1 /*
   2  * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "jvm.h"
  28 #include "cds/dynamicArchive.hpp"
  29 #include "cds/metaspaceShared.hpp"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "classfile/javaThreadStatus.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmClasses.hpp"
  35 #include "classfile/vmSymbols.hpp"
  36 #include "code/codeCache.hpp"
  37 #include "code/scopeDesc.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/compileTask.hpp"
  40 #include "compiler/compilerThread.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcLocker.inline.hpp"
  45 #include "gc/shared/gcVMOperations.hpp"
  46 #include "gc/shared/oopStorage.hpp"
  47 #include "gc/shared/oopStorageSet.hpp"
  48 #include "gc/shared/stringdedup/stringDedup.hpp"
  49 #include "gc/shared/tlab_globals.hpp"
  50 #include "interpreter/interpreter.hpp"
  51 #include "interpreter/linkResolver.hpp"
  52 #include "interpreter/oopMapCache.hpp"
  53 #include "jfr/jfrEvents.hpp"
  54 #include "jvmtifiles/jvmtiEnv.hpp"
  55 #include "logging/log.hpp"
  56 #include "logging/logAsyncWriter.hpp"
  57 #include "logging/logConfiguration.hpp"
  58 #include "logging/logStream.hpp"
  59 #include "memory/allocation.inline.hpp"
  60 #include "memory/iterator.hpp"
  61 #include "memory/oopFactory.hpp"
  62 #include "memory/resourceArea.hpp"
  63 #include "memory/universe.hpp"
  64 #include "oops/access.inline.hpp"
  65 #include "oops/instanceKlass.hpp"
  66 #include "oops/klass.inline.hpp"
  67 #include "oops/objArrayOop.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "oops/oopHandle.inline.hpp"
  70 #include "oops/symbol.hpp"
  71 #include "oops/typeArrayOop.inline.hpp"
  72 #include "oops/verifyOopClosure.hpp"
  73 #include "prims/jvm_misc.hpp"
  74 #include "prims/jvmtiDeferredUpdates.hpp"
  75 #include "prims/jvmtiExport.hpp"
  76 #include "prims/jvmtiThreadState.hpp"
  77 #include "runtime/arguments.hpp"
  78 #include "runtime/atomic.hpp"
  79 #include "runtime/biasedLocking.hpp"
  80 #include "runtime/fieldDescriptor.inline.hpp"
  81 #include "runtime/flags/jvmFlagLimit.hpp"
  82 #include "runtime/deoptimization.hpp"
  83 #include "runtime/frame.inline.hpp"
  84 #include "runtime/handles.inline.hpp"
  85 #include "runtime/handshake.hpp"
  86 #include "runtime/init.hpp"
  87 #include "runtime/interfaceSupport.inline.hpp"
  88 #include "runtime/java.hpp"
  89 #include "runtime/javaCalls.hpp"
  90 #include "runtime/jniHandles.inline.hpp"
  91 #include "runtime/jniPeriodicChecker.hpp"
  92 #include "runtime/monitorDeflationThread.hpp"
  93 #include "runtime/mutexLocker.hpp"
  94 #include "runtime/nonJavaThread.hpp"
  95 #include "runtime/objectMonitor.hpp"
  96 #include "runtime/orderAccess.hpp"
  97 #include "runtime/osThread.hpp"
  98 #include "runtime/prefetch.inline.hpp"
  99 #include "runtime/safepoint.hpp"
 100 #include "runtime/safepointMechanism.inline.hpp"
 101 #include "runtime/safepointVerifiers.hpp"
 102 #include "runtime/serviceThread.hpp"
 103 #include "runtime/sharedRuntime.hpp"
 104 #include "runtime/stackFrameStream.inline.hpp"
 105 #include "runtime/stackWatermarkSet.hpp"
 106 #include "runtime/statSampler.hpp"
 107 #include "runtime/task.hpp"
 108 #include "runtime/thread.inline.hpp"
 109 #include "runtime/threadCritical.hpp"
 110 #include "runtime/threadSMR.inline.hpp"
 111 #include "runtime/threadStatisticalInfo.hpp"
 112 #include "runtime/threadWXSetters.inline.hpp"
 113 #include "runtime/timer.hpp"
 114 #include "runtime/timerTrace.hpp"
 115 #include "runtime/trimNativeHeap.hpp"
 116 #include "runtime/vframe.inline.hpp"
 117 #include "runtime/vframeArray.hpp"
 118 #include "runtime/vframe_hp.hpp"
 119 #include "runtime/vmThread.hpp"
 120 #include "runtime/vmOperations.hpp"
 121 #include "runtime/vm_version.hpp"
 122 #include "services/attachListener.hpp"
 123 #include "services/management.hpp"
 124 #include "services/memTracker.hpp"
 125 #include "services/threadService.hpp"
 126 #include "utilities/align.hpp"
 127 #include "utilities/copy.hpp"
 128 #include "utilities/defaultStream.hpp"
 129 #include "utilities/dtrace.hpp"
 130 #include "utilities/events.hpp"
 131 #include "utilities/macros.hpp"
 132 #include "utilities/preserveException.hpp"
 133 #include "utilities/spinYield.hpp"
 134 #include "utilities/vmError.hpp"
 135 #if INCLUDE_JVMCI
 136 #include "jvmci/jvmci.hpp"
 137 #include "jvmci/jvmciEnv.hpp"
 138 #endif
 139 #ifdef COMPILER1
 140 #include "c1/c1_Compiler.hpp"
 141 #endif
 142 #ifdef COMPILER2
 143 #include "opto/c2compiler.hpp"
 144 #include "opto/idealGraphPrinter.hpp"
 145 #endif
 146 #if INCLUDE_RTM_OPT
 147 #include "runtime/rtmLocking.hpp"
 148 #endif
 149 #if INCLUDE_JFR
 150 #include "jfr/jfr.hpp"
 151 #endif
 152 
 153 // Initialization after module runtime initialization
 154 void universe_post_module_init();  // must happen after call_initPhase2
 155 
 156 #ifdef DTRACE_ENABLED
 157 
 158 // Only bother with this argument setup if dtrace is available
 159 
 160   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 161   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 164     {                                                                      \
 165       ResourceMark rm(this);                                               \
 166       int len = 0;                                                         \
 167       const char* name = (javathread)->get_thread_name();                  \
 168       len = strlen(name);                                                  \
 169       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 170         (char *) name, len,                                                \
 171         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 172         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 173         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 174     }
 175 
 176 #else //  ndef DTRACE_ENABLED
 177 
 178   #define DTRACE_THREAD_PROBE(probe, javathread)
 179 
 180 #endif // ndef DTRACE_ENABLED
 181 
 182 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 183 // Current thread is maintained as a thread-local variable
 184 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 185 #endif
 186 
 187 // ======= Thread ========
 188 // Support for forcing alignment of thread objects for biased locking
 189 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 190   if (UseBiasedLocking) {
 191     const size_t alignment = markWord::biased_lock_alignment;
 192     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 193     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 194                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 195                                                          AllocFailStrategy::RETURN_NULL);
 196     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 197     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 198            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 199            "JavaThread alignment code overflowed allocated storage");
 200     if (aligned_addr != real_malloc_addr) {
 201       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 202                               p2i(real_malloc_addr),
 203                               p2i(aligned_addr));
 204     }
 205     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 206     return aligned_addr;
 207   } else {
 208     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 209                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 210   }
 211 }
 212 
 213 void Thread::operator delete(void* p) {
 214   if (UseBiasedLocking) {
 215     FreeHeap(((Thread*) p)->_real_malloc_address);
 216   } else {
 217     FreeHeap(p);
 218   }
 219 }
 220 
 221 void JavaThread::smr_delete() {
 222   if (_on_thread_list) {
 223     ThreadsSMRSupport::smr_delete(this);
 224   } else {
 225     delete this;
 226   }
 227 }
 228 
 229 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 230 // JavaThread
 231 
 232 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 233 
 234 Thread::Thread() {
 235 
 236   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 237 
 238   // stack and get_thread
 239   set_stack_base(NULL);
 240   set_stack_size(0);
 241   set_lgrp_id(-1);
 242   DEBUG_ONLY(clear_suspendible_thread();)
 243 
 244   // allocated data structures
 245   set_osthread(NULL);
 246   set_resource_area(new (mtThread)ResourceArea());
 247   DEBUG_ONLY(_current_resource_mark = NULL;)
 248   set_handle_area(new (mtThread) HandleArea(NULL));
 249   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, mtClass));
 250   set_active_handles(NULL);
 251   set_free_handle_block(NULL);
 252   set_last_handle_mark(NULL);
 253   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 254 
 255   // Initial value of zero ==> never claimed.
 256   _threads_do_token = 0;
 257   _threads_hazard_ptr = NULL;
 258   _threads_list_ptr = NULL;
 259   _nested_threads_hazard_ptr_cnt = 0;
 260   _rcu_counter = 0;
 261 
 262   // the handle mark links itself to last_handle_mark
 263   new HandleMark(this);
 264 
 265   // plain initialization
 266   debug_only(_owned_locks = NULL;)
 267   NOT_PRODUCT(_skip_gcalot = false;)
 268   _jvmti_env_iteration_count = 0;
 269   set_allocated_bytes(0);
 270   _current_pending_raw_monitor = NULL;
 271 
 272   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 273   _hashStateX = os::random();
 274   _hashStateY = 842502087;
 275   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 276   _hashStateW = 273326509;
 277 
 278   // Many of the following fields are effectively final - immutable
 279   // Note that nascent threads can't use the Native Monitor-Mutex
 280   // construct until the _MutexEvent is initialized ...
 281   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 282   // we might instead use a stack of ParkEvents that we could provision on-demand.
 283   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 284   // and ::Release()
 285   _ParkEvent   = ParkEvent::Allocate(this);
 286 
 287 #ifdef CHECK_UNHANDLED_OOPS
 288   if (CheckUnhandledOops) {
 289     _unhandled_oops = new UnhandledOops(this);
 290   }
 291 #endif // CHECK_UNHANDLED_OOPS
 292 #ifdef ASSERT
 293   if (UseBiasedLocking) {
 294     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 295     assert(this == _real_malloc_address ||
 296            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 297            "bug in forced alignment of thread objects");
 298   }
 299 #endif // ASSERT
 300 
 301   // Notify the barrier set that a thread is being created. The initial
 302   // thread is created before the barrier set is available.  The call to
 303   // BarrierSet::on_thread_create() for this thread is therefore deferred
 304   // to BarrierSet::set_barrier_set().
 305   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 306   if (barrier_set != NULL) {
 307     barrier_set->on_thread_create(this);
 308   } else {
 309     // Only the main thread should be created before the barrier set
 310     // and that happens just before Thread::current is set. No other thread
 311     // can attach as the VM is not created yet, so they can't execute this code.
 312     // If the main thread creates other threads before the barrier set that is an error.
 313     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 314   }
 315 
 316   MACOS_AARCH64_ONLY(DEBUG_ONLY(_wx_init = false));
 317 }
 318 
 319 void Thread::initialize_tlab() {
 320   if (UseTLAB) {
 321     tlab().initialize();
 322   }
 323 }
 324 
 325 void Thread::initialize_thread_current() {
 326 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 327   assert(_thr_current == NULL, "Thread::current already initialized");
 328   _thr_current = this;
 329 #endif
 330   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 331   ThreadLocalStorage::set_thread(this);
 332   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 333 }
 334 
 335 void Thread::clear_thread_current() {
 336   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 337 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 338   _thr_current = NULL;
 339 #endif
 340   ThreadLocalStorage::set_thread(NULL);
 341 }
 342 
 343 void Thread::record_stack_base_and_size() {
 344   // Note: at this point, Thread object is not yet initialized. Do not rely on
 345   // any members being initialized. Do not rely on Thread::current() being set.
 346   // If possible, refrain from doing anything which may crash or assert since
 347   // quite probably those crash dumps will be useless.
 348   set_stack_base(os::current_stack_base());
 349   set_stack_size(os::current_stack_size());
 350 
 351   // Set stack limits after thread is initialized.
 352   if (is_Java_thread()) {
 353     as_Java_thread()->stack_overflow_state()->initialize(stack_base(), stack_end());
 354   }
 355 }
 356 
 357 #if INCLUDE_NMT
 358 void Thread::register_thread_stack_with_NMT() {
 359   MemTracker::record_thread_stack(stack_end(), stack_size());
 360 }
 361 
 362 void Thread::unregister_thread_stack_with_NMT() {
 363   MemTracker::release_thread_stack(stack_end(), stack_size());
 364 }
 365 #endif // INCLUDE_NMT
 366 
 367 void Thread::call_run() {
 368   DEBUG_ONLY(_run_state = CALL_RUN;)
 369 
 370   // At this point, Thread object should be fully initialized and
 371   // Thread::current() should be set.
 372 
 373   assert(Thread::current_or_null() != NULL, "current thread is unset");
 374   assert(Thread::current_or_null() == this, "current thread is wrong");
 375 
 376   // Perform common initialization actions
 377 
 378   MACOS_AARCH64_ONLY(this->init_wx());
 379 
 380   register_thread_stack_with_NMT();
 381 
 382   JFR_ONLY(Jfr::on_thread_start(this);)
 383 
 384   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 385     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 386     os::current_thread_id(), p2i(stack_end()),
 387     p2i(stack_base()), stack_size()/1024);
 388 
 389   // Perform <ChildClass> initialization actions
 390   DEBUG_ONLY(_run_state = PRE_RUN;)
 391   this->pre_run();
 392 
 393   // Invoke <ChildClass>::run()
 394   DEBUG_ONLY(_run_state = RUN;)
 395   this->run();
 396   // Returned from <ChildClass>::run(). Thread finished.
 397 
 398   // Perform common tear-down actions
 399 
 400   assert(Thread::current_or_null() != NULL, "current thread is unset");
 401   assert(Thread::current_or_null() == this, "current thread is wrong");
 402 
 403   // Perform <ChildClass> tear-down actions
 404   DEBUG_ONLY(_run_state = POST_RUN;)
 405   this->post_run();
 406 
 407   // Note: at this point the thread object may already have deleted itself,
 408   // so from here on do not dereference *this*. Not all thread types currently
 409   // delete themselves when they terminate. But no thread should ever be deleted
 410   // asynchronously with respect to its termination - that is what _run_state can
 411   // be used to check.
 412 
 413   assert(Thread::current_or_null() == NULL, "current thread still present");
 414 }
 415 
 416 Thread::~Thread() {
 417 
 418   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 419   // get started due to errors etc. Any active thread should at least reach post_run
 420   // before it is deleted (usually in post_run()).
 421   assert(_run_state == PRE_CALL_RUN ||
 422          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 423          "_run_state=%d", (int)_run_state);
 424 
 425   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 426   // set might not be available if we encountered errors during bootstrapping.
 427   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 428   if (barrier_set != NULL) {
 429     barrier_set->on_thread_destroy(this);
 430   }
 431 
 432   // deallocate data structures
 433   delete resource_area();
 434   // since the handle marks are using the handle area, we have to deallocated the root
 435   // handle mark before deallocating the thread's handle area,
 436   assert(last_handle_mark() != NULL, "check we have an element");
 437   delete last_handle_mark();
 438   assert(last_handle_mark() == NULL, "check we have reached the end");
 439 
 440   ParkEvent::Release(_ParkEvent);
 441   // Set to NULL as a termination indicator for has_terminated().
 442   Atomic::store(&_ParkEvent, (ParkEvent*)NULL);
 443 
 444   delete handle_area();
 445   delete metadata_handles();
 446 
 447   // osthread() can be NULL, if creation of thread failed.
 448   if (osthread() != NULL) os::free_thread(osthread());
 449 
 450   // Clear Thread::current if thread is deleting itself and it has not
 451   // already been done. This must be done before the memory is deallocated.
 452   // Needed to ensure JNI correctly detects non-attached threads.
 453   if (this == Thread::current_or_null()) {
 454     Thread::clear_thread_current();
 455   }
 456 
 457   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 458 }
 459 
 460 #ifdef ASSERT
 461 // A JavaThread is considered dangling if it not handshake-safe with respect to
 462 // the current thread, it is not on a ThreadsList, or not at safepoint.
 463 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 464   assert(!thread->is_Java_thread() ||
 465          thread->as_Java_thread()->is_handshake_safe_for(Thread::current()) ||
 466          !thread->as_Java_thread()->on_thread_list() ||
 467          SafepointSynchronize::is_at_safepoint() ||
 468          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock(thread->as_Java_thread()),
 469          "possibility of dangling Thread pointer");
 470 }
 471 #endif
 472 
 473 // Is the target JavaThread protected by the calling Thread
 474 // or by some other mechanism:
 475 bool Thread::is_JavaThread_protected(const JavaThread* p) {
 476   // Do the simplest check first:
 477   if (SafepointSynchronize::is_at_safepoint()) {
 478     // The target is protected since JavaThreads cannot exit
 479     // while we're at a safepoint.
 480     return true;
 481   }
 482 
 483   // If the target hasn't been started yet then it is trivially
 484   // "protected". We assume the caller is the thread that will do
 485   // the starting.
 486   if (p->osthread() == NULL || p->osthread()->get_state() <= INITIALIZED) {
 487     return true;
 488   }
 489 
 490   // Now make the simple checks based on who the caller is:
 491   Thread* current_thread = Thread::current();
 492   if (current_thread == p || Threads_lock->owner() == current_thread) {
 493     // Target JavaThread is self or calling thread owns the Threads_lock.
 494     // Second check is the same as Threads_lock->owner_is_self(),
 495     // but we already have the current thread so check directly.
