exception_entry();
526 }
527
528 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
529 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
530
531 #ifndef PRODUCT
532 { ResourceMark rm;
533 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
534 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
535 tty->print_cr("b) other problem");
536 }
537 #endif // PRODUCT
538
539 ShouldNotReachHere();
540 return NULL;
541 }
542
543
544 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address))
545 return raw_exception_handler_for_return_address(current, return_address);
546 JRT_END
547
548
549 address SharedRuntime::get_poll_stub(address pc) {
550 address stub;
551 // Look up the code blob
552 CodeBlob *cb = CodeCache::find_blob(pc);
553
554 // Should be an nmethod
555 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
556
557 // Look up the relocation information
558 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
559 "safepoint polling: type must be poll");
560
561 #ifdef ASSERT
562 if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
563 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
564 Disassembler::decode(cb);
565 fatal("Only polling locations are used for safepoint");
566 }
567 #endif
568
569 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
570 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
571 if (at_poll_return) {
572 assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
573 "polling page return stub not created yet");
574 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
575 } else if (has_wide_vectors) {
576 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
577 "polling page vectors safepoint stub not created yet");
578 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
579 } else {
580 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
581 "polling page safepoint stub not created yet");
582 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
583 }
584 log_debug(safepoint)("... found polling page %s exception at pc = "
585 INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
586 at_poll_return ? "return" : "loop",
587 (intptr_t)pc, (intptr_t)stub);
588 return stub;
589 }
590
591
592 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
593 assert(caller.is_interpreted_frame(), "");
594 int args_size = ArgumentSizeComputer(sig).size() + 1;
595 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
596 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
597 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
598 return result;
599 }
600
601
602 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) {
603 if (JvmtiExport::can_post_on_exceptions()) {
604 vframeStream vfst(current, true);
605 methodHandle method = methodHandle(current, vfst.method());
606 address bcp = method()->bcp_from(vfst.bci());
607 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception());
608 }
609
610 #if INCLUDE_JVMCI
611 if (EnableJVMCI && UseJVMCICompiler) {
612 vframeStream vfst(current, true);
613 methodHandle method = methodHandle(current, vfst.method());
614 int bci = vfst.bci();
615 MethodData* trap_mdo = method->method_data();
616 if (trap_mdo != NULL) {
617 // Set exception_seen if the exceptional bytecode is an invoke
618 Bytecode_invoke call = Bytecode_invoke_check(method, bci);
619 if (call.is_valid()) {
620 ResourceMark rm(current);
621 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL);
622 if (pdata != NULL && pdata->is_BitData()) {
623 BitData* bit_data = (BitData*) pdata;
624 bit_data->set_exception_seen();
625 }
626 }
627 }
628 }
629 #endif
630
631 Exceptions::_throw(current, __FILE__, __LINE__, h_exception);
632 }
633
634 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) {
635 Handle h_exception = Exceptions::new_exception(current, name, message);
636 throw_and_post_jvmti_exception(current, h_exception);
637 }
638
639 // The interpreter code to call this tracing function is only
640 // called/generated when UL is on for redefine, class and has the right level
641 // and tags. Since obsolete methods are never compiled, we don't have
642 // to modify the compilers to generate calls to this function.
643 //
644 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
645 JavaThread* thread, Method* method))
646 if (method->is_obsolete()) {
647 // We are calling an obsolete method, but this is not necessarily
648 // an error. Our method could have been redefined just after we
649 // fetched the Method* from the constant pool.
650 ResourceMark rm;
651 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
652 }
653 return 0;
654 JRT_END
655
656 // ret_pc points into caller; we are returning caller's exception handler
657 // for given exception
658 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
659 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
660 assert(cm != NULL, "must exist");
661 ResourceMark rm;
662
663 #if INCLUDE_JVMCI
664 if (cm->is_compiled_by_jvmci()) {
665 // lookup exception handler for this pc
666 int catch_pco = ret_pc - cm->code_begin();
667 ExceptionHandlerTable table(cm);
668 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
669 if (t != NULL) {
670 return cm->code_begin() + t->pco();
671 } else {
672 return Deoptimization::deoptimize_for_missing_exception_handler(cm);
673 }
674 }
675 #endif // INCLUDE_JVMCI
676
677 nmethod* nm = cm->as_nmethod();
678 ScopeDesc* sd = nm->scope_desc_at(ret_pc);
679 // determine handler bci, if any
680 EXCEPTION_MARK;
681
682 int handler_bci = -1;
683 int scope_depth = 0;
684 if (!force_unwind) {
685 int bci = sd->bci();
686 bool recursive_exception = false;
687 do {
688 bool skip_scope_increment = false;
689 // exception handler lookup
690 Klass* ek = exception->klass();
691 methodHandle mh(THREAD, sd->method());
692 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
693 if (HAS_PENDING_EXCEPTION) {
694 recursive_exception = true;
695 // We threw an exception while trying to find the exception handler.
696 // Transfer the new exception to the exception handle which will
697 // be set into thread local storage, and do another lookup for an
698 // exception handler for this exception, this time starting at the
699 // BCI of the exception handler which caused the exception to be
700 // thrown (bugs 4307310 and 4546590). Set "exception" reference
701 // argument to ensure that the correct exception is thrown (4870175).
702 recursive_exception_occurred = true;
703 exception = Handle(THREAD, PENDING_EXCEPTION);
704 CLEAR_PENDING_EXCEPTION;
705 if (handler_bci >= 0) {
706 bci = handler_bci;
707 handler_bci = -1;
708 skip_scope_increment = true;
709 }
710 }
711 else {
712 recursive_exception = false;
713 }
714 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
715 sd = sd->sender();
716 if (sd != NULL) {
717 bci = sd->bci();
718 }
719 ++scope_depth;
720 }
721 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
722 }
723
724 // found handling method => lookup exception handler
725 int catch_pco = ret_pc - nm->code_begin();
726
727 ExceptionHandlerTable table(nm);
728 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
729 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
730 // Allow abbreviated catch tables. The idea is to allow a method
731 // to materialize its exceptions without committing to the exact
732 // routing of exceptions. In particular this is needed for adding
733 // a synthetic handler to unlock monitors when inlining
734 // synchronized methods since the unlock path isn't represented in
735 // the bytecodes.
736 t = table.entry_for(catch_pco, -1, 0);
737 }
738
739 #ifdef COMPILER1
740 if (t == NULL && nm->is_compiled_by_c1()) {
741 assert(nm->unwind_handler_begin() != NULL, "");
742 return nm->unwind_handler_begin();
743 }
744 #endif
745
746 if (t == NULL) {
747 ttyLocker ttyl;
748 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
749 tty->print_cr(" Exception:");
750 exception->print();
751 tty->cr();
752 tty->print_cr(" Compiled exception table :");
753 table.print();
754 nm->print_code();
755 guarantee(false, "missing exception handler");
756 return NULL;
757 }
758
759 return nm->code_begin() + t->pco();
760 }
761
762 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current))
763 // These errors occur only at call sites
764 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError());
765 JRT_END
766
767 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current))
768 // These errors occur only at call sites
769 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
770 JRT_END
771
772 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current))
773 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
774 JRT_END
775
776 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current))
777 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
778 JRT_END
779
780 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current))
781 // This entry point is effectively only used for NullPointerExceptions which occur at inline
782 // cache sites (when the callee activation is not yet set up) so we are at a call site
783 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL);
784 JRT_END
785
786 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current))
787 throw_StackOverflowError_common(current, false);
788 JRT_END
789
790 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current))
791 throw_StackOverflowError_common(current, true);
792 JRT_END
793
794 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) {
795 // We avoid using the normal exception construction in this case because
796 // it performs an upcall to Java, and we're already out of stack space.
797 JavaThread* THREAD = current; // For exception macros.
798 Klass* k = vmClasses::StackOverflowError_klass();
799 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
800 if (delayed) {
801 java_lang_Throwable::set_message(exception_oop,
802 Universe::delayed_stack_overflow_error_message());
803 }
804 Handle exception (current, exception_oop);
805 if (StackTraceInThrowable) {
806 java_lang_Throwable::fill_in_stack_trace(exception);
807 }
808 // Increment counter for hs_err file reporting
809 Atomic::inc(&Exceptions::_stack_overflow_errors);
810 throw_and_post_jvmti_exception(current, exception);
811 }
812
813 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current,
814 address pc,
815 ImplicitExceptionKind exception_kind)
816 {
817 address target_pc = NULL;
818
819 if (Interpreter::contains(pc)) {
820 switch (exception_kind) {
821 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry();
822 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
823 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry();
824 default: ShouldNotReachHere();
825 }
826 } else {
827 switch (exception_kind) {
828 case STACK_OVERFLOW: {
829 // Stack overflow only occurs upon frame setup; the callee is
830 // going to be unwound. Dispatch to a shared runtime stub
831 // which will cause the StackOverflowError to be fabricated
832 // and processed.
833 // Stack overflow should never occur during deoptimization:
834 // the compiled method bangs the stack by as much as the
835 // interpreter would need in case of a deoptimization. The
836 // deoptimization blob and uncommon trap blob bang the stack
837 // in a debug VM to verify the correctness of the compiled
838 // method stack banging.
839 assert(current->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
840 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
841 return StubRoutines::throw_StackOverflowError_entry();
842 }
843
844 case IMPLICIT_NULL: {
845 if (VtableStubs::contains(pc)) {
846 // We haven't yet entered the callee frame. Fabricate an
847 // exception and begin dispatching it in the caller. Since
848 // the caller was at a call site, it's safe to destroy all
849 // caller-saved registers, as these entry points do.
850 VtableStub* vt_stub = VtableStubs::stub_containing(pc);
851
852 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
853 if (vt_stub == NULL) return NULL;
854
855 if (vt_stub->is_abstract_method_error(pc)) {
856 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
857 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
858 // Instead of throwing the abstract method error here directly, we re-resolve
859 // and will throw the AbstractMethodError during resolve. As a result, we'll
860 // get a more detailed error message.
861 return SharedRuntime::get_handle_wrong_method_stub();
862 } else {
863 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
864 // Assert that the signal comes from the expected location in stub code.
865 assert(vt_stub->is_null_pointer_exception(pc),
866 "obtained signal from unexpected location in stub code");
867 return StubRoutines::throw_NullPointerException_at_call_entry();
868 }
869 } else {
870 CodeBlob* cb = CodeCache::find_blob(pc);
871
872 // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
873 if (cb == NULL) return NULL;
874
875 // Exception happened in CodeCache. Must be either:
876 // 1. Inline-cache check in C2I handler blob,
877 // 2. Inline-cache check in nmethod, or
878 // 3. Implicit null exception in nmethod
879
880 if (!cb->is_compiled()) {
881 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
882 if (!is_in_blob) {
883 // Allow normal crash reporting to handle this
884 return NULL;
885 }
886 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
887 // There is no handler here, so we will simply unwind.
888 return StubRoutines::throw_NullPointerException_at_call_entry();
889 }
890
891 // Otherwise, it's a compiled method. Consult its exception handlers.
892 CompiledMethod* cm = (CompiledMethod*)cb;
893 if (cm->inlinecache_check_contains(pc)) {
894 // exception happened inside inline-cache check code
895 // => the nmethod is not yet active (i.e., the frame
896 // is not set up yet) => use return address pushed by
897 // caller => don't push another return address
898 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
899 return StubRoutines::throw_NullPointerException_at_call_entry();
900 }
901
902 if (cm->method()->is_method_handle_intrinsic()) {
903 // exception happened inside MH dispatch code, similar to a vtable stub
904 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
905 return StubRoutines::throw_NullPointerException_at_call_entry();
906 }
907
908 #ifndef PRODUCT
909 _implicit_null_throws++;
910 #endif
911 target_pc = cm->continuation_for_implicit_null_exception(pc);
912 // If there's an unexpected fault, target_pc might be NULL,
913 // in which case we want to fall through into the normal
914 // error handling code.
