1 /*
   2  * Copyright (c) 1998, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "jfr/jfrEvents.hpp"

  28 #include "logging/log.hpp"
  29 #include "logging/logStream.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/padded.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/markWord.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "runtime/atomic.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/handshake.hpp"
  40 #include "runtime/interfaceSupport.inline.hpp"

  41 #include "runtime/mutexLocker.hpp"
  42 #include "runtime/objectMonitor.hpp"
  43 #include "runtime/objectMonitor.inline.hpp"
  44 #include "runtime/os.inline.hpp"
  45 #include "runtime/osThread.hpp"
  46 #include "runtime/perfData.hpp"
  47 #include "runtime/safepointMechanism.inline.hpp"
  48 #include "runtime/safepointVerifiers.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/synchronizer.hpp"
  52 #include "runtime/thread.inline.hpp"
  53 #include "runtime/timer.hpp"
  54 #include "runtime/vframe.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "utilities/align.hpp"
  57 #include "utilities/dtrace.hpp"
  58 #include "utilities/events.hpp"
  59 #include "utilities/preserveException.hpp"
  60 
  61 void MonitorList::add(ObjectMonitor* m) {
  62   ObjectMonitor* head;
  63   do {
  64     head = Atomic::load(&_head);
  65     m->set_next_om(head);
  66   } while (Atomic::cmpxchg(&_head, head, m) != head);
  67 
  68   size_t count = Atomic::add(&_count, 1u);
  69   if (count > max()) {
  70     Atomic::inc(&_max);
  71   }
  72 }
  73 
  74 size_t MonitorList::count() const {
  75   return Atomic::load(&_count);
  76 }
  77 
  78 size_t MonitorList::max() const {
  79   return Atomic::load(&_max);
  80 }
  81 
  82 // Walk the in-use list and unlink (at most MonitorDeflationMax) deflated
  83 // ObjectMonitors. Returns the number of unlinked ObjectMonitors.
  84 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls,
  85                                     elapsedTimer* timer_p,
  86                                     GrowableArray<ObjectMonitor*>* unlinked_list) {
  87   size_t unlinked_count = 0;
  88   ObjectMonitor* prev = NULL;
  89   ObjectMonitor* head = Atomic::load_acquire(&_head);
  90   ObjectMonitor* m = head;
  91   // The in-use list head can be NULL during the final audit.
  92   while (m != NULL) {
  93     if (m->is_being_async_deflated()) {
  94       // Find next live ObjectMonitor.
  95       ObjectMonitor* next = m;
  96       do {
  97         ObjectMonitor* next_next = next->next_om();
  98         unlinked_count++;
  99         unlinked_list->append(next);
 100         next = next_next;
 101         if (unlinked_count >= (size_t)MonitorDeflationMax) {
 102           // Reached the max so bail out on the gathering loop.
 103           break;
 104         }
 105       } while (next != NULL && next->is_being_async_deflated());
 106       if (prev == NULL) {
 107         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, head, next);
 108         if (prev_head != head) {
 109           // Find new prev ObjectMonitor that just got inserted.
 110           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 111             prev = n;
 112           }
 113           prev->set_next_om(next);
 114         }
 115       } else {
 116         prev->set_next_om(next);
 117       }
 118       if (unlinked_count >= (size_t)MonitorDeflationMax) {
 119         // Reached the max so bail out on the searching loop.
 120         break;
 121       }
 122       m = next;
 123     } else {
 124       prev = m;
 125       m = m->next_om();
 126     }
 127 
 128     if (current->is_Java_thread()) {
 129       // A JavaThread must check for a safepoint/handshake and honor it.
 130       ObjectSynchronizer::chk_for_block_req(current->as_Java_thread(), "unlinking",
 131                                             "unlinked_count", unlinked_count,
 132                                             ls, timer_p);
 133     }
 134   }
 135   Atomic::sub(&_count, unlinked_count);
 136   return unlinked_count;
 137 }
 138 
 139 MonitorList::Iterator MonitorList::iterator() const {
 140   return Iterator(Atomic::load_acquire(&_head));
 141 }
 142 
 143 ObjectMonitor* MonitorList::Iterator::next() {
 144   ObjectMonitor* current = _current;
 145   _current = current->next_om();
 146   return current;
 147 }
 148 
 149 // The "core" versions of monitor enter and exit reside in this file.
 150 // The interpreter and compilers contain specialized transliterated
 151 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 152 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 153 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 154 //
 155 // -----------------------------------------------------------------------------
 156 
 157 #ifdef DTRACE_ENABLED
 158 
 159 // Only bother with this argument setup if dtrace is available
 160 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 161 
 162 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 163   char* bytes = NULL;                                                      \
 164   int len = 0;                                                             \
 165   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 166   Symbol* klassname = obj->klass()->name();                                \
 167   if (klassname != NULL) {                                                 \
 168     bytes = (char*)klassname->bytes();                                     \
 169     len = klassname->utf8_length();                                        \
 170   }
 171 
 172 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 173   {                                                                        \
 174     if (DTraceMonitorProbes) {                                             \
 175       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 176       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 177                            (uintptr_t)(monitor), bytes, len, (millis));    \
 178     }                                                                      \
 179   }
 180 
 181 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 182 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 183 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 184 
 185 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 186   {                                                                        \
 187     if (DTraceMonitorProbes) {                                             \
 188       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 189       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 190                                     (uintptr_t)(monitor), bytes, len);     \
 191     }                                                                      \
 192   }
 193 
 194 #else //  ndef DTRACE_ENABLED
 195 
 196 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 197 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 198 
 199 #endif // ndef DTRACE_ENABLED
 200 
 201 // This exists only as a workaround of dtrace bug 6254741
 202 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 203   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 204   return 0;
 205 }
 206 
 207 static const int NINFLATIONLOCKS = 256;
 208 static os::PlatformMutex* gInflationLocks[NINFLATIONLOCKS];
 209 
 210 void ObjectSynchronizer::initialize() {
 211   for (int i = 0; i < NINFLATIONLOCKS; i++) {
 212     gInflationLocks[i] = new os::PlatformMutex();
 213   }
 214   // Start the ceiling with the estimate for one thread.
 215   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 216 
 217   // Start the timer for deflations, so it does not trigger immediately.
 218   _last_async_deflation_time_ns = os::javaTimeNanos();
 219 }
 220 
 221 MonitorList ObjectSynchronizer::_in_use_list;
 222 // monitors_used_above_threshold() policy is as follows:
 223 //
 224 // The ratio of the current _in_use_list count to the ceiling is used
 225 // to determine if we are above MonitorUsedDeflationThreshold and need
 226 // to do an async monitor deflation cycle. The ceiling is increased by
 227 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 228 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 229 // removed from the system.
 230 //
 231 // Note: If the _in_use_list max exceeds the ceiling, then
 232 // monitors_used_above_threshold() will use the in_use_list max instead
 233 // of the thread count derived ceiling because we have used more
 234 // ObjectMonitors than the estimated average.
 235 //
 236 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 237 // no-progress async monitor deflation cycles in a row, then the ceiling
 238 // is adjusted upwards by monitors_used_above_threshold().
 239 //
 240 // Start the ceiling with the estimate for one thread in initialize()
 241 // which is called after cmd line options are processed.
 242 static size_t _in_use_list_ceiling = 0;
 243 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 244 bool volatile ObjectSynchronizer::_is_final_audit = false;
 245 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 246 static uintx _no_progress_cnt = 0;
 247 static bool _no_progress_skip_increment = false;
 248 
 249 // =====================> Quick functions
 250 
 251 // The quick_* forms are special fast-path variants used to improve
 252 // performance.  In the simplest case, a "quick_*" implementation could
 253 // simply return false, in which case the caller will perform the necessary
 254 // state transitions and call the slow-path form.
 255 // The fast-path is designed to handle frequently arising cases in an efficient
 256 // manner and is just a degenerate "optimistic" variant of the slow-path.
 257 // returns true  -- to indicate the call was satisfied.
 258 // returns false -- to indicate the call needs the services of the slow-path.
 259 // A no-loitering ordinance is in effect for code in the quick_* family
 260 // operators: safepoints or indefinite blocking (blocking that might span a
 261 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 262 // entry.
 263 //
 264 // Consider: An interesting optimization is to have the JIT recognize the
 265 // following common idiom:
 266 //   synchronized (someobj) { .... ; notify(); }
 267 // That is, we find a notify() or notifyAll() call that immediately precedes
 268 // the monitorexit operation.  In that case the JIT could fuse the operations
 269 // into a single notifyAndExit() runtime primitive.
 270 
 271 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 272   assert(current->thread_state() == _thread_in_Java, "invariant");
 273   NoSafepointVerifier nsv;
 274   if (obj == NULL) return false;  // slow-path for invalid obj
 275   const markWord mark = obj->mark();
 276 
 277   if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 278     // Degenerate notify
 279     // stack-locked by caller so by definition the implied waitset is empty.
 280     return true;








 281   }
 282 
 283   if (mark.has_monitor()) {
 284     ObjectMonitor* const mon = mark.monitor();
 285     assert(mon->object() == oop(obj), "invariant");
 286     if (mon->owner() != current) return false;  // slow-path for IMS exception
 287 
 288     if (mon->first_waiter() != NULL) {
 289       // We have one or more waiters. Since this is an inflated monitor
 290       // that we own, we can transfer one or more threads from the waitset
 291       // to the entrylist here and now, avoiding the slow-path.
 292       if (all) {
 293         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 294       } else {
 295         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 296       }
 297       int free_count = 0;
 298       do {
 299         mon->INotify(current);
 300         ++free_count;
 301       } while (mon->first_waiter() != NULL && all);
 302       OM_PERFDATA_OP(Notifications, inc(free_count));
 303     }
 304     return true;
 305   }
 306 
 307   // biased locking and any other IMS exception states take the slow-path
 308   return false;
 309 }
 310 
 311 
 312 // The LockNode emitted directly at the synchronization site would have
 313 // been too big if it were to have included support for the cases of inflated
 314 // recursive enter and exit, so they go here instead.
 315 // Note that we can't safely call AsyncPrintJavaStack() from within
 316 // quick_enter() as our thread state remains _in_Java.
 317 
 318 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 319                                      BasicLock * lock) {
 320   assert(current->thread_state() == _thread_in_Java, "invariant");
 321   NoSafepointVerifier nsv;
 322   if (obj == NULL) return false;       // Need to throw NPE
 323 
 324   if (obj->klass()->is_value_based()) {
 325     return false;
 326   }
 327 
 328   const markWord mark = obj->mark();
 329 
 330   if (mark.has_monitor()) {
 331     ObjectMonitor* const m = mark.monitor();
 332     // An async deflation or GC can race us before we manage to make
 333     // the ObjectMonitor busy by setting the owner below. If we detect
 334     // that race we just bail out to the slow-path here.
 335     if (m->object_peek() == NULL) {
 336       return false;
 337     }
 338     JavaThread* const owner = (JavaThread*) m->owner_raw();
 339 
 340     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 341     // and observability
 342     // Case: light contention possibly amenable to TLE
 343     // Case: TLE inimical operations such as nested/recursive synchronization
 344 
 345     if (owner == current) {
 346       m->_recursions++;
 347       return true;
 348     }
 349 
 350     // This Java Monitor is inflated so obj's header will never be
 351     // displaced to this thread's BasicLock. Make the displaced header
 352     // non-NULL so this BasicLock is not seen as recursive nor as
 353     // being locked. We do this unconditionally so that this thread's
 354     // BasicLock cannot be mis-interpreted by any stack walkers. For
 355     // performance reasons, stack walkers generally first check for
 356     // Biased Locking in the object's header, the second check is for
 357     // stack-locking in the object's header, the third check is for
 358     // recursive stack-locking in the displaced header in the BasicLock,
 359     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 360     lock->set_displaced_header(markWord::unused_mark());


 361 
 362     if (owner == NULL && m->try_set_owner_from(NULL, current) == NULL) {
 363       assert(m->_recursions == 0, "invariant");
 364       return true;
 365     }
 366   }
 367 
 368   // Note that we could inflate in quick_enter.
 369   // This is likely a useful optimization
 370   // Critically, in quick_enter() we must not:
 371   // -- perform bias revocation, or
 372   // -- block indefinitely, or
 373   // -- reach a safepoint
 374 
 375   return false;        // revert to slow-path
 376 }
 377 
 378 // Handle notifications when synchronizing on value based classes
 379 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* current) {
 380   frame last_frame = current->last_frame();
 381   bool bcp_was_adjusted = false;
 382   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 383   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 384   // is no actual monitorenter instruction in the byte code in this case.
 385   if (last_frame.is_interpreted_frame() &&
 386       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 387     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 388     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 389     bcp_was_adjusted = true;
 390   }
 391 
 392   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 393     ResourceMark rm(current);
 394     stringStream ss;
 395     current->print_stack_on(&ss);
 396     char* base = (char*)strstr(ss.base(), "at");
 397     char* newline = (char*)strchr(ss.base(), '\n');
 398     if (newline != NULL) {
 399       *newline = '\0';
 400     }
 401     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 402   } else {
 403     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 404     ResourceMark rm(current);
 405     Log(valuebasedclasses) vblog;
 406 
 407     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 408     if (current->has_last_Java_frame()) {
 409       LogStream info_stream(vblog.info());
 410       current->print_stack_on(&info_stream);
 411     } else {
 412       vblog.info("Cannot find the last Java frame");
 413     }
 414 
 415     EventSyncOnValueBasedClass event;
 416     if (event.should_commit()) {
 417       event.set_valueBasedClass(obj->klass());
 418       event.commit();
 419     }
 420   }
 421 
 422   if (bcp_was_adjusted) {
 423     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 424   }
 425 }
 426 








 427 // -----------------------------------------------------------------------------
 428 // Monitor Enter/Exit
 429 // The interpreter and compiler assembly code tries to lock using the fast path
 430 // of this algorithm. Make sure to update that code if the following function is
 431 // changed. The implementation is extremely sensitive to race condition. Be careful.
 432 
 433 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 434   if (obj->klass()->is_value_based()) {
 435     handle_sync_on_value_based_class(obj, current);
 436   }
 437 
 438   if (UseBiasedLocking) {
 439     BiasedLocking::revoke(current, obj);
 440   }




















 441 
 442   markWord mark = obj->mark();
 443   assert(!mark.has_bias_pattern(), "should not see bias pattern here");














 444 
 445   if (mark.is_neutral()) {
 446     // Anticipate successful CAS -- the ST of the displaced mark must
 447     // be visible <= the ST performed by the CAS.
 448     lock->set_displaced_header(mark);
 449     if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 450       return;
 451     }
 452     // Fall through to inflate() ...
 453   } else if (mark.has_locker() &&
 454              current->is_lock_owned((address)mark.locker())) {
 455     assert(lock != mark.locker(), "must not re-lock the same lock");
 456     assert(lock != (BasicLock*)obj->mark().value(), "don't relock with same BasicLock");
 457     lock->set_displaced_header(markWord::from_pointer(NULL));
 458     return;
 459   }
 460 
 461   // The object header will never be displaced to this lock,
 462   // so it does not matter what the value is, except that it
 463   // must be non-zero to avoid looking like a re-entrant lock,
 464   // and must not look locked either.
 465   lock->set_displaced_header(markWord::unused_mark());
 466   // An async deflation can race after the inflate() call and before
 467   // enter() can make the ObjectMonitor busy. enter() returns false if
 468   // we have lost the race to async deflation and we simply try again.
 469   while (true) {
 470     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 471     if (monitor->enter(current)) {
 472       return;
 473     }
 474   }
 475 }
 476 
 477 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 478   markWord mark = object->mark();
 479   // We cannot check for Biased Locking if we are racing an inflation.
 480   assert(mark == markWord::INFLATING() ||
 481          !mark.has_bias_pattern(), "should not see bias pattern here");
 482 
 483   markWord dhw = lock->displaced_header();
 484   if (dhw.value() == 0) {
 485     // If the displaced header is NULL, then this exit matches up with
 486     // a recursive enter. No real work to do here except for diagnostics.
 487 #ifndef PRODUCT
 488     if (mark != markWord::INFLATING()) {
 489       // Only do diagnostics if we are not racing an inflation. Simply
 490       // exiting a recursive enter of a Java Monitor that is being
 491       // inflated is safe; see the has_monitor() comment below.
 492       assert(!mark.is_neutral(), "invariant");
 493       assert(!mark.has_locker() ||
 494              current->is_lock_owned((address)mark.locker()), "invariant");
 495       if (mark.has_monitor()) {
 496         // The BasicLock's displaced_header is marked as a recursive
 497         // enter and we have an inflated Java Monitor (ObjectMonitor).
 498         // This is a special case where the Java Monitor was inflated
 499         // after this thread entered the stack-lock recursively. When a
 500         // Java Monitor is inflated, we cannot safely walk the Java
 501         // Monitor owner's stack and update the BasicLocks because a
 502         // Java Monitor can be asynchronously inflated by a thread that
 503         // does not own the Java Monitor.
 504         ObjectMonitor* m = mark.monitor();
 505         assert(m->object()->mark() == mark, "invariant");
 506         assert(m->is_entered(current), "invariant");
 507       }
 508     }


























 509 #endif
 510     return;
 511   }
 512 
 513   if (mark == markWord::from_pointer(lock)) {
 514     // If the object is stack-locked by the current thread, try to
 515     // swing the displaced header from the BasicLock back to the mark.
 516     assert(dhw.is_neutral(), "invariant");
 517     if (object->cas_set_mark(dhw, mark) == mark) {
 518       return;


 519     }
 520   }
 521 
 522   // We have to take the slow-path of possible inflation and then exit.
 523   // The ObjectMonitor* can't be async deflated until ownership is
 524   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 525   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);







 526   monitor->exit(current);
 527 }
 528 
 529 // -----------------------------------------------------------------------------
 530 // Class Loader  support to workaround deadlocks on the class loader lock objects
 531 // Also used by GC
 532 // complete_exit()/reenter() are used to wait on a nested lock
 533 // i.e. to give up an outer lock completely and then re-enter
 534 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 535 //  1) complete_exit lock1 - saving recursion count
 536 //  2) wait on lock2
 537 //  3) when notified on lock2, unlock lock2
 538 //  4) reenter lock1 with original recursion count
 539 //  5) lock lock2
 540 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 541 intx ObjectSynchronizer::complete_exit(Handle obj, JavaThread* current) {
 542   if (UseBiasedLocking) {
 543     BiasedLocking::revoke(current, obj);
 544     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 545   }
 546 
 547   // The ObjectMonitor* can't be async deflated until ownership is
 548   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 549   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_vm_internal);
 550   intptr_t ret_code = monitor->complete_exit(current);
 551   return ret_code;
 552 }
 553 
 554 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 555 void ObjectSynchronizer::reenter(Handle obj, intx recursions, JavaThread* current) {
 556   if (UseBiasedLocking) {
 557     BiasedLocking::revoke(current, obj);
 558     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 559   }
 560 
 561   // An async deflation can race after the inflate() call and before
 562   // reenter() -> enter() can make the ObjectMonitor busy. reenter() ->
 563   // enter() returns false if we have lost the race to async deflation
 564   // and we simply try again.
 565   while (true) {
 566     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_vm_internal);
 567     if (monitor->reenter(recursions, current)) {
 568       return;
 569     }
 570   }
 571 }
 572 
 573 // -----------------------------------------------------------------------------
 574 // JNI locks on java objects
 575 // NOTE: must use heavy weight monitor to handle jni monitor enter
 576 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 577   if (obj->klass()->is_value_based()) {
 578     handle_sync_on_value_based_class(obj, current);
 579   }
 580 
 581   // the current locking is from JNI instead of Java code
 582   if (UseBiasedLocking) {
 583     BiasedLocking::revoke(current, obj);
 584     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 585   }
 586   current->set_current_pending_monitor_is_from_java(false);
 587   // An async deflation can race after the inflate() call and before
 588   // enter() can make the ObjectMonitor busy. enter() returns false if
 589   // we have lost the race to async deflation and we simply try again.
 590   while (true) {
 591     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter);
 592     if (monitor->enter(current)) {
 593       break;
 594     }
 595   }
 596   current->set_current_pending_monitor_is_from_java(true);
 597 }
 598 
 599 // NOTE: must use heavy weight monitor to handle jni monitor exit
 600 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 601   JavaThread* current = THREAD;
 602   if (UseBiasedLocking) {
 603     Handle h_obj(current, obj);
 604     BiasedLocking::revoke(current, h_obj);
 605     obj = h_obj();
 606   }
 607   assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 608 
 609   // The ObjectMonitor* can't be async deflated until ownership is
 610   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 611   ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit);
 612   // If this thread has locked the object, exit the monitor. We
 613   // intentionally do not use CHECK on check_owner because we must exit the
 614   // monitor even if an exception was already pending.
 615   if (monitor->check_owner(THREAD)) {
 616     monitor->exit(current);
 617   }
 618 }
 619 
 620 // -----------------------------------------------------------------------------
 621 // Internal VM locks on java objects
 622 // standard constructor, allows locking failures
 623 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 624   _thread = thread;
 625   _thread->check_for_valid_safepoint_state();
 626   _obj = obj;
 627 
 628   if (_obj() != NULL) {
 629     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 630   }
 631 }
 632 
 633 ObjectLocker::~ObjectLocker() {
 634   if (_obj() != NULL) {
 635     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 636   }
 637 }
 638 
 639 
 640 // -----------------------------------------------------------------------------
 641 //  Wait/Notify/NotifyAll
 642 // NOTE: must use heavy weight monitor to handle wait()
 643 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 644   JavaThread* current = THREAD;
 645   if (UseBiasedLocking) {
 646     BiasedLocking::revoke(current, obj);
 647     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 648   }
 649   if (millis < 0) {
 650     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 651   }
 652   // The ObjectMonitor* can't be async deflated because the _waiters
 653   // field is incremented before ownership is dropped and decremented
 654   // after ownership is regained.
 655   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);
 656 
 657   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 658   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 659 
 660   // This dummy call is in place to get around dtrace bug 6254741.  Once
 661   // that's fixed we can uncomment the following line, remove the call
 662   // and change this function back into a "void" func.
 663   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 664   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 665   return ret_code;
 666 }
 667 
 668 // No exception are possible in this case as we only use this internally when locking is
 669 // correct and we have to wait until notified - so no interrupts or timeouts.
 670 void ObjectSynchronizer::wait_uninterruptibly(Handle obj, JavaThread* current) {
 671   if (UseBiasedLocking) {
 672     BiasedLocking::revoke(current, obj);
 673     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 674   }
 675   // The ObjectMonitor* can't be async deflated because the _waiters
 676   // field is incremented before ownership is dropped and decremented
 677   // after ownership is regained.
 678   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);
 679   monitor->wait(0 /* wait-forever */, false /* not interruptible */, current);
 680 }
 681 
 682 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 683   JavaThread* current = THREAD;
 684   if (UseBiasedLocking) {
 685     BiasedLocking::revoke(current, obj);
 686     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 687   }
 688 
 689   markWord mark = obj->mark();
 690   if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 691     // Not inflated so there can't be any waiters to notify.
 692     return;







 693   }
 694   // The ObjectMonitor* can't be async deflated until ownership is
 695   // dropped by the calling thread.
 696   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 697   monitor->notify(CHECK);
 698 }
 699 
 700 // NOTE: see comment of notify()
 701 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 702   JavaThread* current = THREAD;
 703   if (UseBiasedLocking) {
 704     BiasedLocking::revoke(current, obj);
 705     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 706   }
 707 
 708   markWord mark = obj->mark();
 709   if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 710     // Not inflated so there can't be any waiters to notify.
 711     return;







