1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "jfr/jfrEvents.hpp" 28 #include "gc/shared/suspendibleThreadSet.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/biasedLocking.hpp" 39 #include "runtime/globals.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/lockStack.inline.hpp" 44 #include "runtime/mutexLocker.hpp" 45 #include "runtime/objectMonitor.hpp" 46 #include "runtime/objectMonitor.inline.hpp" 47 #include "runtime/os.inline.hpp" 48 #include "runtime/osThread.hpp" 49 #include "runtime/perfData.hpp" 50 #include "runtime/safepointMechanism.inline.hpp" 51 #include "runtime/safepointVerifiers.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/synchronizer.hpp" 55 #include "runtime/thread.inline.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/trimNativeHeap.hpp" 58 #include "runtime/vframe.hpp" 59 #include "runtime/vmThread.hpp" 60 #include "utilities/align.hpp" 61 #include "utilities/dtrace.hpp" 62 #include "utilities/events.hpp" 63 #include "utilities/globalDefinitions.hpp" 64 #include "utilities/preserveException.hpp" 65 66 void MonitorList::add(ObjectMonitor* m) { 67 ObjectMonitor* head; 68 do { 69 head = Atomic::load(&_head); 70 m->set_next_om(head); 71 } while (Atomic::cmpxchg(&_head, head, m) != head); 72 73 size_t count = Atomic::add(&_count, 1u); 74 if (count > max()) { 75 Atomic::inc(&_max); 76 } 77 } 78 79 size_t MonitorList::count() const { 80 return Atomic::load(&_count); 81 } 82 83 size_t MonitorList::max() const { 84 return Atomic::load(&_max); 85 } 86 87 // Walk the in-use list and unlink (at most MonitorDeflationMax) deflated 88 // ObjectMonitors. Returns the number of unlinked ObjectMonitors. 89 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls, 90 elapsedTimer* timer_p, 91 GrowableArray<ObjectMonitor*>* unlinked_list) { 92 size_t unlinked_count = 0; 93 ObjectMonitor* prev = NULL; 94 ObjectMonitor* head = Atomic::load_acquire(&_head); 95 ObjectMonitor* m = head; 96 // The in-use list head can be NULL during the final audit. 97 while (m != NULL) { 98 if (m->is_being_async_deflated()) { 99 // Find next live ObjectMonitor. 100 ObjectMonitor* next = m; 101 do { 102 ObjectMonitor* next_next = next->next_om(); 103 unlinked_count++; 104 unlinked_list->append(next); 105 next = next_next; 106 if (unlinked_count >= (size_t)MonitorDeflationMax) { 107 // Reached the max so bail out on the gathering loop. 108 break; 109 } 110 } while (next != NULL && next->is_being_async_deflated()); 111 if (prev == NULL) { 112 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, head, next); 113 if (prev_head != head) { 114 // Find new prev ObjectMonitor that just got inserted. 115 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 116 prev = n; 117 } 118 prev->set_next_om(next); 119 } 120 } else { 121 prev->set_next_om(next); 122 } 123 if (unlinked_count >= (size_t)MonitorDeflationMax) { 124 // Reached the max so bail out on the searching loop. 125 break; 126 } 127 m = next; 128 } else { 129 prev = m; 130 m = m->next_om(); 131 } 132 133 if (current->is_Java_thread()) { 134 // A JavaThread must check for a safepoint/handshake and honor it. 135 ObjectSynchronizer::chk_for_block_req(current->as_Java_thread(), "unlinking", 136 "unlinked_count", unlinked_count, 137 ls, timer_p); 138 } 139 } 140 Atomic::sub(&_count, unlinked_count); 141 return unlinked_count; 142 } 143 144 MonitorList::Iterator MonitorList::iterator() const { 145 return Iterator(Atomic::load_acquire(&_head)); 146 } 147 148 ObjectMonitor* MonitorList::Iterator::next() { 149 ObjectMonitor* current = _current; 150 _current = current->next_om(); 151 return current; 152 } 153 154 // The "core" versions of monitor enter and exit reside in this file. 155 // The interpreter and compilers contain specialized transliterated 156 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 157 // fast_lock(...) for instance. If you make changes here, make sure to modify the 158 // interpreter, and both C1 and C2 fast-path inline locking code emission. 159 // 160 // ----------------------------------------------------------------------------- 161 162 #ifdef DTRACE_ENABLED 163 164 // Only bother with this argument setup if dtrace is available 165 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 166 167 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 168 char* bytes = NULL; \ 169 int len = 0; \ 170 jlong jtid = SharedRuntime::get_java_tid(thread); \ 171 Symbol* klassname = obj->klass()->name(); \ 172 if (klassname != NULL) { \ 173 bytes = (char*)klassname->bytes(); \ 174 len = klassname->utf8_length(); \ 175 } 176 177 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 178 { \ 179 if (DTraceMonitorProbes) { \ 180 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 181 HOTSPOT_MONITOR_WAIT(jtid, \ 182 (uintptr_t)(monitor), bytes, len, (millis)); \ 183 } \ 184 } 185 186 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 187 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 188 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 189 190 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 191 { \ 192 if (DTraceMonitorProbes) { \ 193 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 194 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 195 (uintptr_t)(monitor), bytes, len); \ 196 } \ 197 } 198 199 #else // ndef DTRACE_ENABLED 200 201 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 202 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 203 204 #endif // ndef DTRACE_ENABLED 205 206 // This exists only as a workaround of dtrace bug 6254741 207 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) { 208 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 209 return 0; 210 } 211 212 static const int NINFLATIONLOCKS = 256; 213 static os::PlatformMutex* gInflationLocks[NINFLATIONLOCKS]; 214 215 void ObjectSynchronizer::initialize() { 216 for (int i = 0; i < NINFLATIONLOCKS; i++) { 217 gInflationLocks[i] = new os::PlatformMutex(); 218 } 219 // Start the ceiling with the estimate for one thread. 220 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 221 222 // Start the timer for deflations, so it does not trigger immediately. 223 _last_async_deflation_time_ns = os::javaTimeNanos(); 224 } 225 226 MonitorList ObjectSynchronizer::_in_use_list; 227 // monitors_used_above_threshold() policy is as follows: 228 // 229 // The ratio of the current _in_use_list count to the ceiling is used 230 // to determine if we are above MonitorUsedDeflationThreshold and need 231 // to do an async monitor deflation cycle. The ceiling is increased by 232 // AvgMonitorsPerThreadEstimate when a thread is added to the system 233 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 234 // removed from the system. 235 // 236 // Note: If the _in_use_list max exceeds the ceiling, then 237 // monitors_used_above_threshold() will use the in_use_list max instead 238 // of the thread count derived ceiling because we have used more 239 // ObjectMonitors than the estimated average. 240 // 241 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 242 // no-progress async monitor deflation cycles in a row, then the ceiling 243 // is adjusted upwards by monitors_used_above_threshold(). 244 // 245 // Start the ceiling with the estimate for one thread in initialize() 246 // which is called after cmd line options are processed. 247 static size_t _in_use_list_ceiling = 0; 248 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 249 bool volatile ObjectSynchronizer::_is_final_audit = false; 250 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 251 static uintx _no_progress_cnt = 0; 252 static bool _no_progress_skip_increment = false; 253 254 // =====================> Quick functions 255 256 // The quick_* forms are special fast-path variants used to improve 257 // performance. In the simplest case, a "quick_*" implementation could 258 // simply return false, in which case the caller will perform the necessary 259 // state transitions and call the slow-path form. 260 // The fast-path is designed to handle frequently arising cases in an efficient 261 // manner and is just a degenerate "optimistic" variant of the slow-path. 262 // returns true -- to indicate the call was satisfied. 263 // returns false -- to indicate the call needs the services of the slow-path. 264 // A no-loitering ordinance is in effect for code in the quick_* family 265 // operators: safepoints or indefinite blocking (blocking that might span a 266 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 267 // entry. 268 // 269 // Consider: An interesting optimization is to have the JIT recognize the 270 // following common idiom: 271 // synchronized (someobj) { .... ; notify(); } 272 // That is, we find a notify() or notifyAll() call that immediately precedes 273 // the monitorexit operation. In that case the JIT could fuse the operations 274 // into a single notifyAndExit() runtime primitive. 275 276 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 277 assert(current->thread_state() == _thread_in_Java, "invariant"); 278 NoSafepointVerifier nsv; 279 if (obj == NULL) return false; // slow-path for invalid obj 280 const markWord mark = obj->mark(); 281 282 if (LockingMode == LM_LIGHTWEIGHT) { 283 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 284 // Degenerate notify 285 // fast-locked by caller so by definition the implied waitset is empty. 286 return true; 287 } 288 } else if (LockingMode == LM_LEGACY) { 289 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 290 // Degenerate notify 291 // stack-locked by caller so by definition the implied waitset is empty. 292 return true; 293 } 294 } 295 296 if (mark.has_monitor()) { 297 ObjectMonitor* const mon = mark.monitor(); 298 assert(mon->object() == oop(obj), "invariant"); 299 if (mon->owner() != current) return false; // slow-path for IMS exception 300 301 if (mon->first_waiter() != NULL) { 302 // We have one or more waiters. Since this is an inflated monitor 303 // that we own, we can transfer one or more threads from the waitset 304 // to the entrylist here and now, avoiding the slow-path. 305 if (all) { 306 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 307 } else { 308 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 309 } 310 int free_count = 0; 311 do { 312 mon->INotify(current); 313 ++free_count; 314 } while (mon->first_waiter() != NULL && all); 315 OM_PERFDATA_OP(Notifications, inc(free_count)); 316 } 317 return true; 318 } 319 320 // biased locking and any other IMS exception states take the slow-path 321 return false; 322 } 323 324 325 // The LockNode emitted directly at the synchronization site would have 326 // been too big if it were to have included support for the cases of inflated 327 // recursive enter and exit, so they go here instead. 