915 }
916
917 break; // fall through
918 }
919
920
921 case IMPLICIT_DIVIDE_BY_ZERO: {
922 CompiledMethod* cm = CodeCache::find_compiled(pc);
923 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
924 #ifndef PRODUCT
925 _implicit_div0_throws++;
926 #endif
927 target_pc = cm->continuation_for_implicit_div0_exception(pc);
928 // If there's an unexpected fault, target_pc might be NULL,
929 // in which case we want to fall through into the normal
930 // error handling code.
931 break; // fall through
932 }
933
934 default: ShouldNotReachHere();
935 }
936
937 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
938
939 if (exception_kind == IMPLICIT_NULL) {
940 #ifndef PRODUCT
941 // for AbortVMOnException flag
942 Exceptions::debug_check_abort("java.lang.NullPointerException");
943 #endif //PRODUCT
944 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
945 } else {
946 #ifndef PRODUCT
947 // for AbortVMOnException flag
948 Exceptions::debug_check_abort("java.lang.ArithmeticException");
949 #endif //PRODUCT
950 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
951 }
952 return target_pc;
953 }
954
955 ShouldNotReachHere();
956 return NULL;
957 }
958
959
960 /**
961 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is
962 * installed in the native function entry of all native Java methods before
963 * they get linked to their actual native methods.
964 *
965 * \note
966 * This method actually never gets called! The reason is because
967 * the interpreter's native entries call NativeLookup::lookup() which
968 * throws the exception when the lookup fails. The exception is then
969 * caught and forwarded on the return from NativeLookup::lookup() call
970 * before the call to the native function. This might change in the future.
971 */
972 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
973 {
974 // We return a bad value here to make sure that the exception is
975 // forwarded before we look at the return value.
976 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
977 }
978 JNI_END
979
980 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
981 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
982 }
983
984 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj))
985 #if INCLUDE_JVMCI
986 if (!obj->klass()->has_finalizer()) {
987 return;
988 }
989 #endif // INCLUDE_JVMCI
990 assert(oopDesc::is_oop(obj), "must be a valid oop");
991 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
992 InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
993 JRT_END
994
995 jlong SharedRuntime::get_java_tid(Thread* thread) {
996 if (thread != NULL) {
997 if (thread->is_Java_thread()) {
998 oop obj = thread->as_Java_thread()->threadObj();
999 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1000 }
1001 }
1002 return 0;
1003 }
1004
1005 /**
1006 * This function ought to be a void function, but cannot be because
1007 * it gets turned into a tail-call on sparc, which runs into dtrace bug
1008 * 6254741. Once that is fixed we can remove the dummy return value.
1009 */
1010 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1011 return dtrace_object_alloc_base(Thread::current(), o, size);
1012 }
1013
1014 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1015 assert(DTraceAllocProbes, "wrong call");
1016 Klass* klass = o->klass();
1017 Symbol* name = klass->name();
1018 HOTSPOT_OBJECT_ALLOC(
1019 get_java_tid(thread),
1020 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1021 return 0;
1022 }
1023
1024 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1025 JavaThread* current, Method* method))
1026 assert(DTraceMethodProbes, "wrong call");
1027 Symbol* kname = method->klass_name();
1028 Symbol* name = method->name();
1029 Symbol* sig = method->signature();
1030 HOTSPOT_METHOD_ENTRY(
1031 get_java_tid(current),
1032 (char *) kname->bytes(), kname->utf8_length(),
1033 (char *) name->bytes(), name->utf8_length(),
1034 (char *) sig->bytes(), sig->utf8_length());
1035 return 0;
1036 JRT_END
1037
1038 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1039 JavaThread* current, Method* method))
1040 assert(DTraceMethodProbes, "wrong call");
1041 Symbol* kname = method->klass_name();
1042 Symbol* name = method->name();
1043 Symbol* sig = method->signature();
1044 HOTSPOT_METHOD_RETURN(
1045 get_java_tid(current),
1046 (char *) kname->bytes(), kname->utf8_length(),
1047 (char *) name->bytes(), name->utf8_length(),
1048 (char *) sig->bytes(), sig->utf8_length());
1049 return 0;
1050 JRT_END
1051
1052
1053 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1054 // for a call current in progress, i.e., arguments has been pushed on stack
1055 // put callee has not been invoked yet. Used by: resolve virtual/static,
1056 // vtable updates, etc. Caller frame must be compiled.
1057 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1058 JavaThread* current = THREAD;
1059 ResourceMark rm(current);
1060
1061 // last java frame on stack (which includes native call frames)
1062 vframeStream vfst(current, true); // Do not skip and javaCalls
1063
1064 return find_callee_info_helper(vfst, bc, callinfo, THREAD);
1065 }
1066
1067 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) {
1068 CompiledMethod* caller = vfst.nm();
1069
1070 nmethodLocker caller_lock(caller);
1071
1072 address pc = vfst.frame_pc();
1073 { // Get call instruction under lock because another thread may be busy patching it.
1074 CompiledICLocker ic_locker(caller);
1075 return caller->attached_method_before_pc(pc);
1076 }
1077 return NULL;
1078 }
1079
1080 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1081 // for a call current in progress, i.e., arguments has been pushed on stack
1082 // but callee has not been invoked yet. Caller frame must be compiled.
1083 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc,
1084 CallInfo& callinfo, TRAPS) {
1085 Handle receiver;
1086 Handle nullHandle; // create a handy null handle for exception returns
1087 JavaThread* current = THREAD;
1088
1089 assert(!vfst.at_end(), "Java frame must exist");
1090
1091 // Find caller and bci from vframe
1092 methodHandle caller(current, vfst.method());
1093 int bci = vfst.bci();
1094
1095 Bytecode_invoke bytecode(caller, bci);
1096 int bytecode_index = bytecode.index();
1097 bc = bytecode.invoke_code();
1098
1099 methodHandle attached_method(current, extract_attached_method(vfst));
1100 if (attached_method.not_null()) {
1101 Method* callee = bytecode.static_target(CHECK_NH);
1102 vmIntrinsics::ID id = callee->intrinsic_id();
1103 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1104 // it attaches statically resolved method to the call site.
1105 if (MethodHandles::is_signature_polymorphic(id) &&
1106 MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1107 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1108
1109 // Adjust invocation mode according to the attached method.
1110 switch (bc) {
1111 case Bytecodes::_invokevirtual:
1112 if (attached_method->method_holder()->is_interface()) {
1113 bc = Bytecodes::_invokeinterface;
1114 }
1115 break;
1116 case Bytecodes::_invokeinterface:
1117 if (!attached_method->method_holder()->is_interface()) {
1118 bc = Bytecodes::_invokevirtual;
1119 }
1120 break;
1121 case Bytecodes::_invokehandle:
1122 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1123 bc = attached_method->is_static() ? Bytecodes::_invokestatic
1124 : Bytecodes::_invokevirtual;
1125 }
1126 break;
1127 default:
1128 break;
1129 }
1130 }
1131 }
1132
1133 assert(bc != Bytecodes::_illegal, "not initialized");
1134
1135 bool has_receiver = bc != Bytecodes::_invokestatic &&
1136 bc != Bytecodes::_invokedynamic &&
1137 bc != Bytecodes::_invokehandle;
1138
1139 // Find receiver for non-static call
1140 if (has_receiver) {
1141 // This register map must be update since we need to find the receiver for
1142 // compiled frames. The receiver might be in a register.
1143 RegisterMap reg_map2(current);
1144 frame stubFrame = current->last_frame();
1145 // Caller-frame is a compiled frame
1146 frame callerFrame = stubFrame.sender(®_map2);
1147
1148 if (attached_method.is_null()) {
1149 Method* callee = bytecode.static_target(CHECK_NH);
1150 if (callee == NULL) {
1151 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1152 }
1153 }
1154
1155 // Retrieve from a compiled argument list
1156 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2));
1157
1158 if (receiver.is_null()) {
1159 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1160 }
1161 }
1162
1163 // Resolve method
1164 if (attached_method.not_null()) {
1165 // Parameterized by attached method.
1166 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1167 } else {
1168 // Parameterized by bytecode.
1169 constantPoolHandle constants(current, caller->constants());
1170 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1171 }
1172
1173 #ifdef ASSERT
1174 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1175 if (has_receiver) {
1176 assert(receiver.not_null(), "should have thrown exception");
1177 Klass* receiver_klass = receiver->klass();
1178 Klass* rk = NULL;
1179 if (attached_method.not_null()) {
1180 // In case there's resolved method attached, use its holder during the check.
1181 rk = attached_method->method_holder();
1182 } else {
1183 // Klass is already loaded.
1184 constantPoolHandle constants(current, caller->constants());
1185 rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1186 }
1187 Klass* static_receiver_klass = rk;
1188 assert(receiver_klass->is_subtype_of(static_receiver_klass),
1189 "actual receiver must be subclass of static receiver klass");
1190 if (receiver_klass->is_instance_klass()) {
1191 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1192 tty->print_cr("ERROR: Klass not yet initialized!!");
1193 receiver_klass->print();
1194 }
1195 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1196 }
1197 }
1198 #endif
1199
1200 return receiver;
1201 }
1202
1203 methodHandle SharedRuntime::find_callee_method(TRAPS) {
1204 JavaThread* current = THREAD;
1205 ResourceMark rm(current);
1206 // We need first to check if any Java activations (compiled, interpreted)
1207 // exist on the stack since last JavaCall. If not, we need
1208 // to get the target method from the JavaCall wrapper.
1209 vframeStream vfst(current, true); // Do not skip any javaCalls
1210 methodHandle callee_method;
1211 if (vfst.at_end()) {
1212 // No Java frames were found on stack since we did the JavaCall.
1213 // Hence the stack can only contain an entry_frame. We need to
1214 // find the target method from the stub frame.
1215 RegisterMap reg_map(current, false);
1216 frame fr = current->last_frame();
1217 assert(fr.is_runtime_frame(), "must be a runtimeStub");
1218 fr = fr.sender(®_map);
1219 assert(fr.is_entry_frame(), "must be");
1220 // fr is now pointing to the entry frame.
1221 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method());
1222 } else {
1223 Bytecodes::Code bc;
1224 CallInfo callinfo;
1225 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle()));
1226 callee_method = methodHandle(current, callinfo.selected_method());
1227 }
1228 assert(callee_method()->is_method(), "must be");
1229 return callee_method;
1230 }
1231
1232 // Resolves a call.
1233 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) {
1234 methodHandle callee_method;
1235 callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD);
1236 if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1237 int retry_count = 0;
1238 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1239 callee_method->method_holder() != vmClasses::Object_klass()) {
1240 // If has a pending exception then there is no need to re-try to
1241 // resolve this method.
1242 // If the method has been redefined, we need to try again.
1243 // Hack: we have no way to update the vtables of arrays, so don't
1244 // require that java.lang.Object has been updated.
1245
1246 // It is very unlikely that method is redefined more than 100 times
1247 // in the middle of resolve. If it is looping here more than 100 times
1248 // means then there could be a bug here.
1249 guarantee((retry_count++ < 100),
1250 "Could not resolve to latest version of redefined method");
1251 // method is redefined in the middle of resolve so re-try.
1252 callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD);
1253 }
1254 }
1255 return callee_method;
1256 }
1257
1258 // This fails if resolution required refilling of IC stubs
1259 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame,
1260 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized,
1261 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) {
1262 StaticCallInfo static_call_info;
1263 CompiledICInfo virtual_call_info;
1264
1265 // Make sure the callee nmethod does not get deoptimized and removed before
1266 // we are done patching the code.