 496     return true;
 497   }
 498 
 499   // Check the ThreadsLists associated with the calling thread (if any)
 500   // to see if one of them protects the target JavaThread:
 501   for (SafeThreadsListPtr* stlp = current_thread->_threads_list_ptr;
 502        stlp != NULL; stlp = stlp->previous()) {
 503     if (stlp->list()->includes(p)) {
 504       // The target JavaThread is protected by this ThreadsList:
 505       return true;
 506     }
 507   }
 508 
 509   // Use this debug code with -XX:+UseNewCode to diagnose locations that
 510   // are missing a ThreadsListHandle or other protection mechanism:
 511   // guarantee(!UseNewCode, "current_thread=" INTPTR_FORMAT " is not protecting p="
 512   //           INTPTR_FORMAT, p2i(current_thread), p2i(p));
 513 
 514   // Note: Since 'p' isn't protected by a TLH, the call to
 515   // p->is_handshake_safe_for() may crash, but we have debug bits so
 516   // we'll be able to figure out what protection mechanism is missing.
 517   assert(p->is_handshake_safe_for(current_thread), "JavaThread=" INTPTR_FORMAT
 518          " is not protected and not handshake safe.", p2i(p));
 519 
 520   // The target JavaThread is not protected so it is not safe to query:
 521   return false;
 522 }
 523 
 524 ThreadPriority Thread::get_priority(const Thread* const thread) {
 525   ThreadPriority priority;
 526   // Can return an error!
 527   (void)os::get_priority(thread, priority);
 528   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 529   return priority;
 530 }
 531 
 532 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 533   debug_only(check_for_dangling_thread_pointer(thread);)
 534   // Can return an error!
 535   (void)os::set_priority(thread, priority);
 536 }
 537 
 538 
 539 void Thread::start(Thread* thread) {
 540   // Start is different from resume in that its safety is guaranteed by context or
 541   // being called from a Java method synchronized on the Thread object.
 542   if (thread->is_Java_thread()) {
 543     // Initialize the thread state to RUNNABLE before starting this thread.
 544     // Can not set it after the thread started because we do not know the
 545     // exact thread state at that time. It could be in MONITOR_WAIT or
 546     // in SLEEPING or some other state.
 547     java_lang_Thread::set_thread_status(thread->as_Java_thread()->threadObj(),
 548                                         JavaThreadStatus::RUNNABLE);
 549   }
 550   os::start_thread(thread);
 551 }
 552 
 553 // GC Support
 554 bool Thread::claim_par_threads_do(uintx claim_token) {
 555   uintx token = _threads_do_token;
 556   if (token != claim_token) {
 557     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 558     if (res == token) {
 559       return true;
 560     }
 561     guarantee(res == claim_token, "invariant");
 562   }
 563   return false;
 564 }
 565 
 566 void Thread::oops_do_no_frames(OopClosure* f, CodeBlobClosure* cf) {
 567   if (active_handles() != NULL) {
 568     active_handles()->oops_do(f);
 569   }
 570   // Do oop for ThreadShadow
 571   f->do_oop((oop*)&_pending_exception);
 572   handle_area()->oops_do(f);
 573 }
 574 
 575 // If the caller is a NamedThread, then remember, in the current scope,
 576 // the given JavaThread in its _processed_thread field.
 577 class RememberProcessedThread: public StackObj {
 578   NamedThread* _cur_thr;
 579 public:
 580   RememberProcessedThread(Thread* thread) {
 581     Thread* self = Thread::current();
 582     if (self->is_Named_thread()) {
 583       _cur_thr = (NamedThread *)self;
 584       assert(_cur_thr->processed_thread() == NULL, "nesting not supported");
 585       _cur_thr->set_processed_thread(thread);
 586     } else {
 587       _cur_thr = NULL;
 588     }
 589   }
 590 
 591   ~RememberProcessedThread() {
 592     if (_cur_thr) {
 593       assert(_cur_thr->processed_thread() != NULL, "nesting not supported");
 594       _cur_thr->set_processed_thread(NULL);
 595     }
 596   }
 597 };
 598 
 599 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 600   // Record JavaThread to GC thread
 601   RememberProcessedThread rpt(this);
 602   oops_do_no_frames(f, cf);
 603   oops_do_frames(f, cf);
 604 }
 605 
 606 void Thread::metadata_handles_do(void f(Metadata*)) {
 607   // Only walk the Handles in Thread.
 608   if (metadata_handles() != NULL) {
 609     for (int i = 0; i< metadata_handles()->length(); i++) {
 610       f(metadata_handles()->at(i));
 611     }
 612   }
 613 }
 614 
 615 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 616   // get_priority assumes osthread initialized
 617   if (osthread() != NULL) {
 618     int os_prio;
 619     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 620       st->print("os_prio=%d ", os_prio);
 621     }
 622 
 623     st->print("cpu=%.2fms ",
 624               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 625               );
 626     st->print("elapsed=%.2fs ",
 627               _statistical_info.getElapsedTime() / 1000.0
 628               );
 629     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 630       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 631       st->print("allocated=" SIZE_FORMAT "%s ",
 632                 byte_size_in_proper_unit(allocated_bytes),
 633                 proper_unit_for_byte_size(allocated_bytes)
 634                 );
 635       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 636     }
 637 
 638     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 639     osthread()->print_on(st);
 640   }
 641   ThreadsSMRSupport::print_info_on(this, st);
 642   st->print(" ");
 643   debug_only(if (WizardMode) print_owned_locks_on(st);)
 644 }
 645 
 646 void Thread::print() const { print_on(tty); }
 647 
 648 // Thread::print_on_error() is called by fatal error handler. Don't use
 649 // any lock or allocate memory.
 650 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 651   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 652 
 653   if (is_VM_thread())                 { st->print("VMThread"); }
 654   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 655   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 656   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 657   else if (this == AsyncLogWriter::instance()) {
 658     st->print("%s", this->name());
 659   } else                                { st->print("Thread"); }
 660 
 661   if (is_Named_thread()) {
 662     st->print(" \"%s\"", name());
 663   }
 664 
 665   OSThread* os_thr = osthread();
 666   if (os_thr != NULL) {
 667     if (os_thr->get_state() != ZOMBIE) {
 668       st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 669                 p2i(stack_end()), p2i(stack_base()));
 670       st->print(" [id=%d]", osthread()->thread_id());
 671     } else {
 672       st->print(" terminated");
 673     }
 674   } else {
 675     st->print(" unknown state (no osThread)");
 676   }
 677   ThreadsSMRSupport::print_info_on(this, st);
 678 }
 679 
 680 void Thread::print_value_on(outputStream* st) const {
 681   if (is_Named_thread()) {
 682     st->print(" \"%s\" ", name());
 683   }
 684   st->print(INTPTR_FORMAT, p2i(this));   // print address
 685 }
 686 
 687 #ifdef ASSERT
 688 void Thread::print_owned_locks_on(outputStream* st) const {
 689   Mutex* cur = _owned_locks;
 690   if (cur == NULL) {
 691     st->print(" (no locks) ");
 692   } else {
 693     st->print_cr(" Locks owned:");
 694     while (cur) {
 695       cur->print_on(st);
 696       cur = cur->next();
 697     }
 698   }
 699 }
 700 #endif // ASSERT
 701 
 702 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 703 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 704 // used for compilation in the future. If that change is made, the need for these methods
 705 // should be revisited, and they should be removed if possible.
 706 
 707 bool Thread::is_lock_owned(address adr) const {
 708   return is_in_full_stack(adr);
 709 }
 710 
 711 bool Thread::set_as_starting_thread() {
 712   assert(_starting_thread == NULL, "already initialized: "
 713          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
 714   // NOTE: this must be called inside the main thread.
 715   DEBUG_ONLY(_starting_thread = this;)
 716   return os::create_main_thread(this->as_Java_thread());
 717 }
 718 
 719 static void initialize_class(Symbol* class_name, TRAPS) {
 720   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 721   InstanceKlass::cast(klass)->initialize(CHECK);
 722 }
 723 
 724 
 725 // Creates the initial ThreadGroup
 726 static Handle create_initial_thread_group(TRAPS) {
 727   Handle system_instance = JavaCalls::construct_new_instance(
 728                             vmClasses::ThreadGroup_klass(),
 729                             vmSymbols::void_method_signature(),
 730                             CHECK_NH);
 731   Universe::set_system_thread_group(system_instance());
 732 
 733   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 734   Handle main_instance = JavaCalls::construct_new_instance(
 735                             vmClasses::ThreadGroup_klass(),
 736                             vmSymbols::threadgroup_string_void_signature(),
 737                             system_instance,
 738                             string,
 739                             CHECK_NH);
 740   return main_instance;
 741 }
 742 
 743 // Creates the initial Thread, and sets it to running.
 744 static void create_initial_thread(Handle thread_group, JavaThread* thread,
 745                                  TRAPS) {
 746   InstanceKlass* ik = vmClasses::Thread_klass();
 747   assert(ik->is_initialized(), "must be");
 748   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
 749 
 750   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
 751   // constructor calls Thread.current(), which must be set here for the
 752   // initial thread.
 753   java_lang_Thread::set_thread(thread_oop(), thread);
 754   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 755   thread->set_threadObj(thread_oop());
 756 
 757   Handle string = java_lang_String::create_from_str("main", CHECK);
 758 
 759   JavaValue result(T_VOID);
 760   JavaCalls::call_special(&result, thread_oop,
 761                           ik,
 762                           vmSymbols::object_initializer_name(),
 763                           vmSymbols::threadgroup_string_void_signature(),
 764                           thread_group,
 765                           string,
 766                           CHECK);
 767 
 768   // Set thread status to running since main thread has
 769   // been started and running.
 770   java_lang_Thread::set_thread_status(thread_oop(),
 771                                       JavaThreadStatus::RUNNABLE);
 772 }
 773 
 774 // Extract version and vendor specific information from
 775 // java.lang.VersionProps fields.
 776 // Returned char* is allocated in the thread's resource area
 777 // so must be copied for permanency.
 778 static const char* get_java_version_info(InstanceKlass* ik,
 779                                          Symbol* field_name) {
 780   fieldDescriptor fd;
 781   bool found = ik != NULL &&
 782                ik->find_local_field(field_name,
 783                                     vmSymbols::string_signature(), &fd);
 784   if (found) {
 785     oop name_oop = ik->java_mirror()->obj_field(fd.offset());
 786     if (name_oop == NULL) {
 787       return NULL;
 788     }
 789     const char* name = java_lang_String::as_utf8_string(name_oop);
 790     return name;
 791   } else {
 792     return NULL;
 793   }
 794 }
 795 
 796 // General purpose hook into Java code, run once when the VM is initialized.
 797 // The Java library method itself may be changed independently from the VM.
 798 static void call_postVMInitHook(TRAPS) {
 799   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
 800   if (klass != NULL) {
 801     JavaValue result(T_VOID);
 802     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
 803                            vmSymbols::void_method_signature(),
 804                            CHECK);
 805   }
 806 }
 807 
 808 // Initialized by VMThread at vm_global_init
 809 static OopStorage* _thread_oop_storage = NULL;
 810 
 811 oop  JavaThread::threadObj() const    {
 812   return _threadObj.resolve();
 813 }
 814 
 815 void JavaThread::set_threadObj(oop p) {
 816   assert(_thread_oop_storage != NULL, "not yet initialized");
 817   _threadObj = OopHandle(_thread_oop_storage, p);
 818 }
 819 
 820 OopStorage* JavaThread::thread_oop_storage() {
 821   assert(_thread_oop_storage != NULL, "not yet initialized");
 822   return _thread_oop_storage;
 823 }
 824 
 825 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
 826                                     bool daemon, TRAPS) {
 827   assert(thread_group.not_null(), "thread group should be specified");
 828   assert(threadObj() == NULL, "should only create Java thread object once");
 829 
 830   InstanceKlass* ik = vmClasses::Thread_klass();
 831   assert(ik->is_initialized(), "must be");
 832   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
 833 
 834   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
 835   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
 836   // constructor calls Thread.current(), which must be set here.
 837   java_lang_Thread::set_thread(thread_oop(), this);
 838   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 839   set_threadObj(thread_oop());
 840 
 841   JavaValue result(T_VOID);
 842   if (thread_name != NULL) {
 843     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
 844     // Thread gets assigned specified name and null target
 845     JavaCalls::call_special(&result,
 846                             thread_oop,
 847                             ik,
 848                             vmSymbols::object_initializer_name(),
 849                             vmSymbols::threadgroup_string_void_signature(),
 850                             thread_group,
 851                             name,
 852                             THREAD);
 853   } else {
 854     // Thread gets assigned name "Thread-nnn" and null target
 855     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
 856     JavaCalls::call_special(&result,
 857                             thread_oop,
 858                             ik,
 859                             vmSymbols::object_initializer_name(),
 860                             vmSymbols::threadgroup_runnable_void_signature(),
 861                             thread_group,
 862                             Handle(),
 863                             THREAD);
 864   }
 865 
 866 
 867   if (daemon) {
 868     java_lang_Thread::set_daemon(thread_oop());
 869   }
 870 
 871   if (HAS_PENDING_EXCEPTION) {
 872     return;
 873   }
 874 
 875   Klass* group = vmClasses::ThreadGroup_klass();
 876   Handle threadObj(THREAD, this->threadObj());
 877 
 878   JavaCalls::call_special(&result,
 879                           thread_group,
 880                           group,
 881                           vmSymbols::add_method_name(),
 882                           vmSymbols::thread_void_signature(),
 883                           threadObj,          // Arg 1
 884                           THREAD);
 885 }
 886 
 887 // ======= JavaThread ========
 888 
 889 #if INCLUDE_JVMCI
 890 
 891 jlong* JavaThread::_jvmci_old_thread_counters;
 892 
 893 bool jvmci_counters_include(JavaThread* thread) {
 894   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
 895 }
 896 
 897 void JavaThread::collect_counters(jlong* array, int length) {
 898   assert(length == JVMCICounterSize, "wrong value");
 899   for (int i = 0; i < length; i++) {
 900     array[i] = _jvmci_old_thread_counters[i];
 901   }
 902   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
 903     if (jvmci_counters_include(tp)) {
 904       for (int i = 0; i < length; i++) {
 905         array[i] += tp->_jvmci_counters[i];
 906       }
 907     }
 908   }
 909 }
 910 
 911 // Attempt to enlarge the array for per thread counters.
 912 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
 913   jlong* new_counters = NEW_C_HEAP_ARRAY_RETURN_NULL(jlong, new_size, mtJVMCI);
 914   if (new_counters == NULL) {
 915     return NULL;
 916   }
 917   if (old_counters == NULL) {
 918     old_counters = new_counters;
 919     memset(old_counters, 0, sizeof(jlong) * new_size);
 920   } else {
 921     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
 922       new_counters[i] = old_counters[i];
 923     }
 924     if (new_size > current_size) {
 925       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
 926     }
 927     FREE_C_HEAP_ARRAY(jlong, old_counters);
 928   }
 929   return new_counters;
 930 }
 931 
 932 // Attempt to enlarge the array for per thread counters.
 933 bool JavaThread::resize_counters(int current_size, int new_size) {
 934   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
 935   if (new_counters == NULL) {
 936     return false;
 937   } else {
 938     _jvmci_counters = new_counters;
 939     return true;
 940   }
 941 }
 942 
 943 class VM_JVMCIResizeCounters : public VM_Operation {
 944  private:
 945   int _new_size;
 946   bool _failed;
 947 
 948  public:
 949   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
 950   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
 951   bool allow_nested_vm_operations() const        { return true; }
 952   void doit() {
 953     // Resize the old thread counters array
 954     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
 955     if (new_counters == NULL) {
 956       _failed = true;
 957       return;
 958     } else {
 959       JavaThread::_jvmci_old_thread_counters = new_counters;
 960     }
 961 
 962     // Now resize each threads array
 963     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
 964       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
 965         _failed = true;
 966         break;
 967       }
 968     }
 969     if (!_failed) {
 970       JVMCICounterSize = _new_size;
 971     }
 972   }
 973 
 974   bool failed() { return _failed; }
 975 };
 976 
 977 bool JavaThread::resize_all_jvmci_counters(int new_size) {
 978   VM_JVMCIResizeCounters op(new_size);
 979   VMThread::execute(&op);
 980   return !op.failed();
 981 }
 982 
 983 #endif // INCLUDE_JVMCI
 984 
 985 #ifdef ASSERT
 986 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 987 void JavaThread::check_possible_safepoint() {
 988   if (_no_safepoint_count > 0) {
 989     print_owned_locks();
 990     assert(false, "Possible safepoint reached by thread that does not allow it");
 991   }
 992 #ifdef CHECK_UNHANDLED_OOPS
 993   // Clear unhandled oops in JavaThreads so we get a crash right away.
 994   clear_unhandled_oops();
 995 #endif // CHECK_UNHANDLED_OOPS
 996 }
 997 
 998 void JavaThread::check_for_valid_safepoint_state() {
 999   // Check NoSafepointVerifier, which is implied by locks taken that can be
1000   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1001   // are held.
1002   check_possible_safepoint();
1003 
1004   if (thread_state() != _thread_in_vm) {
1005     fatal("LEAF method calling lock?");
1006   }
1007 
1008   if (GCALotAtAllSafepoints) {
1009     // We could enter a safepoint here and thus have a gc
1010     InterfaceSupport::check_gc_alot();
1011   }
1012 }
1013 #endif // ASSERT
1014 
1015 // A JavaThread is a normal Java thread
1016 
1017 JavaThread::JavaThread() :
1018   // Initialize fields
1019 
1020   _in_asgct(false),
1021   _on_thread_list(false),
1022   DEBUG_ONLY(_java_call_counter(0) COMMA)
1023   _entry_point(nullptr),
1024   _deopt_mark(nullptr),
1025   _deopt_nmethod(nullptr),
1026   _vframe_array_head(nullptr),
1027   _vframe_array_last(nullptr),
1028   _jvmti_deferred_updates(nullptr),
1029   _callee_target(nullptr),
1030   _vm_result(nullptr),
1031   _vm_result_2(nullptr),
1032 
1033   _current_pending_monitor(NULL),
1034   _current_pending_monitor_is_from_java(true),
1035   _current_waiting_monitor(NULL),
1036   _Stalled(0),
1037 
1038   _monitor_chunks(nullptr),
1039 
1040   _suspend_flags(0),
1041   _async_exception_condition(_no_async_condition),
1042   _pending_async_exception(nullptr),
1043 
1044   _thread_state(_thread_new),
1045   _saved_exception_pc(nullptr),
1046 #ifdef ASSERT
1047   _no_safepoint_count(0),
1048   _visited_for_critical_count(false),
1049 #endif
1050 
1051   _terminated(_not_terminated),
1052   _in_deopt_handler(0),
1053   _doing_unsafe_access(false),
1054   _do_not_unlock_if_synchronized(false),
1055   _jni_attach_state(_not_attaching_via_jni),
1056 #if INCLUDE_JVMCI
1057   _pending_deoptimization(-1),
1058   _pending_monitorenter(false),
1059   _pending_transfer_to_interpreter(false),
1060   _in_retryable_allocation(false),
1061   _pending_failed_speculation(0),
1062   _jvmci{nullptr},
1063   _jvmci_counters(nullptr),
1064   _jvmci_reserved0(0),
1065   _jvmci_reserved1(0),
1066   _jvmci_reserved_oop0(nullptr),
1067 #endif // INCLUDE_JVMCI
1068 
1069   _exception_oop(oop()),
1070   _exception_pc(0),
1071   _exception_handler_pc(0),
1072   _is_method_handle_return(0),
1073 
1074   _jni_active_critical(0),
1075   _pending_jni_exception_check_fn(nullptr),
1076   _depth_first_number(0),
1077 
1078   // JVMTI PopFrame support
1079   _popframe_condition(popframe_inactive),
1080   _frames_to_pop_failed_realloc(0),
1081 
1082   _handshake(this),
1083 
1084   _popframe_preserved_args(nullptr),
1085   _popframe_preserved_args_size(0),
1086 
1087   _jvmti_thread_state(nullptr),
1088   _interp_only_mode(0),
1089   _should_post_on_exceptions_flag(JNI_FALSE),
1090   _thread_stat(new ThreadStatistics()),
1091 
1092   _parker(),
1093   _cached_monitor_info(nullptr),
1094 
1095   _class_to_be_initialized(nullptr),
1096 
1097   _SleepEvent(ParkEvent::Allocate(this))
1098 {
1099   set_jni_functions(jni_functions());
1100 
1101 #if INCLUDE_JVMCI
1102   assert(_jvmci._implicit_exception_pc == nullptr, "must be");
1103   if (JVMCICounterSize > 0) {
1104     resize_counters(0, (int) JVMCICounterSize);
1105   }
1106 #endif // INCLUDE_JVMCI
1107 
1108   // Setup safepoint state info for this thread
1109   ThreadSafepointState::create(this);
1110 
1111   SafepointMechanism::initialize_header(this);
1112 
1113   set_requires_cross_modify_fence(false);
1114 
1115   pd_initialize();
1116   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1117 }
1118 
1119 JavaThread::JavaThread(bool is_attaching_via_jni) : JavaThread() {
1120   if (is_attaching_via_jni) {
1121     _jni_attach_state = _attaching_via_jni;
1122   }
1123 }
1124 
1125 
1126 // interrupt support
1127 
1128 void JavaThread::interrupt() {
1129   // All callers should have 'this' thread protected by a
1130   // ThreadsListHandle so that it cannot terminate and deallocate
1131   // itself.
1132   debug_only(check_for_dangling_thread_pointer(this);)
1133 
1134   // For Windows _interrupt_event
1135   osthread()->set_interrupted(true);
1136 
1137   // For Thread.sleep
1138   _SleepEvent->unpark();
1139 
1140   // For JSR166 LockSupport.park
1141   parker()->unpark();
1142 
1143   // For ObjectMonitor and JvmtiRawMonitor
1144   _ParkEvent->unpark();
1145 }
1146 
1147 
1148 bool JavaThread::is_interrupted(bool clear_interrupted) {
1149   debug_only(check_for_dangling_thread_pointer(this);)
1150 
1151   if (_threadObj.peek() == NULL) {
1152     // If there is no j.l.Thread then it is impossible to have
1153     // been interrupted. We can find NULL during VM initialization
1154     // or when a JNI thread is still in the process of attaching.
1155     // In such cases this must be the current thread.
1156     assert(this == Thread::current(), "invariant");
1157     return false;
1158   }
1159 
1160   bool interrupted = java_lang_Thread::interrupted(threadObj());
1161 
1162   // NOTE that since there is no "lock" around the interrupt and
1163   // is_interrupted operations, there is the possibility that the
1164   // interrupted flag will be "false" but that the
1165   // low-level events will be in the signaled state. This is
1166   // intentional. The effect of this is that Object.wait() and
1167   // LockSupport.park() will appear to have a spurious wakeup, which
1168   // is allowed and not harmful, and the possibility is so rare that
1169   // it is not worth the added complexity to add yet another lock.
1170   // For the sleep event an explicit reset is performed on entry
1171   // to JavaThread::sleep, so there is no early return. It has also been
1172   // recommended not to put the interrupted flag into the "event"
1173   // structure because it hides the issue.
1174   // Also, because there is no lock, we must only clear the interrupt
1175   // state if we are going to report that we were interrupted; otherwise
1176   // an interrupt that happens just after we read the field would be lost.
1177   if (interrupted && clear_interrupted) {
1178     assert(this == Thread::current(), "only the current thread can clear");
1179     java_lang_Thread::set_interrupted(threadObj(), false);
1180     osthread()->set_interrupted(false);
1181   }
1182 
1183   return interrupted;
1184 }
1185 
1186 void JavaThread::block_if_vm_exited() {
1187   if (_terminated == _vm_exited) {
1188     // _vm_exited is set at safepoint, and Threads_lock is never released
1189     // we will block here forever.
1190     // Here we can be doing a jump from a safe state to an unsafe state without
1191     // proper transition, but it happens after the final safepoint has begun.
1192     set_thread_state(_thread_in_vm);
1193     Threads_lock->lock();
1194     ShouldNotReachHere();
1195   }
1196 }
1197 
1198 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : JavaThread() {
1199   _jni_attach_state = _not_attaching_via_jni;
1200   set_entry_point(entry_point);
1201   // Create the native thread itself.
1202   // %note runtime_23
1203   os::ThreadType thr_type = os::java_thread;
1204   thr_type = entry_point == &CompilerThread::thread_entry ? os::compiler_thread :
1205                                                             os::java_thread;
1206   os::create_thread(this, thr_type, stack_sz);
1207   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1208   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1209   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1210   // the exception consists of creating the exception object & initializing it, initialization
1211   // will leave the VM via a JavaCall and then all locks must be unlocked).
1212   //
1213   // The thread is still suspended when we reach here. Thread must be explicit started
1214   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1215   // by calling Threads:add. The reason why this is not done here, is because the thread
1216   // object must be fully initialized (take a look at JVM_Start)
1217 }
1218 
1219 JavaThread::~JavaThread() {
1220 
1221   // Ask ServiceThread to release the threadObj OopHandle
1222   ServiceThread::add_oop_handle_release(_threadObj);
1223 
1224   // Return the sleep event to the free list
1225   ParkEvent::Release(_SleepEvent);
1226   _SleepEvent = NULL;
1227 
1228   // Free any remaining  previous UnrollBlock
1229   vframeArray* old_array = vframe_array_last();
1230 
1231   if (old_array != NULL) {
1232     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1233     old_array->set_unroll_block(NULL);
1234     delete old_info;
1235     delete old_array;
1236   }
1237 
1238   JvmtiDeferredUpdates* updates = deferred_updates();
1239   if (updates != NULL) {
1240     // This can only happen if thread is destroyed before deoptimization occurs.
1241     assert(updates->count() > 0, "Updates holder not deleted");
1242     // free deferred updates.
1243     delete updates;
1244     set_deferred_updates(NULL);
1245   }
1246 
1247   // All Java related clean up happens in exit
1248   ThreadSafepointState::destroy(this);
1249   if (_thread_stat != NULL) delete _thread_stat;
1250 
1251 #if INCLUDE_JVMCI
1252   if (JVMCICounterSize > 0) {
1253     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1254   }
1255 #endif // INCLUDE_JVMCI
1256 }
1257 
1258 
1259 // First JavaThread specific code executed by a new Java thread.
1260 void JavaThread::pre_run() {
1261   // empty - see comments in run()
1262 }
1263 
1264 // The main routine called by a new Java thread. This isn't overridden
1265 // by subclasses, instead different subclasses define a different "entry_point"
1266 // which defines the actual logic for that kind of thread.
1267 void JavaThread::run() {
1268   // initialize thread-local alloc buffer related fields
1269   initialize_tlab();
1270 
1271   _stack_overflow_state.create_stack_guard_pages();
1272 
1273   cache_global_variables();
1274 
1275   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1276   // in the VM. Change thread state from _thread_new to _thread_in_vm
1277   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1278   // Before a thread is on the threads list it is always safe, so after leaving the
1279   // _thread_new we should emit a instruction barrier. The distance to modified code
1280   // from here is probably far enough, but this is consistent and safe.
1281   OrderAccess::cross_modify_fence();
1282 
1283   assert(JavaThread::current() == this, "sanity check");
1284   assert(!Thread::current()->owns_locks(), "sanity check");
1285 
1286   DTRACE_THREAD_PROBE(start, this);
1287 
1288   // This operation might block. We call that after all safepoint checks for a new thread has
1289   // been completed.
1290   set_active_handles(JNIHandleBlock::allocate_block());
1291 
1292   if (JvmtiExport::should_post_thread_life()) {
1293     JvmtiExport::post_thread_start(this);
1294 
1295   }
1296 
1297   // We call another function to do the rest so we are sure that the stack addresses used
1298   // from there will be lower than the stack base just computed.
1299   thread_main_inner();
1300 }
1301 
1302 void JavaThread::thread_main_inner() {
1303   assert(JavaThread::current() == this, "sanity check");
1304   assert(_threadObj.peek() != NULL, "just checking");
1305 
1306   // Execute thread entry point unless this thread has a pending exception
1307   // or has been stopped before starting.
1308   // Note: Due to JVM_StopThread we can have pending exceptions already!
1309   if (!this->has_pending_exception() &&
1310       !java_lang_Thread::is_stillborn(this->threadObj())) {
1311     {
1312       ResourceMark rm(this);
1313       this->set_native_thread_name(this->get_thread_name());
1314     }
1315     HandleMark hm(this);
1316     this->entry_point()(this, this);
1317   }
1318 
1319   DTRACE_THREAD_PROBE(stop, this);
1320 
1321   // Cleanup is handled in post_run()
1322 }
1323 
1324 // Shared teardown for all JavaThreads
1325 void JavaThread::post_run() {
1326   this->exit(false);
1327   this->unregister_thread_stack_with_NMT();
1328   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1329   // for any shared tear-down.
1330   this->smr_delete();
1331 }
1332 
1333 static void ensure_join(JavaThread* thread) {
1334   // We do not need to grab the Threads_lock, since we are operating on ourself.
1335   Handle threadObj(thread, thread->threadObj());
1336   assert(threadObj.not_null(), "java thread object must exist");
1337   ObjectLocker lock(threadObj, thread);
1338   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1339   thread->clear_pending_exception();
1340   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1341   java_lang_Thread::set_thread_status(threadObj(), JavaThreadStatus::TERMINATED);
1342   // Clear the native thread instance - this makes isAlive return false and allows the join()
1343   // to complete once we've done the notify_all below. Needs a release() to obey Java Memory Model
1344   // requirements.
1345   java_lang_Thread::release_set_thread(threadObj(), NULL);
1346   lock.notify_all(thread);
1347   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1348   thread->clear_pending_exception();
1349 }
1350 
1351 static bool is_daemon(oop threadObj) {
1352   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1353 }
1354 
1355 // For any new cleanup additions, please check to see if they need to be applied to
1356 // cleanup_failed_attach_current_thread as well.
1357 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1358   assert(this == JavaThread::current(), "thread consistency check");
1359 
1360   elapsedTimer _timer_exit_phase1;
1361   elapsedTimer _timer_exit_phase2;
1362   elapsedTimer _timer_exit_phase3;
1363   elapsedTimer _timer_exit_phase4;
1364 
1365   if (log_is_enabled(Debug, os, thread, timer)) {
1366     _timer_exit_phase1.start();
1367   }
1368 
1369   HandleMark hm(this);
1370   Handle uncaught_exception(this, this->pending_exception());
1371   this->clear_pending_exception();
1372   Handle threadObj(this, this->threadObj());
1373   assert(threadObj.not_null(), "Java thread object should be created");
1374 
1375   if (!destroy_vm) {
1376     if (uncaught_exception.not_null()) {
1377       EXCEPTION_MARK;
1378       // Call method Thread.dispatchUncaughtException().
1379       Klass* thread_klass = vmClasses::Thread_klass();
1380       JavaValue result(T_VOID);
1381       JavaCalls::call_virtual(&result,
1382                               threadObj, thread_klass,
1383                               vmSymbols::dispatchUncaughtException_name(),
1384                               vmSymbols::throwable_void_signature(),
1385                               uncaught_exception,
1386                               THREAD);
1387       if (HAS_PENDING_EXCEPTION) {
1388         ResourceMark rm(this);
1389         jio_fprintf(defaultStream::error_stream(),
1390                     "\nException: %s thrown from the UncaughtExceptionHandler"
1391                     " in thread \"%s\"\n",
1392                     pending_exception()->klass()->external_name(),
1393                     get_thread_name());
1394         CLEAR_PENDING_EXCEPTION;
1395       }
1396     }
1397 
1398     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1399     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1400     // is deprecated anyhow.
1401     if (!is_Compiler_thread()) {
1402       int count = 3;
1403       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1404         EXCEPTION_MARK;
1405         JavaValue result(T_VOID);
1406         Klass* thread_klass = vmClasses::Thread_klass();
1407         JavaCalls::call_virtual(&result,
1408                                 threadObj, thread_klass,
1409                                 vmSymbols::exit_method_name(),
1410                                 vmSymbols::void_method_signature(),
1411                                 THREAD);
1412         CLEAR_PENDING_EXCEPTION;
1413       }
1414     }
1415     // notify JVMTI
1416     if (JvmtiExport::should_post_thread_life()) {
1417       JvmtiExport::post_thread_end(this);
1418     }
1419 
1420     // The careful dance between thread suspension and exit is handled here.
1421     // Since we are in thread_in_vm state and suspension is done with handshakes,
1422     // we can just put in the exiting state and it will be correctly handled.
1423     set_terminated(_thread_exiting);
1424 
1425     ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
1426   } else {
1427     assert(!is_terminated() && !is_exiting(), "must not be exiting");
1428     // before_exit() has already posted JVMTI THREAD_END events
1429   }
1430 
1431   if (log_is_enabled(Debug, os, thread, timer)) {
1432     _timer_exit_phase1.stop();
1433     _timer_exit_phase2.start();
1434   }
1435 
1436   // Capture daemon status before the thread is marked as terminated.
1437   bool daemon = is_daemon(threadObj());
1438 
1439   // Notify waiters on thread object. This has to be done after exit() is called
1440   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1441   // group should have the destroyed bit set before waiters are notified).
1442   ensure_join(this);
1443   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1444 
1445   if (log_is_enabled(Debug, os, thread, timer)) {
1446     _timer_exit_phase2.stop();
1447     _timer_exit_phase3.start();
1448   }
1449   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1450   // held by this thread must be released. The spec does not distinguish
1451   // between JNI-acquired and regular Java monitors. We can only see
1452   // regular Java monitors here if monitor enter-exit matching is broken.
1453   //
1454   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1455   // ObjectSynchronizer::release_monitors_owned_by_thread().
1456   if (exit_type == jni_detach) {
1457     // Sanity check even though JNI DetachCurrentThread() would have
1458     // returned JNI_ERR if there was a Java frame. JavaThread exit
1459     // should be done executing Java code by the time we get here.
1460     assert(!this->has_last_Java_frame(),
1461            "should not have a Java frame when detaching or exiting");
1462     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1463     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1464   }
1465 
1466   // These things needs to be done while we are still a Java Thread. Make sure that thread
1467   // is in a consistent state, in case GC happens
1468   JFR_ONLY(Jfr::on_thread_exit(this);)
1469 
1470   if (active_handles() != NULL) {
1471     JNIHandleBlock* block = active_handles();
1472     set_active_handles(NULL);
1473     JNIHandleBlock::release_block(block);
1474   }
1475 
1476   if (free_handle_block() != NULL) {
1477     JNIHandleBlock* block = free_handle_block();
1478     set_free_handle_block(NULL);
1479     JNIHandleBlock::release_block(block);
1480   }
1481 
1482   // These have to be removed while this is still a valid thread.
1483   _stack_overflow_state.remove_stack_guard_pages();
1484 
1485   if (UseTLAB) {
1486     tlab().retire();
1487   }
1488 
1489   if (JvmtiEnv::environments_might_exist()) {
1490     JvmtiExport::cleanup_thread(this);
1491   }
1492 
1493   // We need to cache the thread name for logging purposes below as once
1494   // we have called on_thread_detach this thread must not access any oops.
1495   char* thread_name = NULL;
1496   if (log_is_enabled(Debug, os, thread, timer)) {
1497     ResourceMark rm(this);
1498     thread_name = os::strdup(get_thread_name());
1499   }
1500 
1501   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1502     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1503     os::current_thread_id());
1504 
1505   if (log_is_enabled(Debug, os, thread, timer)) {
1506     _timer_exit_phase3.stop();
1507     _timer_exit_phase4.start();
1508   }
1509 
1510 #if INCLUDE_JVMCI
1511   if (JVMCICounterSize > 0) {
1512     if (jvmci_counters_include(this)) {
1513       for (int i = 0; i < JVMCICounterSize; i++) {
1514         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1515       }
1516     }
1517   }
1518 #endif // INCLUDE_JVMCI
1519 
1520   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1521   Threads::remove(this, daemon);
1522 
1523   if (log_is_enabled(Debug, os, thread, timer)) {
1524     _timer_exit_phase4.stop();
1525     log_debug(os, thread, timer)("name='%s'"
1526                                  ", exit-phase1=" JLONG_FORMAT
1527                                  ", exit-phase2=" JLONG_FORMAT
1528                                  ", exit-phase3=" JLONG_FORMAT
1529                                  ", exit-phase4=" JLONG_FORMAT,
1530                                  thread_name,
1531                                  _timer_exit_phase1.milliseconds(),
1532                                  _timer_exit_phase2.milliseconds(),
1533                                  _timer_exit_phase3.milliseconds(),
1534                                  _timer_exit_phase4.milliseconds());
1535     os::free(thread_name);
1536   }
1537 }
1538 
1539 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
1540   if (active_handles() != NULL) {
1541     JNIHandleBlock* block = active_handles();
1542     set_active_handles(NULL);
1543     JNIHandleBlock::release_block(block);
1544   }
1545 
1546   if (free_handle_block() != NULL) {
1547     JNIHandleBlock* block = free_handle_block();
1548     set_free_handle_block(NULL);
1549     JNIHandleBlock::release_block(block);
1550   }
1551 
1552   // These have to be removed while this is still a valid thread.
1553   _stack_overflow_state.remove_stack_guard_pages();
1554 
1555   if (UseTLAB) {
1556     tlab().retire();
1557   }
1558 
1559   Threads::remove(this, is_daemon);
1560   this->smr_delete();
1561 }
1562 
1563 JavaThread* JavaThread::active() {
1564   Thread* thread = Thread::current();
1565   if (thread->is_Java_thread()) {
1566     return thread->as_Java_thread();
1567   } else {
1568     assert(thread->is_VM_thread(), "this must be a vm thread");
1569     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1570     JavaThread *ret = op == NULL ? NULL : op->calling_thread()->as_Java_thread();
1571     return ret;
1572   }
1573 }
1574 
1575 bool JavaThread::is_lock_owned(address adr) const {
1576   if (Thread::is_lock_owned(adr)) return true;
1577 
1578   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1579     if (chunk->contains(adr)) return true;
1580   }
1581 
1582   return false;
1583 }
1584 
1585 oop JavaThread::exception_oop() const {
1586   return Atomic::load(&_exception_oop);
1587 }
1588 
1589 void JavaThread::set_exception_oop(oop o) {
1590   Atomic::store(&_exception_oop, o);
1591 }
1592 
1593 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1594   chunk->set_next(monitor_chunks());
1595   set_monitor_chunks(chunk);
1596 }
1597 
1598 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1599   guarantee(monitor_chunks() != NULL, "must be non empty");
1600   if (monitor_chunks() == chunk) {
1601     set_monitor_chunks(chunk->next());
1602   } else {
1603     MonitorChunk* prev = monitor_chunks();
1604     while (prev->next() != chunk) prev = prev->next();
1605     prev->set_next(chunk->next());
1606   }
1607 }
1608 
1609 
1610 // Asynchronous exceptions support
1611 //
1612 // Note: this function shouldn't block if it's called in
1613 // _thread_in_native_trans state (such as from
1614 // check_special_condition_for_native_trans()).
1615 void JavaThread::check_and_handle_async_exceptions() {
1616   if (has_last_Java_frame() && has_async_exception_condition()) {
1617     // If we are at a polling page safepoint (not a poll return)
1618     // then we must defer async exception because live registers
1619     // will be clobbered by the exception path. Poll return is
1620     // ok because the call we a returning from already collides
1621     // with exception handling registers and so there is no issue.
1622     // (The exception handling path kills call result registers but
1623     //  this is ok since the exception kills the result anyway).
1624 
1625     if (is_at_poll_safepoint()) {
1626       // if the code we are returning to has deoptimized we must defer
1627       // the exception otherwise live registers get clobbered on the
1628       // exception path before deoptimization is able to retrieve them.
1629       //
1630       RegisterMap map(this, false);
1631       frame caller_fr = last_frame().sender(&map);
1632       assert(caller_fr.is_compiled_frame(), "what?");
1633       if (caller_fr.is_deoptimized_frame()) {
1634         log_info(exceptions)("deferred async exception at compiled safepoint");
1635         return;
1636       }
1637     }
1638   }
1639 
1640   AsyncExceptionCondition condition = clear_async_exception_condition();
1641   if (condition == _no_async_condition) {
1642     // Conditions have changed since has_special_runtime_exit_condition()
1643     // was called:
1644     // - if we were here only because of an external suspend request,
1645     //   then that was taken care of above (or cancelled) so we are done
1646     // - if we were here because of another async request, then it has
1647     //   been cleared between the has_special_runtime_exit_condition()
1648     //   and now so again we are done
1649     return;
1650   }
1651 
1652   // Check for pending async. exception
1653   if (_pending_async_exception != NULL) {
1654     // Only overwrite an already pending exception, if it is not a threadDeath.
1655     if (!has_pending_exception() || !pending_exception()->is_a(vmClasses::ThreadDeath_klass())) {
1656 
1657       // We cannot call Exceptions::_throw(...) here because we cannot block
1658       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
1659 
1660       LogTarget(Info, exceptions) lt;
1661       if (lt.is_enabled()) {
1662         ResourceMark rm;
1663         LogStream ls(lt);
1664         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
1665           if (has_last_Java_frame()) {
1666             frame f = last_frame();
1667            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
1668           }
1669         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
1670       }
1671       _pending_async_exception = NULL;
1672       // Clear condition from _suspend_flags since we have finished processing it.
1673       clear_suspend_flag(_has_async_exception);
1674     }
1675   }
1676 
1677   if (condition == _async_unsafe_access_error && !has_pending_exception()) {
1678     // We may be at method entry which requires we save the do-not-unlock flag.
1679     UnlockFlagSaver fs(this);
1680     switch (thread_state()) {
1681     case _thread_in_vm: {
1682       JavaThread* THREAD = this;
1683       Exceptions::throw_unsafe_access_internal_error(THREAD, __FILE__, __LINE__, "a fault occurred in an unsafe memory access operation");
1684       return;
1685     }
1686     case _thread_in_native: {
1687       ThreadInVMfromNative tiv(this);
1688       JavaThread* THREAD = this;
1689       Exceptions::throw_unsafe_access_internal_error(THREAD, __FILE__, __LINE__, "a fault occurred in an unsafe memory access operation");
1690       return;
1691     }
1692     case _thread_in_Java: {
1693       ThreadInVMfromJava tiv(this);
1694       JavaThread* THREAD = this;
1695       Exceptions::throw_unsafe_access_internal_error(THREAD, __FILE__, __LINE__, "a fault occurred in a recent unsafe memory access operation in compiled Java code");
1696       return;
1697     }
1698     default:
1699       ShouldNotReachHere();
1700     }
1701   }
1702 
1703   assert(has_pending_exception(), "must have handled the async condition if no exception");
1704 }
1705 
1706 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
1707 
1708   if (is_obj_deopt_suspend()) {
1709     frame_anchor()->make_walkable();
1710     wait_for_object_deoptimization();
1711   }
1712 
1713   // We might be here for reasons in addition to the self-suspend request
1714   // so check for other async requests.
1715   if (check_asyncs) {
1716     check_and_handle_async_exceptions();
1717   }
1718 
1719   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
1720 }
1721 
1722 class InstallAsyncExceptionClosure : public HandshakeClosure {
1723   Handle _throwable; // The Throwable thrown at the target Thread
1724 public:
1725   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
1726 
1727   void do_thread(Thread* thr) {
1728     JavaThread* target = thr->as_Java_thread();
1729     // Note that this now allows multiple ThreadDeath exceptions to be
1730     // thrown at a thread.
1731     // The target thread has run and has not exited yet.
1732     target->send_thread_stop(_throwable());
1733   }
1734 };
1735 
1736 void JavaThread::send_async_exception(oop java_thread, oop java_throwable) {
1737   Handle throwable(Thread::current(), java_throwable);
1738   JavaThread* target = java_lang_Thread::thread(java_thread);
1739   InstallAsyncExceptionClosure vm_stop(throwable);
1740   Handshake::execute(&vm_stop, target);
1741 }
1742 
1743 void JavaThread::send_thread_stop(oop java_throwable)  {
1744   ResourceMark rm;
1745   assert(is_handshake_safe_for(Thread::current()),
1746          "should be self or handshakee");
1747 
1748   // Do not throw asynchronous exceptions against the compiler thread
1749   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
1750   if (!can_call_java()) return;
1751 
1752   {
1753     // Actually throw the Throwable against the target Thread - however
1754     // only if there is no thread death exception installed already.
1755     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(vmClasses::ThreadDeath_klass())) {
1756       // If the topmost frame is a runtime stub, then we are calling into
1757       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
1758       // must deoptimize the caller before continuing, as the compiled  exception handler table
1759       // may not be valid
1760       if (has_last_Java_frame()) {
1761         frame f = last_frame();
1762         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
1763           RegisterMap reg_map(this, false);
1764           frame compiled_frame = f.sender(&reg_map);
1765           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
1766             Deoptimization::deoptimize(this, compiled_frame);
1767           }
1768         }
1769       }
1770 
1771       // Set async. pending exception in thread.
1772       set_pending_async_exception(java_throwable);
1773 
1774       if (log_is_enabled(Info, exceptions)) {
1775          ResourceMark rm;
1776         log_info(exceptions)("Pending Async. exception installed of type: %s",
1777                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
1778       }
1779       // for AbortVMOnException flag
1780       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
1781     }
1782   }
1783 
1784 
1785   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
1786   java_lang_Thread::set_interrupted(threadObj(), true);
1787   this->interrupt();
1788 }
1789 
1790 
1791 // External suspension mechanism.
1792 //
1793 // Guarantees on return (for a valid target thread):
1794 //   - Target thread will not execute any new bytecode.
1795 //   - Target thread will not enter any new monitors.
1796 //
1797 bool JavaThread::java_suspend() {
1798   ThreadsListHandle tlh;
1799   if (!tlh.includes(this)) {
1800     log_trace(thread, suspend)("JavaThread:" INTPTR_FORMAT " not on ThreadsList, no suspension", p2i(this));
1801     return false;
1802   }
1803   return this->handshake_state()->suspend();
1804 }
1805 
1806 bool JavaThread::java_resume() {
1807   ThreadsListHandle tlh;
1808   if (!tlh.includes(this)) {
1809     log_trace(thread, suspend)("JavaThread:" INTPTR_FORMAT " not on ThreadsList, nothing to resume", p2i(this));
1810     return false;
1811   }
1812   return this->handshake_state()->resume();
1813 }
1814 
1815 // Wait for another thread to perform object reallocation and relocking on behalf of
1816 // this thread.
1817 // Raw thread state transition to _thread_blocked and back again to the original
1818 // state before returning are performed. The current thread is required to
1819 // change to _thread_blocked in order to be seen to be safepoint/handshake safe
1820 // whilst suspended and only after becoming handshake safe, the other thread can
1821 // complete the handshake used to synchronize with this thread and then perform
1822 // the reallocation and relocking. We cannot use the thread state transition
1823 // helpers because we arrive here in various states and also because the helpers
1824 // indirectly call this method.  After leaving _thread_blocked we have to check
1825 // for safepoint/handshake, except if _thread_in_native. The thread is safe
1826 // without blocking then. Allowed states are enumerated in
1827 // SafepointSynchronize::block(). See also EscapeBarrier::sync_and_suspend_*()
1828 
1829 void JavaThread::wait_for_object_deoptimization() {
1830   assert(!has_last_Java_frame() || frame_anchor()->walkable(), "should have walkable stack");
1831   assert(this == Thread::current(), "invariant");
1832   JavaThreadState state = thread_state();
1833 
1834   bool spin_wait = os::is_MP();
1835   do {
1836     set_thread_state(_thread_blocked);
1837     // Wait for object deoptimization if requested.
1838     if (spin_wait) {
1839       // A single deoptimization is typically very short. Microbenchmarks
1840       // showed 5% better performance when spinning.
1841       const uint spin_limit = 10 * SpinYield::default_spin_limit;
1842       SpinYield spin(spin_limit);
1843       for (uint i = 0; is_obj_deopt_suspend() && i < spin_limit; i++) {
1844         spin.wait();
1845       }
1846       // Spin just once
1847       spin_wait = false;
1848     } else {
1849       MonitorLocker ml(this, EscapeBarrier_lock, Monitor::_no_safepoint_check_flag);
1850       if (is_obj_deopt_suspend()) {
1851         ml.wait();
1852       }
1853     }
1854     // The current thread could have been suspended again. We have to check for
1855     // suspend after restoring the saved state. Without this the current thread
1856     // might return to _thread_in_Java and execute bytecode.
1857     set_thread_state_fence(state);
1858 
1859     if (state != _thread_in_native) {
1860       SafepointMechanism::process_if_requested(this);
1861     }
1862     // A handshake for obj. deoptimization suspend could have been processed so
1863     // we must check after processing.
1864   } while (is_obj_deopt_suspend());
1865 }
1866 
1867 #ifdef ASSERT
1868 // Verify the JavaThread has not yet been published in the Threads::list, and
1869 // hence doesn't need protection from concurrent access at this stage.
1870 void JavaThread::verify_not_published() {
1871   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
1872   // since an unpublished JavaThread doesn't participate in the
1873   // Thread-SMR protocol for keeping a ThreadsList alive.
1874   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
1875 }
1876 #endif
1877 
1878 // Slow path when the native==>Java barriers detect a safepoint/handshake is
1879 // pending, when _suspend_flags is non-zero or when we need to process a stack
1880 // watermark. Also check for pending async exceptions (except unsafe access error).
1881 // Note only the native==>Java barriers can call this function when thread state
1882 // is _thread_in_native_trans.
1883 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
1884   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
1885   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->Java transition");
1886 
1887   // Enable WXWrite: called directly from interpreter native wrapper.
1888   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread));
1889 
1890   SafepointMechanism::process_if_requested_with_exit_check(thread, false /* check asyncs */);
1891 
1892   // After returning from native, it could be that the stack frames are not
1893   // yet safe to use. We catch such situations in the subsequent stack watermark
1894   // barrier, which will trap unsafe stack frames.
1895   StackWatermarkSet::before_unwind(thread);
1896 
1897   if (thread->has_async_exception_condition(false /* check unsafe access error */)) {
1898     // We are in _thread_in_native_trans state, don't handle unsafe
1899     // access error since that may block.
1900     thread->check_and_handle_async_exceptions();
1901   }
1902 }
1903 
1904 #ifndef PRODUCT
1905 // Deoptimization
1906 // Function for testing deoptimization
1907 void JavaThread::deoptimize() {
1908   StackFrameStream fst(this, false /* update */, true /* process_frames */);
1909   bool deopt = false;           // Dump stack only if a deopt actually happens.
1910   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
1911   // Iterate over all frames in the thread and deoptimize
1912   for (; !fst.is_done(); fst.next()) {
1913     if (fst.current()->can_be_deoptimized()) {
1914 
1915       if (only_at) {
1916         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
1917         // consists of comma or carriage return separated numbers so
1918         // search for the current bci in that string.
1919         address pc = fst.current()->pc();
1920         nmethod* nm =  (nmethod*) fst.current()->cb();
1921         ScopeDesc* sd = nm->scope_desc_at(pc);
1922         char buffer[8];
1923         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
1924         size_t len = strlen(buffer);
1925         const char * found = strstr(DeoptimizeOnlyAt, buffer);
1926         while (found != NULL) {
1927           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
1928               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
1929             // Check that the bci found is bracketed by terminators.
1930             break;
1931           }
1932           found = strstr(found + 1, buffer);
1933         }
1934         if (!found) {
1935           continue;
1936         }
1937       }
1938 
1939       if (DebugDeoptimization && !deopt) {
1940         deopt = true; // One-time only print before deopt
1941         tty->print_cr("[BEFORE Deoptimization]");
1942         trace_frames();
1943         trace_stack();
1944       }
1945       Deoptimization::deoptimize(this, *fst.current());
1946     }
1947   }
1948 
1949   if (DebugDeoptimization && deopt) {
1950     tty->print_cr("[AFTER Deoptimization]");
1951     trace_frames();
1952   }
1953 }
1954 
1955 
1956 // Make zombies
1957 void JavaThread::make_zombies() {
1958   for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
1959     if (fst.current()->can_be_deoptimized()) {
1960       // it is a Java nmethod
1961       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
1962       nm->make_not_entrant();
1963     }
1964   }
1965 }
1966 #endif // PRODUCT
1967 
1968 
1969 void JavaThread::deoptimize_marked_methods() {
1970   if (!has_last_Java_frame()) return;
1971   StackFrameStream fst(this, false /* update */, true /* process_frames */);
1972   for (; !fst.is_done(); fst.next()) {
1973     if (fst.current()->should_be_deoptimized()) {
1974       Deoptimization::deoptimize(this, *fst.current());
1975     }
1976   }
1977 }
1978 
1979 #ifdef ASSERT
1980 void JavaThread::verify_frame_info() {
1981   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
1982          (has_last_Java_frame() && java_call_counter() > 0),
1983          "unexpected frame info: has_last_frame=%s, java_call_counter=%d",
1984          has_last_Java_frame() ? "true" : "false", java_call_counter());
1985 }
1986 #endif
1987 
1988 void JavaThread::oops_do_no_frames(OopClosure* f, CodeBlobClosure* cf) {
1989   // Verify that the deferred card marks have been flushed.
1990   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
1991 
1992   // Traverse the GCHandles
1993   Thread::oops_do_no_frames(f, cf);
1994 
1995   DEBUG_ONLY(verify_frame_info();)
1996 
1997   if (has_last_Java_frame()) {
1998     // Traverse the monitor chunks
1999     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2000       chunk->oops_do(f);
2001     }
2002   }
2003 
2004   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2005   // If we have deferred set_locals there might be oops waiting to be
2006   // written
2007   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = JvmtiDeferredUpdates::deferred_locals(this);
2008   if (list != NULL) {
2009     for (int i = 0; i < list->length(); i++) {
2010       list->at(i)->oops_do(f);
2011     }
2012   }
2013 
2014   // Traverse instance variables at the end since the GC may be moving things
2015   // around using this function
2016   f->do_oop((oop*) &_vm_result);
2017   f->do_oop((oop*) &_exception_oop);
2018   f->do_oop((oop*) &_pending_async_exception);
2019 #if INCLUDE_JVMCI
2020   f->do_oop((oop*) &_jvmci_reserved_oop0);
2021 #endif
2022 
2023   if (jvmti_thread_state() != NULL) {
2024     jvmti_thread_state()->oops_do(f, cf);
2025   }
2026 }
2027 
2028 void JavaThread::oops_do_frames(OopClosure* f, CodeBlobClosure* cf) {
2029   if (!has_last_Java_frame()) {
2030     return;
2031   }
2032   // Finish any pending lazy GC activity for the frames
2033   StackWatermarkSet::finish_processing(this, NULL /* context */, StackWatermarkKind::gc);
2034   // Traverse the execution stack
2035   for (StackFrameStream fst(this, true /* update */, false /* process_frames */); !fst.is_done(); fst.next()) {
2036     fst.current()->oops_do(f, cf, fst.register_map());
2037   }
2038 }
2039 
2040 #ifdef ASSERT
2041 void JavaThread::verify_states_for_handshake() {
2042   // This checks that the thread has a correct frame state during a handshake.
2043   verify_frame_info();
2044 }
2045 #endif
2046 
2047 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2048   DEBUG_ONLY(verify_frame_info();)
2049 
2050   if (has_last_Java_frame()) {
2051     // Traverse the execution stack
2052     for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2053       fst.current()->nmethods_do(cf);
2054     }
2055   }
2056 
2057   if (jvmti_thread_state() != NULL) {
2058     jvmti_thread_state()->nmethods_do(cf);
2059   }
2060 }
2061 
2062 void JavaThread::metadata_do(MetadataClosure* f) {
2063   if (has_last_Java_frame()) {
2064     // Traverse the execution stack to call f() on the methods in the stack
2065     for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2066       fst.current()->metadata_do(f);
2067     }
2068   } else if (is_Compiler_thread()) {
2069     // need to walk ciMetadata in current compile tasks to keep alive.
2070     CompilerThread* ct = (CompilerThread*)this;
2071     if (ct->env() != NULL) {
2072       ct->env()->metadata_do(f);
2073     }
2074     CompileTask* task = ct->task();
2075     if (task != NULL) {
2076       task->metadata_do(f);
2077     }
2078   }
2079 }
2080 
2081 // Printing
2082 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2083   switch (_thread_state) {
2084   case _thread_uninitialized:     return "_thread_uninitialized";
2085   case _thread_new:               return "_thread_new";
2086   case _thread_new_trans:         return "_thread_new_trans";
2087   case _thread_in_native:         return "_thread_in_native";
2088   case _thread_in_native_trans:   return "_thread_in_native_trans";
2089   case _thread_in_vm:             return "_thread_in_vm";
2090   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2091   case _thread_in_Java:           return "_thread_in_Java";
2092   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2093   case _thread_blocked:           return "_thread_blocked";
2094   case _thread_blocked_trans:     return "_thread_blocked_trans";
2095   default:                        return "unknown thread state";
2096   }
2097 }
2098 
2099 #ifndef PRODUCT
2100 void JavaThread::print_thread_state_on(outputStream *st) const {
2101   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2102 };
2103 #endif // PRODUCT
2104 
2105 // Called by Threads::print() for VM_PrintThreads operation
2106 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
2107   st->print_raw("\"");
2108   st->print_raw(get_thread_name());
2109   st->print_raw("\" ");
2110   oop thread_oop = threadObj();
2111   if (thread_oop != NULL) {
2112     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
2113     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2114     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2115   }
2116   Thread::print_on(st, print_extended_info);
2117   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2118   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2119   if (thread_oop != NULL) {
2120     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2121   }
2122 #ifndef PRODUCT
2123   _safepoint_state->print_on(st);
2124 #endif // PRODUCT
2125   if (is_Compiler_thread()) {
2126     CompileTask *task = ((CompilerThread*)this)->task();
2127     if (task != NULL) {
2128       st->print("   Compiling: ");
2129       task->print(st, NULL, true, false);
2130     } else {
2131       st->print("   No compile task");
2132     }
2133     st->cr();
2134   }
2135 }
2136 
2137 void JavaThread::print() const { print_on(tty); }
2138 
2139 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2140   st->print("%s", get_thread_name_string(buf, buflen));
2141 }
2142 
2143 // Called by fatal error handler. The difference between this and
2144 // JavaThread::print() is that we can't grab lock or allocate memory.
2145 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2146   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2147   oop thread_obj = threadObj();
2148   if (thread_obj != NULL) {
2149     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2150   }
2151   st->print(" [");
2152   st->print("%s", _get_thread_state_name(_thread_state));
2153   if (osthread()) {
2154     st->print(", id=%d", osthread()->thread_id());
2155   }
2156   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2157             p2i(stack_end()), p2i(stack_base()));
2158   st->print("]");
2159 
2160   ThreadsSMRSupport::print_info_on(this, st);
2161   return;
2162 }
2163 
2164 
2165 // Verification
2166 
2167 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2168   // ignore if there is no stack
2169   if (!has_last_Java_frame()) return;
2170   // traverse the stack frames. Starts from top frame.
2171   for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2172     frame* fr = fst.current();
2173     f(fr, fst.register_map());
2174   }
2175 }
2176 
2177 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2178 
2179 void JavaThread::verify() {
2180   // Verify oops in the thread.
2181   oops_do(&VerifyOopClosure::verify_oop, NULL);
2182 
2183   // Verify the stack frames.
2184   frames_do(frame_verify);
2185 }
2186 
2187 // CR 6300358 (sub-CR 2137150)
2188 // Most callers of this method assume that it can't return NULL but a
2189 // thread may not have a name whilst it is in the process of attaching to
2190 // the VM - see CR 6412693, and there are places where a JavaThread can be
2191 // seen prior to having its threadObj set (e.g., JNI attaching threads and
2192 // if vm exit occurs during initialization). These cases can all be accounted
2193 // for such that this method never returns NULL.
2194 const char* JavaThread::get_thread_name() const {
2195   if (Thread::is_JavaThread_protected(this)) {
2196     // The target JavaThread is protected so get_thread_name_string() is safe:
2197     return get_thread_name_string();
2198   }
2199 
2200   // The target JavaThread is not protected so we return the default:
2201   return Thread::name();
2202 }
2203 
2204 // Returns a non-NULL representation of this thread's name, or a suitable
2205 // descriptive string if there is no set name.
2206 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2207   const char* name_str;
2208   oop thread_obj = threadObj();
2209   if (thread_obj != NULL) {
2210     oop name = java_lang_Thread::name(thread_obj);
2211     if (name != NULL) {
2212       if (buf == NULL) {
2213         name_str = java_lang_String::as_utf8_string(name);
2214       } else {
2215         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2216       }
2217     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2218       name_str = "<no-name - thread is attaching>";
2219     } else {
2220       name_str = Thread::name();
2221     }
2222   } else {
2223     name_str = Thread::name();
2224   }
2225   assert(name_str != NULL, "unexpected NULL thread name");
2226   return name_str;
2227 }
2228 
2229 // Helper to extract the name from the thread oop for logging.
2230 const char* JavaThread::name_for(oop thread_obj) {
2231   assert(thread_obj != NULL, "precondition");
2232   oop name = java_lang_Thread::name(thread_obj);
2233   const char* name_str;
2234   if (name != NULL) {
2235     name_str = java_lang_String::as_utf8_string(name);
2236   } else {
2237     name_str = "<un-named>";
2238   }
2239   return name_str;
2240 }
2241 
2242 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2243 
2244   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2245   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
2246   // Link Java Thread object <-> C++ Thread
2247 
2248   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2249   // and put it into a new Handle.  The Handle "thread_oop" can then
2250   // be used to pass the C++ thread object to other methods.
2251 
2252   // Set the Java level thread object (jthread) field of the
2253   // new thread (a JavaThread *) to C++ thread object using the
2254   // "thread_oop" handle.
2255 
2256   // Set the thread field (a JavaThread *) of the
2257   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2258 
2259   Handle thread_oop(Thread::current(),
2260                     JNIHandles::resolve_non_null(jni_thread));
2261   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2262          "must be initialized");
2263   set_threadObj(thread_oop());
2264 
2265   if (prio == NoPriority) {
2266     prio = java_lang_Thread::priority(thread_oop());
2267     assert(prio != NoPriority, "A valid priority should be present");
2268   }
2269 
2270   // Push the Java priority down to the native thread; needs Threads_lock
2271   Thread::set_priority(this, prio);
2272 
2273   // Add the new thread to the Threads list and set it in motion.
2274   // We must have threads lock in order to call Threads::add.
2275   // It is crucial that we do not block before the thread is
2276   // added to the Threads list for if a GC happens, then the java_thread oop
2277   // will not be visited by GC.
2278   Threads::add(this);
2279   // Publish the JavaThread* in java.lang.Thread after the JavaThread* is
2280   // on a ThreadsList. We don't want to wait for the release when the
2281   // Theads_lock is dropped somewhere in the caller since the JavaThread*
2282   // is already visible to JVM/TI via the ThreadsList.
2283   java_lang_Thread::release_set_thread(thread_oop(), this);
2284 }
2285 
2286 oop JavaThread::current_park_blocker() {
2287   // Support for JSR-166 locks
2288   oop thread_oop = threadObj();
2289   if (thread_oop != NULL) {
2290     return java_lang_Thread::park_blocker(thread_oop);
2291   }
2292   return NULL;
2293 }
2294 
2295 // Print current stack trace for checked JNI warnings and JNI fatal errors.
2296 // This is the external format, selecting the platform
2297 // as applicable, and allowing for a native-only stack.
2298 void JavaThread::print_jni_stack() {
2299   assert(this == JavaThread::current(), "Can't print stack of other threads");
2300   if (!has_last_Java_frame()) {
2301     ResourceMark rm(this);
2302     char* buf = NEW_RESOURCE_ARRAY_RETURN_NULL(char, O_BUFLEN);
2303     if (buf == nullptr) {
2304       tty->print_cr("Unable to print native stack - out of memory");
2305       return;
2306     }
2307     frame f = os::current_frame();
2308     VMError::print_native_stack(tty, f, this,
2309                                 buf, O_BUFLEN);
2310   } else {
2311     print_stack_on(tty);
2312   }
2313 }
2314 
2315 void JavaThread::print_stack_on(outputStream* st) {
2316   if (!has_last_Java_frame()) return;
2317 
2318   Thread* current_thread = Thread::current();
2319   ResourceMark rm(current_thread);
2320   HandleMark hm(current_thread);
2321 
2322   RegisterMap reg_map(this);
2323   vframe* start_vf = last_java_vframe(&reg_map);
2324   int count = 0;
2325   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
2326     if (f->is_java_frame()) {
2327       javaVFrame* jvf = javaVFrame::cast(f);
2328       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
2329 
2330       // Print out lock information
2331       if (JavaMonitorsInStackTrace) {
2332         jvf->print_lock_info_on(st, count);
2333       }
2334     } else {
2335       // Ignore non-Java frames
2336     }
2337 
2338     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
2339     count++;
2340     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
2341   }
2342 }
2343 
2344 
2345 // JVMTI PopFrame support
2346 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
2347   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
2348   if (in_bytes(size_in_bytes) != 0) {
2349     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
2350     _popframe_preserved_args_size = in_bytes(size_in_bytes);
2351     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
2352   }
2353 }
2354 
2355 void* JavaThread::popframe_preserved_args() {
2356   return _popframe_preserved_args;
2357 }
2358 
2359 ByteSize JavaThread::popframe_preserved_args_size() {
2360   return in_ByteSize(_popframe_preserved_args_size);
2361 }
2362 
2363 WordSize JavaThread::popframe_preserved_args_size_in_words() {
2364   int sz = in_bytes(popframe_preserved_args_size());
2365   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
2366   return in_WordSize(sz / wordSize);
2367 }
2368 
2369 void JavaThread::popframe_free_preserved_args() {
2370   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
2371   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
2372   _popframe_preserved_args = NULL;
2373   _popframe_preserved_args_size = 0;
2374 }
2375 
2376 #ifndef PRODUCT
2377 
2378 void JavaThread::trace_frames() {
2379   tty->print_cr("[Describe stack]");
2380   int frame_no = 1;
2381   for (StackFrameStream fst(this, true /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2382     tty->print("  %d. ", frame_no++);
2383     fst.current()->print_value_on(tty, this);
2384     tty->cr();
2385   }
2386 }
2387 
2388 class PrintAndVerifyOopClosure: public OopClosure {
2389  protected:
2390   template <class T> inline void do_oop_work(T* p) {
2391     oop obj = RawAccess<>::oop_load(p);
2392     if (obj == NULL) return;
2393     tty->print(INTPTR_FORMAT ": ", p2i(p));
2394     if (oopDesc::is_oop_or_null(obj)) {
2395       if (obj->is_objArray()) {
2396         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
2397       } else {
2398         obj->print();
2399       }
2400     } else {
2401       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
2402     }
2403     tty->cr();
2404   }
2405  public:
2406   virtual void do_oop(oop* p) { do_oop_work(p); }
2407   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
2408 };
2409 
2410 #ifdef ASSERT
2411 // Print or validate the layout of stack frames
2412 void JavaThread::print_frame_layout(int depth, bool validate_only) {
2413   ResourceMark rm;
2414   PreserveExceptionMark pm(this);
2415   FrameValues values;
2416   int frame_no = 0;
2417   for (StackFrameStream fst(this, false /* update */, true /* process_frames */); !fst.is_done(); fst.next()) {
2418     fst.current()->describe(values, ++frame_no);
2419     if (depth == frame_no) break;
2420   }
2421   if (validate_only) {
2422     values.validate();
2423   } else {
2424     tty->print_cr("[Describe stack layout]");
2425     values.print(this);
2426   }
2427 }
2428 #endif
2429 
2430 void JavaThread::trace_stack_from(vframe* start_vf) {
2431   ResourceMark rm;
2432   int vframe_no = 1;
2433   for (vframe* f = start_vf; f; f = f->sender()) {
2434     if (f->is_java_frame()) {
2435       javaVFrame::cast(f)->print_activation(vframe_no++);
2436     } else {
2437       f->print();
2438     }
2439     if (vframe_no > StackPrintLimit) {
2440       tty->print_cr("...<more frames>...");
2441       return;
2442     }
2443   }
2444 }
2445 
2446 
2447 void JavaThread::trace_stack() {
2448   if (!has_last_Java_frame()) return;
2449   Thread* current_thread = Thread::current();
2450   ResourceMark rm(current_thread);
2451   HandleMark hm(current_thread);
2452   RegisterMap reg_map(this);
2453   trace_stack_from(last_java_vframe(&reg_map));
2454 }
2455 
2456 
2457 #endif // PRODUCT
2458 
2459 
2460 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
2461   assert(reg_map != NULL, "a map must be given");
2462   frame f = last_frame();
2463   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
2464     if (vf->is_java_frame()) return javaVFrame::cast(vf);
2465   }
2466   return NULL;
2467 }
2468 
2469 
2470 Klass* JavaThread::security_get_caller_class(int depth) {
2471   vframeStream vfst(this);
2472   vfst.security_get_caller_frame(depth);
2473   if (!vfst.at_end()) {
2474     return vfst.method()->method_holder();
2475   }
2476   return NULL;
2477 }
2478 
2479 // java.lang.Thread.sleep support
2480 // Returns true if sleep time elapsed as expected, and false
2481 // if the thread was interrupted.
2482 bool JavaThread::sleep(jlong millis) {
2483   assert(this == Thread::current(),  "thread consistency check");
2484 
2485   ParkEvent * const slp = this->_SleepEvent;
2486   // Because there can be races with thread interruption sending an unpark()
2487   // to the event, we explicitly reset it here to avoid an immediate return.
2488   // The actual interrupt state will be checked before we park().
2489   slp->reset();
2490   // Thread interruption establishes a happens-before ordering in the
2491   // Java Memory Model, so we need to ensure we synchronize with the
2492   // interrupt state.
2493   OrderAccess::fence();
2494 
2495   jlong prevtime = os::javaTimeNanos();
2496 
2497   for (;;) {
2498     // interruption has precedence over timing out
2499     if (this->is_interrupted(true)) {
2500       return false;
2501     }
2502 
2503     if (millis <= 0) {
2504       return true;
2505     }
2506 
2507     {
2508       ThreadBlockInVM tbivm(this);
2509       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
2510       slp->park(millis);
2511     }
2512 
2513     // Update elapsed time tracking
2514     jlong newtime = os::javaTimeNanos();
2515     if (newtime - prevtime < 0) {
2516       // time moving backwards, should only happen if no monotonic clock
2517       // not a guarantee() because JVM should not abort on kernel/glibc bugs
2518       assert(false,
2519              "unexpected time moving backwards detected in JavaThread::sleep()");
2520     } else {
2521       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
2522     }
2523     prevtime = newtime;
2524   }
2525 }
2526 
2527 
2528 // ======= Threads ========
2529 
2530 // The Threads class links together all active threads, and provides
2531 // operations over all threads. It is protected by the Threads_lock,
2532 // which is also used in other global contexts like safepointing.
2533 // ThreadsListHandles are used to safely perform operations on one
2534 // or more threads without the risk of the thread exiting during the
2535 // operation.
2536 //
2537 // Note: The Threads_lock is currently more widely used than we
2538 // would like. We are actively migrating Threads_lock uses to other
2539 // mechanisms in order to reduce Threads_lock contention.
2540 
2541 int         Threads::_number_of_threads = 0;
2542 int         Threads::_number_of_non_daemon_threads = 0;
2543 int         Threads::_return_code = 0;
2544 uintx       Threads::_thread_claim_token = 1; // Never zero.
2545 size_t      JavaThread::_stack_size_at_create = 0;
2546 
2547 #ifdef ASSERT
2548 bool        Threads::_vm_complete = false;
2549 #endif
2550 
2551 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
2552   Prefetch::read((void*)addr, prefetch_interval);
2553   return *addr;
2554 }
2555 
2556 // Possibly the ugliest for loop the world has seen. C++ does not allow
2557 // multiple types in the declaration section of the for loop. In this case
2558 // we are only dealing with pointers and hence can cast them. It looks ugly
2559 // but macros are ugly and therefore it's fine to make things absurdly ugly.
2560 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
2561     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
2562              *MACRO_list = (JavaThread*)(LIST),                                                                           \
2563              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
2564              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
2565              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
2566          MACRO_current_p != MACRO_end;                                                                                    \
2567          MACRO_current_p++,                                                                                               \
2568              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
2569 
2570 // All JavaThreads
2571 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
2572 
2573 // All NonJavaThreads (i.e., every non-JavaThread in the system).
2574 void Threads::non_java_threads_do(ThreadClosure* tc) {
2575   NoSafepointVerifier nsv;
2576   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
2577     tc->do_thread(njti.current());
2578   }
2579 }
2580 
2581 // All JavaThreads
2582 void Threads::java_threads_do(ThreadClosure* tc) {
2583   assert_locked_or_safepoint(Threads_lock);
2584   // ALL_JAVA_THREADS iterates through all JavaThreads.
2585   ALL_JAVA_THREADS(p) {
2586     tc->do_thread(p);
2587   }
2588 }
2589 
2590 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
2591   assert_locked_or_safepoint(Threads_lock);
2592   java_threads_do(tc);
2593   tc->do_thread(VMThread::vm_thread());
2594 }
2595 
2596 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
2597 void Threads::threads_do(ThreadClosure* tc) {
2598   assert_locked_or_safepoint(Threads_lock);
2599   java_threads_do(tc);
2600   non_java_threads_do(tc);
2601 }
2602 
2603 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
2604   uintx claim_token = Threads::thread_claim_token();
2605   ALL_JAVA_THREADS(p) {
2606     if (p->claim_threads_do(is_par, claim_token)) {
2607       tc->do_thread(p);
2608     }
2609   }
2610   VMThread* vmt = VMThread::vm_thread();
2611   if (vmt->claim_threads_do(is_par, claim_token)) {
2612     tc->do_thread(vmt);
2613   }
2614 }
2615 
2616 // The system initialization in the library has three phases.
2617 //
2618 // Phase 1: java.lang.System class initialization
2619 //     java.lang.System is a primordial class loaded and initialized
2620 //     by the VM early during startup.  java.lang.System.<clinit>
2621 //     only does registerNatives and keeps the rest of the class
2622 //     initialization work later until thread initialization completes.
2623 //
2624 //     System.initPhase1 initializes the system properties, the static
2625 //     fields in, out, and err. Set up java signal handlers, OS-specific
2626 //     system settings, and thread group of the main thread.
2627 static void call_initPhase1(TRAPS) {
2628   Klass* klass = vmClasses::System_klass();
2629   JavaValue result(T_VOID);
2630   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
2631                                          vmSymbols::void_method_signature(), CHECK);
2632 }
2633 
2634 // Phase 2. Module system initialization
2635 //     This will initialize the module system.  Only java.base classes
2636 //     can be loaded until phase 2 completes.
2637 //
2638 //     Call System.initPhase2 after the compiler initialization and jsr292
2639 //     classes get initialized because module initialization runs a lot of java
2640 //     code, that for performance reasons, should be compiled.  Also, this will
2641 //     enable the startup code to use lambda and other language features in this
2642 //     phase and onward.
2643 //
2644 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
2645 static void call_initPhase2(TRAPS) {
2646   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
2647 
2648   Klass* klass = vmClasses::System_klass();
2649 
2650   JavaValue result(T_INT);
2651   JavaCallArguments args;
2652   args.push_int(DisplayVMOutputToStderr);
2653   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
2654   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
2655                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
2656   if (result.get_jint() != JNI_OK) {
2657     vm_exit_during_initialization(); // no message or exception
2658   }
2659 
2660   universe_post_module_init();
2661 }
2662 
2663 // Phase 3. final setup - set security manager, system class loader and TCCL
2664 //
2665 //     This will instantiate and set the security manager, set the system class
2666 //     loader as well as the thread context class loader.  The security manager
2667 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
2668 //     other modules or the application's classpath.
2669 static void call_initPhase3(TRAPS) {
2670   Klass* klass = vmClasses::System_klass();
2671   JavaValue result(T_VOID);
2672   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
2673                                          vmSymbols::void_method_signature(), CHECK);
2674 }
2675 
2676 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
2677   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
2678 
2679   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
2680     create_vm_init_libraries();
2681   }
2682 
2683   initialize_class(vmSymbols::java_lang_String(), CHECK);
2684 
2685   // Inject CompactStrings value after the static initializers for String ran.
2686   java_lang_String::set_compact_strings(CompactStrings);
2687 
2688   // Initialize java_lang.System (needed before creating the thread)
2689   initialize_class(vmSymbols::java_lang_System(), CHECK);
2690   // The VM creates & returns objects of this class. Make sure it's initialized.
2691   initialize_class(vmSymbols::java_lang_Class(), CHECK);
2692   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
2693   Handle thread_group = create_initial_thread_group(CHECK);
2694   Universe::set_main_thread_group(thread_group());
2695   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
2696   create_initial_thread(thread_group, main_thread, CHECK);
2697 
2698   // The VM creates objects of this class.
2699   initialize_class(vmSymbols::java_lang_Module(), CHECK);
2700 
2701 #ifdef ASSERT
2702   InstanceKlass *k = vmClasses::UnsafeConstants_klass();
2703   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
2704 #endif
2705 
2706   // initialize the hardware-specific constants needed by Unsafe
2707   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
2708   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
2709 
2710   // The VM preresolves methods to these classes. Make sure that they get initialized
2711   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
2712   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
2713 
2714   // Phase 1 of the system initialization in the library, java.lang.System class initialization
2715   call_initPhase1(CHECK);
2716 
2717   // Get the Java runtime name, version, and vendor info after java.lang.System is initialized.
2718   // Some values are actually configure-time constants but some can be set via the jlink tool and
2719   // so must be read dynamically. We treat them all the same.
2720   InstanceKlass* ik = SystemDictionary::find_instance_klass(vmSymbols::java_lang_VersionProps(),
2721                                                             Handle(), Handle());
2722   {
2723     ResourceMark rm(main_thread);
2724     JDK_Version::set_java_version(get_java_version_info(ik, vmSymbols::java_version_name()));
2725 
2726     JDK_Version::set_runtime_name(get_java_version_info(ik, vmSymbols::java_runtime_name_name()));
2727 
2728     JDK_Version::set_runtime_version(get_java_version_info(ik, vmSymbols::java_runtime_version_name()));
2729 
2730     JDK_Version::set_runtime_vendor_version(get_java_version_info(ik, vmSymbols::java_runtime_vendor_version_name()));
2731 
2732     JDK_Version::set_runtime_vendor_vm_bug_url(get_java_version_info(ik, vmSymbols::java_runtime_vendor_vm_bug_url_name()));
2733   }
2734 
2735   // an instance of OutOfMemory exception has been allocated earlier
2736   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
2737   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
2738   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
2739   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
2740   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
2741   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
2742   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
2743   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
2744 }
2745 
2746 void Threads::initialize_jsr292_core_classes(TRAPS) {
2747   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
2748 
2749   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
2750   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
2751   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
2752   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
2753 }
2754 
2755 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
2756   extern void JDK_Version_init();
2757 
2758   // Preinitialize version info.
2759   VM_Version::early_initialize();
2760 
2761   // Check version
2762   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
2763 
2764   // Initialize library-based TLS
2765   ThreadLocalStorage::init();
2766 
2767   // Initialize the output stream module
2768   ostream_init();
2769 
2770   // Process java launcher properties.
2771   Arguments::process_sun_java_launcher_properties(args);
2772 
2773   // Initialize the os module
2774   os::init();
2775 
2776   MACOS_AARCH64_ONLY(os::current_thread_enable_wx(WXWrite));
2777 
2778   // Record VM creation timing statistics
2779   TraceVmCreationTime create_vm_timer;
2780   create_vm_timer.start();
2781 
2782   // Initialize system properties.
2783   Arguments::init_system_properties();
2784 
2785   // So that JDK version can be used as a discriminator when parsing arguments
2786   JDK_Version_init();
2787 
2788   // Update/Initialize System properties after JDK version number is known
2789   Arguments::init_version_specific_system_properties();
2790 
2791   // Make sure to initialize log configuration *before* parsing arguments
2792   LogConfiguration::initialize(create_vm_timer.begin_time());
2793 
2794   // Parse arguments
2795   // Note: this internally calls os::init_container_support()
2796   jint parse_result = Arguments::parse(args);
2797   if (parse_result != JNI_OK) return parse_result;
2798 
2799 #if INCLUDE_NMT
2800   // Initialize NMT right after argument parsing to keep the pre-NMT-init window small.
2801   MemTracker::initialize();
2802 #endif // INCLUDE_NMT
2803 
2804   os::init_before_ergo();
2805 
2806   jint ergo_result = Arguments::apply_ergo();
2807   if (ergo_result != JNI_OK) return ergo_result;
2808 
2809   // Final check of all ranges after ergonomics which may change values.
2810   if (!JVMFlagLimit::check_all_ranges()) {
2811     return JNI_EINVAL;
2812   }
2813 
2814   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
2815   bool constraint_result = JVMFlagLimit::check_all_constraints(JVMFlagConstraintPhase::AfterErgo);
2816   if (!constraint_result) {
2817     return JNI_EINVAL;
2818   }
2819 
2820   if (PauseAtStartup) {
2821     os::pause();
2822   }
2823 
2824   HOTSPOT_VM_INIT_BEGIN();
2825 
2826   // Timing (must come after argument parsing)
2827   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
2828 
2829   // Initialize the os module after parsing the args
2830   jint os_init_2_result = os::init_2();
2831   if (os_init_2_result != JNI_OK) return os_init_2_result;
2832 
2833 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
2834   // Initialize assert poison page mechanism.
2835   if (ShowRegistersOnAssert) {
2836     initialize_assert_poison();
2837   }
2838 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
2839 
2840   SafepointMechanism::initialize();
2841 
2842   jint adjust_after_os_result = Arguments::adjust_after_os();
2843   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
2844 
2845   // Initialize output stream logging
2846   ostream_init_log();
2847 
2848   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
2849   // Must be before create_vm_init_agents()
2850   if (Arguments::init_libraries_at_startup()) {
2851     convert_vm_init_libraries_to_agents();
2852   }
2853 
2854   // Launch -agentlib/-agentpath and converted -Xrun agents
2855   if (Arguments::init_agents_at_startup()) {
2856     create_vm_init_agents();
2857   }
2858 
2859   // Initialize Threads state
2860   _number_of_threads = 0;
2861   _number_of_non_daemon_threads = 0;
2862 
2863   // Initialize global data structures and create system classes in heap
2864   vm_init_globals();
2865 
2866 #if INCLUDE_JVMCI
2867   if (JVMCICounterSize > 0) {
2868     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
2869     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
2870   } else {
2871     JavaThread::_jvmci_old_thread_counters = NULL;
2872   }
2873 #endif // INCLUDE_JVMCI
2874 
2875   // Initialize OopStorage for threadObj
2876   _thread_oop_storage = OopStorageSet::create_strong("Thread OopStorage", mtThread);
2877 
2878   // Attach the main thread to this os thread
2879   JavaThread* main_thread = new JavaThread();
2880   main_thread->set_thread_state(_thread_in_vm);
2881   main_thread->initialize_thread_current();
2882   // must do this before set_active_handles
2883   main_thread->record_stack_base_and_size();
2884   main_thread->register_thread_stack_with_NMT();
2885   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
2886   MACOS_AARCH64_ONLY(main_thread->init_wx());
2887 
2888   if (!main_thread->set_as_starting_thread()) {
2889     vm_shutdown_during_initialization(
2890                                       "Failed necessary internal allocation. Out of swap space");
2891     main_thread->smr_delete();
2892     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2893     return JNI_ENOMEM;
2894   }
2895 
2896   // Enable guard page *after* os::create_main_thread(), otherwise it would
2897   // crash Linux VM, see notes in os_linux.cpp.
2898   main_thread->stack_overflow_state()->create_stack_guard_pages();
2899 
2900   // Initialize Java-Level synchronization subsystem
2901   ObjectMonitor::Initialize();
2902   ObjectSynchronizer::initialize();
2903 
2904   // Initialize global modules
2905   jint status = init_globals();
2906   if (status != JNI_OK) {
2907     main_thread->smr_delete();
2908     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
2909     return status;
2910   }
2911 
2912   JFR_ONLY(Jfr::on_create_vm_1();)
2913 
2914   // Should be done after the heap is fully created
2915   main_thread->cache_global_variables();
2916 
2917   { MutexLocker mu(Threads_lock);
2918     Threads::add(main_thread);
2919   }
2920 
2921   // Any JVMTI raw monitors entered in onload will transition into
2922   // real raw monitor. VM is setup enough here for raw monitor enter.
2923   JvmtiExport::transition_pending_onload_raw_monitors();
2924 
2925   // Create the VMThread
2926   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
2927 
2928     VMThread::create();
2929     Thread* vmthread = VMThread::vm_thread();
2930 
2931     if (!os::create_thread(vmthread, os::vm_thread)) {
2932       vm_exit_during_initialization("Cannot create VM thread. "
2933                                     "Out of system resources.");
2934     }
2935 
2936     // Wait for the VM thread to become ready, and VMThread::run to initialize
2937     // Monitors can have spurious returns, must always check another state flag
2938     {
2939       MonitorLocker ml(Notify_lock);
2940       os::start_thread(vmthread);
2941       while (vmthread->active_handles() == NULL) {
2942         ml.wait();
2943       }
2944     }
2945   }
2946 
2947   assert(Universe::is_fully_initialized(), "not initialized");
2948   if (VerifyDuringStartup) {
2949     // Make sure we're starting with a clean slate.
2950     VM_Verify verify_op;
2951     VMThread::execute(&verify_op);
2952   }
2953 
2954   // We need this to update the java.vm.info property in case any flags used
2955   // to initially define it have been changed. This is needed for both CDS
2956   // since UseSharedSpaces may be changed after java.vm.info
2957   // is initially computed. See Abstract_VM_Version::vm_info_string().
2958   // This update must happen before we initialize the java classes, but
2959   // after any initialization logic that might modify the flags.
2960   Arguments::update_vm_info_property(VM_Version::vm_info_string());
2961 
2962   JavaThread* THREAD = JavaThread::current(); // For exception macros.
2963   HandleMark hm(THREAD);
2964 
2965   // Always call even when there are not JVMTI environments yet, since environments
2966   // may be attached late and JVMTI must track phases of VM execution
2967   JvmtiExport::enter_early_start_phase();
2968 
2969   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
2970   JvmtiExport::post_early_vm_start();
2971 
2972   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
2973 
2974   quicken_jni_functions();
2975 
2976   // No more stub generation allowed after that point.
2977   StubCodeDesc::freeze();
2978 
2979   // Set flag that basic initialization has completed. Used by exceptions and various
2980   // debug stuff, that does not work until all basic classes have been initialized.
2981   set_init_completed();
2982 
2983   LogConfiguration::post_initialize();
2984   Metaspace::post_initialize();
2985 
2986   HOTSPOT_VM_INIT_END();
2987 
2988   // record VM initialization completion time
2989 #if INCLUDE_MANAGEMENT
2990   Management::record_vm_init_completed();
2991 #endif // INCLUDE_MANAGEMENT
2992 
2993   // Signal Dispatcher needs to be started before VMInit event is posted
2994   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
2995 
2996   // Start Attach Listener if +StartAttachListener or it can't be started lazily
2997   if (!DisableAttachMechanism) {
2998     AttachListener::vm_start();
2999     if (StartAttachListener || AttachListener::init_at_startup()) {
3000       AttachListener::init();
3001     }
3002   }
3003 
3004   // Launch -Xrun agents
3005   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3006   // back-end can launch with -Xdebug -Xrunjdwp.
3007   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3008     create_vm_init_libraries();
3009   }
3010 
3011   Chunk::start_chunk_pool_cleaner_task();
3012 
3013   // Start the service thread
3014   // The service thread enqueues JVMTI deferred events and does various hashtable
3015   // and other cleanups.  Needs to start before the compilers start posting events.
3016   ServiceThread::initialize();
3017 
3018   // Start the monitor deflation thread:
3019   MonitorDeflationThread::initialize();
3020 
3021   // initialize compiler(s)
3022 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3023 #if INCLUDE_JVMCI
3024   bool force_JVMCI_intialization = false;
3025   if (EnableJVMCI) {
3026     // Initialize JVMCI eagerly when it is explicitly requested.
3027     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3028     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3029 
3030     if (!force_JVMCI_intialization) {
3031       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3032       // compilations via JVMCI will not actually block until JVMCI is initialized.
3033       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3034     }
3035   }
3036 #endif
3037   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3038   // Postpone completion of compiler initialization to after JVMCI
3039   // is initialized to avoid timeouts of blocking compilations.
3040   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3041     CompileBroker::compilation_init_phase2();
3042   }
3043 #endif
3044 
3045   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3046   // It is done after compilers are initialized, because otherwise compilations of
3047   // signature polymorphic MH intrinsics can be missed
3048   // (see SystemDictionary::find_method_handle_intrinsic).
3049   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3050 
3051   // This will initialize the module system.  Only java.base classes can be
3052   // loaded until phase 2 completes
3053   call_initPhase2(CHECK_JNI_ERR);
3054 
3055   JFR_ONLY(Jfr::on_create_vm_2();)
3056 
3057   // Always call even when there are not JVMTI environments yet, since environments
3058   // may be attached late and JVMTI must track phases of VM execution
3059   JvmtiExport::enter_start_phase();
3060 
3061   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3062   JvmtiExport::post_vm_start();
3063 
3064   // Final system initialization including security manager and system class loader
3065   call_initPhase3(CHECK_JNI_ERR);
3066 
3067   // cache the system and platform class loaders
3068   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
3069 
3070 #if INCLUDE_CDS
3071   // capture the module path info from the ModuleEntryTable
3072   ClassLoader::initialize_module_path(THREAD);
3073   if (HAS_PENDING_EXCEPTION) {
3074     java_lang_Throwable::print(PENDING_EXCEPTION, tty);
3075     vm_exit_during_initialization("ClassLoader::initialize_module_path() failed unexpectedly");
3076   }
3077 #endif
3078 
3079 #if INCLUDE_JVMCI
3080   if (force_JVMCI_intialization) {
3081     JVMCI::initialize_compiler(CHECK_JNI_ERR);
3082     CompileBroker::compilation_init_phase2();
3083   }
3084 #endif
3085 
3086   if (NativeHeapTrimmer::enabled()) {
3087     NativeHeapTrimmer::initialize();
3088   }
3089 
3090   // Always call even when there are not JVMTI environments yet, since environments
3091   // may be attached late and JVMTI must track phases of VM execution
3092   JvmtiExport::enter_live_phase();
3093 
3094   // Make perfmemory accessible
3095   PerfMemory::set_accessible(true);
3096 
3097   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3098   JvmtiExport::post_vm_initialized();
3099 
3100   JFR_ONLY(Jfr::on_create_vm_3();)
3101 
3102 #if INCLUDE_MANAGEMENT
3103   Management::initialize(THREAD);
3104 
3105   if (HAS_PENDING_EXCEPTION) {
3106     // management agent fails to start possibly due to
3107     // configuration problem and is responsible for printing
3108     // stack trace if appropriate. Simply exit VM.
3109     vm_exit(1);
3110   }
3111 #endif // INCLUDE_MANAGEMENT
3112 
3113   StatSampler::engage();
3114   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3115 
3116   BiasedLocking::init();
3117 
3118 #if INCLUDE_RTM_OPT
3119   RTMLockingCounters::init();
3120 #endif
3121 
3122   call_postVMInitHook(THREAD);
3123   // The Java side of PostVMInitHook.run must deal with all
3124   // exceptions and provide means of diagnosis.
3125   if (HAS_PENDING_EXCEPTION) {
3126     CLEAR_PENDING_EXCEPTION;
3127   }
3128 
3129   {
3130     MutexLocker ml(PeriodicTask_lock);
3131     // Make sure the WatcherThread can be started by WatcherThread::start()
3132     // or by dynamic enrollment.
3133     WatcherThread::make_startable();
3134     // Start up the WatcherThread if there are any periodic tasks
3135     // NOTE:  All PeriodicTasks should be registered by now. If they
3136     //   aren't, late joiners might appear to start slowly (we might
3137     //   take a while to process their first tick).
3138     if (PeriodicTask::num_tasks() > 0) {
3139       WatcherThread::start();
3140     }
3141   }
3142 
3143   create_vm_timer.end();
3144 #ifdef ASSERT
3145   _vm_complete = true;
3146 #endif
3147 
3148   if (DumpSharedSpaces) {
3149     MetaspaceShared::preload_and_dump();
3150     ShouldNotReachHere();
3151   }
3152 
3153   return JNI_OK;
3154 }
3155 
3156 // type for the Agent_OnLoad and JVM_OnLoad entry points
3157 extern "C" {
3158   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3159 }
3160 // Find a command line agent library and return its entry point for
3161 //         -agentlib:  -agentpath:   -Xrun
3162 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3163 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3164                                     const char *on_load_symbols[],
3165                                     size_t num_symbol_entries) {
3166   OnLoadEntry_t on_load_entry = NULL;
3167   void *library = NULL;
3168 
3169   if (!agent->valid()) {
3170     char buffer[JVM_MAXPATHLEN];
3171     char ebuf[1024] = "";
3172     const char *name = agent->name();
3173     const char *msg = "Could not find agent library ";
3174 
3175     // First check to see if agent is statically linked into executable
3176     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3177       library = agent->os_lib();
3178     } else if (agent->is_absolute_path()) {
3179       library = os::dll_load(name, ebuf, sizeof ebuf);
3180       if (library == NULL) {
3181         const char *sub_msg = " in absolute path, with error: ";
3182         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3183         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3184         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3185         // If we can't find the agent, exit.
3186         vm_exit_during_initialization(buf, NULL);
3187         FREE_C_HEAP_ARRAY(char, buf);
3188       }
3189     } else {
3190       // Try to load the agent from the standard dll directory
3191       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3192                              name)) {
3193         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3194       }
3195       if (library == NULL) { // Try the library path directory.
3196         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
3197           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3198         }
3199         if (library == NULL) {
3200           const char *sub_msg = " on the library path, with error: ";
3201           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
3202 
3203           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
3204                        strlen(ebuf) + strlen(sub_msg2) + 1;
3205           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3206           if (!agent->is_instrument_lib()) {
3207             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3208           } else {
3209             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
3210           }
3211           // If we can't find the agent, exit.
3212           vm_exit_during_initialization(buf, NULL);
3213           FREE_C_HEAP_ARRAY(char, buf);
3214         }
3215       }
3216     }
3217     agent->set_os_lib(library);
3218     agent->set_valid();
3219   }
3220 
3221   // Find the OnLoad function.
3222   on_load_entry =
3223     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3224                                                           false,
3225                                                           on_load_symbols,
3226                                                           num_symbol_entries));
3227   return on_load_entry;
3228 }
3229 
3230 // Find the JVM_OnLoad entry point
3231 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3232   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3233   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3234 }
3235 
3236 // Find the Agent_OnLoad entry point
3237 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3238   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3239   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3240 }
3241 
3242 // For backwards compatibility with -Xrun
3243 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3244 // treated like -agentpath:
3245 // Must be called before agent libraries are created
3246 void Threads::convert_vm_init_libraries_to_agents() {
3247   AgentLibrary* agent;
3248   AgentLibrary* next;
3249 
3250   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3251     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3252     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3253 
3254     // If there is an JVM_OnLoad function it will get called later,
3255     // otherwise see if there is an Agent_OnLoad
3256     if (on_load_entry == NULL) {
3257       on_load_entry = lookup_agent_on_load(agent);
3258       if (on_load_entry != NULL) {
3259         // switch it to the agent list -- so that Agent_OnLoad will be called,
3260         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3261         Arguments::convert_library_to_agent(agent);
3262       } else {
3263         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3264       }
3265     }
3266   }
3267 }
3268 
3269 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3270 // Invokes Agent_OnLoad
3271 // Called very early -- before JavaThreads exist
3272 void Threads::create_vm_init_agents() {
3273   extern struct JavaVM_ main_vm;
3274   AgentLibrary* agent;
3275 
3276   JvmtiExport::enter_onload_phase();
3277 
3278   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3279     // CDS dumping does not support native JVMTI agent.
3280     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
3281     if (Arguments::is_dumping_archive()) {
3282       if(!agent->is_instrument_lib()) {
3283         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
3284       } else if (!AllowArchivingWithJavaAgent) {
3285         vm_exit_during_cds_dumping(
3286           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
3287       }
3288     }
3289 
3290     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3291 
3292     if (on_load_entry != NULL) {
3293       // Invoke the Agent_OnLoad function
3294       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3295       if (err != JNI_OK) {
3296         vm_exit_during_initialization("agent library failed to init", agent->name());
3297       }
3298     } else {
3299       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3300     }
3301   }
3302 
3303   JvmtiExport::enter_primordial_phase();
3304 }
3305 
3306 extern "C" {
3307   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3308 }
3309 
3310 void Threads::shutdown_vm_agents() {
3311   // Send any Agent_OnUnload notifications
3312   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3313   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3314   extern struct JavaVM_ main_vm;
3315   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3316 
3317     // Find the Agent_OnUnload function.
3318     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3319                                                    os::find_agent_function(agent,
3320                                                    false,
3321                                                    on_unload_symbols,
3322                                                    num_symbol_entries));
3323 
3324     // Invoke the Agent_OnUnload function
3325     if (unload_entry != NULL) {
3326       JavaThread* thread = JavaThread::current();
3327       ThreadToNativeFromVM ttn(thread);
3328       HandleMark hm(thread);
3329       (*unload_entry)(&main_vm);
3330     }
3331   }
3332 }
3333 
3334 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3335 // Invokes JVM_OnLoad
3336 void Threads::create_vm_init_libraries() {
3337   extern struct JavaVM_ main_vm;
3338   AgentLibrary* agent;
3339 
3340   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3341     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3342 
3343     if (on_load_entry != NULL) {
3344       // Invoke the JVM_OnLoad function
3345       JavaThread* thread = JavaThread::current();
3346       ThreadToNativeFromVM ttn(thread);
3347       HandleMark hm(thread);
3348       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3349       if (err != JNI_OK) {
3350         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3351       }
3352     } else {
3353       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3354     }
3355   }
3356 }
3357 
3358 
3359 // Last thread running calls java.lang.Shutdown.shutdown()
3360 void JavaThread::invoke_shutdown_hooks() {
3361   HandleMark hm(this);
3362 
3363   // We could get here with a pending exception, if so clear it now or
3364   // it will cause MetaspaceShared::link_and_cleanup_shared_classes to
3365   // fail for dynamic dump.
3366   if (this->has_pending_exception()) {
3367     this->clear_pending_exception();
3368   }
3369 
3370 #if INCLUDE_CDS
3371   // Link all classes for dynamic CDS dumping before vm exit.
3372   // Same operation is being done in JVM_BeforeHalt for handling the
3373   // case where the application calls System.exit().
3374   if (DynamicDumpSharedSpaces) {
3375     DynamicArchive::prepare_for_dynamic_dumping_at_exit();
3376   }
3377 #endif
3378 
3379   EXCEPTION_MARK;
3380   Klass* shutdown_klass =
3381     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3382                                       THREAD);
3383   if (shutdown_klass != NULL) {
3384     // SystemDictionary::resolve_or_null will return null if there was
3385     // an exception.  If we cannot load the Shutdown class, just don't
3386     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3387     // won't be run.  Note that if a shutdown hook was registered,
3388     // the Shutdown class would have already been loaded
3389     // (Runtime.addShutdownHook will load it).
3390     JavaValue result(T_VOID);
3391     JavaCalls::call_static(&result,
3392                            shutdown_klass,
3393                            vmSymbols::shutdown_name(),
3394                            vmSymbols::void_method_signature(),
3395                            THREAD);
3396   }
3397   CLEAR_PENDING_EXCEPTION;
3398 }
3399 
3400 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3401 // the program falls off the end of main(). Another VM exit path is through
3402 // vm_exit() when the program calls System.exit() to return a value or when
3403 // there is a serious error in VM. The two shutdown paths are not exactly
3404 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3405 // and VM_Exit op at VM level.
3406 //
3407 // Shutdown sequence:
3408 //   + Shutdown native memory tracking if it is on
3409 //   + Wait until we are the last non-daemon thread to execute
3410 //     <-- every thing is still working at this moment -->
3411 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3412 //        shutdown hooks
3413 //   + Call before_exit(), prepare for VM exit
3414 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3415 //        currently the only user of this mechanism is File.deleteOnExit())
3416 //      > stop StatSampler, watcher thread,
3417 //        post thread end and vm death events to JVMTI,
3418 //        stop signal thread
3419 //   + Call JavaThread::exit(), it will:
3420 //      > release JNI handle blocks, remove stack guard pages
3421 //      > remove this thread from Threads list
3422 //     <-- no more Java code from this thread after this point -->
3423 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3424 //     the compiler threads at safepoint
3425 //     <-- do not use anything that could get blocked by Safepoint -->
3426 //   + Disable tracing at JNI/JVM barriers
3427 //   + Set _vm_exited flag for threads that are still running native code
3428 //   + Call exit_globals()
3429 //      > deletes tty
3430 //      > deletes PerfMemory resources
3431 //   + Delete this thread
3432 //   + Return to caller
3433 
3434 void Threads::destroy_vm() {
3435   JavaThread* thread = JavaThread::current();
3436 
3437 #ifdef ASSERT
3438   _vm_complete = false;
3439 #endif
3440   // Wait until we are the last non-daemon thread to execute
3441   {
3442     MonitorLocker nu(Threads_lock);
3443     while (Threads::number_of_non_daemon_threads() > 1)
3444       // This wait should make safepoint checks, wait without a timeout.
3445       nu.wait(0);
3446   }
3447 
3448   EventShutdown e;
3449   if (e.should_commit()) {
3450     e.set_reason("No remaining non-daemon Java threads");
3451     e.commit();
3452   }
3453 
3454   // Hang forever on exit if we are reporting an error.
3455   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
3456     os::infinite_sleep();
3457   }
3458   os::wait_for_keypress_at_exit();
3459 
3460   // run Java level shutdown hooks
3461   thread->invoke_shutdown_hooks();
3462 
3463   before_exit(thread);
3464 
3465   thread->exit(true);
3466 
3467   // We are no longer on the main thread list but could still be in a
3468   // secondary list where another thread may try to interact with us.
3469   // So wait until all such interactions are complete before we bring
3470   // the VM to the termination safepoint. Normally this would be done
3471   // using thread->smr_delete() below where we delete the thread, but
3472   // we can't call that after the termination safepoint is active as
3473   // we will deadlock on the Threads_lock. Once all interactions are
3474   // complete it is safe to directly delete the thread at any time.
3475   ThreadsSMRSupport::wait_until_not_protected(thread);
3476 
3477   // Stop VM thread.
3478   {
3479     // 4945125 The vm thread comes to a safepoint during exit.
3480     // GC vm_operations can get caught at the safepoint, and the
3481     // heap is unparseable if they are caught. Grab the Heap_lock
3482     // to prevent this. The GC vm_operations will not be able to
3483     // queue until after the vm thread is dead. After this point,
3484     // we'll never emerge out of the safepoint before the VM exits.
3485     // Assert that the thread is terminated so that acquiring the
3486     // Heap_lock doesn't cause the terminated thread to participate in
3487     // the safepoint protocol.
3488 
3489     assert(thread->is_terminated(), "must be terminated here");
3490     MutexLocker ml(Heap_lock);
3491 
3492     VMThread::wait_for_vm_thread_exit();
3493     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3494     VMThread::destroy();
3495   }
3496 
3497   // Now, all Java threads are gone except daemon threads. Daemon threads
3498   // running Java code or in VM are stopped by the Safepoint. However,
3499   // daemon threads executing native code are still running.  But they
3500   // will be stopped at native=>Java/VM barriers. Note that we can't
3501   // simply kill or suspend them, as it is inherently deadlock-prone.
3502 
3503   VM_Exit::set_vm_exited();
3504 
3505   // Clean up ideal graph printers after the VMThread has started
3506   // the final safepoint which will block all the Compiler threads.
3507   // Note that this Thread has already logically exited so the
3508   // clean_up() function's use of a JavaThreadIteratorWithHandle
3509   // would be a problem except set_vm_exited() has remembered the
3510   // shutdown thread which is granted a policy exception.
3511 #if defined(COMPILER2) && !defined(PRODUCT)
3512   IdealGraphPrinter::clean_up();
3513 #endif
3514 
3515   notify_vm_shutdown();
3516 
3517   // exit_globals() will delete tty
3518   exit_globals();
3519 
3520   // Deleting the shutdown thread here is safe. See comment on
3521   // wait_until_not_protected() above.
3522   delete thread;
3523 
3524 #if INCLUDE_JVMCI
3525   if (JVMCICounterSize > 0) {
3526     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
3527   }
3528 #endif
3529 
3530   LogConfiguration::finalize();
3531 }
3532 
3533 
3534 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3535   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3536   return is_supported_jni_version(version);
3537 }
3538 
3539 
3540 jboolean Threads::is_supported_jni_version(jint version) {
3541   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3542   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3543   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3544   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3545   if (version == JNI_VERSION_9) return JNI_TRUE;
3546   if (version == JNI_VERSION_10) return JNI_TRUE;
3547   return JNI_FALSE;
3548 }
3549 
3550 
3551 void Threads::add(JavaThread* p, bool force_daemon) {
3552   // The threads lock must be owned at this point
3553   assert(Threads_lock->owned_by_self(), "must have threads lock");
3554 
3555   BarrierSet::barrier_set()->on_thread_attach(p);
3556 
3557   // Once a JavaThread is added to the Threads list, smr_delete() has
3558   // to be used to delete it. Otherwise we can just delete it directly.
3559   p->set_on_thread_list();
3560 
3561   _number_of_threads++;
3562   oop threadObj = p->threadObj();
3563   bool daemon = true;
3564   // Bootstrapping problem: threadObj can be null for initial
3565   // JavaThread (or for threads attached via JNI)
3566   if ((!force_daemon) && !is_daemon((threadObj))) {
3567     _number_of_non_daemon_threads++;
3568     daemon = false;
3569   }
3570 
3571   ThreadService::add_thread(p, daemon);
3572 
3573   // Maintain fast thread list
3574   ThreadsSMRSupport::add_thread(p);
3575 
3576   // Increase the ObjectMonitor ceiling for the new thread.
3577   ObjectSynchronizer::inc_in_use_list_ceiling();
3578 
3579   // Possible GC point.
3580   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
3581 
3582   // Make new thread known to active EscapeBarrier
3583   EscapeBarrier::thread_added(p);
3584 }
3585 
3586 void Threads::remove(JavaThread* p, bool is_daemon) {
3587   // Extra scope needed for Thread_lock, so we can check
3588   // that we do not remove thread without safepoint code notice
3589   { MonitorLocker ml(Threads_lock);
3590 
3591     // BarrierSet state must be destroyed after the last thread transition
3592     // before the thread terminates. Thread transitions result in calls to
3593     // StackWatermarkSet::on_safepoint(), which performs GC processing,
3594     // requiring the GC state to be alive.
3595     BarrierSet::barrier_set()->on_thread_detach(p);
3596 
3597     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
3598 
3599     // Maintain fast thread list
3600     ThreadsSMRSupport::remove_thread(p);
3601 
3602     _number_of_threads--;
3603     if (!is_daemon) {
3604       _number_of_non_daemon_threads--;
3605 
3606       // Only one thread left, do a notify on the Threads_lock so a thread waiting
3607       // on destroy_vm will wake up.
3608       if (number_of_non_daemon_threads() == 1) {
3609         ml.notify_all();
3610       }
3611     }
3612     ThreadService::remove_thread(p, is_daemon);
3613 
3614     // Make sure that safepoint code disregard this thread. This is needed since
3615     // the thread might mess around with locks after this point. This can cause it
3616     // to do callbacks into the safepoint code. However, the safepoint code is not aware
3617     // of this thread since it is removed from the queue.
3618     p->set_terminated(JavaThread::_thread_terminated);
3619 
3620     // Notify threads waiting in EscapeBarriers
3621     EscapeBarrier::thread_removed(p);
3622   } // unlock Threads_lock
3623 
3624   // Reduce the ObjectMonitor ceiling for the exiting thread.
3625   ObjectSynchronizer::dec_in_use_list_ceiling();
3626 
3627   // Since Events::log uses a lock, we grab it outside the Threads_lock
3628   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
3629 }
3630 
3631 // Operations on the Threads list for GC.  These are not explicitly locked,
3632 // but the garbage collector must provide a safe context for them to run.
3633 // In particular, these things should never be called when the Threads_lock
3634 // is held by some other thread. (Note: the Safepoint abstraction also
3635 // uses the Threads_lock to guarantee this property. It also makes sure that
3636 // all threads gets blocked when exiting or starting).
3637 
3638 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3639   ALL_JAVA_THREADS(p) {
3640     p->oops_do(f, cf);
3641   }
3642   VMThread::vm_thread()->oops_do(f, cf);
3643 }
3644 
3645 void Threads::change_thread_claim_token() {
3646   if (++_thread_claim_token == 0) {
3647     // On overflow of the token counter, there is a risk of future
3648     // collisions between a new global token value and a stale token
3649     // for a thread, because not all iterations visit all threads.
3650     // (Though it's pretty much a theoretical concern for non-trivial
3651     // token counter sizes.)  To deal with the possibility, reset all
3652     // the thread tokens to zero on global token overflow.
3653     struct ResetClaims : public ThreadClosure {
3654       virtual void do_thread(Thread* t) {
3655         t->claim_threads_do(false, 0);
3656       }
3657     } reset_claims;
3658     Threads::threads_do(&reset_claims);
3659     // On overflow, update the global token to non-zero, to
3660     // avoid the special "never claimed" initial thread value.
3661     _thread_claim_token = 1;
3662   }
3663 }
3664 
3665 #ifdef ASSERT
3666 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
3667   const uintx token = t->threads_do_token();
3668   assert(token == expected,
3669          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
3670          UINTX_FORMAT, kind, p2i(t), token, expected);
3671 }
3672 
3673 void Threads::assert_all_threads_claimed() {
3674   ALL_JAVA_THREADS(p) {
3675     assert_thread_claimed("Thread", p, _thread_claim_token);
3676   }
3677   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
3678 }
3679 #endif // ASSERT
3680 
3681 class ParallelOopsDoThreadClosure : public ThreadClosure {
3682 private:
3683   OopClosure* _f;
3684   CodeBlobClosure* _cf;
3685 public:
3686   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
3687   void do_thread(Thread* t) {
3688     t->oops_do(_f, _cf);
3689   }
3690 };
3691 
3692 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
3693   ParallelOopsDoThreadClosure tc(f, cf);
3694   possibly_parallel_threads_do(is_par, &tc);
3695 }
3696 
3697 void Threads::metadata_do(MetadataClosure* f) {
3698   ALL_JAVA_THREADS(p) {
3699     p->metadata_do(f);
3700   }
3701 }
3702 
3703 class ThreadHandlesClosure : public ThreadClosure {
3704   void (*_f)(Metadata*);
3705  public:
3706   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
3707   virtual void do_thread(Thread* thread) {
3708     thread->metadata_handles_do(_f);
3709   }
3710 };
3711 
3712 void Threads::metadata_handles_do(void f(Metadata*)) {
3713   // Only walk the Handles in Thread.
3714   ThreadHandlesClosure handles_closure(f);
3715   threads_do(&handles_closure);
3716 }
3717 
3718 // Get count Java threads that are waiting to enter the specified monitor.
3719 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
3720                                                          int count,
3721                                                          address monitor) {
3722   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
3723 
3724   int i = 0;
3725   DO_JAVA_THREADS(t_list, p) {
3726     if (!p->can_call_java()) continue;
3727 
3728     // The first stage of async deflation does not affect any field
3729     // used by this comparison so the ObjectMonitor* is usable here.
3730     address pending = (address)p->current_pending_monitor();
3731     if (pending == monitor) {             // found a match
3732       if (i < count) result->append(p);   // save the first count matches
3733       i++;
3734     }
3735   }
3736 
3737   return result;
3738 }
3739 
3740 
3741 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
3742                                                       address owner) {
3743   // NULL owner means not locked so we can skip the search
3744   if (owner == NULL) return NULL;
3745 
3746   DO_JAVA_THREADS(t_list, p) {
3747     // first, see if owner is the address of a Java thread
3748     if (owner == (address)p) return p;
3749   }
3750 
3751   // Cannot assert on lack of success here since this function may be
3752   // used by code that is trying to report useful problem information
3753   // like deadlock detection.
3754   if (UseHeavyMonitors) return NULL;
3755 
3756   // If we didn't find a matching Java thread and we didn't force use of
3757   // heavyweight monitors, then the owner is the stack address of the
3758   // Lock Word in the owning Java thread's stack.
3759   //
3760   JavaThread* the_owner = NULL;
3761   DO_JAVA_THREADS(t_list, q) {
3762     if (q->is_lock_owned(owner)) {
3763       the_owner = q;
3764       break;
3765     }
3766   }
3767 
3768   // cannot assert on lack of success here; see above comment
3769   return the_owner;
3770 }
3771 
3772 class PrintOnClosure : public ThreadClosure {
3773 private:
3774   outputStream* _st;
3775 
3776 public:
3777   PrintOnClosure(outputStream* st) :
3778       _st(st) {}
3779 
3780   virtual void do_thread(Thread* thread) {
3781     if (thread != NULL) {
3782       thread->print_on(_st);
3783       _st->cr();
3784     }
3785   }
3786 };
3787 
3788 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
3789 void Threads::print_on(outputStream* st, bool print_stacks,
3790                        bool internal_format, bool print_concurrent_locks,
3791                        bool print_extended_info) {
3792   char buf[32];
3793   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
3794 
3795   st->print_cr("Full thread dump %s (%s %s):",
3796                VM_Version::vm_name(),
3797                VM_Version::vm_release(),
3798                VM_Version::vm_info_string());
3799   st->cr();
3800 
3801 #if INCLUDE_SERVICES
3802   // Dump concurrent locks
3803   ConcurrentLocksDump concurrent_locks;
3804   if (print_concurrent_locks) {
3805     concurrent_locks.dump_at_safepoint();
3806   }
3807 #endif // INCLUDE_SERVICES
3808 
3809   ThreadsSMRSupport::print_info_on(st);
3810   st->cr();
3811 
3812   ALL_JAVA_THREADS(p) {
3813     ResourceMark rm;
3814     p->print_on(st, print_extended_info);
3815     if (print_stacks) {
3816       if (internal_format) {
3817         p->trace_stack();
3818       } else {
3819         p->print_stack_on(st);
3820       }
3821     }
3822     st->cr();
3823 #if INCLUDE_SERVICES
3824     if (print_concurrent_locks) {
3825       concurrent_locks.print_locks_on(p, st);
3826     }
3827 #endif // INCLUDE_SERVICES
3828   }
3829 
3830   PrintOnClosure cl(st);
3831   cl.do_thread(VMThread::vm_thread());
3832   Universe::heap()->gc_threads_do(&cl);
3833   if (StringDedup::is_enabled()) {
3834     StringDedup::threads_do(&cl);
3835   }
3836   cl.do_thread(WatcherThread::watcher_thread());
3837   cl.do_thread(AsyncLogWriter::instance());
3838 
3839   st->flush();
3840 }
3841 
3842 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
3843                              int buflen, bool* found_current) {
3844   if (this_thread != NULL) {
3845     bool is_current = (current == this_thread);
3846     *found_current = *found_current || is_current;
3847     st->print("%s", is_current ? "=>" : "  ");
3848 
3849     st->print(PTR_FORMAT, p2i(this_thread));
3850     st->print(" ");
3851     this_thread->print_on_error(st, buf, buflen);
3852     st->cr();
3853   }
3854 }
3855 
3856 class PrintOnErrorClosure : public ThreadClosure {
3857   outputStream* _st;
3858   Thread* _current;
3859   char* _buf;
3860   int _buflen;
3861   bool* _found_current;
3862  public:
3863   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
3864                       int buflen, bool* found_current) :
3865    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
3866 
3867   virtual void do_thread(Thread* thread) {
3868     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
3869   }
3870 };
3871 
3872 // Threads::print_on_error() is called by fatal error handler. It's possible
3873 // that VM is not at safepoint and/or current thread is inside signal handler.
3874 // Don't print stack trace, as the stack may not be walkable. Don't allocate
3875 // memory (even in resource area), it might deadlock the error handler.
3876 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
3877                              int buflen) {
3878   ThreadsSMRSupport::print_info_on(st);
3879   st->cr();
3880 
3881   bool found_current = false;
3882   st->print_cr("Java Threads: ( => current thread )");
3883   ALL_JAVA_THREADS(thread) {
3884     print_on_error(thread, st, current, buf, buflen, &found_current);
3885   }
3886   st->cr();
3887 
3888   st->print_cr("Other Threads:");
3889   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
3890   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
3891   print_on_error(AsyncLogWriter::instance(), st, current, buf, buflen, &found_current);
3892 
3893   if (Universe::heap() != NULL) {
3894     PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
3895     Universe::heap()->gc_threads_do(&print_closure);
3896   }
3897 
3898   if (StringDedup::is_enabled()) {
3899     PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
3900     StringDedup::threads_do(&print_closure);
3901   }
3902 
3903   if (!found_current) {
3904     st->cr();
3905     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
3906     current->print_on_error(st, buf, buflen);
3907     st->cr();
3908   }
3909   st->cr();
3910 
3911   st->print_cr("Threads with active compile tasks:");
3912   print_threads_compiling(st, buf, buflen);
3913 }
3914 
3915 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
3916   ALL_JAVA_THREADS(thread) {
3917     if (thread->is_Compiler_thread()) {
3918       CompilerThread* ct = (CompilerThread*) thread;
3919 
3920       // Keep task in local variable for NULL check.
3921       // ct->_task might be set to NULL by concurring compiler thread
3922       // because it completed the compilation. The task is never freed,
3923       // though, just returned to a free list.
3924       CompileTask* task = ct->task();
3925       if (task != NULL) {
3926         thread->print_name_on_error(st, buf, buflen);
3927         st->print("  ");
3928         task->print(st, NULL, short_form, true);
3929       }
3930     }
3931   }
3932 }
3933 
3934 
3935 // Ad-hoc mutual exclusion primitives: SpinLock
3936 //
3937 // We employ SpinLocks _only for low-contention, fixed-length
3938 // short-duration critical sections where we're concerned
3939 // about native mutex_t or HotSpot Mutex:: latency.
3940 //
3941 // TODO-FIXME: ListLock should be of type SpinLock.
3942 // We should make this a 1st-class type, integrated into the lock
3943 // hierarchy as leaf-locks.  Critically, the SpinLock structure
3944 // should have sufficient padding to avoid false-sharing and excessive
3945 // cache-coherency traffic.
3946 
3947 
3948 typedef volatile int SpinLockT;
3949 
3950 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
3951   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
3952     return;   // normal fast-path return
3953   }
3954 
3955   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
3956   int ctr = 0;
3957   int Yields = 0;
3958   for (;;) {
3959     while (*adr != 0) {
3960       ++ctr;
3961       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
3962         if (Yields > 5) {
3963           os::naked_short_sleep(1);
3964         } else {
3965           os::naked_yield();
3966           ++Yields;
3967         }
3968       } else {
3969         SpinPause();
3970       }
3971     }
3972     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
3973   }
3974 }
3975 
3976 void Thread::SpinRelease(volatile int * adr) {
3977   assert(*adr != 0, "invariant");
3978   OrderAccess::fence();      // guarantee at least release consistency.
3979   // Roach-motel semantics.
3980   // It's safe if subsequent LDs and STs float "up" into the critical section,
3981   // but prior LDs and STs within the critical section can't be allowed
3982   // to reorder or float past the ST that releases the lock.
3983   // Loads and stores in the critical section - which appear in program
3984   // order before the store that releases the lock - must also appear
3985   // before the store that releases the lock in memory visibility order.
3986   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
3987   // the ST of 0 into the lock-word which releases the lock, so fence
3988   // more than covers this on all platforms.
3989   *adr = 0;
3990 }
3991 
3992 
3993 void Threads::verify() {
3994   ALL_JAVA_THREADS(p) {
3995     p->verify();
3996   }
3997   VMThread* thread = VMThread::vm_thread();
3998   if (thread != NULL) thread->verify();
3999 }
4000 
4001 #ifndef PRODUCT
4002 void JavaThread::verify_cross_modify_fence_failure(JavaThread *thread) {
4003    report_vm_error(__FILE__, __LINE__, "Cross modify fence failure", "%p", thread);
4004 }
4005 #endif
4006 
4007 // Starts the target JavaThread as a daemon of the given priority, and
4008 // bound to the given java.lang.Thread instance.
4009 // The Threads_lock is held for the duration.
4010 void JavaThread::start_internal_daemon(JavaThread* current, JavaThread* target,
4011                                        Handle thread_oop, ThreadPriority prio) {
4012 
4013   assert(target->osthread()!= NULL, "target thread is not properly initialized");
4014 
4015   MutexLocker mu(current, Threads_lock);
4016 
4017   // Initialize the fields of the thread_oop first.
4018   if (prio != NoPriority) {
4019     java_lang_Thread::set_priority(thread_oop(), prio);
4020     // Note: we don't call os::set_priority here. Possibly we should,
4021     // else all threads should call it themselves when they first run.
4022   }
4023 
4024   java_lang_Thread::set_daemon(thread_oop());
4025 
4026   // Now bind the thread_oop to the target JavaThread.
4027   target->set_threadObj(thread_oop());
4028 
4029   Threads::add(target); // target is now visible for safepoint/handshake
4030   // Publish the JavaThread* in java.lang.Thread after the JavaThread* is
4031   // on a ThreadsList. We don't want to wait for the release when the
4032   // Theads_lock is dropped when the 'mu' destructor is run since the
4033   // JavaThread* is already visible to JVM/TI via the ThreadsList.
4034   java_lang_Thread::release_set_thread(thread_oop(), target); // isAlive == true now
4035   Thread::start(target);
4036 }
4037 
4038 void JavaThread::vm_exit_on_osthread_failure(JavaThread* thread) {
4039   // At this point it may be possible that no osthread was created for the
4040   // JavaThread due to lack of resources. However, since this must work
4041   // for critical system threads just check and abort if this fails.
4042   if (thread->osthread() == nullptr) {
4043     // This isn't really an OOM condition, but historically this is what
4044     // we report.
4045     vm_exit_during_initialization("java.lang.OutOfMemoryError",
4046                                   os::native_thread_creation_failed_msg());
4047   }
4048 }