328 // Note that we can't safely call AsyncPrintJavaStack() from within 329 // quick_enter() as our thread state remains _in_Java. 330 331 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current, 332 BasicLock * lock) { 333 assert(current->thread_state() == _thread_in_Java, "invariant"); 334 NoSafepointVerifier nsv; 335 if (obj == NULL) return false; // Need to throw NPE 336 337 if (obj->klass()->is_value_based()) { 338 return false; 339 } 340 341 if (LockingMode == LM_LIGHTWEIGHT) { 342 LockStack& lock_stack = current->lock_stack(); 343 if (lock_stack.is_full()) { 344 // Always go into runtime if the lock stack is full. 345 return false; 346 } 347 if (lock_stack.try_recursive_enter(obj)) { 348 // Recursive lock successful. 349 return true; 350 } 351 } 352 353 const markWord mark = obj->mark(); 354 355 if (mark.has_monitor()) { 356 ObjectMonitor* const m = mark.monitor(); 357 // An async deflation or GC can race us before we manage to make 358 // the ObjectMonitor busy by setting the owner below. If we detect 359 // that race we just bail out to the slow-path here. 360 if (m->object_peek() == NULL) { 361 return false; 362 } 363 JavaThread* const owner = (JavaThread*) m->owner_raw(); 364 365 // Lock contention and Transactional Lock Elision (TLE) diagnostics 366 // and observability 367 // Case: light contention possibly amenable to TLE 368 // Case: TLE inimical operations such as nested/recursive synchronization 369 370 if (owner == current) { 371 m->_recursions++; 372 return true; 373 } 374 375 if (LockingMode != LM_LIGHTWEIGHT) { 376 // This Java Monitor is inflated so obj's header will never be 377 // displaced to this thread's BasicLock. Make the displaced header 378 // non-NULL so this BasicLock is not seen as recursive nor as 379 // being locked. We do this unconditionally so that this thread's 380 // BasicLock cannot be mis-interpreted by any stack walkers. For 381 // performance reasons, stack walkers generally first check for 382 // Biased Locking in the object's header, the second check is for 383 // stack-locking in the object's header, the third check is for 384 // recursive stack-locking in the displaced header in the BasicLock, 385 // and last are the inflated Java Monitor (ObjectMonitor) checks. 386 lock->set_displaced_header(markWord::unused_mark()); 387 } 388 389 if (owner == NULL && m->try_set_owner_from(NULL, current) == NULL) { 390 assert(m->_recursions == 0, "invariant"); 391 return true; 392 } 393 } 394 395 // Note that we could inflate in quick_enter. 396 // This is likely a useful optimization 397 // Critically, in quick_enter() we must not: 398 // -- perform bias revocation, or 399 // -- block indefinitely, or 400 // -- reach a safepoint 401 402 return false; // revert to slow-path 403 } 404 405 // Handle notifications when synchronizing on value based classes 406 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 407 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 408 frame last_frame = locking_thread->last_frame(); 409 bool bcp_was_adjusted = false; 410 // Don't decrement bcp if it points to the frame's first instruction. This happens when 411 // handle_sync_on_value_based_class() is called because of a synchronized method. There 412 // is no actual monitorenter instruction in the byte code in this case. 413 if (last_frame.is_interpreted_frame() && 414 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 415 // adjust bcp to point back to monitorenter so that we print the correct line numbers 416 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 417 bcp_was_adjusted = true; 418 } 419 420 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 421 ResourceMark rm; 422 stringStream ss; 423 locking_thread->print_stack_on(&ss); 424 char* base = (char*)strstr(ss.base(), "at"); 425 char* newline = (char*)strchr(ss.base(), '\n'); 426 if (newline != NULL) { 427 *newline = '\0'; 428 } 429 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 430 } else { 431 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 432 ResourceMark rm; 433 Log(valuebasedclasses) vblog; 434 435 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 436 if (locking_thread->has_last_Java_frame()) { 437 LogStream info_stream(vblog.info()); 438 locking_thread->print_stack_on(&info_stream); 439 } else { 440 vblog.info("Cannot find the last Java frame"); 441 } 442 443 EventSyncOnValueBasedClass event; 444 if (event.should_commit()) { 445 event.set_valueBasedClass(obj->klass()); 446 event.commit(); 447 } 448 } 449 450 if (bcp_was_adjusted) { 451 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 452 } 453 } 454 455 static bool useHeavyMonitors() { 456 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) 457 return LockingMode == LM_MONITOR; 458 #else 459 return false; 460 #endif 461 } 462 463 // ----------------------------------------------------------------------------- 464 // Monitor Enter/Exit 465 466 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 467 // When called with locking_thread != Thread::current() some mechanism must synchronize 468 // the locking_thread with respect to the current thread. Currently only used when 469 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 470 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 471 if (!enter_fast_impl(obj, lock, locking_thread)) { 472 // Inflated ObjectMonitor::enter_for is required 473 474 // An async deflation can race after the inflate_for() call and before 475 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 476 // if we have lost the race to async deflation and we simply try again. 477 while (true) { 478 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 479 if (monitor->enter_for(locking_thread)) { 480 return; 481 } 482 assert(monitor->is_being_async_deflated(), "must be"); 483 } 484 } 485 } 486 487 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) { 488 assert(current == Thread::current(), "must be"); 489 if (!enter_fast_impl(obj, lock, current)) { 490 // Inflated ObjectMonitor::enter is required 491 492 // An async deflation can race after the inflate() call and before 493 // enter() can make the ObjectMonitor busy. enter() returns false if 494 // we have lost the race to async deflation and we simply try again. 495 while (true) { 496 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 497 if (monitor->enter(current)) { 498 return; 499 } 500 } 501 } 502 } 503 504 // The interpreter and compiler assembly code tries to lock using the fast path 505 // of this algorithm. Make sure to update that code if the following function is 506 // changed. The implementation is extremely sensitive to race condition. Be careful. 507 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 508 509 if (obj->klass()->is_value_based()) { 510 handle_sync_on_value_based_class(obj, locking_thread); 511 } 512 513 if (!useHeavyMonitors()) { 514 if (LockingMode == LM_LIGHTWEIGHT) { 515 // Fast-locking does not use the 'lock' argument. 516 LockStack& lock_stack = locking_thread->lock_stack(); 517 if (lock_stack.is_full()) { 518 // We unconditionally make room on the lock stack by inflating 519 // the least recently locked object on the lock stack. 520 521 // About the choice to inflate least recently locked object. 522 // First we must chose to inflate a lock, either some lock on 523 // the lock-stack or the lock that is currently being entered 524 // (which may or may not be on the lock-stack). 525 // Second the best lock to inflate is a lock which is entered 526 // in a control flow where there are only a very few locks being 527 // used, as the costly part of inflated locking is inflation, 528 // not locking. But this property is entirely program dependent. 529 // Third inflating the lock currently being entered on when it 530 // is not present on the lock-stack will result in a still full 531 // lock-stack. This creates a scenario where every deeper nested 532 // monitorenter must call into the runtime. 533 // The rational here is as follows: 534 // Because we cannot (currently) figure out the second, and want 535 // to avoid the third, we inflate a lock on the lock-stack. 536 // The least recently locked lock is chosen as it is the lock 537 // with the longest critical section. 538 539 log_info(monitorinflation)("LockStack capacity exceeded, inflating."); 540 ObjectMonitor* monitor = inflate_for(locking_thread, lock_stack.bottom(), inflate_cause_vm_internal); 541 assert(monitor->owner() == Thread::current(), "must be owner=" PTR_FORMAT " current=" PTR_FORMAT " mark=" PTR_FORMAT, 542 p2i(monitor->owner()), p2i(Thread::current()), monitor->object()->mark_acquire().value()); 543 assert(!lock_stack.is_full(), "must have made room here"); 544 } 545 546 markWord mark = obj()->mark_acquire(); 547 while (mark.is_neutral()) { 548 // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications. 549 // Try to swing into 'fast-locked' state. 550 assert(!lock_stack.contains(obj()), "thread must not already hold the lock"); 551 const markWord locked_mark = mark.set_fast_locked(); 552 const markWord old_mark = obj()->cas_set_mark(locked_mark, mark); 553 if (old_mark == mark) { 554 // Successfully fast-locked, push object to lock-stack and return. 555 lock_stack.push(obj()); 556 return true; 557 } 558 mark = old_mark; 559 } 560 561 if (mark.is_fast_locked() && lock_stack.try_recursive_enter(obj())) { 562 // Recursive lock successful. 563 return true; 564 } 565 566 // Failed to fast lock. 567 return false; 568 } else if (LockingMode == LM_LEGACY) { 569 if (UseBiasedLocking) { 570 BiasedLocking::revoke(locking_thread, obj); 571 } 572 573 markWord mark = obj->mark(); 574 if (mark.is_neutral()) { 575 // Anticipate successful CAS -- the ST of the displaced mark must 576 // be visible <= the ST performed by the CAS. 577 lock->set_displaced_header(mark); 578 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 579 return true; 580 } 581 } else if (mark.has_locker() && 582 locking_thread->is_lock_owned((address) mark.locker())) { 583 assert(lock != mark.locker(), "must not re-lock the same lock"); 584 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 585 lock->set_displaced_header(markWord::from_pointer(NULL)); 586 return true; 587 } 588 589 // The object header will never be displaced to this lock, 590 // so it does not matter what the value is, except that it 591 // must be non-zero to avoid looking like a re-entrant lock, 592 // and must not look locked either. 593 lock->set_displaced_header(markWord::unused_mark()); 594 595 // Failed to fast lock. 596 return false; 597 } 598 } 599 600 return false; 601 } 602 603 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) { 604 if (!useHeavyMonitors()) { 605 markWord mark = object->mark(); 606 if (LockingMode == LM_LIGHTWEIGHT) { 607 // Fast-locking does not use the 'lock' argument. 608 LockStack& lock_stack = current->lock_stack(); 609 if (mark.is_fast_locked() && lock_stack.try_recursive_exit(object)) { 610 // Recursively unlocked. 611 return; 612 } 613 614 if (mark.is_fast_locked() && lock_stack.is_recursive(object)) { 615 // This lock is recursive but is not at the top of the lock stack so we're 616 // doing an unbalanced exit. We have to fall thru to inflation below and 617 // let ObjectMonitor::exit() do the unlock. 618 } else { 619 while (mark.is_fast_locked()) { 620 // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications. 621 const markWord unlocked_mark = mark.set_unlocked(); 622 const markWord old_mark = object->cas_set_mark(unlocked_mark, mark); 623 if (old_mark == mark) { 624 size_t recursions = lock_stack.remove(object) - 1; 625 assert(recursions == 0, "must not be recursive here"); 626 return; 627 } 628 mark = old_mark; 629 } 630 } 631 } else if (LockingMode == LM_LEGACY) { 632 markWord dhw = lock->displaced_header(); 633 if (dhw.value() == 0) { 634 // If the displaced header is NULL, then this exit matches up with 635 // a recursive enter. No real work to do here except for diagnostics. 636 #ifndef PRODUCT 637 if (mark != markWord::INFLATING()) { 638 // Only do diagnostics if we are not racing an inflation. Simply 639 // exiting a recursive enter of a Java Monitor that is being 640 // inflated is safe; see the has_monitor() comment below. 641 assert(!mark.is_neutral(), "invariant"); 642 assert(!mark.has_locker() || 643 current->is_lock_owned((address)mark.locker()), "invariant"); 644 if (mark.has_monitor()) { 645 // The BasicLock's displaced_header is marked as a recursive 646 // enter and we have an inflated Java Monitor (ObjectMonitor). 647 // This is a special case where the Java Monitor was inflated 648 // after this thread entered the stack-lock recursively. When a 649 // Java Monitor is inflated, we cannot safely walk the Java 650 // Monitor owner's stack and update the BasicLocks because a 651 // Java Monitor can be asynchronously inflated by a thread that 652 // does not own the Java Monitor. 653 ObjectMonitor* m = mark.monitor(); 654 assert(m->object()->mark() == mark, "invariant"); 655 assert(m->is_entered(current), "invariant"); 656 } 657 } 658 #endif 659 return; 660 } 661 662 if (mark == markWord::from_pointer(lock)) { 663 // If the object is stack-locked by the current thread, try to 664 // swing the displaced header from the BasicLock back to the mark. 665 assert(dhw.is_neutral(), "invariant"); 666 if (object->cas_set_mark(dhw, mark) == mark) { 667 return; 668 } 669 } 670 } 671 } 672 673 // We have to take the slow-path of possible inflation and then exit. 674 // The ObjectMonitor* can't be async deflated until ownership is 675 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 676 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 677 assert(!monitor->is_owner_anonymous(), "must not be"); 678 monitor->exit(current); 679 } 680 681 // ----------------------------------------------------------------------------- 682 // Class Loader support to workaround deadlocks on the class loader lock objects 683 // Also used by GC 684 // complete_exit()/reenter() are used to wait on a nested lock 685 // i.e. to give up an outer lock completely and then re-enter 686 // Used when holding nested locks - lock acquisition order: lock1 then lock2 687 // 1) complete_exit lock1 - saving recursion count 688 // 2) wait on lock2 689 // 3) when notified on lock2, unlock lock2 690 // 4) reenter lock1 with original recursion count 691 // 5) lock lock2 692 // NOTE: must use heavy weight monitor to handle complete_exit/reenter() 693 intx ObjectSynchronizer::complete_exit(Handle obj, JavaThread* current) { 694 if (UseBiasedLocking) { 695 BiasedLocking::revoke(current, obj); 696 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 697 } 698 699 // The ObjectMonitor* can't be async deflated until ownership is 700 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 701 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_vm_internal); 702 intptr_t ret_code = monitor->complete_exit(current); 703 return ret_code; 704 } 705 706 // NOTE: must use heavy weight monitor to handle complete_exit/reenter() 707 void ObjectSynchronizer::reenter(Handle obj, intx recursions, JavaThread* current) { 708 if (UseBiasedLocking) { 709 BiasedLocking::revoke(current, obj); 710 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 711 } 712 713 // An async deflation can race after the inflate() call and before 714 // reenter() -> enter() can make the ObjectMonitor busy. reenter() -> 715 // enter() returns false if we have lost the race to async deflation 716 // and we simply try again. 717 while (true) { 718 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_vm_internal); 719 if (monitor->reenter(recursions, current)) { 720 return; 721 } 722 } 723 } 724 725 // ----------------------------------------------------------------------------- 726 // JNI locks on java objects 727 // NOTE: must use heavy weight monitor to handle jni monitor enter 728 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 729 if (obj->klass()->is_value_based()) { 730 handle_sync_on_value_based_class(obj, current); 731 } 732 733 // the current locking is from JNI instead of Java code 734 if (UseBiasedLocking) { 735 BiasedLocking::revoke(current, obj); 736 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 737 } 738 current->set_current_pending_monitor_is_from_java(false); 739 // An async deflation can race after the inflate() call and before 740 // enter() can make the ObjectMonitor busy. enter() returns false if 741 // we have lost the race to async deflation and we simply try again. 742 while (true) { 743 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter); 744 if (monitor->enter(current)) { 745 break; 746 } 747 } 748 current->set_current_pending_monitor_is_from_java(true); 749 } 750 751 // NOTE: must use heavy weight monitor to handle jni monitor exit 752 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 753 JavaThread* current = THREAD; 754 if (UseBiasedLocking) { 755 Handle h_obj(current, obj); 756 BiasedLocking::revoke(current, h_obj); 757 obj = h_obj(); 758 } 759 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 760 761 // The ObjectMonitor* can't be async deflated until ownership is 762 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 763 ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit); 764 // If this thread has locked the object, exit the monitor. We 765 // intentionally do not use CHECK on check_owner because we must exit the 766 // monitor even if an exception was already pending. 767 if (monitor->check_owner(THREAD)) { 768 monitor->exit(current); 769 } 770 } 771 772 // ----------------------------------------------------------------------------- 773 // Internal VM locks on java objects 774 // standard constructor, allows locking failures 775 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) { 776 _thread = thread; 777 _thread->check_for_valid_safepoint_state(); 778 _obj = obj; 779 780 if (_obj() != NULL) { 781 ObjectSynchronizer::enter(_obj, &_lock, _thread); 782 } 783 } 784 785 ObjectLocker::~ObjectLocker() { 786 if (_obj() != NULL) { 787 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 788 } 789 } 790 791 792 // ----------------------------------------------------------------------------- 793 // Wait/Notify/NotifyAll 794 // NOTE: must use heavy weight monitor to handle wait() 795 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 796 JavaThread* current = THREAD; 797 if (UseBiasedLocking) { 798 BiasedLocking::revoke(current, obj); 799 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 800 } 801 if (millis < 0) { 802 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 803 } 804 // The ObjectMonitor* can't be async deflated because the _waiters 805 // field is incremented before ownership is dropped and decremented 806 // after ownership is regained. 807 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait); 808 809 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 810 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 811 812 // This dummy call is in place to get around dtrace bug 6254741. Once 813 // that's fixed we can uncomment the following line, remove the call 814 // and change this function back into a "void" func. 815 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 816 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 817 return ret_code; 818 } 819 820 // No exception are possible in this case as we only use this internally when locking is 821 // correct and we have to wait until notified - so no interrupts or timeouts. 822 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, JavaThread* current) { 823 if (UseBiasedLocking) { 824 BiasedLocking::revoke(current, obj); 825 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 826 } 827 // The ObjectMonitor* can't be async deflated because the _waiters 828 // field is incremented before ownership is dropped and decremented 829 // after ownership is regained. 830 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait); 831 monitor->wait(0 /* wait-forever */, false /* not interruptible */, current); 832 } 833 834 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 835 JavaThread* current = THREAD; 836 if (UseBiasedLocking) { 837 BiasedLocking::revoke(current, obj); 838 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 839 } 840 841 markWord mark = obj->mark(); 842 if (LockingMode == LM_LIGHTWEIGHT) { 843 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 844 // Not inflated so there can't be any waiters to notify. 845 return; 846 } 847 } else if (LockingMode == LM_LEGACY) { 848 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 849 // Not inflated so there can't be any waiters to notify. 850 return; 851 } 852 } 853 // The ObjectMonitor* can't be async deflated until ownership is 854 // dropped by the calling thread. 855 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 856 monitor->notify(CHECK); 857 } 858 859 // NOTE: see comment of notify() 860 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 861 JavaThread* current = THREAD; 862 if (UseBiasedLocking) { 863 BiasedLocking::revoke(current, obj); 864 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 865 } 866 867 markWord mark = obj->mark(); 868 if (LockingMode == LM_LIGHTWEIGHT) { 869 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 870 // Not inflated so there can't be any waiters to notify. 871 return; 872 } 873 } else if (LockingMode == LM_LEGACY) { 874 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 875 // Not inflated so there can't be any waiters to notify. 876 return; 877 } 878 } 879 // The ObjectMonitor* can't be async deflated until ownership is 880 // dropped by the calling thread. 881 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 882 monitor->notifyAll(CHECK); 883 } 884 885 // ----------------------------------------------------------------------------- 886 // Hash Code handling 887 888 struct SharedGlobals { 889 char _pad_prefix[OM_CACHE_LINE_SIZE]; 890 // This is a highly shared mostly-read variable. 891 // To avoid false-sharing it needs to be the sole occupant of a cache line. 892 volatile int stw_random; 893 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 894 // Hot RW variable -- Sequester to avoid false-sharing 895 volatile int hc_sequence; 896 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 897 }; 898 899 static SharedGlobals GVars; 900 901 static markWord read_stable_mark(oop obj) { 902 markWord mark = obj->mark_acquire(); 903 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 904 // New lightweight locking does not use the markWord::INFLATING() protocol. 905 return mark; // normal fast-path return 906 } 907 908 int its = 0; 909 for (;;) { 910 markWord mark = obj->mark_acquire(); 911 if (!mark.is_being_inflated()) { 912 return mark; // normal fast-path return 913 } 914 915 // The object is being inflated by some other thread. 916 // The caller of read_stable_mark() must wait for inflation to complete. 917 // Avoid live-lock. 918 919 ++its; 920 if (its > 10000 || !os::is_MP()) { 921 if (its & 1) { 922 os::naked_yield(); 923 } else { 924 // Note that the following code attenuates the livelock problem but is not 925 // a complete remedy. A more complete solution would require that the inflating 926 // thread hold the associated inflation lock. The following code simply restricts 927 // the number of spinners to at most one. We'll have N-2 threads blocked 928 // on the inflationlock, 1 thread holding the inflation lock and using 929 // a yield/park strategy, and 1 thread in the midst of inflation. 930 // A more refined approach would be to change the encoding of INFLATING 931 // to allow encapsulation of a native thread pointer. Threads waiting for 932 // inflation to complete would use CAS to push themselves onto a singly linked 933 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 934 // and calling park(). When inflation was complete the thread that accomplished inflation 935 // would detach the list and set the markword to inflated with a single CAS and 936 // then for each thread on the list, set the flag and unpark() the thread. 937 938 // Index into the lock array based on the current object address. 939 static_assert(is_power_of_2(NINFLATIONLOCKS), "must be"); 940 int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1); 941 int YieldThenBlock = 0; 942 assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant"); 943 gInflationLocks[ix]->lock(); 944 while (obj->mark_acquire() == markWord::INFLATING()) { 945 // Beware: naked_yield() is advisory and has almost no effect on some platforms 946 // so we periodically call current->_ParkEvent->park(1). 947 // We use a mixed spin/yield/block mechanism. 948 if ((YieldThenBlock++) >= 16) { 949 Thread::current()->_ParkEvent->park(1); 950 } else { 951 os::naked_yield(); 952 } 953 } 954 gInflationLocks[ix]->unlock(); 955 } 956 } else { 957 SpinPause(); // SMP-polite spinning 958 } 959 } 960 } 961 962 // hashCode() generation : 963 // 964 // Possibilities: 965 // * MD5Digest of {obj,stw_random} 966 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 967 // * A DES- or AES-style SBox[] mechanism 968 // * One of the Phi-based schemes, such as: 969 // 2654435761 = 2^32 * Phi (golden ratio) 970 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 971 // * A variation of Marsaglia's shift-xor RNG scheme. 972 // * (obj ^ stw_random) is appealing, but can result 973 // in undesirable regularity in the hashCode values of adjacent objects 974 // (objects allocated back-to-back, in particular). This could potentially 975 // result in hashtable collisions and reduced hashtable efficiency. 976 // There are simple ways to "diffuse" the middle address bits over the 977 // generated hashCode values: 978 979 static inline intptr_t get_next_hash(Thread* current, oop obj) { 980 intptr_t value = 0; 981 if (hashCode == 0) { 982 // This form uses global Park-Miller RNG. 983 // On MP system we'll have lots of RW access to a global, so the 984 // mechanism induces lots of coherency traffic. 985 value = os::random(); 986 } else if (hashCode == 1) { 987 // This variation has the property of being stable (idempotent) 988 // between STW operations. This can be useful in some of the 1-0 989 // synchronization schemes. 990 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 991 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 992 } else if (hashCode == 2) { 993 value = 1; // for sensitivity testing 994 } else if (hashCode == 3) { 995 value = ++GVars.hc_sequence; 996 } else if (hashCode == 4) { 997 value = cast_from_oop<intptr_t>(obj); 998 } else { 999 // Marsaglia's xor-shift scheme with thread-specific state 1000 // This is probably the best overall implementation -- we'll 1001 // likely make this the default in future releases. 1002 unsigned t = current->_hashStateX; 1003 t ^= (t << 11); 1004 current->_hashStateX = current->_hashStateY; 1005 current->_hashStateY = current->_hashStateZ; 1006 current->_hashStateZ = current->_hashStateW; 1007 unsigned v = current->_hashStateW; 1008 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 1009 current->_hashStateW = v; 1010 value = v; 1011 } 1012 1013 value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask; 1014 if (value == 0) value = 0xBAD; 1015 assert(value != markWord::no_hash, "invariant"); 1016 return value; 1017 } 1018 1019 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1020 if (UseBiasedLocking) { 1021 // NOTE: many places throughout the JVM do not expect a safepoint 1022 // to be taken here. However, we only ever bias Java instances and all 1023 // of the call sites of identity_hash that might revoke biases have 1024 // been checked to make sure they can handle a safepoint. The 1025 // added check of the bias pattern is to avoid useless calls to 1026 // thread-local storage. 1027 if (obj->mark().has_bias_pattern()) { 1028 // Handle for oop obj in case of STW safepoint 1029 Handle hobj(current, obj); 1030 if (SafepointSynchronize::is_at_safepoint()) { 1031 BiasedLocking::revoke_at_safepoint(hobj); 1032 } else { 1033 BiasedLocking::revoke(current->as_Java_thread(), hobj); 1034 } 1035 obj = hobj(); 1036 assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now"); 1037 } 1038 } 1039 1040 while (true) { 1041 ObjectMonitor* monitor = NULL; 1042 markWord temp, test; 1043 intptr_t hash; 1044 markWord mark = read_stable_mark(obj); 1045 1046 // object should remain ineligible for biased locking 1047 assert(!mark.has_bias_pattern(), "invariant"); 1048 1049 if (mark.is_neutral() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1050 hash = mark.hash(); 1051 if (hash != 0) { // if it has a hash, just return it 1052 return hash; 1053 } 1054 hash = get_next_hash(current, obj); // get a new hash 1055 temp = mark.copy_set_hash(hash); // merge the hash into header 1056 // try to install the hash 1057 test = obj->cas_set_mark(temp, mark); 1058 if (test == mark) { // if the hash was installed, return it 1059 return hash; 1060 } 1061 if (LockingMode == LM_LIGHTWEIGHT) { 1062 // CAS failed, retry 1063 continue; 1064 } 1065 // Failed to install the hash. It could be that another thread 1066 // installed the hash just before our attempt or inflation has 1067 // occurred or... so we fall thru to inflate the monitor for 1068 // stability and then install the hash. 1069 } else if (mark.has_monitor()) { 1070 monitor = mark.monitor(); 1071 temp = monitor->header(); 1072 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1073 hash = temp.hash(); 1074 if (hash != 0) { 1075 // It has a hash. 1076 1077 // Separate load of dmw/header above from the loads in 1078 // is_being_async_deflated(). 1079 1080 // dmw/header and _contentions may get written by different threads. 1081 // Make sure to observe them in the same order when having several observers. 1082 OrderAccess::loadload_for_IRIW(); 1083 1084 if (monitor->is_being_async_deflated()) { 1085 // But we can't safely use the hash if we detect that async 1086 // deflation has occurred. So we attempt to restore the 1087 // header/dmw to the object's header so that we only retry 1088 // once if the deflater thread happens to be slow. 1089 monitor->install_displaced_markword_in_object(obj); 1090 continue; 1091 } 1092 return hash; 1093 } 1094 // Fall thru so we only have one place that installs the hash in 1095 // the ObjectMonitor. 1096 } else if (LockingMode == LM_LEGACY && mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 1097 // This is a stack lock owned by the calling thread so fetch the 1098 // displaced markWord from the BasicLock on the stack. 1099 temp = mark.displaced_mark_helper(); 1100 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1101 hash = temp.hash(); 1102 if (hash != 0) { // if it has a hash, just return it 1103 return hash; 1104 } 1105 // WARNING: 1106 // The displaced header in the BasicLock on a thread's stack 1107 // is strictly immutable. It CANNOT be changed in ANY cases. 1108 // So we have to inflate the stack lock into an ObjectMonitor 1109 // even if the current thread owns the lock. The BasicLock on 1110 // a thread's stack can be asynchronously read by other threads 1111 // during an inflate() call so any change to that stack memory 1112 // may not propagate to other threads correctly. 1113 } 1114 1115 // Inflate the monitor to set the hash. 1116 1117 // An async deflation can race after the inflate() call and before we 1118 // can update the ObjectMonitor's header with the hash value below. 1119 monitor = inflate(current, obj, inflate_cause_hash_code); 1120 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1121 mark = monitor->header(); 1122 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1123 hash = mark.hash(); 1124 if (hash == 0) { // if it does not have a hash 1125 hash = get_next_hash(current, obj); // get a new hash 1126 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1127 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1128 uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value()); 1129 test = markWord(v); 1130 if (test != mark) { 1131 // The attempt to update the ObjectMonitor's header/dmw field 1132 // did not work. This can happen if another thread managed to 1133 // merge in the hash just before our cmpxchg(). 1134 // If we add any new usages of the header/dmw field, this code 1135 // will need to be updated. 1136 hash = test.hash(); 1137 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1138 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1139 } 1140 if (monitor->is_being_async_deflated()) { 1141 // If we detect that async deflation has occurred, then we 1142 // attempt to restore the header/dmw to the object's header 1143 // so that we only retry once if the deflater thread happens 1144 // to be slow. 1145 monitor->install_displaced_markword_in_object(obj); 1146 continue; 1147 } 1148 } 1149 // We finally get the hash. 1150 return hash; 1151 } 1152 } 1153 1154 // Deprecated -- use FastHashCode() instead. 1155 1156 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) { 1157 return FastHashCode(Thread::current(), obj()); 1158 } 1159 1160 1161 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1162 Handle h_obj) { 1163 if (UseBiasedLocking) { 1164 BiasedLocking::revoke(current, h_obj); 1165 assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); 1166 } 1167 1168 assert(current == JavaThread::current(), "Can only be called on current thread"); 1169 oop obj = h_obj(); 1170 1171 markWord mark = read_stable_mark(obj); 1172 1173 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1174 // stack-locked case, header points into owner's stack 1175 return current->is_lock_owned((address)mark.locker()); 1176 } 1177 1178 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1179 // fast-locking case, see if lock is in current's lock stack 1180 return current->lock_stack().contains(h_obj()); 1181 } 1182 1183 // Contended case, header points to ObjectMonitor (tagged pointer) 1184 if (mark.has_monitor()) { 1185 // The first stage of async deflation does not affect any field 1186 // used by this comparison so the ObjectMonitor* is usable here. 1187 ObjectMonitor* monitor = mark.monitor(); 1188 return monitor->is_entered(current) != 0; 1189 } 1190 // Unlocked case, header in place 1191 assert(mark.is_neutral(), "sanity check"); 1192 return false; 1193 } 1194 1195 // FIXME: jvmti should call this 1196 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1197 if (UseBiasedLocking) { 1198 if (SafepointSynchronize::is_at_safepoint()) { 1199 BiasedLocking::revoke_at_safepoint(h_obj); 1200 } else { 1201 BiasedLocking::revoke(JavaThread::current(), h_obj); 1202 } 1203 assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now"); 1204 } 1205 1206 oop obj = h_obj(); 1207 markWord mark = read_stable_mark(obj); 1208 1209 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1210 // stack-locked so header points into owner's stack. 1211 // owning_thread_from_monitor_owner() may also return null here: 1212 return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker()); 1213 } 1214 1215 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1216 // fast-locked so get owner from the object. 1217 // owning_thread_from_object() may also return null here: 1218 return Threads::owning_thread_from_object(t_list, h_obj()); 1219 } 1220 1221 // Contended case, header points to ObjectMonitor (tagged pointer) 1222 if (mark.has_monitor()) { 1223 // The first stage of async deflation does not affect any field 1224 // used by this comparison so the ObjectMonitor* is usable here. 1225 ObjectMonitor* monitor = mark.monitor(); 1226 assert(monitor != NULL, "monitor should be non-null"); 1227 // owning_thread_from_monitor() may also return null here: 1228 return Threads::owning_thread_from_monitor(t_list, monitor); 1229 } 1230 1231 // Unlocked case, header in place 1232 // Cannot have assertion since this object may have been 1233 // locked by another thread when reaching here. 1234 // assert(mark.is_neutral(), "sanity check"); 1235 1236 return NULL; 1237 } 1238 1239 // Visitors ... 1240 1241 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1242 MonitorList::Iterator iter = _in_use_list.iterator(); 1243 while (iter.has_next()) { 1244 ObjectMonitor* mid = iter.next(); 1245 if (mid->owner() != thread) { 1246 continue; 1247 } 1248 if (!mid->is_being_async_deflated() && mid->object_peek() != NULL) { 1249 // Only process with closure if the object is set. 1250 1251 // monitors_iterate() is only called at a safepoint or when the 1252 // target thread is suspended or when the target thread is 1253 // operating on itself. The current closures in use today are 1254 // only interested in an owned ObjectMonitor and ownership 1255 // cannot be dropped under the calling contexts so the 1256 // ObjectMonitor cannot be async deflated. 1257 closure->do_monitor(mid); 1258 } 1259 } 1260 } 1261 1262 static bool monitors_used_above_threshold(MonitorList* list) { 1263 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1264 return false; 1265 } 1266 // Start with ceiling based on a per-thread estimate: 1267 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1268 size_t old_ceiling = ceiling; 1269 if (ceiling < list->max()) { 1270 // The max used by the system has exceeded the ceiling so use that: 1271 ceiling = list->max(); 1272 } 1273 size_t monitors_used = list->count(); 1274 if (monitors_used == 0) { // empty list is easy 1275 return false; 1276 } 1277 if (NoAsyncDeflationProgressMax != 0 && 1278 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1279 float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1280 size_t new_ceiling = ceiling + (ceiling * remainder) + 1; 1281 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1282 log_info(monitorinflation)("Too many deflations without progress; " 1283 "bumping in_use_list_ceiling from " SIZE_FORMAT 1284 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1285 _no_progress_cnt = 0; 1286 ceiling = new_ceiling; 1287 } 1288 1289 // Check if our monitor usage is above the threshold: 1290 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1291 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1292 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1293 ", monitor_usage=" SIZE_FORMAT ", threshold=" INTX_FORMAT, 1294 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1295 return true; 1296 } 1297 1298 return false; 1299 } 1300 1301 size_t ObjectSynchronizer::in_use_list_ceiling() { 1302 return _in_use_list_ceiling; 1303 } 1304 1305 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1306 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1307 } 1308 1309 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1310 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1311 } 1312 1313 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1314 _in_use_list_ceiling = new_value; 1315 } 1316 1317 bool ObjectSynchronizer::is_async_deflation_needed() { 1318 if (is_async_deflation_requested()) { 1319 // Async deflation request. 1320 log_info(monitorinflation)("Async deflation needed: explicit request"); 1321 return true; 1322 } 1323 1324 jlong time_since_last = time_since_last_async_deflation_ms(); 1325 1326 if (AsyncDeflationInterval > 0 && 1327 time_since_last > AsyncDeflationInterval && 1328 monitors_used_above_threshold(&_in_use_list)) { 1329 // It's been longer than our specified deflate interval and there 1330 // are too many monitors in use. We don't deflate more frequently 1331 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1332 // in order to not swamp the MonitorDeflationThread. 1333 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1334 return true; 1335 } 1336 1337 if (GuaranteedAsyncDeflationInterval > 0 && 1338 time_since_last > GuaranteedAsyncDeflationInterval) { 1339 // It's been longer than our specified guaranteed deflate interval. 1340 // We need to clean up the used monitors even if the threshold is 1341 // not reached, to keep the memory utilization at bay when many threads 1342 // touched many monitors. 1343 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1344 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1345 GuaranteedAsyncDeflationInterval, time_since_last); 1346 1347 // If this deflation has no progress, then it should not affect the no-progress 1348 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1349 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1350 // the generic code would bump the no-progress counter, and we compensate for that 1351 // by telling it to skip the update. 1352 // 1353 // If this deflation has progress, then it should let non-progress tracking 1354 // know about this, otherwise the threshold heuristics would kick in, potentially 1355 // experience no-progress due to aggressive cleanup by this deflation, and think 1356 // it is still in no-progress stride. In this "progress" case, the generic code would 1357 // zero the counter, and we allow it to happen. 1358 _no_progress_skip_increment = true; 1359 1360 return true; 1361 } 1362 1363 return false; 1364 } 1365 1366 bool ObjectSynchronizer::request_deflate_idle_monitors() { 1367 JavaThread* current = JavaThread::current(); 1368 bool ret_code = false; 1369 1370 jlong last_time = last_async_deflation_time_ns(); 1371 set_is_async_deflation_requested(true); 1372 { 1373 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1374 ml.notify_all(); 1375 } 1376 const int N_CHECKS = 5; 1377 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1378 if (last_async_deflation_time_ns() > last_time) { 1379 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1380 ret_code = true; 1381 break; 1382 } 1383 { 1384 // JavaThread has to honor the blocking protocol. 1385 ThreadBlockInVM tbivm(current); 1386 os::naked_short_sleep(999); // sleep for almost 1 second 1387 } 1388 } 1389 if (!ret_code) { 1390 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1391 } 1392 1393 return ret_code; 1394 } 1395 1396 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1397 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1398 } 1399 1400 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1401 const oop obj, 1402 ObjectSynchronizer::InflateCause cause) { 1403 assert(event != NULL, "invariant"); 1404 event->set_monitorClass(obj->klass()); 1405 event->set_address((uintptr_t)(void*)obj); 1406 event->set_cause((u1)cause); 1407 event->commit(); 1408 } 1409 1410 // Fast path code shared by multiple functions 1411 void ObjectSynchronizer::inflate_helper(oop obj) { 1412 markWord mark = obj->mark_acquire(); 1413 if (mark.has_monitor()) { 1414 ObjectMonitor* monitor = mark.monitor(); 1415 markWord dmw = monitor->header(); 1416 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1417 return; 1418 } 1419 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1420 } 1421 1422 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1423 assert(current == Thread::current(), "must be"); 1424 if (LockingMode == LM_LIGHTWEIGHT && current->is_Java_thread()) { 1425 return inflate_impl(current->as_Java_thread(), obj, cause); 1426 } 1427 return inflate_impl(nullptr, obj, cause); 1428 } 1429 1430 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1431 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1432 return inflate_impl(thread, obj, cause); 1433 } 1434 1435 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* inflating_thread, oop object, const InflateCause cause) { 1436 // The JavaThread* inflating_thread parameter is only used by LM_LIGHTWEIGHT and requires 1437 // that the inflating_thread == Thread::current() or is suspended throughout the call by 1438 // some other mechanism. 1439 // Even with LM_LIGHTWEIGHT the thread might be nullptr when called from a non 1440 // JavaThread. (As may still be the case from FastHashCode). However it is only 1441 // important for the correctness of the LM_LIGHTWEIGHT algorithm that the thread 1442 // is set when called from ObjectSynchronizer::enter from the owning thread, 1443 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1444 EventJavaMonitorInflate event; 1445 1446 for (;;) { 1447 const markWord mark = object->mark_acquire(); 1448 assert(!mark.has_bias_pattern(), "invariant"); 1449 1450 // The mark can be in one of the following states: 1451 // * inflated - Just return if using stack-locking. 1452 // If using fast-locking and the ObjectMonitor owner 1453 // is anonymous and the inflating_thread owns the 1454 // object lock, then we make the inflating_thread 1455 // the ObjectMonitor owner and remove the lock from 1456 // the inflating_thread's lock stack. 1457 // * fast-locked - Coerce it to inflated from fast-locked. 1458 // * stack-locked - Coerce it to inflated from stack-locked. 1459 // * INFLATING - busy wait for conversion to complete 1460 // * Neutral - aggressively inflate the object. 1461 // * BIASED - Illegal. We should never see this 1462 1463 // CASE: inflated 1464 if (mark.has_monitor()) { 1465 ObjectMonitor* inf = mark.monitor(); 1466 markWord dmw = inf->header(); 1467 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1468 if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() && 1469 inflating_thread != nullptr && inflating_thread->lock_stack().contains(object)) { 1470 inf->set_owner_from_anonymous(inflating_thread); 1471 size_t removed = inflating_thread->lock_stack().remove(object); 1472 inf->set_recursions(removed - 1); 1473 } 1474 return inf; 1475 } 1476 1477 // CASE: inflation in progress - inflating over a stack-lock. 1478 // Some other thread is converting from stack-locked to inflated. 1479 // Only that thread can complete inflation -- other threads must wait. 1480 // The INFLATING value is transient. 1481 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1482 // We could always eliminate polling by parking the thread on some auxiliary list. 1483 if (LockingMode != LM_LIGHTWEIGHT) { 1484 // New lightweight locking does not use INFLATING. 1485 // CASE: inflation in progress - inflating over a stack-lock. 1486 // Some other thread is converting from stack-locked to inflated. 1487 // Only that thread can complete inflation -- other threads must wait. 1488 // The INFLATING value is transient. 1489 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1490 // We could always eliminate polling by parking the thread on some auxiliary list. 1491 if (mark == markWord::INFLATING()) { 1492 read_stable_mark(object); 1493 continue; 1494 } 1495 } 1496 1497 // CASE: fast-locked 1498 // Could be fast-locked either by the inflating_thread or by some other thread. 1499 // 1500 // Note that we allocate the ObjectMonitor speculatively, _before_ 1501 // attempting to set the object's mark to the new ObjectMonitor. If 1502 // the inflating_thread owns the monitor, then we set the ObjectMonitor's 1503 // owner to the inflating_thread. Otherwise, we set the ObjectMonitor's owner 1504 // to anonymous. If we lose the race to set the object's mark to the 1505 // new ObjectMonitor, then we just delete it and loop around again. 1506 // 1507 LogStreamHandle(Trace, monitorinflation) lsh; 1508 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1509 ObjectMonitor* monitor = new ObjectMonitor(object); 1510 monitor->set_header(mark.set_unlocked()); 1511 bool own = inflating_thread != nullptr && inflating_thread->lock_stack().contains(object); 1512 if (own) { 1513 // Owned by us. 1514 monitor->set_owner_from(NULL, inflating_thread); 1515 } else { 1516 // Owned by somebody else. 1517 monitor->set_owner_anonymous(); 1518 } 1519 markWord monitor_mark = markWord::encode(monitor); 1520 markWord old_mark = object->cas_set_mark(monitor_mark, mark); 1521 if (old_mark == mark) { 1522 // Success! Return inflated monitor. 1523 if (own) { 1524 size_t removed = inflating_thread->lock_stack().remove(object); 1525 monitor->set_recursions(removed - 1); 1526 } 1527 // Once the ObjectMonitor is configured and object is associated 1528 // with the ObjectMonitor, it is safe to allow async deflation: 1529 _in_use_list.add(monitor); 1530 1531 // Hopefully the performance counters are allocated on distinct 1532 // cache lines to avoid false sharing on MP systems ... 1533 OM_PERFDATA_OP(Inflations, inc()); 1534 if (log_is_enabled(Trace, monitorinflation)) { 1535 ResourceMark rm; 1536 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1537 INTPTR_FORMAT ", type='%s'", p2i(object), 1538 object->mark().value(), object->klass()->external_name()); 1539 } 1540 if (event.should_commit()) { 1541 post_monitor_inflate_event(&event, object, cause); 1542 } 1543 return monitor; 1544 } else { 1545 delete monitor; 1546 continue; // Interference -- just retry 1547 } 1548 } 1549 1550 // CASE: stack-locked 1551 // Could be stack-locked either by this thread or by some other thread. 1552 // 1553 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1554 // to install INFLATING into the mark word. We originally installed INFLATING, 1555 // allocated the ObjectMonitor, and then finally STed the address of the 1556 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1557 // the interval in which INFLATING appeared in the mark, thus increasing 1558 // the odds of inflation contention. 1559 1560 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1561 assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking"); 1562 ObjectMonitor* m = new ObjectMonitor(object); 1563 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1564 // We do this before the CAS in order to minimize the length of time 1565 // in which INFLATING appears in the mark. 1566 1567 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1568 if (cmp != mark) { 1569 delete m; 1570 continue; // Interference -- just retry 1571 } 1572 1573 // We've successfully installed INFLATING (0) into the mark-word. 1574 // This is the only case where 0 will appear in a mark-word. 1575 // Only the singular thread that successfully swings the mark-word 1576 // to 0 can perform (or more precisely, complete) inflation. 1577 // 1578 // Why do we CAS a 0 into the mark-word instead of just CASing the 1579 // mark-word from the stack-locked value directly to the new inflated state? 1580 // Consider what happens when a thread unlocks a stack-locked object. 1581 // It attempts to use CAS to swing the displaced header value from the 1582 // on-stack BasicLock back into the object header. Recall also that the 1583 // header value (hash code, etc) can reside in (a) the object header, or 1584 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1585 // header in an ObjectMonitor. The inflate() routine must copy the header 1586 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1587 // the while preserving the hashCode stability invariants. If the owner 1588 // decides to release the lock while the value is 0, the unlock will fail 1589 // and control will eventually pass from slow_exit() to inflate. The owner 1590 // will then spin, waiting for the 0 value to disappear. Put another way, 1591 // the 0 causes the owner to stall if the owner happens to try to 1592 // drop the lock (restoring the header from the BasicLock to the object) 1593 // while inflation is in-progress. This protocol avoids races that might 1594 // would otherwise permit hashCode values to change or "flicker" for an object. 1595 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1596 // 0 serves as a "BUSY" inflate-in-progress indicator. 1597 1598 1599 // fetch the displaced mark from the owner's stack. 1600 // The owner can't die or unwind past the lock while our INFLATING 1601 // object is in the mark. Furthermore the owner can't complete 1602 // an unlock on the object, either. 1603 markWord dmw = mark.displaced_mark_helper(); 1604 // Catch if the object's header is not neutral (not locked and 1605 // not marked is what we care about here). 1606 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1607 1608 // Setup monitor fields to proper values -- prepare the monitor 1609 m->set_header(dmw); 1610 1611 // Optimization: if the mark.locker stack address is associated 1612 // with this thread we could simply set m->_owner = current. 1613 // Note that a thread can inflate an object 1614 // that it has stack-locked -- as might happen in wait() -- directly 1615 // with CAS. That is, we can avoid the xchg-NULL .... ST idiom. 1616 m->set_owner_from(NULL, mark.locker()); 1617 // TODO-FIXME: assert BasicLock->dhw != 0. 1618 1619 // Must preserve store ordering. The monitor state must 1620 // be stable at the time of publishing the monitor address. 1621 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1622 // Release semantics so that above set_object() is seen first. 1623 object->release_set_mark(markWord::encode(m)); 1624 1625 // Once ObjectMonitor is configured and the object is associated 1626 // with the ObjectMonitor, it is safe to allow async deflation: 1627 _in_use_list.add(m); 1628 1629 // Hopefully the performance counters are allocated on distinct cache lines 1630 // to avoid false sharing on MP systems ... 1631 OM_PERFDATA_OP(Inflations, inc()); 1632 if (log_is_enabled(Trace, monitorinflation)) { 1633 ResourceMark rm; 1634 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1635 INTPTR_FORMAT ", type='%s'", p2i(object), 1636 object->mark().value(), object->klass()->external_name()); 1637 } 1638 if (event.should_commit()) { 1639 post_monitor_inflate_event(&event, object, cause); 1640 } 1641 return m; 1642 } 1643 1644 // CASE: neutral 1645 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1646 // If we know we're inflating for entry it's better to inflate by swinging a 1647 // pre-locked ObjectMonitor pointer into the object header. A successful 1648 // CAS inflates the object *and* confers ownership to the inflating thread. 1649 // In the current implementation we use a 2-step mechanism where we CAS() 1650 // to inflate and then CAS() again to try to swing _owner from NULL to current. 1651 // An inflateTry() method that we could call from enter() would be useful. 1652 1653 // Catch if the object's header is not neutral (not locked and 1654 // not marked is what we care about here). 1655 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1656 ObjectMonitor* m = new ObjectMonitor(object); 1657 // prepare m for installation - set monitor to initial state 1658 m->set_header(mark); 1659 1660 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1661 delete m; 1662 m = NULL; 1663 continue; 1664 // interference - the markword changed - just retry. 1665 // The state-transitions are one-way, so there's no chance of 1666 // live-lock -- "Inflated" is an absorbing state. 1667 } 1668 1669 // Once the ObjectMonitor is configured and object is associated 1670 // with the ObjectMonitor, it is safe to allow async deflation: 1671 _in_use_list.add(m); 1672 1673 // Hopefully the performance counters are allocated on distinct 1674 // cache lines to avoid false sharing on MP systems ... 1675 OM_PERFDATA_OP(Inflations, inc()); 1676 if (log_is_enabled(Trace, monitorinflation)) { 1677 ResourceMark rm; 1678 lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" 1679 INTPTR_FORMAT ", type='%s'", p2i(object), 1680 object->mark().value(), object->klass()->external_name()); 1681 } 1682 if (event.should_commit()) { 1683 post_monitor_inflate_event(&event, object, cause); 1684 } 1685 return m; 1686 } 1687 } 1688 1689 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name, 1690 const char* cnt_name, size_t cnt, 1691 LogStream* ls, elapsedTimer* timer_p) { 1692 if (!SafepointMechanism::should_process(current)) { 1693 return; 1694 } 1695 1696 // A safepoint/handshake has started. 1697 if (ls != NULL) { 1698 timer_p->stop(); 1699 ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1700 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1701 op_name, cnt_name, cnt, in_use_list_ceiling(), 1702 _in_use_list.count(), _in_use_list.max()); 1703 } 1704 1705 { 1706 // Honor block request. 1707 ThreadBlockInVM tbivm(current); 1708 } 1709 1710 if (ls != NULL) { 1711 ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1712 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1713 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1714 timer_p->start(); 1715 } 1716 } 1717 1718 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1719 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1720 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls, 1721 elapsedTimer* timer_p) { 1722 MonitorList::Iterator iter = _in_use_list.iterator(); 1723 size_t deflated_count = 0; 1724 1725 while (iter.has_next()) { 1726 if (deflated_count >= (size_t)MonitorDeflationMax) { 1727 break; 1728 } 1729 ObjectMonitor* mid = iter.next(); 1730 if (mid->deflate_monitor()) { 1731 deflated_count++; 1732 } 1733 1734 if (current->is_Java_thread()) { 1735 // A JavaThread must check for a safepoint/handshake and honor it. 1736 chk_for_block_req(current->as_Java_thread(), "deflation", "deflated_count", 1737 deflated_count, ls, timer_p); 1738 } 1739 } 1740 1741 return deflated_count; 1742 } 1743 1744 class HandshakeForDeflation : public HandshakeClosure { 1745 public: 1746 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1747 1748 void do_thread(Thread* thread) { 1749 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1750 INTPTR_FORMAT, p2i(thread)); 1751 } 1752 }; 1753 1754 class VM_RendezvousGCThreads : public VM_Operation { 1755 public: 1756 bool evaluate_at_safepoint() const override { return false; } 1757 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1758 void doit() override { 1759 SuspendibleThreadSet::synchronize(); 1760 SuspendibleThreadSet::desynchronize(); 1761 }; 1762 }; 1763 1764 // This function is called by the MonitorDeflationThread to deflate 1765 // ObjectMonitors. It is also called via do_final_audit_and_print_stats() 1766 // by the VMThread. 1767 size_t ObjectSynchronizer::deflate_idle_monitors() { 1768 Thread* current = Thread::current(); 1769 if (current->is_Java_thread()) { 1770 // The async deflation request has been processed. 1771 _last_async_deflation_time_ns = os::javaTimeNanos(); 1772 set_is_async_deflation_requested(false); 1773 } 1774 1775 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1776 LogStreamHandle(Info, monitorinflation) lsh_info; 1777 LogStream* ls = NULL; 1778 if (log_is_enabled(Debug, monitorinflation)) { 1779 ls = &lsh_debug; 1780 } else if (log_is_enabled(Info, monitorinflation)) { 1781 ls = &lsh_info; 1782 } 1783 1784 elapsedTimer timer; 1785 if (ls != NULL) { 1786 ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1787 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1788 timer.start(); 1789 } 1790 1791 // Deflate some idle ObjectMonitors. 1792 size_t deflated_count = deflate_monitor_list(current, ls, &timer); 1793 if (deflated_count > 0 || is_final_audit()) { 1794 // There are ObjectMonitors that have been deflated or this is the 1795 // final audit and all the remaining ObjectMonitors have been 1796 // deflated, BUT the MonitorDeflationThread blocked for the final 1797 // safepoint during unlinking. 1798 1799 // Unlink deflated ObjectMonitors from the in-use list. 1800 ResourceMark rm; 1801 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1802 size_t unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer, 1803 &delete_list); 1804 if (current->is_Java_thread()) { 1805 if (ls != NULL) { 1806 timer.stop(); 1807 ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1808 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1809 SIZE_FORMAT ", max=" SIZE_FORMAT, 1810 unlinked_count, in_use_list_ceiling(), 1811 _in_use_list.count(), _in_use_list.max()); 1812 } 1813 1814 // A JavaThread needs to handshake in order to safely free the 1815 // ObjectMonitors that were deflated in this cycle. 1816 // Also, we sync and desync GC threads around the handshake, so that they can 1817 // safely read the mark-word and look-through to the object-monitor, without 1818 // being afraid that the object-monitor is going away. 1819 HandshakeForDeflation hfd_hc; 1820 Handshake::execute(&hfd_hc); 1821 VM_RendezvousGCThreads sync_gc; 1822 VMThread::execute(&sync_gc); 1823 1824 if (ls != NULL) { 1825 ls->print_cr("after handshaking: in_use_list stats: ceiling=" 1826 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1827 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1828 timer.start(); 1829 } 1830 } 1831 1832 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1833 1834 // After the handshake, safely free the ObjectMonitors that were 1835 // deflated in this cycle. 1836 size_t deleted_count = 0; 1837 for (ObjectMonitor* monitor: delete_list) { 1838 delete monitor; 1839 deleted_count++; 1840 1841 if (current->is_Java_thread()) { 1842 // A JavaThread must check for a safepoint/handshake and honor it. 1843 chk_for_block_req(current->as_Java_thread(), "deletion", "deleted_count", 1844 deleted_count, ls, &timer); 1845 } 1846 } 1847 } 1848 1849 if (ls != NULL) { 1850 timer.stop(); 1851 if (deflated_count != 0 || log_is_enabled(Debug, monitorinflation)) { 1852 ls->print_cr("deflated " SIZE_FORMAT " monitors in %3.7f secs", 1853 deflated_count, timer.seconds()); 1854 } 1855 ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1856 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1857 } 1858 1859 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1860 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1861 1862 GVars.stw_random = os::random(); 1863 1864 if (deflated_count != 0) { 1865 _no_progress_cnt = 0; 1866 } else if (_no_progress_skip_increment) { 1867 _no_progress_skip_increment = false; 1868 } else { 1869 _no_progress_cnt++; 1870 } 1871 1872 return deflated_count; 1873 } 1874 1875 // Monitor cleanup on JavaThread::exit 1876 1877 // Iterate through monitor cache and attempt to release thread's monitors 1878 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1879 private: 1880 JavaThread* _thread; 1881 1882 public: 1883 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1884 void do_monitor(ObjectMonitor* mid) { 1885 (void)mid->complete_exit(_thread); 1886 } 1887 }; 1888 1889 // Release all inflated monitors owned by current thread. Lightweight monitors are 1890 // ignored. This is meant to be called during JNI thread detach which assumes 1891 // all remaining monitors are heavyweight. All exceptions are swallowed. 1892 // Scanning the extant monitor list can be time consuming. 1893 // A simple optimization is to add a per-thread flag that indicates a thread 1894 // called jni_monitorenter() during its lifetime. 1895 // 1896 // Instead of NoSafepointVerifier it might be cheaper to 1897 // use an idiom of the form: 1898 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1899 // <code that must not run at safepoint> 1900 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1901 // Since the tests are extremely cheap we could leave them enabled 1902 // for normal product builds. 1903 1904 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1905 assert(current == JavaThread::current(), "must be current Java thread"); 1906 NoSafepointVerifier nsv; 1907 ReleaseJavaMonitorsClosure rjmc(current); 1908 ObjectSynchronizer::monitors_iterate(&rjmc, current); 1909 assert(!current->has_pending_exception(), "Should not be possible"); 1910 current->clear_pending_exception(); 1911 } 1912 1913 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1914 switch (cause) { 1915 case inflate_cause_vm_internal: return "VM Internal"; 1916 case inflate_cause_monitor_enter: return "Monitor Enter"; 1917 case inflate_cause_wait: return "Monitor Wait"; 1918 case inflate_cause_notify: return "Monitor Notify"; 1919 case inflate_cause_hash_code: return "Monitor Hash Code"; 1920 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1921 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1922 default: 1923 ShouldNotReachHere(); 1924 } 1925 return "Unknown"; 1926 } 1927 1928 //------------------------------------------------------------------------------ 1929 // Debugging code 1930 1931 u_char* ObjectSynchronizer::get_gvars_addr() { 1932 return (u_char*)&GVars; 1933 } 1934 1935 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1936 return (u_char*)&GVars.hc_sequence; 1937 } 1938 1939 size_t ObjectSynchronizer::get_gvars_size() { 1940 return sizeof(SharedGlobals); 1941 } 1942 1943 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1944 return (u_char*)&GVars.stw_random; 1945 } 1946 1947 // Do the final audit and print of ObjectMonitor stats; must be done 1948 // by the VMThread at VM exit time. 1949 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1950 assert(Thread::current()->is_VM_thread(), "sanity check"); 1951 1952 if (is_final_audit()) { // Only do the audit once. 1953 return; 1954 } 1955 set_is_final_audit(); 1956 log_info(monitorinflation)("Starting the final audit."); 1957 1958 if (log_is_enabled(Info, monitorinflation)) { 1959 // Do a deflation in order to reduce the in-use monitor population 1960 // that is reported by ObjectSynchronizer::log_in_use_monitor_details() 1961 // which is called by ObjectSynchronizer::audit_and_print_stats(). 1962 while (ObjectSynchronizer::deflate_idle_monitors() != 0) { 1963 ; // empty 1964 } 1965 // The other audit_and_print_stats() call is done at the Debug 1966 // level at a safepoint in SafepointSynchronize::do_cleanup_tasks. 1967 ObjectSynchronizer::audit_and_print_stats(true /* on_exit */); 1968 } 1969 } 1970 1971 // This function can be called at a safepoint or it can be called when 1972 // we are trying to exit the VM. When we are trying to exit the VM, the 1973 // list walker functions can run in parallel with the other list 1974 // operations so spin-locking is used for safety. 1975 // 1976 // Calls to this function can be added in various places as a debugging 1977 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor 1978 // details logged at the Info level and 'false' for the 'on_exit' 1979 // parameter to have in-use monitor details logged at the Trace level. 1980 // 1981 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { 1982 assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant"); 1983 1984 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1985 LogStreamHandle(Info, monitorinflation) lsh_info; 1986 LogStreamHandle(Trace, monitorinflation) lsh_trace; 1987 LogStream* ls = NULL; 1988 if (log_is_enabled(Trace, monitorinflation)) { 1989 ls = &lsh_trace; 1990 } else if (log_is_enabled(Debug, monitorinflation)) { 1991 ls = &lsh_debug; 1992 } else if (log_is_enabled(Info, monitorinflation)) { 1993 ls = &lsh_info; 1994 } 1995 assert(ls != NULL, "sanity check"); 1996 1997 int error_cnt = 0; 1998 1999 ls->print_cr("Checking in_use_list:"); 2000 chk_in_use_list(ls, &error_cnt); 2001 2002 if (error_cnt == 0) { 2003 ls->print_cr("No errors found in in_use_list checks."); 2004 } else { 2005 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 2006 } 2007 2008 if ((on_exit && log_is_enabled(Info, monitorinflation)) || 2009 (!on_exit && log_is_enabled(Trace, monitorinflation))) { 2010 // When exiting this log output is at the Info level. When called 2011 // at a safepoint, this log output is at the Trace level since 2012 // there can be a lot of it. 2013 log_in_use_monitor_details(ls); 2014 } 2015 2016 ls->flush(); 2017 2018 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2019 } 2020 2021 // Check the in_use_list; log the results of the checks. 2022 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2023 size_t l_in_use_count = _in_use_list.count(); 2024 size_t l_in_use_max = _in_use_list.max(); 2025 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 2026 l_in_use_max); 2027 2028 size_t ck_in_use_count = 0; 2029 MonitorList::Iterator iter = _in_use_list.iterator(); 2030 while (iter.has_next()) { 2031 ObjectMonitor* mid = iter.next(); 2032 chk_in_use_entry(mid, out, error_cnt_p); 2033 ck_in_use_count++; 2034 } 2035 2036 if (l_in_use_count == ck_in_use_count) { 2037 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 2038 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 2039 } else { 2040 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 2041 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 2042 ck_in_use_count); 2043 } 2044 2045 size_t ck_in_use_max = _in_use_list.max(); 2046 if (l_in_use_max == ck_in_use_max) { 2047 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 2048 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2049 } else { 2050 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 2051 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2052 } 2053 } 2054 2055 // Check an in-use monitor entry; log any errors. 2056 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2057 int* error_cnt_p) { 2058 if (n->owner_is_DEFLATER_MARKER()) { 2059 // This should not happen, but if it does, it is not fatal. 2060 out->print_cr("WARNING: monitor=" INTPTR_FORMAT ": in-use monitor is " 2061 "deflated.", p2i(n)); 2062 return; 2063 } 2064 if (n->header().value() == 0) { 2065 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2066 "have non-NULL _header field.", p2i(n)); 2067 *error_cnt_p = *error_cnt_p + 1; 2068 } 2069 const oop obj = n->object_peek(); 2070 if (obj != NULL) { 2071 const markWord mark = obj->mark(); 2072 if (!mark.has_monitor()) { 2073 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2074 "object does not think it has a monitor: obj=" 2075 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2076 p2i(obj), mark.value()); 2077 *error_cnt_p = *error_cnt_p + 1; 2078 } 2079 ObjectMonitor* const obj_mon = mark.monitor(); 2080 if (n != obj_mon) { 2081 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2082 "object does not refer to the same monitor: obj=" 2083 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2084 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2085 *error_cnt_p = *error_cnt_p + 1; 2086 } 2087 } 2088 } 2089 2090 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2091 // flags indicate why the entry is in-use, 'object' and 'object type' 2092 // indicate the associated object and its type. 2093 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out) { 2094 stringStream ss; 2095 if (_in_use_list.count() > 0) { 2096 out->print_cr("In-use monitor info:"); 2097 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2098 out->print_cr("%18s %s %18s %18s", 2099 "monitor", "BHL", "object", "object type"); 2100 out->print_cr("================== === ================== =================="); 2101 MonitorList::Iterator iter = _in_use_list.iterator(); 2102 while (iter.has_next()) { 2103 ObjectMonitor* mid = iter.next(); 2104 const oop obj = mid->object_peek(); 2105 const markWord mark = mid->header(); 2106 ResourceMark rm; 2107 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(mid), 2108 mid->is_busy(), mark.hash() != 0, mid->owner() != NULL, 2109 p2i(obj), obj == NULL ? "" : obj->klass()->external_name()); 2110 if (mid->is_busy()) { 2111 out->print(" (%s)", mid->is_busy_to_string(&ss)); 2112 ss.reset(); 2113 } 2114 out->cr(); 2115 } 2116 } 2117 2118 out->flush(); 2119 }