1267 CompiledMethod* callee = callee_method->code();
1268
1269 if (callee != NULL) {
1270 assert(callee->is_compiled(), "must be nmethod for patching");
1271 }
1272
1273 if (callee != NULL && !callee->is_in_use()) {
1274 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1275 callee = NULL;
1276 }
1277 nmethodLocker nl_callee(callee);
1278 #ifdef ASSERT
1279 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1280 #endif
1281
1282 bool is_nmethod = caller_nm->is_nmethod();
1283
1284 if (is_virtual) {
1285 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1286 bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1287 Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1288 CompiledIC::compute_monomorphic_entry(callee_method, klass,
1289 is_optimized, static_bound, is_nmethod, virtual_call_info,
1290 CHECK_false);
1291 } else {
1292 // static call
1293 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1294 }
1295
1296 // grab lock, check for deoptimization and potentially patch caller
1297 {
1298 CompiledICLocker ml(caller_nm);
1299
1300 // Lock blocks for safepoint during which both nmethods can change state.
1301
1302 // Now that we are ready to patch if the Method* was redefined then
1303 // don't update call site and let the caller retry.
1304 // Don't update call site if callee nmethod was unloaded or deoptimized.
1305 // Don't update call site if callee nmethod was replaced by an other nmethod
1306 // which may happen when multiply alive nmethod (tiered compilation)
1307 // will be supported.
1308 if (!callee_method->is_old() &&
1309 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1310 NoSafepointVerifier nsv;
1311 #ifdef ASSERT
1312 // We must not try to patch to jump to an already unloaded method.
1313 if (dest_entry_point != 0) {
1314 CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1315 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1316 "should not call unloaded nmethod");
1317 }
1318 #endif
1319 if (is_virtual) {
1320 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1321 if (inline_cache->is_clean()) {
1322 if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1323 return false;
1324 }
1325 }
1326 } else {
1327 if (VM_Version::supports_fast_class_init_checks() &&
1328 invoke_code == Bytecodes::_invokestatic &&
1329 callee_method->needs_clinit_barrier() &&
1330 callee != NULL && callee->is_compiled_by_jvmci()) {
1331 return true; // skip patching for JVMCI
1332 }
1333 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1334 if (ssc->is_clean()) ssc->set(static_call_info);
1335 }
1336 }
1337 } // unlock CompiledICLocker
1338 return true;
1339 }
1340
1341 // Resolves a call. The compilers generate code for calls that go here
1342 // and are patched with the real destination of the call.
1343 methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, TRAPS) {
1344 JavaThread* current = THREAD;
1345 ResourceMark rm(current);
1346 RegisterMap cbl_map(current, false);
1347 frame caller_frame = current->last_frame().sender(&cbl_map);
1348
1349 CodeBlob* caller_cb = caller_frame.cb();
1350 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1351 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1352
1353 // make sure caller is not getting deoptimized
1354 // and removed before we are done with it.
1355 // CLEANUP - with lazy deopt shouldn't need this lock
1356 nmethodLocker caller_lock(caller_nm);
1357
1358 // determine call info & receiver
1359 // note: a) receiver is NULL for static calls
1360 // b) an exception is thrown if receiver is NULL for non-static calls
1361 CallInfo call_info;
1362 Bytecodes::Code invoke_code = Bytecodes::_illegal;
1363 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle()));
1364 methodHandle callee_method(current, call_info.selected_method());
1365
1366 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1367 (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1368 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1369 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1370 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1371
1372 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1373
1374 #ifndef PRODUCT
1375 // tracing/debugging/statistics
1376 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1377 (is_virtual) ? (&_resolve_virtual_ctr) :
1378 (&_resolve_static_ctr);
1379 Atomic::inc(addr);
1380
1381 if (TraceCallFixup) {
1382 ResourceMark rm(current);
1383 tty->print("resolving %s%s (%s) call to",
1384 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1385 Bytecodes::name(invoke_code));
1386 callee_method->print_short_name(tty);
1387 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1388 p2i(caller_frame.pc()), p2i(callee_method->code()));
1389 }
1390 #endif
1391
1392 if (invoke_code == Bytecodes::_invokestatic) {
1393 assert(callee_method->method_holder()->is_initialized() ||
1394 callee_method->method_holder()->is_reentrant_initialization(current),
1395 "invalid class initialization state for invoke_static");
1396 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) {
1397 // In order to keep class initialization check, do not patch call
1398 // site for static call when the class is not fully initialized.
1399 // Proper check is enforced by call site re-resolution on every invocation.
1400 //
1401 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true),
1402 // explicit class initialization check is put in nmethod entry (VEP).
1403 assert(callee_method->method_holder()->is_linked(), "must be");
1404 return callee_method;
1405 }
1406 }
1407
1408 // JSR 292 key invariant:
1409 // If the resolved method is a MethodHandle invoke target, the call
1410 // site must be a MethodHandle call site, because the lambda form might tail-call
1411 // leaving the stack in a state unknown to either caller or callee
1412 // TODO detune for now but we might need it again
1413 // assert(!callee_method->is_compiled_lambda_form() ||
1414 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1415
1416 // Compute entry points. This might require generation of C2I converter
1417 // frames, so we cannot be holding any locks here. Furthermore, the
1418 // computation of the entry points is independent of patching the call. We
1419 // always return the entry-point, but we only patch the stub if the call has
1420 // not been deoptimized. Return values: For a virtual call this is an
1421 // (cached_oop, destination address) pair. For a static call/optimized
1422 // virtual this is just a destination address.
1423
1424 // Patching IC caches may fail if we run out if transition stubs.
1425 // We refill the ic stubs then and try again.
1426 for (;;) {
1427 ICRefillVerifier ic_refill_verifier;
1428 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm,
1429 is_virtual, is_optimized, receiver,
1430 call_info, invoke_code, CHECK_(methodHandle()));
1431 if (successful) {
1432 return callee_method;
1433 } else {
1434 InlineCacheBuffer::refill_ic_stubs();
1435 }
1436 }
1437
1438 }
1439
1440
1441 // Inline caches exist only in compiled code
1442 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current))
1443 #ifdef ASSERT
1444 RegisterMap reg_map(current, false);
1445 frame stub_frame = current->last_frame();
1446 assert(stub_frame.is_runtime_frame(), "sanity check");
1447 frame caller_frame = stub_frame.sender(®_map);
1448 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_optimized_entry_frame(), "unexpected frame");
1449 #endif /* ASSERT */
1450
1451 methodHandle callee_method;
1452 JRT_BLOCK
1453 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL);
1454 // Return Method* through TLS
1455 current->set_vm_result_2(callee_method());
1456 JRT_BLOCK_END
1457 // return compiled code entry point after potential safepoints
1458 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1459 return callee_method->verified_code_entry();
1460 JRT_END
1461
1462
1463 // Handle call site that has been made non-entrant
1464 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current))
1465 // 6243940 We might end up in here if the callee is deoptimized
1466 // as we race to call it. We don't want to take a safepoint if
1467 // the caller was interpreted because the caller frame will look
1468 // interpreted to the stack walkers and arguments are now
1469 // "compiled" so it is much better to make this transition
1470 // invisible to the stack walking code. The i2c path will
1471 // place the callee method in the callee_target. It is stashed
1472 // there because if we try and find the callee by normal means a
1473 // safepoint is possible and have trouble gc'ing the compiled args.
1474 RegisterMap reg_map(current, false);
1475 frame stub_frame = current->last_frame();
1476 assert(stub_frame.is_runtime_frame(), "sanity check");
1477 frame caller_frame = stub_frame.sender(®_map);
1478
1479 if (caller_frame.is_interpreted_frame() ||
1480 caller_frame.is_entry_frame() ||
1481 caller_frame.is_optimized_entry_frame()) {
1482 Method* callee = current->callee_target();
1483 guarantee(callee != NULL && callee->is_method(), "bad handshake");
1484 current->set_vm_result_2(callee);
1485 current->set_callee_target(NULL);
1486 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) {
1487 // Bypass class initialization checks in c2i when caller is in native.
1488 // JNI calls to static methods don't have class initialization checks.
1489 // Fast class initialization checks are present in c2i adapters and call into
1490 // SharedRuntime::handle_wrong_method() on the slow path.
1491 //
1492 // JVM upcalls may land here as well, but there's a proper check present in
1493 // LinkResolver::resolve_static_call (called from JavaCalls::call_static),
1494 // so bypassing it in c2i adapter is benign.
1495 return callee->get_c2i_no_clinit_check_entry();
1496 } else {
1497 return callee->get_c2i_entry();
1498 }
1499 }
1500
1501 // Must be compiled to compiled path which is safe to stackwalk
1502 methodHandle callee_method;
1503 JRT_BLOCK
1504 // Force resolving of caller (if we called from compiled frame)
1505 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL);
1506 current->set_vm_result_2(callee_method());
1507 JRT_BLOCK_END
1508 // return compiled code entry point after potential safepoints
1509 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1510 return callee_method->verified_code_entry();
1511 JRT_END
1512
1513 // Handle abstract method call
1514 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current))
1515 // Verbose error message for AbstractMethodError.
1516 // Get the called method from the invoke bytecode.
1517 vframeStream vfst(current, true);
1518 assert(!vfst.at_end(), "Java frame must exist");
1519 methodHandle caller(current, vfst.method());
1520 Bytecode_invoke invoke(caller, vfst.bci());
1521 DEBUG_ONLY( invoke.verify(); )
1522
1523 // Find the compiled caller frame.
1524 RegisterMap reg_map(current);
1525 frame stubFrame = current->last_frame();
1526 assert(stubFrame.is_runtime_frame(), "must be");
1527 frame callerFrame = stubFrame.sender(®_map);
1528 assert(callerFrame.is_compiled_frame(), "must be");
1529
1530 // Install exception and return forward entry.
1531 address res = StubRoutines::throw_AbstractMethodError_entry();
1532 JRT_BLOCK
1533 methodHandle callee(current, invoke.static_target(current));
1534 if (!callee.is_null()) {
1535 oop recv = callerFrame.retrieve_receiver(®_map);
1536 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1537 res = StubRoutines::forward_exception_entry();
1538 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res));
1539 }
1540 JRT_BLOCK_END
1541 return res;
1542 JRT_END
1543
1544
1545 // resolve a static call and patch code
1546 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current ))
1547 methodHandle callee_method;
1548 JRT_BLOCK
1549 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL);
1550 current->set_vm_result_2(callee_method());
1551 JRT_BLOCK_END
1552 // return compiled code entry point after potential safepoints
1553 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1554 return callee_method->verified_code_entry();
1555 JRT_END
1556
1557
1558 // resolve virtual call and update inline cache to monomorphic
1559 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current))
1560 methodHandle callee_method;
1561 JRT_BLOCK
1562 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL);
1563 current->set_vm_result_2(callee_method());
1564 JRT_BLOCK_END
1565 // return compiled code entry point after potential safepoints
1566 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1567 return callee_method->verified_code_entry();
1568 JRT_END
1569
1570
1571 // Resolve a virtual call that can be statically bound (e.g., always
1572 // monomorphic, so it has no inline cache). Patch code to resolved target.
1573 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current))
1574 methodHandle callee_method;
1575 JRT_BLOCK
1576 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL);
1577 current->set_vm_result_2(callee_method());
1578 JRT_BLOCK_END
1579 // return compiled code entry point after potential safepoints
1580 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1581 return callee_method->verified_code_entry();
1582 JRT_END
1583
1584 // The handle_ic_miss_helper_internal function returns false if it failed due
1585 // to either running out of vtable stubs or ic stubs due to IC transitions
1586 // to transitional states. The needs_ic_stub_refill value will be set if
1587 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper
1588 // refills the IC stubs and tries again.
