1 /* 2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #include "utilities/compilerWarnings.hpp" 29 #include "utilities/debug.hpp" 30 #include "utilities/macros.hpp" 31 32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>. 33 #include "classfile_constants.h" 34 35 #include COMPILER_HEADER(utilities/globalDefinitions) 36 37 #include <cstddef> 38 #include <type_traits> 39 40 class oopDesc; 41 42 // Defaults for macros that might be defined per compiler. 43 #ifndef NOINLINE 44 #define NOINLINE 45 #endif 46 #ifndef ALWAYSINLINE 47 #define ALWAYSINLINE inline 48 #endif 49 50 #ifndef ATTRIBUTE_ALIGNED 51 #define ATTRIBUTE_ALIGNED(x) 52 #endif 53 54 #ifndef ATTRIBUTE_FLATTEN 55 #define ATTRIBUTE_FLATTEN 56 #endif 57 58 // These are #defines to selectively turn on/off the Print(Opto)Assembly 59 // capabilities. Choices should be led by a tradeoff between 60 // code size and improved supportability. 61 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well 62 // to have a fallback in case hsdis is not available. 63 #if defined(PRODUCT) 64 #define SUPPORT_ABSTRACT_ASSEMBLY 65 #define SUPPORT_ASSEMBLY 66 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. 67 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. 68 #else 69 #define SUPPORT_ABSTRACT_ASSEMBLY 70 #define SUPPORT_ASSEMBLY 71 #define SUPPORT_OPTO_ASSEMBLY 72 #define SUPPORT_DATA_STRUCTS 73 #endif 74 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) 75 #define SUPPORT_ABSTRACT_ASSEMBLY 76 #endif 77 78 // This file holds all globally used constants & types, class (forward) 79 // declarations and a few frequently used utility functions. 80 81 // Declare the named class to be noncopyable. This macro must be followed by 82 // a semi-colon. The macro provides deleted declarations for the class's copy 83 // constructor and assignment operator. Because these operations are deleted, 84 // they cannot be defined and potential callers will fail to compile. 85 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */ 86 87 88 //---------------------------------------------------------------------------------------------------- 89 // Printf-style formatters for fixed- and variable-width types as pointers and 90 // integers. These are derived from the definitions in inttypes.h. If the platform 91 // doesn't provide appropriate definitions, they should be provided in 92 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 93 94 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 95 96 // Format 32-bit quantities. 97 #define INT32_FORMAT "%" PRId32 98 #define UINT32_FORMAT "%" PRIu32 99 #define INT32_FORMAT_W(width) "%" #width PRId32 100 #define UINT32_FORMAT_W(width) "%" #width PRIu32 101 102 #define PTR32_FORMAT "0x%08" PRIx32 103 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32 104 105 // Format 64-bit quantities. 106 #define INT64_FORMAT "%" PRId64 107 #define UINT64_FORMAT "%" PRIu64 108 #define UINT64_FORMAT_X "%" PRIx64 109 #define INT64_FORMAT_W(width) "%" #width PRId64 110 #define UINT64_FORMAT_W(width) "%" #width PRIu64 111 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64 112 113 #define PTR64_FORMAT "0x%016" PRIx64 114 115 // Format jlong, if necessary 116 #ifndef JLONG_FORMAT 117 #define JLONG_FORMAT INT64_FORMAT 118 #endif 119 #ifndef JLONG_FORMAT_W 120 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) 121 #endif 122 #ifndef JULONG_FORMAT 123 #define JULONG_FORMAT UINT64_FORMAT 124 #endif 125 #ifndef JULONG_FORMAT_X 126 #define JULONG_FORMAT_X UINT64_FORMAT_X 127 #endif 128 129 // Format pointers which change size between 32- and 64-bit. 130 #ifdef _LP64 131 #define INTPTR_FORMAT "0x%016" PRIxPTR 132 #define PTR_FORMAT "0x%016" PRIxPTR 133 #else // !_LP64 134 #define INTPTR_FORMAT "0x%08" PRIxPTR 135 #define PTR_FORMAT "0x%08" PRIxPTR 136 #endif // _LP64 137 138 // Format pointers without leading zeros 139 #define INTPTRNZ_FORMAT "0x%" PRIxPTR 140 141 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR 142 143 #define SSIZE_FORMAT "%" PRIdPTR 144 #define SIZE_FORMAT "%" PRIuPTR 145 #define SIZE_FORMAT_HEX "0x%" PRIxPTR 146 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 147 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 148 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR 149 150 #define INTX_FORMAT "%" PRIdPTR 151 #define UINTX_FORMAT "%" PRIuPTR 152 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 153 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 154 155 // Convert pointer to intptr_t, for use in printing pointers. 156 inline intptr_t p2i(const volatile void* p) { 157 return (intptr_t) p; 158 } 159 160 //---------------------------------------------------------------------------------------------------- 161 // Constants 162 163 const int LogBytesPerShort = 1; 164 const int LogBytesPerInt = 2; 165 #ifdef _LP64 166 const int LogBytesPerWord = 3; 167 #else 168 const int LogBytesPerWord = 2; 169 #endif 170 const int LogBytesPerLong = 3; 171 172 const int BytesPerShort = 1 << LogBytesPerShort; 173 const int BytesPerInt = 1 << LogBytesPerInt; 174 const int BytesPerWord = 1 << LogBytesPerWord; 175 const int BytesPerLong = 1 << LogBytesPerLong; 176 177 const int LogBitsPerByte = 3; 178 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 179 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 180 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 181 