1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #include "utilities/compilerWarnings.hpp" 29 #include "utilities/debug.hpp" 30 #include "utilities/macros.hpp" 31 32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>. 33 #include "classfile_constants.h" 34 35 #include COMPILER_HEADER(utilities/globalDefinitions) 36 37 #include <cstddef> 38 #include <type_traits> 39 40 class oopDesc; 41 42 // Defaults for macros that might be defined per compiler. 43 #ifndef NOINLINE 44 #define NOINLINE 45 #endif 46 #ifndef ALWAYSINLINE 47 #define ALWAYSINLINE inline 48 #endif 49 50 #ifndef ATTRIBUTE_ALIGNED 51 #define ATTRIBUTE_ALIGNED(x) 52 #endif 53 54 #ifndef ATTRIBUTE_FLATTEN 55 #define ATTRIBUTE_FLATTEN 56 #endif 57 58 // These are #defines to selectively turn on/off the Print(Opto)Assembly 59 // capabilities. Choices should be led by a tradeoff between 60 // code size and improved supportability. 61 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well 62 // to have a fallback in case hsdis is not available. 63 #if defined(PRODUCT) 64 #define SUPPORT_ABSTRACT_ASSEMBLY 65 #define SUPPORT_ASSEMBLY 66 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. 67 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. 68 #else 69 #define SUPPORT_ABSTRACT_ASSEMBLY 70 #define SUPPORT_ASSEMBLY 71 #define SUPPORT_OPTO_ASSEMBLY 72 #define SUPPORT_DATA_STRUCTS 73 #endif 74 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) 75 #define SUPPORT_ABSTRACT_ASSEMBLY 76 #endif 77 78 // This file holds all globally used constants & types, class (forward) 79 // declarations and a few frequently used utility functions. 80 81 // Declare the named class to be noncopyable. This macro must be followed by 82 // a semi-colon. The macro provides deleted declarations for the class's copy 83 // constructor and assignment operator. Because these operations are deleted, 84 // they cannot be defined and potential callers will fail to compile. 85 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */ 86 87 88 //---------------------------------------------------------------------------------------------------- 89 // Printf-style formatters for fixed- and variable-width types as pointers and 90 // integers. These are derived from the definitions in inttypes.h. If the platform 91 // doesn't provide appropriate definitions, they should be provided in 92 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 93 94 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 95 96 // Format 32-bit quantities. 97 #define INT32_FORMAT "%" PRId32 98 #define UINT32_FORMAT "%" PRIu32 99 #define INT32_FORMAT_W(width) "%" #width PRId32 100 #define UINT32_FORMAT_W(width) "%" #width PRIu32 101 102 #define PTR32_FORMAT "0x%08" PRIx32 103 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 104 105 // Format 64-bit quantities. 106 #define INT64_FORMAT "%" PRId64 107 #define UINT64_FORMAT "%" PRIu64 108 #define UINT64_FORMAT_X "%" PRIx64 109 #define INT64_FORMAT_W(width) "%" #width PRId64 110 #define UINT64_FORMAT_W(width) "%" #width PRIu64 111 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64 112 113 #define PTR64_FORMAT "0x%016" PRIx64 114 115 // Format jlong, if necessary 116 #ifndef JLONG_FORMAT 117 #define JLONG_FORMAT INT64_FORMAT 118 #endif 119 #ifndef JLONG_FORMAT_W 120 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) 121 #endif 122 #ifndef JULONG_FORMAT 123 #define JULONG_FORMAT UINT64_FORMAT 124 #endif 125 #ifndef JULONG_FORMAT_X 126 #define JULONG_FORMAT_X UINT64_FORMAT_X 127 #endif 128 129 // Format pointers which change size between 32- and 64-bit. 130 #ifdef _LP64 131 #define INTPTR_FORMAT "0x%016" PRIxPTR 132 #define PTR_FORMAT "0x%016" PRIxPTR 133 #else // !_LP64 134 #define INTPTR_FORMAT "0x%08" PRIxPTR 135 #define PTR_FORMAT "0x%08" PRIxPTR 136 #endif // _LP64 137 138 // Format pointers without leading zeros 139 #define INTPTRNZ_FORMAT "0x%" PRIxPTR 140 141 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR 142 143 #define SSIZE_FORMAT "%" PRIdPTR 144 #define SSIZE_PLUS_FORMAT "%+" PRIdPTR 145 #define SIZE_FORMAT "%" PRIuPTR 146 #define SIZE_FORMAT_HEX "0x%" PRIxPTR 147 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 148 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 149 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR 150 151 #define INTX_FORMAT "%" PRIdPTR 152 #define UINTX_FORMAT "%" PRIuPTR 153 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 154 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 155 156 // Convert pointer to intptr_t, for use in printing pointers. 157 inline intptr_t p2i(const volatile void* p) { 158 return (intptr_t) p; 159 } 160 161 //---------------------------------------------------------------------------------------------------- 162 // Constants 163 164 const int LogBytesPerShort = 1; 165 const int LogBytesPerInt = 2; 166 #ifdef _LP64 167 const int LogBytesPerWord = 3; 168 #else 169 const int LogBytesPerWord = 2; 170 #endif 171 const int LogBytesPerLong = 3; 172 173 const int BytesPerShort = 1 << LogBytesPerShort; 174 const int BytesPerInt = 1 << LogBytesPerInt; 175 const int BytesPerWord = 1 << LogBytesPerWord; 176 const int BytesPerLong = 1 << LogBytesPerLong; 177 178 const int LogBitsPerByte = 3; 179 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 180 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 181 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 182 