1589 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm,
1590 const frame& caller_frame, methodHandle callee_method,
1591 Bytecodes::Code bc, CallInfo& call_info,
1592 bool& needs_ic_stub_refill, TRAPS) {
1593 CompiledICLocker ml(caller_nm);
1594 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1595 bool should_be_mono = false;
1596 if (inline_cache->is_optimized()) {
1597 if (TraceCallFixup) {
1598 ResourceMark rm(THREAD);
1599 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1600 callee_method->print_short_name(tty);
1601 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1602 }
1603 should_be_mono = true;
1604 } else if (inline_cache->is_icholder_call()) {
1605 CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1606 if (ic_oop != NULL) {
1607 if (!ic_oop->is_loader_alive()) {
1608 // Deferred IC cleaning due to concurrent class unloading
1609 if (!inline_cache->set_to_clean()) {
1610 needs_ic_stub_refill = true;
1611 return false;
1612 }
1613 } else if (receiver()->klass() == ic_oop->holder_klass()) {
1614 // This isn't a real miss. We must have seen that compiled code
1615 // is now available and we want the call site converted to a
1616 // monomorphic compiled call site.
1617 // We can't assert for callee_method->code() != NULL because it
1618 // could have been deoptimized in the meantime
1619 if (TraceCallFixup) {
1620 ResourceMark rm(THREAD);
1621 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1622 callee_method->print_short_name(tty);
1623 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1624 }
1625 should_be_mono = true;
1626 }
1627 }
1628 }
1629
1630 if (should_be_mono) {
1631 // We have a path that was monomorphic but was going interpreted
1632 // and now we have (or had) a compiled entry. We correct the IC
1633 // by using a new icBuffer.
1634 CompiledICInfo info;
1635 Klass* receiver_klass = receiver()->klass();
1636 inline_cache->compute_monomorphic_entry(callee_method,
1637 receiver_klass,
1638 inline_cache->is_optimized(),
1639 false, caller_nm->is_nmethod(),
1640 info, CHECK_false);
1641 if (!inline_cache->set_to_monomorphic(info)) {
1642 needs_ic_stub_refill = true;
1643 return false;
1644 }
1645 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1646 // Potential change to megamorphic
1647
1648 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false);
1649 if (needs_ic_stub_refill) {
1650 return false;
1651 }
1652 if (!successful) {
1653 if (!inline_cache->set_to_clean()) {
1654 needs_ic_stub_refill = true;
1655 return false;
1656 }
1657 }
1658 } else {
1659 // Either clean or megamorphic
1660 }
1661 return true;
1662 }
1663
1664 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) {
1665 JavaThread* current = THREAD;
1666 ResourceMark rm(current);
1667 CallInfo call_info;
1668 Bytecodes::Code bc;
1669
1670 // receiver is NULL for static calls. An exception is thrown for NULL
1671 // receivers for non-static calls
1672 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle()));
1673 // Compiler1 can produce virtual call sites that can actually be statically bound
1674 // If we fell thru to below we would think that the site was going megamorphic
1675 // when in fact the site can never miss. Worse because we'd think it was megamorphic
1676 // we'd try and do a vtable dispatch however methods that can be statically bound
1677 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1678 // reresolution of the call site (as if we did a handle_wrong_method and not an
1679 // plain ic_miss) and the site will be converted to an optimized virtual call site
1680 // never to miss again. I don't believe C2 will produce code like this but if it
1681 // did this would still be the correct thing to do for it too, hence no ifdef.
1682 //
1683 if (call_info.resolved_method()->can_be_statically_bound()) {
1684 methodHandle callee_method = SharedRuntime::reresolve_call_site(CHECK_(methodHandle()));
1685 if (TraceCallFixup) {
1686 RegisterMap reg_map(current, false);
1687 frame caller_frame = current->last_frame().sender(®_map);
1688 ResourceMark rm(current);
1689 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1690 callee_method->print_short_name(tty);
1691 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1692 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1693 }
1694 return callee_method;
1695 }
1696
1697 methodHandle callee_method(current, call_info.selected_method());
1698
1699 #ifndef PRODUCT
1700 Atomic::inc(&_ic_miss_ctr);
1701
1702 // Statistics & Tracing
1703 if (TraceCallFixup) {
1704 ResourceMark rm(current);
1705 tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1706 callee_method->print_short_name(tty);
1707 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1708 }
1709
1710 if (ICMissHistogram) {
1711 MutexLocker m(VMStatistic_lock);
1712 RegisterMap reg_map(current, false);
1713 frame f = current->last_frame().real_sender(®_map);// skip runtime stub
1714 // produce statistics under the lock
1715 trace_ic_miss(f.pc());
1716 }
1717 #endif
1718
1719 // install an event collector so that when a vtable stub is created the
1720 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1721 // event can't be posted when the stub is created as locks are held
1722 // - instead the event will be deferred until the event collector goes
1723 // out of scope.
1724 JvmtiDynamicCodeEventCollector event_collector;
1725
1726 // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1727 // Transitioning IC caches may require transition stubs. If we run out
1728 // of transition stubs, we have to drop locks and perform a safepoint
1729 // that refills them.
1730 RegisterMap reg_map(current, false);
1731 frame caller_frame = current->last_frame().sender(®_map);
1732 CodeBlob* cb = caller_frame.cb();
1733 CompiledMethod* caller_nm = cb->as_compiled_method();
1734
1735 for (;;) {
1736 ICRefillVerifier ic_refill_verifier;
1737 bool needs_ic_stub_refill = false;
1738 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method,
1739 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle()));
1740 if (successful || !needs_ic_stub_refill) {
1741 return callee_method;
1742 } else {
1743 InlineCacheBuffer::refill_ic_stubs();
1744 }
1745 }
1746 }
1747
1748 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) {
1749 CompiledICLocker ml(caller_nm);
1750 if (is_static_call) {
1751 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1752 if (!ssc->is_clean()) {
1753 return ssc->set_to_clean();
1754 }
1755 } else {
1756 // compiled, dispatched call (which used to call an interpreted method)
1757 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1758 if (!inline_cache->is_clean()) {
1759 return inline_cache->set_to_clean();
1760 }
1761 }
1762 return true;
1763 }
1764
1765 //
1766 // Resets a call-site in compiled code so it will get resolved again.
1767 // This routines handles both virtual call sites, optimized virtual call
1768 // sites, and static call sites. Typically used to change a call sites
1769 // destination from compiled to interpreted.
1770 //
1771 methodHandle SharedRuntime::reresolve_call_site(TRAPS) {
1772 JavaThread* current = THREAD;
1773 ResourceMark rm(current);
1774 RegisterMap reg_map(current, false);
1775 frame stub_frame = current->last_frame();
1776 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1777 frame caller = stub_frame.sender(®_map);
1778
1779 // Do nothing if the frame isn't a live compiled frame.
1780 // nmethod could be deoptimized by the time we get here
1781 // so no update to the caller is needed.
1782
1783 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1784
1785 address pc = caller.pc();
1786
1787 // Check for static or virtual call
1788 bool is_static_call = false;
1789 CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1790
1791 // Default call_addr is the location of the "basic" call.
1792 // Determine the address of the call we a reresolving. With
1793 // Inline Caches we will always find a recognizable call.
1794 // With Inline Caches disabled we may or may not find a
1795 // recognizable call. We will always find a call for static
1796 // calls and for optimized virtual calls. For vanilla virtual
1797 // calls it depends on the state of the UseInlineCaches switch.
1798 //
1799 // With Inline Caches disabled we can get here for a virtual call
1800 // for two reasons:
1801 // 1 - calling an abstract method. The vtable for abstract methods
1802 // will run us thru handle_wrong_method and we will eventually
1803 // end up in the interpreter to throw the ame.
1804 // 2 - a racing deoptimization. We could be doing a vanilla vtable
1805 // call and between the time we fetch the entry address and
1806 // we jump to it the target gets deoptimized. Similar to 1
1807 // we will wind up in the interprter (thru a c2i with c2).
1808 //
1809 address call_addr = NULL;
1810 {
1811 // Get call instruction under lock because another thread may be
1812 // busy patching it.
1813 CompiledICLocker ml(caller_nm);
1814 // Location of call instruction
1815 call_addr = caller_nm->call_instruction_address(pc);
1816 }
1817 // Make sure nmethod doesn't get deoptimized and removed until
1818 // this is done with it.
1819 // CLEANUP - with lazy deopt shouldn't need this lock
1820 nmethodLocker nmlock(caller_nm);
1821
1822 if (call_addr != NULL) {
1823 RelocIterator iter(caller_nm, call_addr, call_addr+1);
1824 int ret = iter.next(); // Get item
1825 if (ret) {
1826 assert(iter.addr() == call_addr, "must find call");
1827 if (iter.type() == relocInfo::static_call_type) {
1828 is_static_call = true;
1829 } else {
1830 assert(iter.type() == relocInfo::virtual_call_type ||
1831 iter.type() == relocInfo::opt_virtual_call_type
1832 , "unexpected relocInfo. type");
1833 }
1834 } else {
1835 assert(!UseInlineCaches, "relocation info. must exist for this address");
1836 }
1837
1838 // Cleaning the inline cache will force a new resolve. This is more robust
1839 // than directly setting it to the new destination, since resolving of calls
1840 // is always done through the same code path. (experience shows that it
1841 // leads to very hard to track down bugs, if an inline cache gets updated
1842 // to a wrong method). It should not be performance critical, since the
1843 // resolve is only done once.
1844
1845 for (;;) {
1846 ICRefillVerifier ic_refill_verifier;
1847 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) {
1848 InlineCacheBuffer::refill_ic_stubs();
1849 } else {
1850 break;
1851 }
1852 }
1853 }
1854 }
1855
1856 methodHandle callee_method = find_callee_method(CHECK_(methodHandle()));
1857
1858
1859 #ifndef PRODUCT
1860 Atomic::inc(&_wrong_method_ctr);
1861
1862 if (TraceCallFixup) {
1863 ResourceMark rm(current);
1864 tty->print("handle_wrong_method reresolving call to");
1865 callee_method->print_short_name(tty);
1866 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1867 }
1868 #endif
1869
1870 return callee_method;
1871 }
1872
1873 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1874 // The faulting unsafe accesses should be changed to throw the error
1875 // synchronously instead. Meanwhile the faulting instruction will be
1876 // skipped over (effectively turning it into a no-op) and an
1877 // asynchronous exception will be raised which the thread will
1878 // handle at a later point. If the instruction is a load it will
1879 // return garbage.
1880
1881 // Request an async exception.
1882 thread->set_pending_unsafe_access_error();
1883
1884 // Return address of next instruction to execute.
1885 return next_pc;
1886 }
1887
1888 #ifdef ASSERT
1889 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1890 const BasicType* sig_bt,
1891 const VMRegPair* regs) {
1892 ResourceMark rm;
1893 const int total_args_passed = method->size_of_parameters();
1894 const VMRegPair* regs_with_member_name = regs;
1895 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1896
1897 const int member_arg_pos = total_args_passed - 1;
1898 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1899 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1900
1901 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1);
1902
1903 for (int i = 0; i < member_arg_pos; i++) {
1904 VMReg a = regs_with_member_name[i].first();
1905 VMReg b = regs_without_member_name[i].first();
1906 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1907 }
1908 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1909 }
1910 #endif
1911
1912 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1913 if (destination != entry_point) {
1914 CodeBlob* callee = CodeCache::find_blob(destination);
1915 // callee == cb seems weird. It means calling interpreter thru stub.