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 182 183 const int BitsPerByte = 1 << LogBitsPerByte; 184 const int BitsPerShort = 1 << LogBitsPerShort; 185 const int BitsPerInt = 1 << LogBitsPerInt; 186 const int BitsPerWord = 1 << LogBitsPerWord; 187 const int BitsPerLong = 1 << LogBitsPerLong; 188 189 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 190 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 191 192 const int WordsPerLong = 2; // Number of stack entries for longs 193 194 const int oopSize = sizeof(char*); // Full-width oop 195 extern int heapOopSize; // Oop within a java object 196 const int wordSize = sizeof(char*); 197 const int longSize = sizeof(jlong); 198 const int jintSize = sizeof(jint); 199 const int size_tSize = sizeof(size_t); 200 201 const int BytesPerOop = BytesPerWord; // Full-width oop 202 203 extern int LogBytesPerHeapOop; // Oop within a java object 204 extern int LogBitsPerHeapOop; 205 extern int BytesPerHeapOop; 206 extern int BitsPerHeapOop; 207 208 const int BitsPerJavaInteger = 32; 209 const int BitsPerJavaLong = 64; 210 const int BitsPerSize_t = size_tSize * BitsPerByte; 211 212 // Size of a char[] needed to represent a jint as a string in decimal. 213 const int jintAsStringSize = 12; 214 215 // An opaque type, so that HeapWord* can be a generic pointer into the heap. 216 // We require that object sizes be measured in units of heap words (e.g. 217 // pointer-sized values), so that given HeapWord* hw, 218 // hw += oop(hw)->foo(); 219 // works, where foo is a method (like size or scavenge) that returns the 220 // object size. 221 class HeapWordImpl; // Opaque, never defined. 222 typedef HeapWordImpl* HeapWord; 223 224 // Analogous opaque struct for metadata allocated from metaspaces. 225 class MetaWordImpl; // Opaque, never defined. 226 typedef MetaWordImpl* MetaWord; 227 228 // HeapWordSize must be 2^LogHeapWordSize. 229 const int HeapWordSize = sizeof(HeapWord); 230 #ifdef _LP64 231 const int LogHeapWordSize = 3; 232 #else 233 const int LogHeapWordSize = 2; 234 #endif 235 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 236 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 237 238 // The minimum number of native machine words necessary to contain "byte_size" 239 // bytes. 240 inline size_t heap_word_size(size_t byte_size) { 241 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 242 } 243 244 inline jfloat jfloat_cast(jint x); 245 inline jdouble jdouble_cast(jlong x); 246 247 //------------------------------------------- 248 // Constant for jlong (standardized by C++11) 249 250 // Build a 64bit integer constant 251 #define CONST64(x) (x ## LL) 252 #define UCONST64(x) (x ## ULL) 253 254 const jlong min_jlong = CONST64(0x8000000000000000); 255 const jlong max_jlong = CONST64(0x7fffffffffffffff); 256 257 //------------------------------------------- 258 // Constant for jdouble 259 const jlong min_jlongDouble = CONST64(0x0000000000000001); 260 const jdouble min_jdouble = jdouble_cast(min_jlongDouble); 261 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff); 262 const jdouble max_jdouble = jdouble_cast(max_jlongDouble); 263 264 const size_t K = 1024; 265 const size_t M = K*K; 266 const size_t G = M*K; 267 const size_t HWperKB = K / sizeof(HeapWord); 268 269 // Constants for converting from a base unit to milli-base units. For 270 // example from seconds to milliseconds and microseconds 271 272 const int MILLIUNITS = 1000; // milli units per base unit 273 const int MICROUNITS = 1000000; // micro units per base unit 274 const int NANOUNITS = 1000000000; // nano units per base unit 275 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS; 276 277 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 278 const jint NANOSECS_PER_MILLISEC = 1000000; 279 280 281 // Unit conversion functions 282 // The caller is responsible for considering overlow. 283 284 inline int64_t nanos_to_millis(int64_t nanos) { 285 return nanos / NANOUNITS_PER_MILLIUNIT; 286 } 287 inline int64_t millis_to_nanos(int64_t millis) { 288 return millis * NANOUNITS_PER_MILLIUNIT; 289 } 290 291 // Proper units routines try to maintain at least three significant digits. 292 // In worst case, it would print five significant digits with lower prefix. 293 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 294 // and therefore we need to be careful. 295 296 inline const char* proper_unit_for_byte_size(size_t s) { 297 #ifdef _LP64 298 if (s >= 100*G) { 299 return "G"; 300 } 301 #endif 302 if (s >= 100*M) { 303 return "M"; 304 } else if (s >= 100*K) { 305 return "K"; 306 } else { 307 return "B"; 308 } 309 } 310 311 template <class T> 312 inline T byte_size_in_proper_unit(T s) { 313 #ifdef _LP64 314 if (s >= 100*G) { 315 return (T)(s/G); 316 } 317 #endif 318 if (s >= 100*M) { 319 return (T)(s/M); 320 } else if (s >= 100*K) { 321 return (T)(s/K); 322 } else { 323 return s; 324 } 325 } 326 327 inline const char* exact_unit_for_byte_size(size_t s) { 328 #ifdef _LP64 329 if (s >= G && (s % G) == 0) { 330 return "G"; 331 } 332 #endif 333 if (s >= M && (s % M) == 0) { 334 return "M"; 335 } 336 if (s >= K && (s % K) == 0) { 337 return "K"; 338 } 339 return "B"; 340 } 341 342 inline size_t byte_size_in_exact_unit(size_t s) { 343 #ifdef _LP64 344 if (s >= G && (s % G) == 0) { 345 return s / G; 346 } 347 #endif 348 if (s >= M && (s % M) == 0) { 349 return s / M; 350 } 351 if (s >= K && (s % K) == 0) { 352 return s / K; 353 } 354 return s; 355 } 356 357 // Memory size transition formatting. 358 359 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)" 360 361 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \ 362 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K 363 364 //---------------------------------------------------------------------------------------------------- 365 // VM type definitions 366 367 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 368 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 369 370 typedef intptr_t intx; 371 typedef uintptr_t uintx; 372 373 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 374 const intx max_intx = (uintx)min_intx - 1; 375 const uintx max_uintx = (uintx)-1; 376 377 // Table of values: 378 // sizeof intx 4 8 379 // min_intx 0x80000000 0x8000000000000000 380 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 381 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 382 383 typedef unsigned int uint; NEEDS_CLEANUP 384 385 386 //---------------------------------------------------------------------------------------------------- 387 // Java type definitions 388 389 // All kinds of 'plain' byte addresses 390 typedef signed char s_char; 391 typedef unsigned char u_char; 392 typedef u_char* address; 393 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 394 // except for some implementations of a C++ 395 // linkage pointer to function. Should never 396 // need one of those to be placed in this 397 // type anyway. 398 399 // Utility functions to "portably" (?) bit twiddle pointers 400 // Where portable means keep ANSI C++ compilers quiet 401 402 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 403 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 404 405 // Utility functions to "portably" make cast to/from function pointers. 406 407 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 408 inline address_word castable_address(address x) { return address_word(x) ; } 409 inline address_word castable_address(void* x) { return address_word(x) ; } 410 411 // Pointer subtraction. 412 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 413 // the range we might need to find differences from one end of the heap 414 // to the other. 415 // A typical use might be: 416 // if (pointer_delta(end(), top()) >= size) { 417 // // enough room for an object of size 418 // ... 419 // and then additions like 420 // ... top() + size ... 421 // are safe because we know that top() is at least size below end(). 422 inline size_t pointer_delta(const volatile void* left, 423 const volatile void* right, 424 size_t element_size) { 425 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right)); 426 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 427 } 428 429 // A version specialized for HeapWord*'s. 430 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 431 return pointer_delta(left, right, sizeof(HeapWord)); 432 } 433 // A version specialized for MetaWord*'s. 434 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 435 return pointer_delta(left, right, sizeof(MetaWord)); 436 } 437 438 // 439 // ANSI C++ does not allow casting from one pointer type to a function pointer 440 // directly without at best a warning. This macro accomplishes it silently 441 // In every case that is present at this point the value be cast is a pointer 442 // to a C linkage function. In some case the type used for the cast reflects 443 // that linkage and a picky compiler would not complain. In other cases because 444 // there is no convenient place to place a typedef with extern C linkage (i.e 445 // a platform dependent header file) it doesn't. At this point no compiler seems 446 // picky enough to catch these instances (which are few). It is possible that 447 // using templates could fix these for all cases. This use of templates is likely 448 // so far from the middle of the road that it is likely to be problematic in 449 // many C++ compilers. 450 // 451 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 452 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 453 454 // In many places we've added C-style casts to silence compiler 455 // warnings, for example when truncating a size_t to an int when we 456 // know the size_t is a small struct. Such casts are risky because 457 // they effectively disable useful compiler warnings. We can make our 458 // lives safer with this function, which ensures that any cast is 459 // reversible without loss of information. It doesn't check 460 // everything: it isn't intended to make sure that pointer types are 461 // compatible, for example. 462 template <typename T2, typename T1> 463 T2 checked_cast(T1 thing) { 464 T2 result = static_cast<T2>(thing); 465 assert(static_cast<T1>(result) == thing, "must be"); 466 return result; 467 } 468 469 // Need the correct linkage to call qsort without warnings 470 extern "C" { 471 typedef int (*_sort_Fn)(const void *, const void *); 472 } 473 474 // Unsigned byte types for os and stream.hpp 475 476 // Unsigned one, two, four and eigth byte quantities used for describing 477 // the .class file format. See JVM book chapter 4. 478 479 typedef jubyte u1; 480 typedef jushort u2; 481 typedef juint u4; 482 typedef julong u8; 483 484 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 485 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 486 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 487 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 488 489 typedef jbyte s1; 490 typedef jshort s2; 491 typedef jint s4; 492 typedef jlong s8; 493 494 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 495 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 496 const jshort min_jshort = -(1 << 15); // smallest jshort 497 const jshort max_jshort = (1 << 15) - 1; // largest jshort 498 499 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 500 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 501 502 const jint min_jintFloat = (jint)(0x00000001); 503 const jfloat min_jfloat = jfloat_cast(min_jintFloat); 504 const jint max_jintFloat = (jint)(0x7f7fffff); 505 const jfloat max_jfloat = jfloat_cast(max_jintFloat); 506 507 //---------------------------------------------------------------------------------------------------- 508 // JVM spec restrictions 509 510 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 511 512 //---------------------------------------------------------------------------------------------------- 513 // Object alignment, in units of HeapWords. 514 // 515 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 516 // reference fields can be naturally aligned. 517 518 extern int MinObjAlignment; 519 extern int MinObjAlignmentInBytes; 520 extern int MinObjAlignmentInBytesMask; 521 522 extern int LogMinObjAlignment; 523 extern int LogMinObjAlignmentInBytes; 524 525 const int LogKlassAlignmentInBytes = 3; 526 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 527 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 528 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 529 530 // Maximal size of heap where unscaled compression can be used. Also upper bound 531 // for heap placement: 4GB. 532 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 533 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 534 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 535 extern uint64_t OopEncodingHeapMax; 536 537 // Maximal size of compressed class space. Above this limit compression is not possible. 538 // Also upper bound for placement of zero based class space. (Class space is further limited 539 // to be < 3G, see arguments.cpp.) 540 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 541 542 // Machine dependent stuff 543 544 // The maximum size of the code cache. Can be overridden by targets. 545 #define CODE_CACHE_SIZE_LIMIT (2*G) 546 // Allow targets to reduce the default size of the code cache. 547 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 548 549 #include CPU_HEADER(globalDefinitions) 550 551 // To assure the IRIW property on processors that are not multiple copy 552 // atomic, sync instructions must be issued between volatile reads to 553 // assure their ordering, instead of after volatile stores. 554 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 555 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 556 #ifdef CPU_MULTI_COPY_ATOMIC 557 // Not needed. 558 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 559 #else 560 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment. 561 // Final decision is subject to JEP 188: Java Memory Model Update. 562 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false); 563 #endif 564 565 // The expected size in bytes of a cache line, used to pad data structures. 566 #ifndef DEFAULT_CACHE_LINE_SIZE 567 #define DEFAULT_CACHE_LINE_SIZE 64 568 #endif 569 570 571 //---------------------------------------------------------------------------------------------------- 572 // Utility macros for compilers 573 // used to silence compiler warnings 574 575 #define Unused_Variable(var) var 576 577 578 //---------------------------------------------------------------------------------------------------- 579 // Miscellaneous 580 581 // 6302670 Eliminate Hotspot __fabsf dependency 582 // All fabs() callers should call this function instead, which will implicitly 583 // convert the operand to double, avoiding a dependency on __fabsf which 584 // doesn't exist in early versions of Solaris 8. 585 inline double fabsd(double value) { 586 return fabs(value); 587 } 588 589 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 590 // is zero, return 0.0. 591 template<typename T> 592 inline double percent_of(T numerator, T denominator) { 593 return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; 594 } 595 596 //---------------------------------------------------------------------------------------------------- 597 // Special casts 598 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 599 typedef union { 600 jfloat f; 601 jint i; 602 } FloatIntConv; 603 604 typedef union { 605 jdouble d; 606 jlong l; 607 julong ul; 608 } DoubleLongConv; 609 610 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 611 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 612 613 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 614 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 615 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 616 617 inline jint low (jlong value) { return jint(value); } 618 inline jint high(jlong value) { return jint(value >> 32); } 619 620 // the fancy casts are a hopefully portable way 621 // to do unsigned 32 to 64 bit type conversion 622 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 623 *value |= (jlong)(julong)(juint)low; } 624 625 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 626 *value |= (jlong)high << 32; } 627 628 inline jlong jlong_from(jint h, jint l) { 629 jlong result = 0; // initialization to avoid warning 630 set_high(&result, h); 631 set_low(&result, l); 632 return result; 633 } 634 635 union jlong_accessor { 636 jint words[2]; 637 jlong long_value; 638 }; 639 640 void basic_types_init(); // cannot define here; uses assert 641 642 643 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 644 enum BasicType { 645 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS. 646 T_BOOLEAN = JVM_T_BOOLEAN, 647 T_CHAR = JVM_T_CHAR, 648 T_FLOAT = JVM_T_FLOAT, 649 T_DOUBLE = JVM_T_DOUBLE, 650 T_BYTE = JVM_T_BYTE, 651 T_SHORT = JVM_T_SHORT, 652 T_INT = JVM_T_INT, 653 T_LONG = JVM_T_LONG, 654 // The remaining values are not part of any standard. 655 // T_OBJECT and T_VOID denote two more semantic choices 656 // for method return values. 657 // T_OBJECT and T_ARRAY describe signature syntax. 658 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe 659 // internal references within the JVM as if they were Java 660 // types in their own right. 661 T_OBJECT = 12, 662 T_ARRAY = 13, 663 T_VOID = 14, 664 T_ADDRESS = 15, 665 T_NARROWOOP = 16, 666 T_METADATA = 17, 667 T_NARROWKLASS = 18, 668 T_CONFLICT = 19, // for stack value type with conflicting contents 669 T_ILLEGAL = 99 670 }; 671 672 #define SIGNATURE_TYPES_DO(F, N) \ 673 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \ 674 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \ 675 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \ 676 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \ 677 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \ 678 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \ 679 F(JVM_SIGNATURE_INT, T_INT, N) \ 680 F(JVM_SIGNATURE_LONG, T_LONG, N) \ 681 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \ 682 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \ 683 F(JVM_SIGNATURE_VOID, T_VOID, N) \ 684 /*end*/ 685 686 inline bool is_java_type(BasicType t) { 687 return T_BOOLEAN <= t && t <= T_VOID; 688 } 689 690 inline bool is_java_primitive(BasicType t) { 691 return T_BOOLEAN <= t && t <= T_LONG; 692 } 693 694 inline bool is_subword_type(BasicType t) { 695 // these guys are processed exactly like T_INT in calling sequences: 696 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 697 } 698 699 inline bool is_signed_subword_type(BasicType t) { 700 return (t == T_BYTE || t == T_SHORT); 701 } 702 703 inline bool is_double_word_type(BasicType t) { 704 return (t == T_DOUBLE || t == T_LONG); 705 } 706 707 inline bool is_reference_type(BasicType t) { 708 return (t == T_OBJECT || t == T_ARRAY); 709 } 710 711 inline bool is_integral_type(BasicType t) { 712 return is_subword_type(t) || t == T_INT || t == T_LONG; 713 } 714 715 inline bool is_floating_point_type(BasicType t) { 716 return (t == T_FLOAT || t == T_DOUBLE); 717 } 718 719 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 720 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 721 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 722 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char* 723 extern BasicType name2type(const char* name); 724 725 const char* type2name(BasicType t); 726 727 inline jlong max_signed_integer(BasicType bt) { 728 if (bt == T_INT) { 729 return max_jint; 730 } 731 assert(bt == T_LONG, "unsupported"); 732 return max_jlong; 733 } 734 735 inline jlong min_signed_integer(BasicType bt) { 736 if (bt == T_INT) { 737 return min_jint; 738 } 739 assert(bt == T_LONG, "unsupported"); 740 return min_jlong; 741 } 742 743 // Auxiliary math routines 744 // least common multiple 745 extern size_t lcm(size_t a, size_t b); 746 747 748 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 749 enum BasicTypeSize { 750 T_BOOLEAN_size = 1, 751 T_CHAR_size = 1, 752 T_FLOAT_size = 1, 753 T_DOUBLE_size = 2, 754 T_BYTE_size = 1, 755 T_SHORT_size = 1, 756 T_INT_size = 1, 757 T_LONG_size = 2, 758 T_OBJECT_size = 1, 759 T_ARRAY_size = 1, 760 T_NARROWOOP_size = 1, 761 T_NARROWKLASS_size = 1, 762 T_VOID_size = 0 763 }; 764 765 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc. 766 inline int parameter_type_word_count(BasicType t) { 767 if (is_double_word_type(t)) return 2; 768 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please"); 769 assert(type2size[t] == 1, "must be"); 770 return 1; 771 } 772 773 // maps a BasicType to its instance field storage type: 774 // all sub-word integral types are widened to T_INT 775 extern BasicType type2field[T_CONFLICT+1]; 776 extern BasicType type2wfield[T_CONFLICT+1]; 777 778 779 // size in bytes 780 enum ArrayElementSize { 781 T_BOOLEAN_aelem_bytes = 1, 782 T_CHAR_aelem_bytes = 2, 783 T_FLOAT_aelem_bytes = 4, 784 T_DOUBLE_aelem_bytes = 8, 785 T_BYTE_aelem_bytes = 1, 786 T_SHORT_aelem_bytes = 2, 787 T_INT_aelem_bytes = 4, 788 T_LONG_aelem_bytes = 8, 789 #ifdef _LP64 790 T_OBJECT_aelem_bytes = 8, 791 T_ARRAY_aelem_bytes = 8, 792 #else 793 T_OBJECT_aelem_bytes = 4, 794 T_ARRAY_aelem_bytes = 4, 795 #endif 796 T_NARROWOOP_aelem_bytes = 4, 797 T_NARROWKLASS_aelem_bytes = 4, 798 T_VOID_aelem_bytes = 0 799 }; 800 801 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 802 #ifdef ASSERT 803 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 804 #else 805 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 806 #endif 807 808 809 // JavaValue serves as a container for arbitrary Java values. 810 811 class JavaValue { 812 813 public: 814 typedef union JavaCallValue { 815 jfloat f; 816 jdouble d; 817 jint i; 818 jlong l; 819 jobject h; 820 oopDesc* o; 821 } JavaCallValue; 822 823 private: 824 BasicType _type; 825 JavaCallValue _value; 826 827 public: 828 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 829 830 JavaValue(jfloat value) { 831 _type = T_FLOAT; 832 _value.f = value; 833 } 834 835 JavaValue(jdouble value) { 836 _type = T_DOUBLE; 837 _value.d = value; 838 } 839 840 jfloat get_jfloat() const { return _value.f; } 841 jdouble get_jdouble() const { return _value.d; } 842 jint get_jint() const { return _value.i; } 843 jlong get_jlong() const { return _value.l; } 844 jobject get_jobject() const { return _value.h; } 845 oopDesc* get_oop() const { return _value.o; } 846 JavaCallValue* get_value_addr() { return &_value; } 847 BasicType get_type() const { return _type; } 848 849 void set_jfloat(jfloat f) { _value.f = f;} 850 void set_jdouble(jdouble d) { _value.d = d;} 851 void set_jint(jint i) { _value.i = i;} 852 void set_jlong(jlong l) { _value.l = l;} 853 void set_jobject(jobject h) { _value.h = h;} 854 void set_oop(oopDesc* o) { _value.o = o;} 855 void set_type(BasicType t) { _type = t; } 856 857 jboolean get_jboolean() const { return (jboolean) (_value.i);} 858 jbyte get_jbyte() const { return (jbyte) (_value.i);} 859 jchar get_jchar() const { return (jchar) (_value.i);} 860 jshort get_jshort() const { return (jshort) (_value.i);} 861 862 }; 863 864 865 // TosState describes the top-of-stack state before and after the execution of 866 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 867 // registers. The TosState corresponds to the 'machine representation' of this cached 868 // value. There's 4 states corresponding to the JAVA types int, long, float & double 869 // as well as a 5th state in case the top-of-stack value is actually on the top 870 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 871 // state when it comes to machine representation but is used separately for (oop) 872 // type specific operations (e.g. verification code). 873 874 enum TosState { // describes the tos cache contents 875 btos = 0, // byte, bool tos cached 876 ztos = 1, // byte, bool tos cached 877 ctos = 2, // char tos cached 878 stos = 3, // short tos cached 879 itos = 4, // int tos cached 880 ltos = 5, // long tos cached 881 ftos = 6, // float tos cached 882 dtos = 7, // double tos cached 883 atos = 8, // object cached 884 vtos = 9, // tos not cached 885 number_of_states, 886 ilgl // illegal state: should not occur 887 }; 888 889 890 inline TosState as_TosState(BasicType type) { 891 switch (type) { 892 case T_BYTE : return btos; 893 case T_BOOLEAN: return ztos; 894 case T_CHAR : return ctos; 895 case T_SHORT : return stos; 896 case T_INT : return itos; 897 case T_LONG : return ltos; 898 case T_FLOAT : return ftos; 899 case T_DOUBLE : return dtos; 900 case T_VOID : return vtos; 901 case T_ARRAY : // fall through 902 case T_OBJECT : return atos; 903 default : return ilgl; 904 } 905 } 906 907 inline BasicType as_BasicType(TosState state) { 908 switch (state) { 909 case btos : return T_BYTE; 910 case ztos : return T_BOOLEAN; 911 case ctos : return T_CHAR; 912 case stos : return T_SHORT; 913 case itos : return T_INT; 914 case ltos : return T_LONG; 915 case ftos : return T_FLOAT; 916 case dtos : return T_DOUBLE; 917 case atos : return T_OBJECT; 918 case vtos : return T_VOID; 919 default : return T_ILLEGAL; 920 } 921 } 922 923 924 // Helper function to convert BasicType info into TosState 925 // Note: Cannot define here as it uses global constant at the time being. 926 TosState as_TosState(BasicType type); 927 928 929 // JavaThreadState keeps track of which part of the code a thread is executing in. This 930 // information is needed by the safepoint code. 931 // 932 // There are 4 essential states: 933 // 934 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 935 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 936 // _thread_in_vm : Executing in the vm 937 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 938 // 939 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 940 // a transition from one state to another. These extra states makes it possible for the safepoint code to 941 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 942 // 943 // Given a state, the xxxx_trans state can always be found by adding 1. 944 // 945 enum JavaThreadState { 946 _thread_uninitialized = 0, // should never happen (missing initialization) 947 _thread_new = 2, // just starting up, i.e., in process of being initialized 948 _thread_new_trans = 3, // corresponding transition state (not used, included for completness) 949 _thread_in_native = 4, // running in native code 950 _thread_in_native_trans = 5, // corresponding transition state 951 _thread_in_vm = 6, // running in VM 952 _thread_in_vm_trans = 7, // corresponding transition state 953 _thread_in_Java = 8, // running in Java or in stub code 954 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness) 955 _thread_blocked = 10, // blocked in vm 956 _thread_blocked_trans = 11, // corresponding transition state 957 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 958 }; 959 960 //---------------------------------------------------------------------------------------------------- 961 // Special constants for debugging 962 963 const jint badInt = -3; // generic "bad int" value 964 const intptr_t badAddressVal = -2; // generic "bad address" value 965 const intptr_t badOopVal = -1; // generic "bad oop" value 966 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 967 const int badStackSegVal = 0xCA; // value used to zap stack segments 968 const int badHandleValue = 0xBC; // value used to zap vm handle area 969 const int badResourceValue = 0xAB; // value used to zap resource area 970 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 971 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 972 const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk 973 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 974 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 975 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 976 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 977 978 979 // (These must be implemented as #defines because C++ compilers are 980 // not obligated to inline non-integral constants!) 981 #define badAddress ((address)::badAddressVal) 982 #define badOop (cast_to_oop(::badOopVal)) 983 #define badHeapWord (::badHeapWordVal) 984 985 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 986 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 987 988 //---------------------------------------------------------------------------------------------------- 989 // Utility functions for bitfield manipulations 990 991 const intptr_t AllBits = ~0; // all bits set in a word 992 const intptr_t NoBits = 0; // no bits set in a word 993 const jlong NoLongBits = 0; // no bits set in a long 994 const intptr_t OneBit = 1; // only right_most bit set in a word 995 996 // get a word with the n.th or the right-most or left-most n bits set 997 // (note: #define used only so that they can be used in enum constant definitions) 998 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 999 #define right_n_bits(n) (nth_bit(n) - 1) 1000 1001 // bit-operations using a mask m 1002 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1003 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1004 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1005 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1006 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1007 1008 // bit-operations using the n.th bit 1009 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1010 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1011 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1012 1013 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1014 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1015 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1016 } 1017 1018 1019 //---------------------------------------------------------------------------------------------------- 1020 // Utility functions for integers 1021 1022 // Avoid use of global min/max macros which may cause unwanted double 1023 // evaluation of arguments. 1024 #ifdef max 1025 #undef max 1026 #endif 1027 1028 #ifdef min 1029 #undef min 1030 #endif 1031 1032 // It is necessary to use templates here. Having normal overloaded 1033 // functions does not work because it is necessary to provide both 32- 1034 // and 64-bit overloaded functions, which does not work, and having 1035 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1036 // will be even more error-prone than macros. 1037 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; } 1038 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; } 1039 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1040 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1041 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1042 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1043 1044 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1045 1046 // Return the given value clamped to the range [min ... max] 1047 template<typename T> 1048 inline T clamp(T value, T min, T max) { 1049 assert(min <= max, "must be"); 1050 return MIN2(MAX2(value, min), max); 1051 } 1052 1053 inline bool is_odd (intx x) { return x & 1; } 1054 inline bool is_even(intx x) { return !is_odd(x); } 1055 1056 // abs methods which cannot overflow and so are well-defined across 1057 // the entire domain of integer types. 1058 static inline unsigned int uabs(unsigned int n) { 1059 union { 1060 unsigned int result; 1061 int value; 1062 }; 1063 result = n; 1064 if (value < 0) result = 0-result; 1065 return result; 1066 } 1067 static inline julong uabs(julong n) { 1068 union { 1069 julong result; 1070 jlong value; 1071 }; 1072 result = n; 1073 if (value < 0) result = 0-result; 1074 return result; 1075 } 1076 static inline julong uabs(jlong n) { return uabs((julong)n); } 1077 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } 1078 1079 // "to" should be greater than "from." 1080 inline intx byte_size(void* from, void* to) { 1081 return (address)to - (address)from; 1082 } 1083 1084 1085 // Pack and extract shorts to/from ints: 1086 1087 inline int extract_low_short_from_int(jint x) { 1088 return x & 0xffff; 1089 } 1090 1091 inline int extract_high_short_from_int(jint x) { 1092 return (x >> 16) & 0xffff; 1093 } 1094 1095 inline int build_int_from_shorts( jushort low, jushort high ) { 1096 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1097 } 1098 1099 // swap a & b 1100 template<class T> static void swap(T& a, T& b) { 1101 T tmp = a; 1102 a = b; 1103 b = tmp; 1104 } 1105 1106 // array_size_impl is a function that takes a reference to T[N] and 1107 // returns a reference to char[N]. It is not ODR-used, so not defined. 1108 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N]; 1109 1110 #define ARRAY_SIZE(array) sizeof(array_size_impl(array)) 1111 1112 //---------------------------------------------------------------------------------------------------- 1113 // Sum and product which can never overflow: they wrap, just like the 1114 // Java operations. Note that we don't intend these to be used for 1115 // general-purpose arithmetic: their purpose is to emulate Java 1116 // operations. 1117 1118 // The goal of this code to avoid undefined or implementation-defined 1119 // behavior. The use of an lvalue to reference cast is explicitly 1120 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1121 // 15 in C++03] 1122 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1123 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1124 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1125 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1126 return reinterpret_cast<TYPE&>(ures); \ 1127 } 1128 1129 JAVA_INTEGER_OP(+, java_add, jint, juint) 1130 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1131 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1132 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1133 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1134 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1135 1136 #undef JAVA_INTEGER_OP 1137 1138 // Provide integer shift operations with Java semantics. No overflow 1139 // issues - left shifts simply discard shifted out bits. No undefined 1140 // behavior for large or negative shift quantities; instead the actual 1141 // shift distance is the argument modulo the lhs value's size in bits. 1142 // No undefined or implementation defined behavior for shifting negative 1143 // values; left shift discards bits, right shift sign extends. We use 1144 // the same safe conversion technique as above for java_add and friends. 1145 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \ 1146 inline TYPE NAME (TYPE lhs, jint rhs) { \ 1147 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \ 1148 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \ 1149 XTYPE xres = static_cast<XTYPE>(lhs); \ 1150 xres OP ## = (rhs & rhs_mask); \ 1151 return reinterpret_cast<TYPE&>(xres); \ 1152 } 1153 1154 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint) 1155 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong) 1156 // For signed shift right, assume C++ implementation >> sign extends. 1157 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint) 1158 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong) 1159 // For >>> use C++ unsigned >>. 1160 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint) 1161 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong) 1162 1163 #undef JAVA_INTEGER_SHIFT_OP 1164 1165 //---------------------------------------------------------------------------------------------------- 1166 // The goal of this code is to provide saturating operations for int/uint. 1167 // Checks overflow conditions and saturates the result to min_jint/max_jint. 1168 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ 1169 inline int NAME (TYPE1 in1, TYPE2 in2) { \ 1170 jlong res = static_cast<jlong>(in1); \ 1171 res OP ## = static_cast<jlong>(in2); \ 1172 if (res > max_jint) { \ 1173 res = max_jint; \ 1174 } else if (res < min_jint) { \ 1175 res = min_jint; \ 1176 } \ 1177 return static_cast<int>(res); \ 1178 } 1179 1180 SATURATED_INTEGER_OP(+, saturated_add, int, int) 1181 SATURATED_INTEGER_OP(+, saturated_add, int, uint) 1182 SATURATED_INTEGER_OP(+, saturated_add, uint, int) 1183 SATURATED_INTEGER_OP(+, saturated_add, uint, uint) 1184 1185 #undef SATURATED_INTEGER_OP 1186 1187 // Dereference vptr 1188 // All C++ compilers that we know of have the vtbl pointer in the first 1189 // word. If there are exceptions, this function needs to be made compiler 1190 // specific. 1191 static inline void* dereference_vptr(const void* addr) { 1192 return *(void**)addr; 1193 } 1194 1195 //---------------------------------------------------------------------------------------------------- 1196 // String type aliases used by command line flag declarations and 1197 // processing utilities. 1198 1199 typedef const char* ccstr; 1200 typedef const char* ccstrlist; // represents string arguments which accumulate 1201 1202 //---------------------------------------------------------------------------------------------------- 1203 // Default hash/equals functions used by ResourceHashtable and KVHashtable 1204 1205 template<typename K> unsigned primitive_hash(const K& k) { 1206 unsigned hash = (unsigned)((uintptr_t)k); 1207 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs 1208 } 1209 1210 template<typename K> bool primitive_equals(const K& k0, const K& k1) { 1211 return k0 == k1; 1212 } 1213 1214 1215 // Converts any type T to a reference type. 1216 template<typename T> 1217 std::add_rvalue_reference_t<T> declval() noexcept; 1218 1219 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP