1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/javaClasses.hpp" 27 #include "jvm.h" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/compiledMethod.inline.hpp" 35 #include "code/scopeDesc.hpp" 36 #include "code/vtableStubs.hpp" 37 #include "compiler/abstractCompiler.hpp" 38 #include "compiler/compileBroker.hpp" 39 #include "compiler/disassembler.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/collectedHeap.hpp" 42 #include "gc/shared/gcLocker.inline.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/interpreterRuntime.hpp" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "oops/compiledICHolder.inline.hpp" 50 #include "oops/klass.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/objArrayKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "prims/forte.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/methodHandles.hpp" 57 #include "prims/nativeLookup.hpp" 58 #include "runtime/atomic.hpp" 59 #include "runtime/biasedLocking.hpp" 60 #include "runtime/frame.inline.hpp" 61 #include "runtime/handles.inline.hpp" 62 #include "runtime/init.hpp" 63 #include "runtime/interfaceSupport.inline.hpp" 64 #include "runtime/java.hpp" 65 #include "runtime/javaCalls.hpp" 66 #include "runtime/sharedRuntime.hpp" 67 #include "runtime/stackWatermarkSet.hpp" 68 #include "runtime/stubRoutines.hpp" 69 #include "runtime/synchronizer.hpp" 70 #include "runtime/vframe.inline.hpp" 71 #include "runtime/vframeArray.hpp" 72 #include "runtime/vm_version.hpp" 73 #include "utilities/copy.hpp" 74 #include "utilities/dtrace.hpp" 75 #include "utilities/events.hpp" 76 #include "utilities/hashtable.inline.hpp" 77 #include "utilities/macros.hpp" 78 #include "utilities/xmlstream.hpp" 79 #ifdef COMPILER1 80 #include "c1/c1_Runtime1.hpp" 81 #endif 82 83 // Shared stub locations 84 RuntimeStub* SharedRuntime::_wrong_method_blob; 85 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 86 RuntimeStub* SharedRuntime::_ic_miss_blob; 87 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 88 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 89 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 90 address SharedRuntime::_resolve_static_call_entry; 91 92 DeoptimizationBlob* SharedRuntime::_deopt_blob; 93 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 94 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 95 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 96 97 #ifdef COMPILER2 98 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 99 #endif // COMPILER2 100 101 102 //----------------------------generate_stubs----------------------------------- 103 void SharedRuntime::generate_stubs() { 104 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 105 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 106 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 107 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 108 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 109 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 110 _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); 111 112 AdapterHandlerLibrary::initialize(); 113 114 #if COMPILER2_OR_JVMCI 115 // Vectors are generated only by C2 and JVMCI. 116 bool support_wide = is_wide_vector(MaxVectorSize); 117 if (support_wide) { 118 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 119 } 120 #endif // COMPILER2_OR_JVMCI 121 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 122 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 123 124 generate_deopt_blob(); 125 126 #ifdef COMPILER2 127 generate_uncommon_trap_blob(); 128 #endif // COMPILER2 129 } 130 131 #include <math.h> 132 133 // Implementation of SharedRuntime 134 135 #ifndef PRODUCT 136 // For statistics 137 int SharedRuntime::_ic_miss_ctr = 0; 138 int SharedRuntime::_wrong_method_ctr = 0; 139 int SharedRuntime::_resolve_static_ctr = 0; 140 int SharedRuntime::_resolve_virtual_ctr = 0; 141 int SharedRuntime::_resolve_opt_virtual_ctr = 0; 142 int SharedRuntime::_implicit_null_throws = 0; 143 int SharedRuntime::_implicit_div0_throws = 0; 144 int SharedRuntime::_throw_null_ctr = 0; 145 146 int64_t SharedRuntime::_nof_normal_calls = 0; 147 int64_t SharedRuntime::_nof_optimized_calls = 0; 148 int64_t SharedRuntime::_nof_inlined_calls = 0; 149 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 150 int64_t SharedRuntime::_nof_static_calls = 0; 151 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 152 int64_t SharedRuntime::_nof_interface_calls = 0; 153 int64_t SharedRuntime::_nof_optimized_interface_calls = 0; 154 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 155 int64_t SharedRuntime::_nof_megamorphic_interface_calls = 0; 156 157 int SharedRuntime::_new_instance_ctr=0; 158 int SharedRuntime::_new_array_ctr=0; 159 int SharedRuntime::_multi1_ctr=0; 160 int SharedRuntime::_multi2_ctr=0; 161 int SharedRuntime::_multi3_ctr=0; 162 int SharedRuntime::_multi4_ctr=0; 163 int SharedRuntime::_multi5_ctr=0; 164 int SharedRuntime::_mon_enter_stub_ctr=0; 165 int SharedRuntime::_mon_exit_stub_ctr=0; 166 int SharedRuntime::_mon_enter_ctr=0; 167 int SharedRuntime::_mon_exit_ctr=0; 168 int SharedRuntime::_partial_subtype_ctr=0; 169 int SharedRuntime::_jbyte_array_copy_ctr=0; 170 int SharedRuntime::_jshort_array_copy_ctr=0; 171 int SharedRuntime::_jint_array_copy_ctr=0; 172 int SharedRuntime::_jlong_array_copy_ctr=0; 173 int SharedRuntime::_oop_array_copy_ctr=0; 174 int SharedRuntime::_checkcast_array_copy_ctr=0; 175 int SharedRuntime::_unsafe_array_copy_ctr=0; 176 int SharedRuntime::_generic_array_copy_ctr=0; 177 int SharedRuntime::_slow_array_copy_ctr=0; 178 int SharedRuntime::_find_handler_ctr=0; 179 int SharedRuntime::_rethrow_ctr=0; 180 181 int SharedRuntime::_ICmiss_index = 0; 182 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 183 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 184 185 186 void SharedRuntime::trace_ic_miss(address at) { 187 for (int i = 0; i < _ICmiss_index; i++) { 188 if (_ICmiss_at[i] == at) { 189 _ICmiss_count[i]++; 190 return; 191 } 192 } 193 int index = _ICmiss_index++; 194 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 195 _ICmiss_at[index] = at; 196 _ICmiss_count[index] = 1; 197 } 198 199 void SharedRuntime::print_ic_miss_histogram() { 200 if (ICMissHistogram) { 201 tty->print_cr("IC Miss Histogram:"); 202 int tot_misses = 0; 203 for (int i = 0; i < _ICmiss_index; i++) { 204 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 205 tot_misses += _ICmiss_count[i]; 206 } 207 tty->print_cr("Total IC misses: %7d", tot_misses); 208 } 209 } 210 #endif // PRODUCT 211 212 213 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 214 return x * y; 215 JRT_END 216 217 218 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 219 if (x == min_jlong && y == CONST64(-1)) { 220 return x; 221 } else { 222 return x / y; 223 } 224 JRT_END 225 226 227 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 228 if (x == min_jlong && y == CONST64(-1)) { 229 return 0; 230 } else { 231 return x % y; 232 } 233 JRT_END 234 235 236 const juint float_sign_mask = 0x7FFFFFFF; 237 const juint float_infinity = 0x7F800000; 238 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 239 const julong double_infinity = CONST64(0x7FF0000000000000); 240 241 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 242 #ifdef _WIN64 243 // 64-bit Windows on amd64 returns the wrong values for 244 // infinity operands. 245 union { jfloat f; juint i; } xbits, ybits; 246 xbits.f = x; 247 ybits.f = y; 248 // x Mod Infinity == x unless x is infinity 249 if (((xbits.i & float_sign_mask) != float_infinity) && 250 ((ybits.i & float_sign_mask) == float_infinity) ) { 251 return x; 252 } 253 return ((jfloat)fmod_winx64((double)x, (double)y)); 254 #else 255 return ((jfloat)fmod((double)x,(double)y)); 256 #endif 257 JRT_END 258 259 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 261 #ifdef _WIN64 262 union { jdouble d; julong l; } xbits, ybits; 263 xbits.d = x; 264 ybits.d = y; 265 // x Mod Infinity == x unless x is infinity 266 if (((xbits.l & double_sign_mask) != double_infinity) && 267 ((ybits.l & double_sign_mask) == double_infinity) ) { 268 return x; 269 } 270 return ((jdouble)fmod_winx64((double)x, (double)y)); 271 #else 272 return ((jdouble)fmod((double)x,(double)y)); 273 #endif 274 JRT_END 275 276 #ifdef __SOFTFP__ 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 278 return x + y; 279 JRT_END 280 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 282 return x - y; 283 JRT_END 284 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 286 return x * y; 287 JRT_END 288 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 290 return x / y; 291 JRT_END 292 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 294 return x + y; 295 JRT_END 296 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 298 return x - y; 299 JRT_END 300 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 302 return x * y; 303 JRT_END 304 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 306 return x / y; 307 JRT_END 308 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 310 return (jfloat)x; 311 JRT_END 312 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 314 return (jdouble)x; 315 JRT_END 316 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 318 return (jdouble)x; 319 JRT_END 320 321 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 322 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 323 JRT_END 324 325 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 326 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 327 JRT_END 328 329 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 330 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 331 JRT_END 332 333 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 334 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 335 JRT_END 336 337 // Functions to return the opposite of the aeabi functions for nan. 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 339 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 340 JRT_END 341 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 343 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 344 JRT_END 345 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 347 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 348 JRT_END 349 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 351 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 352 JRT_END 353 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 355 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 356 JRT_END 357 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 359 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 360 JRT_END 361 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 363 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 364 JRT_END 365 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 367 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 368 JRT_END 369 370 // Intrinsics make gcc generate code for these. 371 float SharedRuntime::fneg(float f) { 372 return -f; 373 } 374 375 double SharedRuntime::dneg(double f) { 376 return -f; 377 } 378 379 #endif // __SOFTFP__ 380 381 #if defined(__SOFTFP__) || defined(E500V2) 382 // Intrinsics make gcc generate code for these. 383 double SharedRuntime::dabs(double f) { 384 return (f <= (double)0.0) ? (double)0.0 - f : f; 385 } 386 387 #endif 388 389 #if defined(__SOFTFP__) || defined(PPC) 390 double SharedRuntime::dsqrt(double f) { 391 return sqrt(f); 392 } 393 #endif 394 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 396 if (g_isnan(x)) 397 return 0; 398 if (x >= (jfloat) max_jint) 399 return max_jint; 400 if (x <= (jfloat) min_jint) 401 return min_jint; 402 return (jint) x; 403 JRT_END 404 405 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 407 if (g_isnan(x)) 408 return 0; 409 if (x >= (jfloat) max_jlong) 410 return max_jlong; 411 if (x <= (jfloat) min_jlong) 412 return min_jlong; 413 return (jlong) x; 414 JRT_END 415 416 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 418 if (g_isnan(x)) 419 return 0; 420 if (x >= (jdouble) max_jint) 421 return max_jint; 422 if (x <= (jdouble) min_jint) 423 return min_jint; 424 return (jint) x; 425 JRT_END 426 427 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 429 if (g_isnan(x)) 430 return 0; 431 if (x >= (jdouble) max_jlong) 432 return max_jlong; 433 if (x <= (jdouble) min_jlong) 434 return min_jlong; 435 return (jlong) x; 436 JRT_END 437 438 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 440 return (jfloat)x; 441 JRT_END 442 443 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 445 return (jfloat)x; 446 JRT_END 447 448 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 450 return (jdouble)x; 451 JRT_END 452 453 // Exception handling across interpreter/compiler boundaries 454 // 455 // exception_handler_for_return_address(...) returns the continuation address. 456 // The continuation address is the entry point of the exception handler of the 457 // previous frame depending on the return address. 458 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 460 // Note: This is called when we have unwound the frame of the callee that did 461 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 462 // Notably, the stack is not walkable at this point, and hence the check must 463 // be deferred until later. Specifically, any of the handlers returned here in 464 // this function, will get dispatched to, and call deferred checks to 465 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 466 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 467 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 468 469 // Reset method handle flag. 470 current->set_is_method_handle_return(false); 471 472 #if INCLUDE_JVMCI 473 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 474 // and other exception handler continuations do not read it 475 current->set_exception_pc(NULL); 476 #endif // INCLUDE_JVMCI 477 478 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc 479 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current)); 480 481 // The fastest case first 482 CodeBlob* blob = CodeCache::find_blob(return_address); 483 CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL; 484 if (nm != NULL) { 485 // Set flag if return address is a method handle call site. 486 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 487 // native nmethods don't have exception handlers 488 assert(!nm->is_native_method(), "no exception handler"); 489 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 490 if (nm->is_deopt_pc(return_address)) { 491 // If we come here because of a stack overflow, the stack may be 492 // unguarded. Reguard the stack otherwise if we return to the 493 // deopt blob and the stack bang causes a stack overflow we 494 // crash. 