1916 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1917 // static call or optimized virtual
1918 if (TraceCallFixup) {
1919 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1920 moop->print_short_name(tty);
1921 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1922 }
1923 return true;
1924 } else {
1925 if (TraceCallFixup) {
1926 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1927 moop->print_short_name(tty);
1928 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1929 }
1930 // assert is too strong could also be resolve destinations.
1931 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1932 }
1933 } else {
1934 if (TraceCallFixup) {
1935 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1936 moop->print_short_name(tty);
1937 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1938 }
1939 }
1940 return false;
1941 }
1942
1943 // ---------------------------------------------------------------------------
1944 // We are calling the interpreter via a c2i. Normally this would mean that
1945 // we were called by a compiled method. However we could have lost a race
1946 // where we went int -> i2c -> c2i and so the caller could in fact be
1947 // interpreted. If the caller is compiled we attempt to patch the caller
1948 // so he no longer calls into the interpreter.
1949 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1950 Method* moop(method);
1951
1952 // It's possible that deoptimization can occur at a call site which hasn't
1953 // been resolved yet, in which case this function will be called from
1954 // an nmethod that has been patched for deopt and we can ignore the
1955 // request for a fixup.
1956 // Also it is possible that we lost a race in that from_compiled_entry
1957 // is now back to the i2c in that case we don't need to patch and if
1958 // we did we'd leap into space because the callsite needs to use
1959 // "to interpreter" stub in order to load up the Method*. Don't
1960 // ask me how I know this...
1961
1962 // Result from nmethod::is_unloading is not stable across safepoints.
1963 NoSafepointVerifier nsv;
1964
1965 CompiledMethod* callee = moop->code();
1966 if (callee == NULL) {
1967 return;
1968 }
1969
1970 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc
1971 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current()));
1972
1973 CodeBlob* cb = CodeCache::find_blob(caller_pc);
1974 if (cb == NULL || !cb->is_compiled() || callee->is_unloading()) {
1975 return;
1976 }
1977
1978 // The check above makes sure this is a nmethod.
1979 CompiledMethod* nm = cb->as_compiled_method_or_null();
1980 assert(nm, "must be");
1981
1982 // Get the return PC for the passed caller PC.
1983 address return_pc = caller_pc + frame::pc_return_offset;
1984
1985 // There is a benign race here. We could be attempting to patch to a compiled
1986 // entry point at the same time the callee is being deoptimized. If that is
1987 // the case then entry_point may in fact point to a c2i and we'd patch the
1988 // call site with the same old data. clear_code will set code() to NULL
1989 // at the end of it. If we happen to see that NULL then we can skip trying
1990 // to patch. If we hit the window where the callee has a c2i in the
1991 // from_compiled_entry and the NULL isn't present yet then we lose the race
1992 // and patch the code with the same old data. Asi es la vida.
1993
1994 if (moop->code() == NULL) return;
1995
1996 if (nm->is_in_use()) {
1997 // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1998 CompiledICLocker ic_locker(nm);
1999 if (NativeCall::is_call_before(return_pc)) {
2000 ResourceMark mark;
2001 NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
2002 //
2003 // bug 6281185. We might get here after resolving a call site to a vanilla
2004 // virtual call. Because the resolvee uses the verified entry it may then
2005 // see compiled code and attempt to patch the site by calling us. This would
2006 // then incorrectly convert the call site to optimized and its downhill from
2007 // there. If you're lucky you'll get the assert in the bugid, if not you've
2008 // just made a call site that could be megamorphic into a monomorphic site
2009 // for the rest of its life! Just another racing bug in the life of
2010 // fixup_callers_callsite ...
2011 //
2012 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
2013 iter.next();
2014 assert(iter.has_current(), "must have a reloc at java call site");
2015 relocInfo::relocType typ = iter.reloc()->type();
2016 if (typ != relocInfo::static_call_type &&
2017 typ != relocInfo::opt_virtual_call_type &&
2018 typ != relocInfo::static_stub_type) {
2019 return;
2020 }
2021 address destination = call->destination();
2022 address entry_point = callee->verified_entry_point();
2023 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
2024 call->set_destination_mt_safe(entry_point);
2025 }
2026 }
2027 }
2028 JRT_END
2029
2030
2031 // same as JVM_Arraycopy, but called directly from compiled code
2032 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos,
2033 oopDesc* dest, jint dest_pos,
2034 jint length,
2035 JavaThread* current)) {
2036 #ifndef PRODUCT
2037 _slow_array_copy_ctr++;
2038 #endif
2039 // Check if we have null pointers
2040 if (src == NULL || dest == NULL) {
2041 THROW(vmSymbols::java_lang_NullPointerException());
2042 }
2043 // Do the copy. The casts to arrayOop are necessary to the copy_array API,
2044 // even though the copy_array API also performs dynamic checks to ensure
2045 // that src and dest are truly arrays (and are conformable).
2046 // The copy_array mechanism is awkward and could be removed, but
2047 // the compilers don't call this function except as a last resort,
2048 // so it probably doesn't matter.
2049 src->klass()->copy_array((arrayOopDesc*)src, src_pos,
2050 (arrayOopDesc*)dest, dest_pos,
2051 length, current);
2052 }
2053 JRT_END
2054
2055 // The caller of generate_class_cast_message() (or one of its callers)
2056 // must use a ResourceMark in order to correctly free the result.
2057 char* SharedRuntime::generate_class_cast_message(
2058 JavaThread* thread, Klass* caster_klass) {
2059
2060 // Get target class name from the checkcast instruction
2061 vframeStream vfst(thread, true);
2062 assert(!vfst.at_end(), "Java frame must exist");
2063 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
2064 constantPoolHandle cpool(thread, vfst.method()->constants());
2065 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
2066 Symbol* target_klass_name = NULL;
2067 if (target_klass == NULL) {
2068 // This klass should be resolved, but just in case, get the name in the klass slot.
2069 target_klass_name = cpool->klass_name_at(cc.index());
2070 }
2071 return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
2072 }
2073
2074
2075 // The caller of generate_class_cast_message() (or one of its callers)
2076 // must use a ResourceMark in order to correctly free the result.
2077 char* SharedRuntime::generate_class_cast_message(
2078 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
2079 const char* caster_name = caster_klass->external_name();
2080
2081 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
2082 const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() :
2083 target_klass->external_name();
2084
2085 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
2086
2087 const char* caster_klass_description = "";
2088 const char* target_klass_description = "";
2089 const char* klass_separator = "";
2090 if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2091 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2092 } else {
2093 caster_klass_description = caster_klass->class_in_module_of_loader();
2094 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2095 klass_separator = (target_klass != NULL) ? "; " : "";
2096 }
2097
2098 // add 3 for parenthesis and preceeding space
2099 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2100
2101 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2102 if (message == NULL) {
2103 // Shouldn't happen, but don't cause even more problems if it does
2104 message = const_cast<char*>(caster_klass->external_name());
2105 } else {
2106 jio_snprintf(message,
2107 msglen,
2108 "class %s cannot be cast to class %s (%s%s%s)",
2109 caster_name,
2110 target_name,
2111 caster_klass_description,
2112 klass_separator,
2113 target_klass_description
2114 );
2115 }
2116 return message;
2117 }
2118
2119 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2120 (void) JavaThread::current()->stack_overflow_state()->reguard_stack();
2121 JRT_END
2122
2123 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2124 if (!SafepointSynchronize::is_synchronizing()) {
2125 // Only try quick_enter() if we're not trying to reach a safepoint
2126 // so that the calling thread reaches the safepoint more quickly.
2127 if (ObjectSynchronizer::quick_enter(obj, current, lock)) return;
2128 }
2129 // NO_ASYNC required because an async exception on the state transition destructor
2130 // would leave you with the lock held and it would never be released.
2131 // The normal monitorenter NullPointerException is thrown without acquiring a lock
2132 // and the model is that an exception implies the method failed.
2133 JRT_BLOCK_NO_ASYNC
2134 if (PrintBiasedLockingStatistics) {
2135 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2136 }
2137 Handle h_obj(THREAD, obj);
2138 ObjectSynchronizer::enter(h_obj, lock, current);
2139 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2140 JRT_BLOCK_END
2141 }
2142
2143 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2144 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2145 SharedRuntime::monitor_enter_helper(obj, lock, current);
2146 JRT_END
2147
2148 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) {
2149 assert(JavaThread::current() == current, "invariant");
2150 // Exit must be non-blocking, and therefore no exceptions can be thrown.
2151 ExceptionMark em(current);
2152 // The object could become unlocked through a JNI call, which we have no other checks for.
2153 // Give a fatal message if CheckJNICalls. Otherwise we ignore it.
2154 if (obj->is_unlocked()) {
2155 if (CheckJNICalls) {
2156 fatal("Object has been unlocked by JNI");
2157 }
2158 return;
2159 }
2160 ObjectSynchronizer::exit(obj, lock, current);
2161 }
2162
2163 // Handles the uncommon cases of monitor unlocking in compiled code
2164 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current))
2165 SharedRuntime::monitor_exit_helper(obj, lock, current);
2166 JRT_END
2167
2168 #ifndef PRODUCT
2169
2170 void SharedRuntime::print_statistics() {
2171 ttyLocker ttyl;
2172 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'");
2173
2174 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2175
2176 SharedRuntime::print_ic_miss_histogram();
2177
2178 // Dump the JRT_ENTRY counters
2179 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2180 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2181 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2182 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2183 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2184 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2185 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2186
2187 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2188 tty->print_cr("%5d wrong method", _wrong_method_ctr);
2189 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2190 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2191 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2192
2193 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2194 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2195 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2196 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2197 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2198 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2199 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2200 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2201 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2202 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2203 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2204 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2205 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2206 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2207 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2208 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2209
2210 AdapterHandlerLibrary::print_statistics();
2211
2212 if (xtty != NULL) xtty->tail("statistics");
2213 }
2214
2215 inline double percent(int x, int y) {
2216 return 100.0 * x / MAX2(y, 1);
2217 }
2218
2219 inline double percent(int64_t x, int64_t y) {
2220 return 100.0 * x / MAX2(y, (int64_t)1);
2221 }
2222
2223 class MethodArityHistogram {
2224 public:
2225 enum { MAX_ARITY = 256 };
2226 private:
2227 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args
2228 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words
2229 static uint64_t _total_compiled_calls;
2230 static uint64_t _max_compiled_calls_per_method;
2231 static int _max_arity; // max. arity seen
2232 static int _max_size; // max. arg size seen
2233
2234 static void add_method_to_histogram(nmethod* nm) {
2235 Method* method = (nm == NULL) ? NULL : nm->method();
2236 if ((method != NULL) && nm->is_alive()) {
2237 ArgumentCount args(method->signature());
2238 int arity = args.size() + (method->is_static() ? 0 : 1);
2239 int argsize = method->size_of_parameters();
2240 arity = MIN2(arity, MAX_ARITY-1);
2241 argsize = MIN2(argsize, MAX_ARITY-1);
2242 uint64_t count = (uint64_t)method->compiled_invocation_count();
2243 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method;
2244 _total_compiled_calls += count;
2245 _arity_histogram[arity] += count;
2246 _size_histogram[argsize] += count;
2247 _max_arity = MAX2(_max_arity, arity);
2248 _max_size = MAX2(_max_size, argsize);
2249 }
2250 }
2251
2252 void print_histogram_helper(int n, uint64_t* histo, const char* name) {
2253 const int N = MIN2(9, n);
2254 double sum = 0;
2255 double weighted_sum = 0;
2256 for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2257 if (sum >= 1.0) { // prevent divide by zero or divide overflow
2258 double rest = sum;
2259 double percent = sum / 100;
2260 for (int i = 0; i <= N; i++) {
2261 rest -= histo[i];
2262 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent);
2263 }
2264 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent);
2265 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2266 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls);
2267 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method);
2268 } else {
2269 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum);
2270 }
2271 }
2272
2273 void print_histogram() {
2274 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2275 print_histogram_helper(_max_arity, _arity_histogram, "arity");
2276 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):");
2277 print_histogram_helper(_max_size, _size_histogram, "size");
2278 tty->cr();
2279 }
2280
2281 public:
2282 MethodArityHistogram() {
2283 // Take the Compile_lock to protect against changes in the CodeBlob structures
2284 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag);
2285 // Take the CodeCache_lock to protect against changes in the CodeHeap structure
2286 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2287 _max_arity = _max_size = 0;
2288 _total_compiled_calls = 0;
2289 _max_compiled_calls_per_method = 0;
2290 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2291 CodeCache::nmethods_do(add_method_to_histogram);
2292 print_histogram();
2293 }
2294 };
2295
2296 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2297 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2298 uint64_t MethodArityHistogram::_total_compiled_calls;
2299 uint64_t MethodArityHistogram::_max_compiled_calls_per_method;
2300 int MethodArityHistogram::_max_arity;
2301 int MethodArityHistogram::_max_size;
2302
2303 void SharedRuntime::print_call_statistics(uint64_t comp_total) {
2304 tty->print_cr("Calls from compiled code:");
2305 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2306 int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2307 int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2308 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total);
2309 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total));
2310 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2311 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2312 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls));
2313 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2314 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total));
2315 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2316 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2317 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls));
2318 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2319 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2320 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2321 tty->cr();
2322 tty->print_cr("Note 1: counter updates are not MT-safe.");
2323 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2324 tty->print_cr(" %% in nested categories are relative to their category");
2325 tty->print_cr(" (and thus add up to more than 100%% with inlining)");
2326 tty->cr();
2327
2328 MethodArityHistogram h;
2329 }
2330 #endif
2331
2332
2333 // A simple wrapper class around the calling convention information
2334 // that allows sharing of adapters for the same calling convention.