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 183 184 const int BitsPerByte = 1 << LogBitsPerByte; 185 const int BitsPerShort = 1 << LogBitsPerShort; 186 const int BitsPerInt = 1 << LogBitsPerInt; 187 const int BitsPerWord = 1 << LogBitsPerWord; 188 const int BitsPerLong = 1 << LogBitsPerLong; 189 190 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 191 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 192 193 const int WordsPerLong = 2; // Number of stack entries for longs 194 195 const int oopSize = sizeof(char*); // Full-width oop 196 extern int heapOopSize; // Oop within a java object 197 const int wordSize = sizeof(char*); 198 const int longSize = sizeof(jlong); 199 const int jintSize = sizeof(jint); 200 const int size_tSize = sizeof(size_t); 201 202 const int BytesPerOop = BytesPerWord; // Full-width oop 203 204 extern int LogBytesPerHeapOop; // Oop within a java object 205 extern int LogBitsPerHeapOop; 206 extern int BytesPerHeapOop; 207 extern int BitsPerHeapOop; 208 209 const int BitsPerJavaInteger = 32; 210 const int BitsPerJavaLong = 64; 211 const int BitsPerSize_t = size_tSize * BitsPerByte; 212 213 // Size of a char[] needed to represent a jint as a string in decimal. 214 const int jintAsStringSize = 12; 215 216 // An opaque type, so that HeapWord* can be a generic pointer into the heap. 217 // We require that object sizes be measured in units of heap words (e.g. 218 // pointer-sized values), so that given HeapWord* hw, 219 // hw += oop(hw)->foo(); 220 // works, where foo is a method (like size or scavenge) that returns the 221 // object size. 222 class HeapWordImpl; // Opaque, never defined. 223 typedef HeapWordImpl* HeapWord; 224 225 // Analogous opaque struct for metadata allocated from metaspaces. 226 class MetaWordImpl; // Opaque, never defined. 227 typedef MetaWordImpl* MetaWord; 228 229 // HeapWordSize must be 2^LogHeapWordSize. 230 const int HeapWordSize = sizeof(HeapWord); 231 #ifdef _LP64 232 const int LogHeapWordSize = 3; 233 #else 234 const int LogHeapWordSize = 2; 235 #endif 236 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 237 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 238 239 // The minimum number of native machine words necessary to contain "byte_size" 240 // bytes. 241 inline size_t heap_word_size(size_t byte_size) { 242 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 243 } 244 245 inline jfloat jfloat_cast(jint x); 246 inline jdouble jdouble_cast(jlong x); 247 248 //------------------------------------------- 249 // Constant for jlong (standardized by C++11) 250 251 // Build a 64bit integer constant 252 #define CONST64(x) (x ## LL) 253 #define UCONST64(x) (x ## ULL) 254 255 const jlong min_jlong = CONST64(0x8000000000000000); 256 const jlong max_jlong = CONST64(0x7fffffffffffffff); 257 258 //------------------------------------------- 259 // Constant for jdouble 260 const jlong min_jlongDouble = CONST64(0x0000000000000001); 261 const jdouble min_jdouble = jdouble_cast(min_jlongDouble); 262 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff); 263 const jdouble max_jdouble = jdouble_cast(max_jlongDouble); 264 265 const size_t K = 1024; 266 const size_t M = K*K; 267 const size_t G = M*K; 268 const size_t HWperKB = K / sizeof(HeapWord); 269 270 // Constants for converting from a base unit to milli-base units. For 271 // example from seconds to milliseconds and microseconds 272 273 const int MILLIUNITS = 1000; // milli units per base unit 274 const int MICROUNITS = 1000000; // micro units per base unit 275 const int NANOUNITS = 1000000000; // nano units per base unit 276 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS; 277 278 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 279 const jint NANOSECS_PER_MILLISEC = 1000000; 280 281 282 // Unit conversion functions 283 // The caller is responsible for considering overlow. 284 285 inline int64_t nanos_to_millis(int64_t nanos) { 286 return nanos / NANOUNITS_PER_MILLIUNIT; 287 } 288 inline int64_t millis_to_nanos(int64_t millis) { 289 return millis * NANOUNITS_PER_MILLIUNIT; 290 } 291 292 // Proper units routines try to maintain at least three significant digits. 293 // In worst case, it would print five significant digits with lower prefix. 294 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 295 // and therefore we need to be careful. 296 297 inline const char* proper_unit_for_byte_size(size_t s) { 298 #ifdef _LP64 299 if (s >= 100*G) { 300 return "G"; 301 } 302 #endif 303 if (s >= 100*M) { 304 return "M"; 305 } else if (s >= 100*K) { 306 return "K"; 307 } else { 308 return "B"; 309 } 310 } 311 312 template <class T> 313 inline T byte_size_in_proper_unit(T s) { 314 #ifdef _LP64 315 if (s >= 100*G) { 316 return (T)(s/G); 317 } 318 #endif 319 if (s >= 100*M) { 320 return (T)(s/M); 321 } else if (s >= 100*K) { 322 return (T)(s/K); 323 } else { 324 return s; 325 } 326 } 327 328 #define PROPERFMT SIZE_FORMAT "%s" 329 #define PROPERFMTARGS(s) byte_size_in_proper_unit(s), proper_unit_for_byte_size(s) 330 331 inline const char* exact_unit_for_byte_size(size_t s) { 332 #ifdef _LP64 333 if (s >= G && (s % G) == 0) { 334 return "G"; 335 } 336 #endif 337 if (s >= M && (s % M) == 0) { 338 return "M"; 339 } 340 if (s >= K && (s % K) == 0) { 341 return "K"; 342 } 343 return "B"; 344 } 345 346 inline size_t byte_size_in_exact_unit(size_t s) { 347 #ifdef _LP64 348 if (s >= G && (s % G) == 0) { 349 return s / G; 350 } 351 #endif 352 if (s >= M && (s % M) == 0) { 353 return s / M; 354 } 355 if (s >= K && (s % K) == 0) { 356 return s / K; 357 } 358 return s; 359 } 360 361 #define EXACTFMT SIZE_FORMAT "%s" 362 #define EXACTFMTARGS(s) byte_size_in_exact_unit(s), exact_unit_for_byte_size(s) 363 364 // Memory size transition formatting. 