1 /*
   2  * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"
  28 #include "logging/log.hpp"
  29 #include "logging/logStream.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/padded.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/handshake.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/os.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/perfData.hpp"
  47 #include "runtime/safepointMechanism.inline.hpp"
  48 #include "runtime/safepointVerifiers.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/synchronizer.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "runtime/trimNativeHeap.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "utilities/align.hpp"
  58 #include "utilities/dtrace.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/preserveException.hpp"
  61 
  62 void MonitorList::add(ObjectMonitor* m) {
  63   ObjectMonitor* head;
  64   do {
  65     head = Atomic::load(&_head);
  66     m->set_next_om(head);
  67   } while (Atomic::cmpxchg(&_head, head, m) != head);
  68 
  69   size_t count = Atomic::add(&_count, 1u);
  70   if (count > max()) {
  71     Atomic::inc(&_max);
  72   }
  73 }
  74 
  75 size_t MonitorList::count() const {
  76   return Atomic::load(&_count);
  77 }
  78 
  79 size_t MonitorList::max() const {
  80   return Atomic::load(&_max);
  81 }
  82 
  83 // Walk the in-use list and unlink (at most MonitorDeflationMax) deflated
  84 // ObjectMonitors. Returns the number of unlinked ObjectMonitors.
  85 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls,
  86                                     elapsedTimer* timer_p,
  87                                     GrowableArray<ObjectMonitor*>* unlinked_list) {
  88   size_t unlinked_count = 0;
  89   ObjectMonitor* prev = NULL;
  90   ObjectMonitor* head = Atomic::load_acquire(&_head);
  91   ObjectMonitor* m = head;
  92   // The in-use list head can be NULL during the final audit.
  93   while (m != NULL) {
  94     if (m->is_being_async_deflated()) {
  95       // Find next live ObjectMonitor.
  96       ObjectMonitor* next = m;
  97       do {
  98         ObjectMonitor* next_next = next->next_om();
  99         unlinked_count++;
 100         unlinked_list->append(next);
 101         next = next_next;
 102         if (unlinked_count >= (size_t)MonitorDeflationMax) {
 103           // Reached the max so bail out on the gathering loop.
 104           break;
 105         }
 106       } while (next != NULL && next->is_being_async_deflated());
 107       if (prev == NULL) {
 108         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, head, next);
 109         if (prev_head != head) {
 110           // Find new prev ObjectMonitor that just got inserted.
 111           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 112             prev = n;
 113           }
 114           prev->set_next_om(next);
 115         }
 116       } else {
 117         prev->set_next_om(next);
 118       }
 119       if (unlinked_count >= (size_t)MonitorDeflationMax) {
 120         // Reached the max so bail out on the searching loop.
 121         break;
 122       }
 123       m = next;
 124     } else {
 125       prev = m;
 126       m = m->next_om();
 127     }
 128 
 129     if (current->is_Java_thread()) {
 130       // A JavaThread must check for a safepoint/handshake and honor it.
 131       ObjectSynchronizer::chk_for_block_req(current->as_Java_thread(), "unlinking",
 132                                             "unlinked_count", unlinked_count,
 133                                             ls, timer_p);
 134     }
 135   }
 136   Atomic::sub(&_count, unlinked_count);
 137   return unlinked_count;
 138 }
 139 
 140 MonitorList::Iterator MonitorList::iterator() const {
 141   return Iterator(Atomic::load_acquire(&_head));
 142 }
 143 
 144 ObjectMonitor* MonitorList::Iterator::next() {
 145   ObjectMonitor* current = _current;
 146   _current = current->next_om();
 147   return current;
 148 }
 149 
 150 // The "core" versions of monitor enter and exit reside in this file.
 151 // The interpreter and compilers contain specialized transliterated
 152 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 153 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 154 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 155 //
 156 // -----------------------------------------------------------------------------
 157 
 158 #ifdef DTRACE_ENABLED
 159 
 160 // Only bother with this argument setup if dtrace is available
 161 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 162 
 163 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 164   char* bytes = NULL;                                                      \
 165   int len = 0;                                                             \
 166   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 167   Symbol* klassname = obj->klass()->name();                                \
 168   if (klassname != NULL) {                                                 \
 169     bytes = (char*)klassname->bytes();                                     \
 170     len = klassname->utf8_length();                                        \
 171   }
 172 
 173 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 174   {                                                                        \
 175     if (DTraceMonitorProbes) {                                             \
 176       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 177       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 178                            (uintptr_t)(monitor), bytes, len, (millis));    \
 179     }                                                                      \
 180   }
 181 
 182 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 183 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 184 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 185 
 186 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 187   {                                                                        \
 188     if (DTraceMonitorProbes) {                                             \
 189       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 190       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 191                                     (uintptr_t)(monitor), bytes, len);     \
 192     }                                                                      \
 193   }
 194 
 195 #else //  ndef DTRACE_ENABLED
 196 
 197 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 198 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 199 
 200 #endif // ndef DTRACE_ENABLED
 201 
 202 // This exists only as a workaround of dtrace bug 6254741
 203 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 204   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 205   return 0;
 206 }
 207 
 208 static const int NINFLATIONLOCKS = 256;
 209 static os::PlatformMutex* gInflationLocks[NINFLATIONLOCKS];
 210 
 211 void ObjectSynchronizer::initialize() {
 212   for (int i = 0; i < NINFLATIONLOCKS; i++) {
 213     gInflationLocks[i] = new os::PlatformMutex();
 214   }
 215   // Start the ceiling with the estimate for one thread.
 216   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 217 
 218   // Start the timer for deflations, so it does not trigger immediately.
 219   _last_async_deflation_time_ns = os::javaTimeNanos();
 220 }
 221 
 222 MonitorList ObjectSynchronizer::_in_use_list;
 223 // monitors_used_above_threshold() policy is as follows:
 224 //
 225 // The ratio of the current _in_use_list count to the ceiling is used
 226 // to determine if we are above MonitorUsedDeflationThreshold and need
 227 // to do an async monitor deflation cycle. The ceiling is increased by
 228 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 229 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 230 // removed from the system.
 231 //
 232 // Note: If the _in_use_list max exceeds the ceiling, then
 233 // monitors_used_above_threshold() will use the in_use_list max instead
 234 // of the thread count derived ceiling because we have used more
 235 // ObjectMonitors than the estimated average.
 236 //
 237 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 238 // no-progress async monitor deflation cycles in a row, then the ceiling
 239 // is adjusted upwards by monitors_used_above_threshold().
 240 //
 241 // Start the ceiling with the estimate for one thread in initialize()
 242 // which is called after cmd line options are processed.
 243 static size_t _in_use_list_ceiling = 0;
 244 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 245 bool volatile ObjectSynchronizer::_is_final_audit = false;
 246 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 247 static uintx _no_progress_cnt = 0;
 248 static bool _no_progress_skip_increment = false;
 249 
 250 // =====================> Quick functions
 251 
 252 // The quick_* forms are special fast-path variants used to improve
 253 // performance.  In the simplest case, a "quick_*" implementation could
 254 // simply return false, in which case the caller will perform the necessary
 255 // state transitions and call the slow-path form.
 256 // The fast-path is designed to handle frequently arising cases in an efficient
 257 // manner and is just a degenerate "optimistic" variant of the slow-path.
 258 // returns true  -- to indicate the call was satisfied.
 259 // returns false -- to indicate the call needs the services of the slow-path.
 260 // A no-loitering ordinance is in effect for code in the quick_* family
 261 // operators: safepoints or indefinite blocking (blocking that might span a
 262 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 263 // entry.
 264 //
 265 // Consider: An interesting optimization is to have the JIT recognize the
 266 // following common idiom:
 267 //   synchronized (someobj) { .... ; notify(); }
 268 // That is, we find a notify() or notifyAll() call that immediately precedes
 269 // the monitorexit operation.  In that case the JIT could fuse the operations
 270 // into a single notifyAndExit() runtime primitive.
 271 
 272 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 273   assert(current->thread_state() == _thread_in_Java, "invariant");
 274   NoSafepointVerifier nsv;
 275   if (obj == NULL) return false;  // slow-path for invalid obj
 276   const markWord mark = obj->mark();
 277 
 278   if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 279     // Degenerate notify
 280     // stack-locked by caller so by definition the implied waitset is empty.
 281     return true;
 282   }
 283 
 284   if (mark.has_monitor()) {
 285     ObjectMonitor* const mon = mark.monitor();
 286     assert(mon->object() == oop(obj), "invariant");
 287     if (mon->owner() != current) return false;  // slow-path for IMS exception
 288 
 289     if (mon->first_waiter() != NULL) {
 290       // We have one or more waiters. Since this is an inflated monitor
 291       // that we own, we can transfer one or more threads from the waitset
 292       // to the entrylist here and now, avoiding the slow-path.
 293       if (all) {
 294         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 295       } else {
 296         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 297       }
 298       int free_count = 0;
 299       do {
 300         mon->INotify(current);
 301         ++free_count;
 302       } while (mon->first_waiter() != NULL && all);
 303       OM_PERFDATA_OP(Notifications, inc(free_count));
 304     }
 305     return true;
 306   }
 307 
 308   // biased locking and any other IMS exception states take the slow-path
 309   return false;
 310 }
 311 
 312 
 313 // The LockNode emitted directly at the synchronization site would have
 314 // been too big if it were to have included support for the cases of inflated
 315 // recursive enter and exit, so they go here instead.
 316 // Note that we can't safely call AsyncPrintJavaStack() from within
 317 // quick_enter() as our thread state remains _in_Java.
 318 
 319 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 320                                      BasicLock * lock) {
 321   assert(current->thread_state() == _thread_in_Java, "invariant");
 322   NoSafepointVerifier nsv;
 323   if (obj == NULL) return false;       // Need to throw NPE
 324 
 325   if (obj->klass()->is_value_based()) {
 326     return false;
 327   }
 328 
 329   const markWord mark = obj->mark();
 330 
 331   if (mark.has_monitor()) {
 332     ObjectMonitor* const m = mark.monitor();
 333     // An async deflation or GC can race us before we manage to make
 334     // the ObjectMonitor busy by setting the owner below. If we detect
 335     // that race we just bail out to the slow-path here.
 336     if (m->object_peek() == NULL) {
 337       return false;
 338     }
 339     JavaThread* const owner = (JavaThread*) m->owner_raw();
 340 
 341     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 342     // and observability
 343     // Case: light contention possibly amenable to TLE
 344     // Case: TLE inimical operations such as nested/recursive synchronization
 345 
 346     if (owner == current) {
 347       m->_recursions++;
 348       return true;
 349     }
 350 
 351     // This Java Monitor is inflated so obj's header will never be
 352     // displaced to this thread's BasicLock. Make the displaced header
 353     // non-NULL so this BasicLock is not seen as recursive nor as
 354     // being locked. We do this unconditionally so that this thread's
 355     // BasicLock cannot be mis-interpreted by any stack walkers. For
 356     // performance reasons, stack walkers generally first check for
 357     // Biased Locking in the object's header, the second check is for
 358     // stack-locking in the object's header, the third check is for
 359     // recursive stack-locking in the displaced header in the BasicLock,
 360     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 361     lock->set_displaced_header(markWord::unused_mark());
 362 
 363     if (owner == NULL && m->try_set_owner_from(NULL, current) == NULL) {
 364       assert(m->_recursions == 0, "invariant");
 365       return true;
 366     }
 367   }
 368 
 369   // Note that we could inflate in quick_enter.
 370   // This is likely a useful optimization
 371   // Critically, in quick_enter() we must not:
 372   // -- perform bias revocation, or
 373   // -- block indefinitely, or
 374   // -- reach a safepoint
 375 
 376   return false;        // revert to slow-path
 377 }
 378 
 379 // Handle notifications when synchronizing on value based classes
 380 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* current) {
 381   frame last_frame = current->last_frame();
 382   bool bcp_was_adjusted = false;
 383   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 384   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 385   // is no actual monitorenter instruction in the byte code in this case.
 386   if (last_frame.is_interpreted_frame() &&
 387       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 388     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 389     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 390     bcp_was_adjusted = true;
 391   }
 392 
 393   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 394     ResourceMark rm(current);
 395     stringStream ss;
 396     current->print_stack_on(&ss);
 397     char* base = (char*)strstr(ss.base(), "at");
 398     char* newline = (char*)strchr(ss.base(), '\n');
 399     if (newline != NULL) {
 400       *newline = '\0';
 401     }
 402     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 403   } else {
 404     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 405     ResourceMark rm(current);
 406     Log(valuebasedclasses) vblog;
 407 
 408     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 409     if (current->has_last_Java_frame()) {
 410       LogStream info_stream(vblog.info());
 411       current->print_stack_on(&info_stream);
 412     } else {
 413       vblog.info("Cannot find the last Java frame");
 414     }
 415 
 416     EventSyncOnValueBasedClass event;
 417     if (event.should_commit()) {
 418       event.set_valueBasedClass(obj->klass());
 419       event.commit();
 420     }
 421   }
 422 
 423   if (bcp_was_adjusted) {
 424     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 425   }
 426 }
 427 
 428 // -----------------------------------------------------------------------------
 429 // Monitor Enter/Exit
 430 // The interpreter and compiler assembly code tries to lock using the fast path
 431 // of this algorithm. Make sure to update that code if the following function is
 432 // changed. The implementation is extremely sensitive to race condition. Be careful.
 433 
 434 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 435   if (obj->klass()->is_value_based()) {
 436     handle_sync_on_value_based_class(obj, current);
 437   }
 438 
 439   if (UseBiasedLocking) {
 440     BiasedLocking::revoke(current, obj);
 441   }
 442 
 443   markWord mark = obj->mark();
 444   assert(!mark.has_bias_pattern(), "should not see bias pattern here");
 445 
 446   if (mark.is_neutral()) {
 447     // Anticipate successful CAS -- the ST of the displaced mark must
 448     // be visible <= the ST performed by the CAS.
 449     lock->set_displaced_header(mark);
 450     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 451       return;
 452     }
 453     // Fall through to inflate() ...
 454   } else if (mark.has_locker() &&
 455              current->is_lock_owned((address)mark.locker())) {
 456     assert(lock != mark.locker(), "must not re-lock the same lock");
 457     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 458     lock->set_displaced_header(markWord::from_pointer(NULL));
 459     return;
 460   }
 461 
 462   // The object header will never be displaced to this lock,
 463   // so it does not matter what the value is, except that it
 464   // must be non-zero to avoid looking like a re-entrant lock,
 465   // and must not look locked either.
 466   lock->set_displaced_header(markWord::unused_mark());
 467   // An async deflation can race after the inflate() call and before
 468   // enter() can make the ObjectMonitor busy. enter() returns false if
 469   // we have lost the race to async deflation and we simply try again.
 470   while (true) {
 471     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 472     if (monitor->enter(current)) {
 473       return;
 474     }
 475   }
 476 }
 477 
 478 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 479   markWord mark = object->mark();
 480   // We cannot check for Biased Locking if we are racing an inflation.
 481   assert(mark == markWord::INFLATING() ||
 482          !mark.has_bias_pattern(), "should not see bias pattern here");
 483 
 484   markWord dhw = lock->displaced_header();
 485   if (dhw.value() == 0) {
 486     // If the displaced header is NULL, then this exit matches up with
 487     // a recursive enter. No real work to do here except for diagnostics.
 488 #ifndef PRODUCT
 489     if (mark != markWord::INFLATING()) {
 490       // Only do diagnostics if we are not racing an inflation. Simply
 491       // exiting a recursive enter of a Java Monitor that is being
 492       // inflated is safe; see the has_monitor() comment below.
 493       assert(!mark.is_neutral(), "invariant");
 494       assert(!mark.has_locker() ||
 495              current->is_lock_owned((address)mark.locker()), "invariant");
 496       if (mark.has_monitor()) {
 497         // The BasicLock's displaced_header is marked as a recursive
 498         // enter and we have an inflated Java Monitor (ObjectMonitor).
 499         // This is a special case where the Java Monitor was inflated
 500         // after this thread entered the stack-lock recursively. When a
 501         // Java Monitor is inflated, we cannot safely walk the Java
 502         // Monitor owner's stack and update the BasicLocks because a
 503         // Java Monitor can be asynchronously inflated by a thread that
 504         // does not own the Java Monitor.
 505         ObjectMonitor* m = mark.monitor();
 506         assert(m->object()->mark() == mark, "invariant");
 507         assert(m->is_entered(current), "invariant");
 508       }
 509     }
 510 #endif
 511     return;
 512   }
 513 
 514   if (mark == markWord::from_pointer(lock)) {
 515     // If the object is stack-locked by the current thread, try to
 516     // swing the displaced header from the BasicLock back to the mark.
 517     assert(dhw.is_neutral(), "invariant");
 518     if (object->cas_set_mark(dhw, mark) == mark) {
 519       return;
 520     }
 521   }
 522 
 523   // We have to take the slow-path of possible inflation and then exit.
 524   // The ObjectMonitor* can't be async deflated until ownership is
 525   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 526   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 527   monitor->exit(current);
 528 }
 529 
 530 // -----------------------------------------------------------------------------
 531 // Class Loader  support to workaround deadlocks on the class loader lock objects
 532 // Also used by GC
 533 // complete_exit()/reenter() are used to wait on a nested lock
 534 // i.e. to give up an outer lock completely and then re-enter
 535 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 536 //  1) complete_exit lock1 - saving recursion count
 537 //  2) wait on lock2
 538 //  3) when notified on lock2, unlock lock2
 539 //  4) reenter lock1 with original recursion count
 540 //  5) lock lock2
 541 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 542 intx ObjectSynchronizer::complete_exit(Handle obj, JavaThread* current) {
 543   if (UseBiasedLocking) {
 544     BiasedLocking::revoke(current, obj);
 545     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 546   }
 547 
 548   // The ObjectMonitor* can't be async deflated until ownership is
 549   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 550   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_vm_internal);
 551   intptr_t ret_code = monitor->complete_exit(current);
 552   return ret_code;
 553 }
 554 
 555 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 556 void ObjectSynchronizer::reenter(Handle obj, intx recursions, JavaThread* current) {
 557   if (UseBiasedLocking) {
 558     BiasedLocking::revoke(current, obj);
 559     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 560   }
 561 
 562   // An async deflation can race after the inflate() call and before
 563   // reenter() -> enter() can make the ObjectMonitor busy. reenter() ->
 564   // enter() returns false if we have lost the race to async deflation
 565   // and we simply try again.
 566   while (true) {
 567     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_vm_internal);
 568     if (monitor->reenter(recursions, current)) {
 569       return;
 570     }
 571   }
 572 }
 573 
 574 // -----------------------------------------------------------------------------
 575 // JNI locks on java objects
 576 // NOTE: must use heavy weight monitor to handle jni monitor enter
 577 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 578   if (obj->klass()->is_value_based()) {
 579     handle_sync_on_value_based_class(obj, current);
 580   }
 581 
 582   // the current locking is from JNI instead of Java code
 583   if (UseBiasedLocking) {
 584     BiasedLocking::revoke(current, obj);
 585     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 586   }
 587   current->set_current_pending_monitor_is_from_java(false);
 588   // An async deflation can race after the inflate() call and before
 589   // enter() can make the ObjectMonitor busy. enter() returns false if
 590   // we have lost the race to async deflation and we simply try again.
 591   while (true) {
 592     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter);
 593     if (monitor->enter(current)) {
 594       break;
 595     }
 596   }
 597   current->set_current_pending_monitor_is_from_java(true);
 598 }
 599 
 600 // NOTE: must use heavy weight monitor to handle jni monitor exit
 601 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 602   JavaThread* current = THREAD;
 603   if (UseBiasedLocking) {
 604     Handle h_obj(current, obj);
 605     BiasedLocking::revoke(current, h_obj);
 606     obj = h_obj();
 607   }
 608   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 609 
 610   // The ObjectMonitor* can't be async deflated until ownership is
 611   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 612   ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit);
 613   // If this thread has locked the object, exit the monitor. We
 614   // intentionally do not use CHECK on check_owner because we must exit the
 615   // monitor even if an exception was already pending.
 616   if (monitor->check_owner(THREAD)) {
 617     monitor->exit(current);
 618   }
 619 }
 620 
 621 // -----------------------------------------------------------------------------
 622 // Internal VM locks on java objects
 623 // standard constructor, allows locking failures
 624 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 625   _thread = thread;
 626   _thread->check_for_valid_safepoint_state();
 627   _obj = obj;
 628 
 629   if (_obj() != NULL) {
 630     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 631   }
 632 }
 633 
 634 ObjectLocker::~ObjectLocker() {
 635   if (_obj() != NULL) {
 636     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 637   }
 638 }
 639 
 640 
 641 // -----------------------------------------------------------------------------
 642 //  Wait/Notify/NotifyAll
 643 // NOTE: must use heavy weight monitor to handle wait()
 644 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 645   JavaThread* current = THREAD;
 646   if (UseBiasedLocking) {
 647     BiasedLocking::revoke(current, obj);
 648     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 649   }
 650   if (millis < 0) {
 651     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 652   }
 653   // The ObjectMonitor* can't be async deflated because the _waiters
 654   // field is incremented before ownership is dropped and decremented
 655   // after ownership is regained.
 656   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);
 657 
 658   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 659   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 660 
 661   // This dummy call is in place to get around dtrace bug 6254741.  Once
 662   // that's fixed we can uncomment the following line, remove the call
 663   // and change this function back into a "void" func.
 664   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 665   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 666   return ret_code;
 667 }
 668 
 669 // No exception are possible in this case as we only use this internally when locking is
 670 // correct and we have to wait until notified - so no interrupts or timeouts.
 671 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, JavaThread* current) {
 672   if (UseBiasedLocking) {
 673     BiasedLocking::revoke(current, obj);
 674     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 675   }
 676   // The ObjectMonitor* can't be async deflated because the _waiters
 677   // field is incremented before ownership is dropped and decremented
 678   // after ownership is regained.
 679   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);
 680   monitor->wait(0 /* wait-forever */, false /* not interruptible */, current);
 681 }
 682 
 683 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 684   JavaThread* current = THREAD;
 685   if (UseBiasedLocking) {
 686     BiasedLocking::revoke(current, obj);
 687     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 688   }
 689 
 690   markWord mark = obj->mark();
 691   if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 692     // Not inflated so there can't be any waiters to notify.
 693     return;
 694   }
 695   // The ObjectMonitor* can't be async deflated until ownership is
 696   // dropped by the calling thread.
 697   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 698   monitor->notify(CHECK);
 699 }
 700 
 701 // NOTE: see comment of notify()
 702 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 703   JavaThread* current = THREAD;
 704   if (UseBiasedLocking) {
 705     BiasedLocking::revoke(current, obj);
 706     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 707   }
 708 
 709   markWord mark = obj->mark();
 710   if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 711     // Not inflated so there can't be any waiters to notify.
 712     return;
 713   }
 714   // The ObjectMonitor* can't be async deflated until ownership is
 715   // dropped by the calling thread.
 716   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 717   monitor->notifyAll(CHECK);
 718 }
 719 
 720 // -----------------------------------------------------------------------------
 721 // Hash Code handling
 722 
 723 struct SharedGlobals {
 724   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 725   // This is a highly shared mostly-read variable.
 726   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 727   volatile int stw_random;
 728   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 729   // Hot RW variable -- Sequester to avoid false-sharing
 730   volatile int hc_sequence;
 731   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 732 };
 733 
 734 static SharedGlobals GVars;
 735 
 736 static markWord read_stable_mark(oop obj) {
 737   markWord mark = obj->mark_acquire();
 738   if (!mark.is_being_inflated()) {
 739     return mark;       // normal fast-path return
 740   }
 741 
 742   int its = 0;
 743   for (;;) {
 744     markWord mark = obj->mark_acquire();
 745     if (!mark.is_being_inflated()) {
 746       return mark;    // normal fast-path return
 747     }
 748 
 749     // The object is being inflated by some other thread.
 750     // The caller of read_stable_mark() must wait for inflation to complete.
 751     // Avoid live-lock.
 752 
 753     ++its;
 754     if (its > 10000 || !os::is_MP()) {
 755       if (its & 1) {
 756         os::naked_yield();
 757       } else {
 758         // Note that the following code attenuates the livelock problem but is not
 759         // a complete remedy.  A more complete solution would require that the inflating
 760         // thread hold the associated inflation lock.  The following code simply restricts
 761         // the number of spinners to at most one.  We'll have N-2 threads blocked
 762         // on the inflationlock, 1 thread holding the inflation lock and using
 763         // a yield/park strategy, and 1 thread in the midst of inflation.
 764         // A more refined approach would be to change the encoding of INFLATING
 765         // to allow encapsulation of a native thread pointer.  Threads waiting for
 766         // inflation to complete would use CAS to push themselves onto a singly linked
 767         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 768         // and calling park().  When inflation was complete the thread that accomplished inflation
 769         // would detach the list and set the markword to inflated with a single CAS and
 770         // then for each thread on the list, set the flag and unpark() the thread.
 771 
 772         // Index into the lock array based on the current object address.
 773         static_assert(is_power_of_2(NINFLATIONLOCKS), "must be");
 774         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 775         int YieldThenBlock = 0;
 776         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 777         gInflationLocks[ix]->lock();
 778         while (obj->mark_acquire() == markWord::INFLATING()) {
 779           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 780           // so we periodically call current->_ParkEvent->park(1).
 781           // We use a mixed spin/yield/block mechanism.
 782           if ((YieldThenBlock++) >= 16) {
 783             Thread::current()->_ParkEvent->park(1);
 784           } else {
 785             os::naked_yield();
 786           }
 787         }
 788         gInflationLocks[ix]->unlock();
 789       }
 790     } else {
 791       SpinPause();       // SMP-polite spinning
 792     }
 793   }
 794 }
 795 
 796 // hashCode() generation :
 797 //
 798 // Possibilities:
 799 // * MD5Digest of {obj,stw_random}
 800 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 801 // * A DES- or AES-style SBox[] mechanism
 802 // * One of the Phi-based schemes, such as:
 803 //   2654435761 = 2^32 * Phi (golden ratio)
 804 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 805 // * A variation of Marsaglia's shift-xor RNG scheme.
 806 // * (obj ^ stw_random) is appealing, but can result
 807 //   in undesirable regularity in the hashCode values of adjacent objects
 808 //   (objects allocated back-to-back, in particular).  This could potentially
 809 //   result in hashtable collisions and reduced hashtable efficiency.
 810 //   There are simple ways to "diffuse" the middle address bits over the
 811 //   generated hashCode values:
 812 
 813 static inline intptr_t get_next_hash(Thread* current, oop obj) {
 814   intptr_t value = 0;
 815   if (hashCode == 0) {
 816     // This form uses global Park-Miller RNG.
 817     // On MP system we'll have lots of RW access to a global, so the
 818     // mechanism induces lots of coherency traffic.
 819     value = os::random();
 820   } else if (hashCode == 1) {
 821     // This variation has the property of being stable (idempotent)
 822     // between STW operations.  This can be useful in some of the 1-0
 823     // synchronization schemes.
 824     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 825     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 826   } else if (hashCode == 2) {
 827     value = 1;            // for sensitivity testing
 828   } else if (hashCode == 3) {
 829     value = ++GVars.hc_sequence;
 830   } else if (hashCode == 4) {
 831     value = cast_from_oop<intptr_t>(obj);
 832   } else {
 833     // Marsaglia's xor-shift scheme with thread-specific state
 834     // This is probably the best overall implementation -- we'll
 835     // likely make this the default in future releases.
 836     unsigned t = current->_hashStateX;
 837     t ^= (t << 11);
 838     current->_hashStateX = current->_hashStateY;
 839     current->_hashStateY = current->_hashStateZ;
 840     current->_hashStateZ = current->_hashStateW;
 841     unsigned v = current->_hashStateW;
 842     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 843     current->_hashStateW = v;
 844     value = v;
 845   }
 846 
 847   value &= markWord::hash_mask;
 848   if (value == 0) value = 0xBAD;
 849   assert(value != markWord::no_hash, "invariant");
 850   return value;
 851 }
 852 
 853 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 854   if (UseBiasedLocking) {
 855     // NOTE: many places throughout the JVM do not expect a safepoint
 856     // to be taken here. However, we only ever bias Java instances and all
 857     // of the call sites of identity_hash that might revoke biases have
 858     // been checked to make sure they can handle a safepoint. The
 859     // added check of the bias pattern is to avoid useless calls to
 860     // thread-local storage.
 861     if (obj->mark().has_bias_pattern()) {
 862       // Handle for oop obj in case of STW safepoint
 863       Handle hobj(current, obj);
 864       if (SafepointSynchronize::is_at_safepoint()) {
 865         BiasedLocking::revoke_at_safepoint(hobj);
 866       } else {
 867         BiasedLocking::revoke(current->as_Java_thread(), hobj);
 868       }
 869       obj = hobj();
 870       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 871     }
 872   }
 873 
 874   while (true) {
 875     ObjectMonitor* monitor = NULL;
 876     markWord temp, test;
 877     intptr_t hash;
 878     markWord mark = read_stable_mark(obj);
 879 
 880     // object should remain ineligible for biased locking
 881     assert(!mark.has_bias_pattern(), "invariant");
 882 
 883     if (mark.is_neutral()) {               // if this is a normal header
 884       hash = mark.hash();
 885       if (hash != 0) {                     // if it has a hash, just return it
 886         return hash;
 887       }
 888       hash = get_next_hash(current, obj);  // get a new hash
 889       temp = mark.copy_set_hash(hash);     // merge the hash into header
 890                                            // try to install the hash
 891       test = obj->cas_set_mark(temp, mark);
 892       if (test == mark) {                  // if the hash was installed, return it
 893         return hash;
 894       }
 895       // Failed to install the hash. It could be that another thread
 896       // installed the hash just before our attempt or inflation has
 897       // occurred or... so we fall thru to inflate the monitor for
 898       // stability and then install the hash.
 899     } else if (mark.has_monitor()) {
 900       monitor = mark.monitor();
 901       temp = monitor->header();
 902       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 903       hash = temp.hash();
 904       if (hash != 0) {
 905         // It has a hash.
 906 
 907         // Separate load of dmw/header above from the loads in
 908         // is_being_async_deflated().
 909 
 910         // dmw/header and _contentions may get written by different threads.
 911         // Make sure to observe them in the same order when having several observers.
 912         OrderAccess::loadload_for_IRIW();
 913 
 914         if (monitor->is_being_async_deflated()) {
 915           // But we can't safely use the hash if we detect that async
 916           // deflation has occurred. So we attempt to restore the
 917           // header/dmw to the object's header so that we only retry
 918           // once if the deflater thread happens to be slow.
 919           monitor->install_displaced_markword_in_object(obj);
 920           continue;
 921         }
 922         return hash;
 923       }
 924       // Fall thru so we only have one place that installs the hash in
 925       // the ObjectMonitor.
 926     } else if (current->is_lock_owned((address)mark.locker())) {
 927       // This is a stack lock owned by the calling thread so fetch the
 928       // displaced markWord from the BasicLock on the stack.
 929       temp = mark.displaced_mark_helper();
 930       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 931       hash = temp.hash();
 932       if (hash != 0) {                  // if it has a hash, just return it
 933         return hash;
 934       }
 935       // WARNING:
 936       // The displaced header in the BasicLock on a thread's stack
 937       // is strictly immutable. It CANNOT be changed in ANY cases.
 938       // So we have to inflate the stack lock into an ObjectMonitor
 939       // even if the current thread owns the lock. The BasicLock on
 940       // a thread's stack can be asynchronously read by other threads
 941       // during an inflate() call so any change to that stack memory
 942       // may not propagate to other threads correctly.
 943     }
 944 
 945     // Inflate the monitor to set the hash.
 946 
 947     // An async deflation can race after the inflate() call and before we
 948     // can update the ObjectMonitor's header with the hash value below.
 949     monitor = inflate(current, obj, inflate_cause_hash_code);
 950     // Load ObjectMonitor's header/dmw field and see if it has a hash.
 951     mark = monitor->header();
 952     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 953     hash = mark.hash();
 954     if (hash == 0) {                       // if it does not have a hash
 955       hash = get_next_hash(current, obj);  // get a new hash
 956       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
 957       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 958       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
 959       test = markWord(v);
 960       if (test != mark) {
 961         // The attempt to update the ObjectMonitor's header/dmw field
 962         // did not work. This can happen if another thread managed to
 963         // merge in the hash just before our cmpxchg().
 964         // If we add any new usages of the header/dmw field, this code
 965         // will need to be updated.
 966         hash = test.hash();
 967         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 968         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
 969       }
 970       if (monitor->is_being_async_deflated()) {
 971         // If we detect that async deflation has occurred, then we
 972         // attempt to restore the header/dmw to the object's header
 973         // so that we only retry once if the deflater thread happens
 974         // to be slow.
 975         monitor->install_displaced_markword_in_object(obj);
 976         continue;
 977       }
 978     }
 979     // We finally get the hash.
 980     return hash;
 981   }
 982 }
 983 
 984 // Deprecated -- use FastHashCode() instead.
 985 
 986 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 987   return FastHashCode(Thread::current(), obj());
 988 }
 989 
 990 
 991 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
 992                                                    Handle h_obj) {
 993   if (UseBiasedLocking) {
 994     BiasedLocking::revoke(current, h_obj);
 995     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 996   }
 997 
 998   assert(current == JavaThread::current(), "Can only be called on current thread");
 999   oop obj = h_obj();
1000 
1001   markWord mark = read_stable_mark(obj);
1002 
1003   // Uncontended case, header points to stack
1004   if (mark.has_locker()) {
1005     return current->is_lock_owned((address)mark.locker());
1006   }
1007   // Contended case, header points to ObjectMonitor (tagged pointer)
1008   if (mark.has_monitor()) {
1009     // The first stage of async deflation does not affect any field
1010     // used by this comparison so the ObjectMonitor* is usable here.
1011     ObjectMonitor* monitor = mark.monitor();
1012     return monitor->is_entered(current) != 0;
1013   }
1014   // Unlocked case, header in place
1015   assert(mark.is_neutral(), "sanity check");
1016   return false;
1017 }
1018 
1019 // FIXME: jvmti should call this
1020 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1021   if (UseBiasedLocking) {
1022     if (SafepointSynchronize::is_at_safepoint()) {
1023       BiasedLocking::revoke_at_safepoint(h_obj);
1024     } else {
1025       BiasedLocking::revoke(JavaThread::current(), h_obj);
1026     }
1027     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1028   }
1029 
1030   oop obj = h_obj();
1031   address owner = NULL;
1032 
1033   markWord mark = read_stable_mark(obj);
1034 
1035   // Uncontended case, header points to stack
1036   if (mark.has_locker()) {
1037     owner = (address) mark.locker();
1038   }
1039 
1040   // Contended case, header points to ObjectMonitor (tagged pointer)
1041   else if (mark.has_monitor()) {
1042     // The first stage of async deflation does not affect any field
1043     // used by this comparison so the ObjectMonitor* is usable here.
1044     ObjectMonitor* monitor = mark.monitor();
1045     assert(monitor != NULL, "monitor should be non-null");
1046     owner = (address) monitor->owner();
1047   }
1048 
1049   if (owner != NULL) {
1050     // owning_thread_from_monitor_owner() may also return NULL here
1051     return Threads::owning_thread_from_monitor_owner(t_list, owner);
1052   }
1053 
1054   // Unlocked case, header in place
1055   // Cannot have assertion since this object may have been
1056   // locked by another thread when reaching here.
1057   // assert(mark.is_neutral(), "sanity check");
1058 
1059   return NULL;
1060 }
1061 
1062 // Visitors ...
1063 
1064 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1065   MonitorList::Iterator iter = _in_use_list.iterator();
1066   while (iter.has_next()) {
1067     ObjectMonitor* mid = iter.next();
1068     if (mid->owner() != thread) {
1069       continue;
1070     }
1071     if (!mid->is_being_async_deflated() && mid->object_peek() != NULL) {
1072       // Only process with closure if the object is set.
1073 
1074       // monitors_iterate() is only called at a safepoint or when the
1075       // target thread is suspended or when the target thread is
1076       // operating on itself. The current closures in use today are
1077       // only interested in an owned ObjectMonitor and ownership
1078       // cannot be dropped under the calling contexts so the
1079       // ObjectMonitor cannot be async deflated.
1080       closure->do_monitor(mid);
1081     }
1082   }
1083 }
1084 
1085 static bool monitors_used_above_threshold(MonitorList* list) {
1086   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1087     return false;
1088   }
1089   // Start with ceiling based on a per-thread estimate:
1090   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1091   size_t old_ceiling = ceiling;
1092   if (ceiling < list->max()) {
1093     // The max used by the system has exceeded the ceiling so use that:
1094     ceiling = list->max();
1095   }
1096   size_t monitors_used = list->count();
1097   if (monitors_used == 0) {  // empty list is easy
1098     return false;
1099   }
1100   if (NoAsyncDeflationProgressMax != 0 &&
1101       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1102     float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1103     size_t new_ceiling = ceiling + (ceiling * remainder) + 1;
1104     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1105     log_info(monitorinflation)("Too many deflations without progress; "
1106                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1107                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1108     _no_progress_cnt = 0;
1109     ceiling = new_ceiling;
1110   }
1111 
1112   // Check if our monitor usage is above the threshold:
1113   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1114   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1115     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1116                                ", monitor_usage=" SIZE_FORMAT ", threshold=" INTX_FORMAT,
1117                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1118     return true;
1119   }
1120 
1121   return false;
1122 }
1123 
1124 size_t ObjectSynchronizer::in_use_list_ceiling() {
1125   return _in_use_list_ceiling;
1126 }
1127 
1128 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1129   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1130 }
1131 
1132 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1133   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1134 }
1135 
1136 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1137   _in_use_list_ceiling = new_value;
1138 }
1139 
1140 bool ObjectSynchronizer::is_async_deflation_needed() {
1141   if (is_async_deflation_requested()) {
1142     // Async deflation request.
1143     log_info(monitorinflation)("Async deflation needed: explicit request");
1144     return true;
1145   }
1146 
1147   jlong time_since_last = time_since_last_async_deflation_ms();
1148 
1149   if (AsyncDeflationInterval > 0 &&
1150       time_since_last > AsyncDeflationInterval &&
1151       monitors_used_above_threshold(&_in_use_list)) {
1152     // It's been longer than our specified deflate interval and there
1153     // are too many monitors in use. We don't deflate more frequently
1154     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1155     // in order to not swamp the MonitorDeflationThread.
1156     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1157     return true;
1158   }
1159 
1160   if (GuaranteedAsyncDeflationInterval > 0 &&
1161       time_since_last > GuaranteedAsyncDeflationInterval) {
1162     // It's been longer than our specified guaranteed deflate interval.
1163     // We need to clean up the used monitors even if the threshold is
1164     // not reached, to keep the memory utilization at bay when many threads
1165     // touched many monitors.
1166     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1167                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1168                                GuaranteedAsyncDeflationInterval, time_since_last);
1169 
1170     // If this deflation has no progress, then it should not affect the no-progress
1171     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1172     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1173     // the generic code would bump the no-progress counter, and we compensate for that
1174     // by telling it to skip the update.
1175     //
1176     // If this deflation has progress, then it should let non-progress tracking
1177     // know about this, otherwise the threshold heuristics would kick in, potentially
1178     // experience no-progress due to aggressive cleanup by this deflation, and think
1179     // it is still in no-progress stride. In this "progress" case, the generic code would
1180     // zero the counter, and we allow it to happen.
1181     _no_progress_skip_increment = true;
1182 
1183     return true;
1184   }
1185 
1186   return false;
1187 }
1188 
1189 bool ObjectSynchronizer::request_deflate_idle_monitors() {
1190   JavaThread* current = JavaThread::current();
1191   bool ret_code = false;
1192 
1193   jlong last_time = last_async_deflation_time_ns();
1194   set_is_async_deflation_requested(true);
1195   {
1196     MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1197     ml.notify_all();
1198   }
1199   const int N_CHECKS = 5;
1200   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1201     if (last_async_deflation_time_ns() > last_time) {
1202       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1203       ret_code = true;
1204       break;
1205     }
1206     {
1207       // JavaThread has to honor the blocking protocol.
1208       ThreadBlockInVM tbivm(current);
1209       os::naked_short_sleep(999);  // sleep for almost 1 second
1210     }
1211   }
1212   if (!ret_code) {
1213     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1214   }
1215 
1216   return ret_code;
1217 }
1218 
1219 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1220   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1221 }
1222 
1223 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1224                                        const oop obj,
1225                                        ObjectSynchronizer::InflateCause cause) {
1226   assert(event != NULL, "invariant");
1227   event->set_monitorClass(obj->klass());
1228   event->set_address((uintptr_t)(void*)obj);
1229   event->set_cause((u1)cause);
1230   event->commit();
1231 }
1232 
1233 // Fast path code shared by multiple functions
1234 void ObjectSynchronizer::inflate_helper(oop obj) {
1235   markWord mark = obj->mark_acquire();
1236   if (mark.has_monitor()) {
1237     ObjectMonitor* monitor = mark.monitor();
1238     markWord dmw = monitor->header();
1239     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1240     return;
1241   }
1242   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1243 }
1244 
1245 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop object,
1246                                            const InflateCause cause) {
1247   EventJavaMonitorInflate event;
1248 
1249   for (;;) {
1250     const markWord mark = object->mark_acquire();
1251     assert(!mark.has_bias_pattern(), "invariant");
1252 
1253     // The mark can be in one of the following states:
1254     // *  Inflated     - just return
1255     // *  Stack-locked - coerce it to inflated
1256     // *  INFLATING    - busy wait for conversion to complete
1257     // *  Neutral      - aggressively inflate the object.
1258     // *  BIASED       - Illegal.  We should never see this
1259 
1260     // CASE: inflated
1261     if (mark.has_monitor()) {
1262       ObjectMonitor* inf = mark.monitor();
1263       markWord dmw = inf->header();
1264       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1265       return inf;
1266     }
1267 
1268     // CASE: inflation in progress - inflating over a stack-lock.
1269     // Some other thread is converting from stack-locked to inflated.
1270     // Only that thread can complete inflation -- other threads must wait.
1271     // The INFLATING value is transient.
1272     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1273     // We could always eliminate polling by parking the thread on some auxiliary list.
1274     if (mark == markWord::INFLATING()) {
1275       read_stable_mark(object);
1276       continue;
1277     }
1278 
1279     // CASE: stack-locked
1280     // Could be stack-locked either by this thread or by some other thread.
1281     //
1282     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1283     // to install INFLATING into the mark word.  We originally installed INFLATING,
1284     // allocated the ObjectMonitor, and then finally STed the address of the
1285     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1286     // the interval in which INFLATING appeared in the mark, thus increasing
1287     // the odds of inflation contention.
1288 
1289     LogStreamHandle(Trace, monitorinflation) lsh;
1290 
1291     if (mark.has_locker()) {
1292       ObjectMonitor* m = new ObjectMonitor(object);
1293       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1294       // We do this before the CAS in order to minimize the length of time
1295       // in which INFLATING appears in the mark.
1296 
1297       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1298       if (cmp != mark) {
1299         delete m;
1300         continue;       // Interference -- just retry
1301       }
1302 
1303       // We've successfully installed INFLATING (0) into the mark-word.
1304       // This is the only case where 0 will appear in a mark-word.
1305       // Only the singular thread that successfully swings the mark-word
1306       // to 0 can perform (or more precisely, complete) inflation.
1307       //
1308       // Why do we CAS a 0 into the mark-word instead of just CASing the
1309       // mark-word from the stack-locked value directly to the new inflated state?
1310       // Consider what happens when a thread unlocks a stack-locked object.
1311       // It attempts to use CAS to swing the displaced header value from the
1312       // on-stack BasicLock back into the object header.  Recall also that the
1313       // header value (hash code, etc) can reside in (a) the object header, or
1314       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1315       // header in an ObjectMonitor.  The inflate() routine must copy the header
1316       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1317       // the while preserving the hashCode stability invariants.  If the owner
1318       // decides to release the lock while the value is 0, the unlock will fail
1319       // and control will eventually pass from slow_exit() to inflate.  The owner
1320       // will then spin, waiting for the 0 value to disappear.   Put another way,
1321       // the 0 causes the owner to stall if the owner happens to try to
1322       // drop the lock (restoring the header from the BasicLock to the object)
1323       // while inflation is in-progress.  This protocol avoids races that might
1324       // would otherwise permit hashCode values to change or "flicker" for an object.
1325       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1326       // 0 serves as a "BUSY" inflate-in-progress indicator.
1327 
1328 
1329       // fetch the displaced mark from the owner's stack.
1330       // The owner can't die or unwind past the lock while our INFLATING
1331       // object is in the mark.  Furthermore the owner can't complete
1332       // an unlock on the object, either.
1333       markWord dmw = mark.displaced_mark_helper();
1334       // Catch if the object's header is not neutral (not locked and
1335       // not marked is what we care about here).
1336       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1337 
1338       // Setup monitor fields to proper values -- prepare the monitor
1339       m->set_header(dmw);
1340 
1341       // Optimization: if the mark.locker stack address is associated
1342       // with this thread we could simply set m->_owner = current.
1343       // Note that a thread can inflate an object
1344       // that it has stack-locked -- as might happen in wait() -- directly
1345       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1346       m->set_owner_from(NULL, mark.locker());
1347       // TODO-FIXME: assert BasicLock->dhw != 0.
1348 
1349       // Must preserve store ordering. The monitor state must
1350       // be stable at the time of publishing the monitor address.
1351       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1352       // Release semantics so that above set_object() is seen first.
1353       object->release_set_mark(markWord::encode(m));
1354 
1355       // Once ObjectMonitor is configured and the object is associated
1356       // with the ObjectMonitor, it is safe to allow async deflation:
1357       _in_use_list.add(m);
1358 
1359       // Hopefully the performance counters are allocated on distinct cache lines
1360       // to avoid false sharing on MP systems ...
1361       OM_PERFDATA_OP(Inflations, inc());
1362       if (log_is_enabled(Trace, monitorinflation)) {
1363         ResourceMark rm(current);
1364         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1365                      INTPTR_FORMAT ", type='%s'", p2i(object),
1366                      object->mark().value(), object->klass()->external_name());
1367       }
1368       if (event.should_commit()) {
1369         post_monitor_inflate_event(&event, object, cause);
1370       }
1371       return m;
1372     }
1373 
1374     // CASE: neutral
1375     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1376     // If we know we're inflating for entry it's better to inflate by swinging a
1377     // pre-locked ObjectMonitor pointer into the object header.   A successful
1378     // CAS inflates the object *and* confers ownership to the inflating thread.
1379     // In the current implementation we use a 2-step mechanism where we CAS()
1380     // to inflate and then CAS() again to try to swing _owner from NULL to current.
1381     // An inflateTry() method that we could call from enter() would be useful.
1382 
1383     // Catch if the object's header is not neutral (not locked and
1384     // not marked is what we care about here).
1385     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1386     ObjectMonitor* m = new ObjectMonitor(object);
1387     // prepare m for installation - set monitor to initial state
1388     m->set_header(mark);
1389 
1390     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1391       delete m;
1392       m = NULL;
1393       continue;
1394       // interference - the markword changed - just retry.
1395       // The state-transitions are one-way, so there's no chance of
1396       // live-lock -- "Inflated" is an absorbing state.
1397     }
1398 
1399     // Once the ObjectMonitor is configured and object is associated
1400     // with the ObjectMonitor, it is safe to allow async deflation:
1401     _in_use_list.add(m);
1402 
1403     // Hopefully the performance counters are allocated on distinct
1404     // cache lines to avoid false sharing on MP systems ...
1405     OM_PERFDATA_OP(Inflations, inc());
1406     if (log_is_enabled(Trace, monitorinflation)) {
1407       ResourceMark rm(current);
1408       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1409                    INTPTR_FORMAT ", type='%s'", p2i(object),
1410                    object->mark().value(), object->klass()->external_name());
1411     }
1412     if (event.should_commit()) {
1413       post_monitor_inflate_event(&event, object, cause);
1414     }
1415     return m;
1416   }
1417 }
1418 
1419 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name,
1420                                            const char* cnt_name, size_t cnt,
1421                                            LogStream* ls, elapsedTimer* timer_p) {
1422   if (!SafepointMechanism::should_process(current)) {
1423     return;
1424   }
1425 
1426   // A safepoint/handshake has started.
1427   if (ls != NULL) {
1428     timer_p->stop();
1429     ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1430                  SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1431                  op_name, cnt_name, cnt, in_use_list_ceiling(),
1432                  _in_use_list.count(), _in_use_list.max());
1433   }
1434 
1435   {
1436     // Honor block request.
1437     ThreadBlockInVM tbivm(current);
1438   }
1439 
1440   if (ls != NULL) {
1441     ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1442                  ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1443                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1444     timer_p->start();
1445   }
1446 }
1447 
1448 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1449 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1450 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls,
1451                                                 elapsedTimer* timer_p) {
1452   MonitorList::Iterator iter = _in_use_list.iterator();
1453   size_t deflated_count = 0;
1454 
1455   while (iter.has_next()) {
1456     if (deflated_count >= (size_t)MonitorDeflationMax) {
1457       break;
1458     }
1459     ObjectMonitor* mid = iter.next();
1460     if (mid->deflate_monitor()) {
1461       deflated_count++;
1462     }
1463 
1464     if (current->is_Java_thread()) {
1465       // A JavaThread must check for a safepoint/handshake and honor it.
1466       chk_for_block_req(current->as_Java_thread(), "deflation", "deflated_count",
1467                         deflated_count, ls, timer_p);
1468     }
1469   }
1470 
1471   return deflated_count;
1472 }
1473 
1474 class HandshakeForDeflation : public HandshakeClosure {
1475  public:
1476   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1477 
1478   void do_thread(Thread* thread) {
1479     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1480                                 INTPTR_FORMAT, p2i(thread));
1481   }
1482 };
1483 
1484 // This function is called by the MonitorDeflationThread to deflate
1485 // ObjectMonitors. It is also called via do_final_audit_and_print_stats()
1486 // by the VMThread.
1487 size_t ObjectSynchronizer::deflate_idle_monitors() {
1488   Thread* current = Thread::current();
1489   if (current->is_Java_thread()) {
1490     // The async deflation request has been processed.
1491     _last_async_deflation_time_ns = os::javaTimeNanos();
1492     set_is_async_deflation_requested(false);
1493   }
1494 
1495   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1496   LogStreamHandle(Info, monitorinflation) lsh_info;
1497   LogStream* ls = NULL;
1498   if (log_is_enabled(Debug, monitorinflation)) {
1499     ls = &lsh_debug;
1500   } else if (log_is_enabled(Info, monitorinflation)) {
1501     ls = &lsh_info;
1502   }
1503 
1504   elapsedTimer timer;
1505   if (ls != NULL) {
1506     ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1507                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1508     timer.start();
1509   }
1510 
1511   // Deflate some idle ObjectMonitors.
1512   size_t deflated_count = deflate_monitor_list(current, ls, &timer);
1513   if (deflated_count > 0 || is_final_audit()) {
1514     // There are ObjectMonitors that have been deflated or this is the
1515     // final audit and all the remaining ObjectMonitors have been
1516     // deflated, BUT the MonitorDeflationThread blocked for the final
1517     // safepoint during unlinking.
1518 
1519     // Unlink deflated ObjectMonitors from the in-use list.
1520     ResourceMark rm;
1521     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1522     size_t unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer,
1523                                                          &delete_list);
1524     if (current->is_Java_thread()) {
1525       if (ls != NULL) {
1526         timer.stop();
1527         ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1528                      ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1529                      SIZE_FORMAT ", max=" SIZE_FORMAT,
1530                      unlinked_count, in_use_list_ceiling(),
1531                      _in_use_list.count(), _in_use_list.max());
1532       }
1533 
1534       // A JavaThread needs to handshake in order to safely free the
1535       // ObjectMonitors that were deflated in this cycle.
1536       HandshakeForDeflation hfd_hc;
1537       Handshake::execute(&hfd_hc);
1538 
1539       if (ls != NULL) {
1540         ls->print_cr("after handshaking: in_use_list stats: ceiling="
1541                      SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1542                      in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1543         timer.start();
1544       }
1545     }
1546 
1547     NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1548 
1549     // After the handshake, safely free the ObjectMonitors that were
1550     // deflated in this cycle.
1551     size_t deleted_count = 0;
1552     for (ObjectMonitor* monitor: delete_list) {
1553       delete monitor;
1554       deleted_count++;
1555 
1556       if (current->is_Java_thread()) {
1557         // A JavaThread must check for a safepoint/handshake and honor it.
1558         chk_for_block_req(current->as_Java_thread(), "deletion", "deleted_count",
1559                           deleted_count, ls, &timer);
1560       }
1561     }
1562   }
1563 
1564   if (ls != NULL) {
1565     timer.stop();
1566     if (deflated_count != 0 || log_is_enabled(Debug, monitorinflation)) {
1567       ls->print_cr("deflated " SIZE_FORMAT " monitors in %3.7f secs",
1568                    deflated_count, timer.seconds());
1569     }
1570     ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1571                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1572   }
1573 
1574   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1575   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1576 
1577   GVars.stw_random = os::random();
1578 
1579   if (deflated_count != 0) {
1580     _no_progress_cnt = 0;
1581   } else if (_no_progress_skip_increment) {
1582     _no_progress_skip_increment = false;
1583   } else {
1584     _no_progress_cnt++;
1585   }
1586 
1587   return deflated_count;
1588 }
1589 
1590 // Monitor cleanup on JavaThread::exit
1591 
1592 // Iterate through monitor cache and attempt to release thread's monitors
1593 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1594  private:
1595   JavaThread* _thread;
1596 
1597  public:
1598   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1599   void do_monitor(ObjectMonitor* mid) {
1600     (void)mid->complete_exit(_thread);
1601   }
1602 };
1603 
1604 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1605 // ignored.  This is meant to be called during JNI thread detach which assumes
1606 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1607 // Scanning the extant monitor list can be time consuming.
1608 // A simple optimization is to add a per-thread flag that indicates a thread
1609 // called jni_monitorenter() during its lifetime.
1610 //
1611 // Instead of NoSafepointVerifier it might be cheaper to
1612 // use an idiom of the form:
1613 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1614 //   <code that must not run at safepoint>
1615 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1616 // Since the tests are extremely cheap we could leave them enabled
1617 // for normal product builds.
1618 
1619 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1620   assert(current == JavaThread::current(), "must be current Java thread");
1621   NoSafepointVerifier nsv;
1622   ReleaseJavaMonitorsClosure rjmc(current);
1623   ObjectSynchronizer::monitors_iterate(&rjmc, current);
1624   assert(!current->has_pending_exception(), "Should not be possible");
1625   current->clear_pending_exception();
1626 }
1627 
1628 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1629   switch (cause) {
1630     case inflate_cause_vm_internal:    return "VM Internal";
1631     case inflate_cause_monitor_enter:  return "Monitor Enter";
1632     case inflate_cause_wait:           return "Monitor Wait";
1633     case inflate_cause_notify:         return "Monitor Notify";
1634     case inflate_cause_hash_code:      return "Monitor Hash Code";
1635     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1636     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1637     default:
1638       ShouldNotReachHere();
1639   }
1640   return "Unknown";
1641 }
1642 
1643 //------------------------------------------------------------------------------
1644 // Debugging code
1645 
1646 u_char* ObjectSynchronizer::get_gvars_addr() {
1647   return (u_char*)&GVars;
1648 }
1649 
1650 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1651   return (u_char*)&GVars.hc_sequence;
1652 }
1653 
1654 size_t ObjectSynchronizer::get_gvars_size() {
1655   return sizeof(SharedGlobals);
1656 }
1657 
1658 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1659   return (u_char*)&GVars.stw_random;
1660 }
1661 
1662 // Do the final audit and print of ObjectMonitor stats; must be done
1663 // by the VMThread at VM exit time.
1664 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1665   assert(Thread::current()->is_VM_thread(), "sanity check");
1666 
1667   if (is_final_audit()) {  // Only do the audit once.
1668     return;
1669   }
1670   set_is_final_audit();
1671   log_info(monitorinflation)("Starting the final audit.");
1672 
1673   if (log_is_enabled(Info, monitorinflation)) {
1674     // Do a deflation in order to reduce the in-use monitor population
1675     // that is reported by ObjectSynchronizer::log_in_use_monitor_details()
1676     // which is called by ObjectSynchronizer::audit_and_print_stats().
1677     while (ObjectSynchronizer::deflate_idle_monitors() != 0) {
1678       ; // empty
1679     }
1680     // The other audit_and_print_stats() call is done at the Debug
1681     // level at a safepoint in SafepointSynchronize::do_cleanup_tasks.
1682     ObjectSynchronizer::audit_and_print_stats(true /* on_exit */);
1683   }
1684 }
1685 
1686 // This function can be called at a safepoint or it can be called when
1687 // we are trying to exit the VM. When we are trying to exit the VM, the
1688 // list walker functions can run in parallel with the other list
1689 // operations so spin-locking is used for safety.
1690 //
1691 // Calls to this function can be added in various places as a debugging
1692 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
1693 // details logged at the Info level and 'false' for the 'on_exit'
1694 // parameter to have in-use monitor details logged at the Trace level.
1695 //
1696 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1697   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1698 
1699   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1700   LogStreamHandle(Info, monitorinflation) lsh_info;
1701   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1702   LogStream* ls = NULL;
1703   if (log_is_enabled(Trace, monitorinflation)) {
1704     ls = &lsh_trace;
1705   } else if (log_is_enabled(Debug, monitorinflation)) {
1706     ls = &lsh_debug;
1707   } else if (log_is_enabled(Info, monitorinflation)) {
1708     ls = &lsh_info;
1709   }
1710   assert(ls != NULL, "sanity check");
1711 
1712   int error_cnt = 0;
1713 
1714   ls->print_cr("Checking in_use_list:");
1715   chk_in_use_list(ls, &error_cnt);
1716 
1717   if (error_cnt == 0) {
1718     ls->print_cr("No errors found in in_use_list checks.");
1719   } else {
1720     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1721   }
1722 
1723   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1724       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1725     // When exiting this log output is at the Info level. When called
1726     // at a safepoint, this log output is at the Trace level since
1727     // there can be a lot of it.
1728     log_in_use_monitor_details(ls);
1729   }
1730 
1731   ls->flush();
1732 
1733   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1734 }
1735 
1736 // Check the in_use_list; log the results of the checks.
1737 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1738   size_t l_in_use_count = _in_use_list.count();
1739   size_t l_in_use_max = _in_use_list.max();
1740   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
1741                 l_in_use_max);
1742 
1743   size_t ck_in_use_count = 0;
1744   MonitorList::Iterator iter = _in_use_list.iterator();
1745   while (iter.has_next()) {
1746     ObjectMonitor* mid = iter.next();
1747     chk_in_use_entry(mid, out, error_cnt_p);
1748     ck_in_use_count++;
1749   }
1750 
1751   if (l_in_use_count == ck_in_use_count) {
1752     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
1753                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
1754   } else {
1755     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
1756                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
1757                   ck_in_use_count);
1758   }
1759 
1760   size_t ck_in_use_max = _in_use_list.max();
1761   if (l_in_use_max == ck_in_use_max) {
1762     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1763                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1764   } else {
1765     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1766                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1767   }
1768 }
1769 
1770 // Check an in-use monitor entry; log any errors.
1771 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1772                                           int* error_cnt_p) {
1773   if (n->owner_is_DEFLATER_MARKER()) {
1774     // This should not happen, but if it does, it is not fatal.
1775     out->print_cr("WARNING: monitor=" INTPTR_FORMAT ": in-use monitor is "
1776                   "deflated.", p2i(n));
1777     return;
1778   }
1779   if (n->header().value() == 0) {
1780     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1781                   "have non-NULL _header field.", p2i(n));
1782     *error_cnt_p = *error_cnt_p + 1;
1783   }
1784   const oop obj = n->object_peek();
1785   if (obj != NULL) {
1786     const markWord mark = obj->mark();
1787     if (!mark.has_monitor()) {
1788       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1789                     "object does not think it has a monitor: obj="
1790                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
1791                     p2i(obj), mark.value());
1792       *error_cnt_p = *error_cnt_p + 1;
1793     }
1794     ObjectMonitor* const obj_mon = mark.monitor();
1795     if (n != obj_mon) {
1796       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1797                     "object does not refer to the same monitor: obj="
1798                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
1799                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
1800       *error_cnt_p = *error_cnt_p + 1;
1801     }
1802   }
1803 }
1804 
1805 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
1806 // flags indicate why the entry is in-use, 'object' and 'object type'
1807 // indicate the associated object and its type.
1808 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out) {
1809   stringStream ss;
1810   if (_in_use_list.count() > 0) {
1811     out->print_cr("In-use monitor info:");
1812     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
1813     out->print_cr("%18s  %s  %18s  %18s",
1814                   "monitor", "BHL", "object", "object type");
1815     out->print_cr("==================  ===  ==================  ==================");
1816     MonitorList::Iterator iter = _in_use_list.iterator();
1817     while (iter.has_next()) {
1818       ObjectMonitor* mid = iter.next();
1819       const oop obj = mid->object_peek();
1820       const markWord mark = mid->header();
1821       ResourceMark rm;
1822       out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(mid),
1823                  mid->is_busy(), mark.hash() != 0, mid->owner() != NULL,
1824                  p2i(obj), obj == NULL ? "" : obj->klass()->external_name());
1825       if (mid->is_busy()) {
1826         out->print(" (%s)", mid->is_busy_to_string(&ss));
1827         ss.reset();
1828       }
1829       out->cr();
1830     }
1831   }
1832 
1833   out->flush();
1834 }