2335 class AdapterFingerPrint : public CHeapObj<mtCode> {
2336 private:
2337 enum {
2338 _basic_type_bits = 4,
2339 _basic_type_mask = right_n_bits(_basic_type_bits),
2340 _basic_types_per_int = BitsPerInt / _basic_type_bits,
2341 _compact_int_count = 3
2342 };
2343 // TO DO: Consider integrating this with a more global scheme for compressing signatures.
2344 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2345
2346 union {
2347 int _compact[_compact_int_count];
2348 int* _fingerprint;
2349 } _value;
2350 int _length; // A negative length indicates the fingerprint is in the compact form,
2351 // Otherwise _value._fingerprint is the array.
2352
2353 // Remap BasicTypes that are handled equivalently by the adapters.
2354 // These are correct for the current system but someday it might be
2355 // necessary to make this mapping platform dependent.
2356 static int adapter_encoding(BasicType in) {
2357 switch (in) {
2358 case T_BOOLEAN:
2359 case T_BYTE:
2360 case T_SHORT:
2361 case T_CHAR:
2362 // There are all promoted to T_INT in the calling convention
2363 return T_INT;
2364
2365 case T_OBJECT:
2366 case T_ARRAY:
2367 // In other words, we assume that any register good enough for
2368 // an int or long is good enough for a managed pointer.
2369 #ifdef _LP64
2370 return T_LONG;
2371 #else
2372 return T_INT;
2373 #endif
2374
2375 case T_INT:
2376 case T_LONG:
2377 case T_FLOAT:
2378 case T_DOUBLE:
2379 case T_VOID:
2380 return in;
2381
2382 default:
2383 ShouldNotReachHere();
2384 return T_CONFLICT;
2385 }
2386 }
2387
2388 public:
2389 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2390 // The fingerprint is based on the BasicType signature encoded
2391 // into an array of ints with eight entries per int.
2392 int* ptr;
2393 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2394 if (len <= _compact_int_count) {
2395 assert(_compact_int_count == 3, "else change next line");
2396 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2397 // Storing the signature encoded as signed chars hits about 98%
2398 // of the time.
2399 _length = -len;
2400 ptr = _value._compact;
2401 } else {
2402 _length = len;
2403 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2404 ptr = _value._fingerprint;
2405 }
2406
2407 // Now pack the BasicTypes with 8 per int
2408 int sig_index = 0;
2409 for (int index = 0; index < len; index++) {
2410 int value = 0;
2411 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) {
2412 int bt = adapter_encoding(sig_bt[sig_index++]);
2413 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2414 value = (value << _basic_type_bits) | bt;
2415 }
2416 ptr[index] = value;
2417 }
2418 }
2419
2420 ~AdapterFingerPrint() {
2421 if (_length > 0) {
2422 FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2423 }
2424 }
2425
2426 int value(int index) {
2427 if (_length < 0) {
2428 return _value._compact[index];
2429 }
2430 return _value._fingerprint[index];
2431 }
2432 int length() {
2433 if (_length < 0) return -_length;
2434 return _length;
2435 }
2436
2437 bool is_compact() {
2438 return _length <= 0;
2439 }
2440
2441 unsigned int compute_hash() {
2442 int hash = 0;
2443 for (int i = 0; i < length(); i++) {
2444 int v = value(i);
2445 hash = (hash << 8) ^ v ^ (hash >> 5);
2446 }
2447 return (unsigned int)hash;
2448 }
2449
2450 const char* as_string() {
2451 stringStream st;
2452 st.print("0x");
2453 for (int i = 0; i < length(); i++) {
2454 st.print("%x", value(i));
2455 }
2456 return st.as_string();
2457 }
2458
2459 #ifndef PRODUCT
2460 // Reconstitutes the basic type arguments from the fingerprint,
2461 // producing strings like LIJDF
2462 const char* as_basic_args_string() {
2463 stringStream st;
2464 bool long_prev = false;
2465 for (int i = 0; i < length(); i++) {
2466 unsigned val = (unsigned)value(i);
2467 // args are packed so that first/lower arguments are in the highest
2468 // bits of each int value, so iterate from highest to the lowest
2469 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) {
2470 unsigned v = (val >> j) & _basic_type_mask;
2471 if (v == 0) {
2472 assert(i == length() - 1, "Only expect zeroes in the last word");
2473 continue;
2474 }
2475 if (long_prev) {
2476 long_prev = false;
2477 if (v == T_VOID) {
2478 st.print("J");
2479 } else {
2480 st.print("L");
2481 }
2482 }
2483 switch (v) {
2484 case T_INT: st.print("I"); break;
2485 case T_LONG: long_prev = true; break;
2486 case T_FLOAT: st.print("F"); break;
2487 case T_DOUBLE: st.print("D"); break;
2488 case T_VOID: break;
2489 default: ShouldNotReachHere();
2490 }
2491 }
2492 }
2493 if (long_prev) {
2494 st.print("L");
2495 }
2496 return st.as_string();
2497 }
2498 #endif // !product
2499
2500 bool equals(AdapterFingerPrint* other) {
2501 if (other->_length != _length) {
2502 return false;
2503 }
2504 if (_length < 0) {
2505 assert(_compact_int_count == 3, "else change next line");
2506 return _value._compact[0] == other->_value._compact[0] &&
2507 _value._compact[1] == other->_value._compact[1] &&
2508 _value._compact[2] == other->_value._compact[2];
2509 } else {
2510 for (int i = 0; i < _length; i++) {
2511 if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2512 return false;
2513 }
2514 }
2515 }
2516 return true;
2517 }
2518 };
2519
2520
2521 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2522 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2523 friend class AdapterHandlerTableIterator;
2524
2525 private:
2526
2527 #ifndef PRODUCT
2528 static int _lookups; // number of calls to lookup
2529 static int _buckets; // number of buckets checked
2530 static int _equals; // number of buckets checked with matching hash
2531 static int _hits; // number of successful lookups
2532 static int _compact; // number of equals calls with compact signature
2533 #endif
2534
2535 AdapterHandlerEntry* bucket(int i) {
2536 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2537 }
2538
2539 public:
2540 AdapterHandlerTable()
2541 : BasicHashtable<mtCode>(293, (sizeof(AdapterHandlerEntry))) { }
2542
2543 // Create a new entry suitable for insertion in the table
2544 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) {
2545 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2546 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2547 return entry;
2548 }
2549
2550 // Insert an entry into the table
2551 void add(AdapterHandlerEntry* entry) {
2552 int index = hash_to_index(entry->hash());
2553 add_entry(index, entry);
2554 }
2555
2556 void free_entry(AdapterHandlerEntry* entry) {
2557 entry->deallocate();
2558 BasicHashtable<mtCode>::free_entry(entry);
2559 }
2560
2561 // Find a entry with the same fingerprint if it exists
2562 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2563 NOT_PRODUCT(_lookups++);
2564 AdapterFingerPrint fp(total_args_passed, sig_bt);
2565 unsigned int hash = fp.compute_hash();
2566 int index = hash_to_index(hash);
2567 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2568 NOT_PRODUCT(_buckets++);
2569 if (e->hash() == hash) {
2570 NOT_PRODUCT(_equals++);
2571 if (fp.equals(e->fingerprint())) {
2572 #ifndef PRODUCT
2573 if (fp.is_compact()) _compact++;
2574 _hits++;
2575 #endif
2576 return e;
2577 }
2578 }
2579 }
2580 return NULL;
2581 }
2582
2583 #ifndef PRODUCT
2584 void print_statistics() {
2585 ResourceMark rm;
2586 int longest = 0;
2587 int empty = 0;
2588 int total = 0;
2589 int nonempty = 0;
2590 for (int index = 0; index < table_size(); index++) {
2591 int count = 0;
2592 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2593 count++;
2594 }
2595 if (count != 0) nonempty++;
2596 if (count == 0) empty++;
2597 if (count > longest) longest = count;
2598 total += count;
2599 }
2600 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2601 empty, longest, total, total / (double)nonempty);
2602 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2603 _lookups, _buckets, _equals, _hits, _compact);
2604 }
2605 #endif
2606 };
2607
2608
2609 #ifndef PRODUCT
2610
2611 int AdapterHandlerTable::_lookups;
2612 int AdapterHandlerTable::_buckets;
2613 int AdapterHandlerTable::_equals;
2614 int AdapterHandlerTable::_hits;
2615 int AdapterHandlerTable::_compact;
2616
2617 #endif
2618
2619 class AdapterHandlerTableIterator : public StackObj {
2620 private:
2621 AdapterHandlerTable* _table;
2622 int _index;
2623 AdapterHandlerEntry* _current;
2624
2625 void scan() {
2626 while (_index < _table->table_size()) {
2627 AdapterHandlerEntry* a = _table->bucket(_index);
2628 _index++;
2629 if (a != NULL) {
2630 _current = a;
2631 return;
2632 }
2633 }
2634 }
2635
2636 public:
2637 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2638 scan();
2639 }
2640 bool has_next() {
2641 return _current != NULL;
2642 }
2643 AdapterHandlerEntry* next() {
2644 if (_current != NULL) {
2645 AdapterHandlerEntry* result = _current;
2646 _current = _current->next();
2647 if (_current == NULL) scan();
2648 return result;
2649 } else {
2650 return NULL;
2651 }
2652 }
2653 };
2654
2655
2656 // ---------------------------------------------------------------------------
2657 // Implementation of AdapterHandlerLibrary
2658 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2659 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2660 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = NULL;
2661 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = NULL;
2662 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = NULL;
2663 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = NULL;
2664 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = NULL;
2665 const int AdapterHandlerLibrary_size = 16*K;
2666 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2667
2668 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2669 return _buffer;
2670 }
2671
2672 extern "C" void unexpected_adapter_call() {
2673 ShouldNotCallThis();
2674 }
2675
2676 static void post_adapter_creation(const AdapterBlob* new_adapter, const AdapterHandlerEntry* entry) {
2677 char blob_id[256];
2678 jio_snprintf(blob_id,
2679 sizeof(blob_id),
2680 "%s(%s)",
2681 new_adapter->name(),
2682 entry->fingerprint()->as_string());
2683 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2684
2685 if (JvmtiExport::should_post_dynamic_code_generated()) {
2686 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2687 }
2688 }
2689
2690 void AdapterHandlerLibrary::initialize() {
2691 ResourceMark rm;
2692 AdapterBlob* no_arg_blob = NULL;
2693 AdapterBlob* int_arg_blob = NULL;
2694 AdapterBlob* obj_arg_blob = NULL;
2695 AdapterBlob* obj_int_arg_blob = NULL;
2696 AdapterBlob* obj_obj_arg_blob = NULL;
2697 {
2698 MutexLocker mu(AdapterHandlerLibrary_lock);
2699 assert(_adapters == NULL, "Initializing more than once");
2700
2701 _adapters = new AdapterHandlerTable();
2702
2703 // Create a special handler for abstract methods. Abstract methods
2704 // are never compiled so an i2c entry is somewhat meaningless, but
2705 // throw AbstractMethodError just in case.
2706 // Pass wrong_method_abstract for the c2i transitions to return
2707 // AbstractMethodError for invalid invocations.
2708 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2709 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2710 StubRoutines::throw_AbstractMethodError_entry(),
2711 wrong_method_abstract, wrong_method_abstract);
2712
2713 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2714
2715 _no_arg_handler = create_adapter(no_arg_blob, 0, NULL, true);
2716
2717 BasicType obj_args[] = { T_OBJECT };
2718 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true);
2719
2720 BasicType int_args[] = { T_INT };
2721 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true);
2722
2723 BasicType obj_int_args[] = { T_OBJECT, T_INT };
2724 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true);
2725
2726 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT };
2727 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true);
2728
2729 assert(no_arg_blob != NULL &&
2730 obj_arg_blob != NULL &&
2731 int_arg_blob != NULL &&
2732 obj_int_arg_blob != NULL &&
2733 obj_obj_arg_blob != NULL, "Initial adapters must be properly created");
2734 }
2735
2736 // Outside of the lock
2737 post_adapter_creation(no_arg_blob, _no_arg_handler);
2738 post_adapter_creation(obj_arg_blob, _obj_arg_handler);
2739 post_adapter_creation(int_arg_blob, _int_arg_handler);
2740 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler);
2741 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler);
2742 }
2743
2744 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2745 address i2c_entry,
2746 address c2i_entry,
2747 address c2i_unverified_entry,
2748 address c2i_no_clinit_check_entry) {
2749 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
2750 }
2751
2752 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) {
2753 if (method->is_abstract()) {
2754 return _abstract_method_handler;
2755 }
2756 int total_args_passed = method->size_of_parameters(); // All args on stack
2757 if (total_args_passed == 0) {
2758 return _no_arg_handler;
2759 } else if (total_args_passed == 1) {
2760 if (!method->is_static()) {
2761 return _obj_arg_handler;
2762 }
2763 switch (method->signature()->char_at(1)) {
2764 case JVM_SIGNATURE_CLASS:
2765 case JVM_SIGNATURE_ARRAY:
2766 return _obj_arg_handler;
2767 case JVM_SIGNATURE_INT:
2768 case JVM_SIGNATURE_BOOLEAN:
2769 case JVM_SIGNATURE_CHAR:
2770 case JVM_SIGNATURE_BYTE:
2771 case JVM_SIGNATURE_SHORT:
2772 return _int_arg_handler;
2773 }
2774 } else if (total_args_passed == 2 &&
2775 !method->is_static()) {
2776 switch (method->signature()->char_at(1)) {
2777 case JVM_SIGNATURE_CLASS:
2778 case JVM_SIGNATURE_ARRAY:
2779 return _obj_obj_arg_handler;
2780 case JVM_SIGNATURE_INT:
2781 case JVM_SIGNATURE_BOOLEAN:
2782 case JVM_SIGNATURE_CHAR:
2783 case JVM_SIGNATURE_BYTE:
2784 case JVM_SIGNATURE_SHORT:
2785 return _obj_int_arg_handler;
2786 }
2787 }
2788 return NULL;
2789 }
2790
2791 class AdapterSignatureIterator : public SignatureIterator {
2792 private:
2793 BasicType stack_sig_bt[16];
2794 BasicType* sig_bt;
2795 int index;
2796
2797 public:
2798 AdapterSignatureIterator(Symbol* signature,
2799 fingerprint_t fingerprint,
2800 bool is_static,
2801 int total_args_passed) :
2802 SignatureIterator(signature, fingerprint),
2803 index(0)
2804 {
2805 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2806 if (!is_static) { // Pass in receiver first
2807 sig_bt[index++] = T_OBJECT;
2808 }
2809 do_parameters_on(this);
2810 }
2811
2812 BasicType* basic_types() {
2813 return sig_bt;
2814 }
2815
2816 #ifdef ASSERT
2817 int slots() {
2818 return index;
2819 }
2820 #endif
2821
2822 private:
2823
2824 friend class SignatureIterator; // so do_parameters_on can call do_type
2825 void do_type(BasicType type) {
2826 sig_bt[index++] = type;
2827 if (type == T_LONG || type == T_DOUBLE) {
2828 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots
2829 }
2830 }
2831 };
2832
2833 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2834 // Use customized signature handler. Need to lock around updates to
2835 // the AdapterHandlerTable (it is not safe for concurrent readers
2836 // and a single writer: this could be fixed if it becomes a
2837 // problem).
2838 assert(_adapters != NULL, "Uninitialized");
2839
2840 // Fast-path for trivial adapters
2841 AdapterHandlerEntry* entry = get_simple_adapter(method);
2842 if (entry != NULL) {
2843 return entry;
2844 }
2845
2846 ResourceMark rm;
2847 AdapterBlob* new_adapter = NULL;
2848
2849 // Fill in the signature array, for the calling-convention call.
2850 int total_args_passed = method->size_of_parameters(); // All args on stack
2851
2852 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
2853 method->is_static(), total_args_passed);
2854 assert(si.slots() == total_args_passed, "");
2855 BasicType* sig_bt = si.basic_types();
2856 {
2857 MutexLocker mu(AdapterHandlerLibrary_lock);
2858
2859 // Lookup method signature's fingerprint
2860 entry = _adapters->lookup(total_args_passed, sig_bt);
2861
2862 if (entry != NULL) {
2863 #ifdef ASSERT
2864 if (VerifyAdapterSharing) {
2865 AdapterBlob* comparison_blob = NULL;
2866 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false);
2867 assert(comparison_blob == NULL, "no blob should be created when creating an adapter for comparison");
2868 assert(comparison_entry->compare_code(entry), "code must match");
2869 // Release the one just created and return the original
2870 _adapters->free_entry(comparison_entry);
2871 }
2872 #endif
2873 return entry;
2874 }
2875
2876 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true);
2877 }
2878
2879 // Outside of the lock
2880 if (new_adapter != NULL) {
2881 post_adapter_creation(new_adapter, entry);
2882 }
2883 return entry;
2884 }
2885
2886 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter,
2887 int total_args_passed,
2888 BasicType* sig_bt,
2889 bool allocate_code_blob) {
2890
2891 // StubRoutines::code2() is initialized after this function can be called. As a result,
2892 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2893 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2894 // stub that ensure that an I2C stub is called from an interpreter frame.
2895 bool contains_all_checks = StubRoutines::code2() != NULL;
2896
2897 VMRegPair stack_regs[16];
2898 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2899
2900 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2901 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
2902 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2903 CodeBuffer buffer(buf);
2904 short buffer_locs[20];
2905 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2906 sizeof(buffer_locs)/sizeof(relocInfo));
2907
2908 // Make a C heap allocated version of the fingerprint to store in the adapter
2909 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2910 MacroAssembler _masm(&buffer);
2911 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2912 total_args_passed,
2913 comp_args_on_stack,
2914 sig_bt,
2915 regs,
2916 fingerprint);
2917
2918 #ifdef ASSERT
2919 if (VerifyAdapterSharing) {
2920 entry->save_code(buf->code_begin(), buffer.insts_size());
2921 if (!allocate_code_blob) {
2922 return entry;
2923 }
2924 }
2925 #endif
2926
2927 new_adapter = AdapterBlob::create(&buffer);
2928 NOT_PRODUCT(int insts_size = buffer.insts_size());
2929 if (new_adapter == NULL) {
2930 // CodeCache is full, disable compilation
2931 // Ought to log this but compile log is only per compile thread
2932 // and we're some non descript Java thread.
2933 return NULL;
2934 }
2935 entry->relocate(new_adapter->content_begin());
2936 #ifndef PRODUCT
2937 // debugging suppport
2938 if (PrintAdapterHandlers || PrintStubCode) {
2939 ttyLocker ttyl;
2940 entry->print_adapter_on(tty);
2941 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2942 _adapters->number_of_entries(), fingerprint->as_basic_args_string(),
2943 fingerprint->as_string(), insts_size);
2944 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2945 if (Verbose || PrintStubCode) {
2946 address first_pc = entry->base_address();
2947 if (first_pc != NULL) {
2948 Disassembler::decode(first_pc, first_pc + insts_size);
2949 tty->cr();
2950 }
2951 }
2952 }
2953 #endif
2954
2955 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2956 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2957 if (contains_all_checks || !VerifyAdapterCalls) {
2958 _adapters->add(entry);
2959 }
2960 return entry;
2961 }
2962
2963 address AdapterHandlerEntry::base_address() {
2964 address base = _i2c_entry;
2965 if (base == NULL) base = _c2i_entry;
2966 assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2967 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2968 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, "");
2969 return base;
2970 }
2971
2972 void AdapterHandlerEntry::relocate(address new_base) {
2973 address old_base = base_address();
2974 assert(old_base != NULL, "");
2975 ptrdiff_t delta = new_base - old_base;
2976 if (_i2c_entry != NULL)
2977 _i2c_entry += delta;
2978 if (_c2i_entry != NULL)
2979 _c2i_entry += delta;
2980 if (_c2i_unverified_entry != NULL)
2981 _c2i_unverified_entry += delta;
2982 if (_c2i_no_clinit_check_entry != NULL)
2983 _c2i_no_clinit_check_entry += delta;
2984 assert(base_address() == new_base, "");
2985 }
2986
2987
2988 void AdapterHandlerEntry::deallocate() {
2989 delete _fingerprint;
2990 #ifdef ASSERT
2991 FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2992 #endif
2993 }
2994
2995
2996 #ifdef ASSERT
2997 // Capture the code before relocation so that it can be compared
2998 // against other versions. If the code is captured after relocation
2999 // then relative instructions won't be equivalent.
3000 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
3001 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
3002 _saved_code_length = length;
3003 memcpy(_saved_code, buffer, length);
3004 }
3005
3006
3007 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) {
3008 assert(_saved_code != NULL && other->_saved_code != NULL, "code not saved");
3009
3010 if (other->_saved_code_length != _saved_code_length) {
3011 return false;
3012 }
3013
3014 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0;
3015 }
3016 #endif
3017
3018
3019 /**
3020 * Create a native wrapper for this native method. The wrapper converts the
3021 * Java-compiled calling convention to the native convention, handles
3022 * arguments, and transitions to native. On return from the native we transition
3023 * back to java blocking if a safepoint is in progress.