365 366 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)" 367 368 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \ 369 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K 370 371 //---------------------------------------------------------------------------------------------------- 372 // VM type definitions 373 374 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 375 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 376 377 typedef intptr_t intx; 378 typedef uintptr_t uintx; 379 380 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 381 const intx max_intx = (uintx)min_intx - 1; 382 const uintx max_uintx = (uintx)-1; 383 384 // Table of values: 385 // sizeof intx 4 8 386 // min_intx 0x80000000 0x8000000000000000 387 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 388 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 389 390 typedef unsigned int uint; NEEDS_CLEANUP 391 392 393 //---------------------------------------------------------------------------------------------------- 394 // Java type definitions 395 396 // All kinds of 'plain' byte addresses 397 typedef signed char s_char; 398 typedef unsigned char u_char; 399 typedef u_char* address; 400 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 401 // except for some implementations of a C++ 402 // linkage pointer to function. Should never 403 // need one of those to be placed in this 404 // type anyway. 405 406 // Utility functions to "portably" (?) bit twiddle pointers 407 // Where portable means keep ANSI C++ compilers quiet 408 409 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 410 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 411 412 // Utility functions to "portably" make cast to/from function pointers. 413 414 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 415 inline address_word castable_address(address x) { return address_word(x) ; } 416 inline address_word castable_address(void* x) { return address_word(x) ; } 417 418 // Pointer subtraction. 419 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 420 // the range we might need to find differences from one end of the heap 421 // to the other. 422 // A typical use might be: 423 // if (pointer_delta(end(), top()) >= size) { 424 // // enough room for an object of size 425 // ... 426 // and then additions like 427 // ... top() + size ... 428 // are safe because we know that top() is at least size below end(). 429 inline size_t pointer_delta(const volatile void* left, 430 const volatile void* right, 431 size_t element_size) { 432 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right)); 433 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 434 } 435 436 // A version specialized for HeapWord*'s. 437 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 438 return pointer_delta(left, right, sizeof(HeapWord)); 439 } 440 // A version specialized for MetaWord*'s. 441 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 442 return pointer_delta(left, right, sizeof(MetaWord)); 443 } 444 445 // 446 // ANSI C++ does not allow casting from one pointer type to a function pointer 447 // directly without at best a warning. This macro accomplishes it silently 448 // In every case that is present at this point the value be cast is a pointer 449 // to a C linkage function. In some case the type used for the cast reflects 450 // that linkage and a picky compiler would not complain. In other cases because 451 // there is no convenient place to place a typedef with extern C linkage (i.e 452 // a platform dependent header file) it doesn't. At this point no compiler seems 453 // picky enough to catch these instances (which are few). It is possible that 454 // using templates could fix these for all cases. This use of templates is likely 455 // so far from the middle of the road that it is likely to be problematic in 456 // many C++ compilers. 457 // 458 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 459 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 460 461 // In many places we've added C-style casts to silence compiler 462 // warnings, for example when truncating a size_t to an int when we 463 // know the size_t is a small struct. Such casts are risky because 464 // they effectively disable useful compiler warnings. We can make our 465 // lives safer with this function, which ensures that any cast is 466 // reversible without loss of information. It doesn't check 467 // everything: it isn't intended to make sure that pointer types are 468 // compatible, for example. 469 template <typename T2, typename T1> 470 T2 checked_cast(T1 thing) { 471 T2 result = static_cast<T2>(thing); 472 assert(static_cast<T1>(result) == thing, "must be"); 473 return result; 474 } 475 476 // Need the correct linkage to call qsort without warnings 477 extern "C" { 478 typedef int (*_sort_Fn)(const void *, const void *); 479 } 480 481 // Unsigned byte types for os and stream.hpp 482 483 // Unsigned one, two, four and eigth byte quantities used for describing 484 // the .class file format. See JVM book chapter 4. 485 486 typedef jubyte u1; 487 typedef jushort u2; 488 typedef juint u4; 489 typedef julong u8; 490 491 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 492 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 493 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 494 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 495 496 typedef jbyte s1; 497 typedef jshort s2; 498 typedef jint s4; 499 typedef jlong s8; 500 501 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 502 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 503 const jshort min_jshort = -(1 << 15); // smallest jshort 504 const jshort max_jshort = (1 << 15) - 1; // largest jshort 505 506 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 507 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 508 509 const jint min_jintFloat = (jint)(0x00000001); 510 const jfloat min_jfloat = jfloat_cast(min_jintFloat); 511 const jint max_jintFloat = (jint)(0x7f7fffff); 512 const jfloat max_jfloat = jfloat_cast(max_jintFloat); 513 514 //---------------------------------------------------------------------------------------------------- 515 // JVM spec restrictions 516 517 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 518 519 //---------------------------------------------------------------------------------------------------- 520 // Object alignment, in units of HeapWords. 521 // 522 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 523 // reference fields can be naturally aligned. 524 525 extern int MinObjAlignment; 526 extern int MinObjAlignmentInBytes; 527 extern int MinObjAlignmentInBytesMask; 528 529 extern int LogMinObjAlignment; 530 extern int LogMinObjAlignmentInBytes; 531 532 const int LogKlassAlignmentInBytes = 3; 533 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 534 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 535 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 536 537 // Maximal size of heap where unscaled compression can be used. Also upper bound 538 // for heap placement: 4GB. 539 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 540 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 541 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 542 extern uint64_t OopEncodingHeapMax; 543 544 // Maximal size of compressed class space. Above this limit compression is not possible. 545 // Also upper bound for placement of zero based class space. (Class space is further limited 546 // to be < 3G, see arguments.cpp.) 547 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 548 549 // Machine dependent stuff 550 551 // The maximum size of the code cache. Can be overridden by targets. 552 #define CODE_CACHE_SIZE_LIMIT (2*G) 553 // Allow targets to reduce the default size of the code cache. 554 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 555 556 #include CPU_HEADER(globalDefinitions) 557 558 // To assure the IRIW property on processors that are not multiple copy 559 // atomic, sync instructions must be issued between volatile reads to 560 // assure their ordering, instead of after volatile stores. 561 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 562 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 563 #ifdef CPU_MULTI_COPY_ATOMIC 564 // Not needed. 565 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 566 #else 567 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment. 568 // Final decision is subject to JEP 188: Java Memory Model Update. 569 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false); 570 #endif 571 572 // The expected size in bytes of a cache line, used to pad data structures. 573 #ifndef DEFAULT_CACHE_LINE_SIZE 574 #define DEFAULT_CACHE_LINE_SIZE 64 575 #endif 576 577 578 //---------------------------------------------------------------------------------------------------- 579 // Utility macros for compilers 580 // used to silence compiler warnings 581 582 #define Unused_Variable(var) var 583 584 585 //---------------------------------------------------------------------------------------------------- 586 // Miscellaneous 587 588 // 6302670 Eliminate Hotspot __fabsf dependency 589 // All fabs() callers should call this function instead, which will implicitly 590 // convert the operand to double, avoiding a dependency on __fabsf which 591 // doesn't exist in early versions of Solaris 8. 592 inline double fabsd(double value) { 593 return fabs(value); 594 } 595 596 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 597 // is zero, return 0.0. 598 template<typename T> 599 inline double percent_of(T numerator, T denominator) { 600 return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; 601 } 602 603 //---------------------------------------------------------------------------------------------------- 604 // Special casts 605 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 606 typedef union { 607 jfloat f; 608 jint i; 609 } FloatIntConv; 610 611 typedef union { 612 jdouble d; 613 jlong l; 614 julong ul; 615 } DoubleLongConv; 616 617 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 618 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 619 620 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 621 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 622 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 623 624 inline jint low (jlong value) { return jint(value); } 625 inline jint high(jlong value) { return jint(value >> 32); } 626 627 // the fancy