495 StackOverflow* overflow_state = current->stack_overflow_state(); 496 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 497 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 498 overflow_state->set_reserved_stack_activation(current->stack_base()); 499 } 500 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 501 // The deferred StackWatermarkSet::after_unwind check will be performed in 502 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 503 return SharedRuntime::deopt_blob()->unpack_with_exception(); 504 } else { 505 // The deferred StackWatermarkSet::after_unwind check will be performed in 506 // * OptoRuntime::rethrow_C for C2 code 507 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 508 return nm->exception_begin(); 509 } 510 } 511 512 // Entry code 513 if (StubRoutines::returns_to_call_stub(return_address)) { 514 // The deferred StackWatermarkSet::after_unwind check will be performed in 515 // JavaCallWrapper::~JavaCallWrapper 516 return StubRoutines::catch_exception_entry(); 517 } 518 if (blob != NULL && blob->is_optimized_entry_blob()) { 519 return ((OptimizedEntryBlob*)blob)->exception_handler(); 520 } 521 // Interpreted code 522 if (Interpreter::contains(return_address)) { 523 // The deferred StackWatermarkSet::after_unwind check will be performed in 524 // InterpreterRuntime::exception_handler_for_exception 525 return Interpreter::rethrow_exception_entry(); 526 } 527 528 guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub"); 529 guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!"); 530 531 #ifndef PRODUCT 532 { ResourceMark rm; 533 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 534 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 535 tty->print_cr("b) other problem"); 536 } 537 #endif // PRODUCT 538 539 ShouldNotReachHere(); 540 return NULL; 541 } 542 543 544 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 545 return raw_exception_handler_for_return_address(current, return_address); 546 JRT_END 547 548 549 address SharedRuntime::get_poll_stub(address pc) { 550 address stub; 551 // Look up the code blob 552 CodeBlob *cb = CodeCache::find_blob(pc); 553 554 // Should be an nmethod 555 guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod"); 556 557 // Look up the relocation information 558 assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc), 559 "safepoint polling: type must be poll"); 560 561 #ifdef ASSERT 562 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 563 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 564 Disassembler::decode(cb); 565 fatal("Only polling locations are used for safepoint"); 566 } 567 #endif 568 569 bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc); 570 bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors(); 571 if (at_poll_return) { 572 assert(SharedRuntime::polling_page_return_handler_blob() != NULL, 573 "polling page return stub not created yet"); 574 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 575 } else if (has_wide_vectors) { 576 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL, 577 "polling page vectors safepoint stub not created yet"); 578 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 579 } else { 580 assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL, 581 "polling page safepoint stub not created yet"); 582 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 583 } 584 log_debug(safepoint)("... found polling page %s exception at pc = " 585 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 586 at_poll_return ? "return" : "loop", 587 (intptr_t)pc, (intptr_t)stub); 588 return stub; 589 } 590 591 592 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) { 593 assert(caller.is_interpreted_frame(), ""); 594 int args_size = ArgumentSizeComputer(sig).size() + 1; 595 assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack"); 596 oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1)); 597 assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop"); 598 return result; 599 } 600 601 602 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 603 if (JvmtiExport::can_post_on_exceptions()) { 604 vframeStream vfst(current, true); 605 methodHandle method = methodHandle(current, vfst.method()); 606 address bcp = method()->bcp_from(vfst.bci()); 607 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 608 } 609 610 #if INCLUDE_JVMCI 611 if (EnableJVMCI && UseJVMCICompiler) { 612 vframeStream vfst(current, true); 613 methodHandle method = methodHandle(current, vfst.method()); 614 int bci = vfst.bci(); 615 MethodData* trap_mdo = method->method_data(); 616 if (trap_mdo != NULL) { 617 // Set exception_seen if the exceptional bytecode is an invoke 618 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 619 if (call.is_valid()) { 620 ResourceMark rm(current); 621 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, NULL); 622 if (pdata != NULL && pdata->is_BitData()) { 623 BitData* bit_data = (BitData*) pdata; 624 bit_data->set_exception_seen(); 625 } 626 } 627 } 628 } 629 #endif 630 631 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 632 } 633 634 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 635 Handle h_exception = Exceptions::new_exception(current, name, message); 636 throw_and_post_jvmti_exception(current, h_exception); 637 } 638 639 // The interpreter code to call this tracing function is only 640 // called/generated when UL is on for redefine, class and has the right level 641 // and tags. Since obsolete methods are never compiled, we don't have 642 // to modify the compilers to generate calls to this function. 643 // 644 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 645 JavaThread* thread, Method* method)) 646 if (method->is_obsolete()) { 647 // We are calling an obsolete method, but this is not necessarily 648 // an error. Our method could have been redefined just after we 649 // fetched the Method* from the constant pool. 650 ResourceMark rm; 651 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 652 } 653 return 0; 654 JRT_END 655 656 // ret_pc points into caller; we are returning caller's exception handler 657 // for given exception 658 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception, 659 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 660 assert(cm != NULL, "must exist"); 661 ResourceMark rm; 662 663 #if INCLUDE_JVMCI 664 if (cm->is_compiled_by_jvmci()) { 665 // lookup exception handler for this pc 666 int catch_pco = ret_pc - cm->code_begin(); 667 ExceptionHandlerTable table(cm); 668 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 669 if (t != NULL) { 670 return cm->code_begin() + t->pco(); 671 } else { 672 return Deoptimization::deoptimize_for_missing_exception_handler(cm); 673 } 674 } 675 #endif // INCLUDE_JVMCI 676 677 nmethod* nm = cm->as_nmethod(); 678 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 679 // determine handler bci, if any 680 EXCEPTION_MARK; 681 682 int handler_bci = -1; 683 int scope_depth = 0; 684 if (!force_unwind) { 685 int bci = sd->bci(); 686 bool recursive_exception = false; 687 do { 688 bool skip_scope_increment = false; 689 // exception handler lookup 690 Klass* ek = exception->klass(); 691 methodHandle mh(THREAD, sd->method()); 692 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 693 if (HAS_PENDING_EXCEPTION) { 694 recursive_exception = true; 695 // We threw an exception while trying to find the exception handler. 696 // Transfer the new exception to the exception handle which will 697 // be set into thread local storage, and do another lookup for an 698 // exception handler for this exception, this time starting at the 699 // BCI of the exception handler which caused the exception to be 700 // thrown (bugs 4307310 and 4546590). Set "exception" reference 701 // argument to ensure that the correct exception is thrown (4870175). 702 recursive_exception_occurred = true; 703 exception = Handle(THREAD, PENDING_EXCEPTION); 704 CLEAR_PENDING_EXCEPTION; 705 if (handler_bci >= 0) { 706 bci = handler_bci; 707 handler_bci = -1; 708 skip_scope_increment = true; 709 } 710 } 711 else { 712 recursive_exception = false; 713 } 714 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 715 sd = sd->sender(); 716 if (sd != NULL) { 717 bci = sd->bci(); 718 } 719 ++scope_depth; 720 } 721 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL)); 722 } 723 724 // found handling method => lookup exception handler 725 int catch_pco = ret_pc - nm->code_begin(); 726 727 ExceptionHandlerTable table(nm); 728 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 729 if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) { 730 // Allow abbreviated catch tables. The idea is to allow a method 731 // to materialize its exceptions without committing to the exact 732 // routing of exceptions. In particular this is needed for adding 733 // a synthetic handler to unlock monitors when inlining 734 // synchronized methods since the unlock path isn't represented in 735 // the bytecodes. 736 t = table.entry_for(catch_pco, -1, 0); 737 } 738 739 #ifdef COMPILER1 740 if (t == NULL && nm->is_compiled_by_c1()) { 741 assert(nm->unwind_handler_begin() != NULL, ""); 742 return nm->unwind_handler_begin(); 743 } 744 #endif 745 746 if (t == NULL) { 747 ttyLocker ttyl; 748 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci); 749 tty->print_cr(" Exception:"); 750 exception->print(); 751 tty->cr(); 752 tty->print_cr(" Compiled exception table :"); 753 table.print(); 754 nm->print_code(); 755 guarantee(false, "missing exception handler"); 756 return NULL; 757 } 758 759 return nm->code_begin() + t->pco(); 760 } 761 762 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 763 // These errors occur only at call sites 764 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 765 JRT_END 766 767 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 768 // These errors occur only at call sites 769 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 770 JRT_END 771 772 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 773 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 774 JRT_END 775 776 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 777 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL); 778 JRT_END 779 780 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 781 // This entry point is effectively only used for NullPointerExceptions which occur at inline 782 // cache sites (when the callee activation is not yet set up) so we are at a call site 783 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), NULL); 784 JRT_END 785 786 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 787 throw_StackOverflowError_common(current, false); 788 JRT_END 789 790 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 791 throw_StackOverflowError_common(current, true); 792 JRT_END 793 794 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 795 // We avoid using the normal exception construction in this case because 796 // it performs an upcall to Java, and we're already out of stack space. 797 JavaThread* THREAD = current; // For exception macros. 798 Klass* k = vmClasses::StackOverflowError_klass(); 799 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 800 if (delayed) { 801 java_lang_Throwable::set_message(exception_oop, 802 Universe::delayed_stack_overflow_error_message()); 803 } 804 Handle exception (current, exception_oop); 805 if (StackTraceInThrowable) { 806 java_lang_Throwable::fill_in_stack_trace(exception); 807 } 808 // Increment counter for hs_err file reporting 809 Atomic::inc(&Exceptions::_stack_overflow_errors); 810 throw_and_post_jvmti_exception(current, exception); 811 } 812 813 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 814 address pc, 815 ImplicitExceptionKind exception_kind) 816 { 817 address target_pc = NULL; 818 819 if (Interpreter::contains(pc)) { 820 switch (exception_kind) { 821 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 822 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 823 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 824 default: ShouldNotReachHere(); 825 } 826 } else { 827 switch (exception_kind) { 828 case STACK_OVERFLOW: { 829 // Stack overflow only occurs upon frame setup; the callee is 830 // going to be unwound. Dispatch to a shared runtime stub 831 // which will cause the StackOverflowError to be fabricated 832 // and processed. 833 // Stack overflow should never occur during deoptimization: 834 // the compiled method bangs the stack by as much as the 835 // interpreter would need in case of a deoptimization. The 836 // deoptimization blob and uncommon trap blob bang the stack 837 // in a debug VM to verify the correctness of the compiled 838 // method stack banging. 839 assert(current->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap"); 840 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 841 return StubRoutines::throw_StackOverflowError_entry(); 842 } 843 844 case IMPLICIT_NULL: { 845 if (VtableStubs::contains(pc)) { 846 // We haven't yet entered the callee frame. Fabricate an 847 // exception and begin dispatching it in the caller. Since 848 // the caller was at a call site, it's safe to destroy all 849 // caller-saved registers, as these entry points do. 850 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 851 852 // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error. 853 if (vt_stub == NULL) return NULL; 854 855 if (vt_stub->is_abstract_method_error(pc)) { 856 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 857 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 858 // Instead of throwing the abstract method error here directly, we re-resolve 859 // and will throw the AbstractMethodError during resolve. As a result, we'll 860 // get a more detailed error message. 861 return SharedRuntime::get_handle_wrong_method_stub(); 862 } else { 863 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 864 // Assert that the signal comes from the expected location in stub code. 865 assert(vt_stub->is_null_pointer_exception(pc), 866 "obtained signal from unexpected location in stub code"); 867 return StubRoutines::throw_NullPointerException_at_call_entry(); 868 } 869 } else { 870 CodeBlob* cb = CodeCache::find_blob(pc); 871 872 // If code blob is NULL, then return NULL to signal handler to report the SEGV error. 873 if (cb == NULL) return NULL; 874 875 // Exception happened in CodeCache. Must be either: 876 // 1. Inline-cache check in C2I handler blob, 877 // 2. Inline-cache check in nmethod, or 878 // 3. Implicit null exception in nmethod 879 880 if (!cb->is_compiled()) { 881 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 882 if (!is_in_blob) { 883 // Allow normal crash reporting to handle this 884 return NULL; 885 } 886 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 887 // There is no handler here, so we will simply unwind. 888 return StubRoutines::throw_NullPointerException_at_call_entry(); 889 } 890 891 // Otherwise, it's a compiled method. Consult its exception handlers. 