3024 */
3025 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
3026 ResourceMark rm;
3027 nmethod* nm = NULL;
3028 address critical_entry = NULL;
3029
3030 assert(method->is_native(), "must be native");
3031 assert(method->is_method_handle_intrinsic() ||
3032 method->has_native_function(), "must have something valid to call!");
3033
3034 if (CriticalJNINatives && !method->is_method_handle_intrinsic()) {
3035 // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock.
3036 critical_entry = NativeLookup::lookup_critical_entry(method);
3037 }
3038
3039 {
3040 // Perform the work while holding the lock, but perform any printing outside the lock
3041 MutexLocker mu(AdapterHandlerLibrary_lock);
3042 // See if somebody beat us to it
3043 if (method->code() != NULL) {
3044 return;
3045 }
3046
3047 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
3048 assert(compile_id > 0, "Must generate native wrapper");
3049
3050
3051 ResourceMark rm;
3052 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
3053 if (buf != NULL) {
3054 CodeBuffer buffer(buf);
3055 struct { double data[20]; } locs_buf;
3056 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
3057 #if defined(AARCH64)
3058 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be
3059 // in the constant pool to ensure ordering between the barrier and oops
3060 // accesses. For native_wrappers we need a constant.
3061 buffer.initialize_consts_size(8);
3062 #endif
3063 MacroAssembler _masm(&buffer);
3064
3065 // Fill in the signature array, for the calling-convention call.
3066 const int total_args_passed = method->size_of_parameters();
3067
3068 VMRegPair stack_regs[16];
3069 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
3070
3071 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(),
3072 method->is_static(), total_args_passed);
3073 BasicType* sig_bt = si.basic_types();
3074 assert(si.slots() == total_args_passed, "");
3075 BasicType ret_type = si.return_type();
3076
3077 // Now get the compiled-Java arguments layout.
3078 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed);
3079
3080 // Generate the compiled-to-native wrapper code
3081 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry);
3082
3083 if (nm != NULL) {
3084 {
3085 MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag);
3086 if (nm->make_in_use()) {
3087 method->set_code(method, nm);
3088 }
3089 }
3090
3091 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
3092 if (directive->PrintAssemblyOption) {
3093 nm->print_code();
3094 }
3095 DirectivesStack::release(directive);
3096 }
3097 }
3098 } // Unlock AdapterHandlerLibrary_lock
3099
3100
3101 // Install the generated code.
3102 if (nm != NULL) {
3103 const char *msg = method->is_static() ? "(static)" : "";
3104 CompileTask::print_ul(nm, msg);
3105 if (PrintCompilation) {
3106 ttyLocker ttyl;
3107 CompileTask::print(tty, nm, msg);
3108 }
3109 nm->post_compiled_method_load_event();
3110 }
3111 }
3112
3113 // -------------------------------------------------------------------------
3114 // Java-Java calling convention
3115 // (what you use when Java calls Java)
3116
3117 //------------------------------name_for_receiver----------------------------------
3118 // For a given signature, return the VMReg for parameter 0.
3119 VMReg SharedRuntime::name_for_receiver() {
3120 VMRegPair regs;
3121 BasicType sig_bt = T_OBJECT;
3122 (void) java_calling_convention(&sig_bt, ®s, 1);
3123 // Return argument 0 register. In the LP64 build pointers
3124 // take 2 registers, but the VM wants only the 'main' name.
3125 return regs.first();
3126 }
3127
3128 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
3129 // This method is returning a data structure allocating as a
3130 // ResourceObject, so do not put any ResourceMarks in here.
3131
3132 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
3133 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
3134 int cnt = 0;
3135 if (has_receiver) {
3136 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
3137 }
3138
3139 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) {
3140 BasicType type = ss.type();
3141 sig_bt[cnt++] = type;
3142 if (is_double_word_type(type))
3143 sig_bt[cnt++] = T_VOID;
3144 }
3145
3146 if (has_appendix) {
3147 sig_bt[cnt++] = T_OBJECT;
3148 }
3149
3150 assert(cnt < 256, "grow table size");
3151
3152 int comp_args_on_stack;
3153 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt);
3154
3155 // the calling convention doesn't count out_preserve_stack_slots so
3156 // we must add that in to get "true" stack offsets.
3157
3158 if (comp_args_on_stack) {
3159 for (int i = 0; i < cnt; i++) {
3160 VMReg reg1 = regs[i].first();
3161 if (reg1->is_stack()) {
3162 // Yuck
3163 reg1 = reg1->bias(out_preserve_stack_slots());
3164 }
3165 VMReg reg2 = regs[i].second();
3166 if (reg2->is_stack()) {
3167 // Yuck
3168 reg2 = reg2->bias(out_preserve_stack_slots());
3169 }
3170 regs[i].set_pair(reg2, reg1);
3171 }
3172 }
3173
3174 // results
3175 *arg_size = cnt;
3176 return regs;
3177 }
3178
3179 // OSR Migration Code
3180 //
3181 // This code is used convert interpreter frames into compiled frames. It is
3182 // called from very start of a compiled OSR nmethod. A temp array is
3183 // allocated to hold the interesting bits of the interpreter frame. All
3184 // active locks are inflated to allow them to move. The displaced headers and
3185 // active interpreter locals are copied into the temp buffer. Then we return
3186 // back to the compiled code. The compiled code then pops the current
3187 // interpreter frame off the stack and pushes a new compiled frame. Then it
3188 // copies the interpreter locals and displaced headers where it wants.
3189 // Finally it calls back to free the temp buffer.
3190 //
3191 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3192
3193 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) )
3194 // During OSR migration, we unwind the interpreted frame and replace it with a compiled
3195 // frame. The stack watermark code below ensures that the interpreted frame is processed
3196 // before it gets unwound. This is helpful as the size of the compiled frame could be
3197 // larger than the interpreted frame, which could result in the new frame not being
3198 // processed correctly.
3199 StackWatermarkSet::before_unwind(current);
3200
3201 //
3202 // This code is dependent on the memory layout of the interpreter local
3203 // array and the monitors. On all of our platforms the layout is identical
3204 // so this code is shared. If some platform lays the their arrays out
3205 // differently then this code could move to platform specific code or
3206 // the code here could be modified to copy items one at a time using
3207 // frame accessor methods and be platform independent.
3208
3209 frame fr = current->last_frame();
3210 assert(fr.is_interpreted_frame(), "");
3211 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3212
3213 // Figure out how many monitors are active.
3214 int active_monitor_count = 0;
3215 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3216 kptr < fr.interpreter_frame_monitor_begin();
3217 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3218 if (kptr->obj() != NULL) active_monitor_count++;
3219 }
3220
3221 // QQQ we could place number of active monitors in the array so that compiled code
3222 // could double check it.
3223
3224 Method* moop = fr.interpreter_frame_method();
3225 int max_locals = moop->max_locals();
3226 // Allocate temp buffer, 1 word per local & 2 per active monitor
3227 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3228 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3229
3230 // Copy the locals. Order is preserved so that loading of longs works.
3231 // Since there's no GC I can copy the oops blindly.
3232 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3233 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3234 (HeapWord*)&buf[0],
3235 max_locals);
3236
3237 // Inflate locks. Copy the displaced headers. Be careful, there can be holes.
3238 int i = max_locals;
3239 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3240 kptr2 < fr.interpreter_frame_monitor_begin();
3241 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3242 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array
3243 BasicLock *lock = kptr2->lock();
3244 // Inflate so the object's header no longer refers to the BasicLock.
3245 if (lock->displaced_header().is_unlocked()) {
3246 // The object is locked and the resulting ObjectMonitor* will also be
3247 // locked so it can't be async deflated until ownership is dropped.
3248 // See the big comment in basicLock.cpp: BasicLock::move_to().
3249 ObjectSynchronizer::inflate_helper(kptr2->obj());
3250 }
3251 // Now the displaced header is free to move because the
3252 // object's header no longer refers to it.
3253 buf[i++] = (intptr_t)lock->displaced_header().value();
3254 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3255 }
3256 }
3257 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3258
3259 return buf;
3260 JRT_END
3261
3262 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3263 FREE_C_HEAP_ARRAY(intptr_t, buf);
3264 JRT_END
3265
3266 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3267 AdapterHandlerTableIterator iter(_adapters);
3268 while (iter.has_next()) {
3269 AdapterHandlerEntry* a = iter.next();
3270 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3271 }
3272 return false;
3273 }
3274
3275 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3276 AdapterHandlerTableIterator iter(_adapters);
3277 while (iter.has_next()) {
3278 AdapterHandlerEntry* a = iter.next();
3279 if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3280 st->print("Adapter for signature: ");
3281 a->print_adapter_on(tty);
3282 return;
3283 }
3284 }
3285 assert(false, "Should have found handler");
3286 }
3287
3288 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3289 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string());
3290 if (get_i2c_entry() != NULL) {
3291 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry()));
3292 }
3293 if (get_c2i_entry() != NULL) {
3294 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry()));
3295 }
3296 if (get_c2i_unverified_entry() != NULL) {
3297 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry()));
3298 }
3299 if (get_c2i_no_clinit_check_entry() != NULL) {
3300 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry()));
3301 }
3302 st->cr();
3303 }
3304
3305 #ifndef PRODUCT
3306
3307 void AdapterHandlerLibrary::print_statistics() {
3308 _adapters->print_statistics();
3309 }
3310
3311 #endif /* PRODUCT */
3312
3313 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current))
3314 StackOverflow* overflow_state = current->stack_overflow_state();
3315 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true);
3316 overflow_state->set_reserved_stack_activation(current->stack_base());
3317 JRT_END
3318
3319 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) {
3320 ResourceMark rm(current);
3321 frame activation;
3322 CompiledMethod* nm = NULL;
3323 int count = 1;
3324
3325 assert(fr.is_java_frame(), "Must start on Java frame");
3326
3327 while (true) {
3328 Method* method = NULL;
3329 bool found = false;
3330 if (fr.is_interpreted_frame()) {
3331 method = fr.interpreter_frame_method();
3332 if (method != NULL && method->has_reserved_stack_access()) {
3333 found = true;
3334 }
3335 } else {
3336 CodeBlob* cb = fr.cb();
3337 if (cb != NULL && cb->is_compiled()) {
3338 nm = cb->as_compiled_method();
3339 method = nm->method();
3340 // scope_desc_near() must be used, instead of scope_desc_at() because on
3341 // SPARC, the pcDesc can be on the delay slot after the call instruction.
3342 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3343 method = sd->method();
3344 if (method != NULL && method->has_reserved_stack_access()) {
3345 found = true;
3346 }
3347 }
3348 }
3349 }
3350 if (found) {
3351 activation = fr;
3352 warning("Potentially dangerous stack overflow in "
3353 "ReservedStackAccess annotated method %s [%d]",
3354 method->name_and_sig_as_C_string(), count++);
3355 EventReservedStackActivation event;
3356 if (event.should_commit()) {
3357 event.set_method(method);
3358 event.commit();
3359 }
3360 }
3361 if (fr.is_first_java_frame()) {
3362 break;
3363 } else {
3364 fr = fr.java_sender();
3365 }
3366 }
3367 return activation;
3368 }
3369
3370 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) {
3371 // After any safepoint, just before going back to compiled code,
3372 // we inform the GC that we will be doing initializing writes to
3373 // this object in the future without emitting card-marks, so
3374 // GC may take any compensating steps.
3375
3376 oop new_obj = current->vm_result();
3377 if (new_obj == NULL) return;
3378
3379 BarrierSet *bs = BarrierSet::barrier_set();
3380 bs->on_slowpath_allocation_exit(current, new_obj);
3381 }