 712   }
 713   // The ObjectMonitor* can't be async deflated until ownership is
 714   // dropped by the calling thread.
 715   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);
 716   monitor->notifyAll(CHECK);
 717 }
 718 
 719 // -----------------------------------------------------------------------------
 720 // Hash Code handling
 721 
 722 struct SharedGlobals {
 723   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 724   // This is a highly shared mostly-read variable.
 725   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 726   volatile int stw_random;
 727   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 728   // Hot RW variable -- Sequester to avoid false-sharing
 729   volatile int hc_sequence;
 730   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 731 };
 732 
 733 static SharedGlobals GVars;
 734 
 735 static markWord read_stable_mark(oop obj) {
 736   markWord mark = obj->mark();
 737   if (!mark.is_being_inflated()) {

 738     return mark;       // normal fast-path return
 739   }
 740 
 741   int its = 0;
 742   for (;;) {
 743     markWord mark = obj->mark();
 744     if (!mark.is_being_inflated()) {
 745       return mark;    // normal fast-path return
 746     }
 747 
 748     // The object is being inflated by some other thread.
 749     // The caller of read_stable_mark() must wait for inflation to complete.
 750     // Avoid live-lock.
 751 
 752     ++its;
 753     if (its > 10000 || !os::is_MP()) {
 754       if (its & 1) {
 755         os::naked_yield();
 756       } else {
 757         // Note that the following code attenuates the livelock problem but is not
 758         // a complete remedy.  A more complete solution would require that the inflating
 759         // thread hold the associated inflation lock.  The following code simply restricts
 760         // the number of spinners to at most one.  We'll have N-2 threads blocked
 761         // on the inflationlock, 1 thread holding the inflation lock and using
 762         // a yield/park strategy, and 1 thread in the midst of inflation.
 763         // A more refined approach would be to change the encoding of INFLATING
 764         // to allow encapsulation of a native thread pointer.  Threads waiting for
 765         // inflation to complete would use CAS to push themselves onto a singly linked
 766         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 767         // and calling park().  When inflation was complete the thread that accomplished inflation
 768         // would detach the list and set the markword to inflated with a single CAS and
 769         // then for each thread on the list, set the flag and unpark() the thread.
 770 
 771         // Index into the lock array based on the current object address.
 772         static_assert(is_power_of_2(NINFLATIONLOCKS), "must be");
 773         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 774         int YieldThenBlock = 0;
 775         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 776         gInflationLocks[ix]->lock();
 777         while (obj->mark() == markWord::INFLATING()) {
 778           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 779           // so we periodically call current->_ParkEvent->park(1).
 780           // We use a mixed spin/yield/block mechanism.
 781           if ((YieldThenBlock++) >= 16) {
 782             Thread::current()->_ParkEvent->park(1);
 783           } else {
 784             os::naked_yield();
 785           }
 786         }
 787         gInflationLocks[ix]->unlock();
 788       }
 789     } else {
 790       SpinPause();       // SMP-polite spinning
 791     }
 792   }
 793 }
 794 
 795 // hashCode() generation :
 796 //
 797 // Possibilities:
 798 // * MD5Digest of {obj,stw_random}
 799 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 800 // * A DES- or AES-style SBox[] mechanism
 801 // * One of the Phi-based schemes, such as:
 802 //   2654435761 = 2^32 * Phi (golden ratio)
 803 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 804 // * A variation of Marsaglia's shift-xor RNG scheme.
 805 // * (obj ^ stw_random) is appealing, but can result
 806 //   in undesirable regularity in the hashCode values of adjacent objects
 807 //   (objects allocated back-to-back, in particular).  This could potentially
 808 //   result in hashtable collisions and reduced hashtable efficiency.
 809 //   There are simple ways to "diffuse" the middle address bits over the
 810 //   generated hashCode values:
 811 
 812 static inline intptr_t get_next_hash(Thread* current, oop obj) {
 813   intptr_t value = 0;
 814   if (hashCode == 0) {
 815     // This form uses global Park-Miller RNG.
 816     // On MP system we'll have lots of RW access to a global, so the
 817     // mechanism induces lots of coherency traffic.
 818     value = os::random();
 819   } else if (hashCode == 1) {
 820     // This variation has the property of being stable (idempotent)
 821     // between STW operations.  This can be useful in some of the 1-0
 822     // synchronization schemes.
 823     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 824     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 825   } else if (hashCode == 2) {
 826     value = 1;            // for sensitivity testing
 827   } else if (hashCode == 3) {
 828     value = ++GVars.hc_sequence;
 829   } else if (hashCode == 4) {
 830     value = cast_from_oop<intptr_t>(obj);
 831   } else {
 832     // Marsaglia's xor-shift scheme with thread-specific state
 833     // This is probably the best overall implementation -- we'll
 834     // likely make this the default in future releases.
 835     unsigned t = current->_hashStateX;
 836     t ^= (t << 11);
 837     current->_hashStateX = current->_hashStateY;
 838     current->_hashStateY = current->_hashStateZ;
 839     current->_hashStateZ = current->_hashStateW;
 840     unsigned v = current->_hashStateW;
 841     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 842     current->_hashStateW = v;
 843     value = v;
 844   }
 845 
 846   value &= markWord::hash_mask;
 847   if (value == 0) value = 0xBAD;
 848   assert(value != markWord::no_hash, "invariant");
 849   return value;
 850 }
 851 







 852 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 853   if (UseBiasedLocking) {
 854     // NOTE: many places throughout the JVM do not expect a safepoint
 855     // to be taken here. However, we only ever bias Java instances and all
 856     // of the call sites of identity_hash that might revoke biases have
 857     // been checked to make sure they can handle a safepoint. The
 858     // added check of the bias pattern is to avoid useless calls to
 859     // thread-local storage.
 860     if (obj->mark().has_bias_pattern()) {
 861       // Handle for oop obj in case of STW safepoint
 862       Handle hobj(current, obj);
 863       if (SafepointSynchronize::is_at_safepoint()) {
 864         BiasedLocking::revoke_at_safepoint(hobj);
 865       } else {
 866         BiasedLocking::revoke(current->as_Java_thread(), hobj);
 867       }
 868       obj = hobj();
 869       assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
 870     }
 871   }
 872 
 873   while (true) {
 874     ObjectMonitor* monitor = NULL;
 875     markWord temp, test;
 876     intptr_t hash;
 877     markWord mark = read_stable_mark(obj);
 878 
 879     // object should remain ineligible for biased locking
 880     assert(!mark.has_bias_pattern(), "invariant");
 881 
 882     if (mark.is_neutral()) {               // if this is a normal header
 883       hash = mark.hash();
 884       if (hash != 0) {                     // if it has a hash, just return it
 885         return hash;
 886       }
 887       hash = get_next_hash(current, obj);  // get a new hash
 888       temp = mark.copy_set_hash(hash);     // merge the hash into header
 889                                            // try to install the hash
 890       test = obj->cas_set_mark(temp, mark);
 891       if (test == mark) {                  // if the hash was installed, return it
 892         return hash;
 893       }
 894       // Failed to install the hash. It could be that another thread
 895       // installed the hash just before our attempt or inflation has
 896       // occurred or... so we fall thru to inflate the monitor for
 897       // stability and then install the hash.
 898     } else if (mark.has_monitor()) {
 899       monitor = mark.monitor();
 900       temp = monitor->header();
 901       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 902       hash = temp.hash();
 903       if (hash != 0) {
 904         // It has a hash.
 905 
 906         // Separate load of dmw/header above from the loads in
 907         // is_being_async_deflated().
 908 
 909         // dmw/header and _contentions may get written by different threads.
 910         // Make sure to observe them in the same order when having several observers.
 911         OrderAccess::loadload_for_IRIW();
 912 
 913         if (monitor->is_being_async_deflated()) {
 914           // But we can't safely use the hash if we detect that async
 915           // deflation has occurred. So we attempt to restore the
 916           // header/dmw to the object's header so that we only retry
 917           // once if the deflater thread happens to be slow.
 918           monitor->install_displaced_markword_in_object(obj);
 919           continue;
 920         }
 921         return hash;
 922       }
 923       // Fall thru so we only have one place that installs the hash in
 924       // the ObjectMonitor.
 925     } else if (current->is_lock_owned((address)mark.locker())) {







 926       // This is a stack lock owned by the calling thread so fetch the
 927       // displaced markWord from the BasicLock on the stack.
 928       temp = mark.displaced_mark_helper();
 929       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 930       hash = temp.hash();
 931       if (hash != 0) {                  // if it has a hash, just return it
 932         return hash;
 933       }
 934       // WARNING:
 935       // The displaced header in the BasicLock on a thread's stack
 936       // is strictly immutable. It CANNOT be changed in ANY cases.
 937       // So we have to inflate the stack lock into an ObjectMonitor
 938       // even if the current thread owns the lock. The BasicLock on
 939       // a thread's stack can be asynchronously read by other threads
 940       // during an inflate() call so any change to that stack memory
 941       // may not propagate to other threads correctly.
 942     }
 943 
 944     // Inflate the monitor to set the hash.
 945 
 946     // An async deflation can race after the inflate() call and before we
 947     // can update the ObjectMonitor's header with the hash value below.
 948     monitor = inflate(current, obj, inflate_cause_hash_code);
 949     // Load ObjectMonitor's header/dmw field and see if it has a hash.
 950     mark = monitor->header();
 951     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
 952     hash = mark.hash();
 953     if (hash == 0) {                       // if it does not have a hash
 954       hash = get_next_hash(current, obj);  // get a new hash
 955       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
 956       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
 957       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
 958       test = markWord(v);
 959       if (test != mark) {
 960         // The attempt to update the ObjectMonitor's header/dmw field
 961         // did not work. This can happen if another thread managed to
 962         // merge in the hash just before our cmpxchg().
 963         // If we add any new usages of the header/dmw field, this code
 964         // will need to be updated.
 965         hash = test.hash();
 966         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
 967         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
 968       }
 969       if (monitor->is_being_async_deflated()) {
 970         // If we detect that async deflation has occurred, then we
 971         // attempt to restore the header/dmw to the object's header
 972         // so that we only retry once if the deflater thread happens
 973         // to be slow.
 974         monitor->install_displaced_markword_in_object(obj);
 975         continue;
 976       }
 977     }
 978     // We finally get the hash.
 979     return hash;
 980   }
 981 }
 982 
 983 // Deprecated -- use FastHashCode() instead.
 984 
 985 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 986   return FastHashCode(Thread::current(), obj());
 987 }
 988 
 989 
 990 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
 991                                                    Handle h_obj) {
 992   if (UseBiasedLocking) {
 993     BiasedLocking::revoke(current, h_obj);
 994     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
 995   }
 996 
 997   assert(current == JavaThread::current(), "Can only be called on current thread");
 998   oop obj = h_obj();
 999 
1000   markWord mark = read_stable_mark(obj);
1001 
1002   // Uncontended case, header points to stack
1003   if (mark.has_locker()) {
1004     return current->is_lock_owned((address)mark.locker());
1005   }






1006   // Contended case, header points to ObjectMonitor (tagged pointer)
1007   if (mark.has_monitor()) {
1008     // The first stage of async deflation does not affect any field
1009     // used by this comparison so the ObjectMonitor* is usable here.
1010     ObjectMonitor* monitor = mark.monitor();
1011     return monitor->is_entered(current) != 0;
1012   }
1013   // Unlocked case, header in place
1014   assert(mark.is_neutral(), "sanity check");
1015   return false;
1016 }
1017 
1018 // FIXME: jvmti should call this
1019 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1020   if (UseBiasedLocking) {
1021     if (SafepointSynchronize::is_at_safepoint()) {
1022       BiasedLocking::revoke_at_safepoint(h_obj);
1023     } else {
1024       BiasedLocking::revoke(JavaThread::current(), h_obj);
1025     }
1026     assert(!h_obj->mark().has_bias_pattern(), "biases should be revoked by now");
1027   }
1028 
1029   oop obj = h_obj();
1030   address owner = NULL;
1031 
1032   markWord mark = read_stable_mark(obj);
1033 
1034   // Uncontended case, header points to stack
1035   if (mark.has_locker()) {
1036     owner = (address) mark.locker();







1037   }
1038 
1039   // Contended case, header points to ObjectMonitor (tagged pointer)
1040   else if (mark.has_monitor()) {
1041     // The first stage of async deflation does not affect any field
1042     // used by this comparison so the ObjectMonitor* is usable here.
1043     ObjectMonitor* monitor = mark.monitor();
1044     assert(monitor != NULL, "monitor should be non-null");
1045     owner = (address) monitor->owner();
1046   }
1047 
1048   if (owner != NULL) {
1049     // owning_thread_from_monitor_owner() may also return NULL here
1050     return Threads::owning_thread_from_monitor_owner(t_list, owner);
1051   }
1052 
1053   // Unlocked case, header in place
1054   // Cannot have assertion since this object may have been
1055   // locked by another thread when reaching here.
1056   // assert(mark.is_neutral(), "sanity check");
1057 
1058   return NULL;
1059 }
1060 
1061 // Visitors ...
1062 
1063 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1064   MonitorList::Iterator iter = _in_use_list.iterator();
1065   while (iter.has_next()) {
1066     ObjectMonitor* mid = iter.next();
1067     if (mid->owner() != thread) {
1068       continue;
1069     }
1070     if (!mid->is_being_async_deflated() && mid->object_peek() != NULL) {
1071       // Only process with closure if the object is set.
1072 
1073       // monitors_iterate() is only called at a safepoint or when the
1074       // target thread is suspended or when the target thread is
1075       // operating on itself. The current closures in use today are
1076       // only interested in an owned ObjectMonitor and ownership
1077       // cannot be dropped under the calling contexts so the
1078       // ObjectMonitor cannot be async deflated.
1079       closure->do_monitor(mid);
1080     }
1081   }
1082 }
1083 
1084 static bool monitors_used_above_threshold(MonitorList* list) {
1085   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1086     return false;
1087   }
1088   // Start with ceiling based on a per-thread estimate:
1089   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1090   size_t old_ceiling = ceiling;
1091   if (ceiling < list->max()) {
1092     // The max used by the system has exceeded the ceiling so use that:
1093     ceiling = list->max();
1094   }
1095   size_t monitors_used = list->count();
1096   if (monitors_used == 0) {  // empty list is easy
1097     return false;
1098   }
1099   if (NoAsyncDeflationProgressMax != 0 &&
1100       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1101     float remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1102     size_t new_ceiling = ceiling + (ceiling * remainder) + 1;
1103     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1104     log_info(monitorinflation)("Too many deflations without progress; "
1105                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1106                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1107     _no_progress_cnt = 0;
1108     ceiling = new_ceiling;
1109   }
1110 
1111   // Check if our monitor usage is above the threshold:
1112   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1113   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1114     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1115                                ", monitor_usage=" SIZE_FORMAT ", threshold=" INTX_FORMAT,
1116                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1117     return true;
1118   }
1119 
1120   return false;
1121 }
1122 
1123 size_t ObjectSynchronizer::in_use_list_ceiling() {
1124   return _in_use_list_ceiling;
1125 }
1126 
1127 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1128   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1129 }
1130 
1131 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1132   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1133 }
1134 
1135 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1136   _in_use_list_ceiling = new_value;
1137 }
1138 
1139 bool ObjectSynchronizer::is_async_deflation_needed() {
1140   if (is_async_deflation_requested()) {
1141     // Async deflation request.
1142     log_info(monitorinflation)("Async deflation needed: explicit request");
1143     return true;
1144   }
1145 
1146   jlong time_since_last = time_since_last_async_deflation_ms();
1147 
1148   if (AsyncDeflationInterval > 0 &&
1149       time_since_last > AsyncDeflationInterval &&
1150       monitors_used_above_threshold(&_in_use_list)) {
1151     // It's been longer than our specified deflate interval and there
1152     // are too many monitors in use. We don't deflate more frequently
1153     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1154     // in order to not swamp the MonitorDeflationThread.
1155     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1156     return true;
1157   }
1158 
1159   if (GuaranteedAsyncDeflationInterval > 0 &&
1160       time_since_last > GuaranteedAsyncDeflationInterval) {
1161     // It's been longer than our specified guaranteed deflate interval.
1162     // We need to clean up the used monitors even if the threshold is
1163     // not reached, to keep the memory utilization at bay when many threads
1164     // touched many monitors.
1165     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1166                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1167                                GuaranteedAsyncDeflationInterval, time_since_last);
1168 
1169     // If this deflation has no progress, then it should not affect the no-progress
1170     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1171     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1172     // the generic code would bump the no-progress counter, and we compensate for that
1173     // by telling it to skip the update.
1174     //
1175     // If this deflation has progress, then it should let non-progress tracking
1176     // know about this, otherwise the threshold heuristics would kick in, potentially
1177     // experience no-progress due to aggressive cleanup by this deflation, and think
1178     // it is still in no-progress stride. In this "progress" case, the generic code would
1179     // zero the counter, and we allow it to happen.
1180     _no_progress_skip_increment = true;
1181 
1182     return true;
1183   }
1184 
1185   return false;
1186 }
1187 
1188 bool ObjectSynchronizer::request_deflate_idle_monitors() {
1189   JavaThread* current = JavaThread::current();
1190   bool ret_code = false;
1191 
1192   jlong last_time = last_async_deflation_time_ns();
1193   set_is_async_deflation_requested(true);
1194   {
1195     MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1196     ml.notify_all();
1197   }
1198   const int N_CHECKS = 5;
1199   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1200     if (last_async_deflation_time_ns() > last_time) {
1201       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1202       ret_code = true;
1203       break;
1204     }
1205     {
1206       // JavaThread has to honor the blocking protocol.
1207       ThreadBlockInVM tbivm(current);
1208       os::naked_short_sleep(999);  // sleep for almost 1 second
1209     }
1210   }
1211   if (!ret_code) {
1212     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1213   }
1214 
1215   return ret_code;
1216 }
1217 
1218 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1219   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1220 }
1221 
1222 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1223                                        const oop obj,
1224                                        ObjectSynchronizer::InflateCause cause) {
1225   assert(event != NULL, "invariant");
1226   assert(event->should_commit(), "invariant");
1227   event->set_monitorClass(obj->klass());
1228   event->set_address((uintptr_t)(void*)obj);
1229   event->set_cause((u1)cause);
1230   event->commit();
1231 }
1232 
1233 // Fast path code shared by multiple functions
1234 void ObjectSynchronizer::inflate_helper(oop obj) {
1235   markWord mark = obj->mark();
1236   if (mark.has_monitor()) {
1237     ObjectMonitor* monitor = mark.monitor();
1238     markWord dmw = monitor->header();
1239     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1240     return;
1241   }
1242   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1243 }
1244 
1245 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop object,
1246                                            const InflateCause cause) {
1247   EventJavaMonitorInflate event;
1248 
1249   for (;;) {
1250     const markWord mark = object->mark();
1251     assert(!mark.has_bias_pattern(), "invariant");
1252 
1253     // The mark can be in one of the following states:
1254     // *  Inflated     - just return
1255     // *  Stack-locked - coerce it to inflated






1256     // *  INFLATING    - busy wait for conversion to complete
1257     // *  Neutral      - aggressively inflate the object.
1258     // *  BIASED       - Illegal.  We should never see this
1259 
1260     // CASE: inflated
1261     if (mark.has_monitor()) {
1262       ObjectMonitor* inf = mark.monitor();
1263       markWord dmw = inf->header();
1264       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());





1265       return inf;
1266     }
1267 
1268     // CASE: inflation in progress - inflating over a stack-lock.
1269     // Some other thread is converting from stack-locked to inflated.
1270     // Only that thread can complete inflation -- other threads must wait.
1271     // The INFLATING value is transient.
1272     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1273     // We could always eliminate polling by parking the thread on some auxiliary list.
1274     if (mark == markWord::INFLATING()) {
1275       read_stable_mark(object);
1276       continue;






























































1277     }
1278 
1279     // CASE: stack-locked
1280     // Could be stack-locked either by this thread or by some other thread.
1281     //
1282     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1283     // to install INFLATING into the mark word.  We originally installed INFLATING,
1284     // allocated the ObjectMonitor, and then finally STed the address of the
1285     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1286     // the interval in which INFLATING appeared in the mark, thus increasing
1287     // the odds of inflation contention.
1288 
1289     LogStreamHandle(Trace, monitorinflation) lsh;
1290 
1291     if (mark.has_locker()) {
1292       ObjectMonitor* m = new ObjectMonitor(object);
1293       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1294       // We do this before the CAS in order to minimize the length of time
1295       // in which INFLATING appears in the mark.
1296 
1297       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1298       if (cmp != mark) {
1299         delete m;
1300         continue;       // Interference -- just retry
1301       }
1302 
1303       // We've successfully installed INFLATING (0) into the mark-word.
1304       // This is the only case where 0 will appear in a mark-word.
1305       // Only the singular thread that successfully swings the mark-word
1306       // to 0 can perform (or more precisely, complete) inflation.
1307       //
1308       // Why do we CAS a 0 into the mark-word instead of just CASing the
1309       // mark-word from the stack-locked value directly to the new inflated state?
1310       // Consider what happens when a thread unlocks a stack-locked object.
1311       // It attempts to use CAS to swing the displaced header value from the
1312       // on-stack BasicLock back into the object header.  Recall also that the
1313       // header value (hash code, etc) can reside in (a) the object header, or
1314       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1315       // header in an ObjectMonitor.  The inflate() routine must copy the header
1316       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1317       // the while preserving the hashCode stability invariants.  If the owner
1318       // decides to release the lock while the value is 0, the unlock will fail
1319       // and control will eventually pass from slow_exit() to inflate.  The owner
1320       // will then spin, waiting for the 0 value to disappear.   Put another way,
1321       // the 0 causes the owner to stall if the owner happens to try to
1322       // drop the lock (restoring the header from the BasicLock to the object)
1323       // while inflation is in-progress.  This protocol avoids races that might
1324       // would otherwise permit hashCode values to change or "flicker" for an object.
1325       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1326       // 0 serves as a "BUSY" inflate-in-progress indicator.
1327 
1328 
1329       // fetch the displaced mark from the owner's stack.
1330       // The owner can't die or unwind past the lock while our INFLATING
1331       // object is in the mark.  Furthermore the owner can't complete
1332       // an unlock on the object, either.
1333       markWord dmw = mark.displaced_mark_helper();
1334       // Catch if the object's header is not neutral (not locked and
1335       // not marked is what we care about here).
1336       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1337 
1338       // Setup monitor fields to proper values -- prepare the monitor
1339       m->set_header(dmw);
1340 
1341       // Optimization: if the mark.locker stack address is associated
1342       // with this thread we could simply set m->_owner = current.
1343       // Note that a thread can inflate an object
1344       // that it has stack-locked -- as might happen in wait() -- directly
1345       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1346       m->set_owner_from(NULL, mark.locker());
1347       // TODO-FIXME: assert BasicLock->dhw != 0.
1348 
1349       // Must preserve store ordering. The monitor state must
1350       // be stable at the time of publishing the monitor address.
1351       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1352       // Release semantics so that above set_object() is seen first.
1353       object->release_set_mark(markWord::encode(m));
1354 
1355       // Once ObjectMonitor is configured and the object is associated
1356       // with the ObjectMonitor, it is safe to allow async deflation:
1357       _in_use_list.add(m);
1358 
1359       // Hopefully the performance counters are allocated on distinct cache lines
1360       // to avoid false sharing on MP systems ...
1361       OM_PERFDATA_OP(Inflations, inc());
1362       if (log_is_enabled(Trace, monitorinflation)) {
1363         ResourceMark rm(current);
1364         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1365                      INTPTR_FORMAT ", type='%s'", p2i(object),
1366                      object->mark().value(), object->klass()->external_name());
1367       }
1368       if (event.should_commit()) {
1369         post_monitor_inflate_event(&event, object, cause);
1370       }
1371       return m;
1372     }
1373 
1374     // CASE: neutral
1375     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1376     // If we know we're inflating for entry it's better to inflate by swinging a
1377     // pre-locked ObjectMonitor pointer into the object header.   A successful
1378     // CAS inflates the object *and* confers ownership to the inflating thread.
1379     // In the current implementation we use a 2-step mechanism where we CAS()
1380     // to inflate and then CAS() again to try to swing _owner from NULL to current.
1381     // An inflateTry() method that we could call from enter() would be useful.
1382 
1383     // Catch if the object's header is not neutral (not locked and
1384     // not marked is what we care about here).
1385     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1386     ObjectMonitor* m = new ObjectMonitor(object);
1387     // prepare m for installation - set monitor to initial state
1388     m->set_header(mark);
1389 
1390     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1391       delete m;
1392       m = NULL;
1393       continue;
1394       // interference - the markword changed - just retry.
1395       // The state-transitions are one-way, so there's no chance of
1396       // live-lock -- "Inflated" is an absorbing state.
1397     }
1398 
1399     // Once the ObjectMonitor is configured and object is associated
1400     // with the ObjectMonitor, it is safe to allow async deflation:
1401     _in_use_list.add(m);
1402 
1403     // Hopefully the performance counters are allocated on distinct
1404     // cache lines to avoid false sharing on MP systems ...
1405     OM_PERFDATA_OP(Inflations, inc());
1406     if (log_is_enabled(Trace, monitorinflation)) {
1407       ResourceMark rm(current);
1408       lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark="
1409                    INTPTR_FORMAT ", type='%s'", p2i(object),
1410                    object->mark().value(), object->klass()->external_name());
1411     }
1412     if (event.should_commit()) {
1413       post_monitor_inflate_event(&event, object, cause);
1414     }
1415     return m;
1416   }
1417 }
1418 
1419 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name,
1420                                            const char* cnt_name, size_t cnt,
1421                                            LogStream* ls, elapsedTimer* timer_p) {
1422   if (!SafepointMechanism::should_process(current)) {
1423     return;
1424   }
1425 
1426   // A safepoint/handshake has started.
1427   if (ls != NULL) {
1428     timer_p->stop();
1429     ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1430                  SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1431                  op_name, cnt_name, cnt, in_use_list_ceiling(),
1432                  _in_use_list.count(), _in_use_list.max());
1433   }
1434 
1435   {
1436     // Honor block request.
1437     ThreadBlockInVM tbivm(current);
1438   }
1439 
1440   if (ls != NULL) {
1441     ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1442                  ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1443                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1444     timer_p->start();
1445   }
1446 }
1447 
1448 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1449 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1450 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls,
1451                                                 elapsedTimer* timer_p) {
1452   MonitorList::Iterator iter = _in_use_list.iterator();
1453   size_t deflated_count = 0;
1454 
1455   while (iter.has_next()) {
1456     if (deflated_count >= (size_t)MonitorDeflationMax) {
1457       break;
1458     }
1459     ObjectMonitor* mid = iter.next();
1460     if (mid->deflate_monitor()) {
1461       deflated_count++;
1462     }
1463 
1464     if (current->is_Java_thread()) {
1465       // A JavaThread must check for a safepoint/handshake and honor it.
1466       chk_for_block_req(current->as_Java_thread(), "deflation", "deflated_count",
1467                         deflated_count, ls, timer_p);
1468     }
1469   }
1470 
1471   return deflated_count;
1472 }
1473 
1474 class HandshakeForDeflation : public HandshakeClosure {
1475  public:
1476   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1477 
1478   void do_thread(Thread* thread) {
1479     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1480                                 INTPTR_FORMAT, p2i(thread));
1481   }
1482 };
1483 










1484 // This function is called by the MonitorDeflationThread to deflate
1485 // ObjectMonitors. It is also called via do_final_audit_and_print_stats()
1486 // by the VMThread.
1487 size_t ObjectSynchronizer::deflate_idle_monitors() {
1488   Thread* current = Thread::current();
1489   if (current->is_Java_thread()) {
1490     // The async deflation request has been processed.
1491     _last_async_deflation_time_ns = os::javaTimeNanos();
1492     set_is_async_deflation_requested(false);
1493   }
1494 
1495   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1496   LogStreamHandle(Info, monitorinflation) lsh_info;
1497   LogStream* ls = NULL;
1498   if (log_is_enabled(Debug, monitorinflation)) {
1499     ls = &lsh_debug;
1500   } else if (log_is_enabled(Info, monitorinflation)) {
1501     ls = &lsh_info;
1502   }
1503 
1504   elapsedTimer timer;
1505   if (ls != NULL) {
1506     ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1507                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1508     timer.start();
1509   }
1510 
1511   // Deflate some idle ObjectMonitors.
1512   size_t deflated_count = deflate_monitor_list(current, ls, &timer);
1513   if (deflated_count > 0 || is_final_audit()) {
1514     // There are ObjectMonitors that have been deflated or this is the
1515     // final audit and all the remaining ObjectMonitors have been
1516     // deflated, BUT the MonitorDeflationThread blocked for the final
1517     // safepoint during unlinking.
1518 
1519     // Unlink deflated ObjectMonitors from the in-use list.
1520     ResourceMark rm;
1521     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1522     size_t unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer,
1523                                                          &delete_list);
1524     if (current->is_Java_thread()) {
1525       if (ls != NULL) {
1526         timer.stop();
1527         ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1528                      ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1529                      SIZE_FORMAT ", max=" SIZE_FORMAT,
1530                      unlinked_count, in_use_list_ceiling(),
1531                      _in_use_list.count(), _in_use_list.max());
1532       }
1533 
1534       // A JavaThread needs to handshake in order to safely free the
1535       // ObjectMonitors that were deflated in this cycle.



1536       HandshakeForDeflation hfd_hc;
1537       Handshake::execute(&hfd_hc);


1538 
1539       if (ls != NULL) {
1540         ls->print_cr("after handshaking: in_use_list stats: ceiling="
1541                      SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1542                      in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1543         timer.start();
1544       }
1545     }
1546 
1547     // After the handshake, safely free the ObjectMonitors that were
1548     // deflated in this cycle.
1549     size_t deleted_count = 0;
1550     for (ObjectMonitor* monitor: delete_list) {
1551       delete monitor;
1552       deleted_count++;
1553 
1554       if (current->is_Java_thread()) {
1555         // A JavaThread must check for a safepoint/handshake and honor it.
1556         chk_for_block_req(current->as_Java_thread(), "deletion", "deleted_count",
1557                           deleted_count, ls, &timer);
1558       }
1559     }
1560   }
1561 
1562   if (ls != NULL) {
1563     timer.stop();
1564     if (deflated_count != 0 || log_is_enabled(Debug, monitorinflation)) {
1565       ls->print_cr("deflated " SIZE_FORMAT " monitors in %3.7f secs",
1566                    deflated_count, timer.seconds());
1567     }
1568     ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1569                  in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max());
1570   }
1571 
1572   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1573   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1574 
1575   GVars.stw_random = os::random();
1576 
1577   if (deflated_count != 0) {
1578     _no_progress_cnt = 0;
1579   } else if (_no_progress_skip_increment) {
1580     _no_progress_skip_increment = false;
1581   } else {
1582     _no_progress_cnt++;
1583   }
1584 
1585   return deflated_count;
1586 }
1587 
1588 // Monitor cleanup on JavaThread::exit
1589 
1590 // Iterate through monitor cache and attempt to release thread's monitors
1591 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1592  private:
1593   JavaThread* _thread;
1594 
1595  public:
1596   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1597   void do_monitor(ObjectMonitor* mid) {
1598     (void)mid->complete_exit(_thread);
1599   }
1600 };
1601 
1602 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1603 // ignored.  This is meant to be called during JNI thread detach which assumes
1604 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1605 // Scanning the extant monitor list can be time consuming.
1606 // A simple optimization is to add a per-thread flag that indicates a thread
1607 // called jni_monitorenter() during its lifetime.
1608 //
1609 // Instead of NoSafepointVerifier it might be cheaper to
1610 // use an idiom of the form:
1611 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1612 //   <code that must not run at safepoint>
1613 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1614 // Since the tests are extremely cheap we could leave them enabled
1615 // for normal product builds.
1616 
1617 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1618   assert(current == JavaThread::current(), "must be current Java thread");
1619   NoSafepointVerifier nsv;
1620   ReleaseJavaMonitorsClosure rjmc(current);
1621   ObjectSynchronizer::monitors_iterate(&rjmc, current);
1622   assert(!current->has_pending_exception(), "Should not be possible");
1623   current->clear_pending_exception();
1624 }
1625 
1626 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1627   switch (cause) {
1628     case inflate_cause_vm_internal:    return "VM Internal";
1629     case inflate_cause_monitor_enter:  return "Monitor Enter";
1630     case inflate_cause_wait:           return "Monitor Wait";
1631     case inflate_cause_notify:         return "Monitor Notify";
1632     case inflate_cause_hash_code:      return "Monitor Hash Code";
1633     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1634     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1635     default:
1636       ShouldNotReachHere();
1637   }
1638   return "Unknown";
1639 }
1640 
1641 //------------------------------------------------------------------------------
1642 // Debugging code
1643 
1644 u_char* ObjectSynchronizer::get_gvars_addr() {
1645   return (u_char*)&GVars;
1646 }
1647 
1648 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1649   return (u_char*)&GVars.hc_sequence;
1650 }
1651 
1652 size_t ObjectSynchronizer::get_gvars_size() {
1653   return sizeof(SharedGlobals);
1654 }
1655 
1656 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1657   return (u_char*)&GVars.stw_random;
1658 }
1659 
1660 // Do the final audit and print of ObjectMonitor stats; must be done
1661 // by the VMThread at VM exit time.
1662 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1663   assert(Thread::current()->is_VM_thread(), "sanity check");
1664 
1665   if (is_final_audit()) {  // Only do the audit once.
1666     return;
1667   }
1668   set_is_final_audit();
1669   log_info(monitorinflation)("Starting the final audit.");
1670 
1671   if (log_is_enabled(Info, monitorinflation)) {
1672     // Do a deflation in order to reduce the in-use monitor population
1673     // that is reported by ObjectSynchronizer::log_in_use_monitor_details()
1674     // which is called by ObjectSynchronizer::audit_and_print_stats().
1675     while (ObjectSynchronizer::deflate_idle_monitors() != 0) {
1676       ; // empty
1677     }
1678     // The other audit_and_print_stats() call is done at the Debug
1679     // level at a safepoint in ObjectSynchronizer::do_safepoint_work().
1680     ObjectSynchronizer::audit_and_print_stats(true /* on_exit */);
1681   }
1682 }
1683 
1684 // This function can be called at a safepoint or it can be called when
1685 // we are trying to exit the VM. When we are trying to exit the VM, the
1686 // list walker functions can run in parallel with the other list
1687 // operations so spin-locking is used for safety.
1688 //
1689 // Calls to this function can be added in various places as a debugging
1690 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor
1691 // details logged at the Info level and 'false' for the 'on_exit'
1692 // parameter to have in-use monitor details logged at the Trace level.
1693 //
1694 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) {
1695   assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant");
1696 
1697   LogStreamHandle(Debug, monitorinflation) lsh_debug;
1698   LogStreamHandle(Info, monitorinflation) lsh_info;
1699   LogStreamHandle(Trace, monitorinflation) lsh_trace;
1700   LogStream* ls = NULL;
1701   if (log_is_enabled(Trace, monitorinflation)) {
1702     ls = &lsh_trace;
1703   } else if (log_is_enabled(Debug, monitorinflation)) {
1704     ls = &lsh_debug;
1705   } else if (log_is_enabled(Info, monitorinflation)) {
1706     ls = &lsh_info;
1707   }
1708   assert(ls != NULL, "sanity check");
1709 
1710   int error_cnt = 0;
1711 
1712   ls->print_cr("Checking in_use_list:");
1713   chk_in_use_list(ls, &error_cnt);
1714 
1715   if (error_cnt == 0) {
1716     ls->print_cr("No errors found in in_use_list checks.");
1717   } else {
1718     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1719   }
1720 
1721   if ((on_exit && log_is_enabled(Info, monitorinflation)) ||
1722       (!on_exit && log_is_enabled(Trace, monitorinflation))) {
1723     // When exiting this log output is at the Info level. When called
1724     // at a safepoint, this log output is at the Trace level since
1725     // there can be a lot of it.
1726     log_in_use_monitor_details(ls);
1727   }
1728 
1729   ls->flush();
1730 
1731   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1732 }
1733 
1734 // Check the in_use_list; log the results of the checks.
1735 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1736   size_t l_in_use_count = _in_use_list.count();
1737   size_t l_in_use_max = _in_use_list.max();
1738   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
1739                 l_in_use_max);
1740 
1741   size_t ck_in_use_count = 0;
1742   MonitorList::Iterator iter = _in_use_list.iterator();
1743   while (iter.has_next()) {
1744     ObjectMonitor* mid = iter.next();
1745     chk_in_use_entry(mid, out, error_cnt_p);
1746     ck_in_use_count++;
1747   }
1748 
1749   if (l_in_use_count == ck_in_use_count) {
1750     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
1751                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
1752   } else {
1753     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
1754                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
1755                   ck_in_use_count);
1756   }
1757 
1758   size_t ck_in_use_max = _in_use_list.max();
1759   if (l_in_use_max == ck_in_use_max) {
1760     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1761                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1762   } else {
1763     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1764                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1765   }
1766 }
1767 
1768 // Check an in-use monitor entry; log any errors.
1769 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1770                                           int* error_cnt_p) {
1771   if (n->owner_is_DEFLATER_MARKER()) {
1772     // This should not happen, but if it does, it is not fatal.
1773     out->print_cr("WARNING: monitor=" INTPTR_FORMAT ": in-use monitor is "
1774                   "deflated.", p2i(n));
1775     return;
1776   }
1777   if (n->header().value() == 0) {
1778     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1779                   "have non-NULL _header field.", p2i(n));
1780     *error_cnt_p = *error_cnt_p + 1;
1781   }
1782   const oop obj = n->object_peek();
1783   if (obj != NULL) {
1784     const markWord mark = obj->mark();
1785     if (!mark.has_monitor()) {
1786       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1787                     "object does not think it has a monitor: obj="
1788                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
1789                     p2i(obj), mark.value());
1790       *error_cnt_p = *error_cnt_p + 1;
1791     }
1792     ObjectMonitor* const obj_mon = mark.monitor();
1793     if (n != obj_mon) {
1794       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1795                     "object does not refer to the same monitor: obj="
1796                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
1797                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
1798       *error_cnt_p = *error_cnt_p + 1;
1799     }
1800   }
1801 }
1802 
1803 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
1804 // flags indicate why the entry is in-use, 'object' and 'object type'
1805 // indicate the associated object and its type.
1806 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out) {
1807   stringStream ss;
1808   if (_in_use_list.count() > 0) {
1809     out->print_cr("In-use monitor info:");
1810     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
1811     out->print_cr("%18s  %s  %18s  %18s",
1812                   "monitor", "BHL", "object", "object type");
1813     out->print_cr("==================  ===  ==================  ==================");
1814     MonitorList::Iterator iter = _in_use_list.iterator();
1815     while (iter.has_next()) {
1816       ObjectMonitor* mid = iter.next();
1817       const oop obj = mid->object_peek();
1818       const markWord mark = mid->header();
1819       ResourceMark rm;
1820       out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(mid),
1821                  mid->is_busy(), mark.hash() != 0, mid->owner() != NULL,
1822                  p2i(obj), obj == NULL ? "" : obj->klass()->external_name());
1823       if (mid->is_busy()) {
1824         out->print(" (%s)", mid->is_busy_to_string(&ss));
1825         ss.reset();
1826       }
1827       out->cr();
1828     }
1829   }
1830 
1831   out->flush();
1832 }
--- EOF ---