892 CompiledMethod* cm = (CompiledMethod*)cb; 893 if (cm->inlinecache_check_contains(pc)) { 894 // exception happened inside inline-cache check code 895 // => the nmethod is not yet active (i.e., the frame 896 // is not set up yet) => use return address pushed by 897 // caller => don't push another return address 898 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 899 return StubRoutines::throw_NullPointerException_at_call_entry(); 900 } 901 902 if (cm->method()->is_method_handle_intrinsic()) { 903 // exception happened inside MH dispatch code, similar to a vtable stub 904 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 905 return StubRoutines::throw_NullPointerException_at_call_entry(); 906 } 907 908 #ifndef PRODUCT 909 _implicit_null_throws++; 910 #endif 911 target_pc = cm->continuation_for_implicit_null_exception(pc); 912 // If there's an unexpected fault, target_pc might be NULL, 913 // in which case we want to fall through into the normal 914 // error handling code. 915 } 916 917 break; // fall through 918 } 919 920 921 case IMPLICIT_DIVIDE_BY_ZERO: { 922 CompiledMethod* cm = CodeCache::find_compiled(pc); 923 guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions"); 924 #ifndef PRODUCT 925 _implicit_div0_throws++; 926 #endif 927 target_pc = cm->continuation_for_implicit_div0_exception(pc); 928 // If there's an unexpected fault, target_pc might be NULL, 929 // in which case we want to fall through into the normal 930 // error handling code. 931 break; // fall through 932 } 933 934 default: ShouldNotReachHere(); 935 } 936 937 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 938 939 if (exception_kind == IMPLICIT_NULL) { 940 #ifndef PRODUCT 941 // for AbortVMOnException flag 942 Exceptions::debug_check_abort("java.lang.NullPointerException"); 943 #endif //PRODUCT 944 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 945 } else { 946 #ifndef PRODUCT 947 // for AbortVMOnException flag 948 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 949 #endif //PRODUCT 950 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 951 } 952 return target_pc; 953 } 954 955 ShouldNotReachHere(); 956 return NULL; 957 } 958 959 960 /** 961 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 962 * installed in the native function entry of all native Java methods before 963 * they get linked to their actual native methods. 964 * 965 * \note 966 * This method actually never gets called! The reason is because 967 * the interpreter's native entries call NativeLookup::lookup() which 968 * throws the exception when the lookup fails. The exception is then 969 * caught and forwarded on the return from NativeLookup::lookup() call 970 * before the call to the native function. This might change in the future. 971 */ 972 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 973 { 974 // We return a bad value here to make sure that the exception is 975 // forwarded before we look at the return value. 976 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 977 } 978 JNI_END 979 980 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 981 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 982 } 983 984 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 985 #if INCLUDE_JVMCI 986 if (!obj->klass()->has_finalizer()) { 987 return; 988 } 989 #endif // INCLUDE_JVMCI 990 assert(oopDesc::is_oop(obj), "must be a valid oop"); 991 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 992 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 993 JRT_END 994 995 jlong SharedRuntime::get_java_tid(Thread* thread) { 996 if (thread != NULL) { 997 if (thread->is_Java_thread()) { 998 oop obj = thread->as_Java_thread()->threadObj(); 999 return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj); 1000 } 1001 } 1002 return 0; 1003 } 1004 1005 /** 1006 * This function ought to be a void function, but cannot be because 1007 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1008 * 6254741. Once that is fixed we can remove the dummy return value. 1009 */ 1010 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) { 1011 return dtrace_object_alloc_base(Thread::current(), o, size); 1012 } 1013 1014 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) { 1015 assert(DTraceAllocProbes, "wrong call"); 1016 Klass* klass = o->klass(); 1017 Symbol* name = klass->name(); 1018 HOTSPOT_OBJECT_ALLOC( 1019 get_java_tid(thread), 1020 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1021 return 0; 1022 } 1023 1024 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1025 JavaThread* current, Method* method)) 1026 assert(DTraceMethodProbes, "wrong call"); 1027 Symbol* kname = method->klass_name(); 1028 Symbol* name = method->name(); 1029 Symbol* sig = method->signature(); 1030 HOTSPOT_METHOD_ENTRY( 1031 get_java_tid(current), 1032 (char *) kname->bytes(), kname->utf8_length(), 1033 (char *) name->bytes(), name->utf8_length(), 1034 (char *) sig->bytes(), sig->utf8_length()); 1035 return 0; 1036 JRT_END 1037 1038 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1039 JavaThread* current, Method* method)) 1040 assert(DTraceMethodProbes, "wrong call"); 1041 Symbol* kname = method->klass_name(); 1042 Symbol* name = method->name(); 1043 Symbol* sig = method->signature(); 1044 HOTSPOT_METHOD_RETURN( 1045 get_java_tid(current), 1046 (char *) kname->bytes(), kname->utf8_length(), 1047 (char *) name->bytes(), name->utf8_length(), 1048 (char *) sig->bytes(), sig->utf8_length()); 1049 return 0; 1050 JRT_END 1051 1052 1053 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1054 // for a call current in progress, i.e., arguments has been pushed on stack 1055 // put callee has not been invoked yet. Used by: resolve virtual/static, 1056 // vtable updates, etc. Caller frame must be compiled. 1057 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1058 JavaThread* current = THREAD; 1059 ResourceMark rm(current); 1060 1061 // last java frame on stack (which includes native call frames) 1062 vframeStream vfst(current, true); // Do not skip and javaCalls 1063 1064 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1065 } 1066 1067 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1068 CompiledMethod* caller = vfst.nm(); 1069 1070 nmethodLocker caller_lock(caller); 1071 1072 address pc = vfst.frame_pc(); 1073 { // Get call instruction under lock because another thread may be busy patching it. 1074 CompiledICLocker ic_locker(caller); 1075 return caller->attached_method_before_pc(pc); 1076 } 1077 return NULL; 1078 } 1079 1080 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1081 // for a call current in progress, i.e., arguments has been pushed on stack 1082 // but callee has not been invoked yet. Caller frame must be compiled. 1083 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1084 CallInfo& callinfo, TRAPS) { 1085 Handle receiver; 1086 Handle nullHandle; // create a handy null handle for exception returns 1087 JavaThread* current = THREAD; 1088 1089 assert(!vfst.at_end(), "Java frame must exist"); 1090 1091 // Find caller and bci from vframe 1092 methodHandle caller(current, vfst.method()); 1093 int bci = vfst.bci(); 1094 1095 Bytecode_invoke bytecode(caller, bci); 1096 int bytecode_index = bytecode.index(); 1097 bc = bytecode.invoke_code(); 1098 1099 methodHandle attached_method(current, extract_attached_method(vfst)); 1100 if (attached_method.not_null()) { 1101 Method* callee = bytecode.static_target(CHECK_NH); 1102 vmIntrinsics::ID id = callee->intrinsic_id(); 1103 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1104 // it attaches statically resolved method to the call site. 1105 if (MethodHandles::is_signature_polymorphic(id) && 1106 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1107 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1108 1109 // Adjust invocation mode according to the attached method. 1110 switch (bc) { 1111 case Bytecodes::_invokevirtual: 1112 if (attached_method->method_holder()->is_interface()) { 1113 bc = Bytecodes::_invokeinterface; 1114 } 1115 break; 1116 case Bytecodes::_invokeinterface: 1117 if (!attached_method->method_holder()->is_interface()) { 1118 bc = Bytecodes::_invokevirtual; 1119 } 1120 break; 1121 case Bytecodes::_invokehandle: 1122 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1123 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1124 : Bytecodes::_invokevirtual; 1125 } 1126 break; 1127 default: 1128 break; 1129 } 1130 } 1131 } 1132 1133 assert(bc != Bytecodes::_illegal, "not initialized"); 1134 1135 bool has_receiver = bc != Bytecodes::_invokestatic && 1136 bc != Bytecodes::_invokedynamic && 1137 bc != Bytecodes::_invokehandle; 1138 1139 // Find receiver for non-static call 1140 if (has_receiver) { 1141 // This register map must be update since we need to find the receiver for 1142 // compiled frames. The receiver might be in a register. 1143 RegisterMap reg_map2(current); 1144 frame stubFrame = current->last_frame(); 1145 // Caller-frame is a compiled frame 1146 frame callerFrame = stubFrame.sender(®_map2); 1147 1148 if (attached_method.is_null()) { 1149 Method* callee = bytecode.static_target(CHECK_NH); 1150 if (callee == NULL) { 1151 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1152 } 1153 } 1154 1155 // Retrieve from a compiled argument list 1156 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1157 1158 if (receiver.is_null()) { 1159 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1160 } 1161 } 1162 1163 // Resolve method 1164 if (attached_method.not_null()) { 1165 // Parameterized by attached method. 1166 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1167 } else { 1168 // Parameterized by bytecode. 1169 constantPoolHandle constants(current, caller->constants()); 1170 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1171 } 1172 1173 #ifdef ASSERT 1174 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1175 if (has_receiver) { 1176 assert(receiver.not_null(), "should have thrown exception"); 1177 Klass* receiver_klass = receiver->klass(); 1178 Klass* rk = NULL; 1179 if (attached_method.not_null()) { 1180 // In case there's resolved method attached, use its holder during the check. 1181 rk = attached_method->method_holder(); 1182 } else { 1183 // Klass is already loaded. 1184 constantPoolHandle constants(current, caller->constants()); 1185 rk = constants->klass_ref_at(bytecode_index, CHECK_NH); 1186 } 1187 Klass* static_receiver_klass = rk; 1188 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1189 "actual receiver must be subclass of static receiver klass"); 1190 if (receiver_klass->is_instance_klass()) { 1191 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1192 tty->print_cr("ERROR: Klass not yet initialized!!"); 1193 receiver_klass->print(); 1194 } 1195 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1196 } 1197 } 1198 #endif 1199 1200 return receiver; 1201 } 1202 1203 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1204 JavaThread* current = THREAD; 1205 ResourceMark rm(current); 1206 // We need first to check if any Java activations (compiled, interpreted) 1207 // exist on the stack since last JavaCall. If not, we need 1208 // to get the target method from the JavaCall wrapper. 1209 vframeStream vfst(current, true); // Do not skip any javaCalls 1210 methodHandle callee_method; 1211 if (vfst.at_end()) { 1212 // No Java frames were found on stack since we did the JavaCall. 1213 // Hence the stack can only contain an entry_frame. We need to 1214 // find the target method from the stub frame. 1215 RegisterMap reg_map(current, false); 1216 frame fr = current->last_frame(); 1217 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1218 fr = fr.sender(®_map); 1219 assert(fr.is_entry_frame(), "must be"); 1220 // fr is now pointing to the entry frame. 1221 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1222 } else { 1223 Bytecodes::Code bc; 1224 CallInfo callinfo; 1225 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1226 callee_method = methodHandle(current, callinfo.selected_method()); 1227 } 1228 assert(callee_method()->is_method(), "must be"); 1229 return callee_method; 1230 } 1231 1232 // Resolves a call. 1233 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1234 methodHandle callee_method; 1235 callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD); 1236 if (JvmtiExport::can_hotswap_or_post_breakpoint()) { 1237 int retry_count = 0; 1238 while (!HAS_PENDING_EXCEPTION && callee_method->is_old() && 1239 callee_method->method_holder() != vmClasses::Object_klass()) { 1240 // If has a pending exception then there is no need to re-try to 1241 // resolve this method. 1242 // If the method has been redefined, we need to try again. 1243 // Hack: we have no way to update the vtables of arrays, so don't 1244 // require that java.lang.Object has been updated. 1245 1246 // It is very unlikely that method is redefined more than 100 times 1247 // in the middle of resolve. If it is looping here more than 100 times 1248 // means then there could be a bug here. 1249 guarantee((retry_count++ < 100), 1250 "Could not resolve to latest version of redefined method"); 1251 // method is redefined in the middle of resolve so re-try. 1252 callee_method = resolve_sub_helper(is_virtual, is_optimized, THREAD); 1253 } 1254 } 1255 return callee_method; 1256 } 1257 1258 // This fails if resolution required refilling of IC stubs 1259 bool SharedRuntime::resolve_sub_helper_internal(methodHandle callee_method, const frame& caller_frame, 1260 CompiledMethod* caller_nm, bool is_virtual, bool is_optimized, 1261 Handle receiver, CallInfo& call_info, Bytecodes::Code invoke_code, TRAPS) { 1262 StaticCallInfo static_call_info; 1263 CompiledICInfo virtual_call_info; 1264 1265 // Make sure the callee nmethod does not get deoptimized and removed before 1266 // we are done patching the code. 1267 CompiledMethod* callee = callee_method->code(); 1268 1269 if (callee != NULL) { 1270 assert(callee->is_compiled(), "must be nmethod for patching"); 1271 } 1272 1273 if (callee != NULL && !callee->is_in_use()) { 1274 // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded. 1275 callee = NULL; 1276 } 1277 nmethodLocker nl_callee(callee); 1278 #ifdef ASSERT 1279 address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below 1280 #endif 1281 1282 bool is_nmethod = caller_nm->is_nmethod(); 1283 1284 if (is_virtual) { 1285 assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check"); 1286 bool static_bound = call_info.resolved_method()->can_be_statically_bound(); 1287 Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass(); 1288 CompiledIC::compute_monomorphic_entry(callee_method, klass, 1289 is_optimized, static_bound, is_nmethod, virtual_call_info, 1290 CHECK_false); 1291 } else { 1292 // static call 1293 CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info); 1294 } 1295 1296 // grab lock, check for deoptimization and potentially patch caller 1297 { 1298 CompiledICLocker ml(caller_nm); 1299 1300 // Lock blocks for safepoint during which both nmethods can change state. 1301 1302 // Now that we are ready to patch if the Method* was redefined then 1303 // don't update call site and let the caller retry. 1304 // Don't update call site if callee nmethod was unloaded or deoptimized. 1305 // Don't update call site if callee nmethod was replaced by an other nmethod 1306 // which may happen when multiply alive nmethod (tiered compilation) 1307 // will be supported. 1308 if (!callee_method->is_old() && 1309 (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) { 1310 NoSafepointVerifier nsv; 1311 #ifdef ASSERT 1312 // We must not try to patch to jump to an already unloaded method. 1313 if (dest_entry_point != 0) { 1314 CodeBlob* cb = CodeCache::find_blob(dest_entry_point); 1315 assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee), 1316 "should not call unloaded nmethod"); 1317 } 1318 #endif 1319 if (is_virtual) { 1320 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1321 if (inline_cache->is_clean()) { 1322 if (!inline_cache->set_to_monomorphic(virtual_call_info)) { 1323 return false; 1324 } 1325 } 1326 } else { 1327 if (VM_Version::supports_fast_class_init_checks() && 1328 invoke_code == Bytecodes::_invokestatic && 1329 callee_method->needs_clinit_barrier() && 1330 callee != NULL && callee->is_compiled_by_jvmci()) { 1331 return true; // skip patching for JVMCI 1332 } 1333 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc()); 1334 if (ssc->is_clean()) ssc->set(static_call_info); 1335 } 1336 } 1337 } // unlock CompiledICLocker 1338 return true; 1339 } 1340 1341 // Resolves a call. The compilers generate code for calls that go here 1342 // and are patched with the real destination of the call. 1343 methodHandle SharedRuntime::resolve_sub_helper(bool is_virtual, bool is_optimized, TRAPS) { 1344 JavaThread* current = THREAD; 1345 ResourceMark rm(current); 1346 RegisterMap cbl_map(current, false); 1347 frame caller_frame = current->last_frame().sender(&cbl_map); 1348 1349 CodeBlob* caller_cb = caller_frame.cb(); 1350 guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method"); 1351 CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null(); 1352 1353 // make sure caller is not getting deoptimized 1354 // and removed before we are done with it. 1355 // CLEANUP - with lazy deopt shouldn't need this lock 1356 nmethodLocker caller_lock(caller_nm); 1357 1358 // determine call info & receiver 1359 // note: a) receiver is NULL for static calls 1360 // b) an exception is thrown if receiver is NULL for non-static calls 1361 CallInfo call_info; 1362 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1363 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1364 methodHandle callee_method(current, call_info.selected_method()); 1365 1366 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1367 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1368 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1369 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1370 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1371 1372 assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive"); 1373 1374 #ifndef PRODUCT 1375 // tracing/debugging/statistics 1376 int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1377 (is_virtual) ? (&_resolve_virtual_ctr) : 1378 (&_resolve_static_ctr); 1379 Atomic::inc(addr); 1380 1381 if (TraceCallFixup) { 1382 ResourceMark rm(current); 1383 tty->print("resolving %s%s (%s) call to", 1384 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1385 Bytecodes::name(invoke_code)); 1386 callee_method->print_short_name(tty); 1387 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1388 p2i(caller_frame.pc()), p2i(callee_method->code())); 1389 } 1390 #endif 1391 1392 if (invoke_code == Bytecodes::_invokestatic) { 1393 assert(callee_method->method_holder()->is_initialized() || 1394 callee_method->method_holder()->is_reentrant_initialization(current), 1395 "invalid class initialization state for invoke_static"); 1396 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1397 // In order to keep class initialization check, do not patch call 1398 // site for static call when the class is not fully initialized. 1399 // Proper check is enforced by call site re-resolution on every invocation. 1400 // 1401 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1402 // explicit class initialization check is put in nmethod entry (VEP). 1403 assert(callee_method->method_holder()->is_linked(), "must be"); 1404 return callee_method; 1405 } 1406 } 1407 1408 // JSR 292 key invariant: 1409 // If the resolved method is a MethodHandle invoke target, the call 1410 // site must be a MethodHandle call site, because the lambda form might tail-call 1411 // leaving the stack in a state unknown to either caller or callee 1412 // TODO detune for now but we might need it again 1413 // assert(!callee_method->is_compiled_lambda_form() || 1414 // caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site"); 1415 1416 // Compute entry points. This might require generation of C2I converter 1417 // frames, so we cannot be holding any locks here. Furthermore, the 1418 // computation of the entry points is independent of patching the call. We 1419 // always return the entry-point, but we only patch the stub if the call has 1420 // not been deoptimized. Return values: For a virtual call this is an 1421 // (cached_oop, destination address) pair. For a static call/optimized 1422 // virtual this is just a destination address. 1423 1424 // Patching IC caches may fail if we run out if transition stubs. 1425 // We refill the ic stubs then and try again. 1426 for (;;) { 1427 ICRefillVerifier ic_refill_verifier; 1428 bool successful = resolve_sub_helper_internal(callee_method, caller_frame, caller_nm, 1429 is_virtual, is_optimized, receiver, 1430 call_info, invoke_code, CHECK_(methodHandle())); 1431 if (successful) { 1432 return callee_method; 1433 } else { 1434 InlineCacheBuffer::refill_ic_stubs(); 1435 } 1436 } 1437 1438 } 1439 1440 1441 // Inline caches exist only in compiled code 1442 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1443 #ifdef ASSERT 1444 RegisterMap reg_map(current, false); 1445 frame stub_frame = current->last_frame(); 1446 assert(stub_frame.is_runtime_frame(), "sanity check"); 1447 frame caller_frame = stub_frame.sender(®_map); 1448 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_optimized_entry_frame(), "unexpected frame"); 1449 #endif /* ASSERT */ 1450 1451 methodHandle callee_method; 1452 JRT_BLOCK 1453 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1454 // Return Method* through TLS 1455 current->set_vm_result_2(callee_method()); 1456 JRT_BLOCK_END 1457 // return compiled code entry point after potential safepoints 1458 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1459 return callee_method->verified_code_entry(); 1460 JRT_END 1461 1462 1463 // Handle call site that has been made non-entrant 1464 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1465 // 6243940 We might end up in here if the callee is deoptimized 1466 // as we race to call it. We don't want to take a safepoint if 1467 // the caller was interpreted because the caller frame will look 1468 // interpreted to the stack walkers and arguments are now 1469 // "compiled" so it is much better to make this transition 1470 // invisible to the stack walking code. The i2c path will 1471 // place the callee method in the callee_target. It is stashed 1472 // there because if we try and find the callee by normal means a 1473 // safepoint is possible and have trouble gc'ing the compiled args. 1474 RegisterMap reg_map(current, false); 1475 frame stub_frame = current->last_frame(); 1476 assert(stub_frame.is_runtime_frame(), "sanity check"); 1477 frame caller_frame = stub_frame.sender(®_map); 1478 1479 if (caller_frame.is_interpreted_frame() || 1480 caller_frame.is_entry_frame() || 1481 caller_frame.is_optimized_entry_frame()) { 1482 Method* callee = current->callee_target(); 1483 guarantee(callee != NULL && callee->is_method(), "bad handshake"); 1484 current->set_vm_result_2(callee); 1485 current->set_callee_target(NULL); 1486 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1487 // Bypass class initialization checks in c2i when caller is in native. 1488 // JNI calls to static methods don't have class initialization checks. 1489 // Fast class initialization checks are present in c2i adapters and call into 1490 // SharedRuntime::handle_wrong_method() on the slow path. 1491 // 1492 // JVM upcalls may land here as well, but there's a proper check present in 1493 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1494 // so bypassing it in c2i adapter is benign. 1495 return callee->get_c2i_no_clinit_check_entry(); 1496 } else { 1497 return callee->get_c2i_entry(); 1498 } 1499 } 1500 1501 // Must be compiled to compiled path which is safe to stackwalk 1502 methodHandle callee_method; 1503 JRT_BLOCK 1504 // Force resolving of caller (if we called from compiled frame) 1505 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1506 current->set_vm_result_2(callee_method()); 1507 JRT_BLOCK_END 1508 // return compiled code entry point after potential safepoints 1509 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1510 return callee_method->verified_code_entry(); 1511 JRT_END 1512 1513 // Handle abstract method call 1514 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1515 // Verbose error message for AbstractMethodError. 1516 // Get the called method from the invoke bytecode. 1517 vframeStream vfst(current, true); 1518 assert(!vfst.at_end(), "Java frame must exist"); 1519 methodHandle caller(current, vfst.method()); 1520 Bytecode_invoke invoke(caller, vfst.bci()); 1521 DEBUG_ONLY( invoke.verify(); ) 1522 1523 // Find the compiled caller frame. 1524 RegisterMap reg_map(current); 1525 frame stubFrame = current->last_frame(); 1526 assert(stubFrame.is_runtime_frame(), "must be"); 1527 frame callerFrame = stubFrame.sender(®_map); 1528 assert(callerFrame.is_compiled_frame(), "must be"); 1529 1530 // Install exception and return forward entry. 1531 address res = StubRoutines::throw_AbstractMethodError_entry(); 1532 JRT_BLOCK 1533 methodHandle callee(current, invoke.static_target(current)); 1534 if (!callee.is_null()) { 1535 oop recv = callerFrame.retrieve_receiver(®_map); 1536 Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL; 1537 res = StubRoutines::forward_exception_entry(); 1538 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1539 } 1540 JRT_BLOCK_END 1541 return res; 1542 JRT_END 1543 1544 1545 // resolve a static call and patch code 1546 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1547 methodHandle callee_method; 1548 JRT_BLOCK 1549 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1550 current->set_vm_result_2(callee_method()); 1551 JRT_BLOCK_END 1552 // return compiled code entry point after potential safepoints 1553 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1554 return callee_method->verified_code_entry(); 1555 JRT_END 1556 1557 1558 // resolve virtual call and update inline cache to monomorphic 1559 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1560 methodHandle callee_method; 1561 JRT_BLOCK 1562 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1563 current->set_vm_result_2(callee_method()); 1564 JRT_BLOCK_END 1565 // return compiled code entry point after potential safepoints 1566 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1567 return callee_method->verified_code_entry(); 1568 JRT_END 1569 1570 1571 // Resolve a virtual call that can be statically bound (e.g., always 1572 // monomorphic, so it has no inline cache). Patch code to resolved target. 1573 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1574 methodHandle callee_method; 1575 JRT_BLOCK 1576 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1577 current->set_vm_result_2(callee_method()); 1578 JRT_BLOCK_END 1579 // return compiled code entry point after potential safepoints 1580 assert(callee_method->verified_code_entry() != NULL, " Jump to zero!"); 1581 return callee_method->verified_code_entry(); 1582 JRT_END 1583 1584 // The handle_ic_miss_helper_internal function returns false if it failed due 1585 // to either running out of vtable stubs or ic stubs due to IC transitions 1586 // to transitional states. The needs_ic_stub_refill value will be set if 1587 // the failure was due to running out of IC stubs, in which case handle_ic_miss_helper 1588 // refills the IC stubs and tries again. 1589 bool SharedRuntime::handle_ic_miss_helper_internal(Handle receiver, CompiledMethod* caller_nm, 1590 const frame& caller_frame, methodHandle callee_method, 1591 Bytecodes::Code bc, CallInfo& call_info, 1592 bool& needs_ic_stub_refill, TRAPS) { 1593 CompiledICLocker ml(caller_nm); 1594 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1595 bool should_be_mono = false; 1596 if (inline_cache->is_optimized()) { 1597 if (TraceCallFixup) { 1598 ResourceMark rm(THREAD); 1599 tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc)); 1600 callee_method->print_short_name(tty); 1601 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1602 } 1603 should_be_mono = true; 1604 } else if (inline_cache->is_icholder_call()) { 1605 CompiledICHolder* ic_oop = inline_cache->cached_icholder(); 1606 if (ic_oop != NULL) { 1607 if (!ic_oop->is_loader_alive()) { 1608 // Deferred IC cleaning due to concurrent class unloading 1609 if (!inline_cache->set_to_clean()) { 1610 needs_ic_stub_refill = true; 1611 return false; 1612 } 1613 } else if (receiver()->klass() == ic_oop->holder_klass()) { 1614 // This isn't a real miss. We must have seen that compiled code 1615 // is now available and we want the call site converted to a 1616 // monomorphic compiled call site. 1617 // We can't assert for callee_method->code() != NULL because it 1618 // could have been deoptimized in the meantime 1619 if (TraceCallFixup) { 1620 ResourceMark rm(THREAD); 1621 tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc)); 1622 callee_method->print_short_name(tty); 1623 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1624 } 1625 should_be_mono = true; 1626 } 1627 } 1628 } 1629 1630 if (should_be_mono) { 1631 // We have a path that was monomorphic but was going interpreted 1632 // and now we have (or had) a compiled entry. We correct the IC 1633 // by using a new icBuffer. 1634 CompiledICInfo info; 1635 Klass* receiver_klass = receiver()->klass(); 1636 inline_cache->compute_monomorphic_entry(callee_method, 1637 receiver_klass, 1638 inline_cache->is_optimized(), 1639 false, caller_nm->is_nmethod(), 1640 info, CHECK_false); 1641 if (!inline_cache->set_to_monomorphic(info)) { 1642 needs_ic_stub_refill = true; 1643 return false; 1644 } 1645 } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) { 1646 // Potential change to megamorphic 1647 1648 bool successful = inline_cache->set_to_megamorphic(&call_info, bc, needs_ic_stub_refill, CHECK_false); 1649 if (needs_ic_stub_refill) { 1650 return false; 1651 } 1652 if (!successful) { 1653 if (!inline_cache->set_to_clean()) { 1654 needs_ic_stub_refill = true; 1655 return false; 1656 } 1657 } 1658 } else { 1659 // Either clean or megamorphic 1660 } 1661 return true; 1662 } 1663 1664 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1665 JavaThread* current = THREAD; 1666 ResourceMark rm(current); 1667 CallInfo call_info; 1668 Bytecodes::Code bc; 1669 1670 // receiver is NULL for static calls. An exception is thrown for NULL 1671 // receivers for non-static calls 1672 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1673 // Compiler1 can produce virtual call sites that can actually be statically bound 1674 // If we fell thru to below we would think that the site was going megamorphic 1675 // when in fact the site can never miss. Worse because we'd think it was megamorphic 1676 // we'd try and do a vtable dispatch however methods that can be statically bound 1677 // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a 1678 // reresolution of the call site (as if we did a handle_wrong_method and not an 1679 // plain ic_miss) and the site will be converted to an optimized virtual call site 1680 // never to miss again. I don't believe C2 will produce code like this but if it 1681 // did this would still be the correct thing to do for it too, hence no ifdef. 1682 // 1683 if (call_info.resolved_method()->can_be_statically_bound()) { 1684 methodHandle callee_method = SharedRuntime::reresolve_call_site(CHECK_(methodHandle())); 1685 if (TraceCallFixup) { 1686 RegisterMap reg_map(current, false); 1687 frame caller_frame = current->last_frame().sender(®_map); 1688 ResourceMark rm(current); 1689 tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc)); 1690 callee_method->print_short_name(tty); 1691 tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc())); 1692 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1693 } 1694 return callee_method; 1695 } 1696 1697 methodHandle callee_method(current, call_info.selected_method()); 1698 1699 #ifndef PRODUCT 1700 Atomic::inc(&_ic_miss_ctr); 1701 1702 // Statistics & Tracing 1703 if (TraceCallFixup) { 1704 ResourceMark rm(current); 1705 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1706 callee_method->print_short_name(tty); 1707 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1708 } 1709 1710 if (ICMissHistogram) { 1711 MutexLocker m(VMStatistic_lock); 1712 RegisterMap reg_map(current, false); 1713 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1714 // produce statistics under the lock 1715 trace_ic_miss(f.pc()); 1716 } 1717 #endif 1718 1719 // install an event collector so that when a vtable stub is created the 1720 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1721 // event can't be posted when the stub is created as locks are held 1722 // - instead the event will be deferred until the event collector goes 1723 // out of scope. 1724 JvmtiDynamicCodeEventCollector event_collector; 1725 1726 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1727 // Transitioning IC caches may require transition stubs. If we run out 1728 // of transition stubs, we have to drop locks and perform a safepoint 1729 // that refills them. 1730 RegisterMap reg_map(current, false); 1731 frame caller_frame = current->last_frame().sender(®_map); 1732 CodeBlob* cb = caller_frame.cb(); 1733 CompiledMethod* caller_nm = cb->as_compiled_method(); 1734 1735 for (;;) { 1736 ICRefillVerifier ic_refill_verifier; 1737 bool needs_ic_stub_refill = false; 1738 bool successful = handle_ic_miss_helper_internal(receiver, caller_nm, caller_frame, callee_method, 1739 bc, call_info, needs_ic_stub_refill, CHECK_(methodHandle())); 1740 if (successful || !needs_ic_stub_refill) { 1741 return callee_method; 1742 } else { 1743 InlineCacheBuffer::refill_ic_stubs(); 1744 } 1745 } 1746 } 1747 1748 static bool clear_ic_at_addr(CompiledMethod* caller_nm, address call_addr, bool is_static_call) { 1749 CompiledICLocker ml(caller_nm); 1750 if (is_static_call) { 1751 CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr); 1752 if (!ssc->is_clean()) { 1753 return ssc->set_to_clean(); 1754 } 1755 } else { 1756 // compiled, dispatched call (which used to call an interpreted method) 1757 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1758 if (!inline_cache->is_clean()) { 1759 return inline_cache->set_to_clean(); 1760 } 1761 } 1762 return true; 1763 } 1764 1765 // 1766 // Resets a call-site in compiled code so it will get resolved again. 1767 // This routines handles both virtual call sites, optimized virtual call 1768 // sites, and static call sites. Typically used to change a call sites 1769 // destination from compiled to interpreted. 1770 // 1771 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1772 JavaThread* current = THREAD; 1773 ResourceMark rm(current); 1774 RegisterMap reg_map(current, false); 1775 frame stub_frame = current->last_frame(); 1776 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1777 frame caller = stub_frame.sender(®_map); 1778 1779 // Do nothing if the frame isn't a live compiled frame. 1780 // nmethod could be deoptimized by the time we get here 1781 // so no update to the caller is needed. 1782 1783 if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) { 1784 1785 address pc = caller.pc(); 1786 1787 // Check for static or virtual call 1788 bool is_static_call = false; 1789 CompiledMethod* caller_nm = CodeCache::find_compiled(pc); 1790 1791 // Default call_addr is the location of the "basic" call. 1792 // Determine the address of the call we a reresolving. With 1793 // Inline Caches we will always find a recognizable call. 1794 // With Inline Caches disabled we may or may not find a 1795 // recognizable call. We will always find a call for static 1796 // calls and for optimized virtual calls. For vanilla virtual 1797 // calls it depends on the state of the UseInlineCaches switch. 1798 // 1799 // With Inline Caches disabled we can get here for a virtual call 1800 // for two reasons: 1801 // 1 - calling an abstract method. The vtable for abstract methods 1802 // will run us thru handle_wrong_method and we will eventually 1803 // end up in the interpreter to throw the ame. 1804 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1805 // call and between the time we fetch the entry address and 1806 // we jump to it the target gets deoptimized. Similar to 1 1807 // we will wind up in the interprter (thru a c2i with c2). 1808 // 1809 address call_addr = NULL; 1810 { 1811 // Get call instruction under lock because another thread may be 1812 // busy patching it. 1813 CompiledICLocker ml(caller_nm); 1814 // Location of call instruction 1815 call_addr = caller_nm->call_instruction_address(pc); 1816 } 1817 // Make sure nmethod doesn't get deoptimized and removed until 1818 // this is done with it. 1819 // CLEANUP - with lazy deopt shouldn't need this lock 1820 nmethodLocker nmlock(caller_nm); 1821 1822 if (call_addr != NULL) { 1823 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1824 int ret = iter.next(); // Get item 1825 if (ret) { 1826 assert(iter.addr() == call_addr, "must find call"); 1827 if (iter.type() == relocInfo::static_call_type) { 1828 is_static_call = true; 1829 } else { 1830 assert(iter.type() == relocInfo::virtual_call_type || 1831 iter.type() == relocInfo::opt_virtual_call_type 1832 , "unexpected relocInfo. type"); 1833 } 1834 } else { 1835 assert(!UseInlineCaches, "relocation info. must exist for this address"); 1836 } 1837 1838 // Cleaning the inline cache will force a new resolve. This is more robust 1839 // than directly setting it to the new destination, since resolving of calls 1840 // is always done through the same code path. (experience shows that it 1841 // leads to very hard to track down bugs, if an inline cache gets updated 1842 // to a wrong method). It should not be performance critical, since the 1843 // resolve is only done once. 1844 1845 for (;;) { 1846 ICRefillVerifier ic_refill_verifier; 1847 if (!clear_ic_at_addr(caller_nm, call_addr, is_static_call)) { 1848 InlineCacheBuffer::refill_ic_stubs(); 1849 } else { 1850 break; 1851 } 1852 } 1853 } 1854 } 1855 1856 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1857 1858 1859 #ifndef PRODUCT 1860 Atomic::inc(&_wrong_method_ctr); 1861 1862 if (TraceCallFixup) { 1863 ResourceMark rm(current); 1864 tty->print("handle_wrong_method reresolving call to"); 1865 callee_method->print_short_name(tty); 1866 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1867 } 1868 #endif 1869 1870 return callee_method; 1871 } 1872 1873 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1874 // The faulting unsafe accesses should be changed to throw the error 1875 // synchronously instead. Meanwhile the faulting instruction will be 1876 // skipped over (effectively turning it into a no-op) and an 1877 // asynchronous exception will be raised which the thread will 1878 // handle at a later point. If the instruction is a load it will 1879 // return garbage. 1880 1881 // Request an async exception. 1882 thread->set_pending_unsafe_access_error(); 1883 1884 // Return address of next instruction to execute. 1885 return next_pc; 1886 } 1887 1888 #ifdef ASSERT 1889 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1890 const BasicType* sig_bt, 1891 const VMRegPair* regs) { 1892 ResourceMark rm; 1893 const int total_args_passed = method->size_of_parameters(); 1894 const VMRegPair* regs_with_member_name = regs; 1895 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1896 1897 const int member_arg_pos = total_args_passed - 1; 1898 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1899 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1900 1901 int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1902 1903 for (int i = 0; i < member_arg_pos; i++) { 1904 VMReg a = regs_with_member_name[i].first(); 1905 VMReg b = regs_without_member_name[i].first(); 1906 assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value()); 1907 } 1908 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1909 } 1910 #endif 1911 1912 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) { 1913 if (destination != entry_point) { 1914 CodeBlob* callee = CodeCache::find_blob(destination); 1915 // callee == cb seems weird. It means calling interpreter thru stub. 1916 if (callee != NULL && (callee == cb || callee->is_adapter_blob())) { 1917 // static call or optimized virtual 1918 if (TraceCallFixup) { 1919 tty->print("fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1920 moop->print_short_name(tty); 1921 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1922 } 1923 return true; 1924 } else { 1925 if (TraceCallFixup) { 1926 tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1927 moop->print_short_name(tty); 1928 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1929 } 1930 // assert is too strong could also be resolve destinations. 1931 // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be"); 1932 } 1933 } else { 1934 if (TraceCallFixup) { 1935 tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc)); 1936 moop->print_short_name(tty); 1937 tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point)); 1938 } 1939 } 1940 return false; 1941 } 1942 1943 // --------------------------------------------------------------------------- 1944 // We are calling the interpreter via a c2i. Normally this would mean that 1945 // we were called by a compiled method. However we could have lost a race 1946 // where we went int -> i2c -> c2i and so the caller could in fact be 1947 // interpreted. If the caller is compiled we attempt to patch the caller 1948 // so he no longer calls into the interpreter. 1949 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1950 Method* moop(method); 1951 1952 // It's possible that deoptimization can occur at a call site which hasn't 1953 // been resolved yet, in which case this function will be called from 1954 // an nmethod that has been patched for deopt and we can ignore the 1955 // request for a fixup. 1956 // Also it is possible that we lost a race in that from_compiled_entry 1957 // is now back to the i2c in that case we don't need to patch and if 1958 // we did we'd leap into space because the callsite needs to use 1959 // "to interpreter" stub in order to load up the Method*. Don't 1960 // ask me how I know this... 1961 1962 // Result from nmethod::is_unloading is not stable across safepoints. 1963 NoSafepointVerifier nsv; 1964 1965 CompiledMethod* callee = moop->code(); 1966 if (callee == NULL) { 1967 return; 1968 } 1969 1970 // write lock needed because we might update the pc desc cache via PcDescCache::add_pc_desc 1971 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1972 1973 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1974 if (cb == NULL || !cb->is_compiled() || callee->is_unloading()) { 1975 return; 1976 } 1977 1978 // The check above makes sure this is a nmethod. 1979 CompiledMethod* nm = cb->as_compiled_method_or_null(); 1980 assert(nm, "must be"); 1981 1982 // Get the return PC for the passed caller PC. 1983 address return_pc = caller_pc + frame::pc_return_offset; 1984 1985 // There is a benign race here. We could be attempting to patch to a compiled 1986 // entry point at the same time the callee is being deoptimized. If that is 1987 // the case then entry_point may in fact point to a c2i and we'd patch the 1988 // call site with the same old data. clear_code will set code() to NULL 1989 // at the end of it. If we happen to see that NULL then we can skip trying 1990 // to patch. If we hit the window where the callee has a c2i in the 1991 // from_compiled_entry and the NULL isn't present yet then we lose the race 1992 // and patch the code with the same old data. Asi es la vida. 1993 1994 if (moop->code() == NULL) return; 1995 1996 if (nm->is_in_use()) { 1997 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1998 CompiledICLocker ic_locker(nm); 1999 if (NativeCall::is_call_before(return_pc)) { 2000 ResourceMark mark; 2001 NativeCallWrapper* call = nm->call_wrapper_before(return_pc); 2002 // 2003 // bug 6281185. We might get here after resolving a call site to a vanilla 2004 // virtual call. Because the resolvee uses the verified entry it may then 2005 // see compiled code and attempt to patch the site by calling us. This would 2006 // then incorrectly convert the call site to optimized and its downhill from 2007 // there. If you're lucky you'll get the assert in the bugid, if not you've 2008 // just made a call site that could be megamorphic into a monomorphic site 2009 // for the rest of its life! Just another racing bug in the life of 2010 // fixup_callers_callsite ... 2011 // 2012 RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address()); 2013 iter.next(); 2014 assert(iter.has_current(), "must have a reloc at java call site"); 2015 relocInfo::relocType typ = iter.reloc()->type(); 2016 if (typ != relocInfo::static_call_type && 2017 typ != relocInfo::opt_virtual_call_type && 2018 typ != relocInfo::static_stub_type) { 2019 return; 2020 } 2021 address destination = call->destination(); 2022 address entry_point = callee->verified_entry_point(); 2023 if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) { 2024 call->set_destination_mt_safe(entry_point); 2025 } 2026 } 2027 } 2028 JRT_END 2029 2030 2031 // same as JVM_Arraycopy, but called directly from compiled code 2032 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 2033 oopDesc* dest, jint dest_pos, 2034 jint length, 2035 JavaThread* current)) { 2036 #ifndef PRODUCT 2037 _slow_array_copy_ctr++; 2038 #endif 2039 // Check if we have null pointers 2040 if (src == NULL || dest == NULL) { 2041 THROW(vmSymbols::java_lang_NullPointerException()); 2042 } 2043 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 2044 // even though the copy_array API also performs dynamic checks to ensure 2045 // that src and dest are truly arrays (and are conformable). 2046 // The copy_array mechanism is awkward and could be removed, but 2047 // the compilers don't call this function except as a last resort, 2048 // so it probably doesn't matter. 2049 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 2050 (arrayOopDesc*)dest, dest_pos, 2051 length, current); 2052 } 2053 JRT_END 2054 2055 // The caller of generate_class_cast_message() (or one of its callers) 2056 // must use a ResourceMark in order to correctly free the result. 2057 char* SharedRuntime::generate_class_cast_message( 2058 JavaThread* thread, Klass* caster_klass) { 2059 2060 // Get target class name from the checkcast instruction 2061 vframeStream vfst(thread, true); 2062 assert(!vfst.at_end(), "Java frame must exist"); 2063 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 2064 constantPoolHandle cpool(thread, vfst.method()->constants()); 2065 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 2066 Symbol* target_klass_name = NULL; 2067 if (target_klass == NULL) { 2068 // This klass should be resolved, but just in case, get the name in the klass slot. 2069 target_klass_name = cpool->klass_name_at(cc.index()); 2070 } 2071 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 2072 } 2073 2074 2075 // The caller of generate_class_cast_message() (or one of its callers) 2076 // must use a ResourceMark in order to correctly free the result. 2077 char* SharedRuntime::generate_class_cast_message( 2078 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 2079 const char* caster_name = caster_klass->external_name(); 2080 2081 assert(target_klass != NULL || target_klass_name != NULL, "one must be provided"); 2082 const char* target_name = target_klass == NULL ? target_klass_name->as_klass_external_name() : 2083 target_klass->external_name(); 2084 2085 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 2086 2087 const char* caster_klass_description = ""; 2088 const char* target_klass_description = ""; 2089 const char* klass_separator = ""; 2090 if (target_klass != NULL && caster_klass->module() == target_klass->module()) { 2091 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 2092 } else { 2093 caster_klass_description = caster_klass->class_in_module_of_loader(); 2094 target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : ""; 2095 klass_separator = (target_klass != NULL) ? "; " : ""; 2096 } 2097 2098 // add 3 for parenthesis and preceeding space 2099 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 2100 2101 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 2102 if (message == NULL) { 2103 // Shouldn't happen, but don't cause even more problems if it does 2104 message = const_cast<char*>(caster_klass->external_name()); 2105 } else { 2106 jio_snprintf(message, 2107 msglen, 2108 "class %s cannot be cast to class %s (%s%s%s)", 2109 caster_name, 2110 target_name, 2111 caster_klass_description, 2112 klass_separator, 2113 target_klass_description 2114 ); 2115 } 2116 return message; 2117 } 2118 2119 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 2120 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 2121 JRT_END 2122 2123 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2124 if (!SafepointSynchronize::is_synchronizing()) { 2125 // Only try quick_enter() if we're not trying to reach a safepoint 2126 // so that the calling thread reaches the safepoint more quickly. 2127 if (ObjectSynchronizer::quick_enter(obj, current, lock)) return; 2128 } 2129 // NO_ASYNC required because an async exception on the state transition destructor 2130 // would leave you with the lock held and it would never be released. 2131 // The normal monitorenter NullPointerException is thrown without acquiring a lock 2132 // and the model is that an exception implies the method failed. 2133 JRT_BLOCK_NO_ASYNC 2134 if (PrintBiasedLockingStatistics) { 2135 Atomic::inc(BiasedLocking::slow_path_entry_count_addr()); 2136 } 2137 Handle h_obj(THREAD, obj); 2138 ObjectSynchronizer::enter(h_obj, lock, current); 2139 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 2140 JRT_BLOCK_END 2141 } 2142 2143 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 2144 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2145 SharedRuntime::monitor_enter_helper(obj, lock, current); 2146 JRT_END 2147 2148 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 2149 assert(JavaThread::current() == current, "invariant"); 2150 // Exit must be non-blocking, and therefore no exceptions can be thrown. 2151 ExceptionMark em(current); 2152 // The object could become unlocked through a JNI call, which we have no other checks for. 2153 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 2154 if (obj->is_unlocked()) { 2155 if (CheckJNICalls) { 2156 fatal("Object has been unlocked by JNI"); 2157 } 2158 return; 2159 } 2160 ObjectSynchronizer::exit(obj, lock, current); 2161 } 2162 2163 // Handles the uncommon cases of monitor unlocking in compiled code 2164 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 2165 SharedRuntime::monitor_exit_helper(obj, lock, current); 2166 JRT_END 2167 2168 #ifndef PRODUCT 2169 2170 void SharedRuntime::print_statistics() { 2171 ttyLocker ttyl; 2172 if (xtty != NULL) xtty->head("statistics type='SharedRuntime'"); 2173 2174 if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr); 2175 2176 SharedRuntime::print_ic_miss_histogram(); 2177 2178 // Dump the JRT_ENTRY counters 2179 if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr); 2180 if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr); 2181 if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr); 2182 if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr); 2183 if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr); 2184 if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr); 2185 if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr); 2186 2187 tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr); 2188 tty->print_cr("%5d wrong method", _wrong_method_ctr); 2189 tty->print_cr("%5d unresolved static call site", _resolve_static_ctr); 2190 tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr); 2191 tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr); 2192 2193 if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr); 2194 if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr); 2195 if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr); 2196 if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr); 2197 if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr); 2198 if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr); 2199 if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr); 2200 if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr); 2201 if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr); 2202 if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr); 2203 if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr); 2204 if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr); 2205 if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr); 2206 if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr); 2207 if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr); 2208 if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr); 2209 2210 AdapterHandlerLibrary::print_statistics(); 2211 2212 if (xtty != NULL) xtty->tail("statistics"); 2213 } 2214 2215 inline double percent(int x, int y) { 2216 return 100.0 * x / MAX2(y, 1); 2217 } 2218 2219 inline double percent(int64_t x, int64_t y) { 2220 return 100.0 * x / MAX2(y, (int64_t)1); 2221 } 2222 2223 class MethodArityHistogram { 2224 public: 2225 enum { MAX_ARITY = 256 }; 2226 private: 2227 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2228 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2229 static uint64_t _total_compiled_calls; 2230 static uint64_t _max_compiled_calls_per_method; 2231 static int _max_arity; // max. arity seen 2232 static int _max_size; // max. arg size seen 2233 2234 static void add_method_to_histogram(nmethod* nm) { 2235 Method* method = (nm == NULL) ? NULL : nm->method(); 2236 if ((method != NULL) && nm->is_alive()) { 2237 ArgumentCount args(method->signature()); 2238 int arity = args.size() + (method->is_static() ? 0 : 1); 2239 int argsize = method->size_of_parameters(); 2240 arity = MIN2(arity, MAX_ARITY-1); 2241 argsize = MIN2(argsize, MAX_ARITY-1); 2242 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2243 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2244 _total_compiled_calls += count; 2245 _arity_histogram[arity] += count; 2246 _size_histogram[argsize] += count; 2247 _max_arity = MAX2(_max_arity, arity); 2248 _max_size = MAX2(_max_size, argsize); 2249 } 2250 } 2251 2252 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2253 const int N = MIN2(9, n); 2254 double sum = 0; 2255 double weighted_sum = 0; 2256 for (int i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; } 2257 if (sum >= 1.0) { // prevent divide by zero or divide overflow 2258 double rest = sum; 2259 double percent = sum / 100; 2260 for (int i = 0; i <= N; i++) { 2261 rest -= histo[i]; 2262 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], histo[i] / percent); 2263 } 2264 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2265 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2266 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2267 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2268 } else { 2269 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2270 } 2271 } 2272 2273 void print_histogram() { 2274 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2275 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2276 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2277 print_histogram_helper(_max_size, _size_histogram, "size"); 2278 tty->cr(); 2279 } 2280 2281 public: 2282 MethodArityHistogram() { 2283 // Take the Compile_lock to protect against changes in the CodeBlob structures 2284 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2285 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2286 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2287 _max_arity = _max_size = 0; 2288 _total_compiled_calls = 0; 2289 _max_compiled_calls_per_method = 0; 2290 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2291 CodeCache::nmethods_do(add_method_to_histogram); 2292 print_histogram(); 2293 } 2294 }; 2295 2296 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2297 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2298 uint64_t MethodArityHistogram::_total_compiled_calls; 2299 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2300 int MethodArityHistogram::_max_arity; 2301 int MethodArityHistogram::_max_size; 2302 2303 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2304 tty->print_cr("Calls from compiled code:"); 2305 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2306 int64_t mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls; 2307 int64_t mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls; 2308 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2309 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2310 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2311 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls)); 2312 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2313 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2314 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2315 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2316 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- optimized ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls)); 2317 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2318 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls)); 2319 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2320 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2321 tty->cr(); 2322 tty->print_cr("Note 1: counter updates are not MT-safe."); 2323 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2324 tty->print_cr(" %% in nested categories are relative to their category"); 2325 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2326 tty->cr(); 2327 2328 MethodArityHistogram h; 2329 } 2330 #endif 2331 2332 2333 // A simple wrapper class around the calling convention information 2334 // that allows sharing of adapters for the same calling convention. 2335 class AdapterFingerPrint : public CHeapObj<mtCode> { 2336 private: 2337 enum { 2338 _basic_type_bits = 4, 2339 _basic_type_mask = right_n_bits(_basic_type_bits), 2340 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2341 _compact_int_count = 3 2342 }; 2343 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2344 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2345 2346 union { 2347 int _compact[_compact_int_count]; 2348 int* _fingerprint; 2349 } _value; 2350 int _length; // A negative length indicates the fingerprint is in the compact form, 2351 // Otherwise _value._fingerprint is the array. 2352 2353 // Remap BasicTypes that are handled equivalently by the adapters. 2354 // These are correct for the current system but someday it might be 2355 // necessary to make this mapping platform dependent. 2356 static int adapter_encoding(BasicType in) { 2357 switch (in) { 2358 case T_BOOLEAN: 2359 case T_BYTE: 2360 case T_SHORT: 2361 case T_CHAR: 2362 // There are all promoted to T_INT in the calling convention 2363 return T_INT; 2364 2365 case T_OBJECT: 2366 case T_ARRAY: 2367 // In other words, we assume that any register good enough for 2368 // an int or long is good enough for a managed pointer. 2369 #ifdef _LP64 2370 return T_LONG; 2371 #else 2372 return T_INT; 2373 #endif 2374 2375 case T_INT: 2376 case T_LONG: 2377 case T_FLOAT: 2378 case T_DOUBLE: 2379 case T_VOID: 2380 return in; 2381 2382 default: 2383 ShouldNotReachHere(); 2384 return T_CONFLICT; 2385 } 2386 } 2387 2388 public: 2389 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2390 // The fingerprint is based on the BasicType signature encoded 2391 // into an array of ints with eight entries per int. 2392 int* ptr; 2393 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2394 if (len <= _compact_int_count) { 2395 assert(_compact_int_count == 3, "else change next line"); 2396 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2397 // Storing the signature encoded as signed chars hits about 98% 2398 // of the time. 2399 _length = -len; 2400 ptr = _value._compact; 2401 } else { 2402 _length = len; 2403 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2404 ptr = _value._fingerprint; 2405 } 2406 2407 // Now pack the BasicTypes with 8 per int 2408 int sig_index = 0; 2409 for (int index = 0; index < len; index++) { 2410 int value = 0; 2411 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2412 int bt = adapter_encoding(sig_bt[sig_index++]); 2413 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2414 value = (value << _basic_type_bits) | bt; 2415 } 2416 ptr[index] = value; 2417 } 2418 } 2419 2420 ~AdapterFingerPrint() { 2421 if (_length > 0) { 2422 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2423 } 2424 } 2425 2426 int value(int index) { 2427 if (_length < 0) { 2428 return _value._compact[index]; 2429 } 2430 return _value._fingerprint[index]; 2431 } 2432 int length() { 2433 if (_length < 0) return -_length; 2434 return _length; 2435 } 2436 2437 bool is_compact() { 2438 return _length <= 0; 2439 } 2440 2441 unsigned int compute_hash() { 2442 int hash = 0; 2443 for (int i = 0; i < length(); i++) { 2444 int v = value(i); 2445 hash = (hash << 8) ^ v ^ (hash >> 5); 2446 } 2447 return (unsigned int)hash; 2448 } 2449 2450 const char* as_string() { 2451 stringStream st; 2452 st.print("0x"); 2453 for (int i = 0; i < length(); i++) { 2454 st.print("%x", value(i)); 2455 } 2456 return st.as_string(); 2457 } 2458 2459 #ifndef PRODUCT 2460 // Reconstitutes the basic type arguments from the fingerprint, 2461 // producing strings like LIJDF 2462 const char* as_basic_args_string() { 2463 stringStream st; 2464 bool long_prev = false; 2465 for (int i = 0; i < length(); i++) { 2466 unsigned val = (unsigned)value(i); 2467 // args are packed so that first/lower arguments are in the highest 2468 // bits of each int value, so iterate from highest to the lowest 2469 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2470 unsigned v = (val >> j) & _basic_type_mask; 2471 if (v == 0) { 2472 assert(i == length() - 1, "Only expect zeroes in the last word"); 2473 continue; 2474 } 2475 if (long_prev) { 2476 long_prev = false; 2477 if (v == T_VOID) { 2478 st.print("J"); 2479 } else { 2480 st.print("L"); 2481 } 2482 } 2483 switch (v) { 2484 case T_INT: st.print("I"); break; 2485 case T_LONG: long_prev = true; break; 2486 case T_FLOAT: st.print("F"); break; 2487 case T_DOUBLE: st.print("D"); break; 2488 case T_VOID: break; 2489 default: ShouldNotReachHere(); 2490 } 2491 } 2492 } 2493 if (long_prev) { 2494 st.print("L"); 2495 } 2496 return st.as_string(); 2497 } 2498 #endif // !product 2499 2500 bool equals(AdapterFingerPrint* other) { 2501 if (other->_length != _length) { 2502 return false; 2503 } 2504 if (_length < 0) { 2505 assert(_compact_int_count == 3, "else change next line"); 2506 return _value._compact[0] == other->_value._compact[0] && 2507 _value._compact[1] == other->_value._compact[1] && 2508 _value._compact[2] == other->_value._compact[2]; 2509 } else { 2510 for (int i = 0; i < _length; i++) { 2511 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2512 return false; 2513 } 2514 } 2515 } 2516 return true; 2517 } 2518 }; 2519 2520 2521 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2522 class AdapterHandlerTable : public BasicHashtable<mtCode> { 2523 friend class AdapterHandlerTableIterator; 2524 2525 private: 2526 2527 #ifndef PRODUCT 2528 static int _lookups; // number of calls to lookup 2529 static int _buckets; // number of buckets checked 2530 static int _equals; // number of buckets checked with matching hash 2531 static int _hits; // number of successful lookups 2532 static int _compact; // number of equals calls with compact signature 2533 #endif 2534 2535 AdapterHandlerEntry* bucket(int i) { 2536 return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i); 2537 } 2538 2539 public: 2540 AdapterHandlerTable() 2541 : BasicHashtable<mtCode>(293, (sizeof(AdapterHandlerEntry))) { } 2542 2543 // Create a new entry suitable for insertion in the table 2544 AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry, address c2i_no_clinit_check_entry) { 2545 AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash()); 2546 entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 2547 return entry; 2548 } 2549 2550 // Insert an entry into the table 2551 void add(AdapterHandlerEntry* entry) { 2552 int index = hash_to_index(entry->hash()); 2553 add_entry(index, entry); 2554 } 2555 2556 void free_entry(AdapterHandlerEntry* entry) { 2557 entry->deallocate(); 2558 BasicHashtable<mtCode>::free_entry(entry); 2559 } 2560 2561 // Find a entry with the same fingerprint if it exists 2562 AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2563 NOT_PRODUCT(_lookups++); 2564 AdapterFingerPrint fp(total_args_passed, sig_bt); 2565 unsigned int hash = fp.compute_hash(); 2566 int index = hash_to_index(hash); 2567 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2568 NOT_PRODUCT(_buckets++); 2569 if (e->hash() == hash) { 2570 NOT_PRODUCT(_equals++); 2571 if (fp.equals(e->fingerprint())) { 2572 #ifndef PRODUCT 2573 if (fp.is_compact()) _compact++; 2574 _hits++; 2575 #endif 2576 return e; 2577 } 2578 } 2579 } 2580 return NULL; 2581 } 2582 2583 #ifndef PRODUCT 2584 void print_statistics() { 2585 ResourceMark rm; 2586 int longest = 0; 2587 int empty = 0; 2588 int total = 0; 2589 int nonempty = 0; 2590 for (int index = 0; index < table_size(); index++) { 2591 int count = 0; 2592 for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) { 2593 count++; 2594 } 2595 if (count != 0) nonempty++; 2596 if (count == 0) empty++; 2597 if (count > longest) longest = count; 2598 total += count; 2599 } 2600 tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f", 2601 empty, longest, total, total / (double)nonempty); 2602 tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d", 2603 _lookups, _buckets, _equals, _hits, _compact); 2604 } 2605 #endif 2606 }; 2607 2608 2609 #ifndef PRODUCT 2610 2611 int AdapterHandlerTable::_lookups; 2612 int AdapterHandlerTable::_buckets; 2613 int AdapterHandlerTable::_equals; 2614 int AdapterHandlerTable::_hits; 2615 int AdapterHandlerTable::_compact; 2616 2617 #endif 2618 2619 class AdapterHandlerTableIterator : public StackObj { 2620 private: 2621 AdapterHandlerTable* _table; 2622 int _index; 2623 AdapterHandlerEntry* _current; 2624 2625 void scan() { 2626 while (_index < _table->table_size()) { 2627 AdapterHandlerEntry* a = _table->bucket(_index); 2628 _index++; 2629 if (a != NULL) { 2630 _current = a; 2631 return; 2632 } 2633 } 2634 } 2635 2636 public: 2637 AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) { 2638 scan(); 2639 } 2640 bool has_next() { 2641 return _current != NULL; 2642 } 2643 AdapterHandlerEntry* next() { 2644 if (_current != NULL) { 2645 AdapterHandlerEntry* result = _current; 2646 _current = _current->next(); 2647 if (_current == NULL) scan(); 2648 return result; 2649 } else { 2650 return NULL; 2651 } 2652 } 2653 }; 2654 2655 2656 // --------------------------------------------------------------------------- 2657 // Implementation of AdapterHandlerLibrary 2658 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL; 2659 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL; 2660 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = NULL; 2661 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = NULL; 2662 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = NULL; 2663 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = NULL; 2664 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = NULL; 2665 const int AdapterHandlerLibrary_size = 16*K; 2666 BufferBlob* AdapterHandlerLibrary::_buffer = NULL; 2667 2668 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2669 return _buffer; 2670 } 2671 2672 extern "C" void unexpected_adapter_call() { 2673 ShouldNotCallThis(); 2674 } 2675 2676 static void post_adapter_creation(const AdapterBlob* new_adapter, const AdapterHandlerEntry* entry) { 2677 char blob_id[256]; 2678 jio_snprintf(blob_id, 2679 sizeof(blob_id), 2680 "%s(%s)", 2681 new_adapter->name(), 2682 entry->fingerprint()->as_string()); 2683 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2684 2685 if (JvmtiExport::should_post_dynamic_code_generated()) { 2686 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2687 } 2688 } 2689 2690 void AdapterHandlerLibrary::initialize() { 2691 ResourceMark rm; 2692 AdapterBlob* no_arg_blob = NULL; 2693 AdapterBlob* int_arg_blob = NULL; 2694 AdapterBlob* obj_arg_blob = NULL; 2695 AdapterBlob* obj_int_arg_blob = NULL; 2696 AdapterBlob* obj_obj_arg_blob = NULL; 2697 { 2698 MutexLocker mu(AdapterHandlerLibrary_lock); 2699 assert(_adapters == NULL, "Initializing more than once"); 2700 2701 _adapters = new AdapterHandlerTable(); 2702 2703 // Create a special handler for abstract methods. Abstract methods 2704 // are never compiled so an i2c entry is somewhat meaningless, but 2705 // throw AbstractMethodError just in case. 2706 // Pass wrong_method_abstract for the c2i transitions to return 2707 // AbstractMethodError for invalid invocations. 2708 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2709 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL), 2710 StubRoutines::throw_AbstractMethodError_entry(), 2711 wrong_method_abstract, wrong_method_abstract); 2712 2713 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2714 2715 _no_arg_handler = create_adapter(no_arg_blob, 0, NULL, true); 2716 2717 BasicType obj_args[] = { T_OBJECT }; 2718 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2719 2720 BasicType int_args[] = { T_INT }; 2721 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2722 2723 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2724 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2725 2726 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2727 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2728 2729 assert(no_arg_blob != NULL && 2730 obj_arg_blob != NULL && 2731 int_arg_blob != NULL && 2732 obj_int_arg_blob != NULL && 2733 obj_obj_arg_blob != NULL, "Initial adapters must be properly created"); 2734 } 2735 2736 // Outside of the lock 2737 post_adapter_creation(no_arg_blob, _no_arg_handler); 2738 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2739 post_adapter_creation(int_arg_blob, _int_arg_handler); 2740 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2741 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2742 } 2743 2744 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2745 address i2c_entry, 2746 address c2i_entry, 2747 address c2i_unverified_entry, 2748 address c2i_no_clinit_check_entry) { 2749 return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 2750 } 2751 2752 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2753 if (method->is_abstract()) { 2754 return _abstract_method_handler; 2755 } 2756 int total_args_passed = method->size_of_parameters(); // All args on stack 2757 if (total_args_passed == 0) { 2758 return _no_arg_handler; 2759 } else if (total_args_passed == 1) { 2760 if (!method->is_static()) { 2761 return _obj_arg_handler; 2762 } 2763 switch (method->signature()->char_at(1)) { 2764 case JVM_SIGNATURE_CLASS: 2765 case JVM_SIGNATURE_ARRAY: 2766 return _obj_arg_handler; 2767 case JVM_SIGNATURE_INT: 2768 case JVM_SIGNATURE_BOOLEAN: 2769 case JVM_SIGNATURE_CHAR: 2770 case JVM_SIGNATURE_BYTE: 2771 case JVM_SIGNATURE_SHORT: 2772 return _int_arg_handler; 2773 } 2774 } else if (total_args_passed == 2 && 2775 !method->is_static()) { 2776 switch (method->signature()->char_at(1)) { 2777 case JVM_SIGNATURE_CLASS: 2778 case JVM_SIGNATURE_ARRAY: 2779 return _obj_obj_arg_handler; 2780 case JVM_SIGNATURE_INT: 2781 case JVM_SIGNATURE_BOOLEAN: 2782 case JVM_SIGNATURE_CHAR: 2783 case JVM_SIGNATURE_BYTE: 2784 case JVM_SIGNATURE_SHORT: 2785 return _obj_int_arg_handler; 2786 } 2787 } 2788 return NULL; 2789 } 2790 2791 class AdapterSignatureIterator : public SignatureIterator { 2792 private: 2793 BasicType stack_sig_bt[16]; 2794 BasicType* sig_bt; 2795 int index; 2796 2797 public: 2798 AdapterSignatureIterator(Symbol* signature, 2799 fingerprint_t fingerprint, 2800 bool is_static, 2801 int total_args_passed) : 2802 SignatureIterator(signature, fingerprint), 2803 index(0) 2804 { 2805 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2806 if (!is_static) { // Pass in receiver first 2807 sig_bt[index++] = T_OBJECT; 2808 } 2809 do_parameters_on(this); 2810 } 2811 2812 BasicType* basic_types() { 2813 return sig_bt; 2814 } 2815 2816 #ifdef ASSERT 2817 int slots() { 2818 return index; 2819 } 2820 #endif 2821 2822 private: 2823 2824 friend class SignatureIterator; // so do_parameters_on can call do_type 2825 void do_type(BasicType type) { 2826 sig_bt[index++] = type; 2827 if (type == T_LONG || type == T_DOUBLE) { 2828 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2829 } 2830 } 2831 }; 2832 2833 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2834 // Use customized signature handler. Need to lock around updates to 2835 // the AdapterHandlerTable (it is not safe for concurrent readers 2836 // and a single writer: this could be fixed if it becomes a 2837 // problem). 2838 assert(_adapters != NULL, "Uninitialized"); 2839 2840 // Fast-path for trivial adapters 2841 AdapterHandlerEntry* entry = get_simple_adapter(method); 2842 if (entry != NULL) { 2843 return entry; 2844 } 2845 2846 ResourceMark rm; 2847 AdapterBlob* new_adapter = NULL; 2848 2849 // Fill in the signature array, for the calling-convention call. 2850 int total_args_passed = method->size_of_parameters(); // All args on stack 2851 2852 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2853 method->is_static(), total_args_passed); 2854 assert(si.slots() == total_args_passed, ""); 2855 BasicType* sig_bt = si.basic_types(); 2856 { 2857 MutexLocker mu(AdapterHandlerLibrary_lock); 2858 2859 // Lookup method signature's fingerprint 2860 entry = _adapters->lookup(total_args_passed, sig_bt); 2861 2862 if (entry != NULL) { 2863 #ifdef ASSERT 2864 if (VerifyAdapterSharing) { 2865 AdapterBlob* comparison_blob = NULL; 2866 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2867 assert(comparison_blob == NULL, "no blob should be created when creating an adapter for comparison"); 2868 assert(comparison_entry->compare_code(entry), "code must match"); 2869 // Release the one just created and return the original 2870 _adapters->free_entry(comparison_entry); 2871 } 2872 #endif 2873 return entry; 2874 } 2875 2876 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2877 } 2878 2879 // Outside of the lock 2880 if (new_adapter != NULL) { 2881 post_adapter_creation(new_adapter, entry); 2882 } 2883 return entry; 2884 } 2885 2886 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2887 int total_args_passed, 2888 BasicType* sig_bt, 2889 bool allocate_code_blob) { 2890 2891 // StubRoutines::code2() is initialized after this function can be called. As a result, 2892 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated 2893 // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C 2894 // stub that ensure that an I2C stub is called from an interpreter frame. 2895 bool contains_all_checks = StubRoutines::code2() != NULL; 2896 2897 VMRegPair stack_regs[16]; 2898 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2899 2900 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2901 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2902 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2903 CodeBuffer buffer(buf); 2904 short buffer_locs[20]; 2905 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2906 sizeof(buffer_locs)/sizeof(relocInfo)); 2907 2908 // Make a C heap allocated version of the fingerprint to store in the adapter 2909 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2910 MacroAssembler _masm(&buffer); 2911 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2912 total_args_passed, 2913 comp_args_on_stack, 2914 sig_bt, 2915 regs, 2916 fingerprint); 2917 2918 #ifdef ASSERT 2919 if (VerifyAdapterSharing) { 2920 entry->save_code(buf->code_begin(), buffer.insts_size()); 2921 if (!allocate_code_blob) { 2922 return entry; 2923 } 2924 } 2925 #endif 2926 2927 new_adapter = AdapterBlob::create(&buffer); 2928 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2929 if (new_adapter == NULL) { 2930 // CodeCache is full, disable compilation 2931 // Ought to log this but compile log is only per compile thread 2932 // and we're some non descript Java thread. 2933 return NULL; 2934 } 2935 entry->relocate(new_adapter->content_begin()); 2936 #ifndef PRODUCT 2937 // debugging suppport 2938 if (PrintAdapterHandlers || PrintStubCode) { 2939 ttyLocker ttyl; 2940 entry->print_adapter_on(tty); 2941 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2942 _adapters->number_of_entries(), fingerprint->as_basic_args_string(), 2943 fingerprint->as_string(), insts_size); 2944 tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry()); 2945 if (Verbose || PrintStubCode) { 2946 address first_pc = entry->base_address(); 2947 if (first_pc != NULL) { 2948 Disassembler::decode(first_pc, first_pc + insts_size); 2949 tty->cr(); 2950 } 2951 } 2952 } 2953 #endif 2954 2955 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2956 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2957 if (contains_all_checks || !VerifyAdapterCalls) { 2958 _adapters->add(entry); 2959 } 2960 return entry; 2961 } 2962 2963 address AdapterHandlerEntry::base_address() { 2964 address base = _i2c_entry; 2965 if (base == NULL) base = _c2i_entry; 2966 assert(base <= _c2i_entry || _c2i_entry == NULL, ""); 2967 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, ""); 2968 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == NULL, ""); 2969 return base; 2970 } 2971 2972 void AdapterHandlerEntry::relocate(address new_base) { 2973 address old_base = base_address(); 2974 assert(old_base != NULL, ""); 2975 ptrdiff_t delta = new_base - old_base; 2976 if (_i2c_entry != NULL) 2977 _i2c_entry += delta; 2978 if (_c2i_entry != NULL) 2979 _c2i_entry += delta; 2980 if (_c2i_unverified_entry != NULL) 2981 _c2i_unverified_entry += delta; 2982 if (_c2i_no_clinit_check_entry != NULL) 2983 _c2i_no_clinit_check_entry += delta; 2984 assert(base_address() == new_base, ""); 2985 } 2986 2987 2988 void AdapterHandlerEntry::deallocate() { 2989 delete _fingerprint; 2990 #ifdef ASSERT 2991 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2992 #endif 2993 } 2994 2995 2996 #ifdef ASSERT 2997 // Capture the code before relocation so that it can be compared 2998 // against other versions. If the code is captured after relocation 2999 // then relative instructions won't be equivalent. 3000 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 3001 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 3002 _saved_code_length = length; 3003 memcpy(_saved_code, buffer, length); 3004 } 3005 3006 3007 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 3008 assert(_saved_code != NULL && other->_saved_code != NULL, "code not saved"); 3009 3010 if (other->_saved_code_length != _saved_code_length) { 3011 return false; 3012 } 3013 3014 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 3015 } 3016 #endif 3017 3018 3019 /** 3020 * Create a native wrapper for this native method. The wrapper converts the 3021 * Java-compiled calling convention to the native convention, handles 3022 * arguments, and transitions to native. On return from the native we transition 3023 * back to java blocking if a safepoint is in progress. 3024 */ 3025 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 3026 ResourceMark rm; 3027 nmethod* nm = NULL; 3028 address critical_entry = NULL; 3029 3030 assert(method->is_native(), "must be native"); 3031 assert(method->is_method_handle_intrinsic() || 3032 method->has_native_function(), "must have something valid to call!"); 3033 3034 if (CriticalJNINatives && !method->is_method_handle_intrinsic()) { 3035 // We perform the I/O with transition to native before acquiring AdapterHandlerLibrary_lock. 3036 critical_entry = NativeLookup::lookup_critical_entry(method); 3037 } 3038 3039 { 3040 // Perform the work while holding the lock, but perform any printing outside the lock 3041 MutexLocker mu(AdapterHandlerLibrary_lock); 3042 // See if somebody beat us to it 3043 if (method->code() != NULL) { 3044 return; 3045 } 3046 3047 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 3048 assert(compile_id > 0, "Must generate native wrapper"); 3049 3050 3051 ResourceMark rm; 3052 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 3053 if (buf != NULL) { 3054 CodeBuffer buffer(buf); 3055 struct { double data[20]; } locs_buf; 3056 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 3057 #if defined(AARCH64) 3058 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 3059 // in the constant pool to ensure ordering between the barrier and oops 3060 // accesses. For native_wrappers we need a constant. 3061 buffer.initialize_consts_size(8); 3062 #endif 3063 MacroAssembler _masm(&buffer); 3064 3065 // Fill in the signature array, for the calling-convention call. 3066 const int total_args_passed = method->size_of_parameters(); 3067 3068 VMRegPair stack_regs[16]; 3069 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 3070 3071 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 3072 method->is_static(), total_args_passed); 3073 BasicType* sig_bt = si.basic_types(); 3074 assert(si.slots() == total_args_passed, ""); 3075 BasicType ret_type = si.return_type(); 3076 3077 // Now get the compiled-Java arguments layout. 3078 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 3079 3080 // Generate the compiled-to-native wrapper code 3081 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type, critical_entry); 3082 3083 if (nm != NULL) { 3084 { 3085 MutexLocker pl(CompiledMethod_lock, Mutex::_no_safepoint_check_flag); 3086 if (nm->make_in_use()) { 3087 method->set_code(method, nm); 3088 } 3089 } 3090 3091 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple)); 3092 if (directive->PrintAssemblyOption) { 3093 nm->print_code(); 3094 } 3095 DirectivesStack::release(directive); 3096 } 3097 } 3098 } // Unlock AdapterHandlerLibrary_lock 3099 3100 3101 // Install the generated code. 3102 if (nm != NULL) { 3103 const char *msg = method->is_static() ? "(static)" : ""; 3104 CompileTask::print_ul(nm, msg); 3105 if (PrintCompilation) { 3106 ttyLocker ttyl; 3107 CompileTask::print(tty, nm, msg); 3108 } 3109 nm->post_compiled_method_load_event(); 3110 } 3111 } 3112 3113 // ------------------------------------------------------------------------- 3114 // Java-Java calling convention 3115 // (what you use when Java calls Java) 3116 3117 //------------------------------name_for_receiver---------------------------------- 3118 // For a given signature, return the VMReg for parameter 0. 3119 VMReg SharedRuntime::name_for_receiver() { 3120 VMRegPair regs; 3121 BasicType sig_bt = T_OBJECT; 3122 (void) java_calling_convention(&sig_bt, ®s, 1); 3123 // Return argument 0 register. In the LP64 build pointers 3124 // take 2 registers, but the VM wants only the 'main' name. 3125 return regs.first(); 3126 } 3127 3128 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 3129 // This method is returning a data structure allocating as a 3130 // ResourceObject, so do not put any ResourceMarks in here. 3131 3132 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 3133 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 3134 int cnt = 0; 3135 if (has_receiver) { 3136 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 3137 } 3138 3139 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 3140 BasicType type = ss.type(); 3141 sig_bt[cnt++] = type; 3142 if (is_double_word_type(type)) 3143 sig_bt[cnt++] = T_VOID; 3144 } 3145 3146 if (has_appendix) { 3147 sig_bt[cnt++] = T_OBJECT; 3148 } 3149 3150 assert(cnt < 256, "grow table size"); 3151 3152 int comp_args_on_stack; 3153 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 3154 3155 // the calling convention doesn't count out_preserve_stack_slots so 3156 // we must add that in to get "true" stack offsets. 3157 3158 if (comp_args_on_stack) { 3159 for (int i = 0; i < cnt; i++) { 3160 VMReg reg1 = regs[i].first(); 3161 if (reg1->is_stack()) { 3162 // Yuck 3163 reg1 = reg1->bias(out_preserve_stack_slots()); 3164 } 3165 VMReg reg2 = regs[i].second(); 3166 if (reg2->is_stack()) { 3167 // Yuck 3168 reg2 = reg2->bias(out_preserve_stack_slots()); 3169 } 3170 regs[i].set_pair(reg2, reg1); 3171 } 3172 } 3173 3174 // results 3175 *arg_size = cnt; 3176 return regs; 3177 } 3178 3179 // OSR Migration Code 3180 // 3181 // This code is used convert interpreter frames into compiled frames. It is 3182 // called from very start of a compiled OSR nmethod. A temp array is 3183 // allocated to hold the interesting bits of the interpreter frame. All 3184 // active locks are inflated to allow them to move. The displaced headers and 3185 // active interpreter locals are copied into the temp buffer. Then we return 3186 // back to the compiled code. The compiled code then pops the current 3187 // interpreter frame off the stack and pushes a new compiled frame. Then it 3188 // copies the interpreter locals and displaced headers where it wants. 3189 // Finally it calls back to free the temp buffer. 3190 // 3191 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 3192 3193 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 3194 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 3195 // frame. The stack watermark code below ensures that the interpreted frame is processed 3196 // before it gets unwound. This is helpful as the size of the compiled frame could be 3197 // larger than the interpreted frame, which could result in the new frame not being 3198 // processed correctly. 3199 StackWatermarkSet::before_unwind(current); 3200 3201 // 3202 // This code is dependent on the memory layout of the interpreter local 3203 // array and the monitors. On all of our platforms the layout is identical 3204 // so this code is shared. If some platform lays the their arrays out 3205 // differently then this code could move to platform specific code or 3206 // the code here could be modified to copy items one at a time using 3207 // frame accessor methods and be platform independent. 3208 3209 frame fr = current->last_frame(); 3210 assert(fr.is_interpreted_frame(), ""); 3211 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 3212 3213 // Figure out how many monitors are active. 3214 int active_monitor_count = 0; 3215 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 3216 kptr < fr.interpreter_frame_monitor_begin(); 3217 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 3218 if (kptr->obj() != NULL) active_monitor_count++; 3219 } 3220 3221 // QQQ we could place number of active monitors in the array so that compiled code 3222 // could double check it. 3223 3224 Method* moop = fr.interpreter_frame_method(); 3225 int max_locals = moop->max_locals(); 3226 // Allocate temp buffer, 1 word per local & 2 per active monitor 3227 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 3228 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 3229 3230 // Copy the locals. Order is preserved so that loading of longs works. 3231 // Since there's no GC I can copy the oops blindly. 3232 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 3233 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 3234 (HeapWord*)&buf[0], 3235 max_locals); 3236 3237 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 3238 int i = max_locals; 3239 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 3240 kptr2 < fr.interpreter_frame_monitor_begin(); 3241 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 3242 if (kptr2->obj() != NULL) { // Avoid 'holes' in the monitor array 3243 BasicLock *lock = kptr2->lock(); 3244 if (LockingMode == LM_LEGACY) { 3245 // Inflate so the object's header no longer refers to the BasicLock. 3246 if (lock->displaced_header().is_unlocked()) { 3247 // The object is locked and the resulting ObjectMonitor* will also be 3248 // locked so it can't be async deflated until ownership is dropped. 3249 // See the big comment in basicLock.cpp: BasicLock::move_to(). 3250 ObjectSynchronizer::inflate_helper(kptr2->obj()); 3251 } 3252 // Now the displaced header is free to move because the 3253 // object's header no longer refers to it. 3254 buf[i] = (intptr_t)lock->displaced_header().value(); 3255 } 3256 #ifdef ASSERT 3257 else { 3258 buf[i] = badDispHeaderOSR; 3259 } 3260 #endif 3261 i++; 3262 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 3263 } 3264 } 3265 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 3266 3267 return buf; 3268 JRT_END 3269 3270 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 3271 FREE_C_HEAP_ARRAY(intptr_t, buf); 3272 JRT_END 3273 3274 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 3275 AdapterHandlerTableIterator iter(_adapters); 3276 while (iter.has_next()) { 3277 AdapterHandlerEntry* a = iter.next(); 3278 if (b == CodeCache::find_blob(a->get_i2c_entry())) return true; 3279 } 3280 return false; 3281 } 3282 3283 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 3284 AdapterHandlerTableIterator iter(_adapters); 3285 while (iter.has_next()) { 3286 AdapterHandlerEntry* a = iter.next(); 3287 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3288 st->print("Adapter for signature: "); 3289 a->print_adapter_on(tty); 3290 return; 3291 } 3292 } 3293 assert(false, "Should have found handler"); 3294 } 3295 3296 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3297 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3298 if (get_i2c_entry() != NULL) { 3299 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3300 } 3301 if (get_c2i_entry() != NULL) { 3302 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3303 } 3304 if (get_c2i_unverified_entry() != NULL) { 3305 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3306 } 3307 if (get_c2i_no_clinit_check_entry() != NULL) { 3308 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3309 } 3310 st->cr(); 3311 } 3312 3313 #ifndef PRODUCT 3314 3315 void AdapterHandlerLibrary::print_statistics() { 3316 _adapters->print_statistics(); 3317 } 3318 3319 #endif /* PRODUCT */ 3320 3321 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3322 StackOverflow* overflow_state = current->stack_overflow_state(); 3323 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3324 overflow_state->set_reserved_stack_activation(current->stack_base()); 3325 JRT_END 3326 3327 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3328 ResourceMark rm(current); 3329 frame activation; 3330 CompiledMethod* nm = NULL; 3331 int count = 1; 3332 3333 assert(fr.is_java_frame(), "Must start on Java frame"); 3334 3335 while (true) { 3336 Method* method = NULL; 3337 bool found = false; 3338 if (fr.is_interpreted_frame()) { 3339 method = fr.interpreter_frame_method(); 3340 if (method != NULL && method->has_reserved_stack_access()) { 3341 found = true; 3342 } 3343 } else { 3344 CodeBlob* cb = fr.cb(); 3345 if (cb != NULL && cb->is_compiled()) { 3346 nm = cb->as_compiled_method(); 3347 method = nm->method(); 3348 // scope_desc_near() must be used, instead of scope_desc_at() because on 3349 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3350 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) { 3351 method = sd->method(); 3352 if (method != NULL && method->has_reserved_stack_access()) { 3353 found = true; 3354 } 3355 } 3356 } 3357 } 3358 if (found) { 3359 activation = fr; 3360 warning("Potentially dangerous stack overflow in " 3361 "ReservedStackAccess annotated method %s [%d]", 3362 method->name_and_sig_as_C_string(), count++); 3363 EventReservedStackActivation event; 3364 if (event.should_commit()) { 3365 event.set_method(method); 3366 event.commit(); 3367 } 3368 } 3369 if (fr.is_first_java_frame()) { 3370 break; 3371 } else { 3372 fr = fr.java_sender(); 3373 } 3374 } 3375 return activation; 3376 } 3377 3378 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3379 // After any safepoint, just before going back to compiled code, 3380 // we inform the GC that we will be doing initializing writes to 3381 // this object in the future without emitting card-marks, so 3382 // GC may take any compensating steps. 3383 3384 oop new_obj = current->vm_result(); 3385 if (new_obj == NULL) return; 3386 3387 BarrierSet *bs = BarrierSet::barrier_set(); 3388 bs->on_slowpath_allocation_exit(current, new_obj); 3389 }