casts are a hopefully portable way 628 // to do unsigned 32 to 64 bit type conversion 629 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 630 *value |= (jlong)(julong)(juint)low; } 631 632 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 633 *value |= (jlong)high << 32; } 634 635 inline jlong jlong_from(jint h, jint l) { 636 jlong result = 0; // initialization to avoid warning 637 set_high(&result, h); 638 set_low(&result, l); 639 return result; 640 } 641 642 union jlong_accessor { 643 jint words[2]; 644 jlong long_value; 645 }; 646 647 void basic_types_init(); // cannot define here; uses assert 648 649 650 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 651 enum BasicType { 652 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS. 653 T_BOOLEAN = JVM_T_BOOLEAN, 654 T_CHAR = JVM_T_CHAR, 655 T_FLOAT = JVM_T_FLOAT, 656 T_DOUBLE = JVM_T_DOUBLE, 657 T_BYTE = JVM_T_BYTE, 658 T_SHORT = JVM_T_SHORT, 659 T_INT = JVM_T_INT, 660 T_LONG = JVM_T_LONG, 661 // The remaining values are not part of any standard. 662 // T_OBJECT and T_VOID denote two more semantic choices 663 // for method return values. 664 // T_OBJECT and T_ARRAY describe signature syntax. 665 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe 666 // internal references within the JVM as if they were Java 667 // types in their own right. 668 T_OBJECT = 12, 669 T_ARRAY = 13, 670 T_VOID = 14, 671 T_ADDRESS = 15, 672 T_NARROWOOP = 16, 673 T_METADATA = 17, 674 T_NARROWKLASS = 18, 675 T_CONFLICT = 19, // for stack value type with conflicting contents 676 T_ILLEGAL = 99 677 }; 678 679 #define SIGNATURE_TYPES_DO(F, N) \ 680 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \ 681 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \ 682 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \ 683 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \ 684 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \ 685 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \ 686 F(JVM_SIGNATURE_INT, T_INT, N) \ 687 F(JVM_SIGNATURE_LONG, T_LONG, N) \ 688 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \ 689 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \ 690 F(JVM_SIGNATURE_VOID, T_VOID, N) \ 691 /*end*/ 692 693 inline bool is_java_type(BasicType t) { 694 return T_BOOLEAN <= t && t <= T_VOID; 695 } 696 697 inline bool is_java_primitive(BasicType t) { 698 return T_BOOLEAN <= t && t <= T_LONG; 699 } 700 701 inline bool is_subword_type(BasicType t) { 702 // these guys are processed exactly like T_INT in calling sequences: 703 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 704 } 705 706 inline bool is_signed_subword_type(BasicType t) { 707 return (t == T_BYTE || t == T_SHORT); 708 } 709 710 inline bool is_double_word_type(BasicType t) { 711 return (t == T_DOUBLE || t == T_LONG); 712 } 713 714 inline bool is_reference_type(BasicType t) { 715 return (t == T_OBJECT || t == T_ARRAY); 716 } 717 718 inline bool is_integral_type(BasicType t) { 719 return is_subword_type(t) || t == T_INT || t == T_LONG; 720 } 721 722 inline bool is_floating_point_type(BasicType t) { 723 return (t == T_FLOAT || t == T_DOUBLE); 724 } 725 726 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 727 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 728 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 729 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char* 730 extern BasicType name2type(const char* name); 731 732 const char* type2name(BasicType t); 733 734 inline jlong max_signed_integer(BasicType bt) { 735 if (bt == T_INT) { 736 return max_jint; 737 } 738 assert(bt == T_LONG, "unsupported"); 739 return max_jlong; 740 } 741 742 inline jlong min_signed_integer(BasicType bt) { 743 if (bt == T_INT) { 744 return min_jint; 745 } 746 assert(bt == T_LONG, "unsupported"); 747 return min_jlong; 748 } 749 750 // Auxiliary math routines 751 // least common multiple 752 extern size_t lcm(size_t a, size_t b); 753 754 755 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 756 enum BasicTypeSize { 757 T_BOOLEAN_size = 1, 758 T_CHAR_size = 1, 759 T_FLOAT_size = 1, 760 T_DOUBLE_size = 2, 761 T_BYTE_size = 1, 762 T_SHORT_size = 1, 763 T_INT_size = 1, 764 T_LONG_size = 2, 765 T_OBJECT_size = 1, 766 T_ARRAY_size = 1, 767 T_NARROWOOP_size = 1, 768 T_NARROWKLASS_size = 1, 769 T_VOID_size = 0 770 }; 771 772 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc. 773 inline int parameter_type_word_count(BasicType t) { 774 if (is_double_word_type(t)) return 2; 775 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please"); 776 assert(type2size[t] == 1, "must be"); 777 return 1; 778 } 779 780 // maps a BasicType to its instance field storage type: 781 // all sub-word integral types are widened to T_INT 782 extern BasicType type2field[T_CONFLICT+1]; 783 extern BasicType type2wfield[T_CONFLICT+1]; 784 785 786 // size in bytes 787 enum ArrayElementSize { 788 T_BOOLEAN_aelem_bytes = 1, 789 T_CHAR_aelem_bytes = 2, 790 T_FLOAT_aelem_bytes = 4, 791 T_DOUBLE_aelem_bytes = 8, 792 T_BYTE_aelem_bytes = 1, 793 T_SHORT_aelem_bytes = 2, 794 T_INT_aelem_bytes = 4, 795 T_LONG_aelem_bytes = 8, 796 #ifdef _LP64 797 T_OBJECT_aelem_bytes = 8, 798 T_ARRAY_aelem_bytes = 8, 799 #else 800 T_OBJECT_aelem_bytes = 4, 801 T_ARRAY_aelem_bytes = 4, 802 #endif 803 T_NARROWOOP_aelem_bytes = 4, 804 T_NARROWKLASS_aelem_bytes = 4, 805 T_VOID_aelem_bytes = 0 806 }; 807 808 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 809 #ifdef ASSERT 810 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 811 #else 812 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 813 #endif 814 815 816 // JavaValue serves as a container for arbitrary Java values. 817 818 class JavaValue { 819 820 public: 821 typedef union JavaCallValue { 822 jfloat f; 823 jdouble d; 824 jint i; 825 jlong l; 826 jobject h; 827 oopDesc* o; 828 } JavaCallValue; 829 830 private: 831 BasicType _type; 832 JavaCallValue _value; 833 834 public: 835 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 836 837 JavaValue(jfloat value) { 838 _type = T_FLOAT; 839 _value.f = value; 840 } 841 842 JavaValue(jdouble value) { 843 _type = T_DOUBLE; 844 _value.d = value; 845 } 846 847 jfloat get_jfloat() const { return _value.f; } 848 jdouble get_jdouble() const { return _value.d; } 849 jint get_jint() const { return _value.i; } 850 jlong get_jlong() const { return _value.l; } 851 jobject get_jobject() const { return _value.h; } 852 oopDesc* get_oop() const { return _value.o; } 853 JavaCallValue* get_value_addr() { return &_value; } 854 BasicType get_type() const { return _type; } 855 856 void set_jfloat(jfloat f) { _value.f = f;} 857 void set_jdouble(jdouble d) { _value.d = d;} 858 void set_jint(jint i) { _value.i = i;} 859 void set_jlong(jlong l) { _value.l = l;} 860 void set_jobject(jobject h) { _value.h = h;} 861 void set_oop(oopDesc* o) { _value.o = o;} 862 void set_type(BasicType t) { _type = t; } 863 864 jboolean get_jboolean() const { return (jboolean) (_value.i);} 865 jbyte get_jbyte() const { return (jbyte) (_value.i);} 866 jchar get_jchar() const { return (jchar) (_value.i);} 867 jshort get_jshort() const { return (jshort) (_value.i);} 868 869 }; 870 871 872 // TosState describes the top-of-stack state before and after the execution of 873 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 874 // registers. The TosState corresponds to the 'machine representation' of this cached 875 // value. There's 4 states corresponding to the JAVA types int, long, float & double 876 // as well as a 5th state in case the top-of-stack value is actually on the top 877 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 878 // state when it comes to machine representation but is used separately for (oop) 879 // type specific operations (e.g. verification code). 880 881 enum TosState { // describes the tos cache contents 882 btos = 0, // byte, bool tos cached 883 ztos = 1, // byte, bool tos cached 884 ctos = 2, // char tos cached 885 stos = 3, // short tos cached 886 itos = 4, // int tos cached 887 ltos = 5, // long tos cached 888 ftos = 6, // float tos cached 889 dtos = 7, // double tos cached 890 atos = 8, // object cached 891 vtos = 9, // tos not cached 892 number_of_states, 893 ilgl // illegal state: should not occur 894 }; 895 896 897 inline TosState as_TosState(BasicType type) { 898 switch (type) { 899 case T_BYTE : return btos; 900 case T_BOOLEAN: return ztos; 901 case T_CHAR : return ctos; 902 case T_SHORT : return stos; 903 case T_INT : return itos; 904 case T_LONG : return ltos; 905 case T_FLOAT : return ftos; 906 case T_DOUBLE : return dtos; 907 case T_VOID : return vtos; 908 case T_ARRAY : // fall through 909 case T_OBJECT : return atos; 910 default : return ilgl; 911 } 912 } 913 914 inline BasicType as_BasicType(TosState state) { 915 switch (state) { 916 case btos : return T_BYTE; 917 case ztos : return T_BOOLEAN; 918 case ctos : return T_CHAR; 919 case stos : return T_SHORT; 920 case itos : return T_INT; 921 case ltos : return T_LONG; 922 case ftos : return T_FLOAT; 923 case dtos : return T_DOUBLE; 924 case atos : return T_OBJECT; 925 case vtos : return T_VOID; 926 default : return T_ILLEGAL; 927 } 928 } 929 930 931 // Helper function to convert BasicType info into TosState 932 // Note: Cannot define here as it uses global constant at the time being. 933 TosState as_TosState(BasicType type); 934 935 936 // JavaThreadState keeps track of which part of the code a thread is executing in. This 937 // information is needed by the safepoint code. 938 // 939 // There are 4 essential states: 940 // 941 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 942 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 943 // _thread_in_vm : Executing in the vm 944 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 945 // 946 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 947 // a transition from one state to another. These extra states makes it possible for the safepoint code to 948 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 949 // 950 // Given a state, the xxxx_trans state can always be found by adding 1. 951 // 952 enum JavaThreadState { 953 _thread_uninitialized = 0, // should never happen (missing initialization) 954 _thread_new = 2, // just starting up, i.e., in process of being initialized 955 _thread_new_trans = 3, // corresponding transition state (not used, included for completness) 956 _thread_in_native = 4, // running in native code 957 _thread_in_native_trans = 5, // corresponding transition state 958 _thread_in_vm = 6, // running in VM 959 _thread_in_vm_trans = 7, // corresponding transition state 960 _thread_in_Java = 8, // running in Java or in stub code 961 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) 962 _thread_blocked = 10, // blocked in vm 963 _thread_blocked_trans = 11, // corresponding transition state 964 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 965 }; 966 967 //---------------------------------------------------------------------------------------------------- 968 // Special constants for debugging 969 970 const jint badInt = -3; // generic "bad int" value 971 const intptr_t badAddressVal = -2; // generic "bad address" value 972 const intptr_t badOopVal = -1; // generic "bad oop" value 973 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 974 const int badStackSegVal = 0xCA; // value used to zap stack segments 975 const int badHandleValue = 0xBC; // value used to zap vm handle area 976 const int badResourceValue = 0xAB; // value used to zap resource area 977 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 978 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 979 const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk 980 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 981 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 982 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 983 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 984 985 986 // (These must be implemented as #defines because C++ compilers are 987 // not obligated to inline non-integral constants!) 988 #define badAddress ((address)::badAddressVal) 989 #define badOop (cast_to_oop(::badOopVal)) 990 #define badHeapWord (::badHeapWordVal) 991 992 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 993 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 994 995 //---------------------------------------------------------------------------------------------------- 996 // Utility functions for bitfield manipulations 997 998 const intptr_t AllBits = ~0; // all bits set in a word 999 const intptr_t NoBits = 0; // no bits set in a word 1000 const jlong NoLongBits = 0; // no bits set in a long 1001 const intptr_t OneBit = 1; // only right_most bit set in a word 1002 1003 // get a word with the n.th or the right-most or left-most n bits set 1004 // (note: #define used only so that they can be used in enum constant definitions) 1005 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 1006 #define right_n_bits(n) (nth_bit(n) - 1) 1007 1008 // bit-operations using a mask m 1009 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1010 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1011 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1012 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1013 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1014 1015 // bit-operations using the n.th bit 1016 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1017 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1018 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1019 1020 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1021 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1022 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1023 } 1024 1025 1026 //---------------------------------------------------------------------------------------------------- 1027 // Utility functions for integers 1028 1029 // Avoid use of global min/max macros which may cause unwanted double 1030 // evaluation of arguments. 1031 #ifdef max 1032 #undef max 1033 #endif 1034 1035 #ifdef min 1036 #undef min 1037 #endif 1038 1039 // It is necessary to use templates here. Having normal overloaded 1040 // functions does not work because it is necessary to provide both 32- 1041 // and 64-bit overloaded functions, which does not work, and having 1042 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1043 // will be even more error-prone than macros. 1044 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; } 1045 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; } 1046 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1047 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1048 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1049 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1050 1051 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1052 1053 // Return the given value clamped to the range [min ... max] 1054 template<typename T> 1055 inline T clamp(T value, T min, T max) { 1056 assert(min <= max, "must be"); 1057 return MIN2(MAX2(value, min), max); 1058 } 1059 1060 inline bool is_odd (intx x) { return x & 1; } 1061 inline bool is_even(intx x) { return !is_odd(x); } 1062 1063 // abs methods which cannot overflow and so are well-defined across 1064 // the entire domain of integer types. 1065 static inline unsigned int uabs(unsigned int n) { 1066 union { 1067 unsigned int result; 1068 int value; 1069 }; 1070 result = n; 1071 if (value < 0) result = 0-result; 1072 return result; 1073 } 1074 static inline julong uabs(julong n) { 1075 union { 1076 julong result; 1077 jlong value; 1078 }; 1079 result = n; 1080 if (value < 0) result = 0-result; 1081 return result; 1082 } 1083 static inline julong uabs(jlong n) { return uabs((julong)n); } 1084 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } 1085 1086 // "to" should be greater than "from." 1087 inline intx byte_size(void* from, void* to) { 1088 return (address)to - (address)from; 1089 } 1090 1091 1092 // Pack and extract shorts to/from ints: 1093 1094 inline int extract_low_short_from_int(jint x) { 1095 return x & 0xffff; 1096 } 1097 1098 inline int extract_high_short_from_int(jint x) { 1099 return (x >> 16) & 0xffff; 1100 } 1101 1102 inline int build_int_from_shorts( jushort low, jushort high ) { 1103 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1104 } 1105 1106 // swap a & b 1107 template<class T> static void swap(T& a, T& b) { 1108 T tmp = a; 1109 a = b; 1110 b = tmp; 1111 } 1112 1113 // array_size_impl is a function that takes a reference to T[N] and 1114 // returns a reference to char[N]. It is not ODR-used, so not defined. 1115 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N]; 1116 1117 #define ARRAY_SIZE(array) sizeof(array_size_impl(array)) 1118 1119 //---------------------------------------------------------------------------------------------------- 1120 // Sum and product which can never overflow: they wrap, just like the 1121 // Java operations. Note that we don't intend these to be used for 1122 // general-purpose arithmetic: their purpose is to emulate Java 1123 // operations. 1124 1125 // The goal of this code to avoid undefined or implementation-defined 1126 // behavior. The use of an lvalue to reference cast is explicitly 1127 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1128 // 15 in C++03] 1129 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1130 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1131 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1132 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1133 return reinterpret_cast<TYPE&>(ures); \ 1134 } 1135 1136 JAVA_INTEGER_OP(+, java_add, jint, juint) 1137 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1138 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1139 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1140 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1141 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1142 1143 #undef JAVA_INTEGER_OP 1144 1145 // Provide integer shift operations with Java semantics. No overflow 1146 // issues - left shifts simply discard shifted out bits. No undefined 1147 // behavior for large or negative shift quantities; instead the actual 1148 // shift distance is the argument modulo the lhs value's size in bits. 1149 // No undefined or implementation defined behavior for shifting negative 1150 // values; left shift discards bits, right shift sign extends. We use 1151 // the same safe conversion technique as above for java_add and friends. 1152 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \ 1153 inline TYPE NAME (TYPE lhs, jint rhs) { \ 1154 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \ 1155 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \ 1156 XTYPE xres = static_cast<XTYPE>(lhs); \ 1157 xres OP ## = (rhs & rhs_mask); \ 1158 return reinterpret_cast<TYPE&>(xres); \ 1159 } 1160 1161 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint) 1162 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong) 1163 // For signed shift right, assume C++ implementation >> sign extends. 1164 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint) 1165 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong) 1166 // For >>> use C++ unsigned >>. 1167 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint) 1168 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong) 1169 1170 #undef JAVA_INTEGER_SHIFT_OP 1171 1172 //---------------------------------------------------------------------------------------------------- 1173 // The goal of this code is to provide saturating operations for int/uint. 1174 // Checks overflow conditions and saturates the result to min_jint/max_jint. 1175 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ 1176 inline int NAME (TYPE1 in1, TYPE2 in2) { \ 1177 jlong res = static_cast<jlong>(in1); \ 1178 res OP ## = static_cast<jlong>(in2); \ 1179 if (res > max_jint) { \ 1180 res = max_jint; \ 1181 } else if (res < min_jint) { \ 1182 res = min_jint; \ 1183 } \ 1184 return static_cast<int>(res); \ 1185 } 1186 1187 SATURATED_INTEGER_OP(+, saturated_add, int, int) 1188 SATURATED_INTEGER_OP(+, saturated_add, int, uint) 1189 SATURATED_INTEGER_OP(+, saturated_add, uint, int) 1190 SATURATED_INTEGER_OP(+, saturated_add, uint, uint) 1191 1192 #undef SATURATED_INTEGER_OP 1193 1194 // Dereference vptr 1195 // All C++ compilers that we know of have the vtbl pointer in the first 1196 // word. If there are exceptions, this function needs to be made compiler 1197 // specific. 1198 static inline void* dereference_vptr(const void* addr) { 1199 return *(void**)addr; 1200 } 1201 1202 //---------------------------------------------------------------------------------------------------- 1203 // String type aliases used by command line flag declarations and 1204 // processing utilities. 1205 1206 typedef const char* ccstr; 1207 typedef const char* ccstrlist; // represents string arguments which accumulate 1208 1209 //---------------------------------------------------------------------------------------------------- 1210 // Default hash/equals functions used by ResourceHashtable and KVHashtable 1211 1212 template<typename K> unsigned primitive_hash(const K& k) { 1213 unsigned hash = (unsigned)((uintptr_t)k); 1214 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs 1215 } 1216 1217 template<typename K> bool primitive_equals(const K& k0, const K& k1) { 1218 return k0 == k1; 1219 } 1220 1221 1222 // Converts any type T to a reference type. 1223 template<typename T> 1224 std::add_rvalue_reference_t<T> declval() noexcept; 1225 1226 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP