1 /*
2 * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
27
28 #include "utilities/compilerWarnings.hpp"
29 #include "utilities/debug.hpp"
30 #include "utilities/macros.hpp"
31
32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>.
33 #include "classfile_constants.h"
34
35 #include COMPILER_HEADER(utilities/globalDefinitions)
36
37 #include <cstddef>
38 #include <type_traits>
39
40 class oopDesc;
41
42 // Defaults for macros that might be defined per compiler.
43 #ifndef NOINLINE
44 #define NOINLINE
45 #endif
46 #ifndef ALWAYSINLINE
47 #define ALWAYSINLINE inline
48 #endif
49
50 #ifndef ATTRIBUTE_ALIGNED
51 #define ATTRIBUTE_ALIGNED(x)
52 #endif
53
54 #ifndef ATTRIBUTE_FLATTEN
55 #define ATTRIBUTE_FLATTEN
56 #endif
57
58 // These are #defines to selectively turn on/off the Print(Opto)Assembly
59 // capabilities. Choices should be led by a tradeoff between
60 // code size and improved supportability.
61 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
62 // to have a fallback in case hsdis is not available.
63 #if defined(PRODUCT)
64 #define SUPPORT_ABSTRACT_ASSEMBLY
65 #define SUPPORT_ASSEMBLY
66 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing.
67 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty.
68 #else
69 #define SUPPORT_ABSTRACT_ASSEMBLY
70 #define SUPPORT_ASSEMBLY
71 #define SUPPORT_OPTO_ASSEMBLY
72 #define SUPPORT_DATA_STRUCTS
73 #endif
74 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
75 #define SUPPORT_ABSTRACT_ASSEMBLY
76 #endif
77
78 // This file holds all globally used constants & types, class (forward)
79 // declarations and a few frequently used utility functions.
80
81 // Declare the named class to be noncopyable. This macro must be followed by
82 // a semi-colon. The macro provides deleted declarations for the class's copy
83 // constructor and assignment operator. Because these operations are deleted,
84 // they cannot be defined and potential callers will fail to compile.
85 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */
86
87
88 //----------------------------------------------------------------------------------------------------
89 // Printf-style formatters for fixed- and variable-width types as pointers and
90 // integers. These are derived from the definitions in inttypes.h. If the platform
91 // doesn't provide appropriate definitions, they should be provided in
92 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
93
94 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
95
96 // Format 32-bit quantities.
97 #define INT32_FORMAT "%" PRId32
98 #define UINT32_FORMAT "%" PRIu32
99 #define INT32_FORMAT_W(width) "%" #width PRId32
100 #define UINT32_FORMAT_W(width) "%" #width PRIu32
101
102 #define PTR32_FORMAT "0x%08" PRIx32
103 #define PTR32_FORMAT_W(width) "0x%" #width PRIx32
104
105 // Format 64-bit quantities.
106 #define INT64_FORMAT "%" PRId64
107 #define UINT64_FORMAT "%" PRIu64
108 #define UINT64_FORMAT_X "%" PRIx64
109 #define INT64_FORMAT_W(width) "%" #width PRId64
110 #define UINT64_FORMAT_W(width) "%" #width PRIu64
111 #define UINT64_FORMAT_X_W(width) "%" #width PRIx64
112
113 #define PTR64_FORMAT "0x%016" PRIx64
114
115 // Format jlong, if necessary
116 #ifndef JLONG_FORMAT
117 #define JLONG_FORMAT INT64_FORMAT
118 #endif
119 #ifndef JLONG_FORMAT_W
120 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width)
121 #endif
122 #ifndef JULONG_FORMAT
123 #define JULONG_FORMAT UINT64_FORMAT
124 #endif
125 #ifndef JULONG_FORMAT_X
126 #define JULONG_FORMAT_X UINT64_FORMAT_X
127 #endif
128
129 // Format pointers which change size between 32- and 64-bit.
130 #ifdef _LP64
131 #define INTPTR_FORMAT "0x%016" PRIxPTR
132 #define PTR_FORMAT "0x%016" PRIxPTR
133 #else // !_LP64
134 #define INTPTR_FORMAT "0x%08" PRIxPTR
135 #define PTR_FORMAT "0x%08" PRIxPTR
136 #endif // _LP64
137
138 // Format pointers without leading zeros
139 #define INTPTRNZ_FORMAT "0x%" PRIxPTR
140
141 #define INTPTR_FORMAT_W(width) "%" #width PRIxPTR
142
143 #define SSIZE_FORMAT "%" PRIdPTR
144 #define SSIZE_PLUS_FORMAT "%+" PRIdPTR
145 #define SIZE_FORMAT "%" PRIuPTR
146 #define SIZE_FORMAT_HEX "0x%" PRIxPTR
147 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR
148 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR
149 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
150
151 #define INTX_FORMAT "%" PRIdPTR
152 #define UINTX_FORMAT "%" PRIuPTR
153 #define INTX_FORMAT_W(width) "%" #width PRIdPTR
154 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
155
156 // Convert pointer to intptr_t, for use in printing pointers.
157 inline intptr_t p2i(const volatile void* p) {
158 return (intptr_t) p;
159 }
160
161 //----------------------------------------------------------------------------------------------------
162 // Constants
163
164 const int LogBytesPerShort = 1;
165 const int LogBytesPerInt = 2;
166 #ifdef _LP64
167 const int LogBytesPerWord = 3;
168 #else
169 const int LogBytesPerWord = 2;
170 #endif
171 const int LogBytesPerLong = 3;
172
173 const int BytesPerShort = 1 << LogBytesPerShort;
174 const int BytesPerInt = 1 << LogBytesPerInt;
175 const int BytesPerWord = 1 << LogBytesPerWord;
176 const int BytesPerLong = 1 << LogBytesPerLong;
177
178 const int LogBitsPerByte = 3;
179 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort;
180 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt;
181 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord;
182 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong;
183
184 const int BitsPerByte = 1 << LogBitsPerByte;
185 const int BitsPerShort = 1 << LogBitsPerShort;
186 const int BitsPerInt = 1 << LogBitsPerInt;
187 const int BitsPerWord = 1 << LogBitsPerWord;
188 const int BitsPerLong = 1 << LogBitsPerLong;
189
190 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1;
191 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1;
192
193 const int WordsPerLong = 2; // Number of stack entries for longs
194
195 const int oopSize = sizeof(char*); // Full-width oop
196 extern int heapOopSize; // Oop within a java object
197 const int wordSize = sizeof(char*);
198 const int longSize = sizeof(jlong);
199 const int jintSize = sizeof(jint);
200 const int size_tSize = sizeof(size_t);
201
202 const int BytesPerOop = BytesPerWord; // Full-width oop
203
204 extern int LogBytesPerHeapOop; // Oop within a java object
205 extern int LogBitsPerHeapOop;
206 extern int BytesPerHeapOop;
207 extern int BitsPerHeapOop;
208
209 const int BitsPerJavaInteger = 32;
210 const int BitsPerJavaLong = 64;
211 const int BitsPerSize_t = size_tSize * BitsPerByte;
212
213 // Size of a char[] needed to represent a jint as a string in decimal.
214 const int jintAsStringSize = 12;
215
216 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
217 // We require that object sizes be measured in units of heap words (e.g.
218 // pointer-sized values), so that given HeapWord* hw,
219 // hw += oop(hw)->foo();
220 // works, where foo is a method (like size or scavenge) that returns the
221 // object size.
222 class HeapWordImpl; // Opaque, never defined.
223 typedef HeapWordImpl* HeapWord;
224
225 // Analogous opaque struct for metadata allocated from metaspaces.
226 class MetaWordImpl; // Opaque, never defined.
227 typedef MetaWordImpl* MetaWord;
228
229 // HeapWordSize must be 2^LogHeapWordSize.
230 const int HeapWordSize = sizeof(HeapWord);
231 #ifdef _LP64
232 const int LogHeapWordSize = 3;
233 #else
234 const int LogHeapWordSize = 2;
235 #endif
236 const int HeapWordsPerLong = BytesPerLong / HeapWordSize;
237 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
238
239 // The minimum number of native machine words necessary to contain "byte_size"
240 // bytes.
241 inline size_t heap_word_size(size_t byte_size) {
242 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
243 }
244
245 inline jfloat jfloat_cast(jint x);
246 inline jdouble jdouble_cast(jlong x);
247
248 //-------------------------------------------
249 // Constant for jlong (standardized by C++11)
250
251 // Build a 64bit integer constant
252 #define CONST64(x) (x ## LL)
253 #define UCONST64(x) (x ## ULL)
254
255 const jlong min_jlong = CONST64(0x8000000000000000);
256 const jlong max_jlong = CONST64(0x7fffffffffffffff);
257
258 //-------------------------------------------
259 // Constant for jdouble
260 const jlong min_jlongDouble = CONST64(0x0000000000000001);
261 const jdouble min_jdouble = jdouble_cast(min_jlongDouble);
262 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff);
263 const jdouble max_jdouble = jdouble_cast(max_jlongDouble);
264
265 const size_t K = 1024;
266 const size_t M = K*K;
267 const size_t G = M*K;
268 const size_t HWperKB = K / sizeof(HeapWord);
269
270 // Constants for converting from a base unit to milli-base units. For
271 // example from seconds to milliseconds and microseconds
272
273 const int MILLIUNITS = 1000; // milli units per base unit
274 const int MICROUNITS = 1000000; // micro units per base unit
275 const int NANOUNITS = 1000000000; // nano units per base unit
276 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
277
278 const jlong NANOSECS_PER_SEC = CONST64(1000000000);
279 const jint NANOSECS_PER_MILLISEC = 1000000;
280
281
282 // Unit conversion functions
283 // The caller is responsible for considering overlow.
284
285 inline int64_t nanos_to_millis(int64_t nanos) {
286 return nanos / NANOUNITS_PER_MILLIUNIT;
287 }
288 inline int64_t millis_to_nanos(int64_t millis) {
289 return millis * NANOUNITS_PER_MILLIUNIT;
290 }
291
292 // Proper units routines try to maintain at least three significant digits.
293 // In worst case, it would print five significant digits with lower prefix.
294 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
295 // and therefore we need to be careful.
296
297 inline const char* proper_unit_for_byte_size(size_t s) {
298 #ifdef _LP64
299 if (s >= 100*G) {
300 return "G";
301 }
302 #endif
303 if (s >= 100*M) {
304 return "M";
305 } else if (s >= 100*K) {
306 return "K";
307 } else {
308 return "B";
309 }
310 }
311
312 template <class T>
313 inline T byte_size_in_proper_unit(T s) {
314 #ifdef _LP64
315 if (s >= 100*G) {
316 return (T)(s/G);
317 }
318 #endif
319 if (s >= 100*M) {
320 return (T)(s/M);
321 } else if (s >= 100*K) {
322 return (T)(s/K);
323 } else {
324 return s;
325 }
326 }
327
328 #define PROPERFMT SIZE_FORMAT "%s"
329 #define PROPERFMTARGS(s) byte_size_in_proper_unit(s), proper_unit_for_byte_size(s)
330
331 inline const char* exact_unit_for_byte_size(size_t s) {
332 #ifdef _LP64
333 if (s >= G && (s % G) == 0) {
334 return "G";
335 }
336 #endif
337 if (s >= M && (s % M) == 0) {
338 return "M";
339 }
340 if (s >= K && (s % K) == 0) {
341 return "K";
342 }
343 return "B";
344 }
345
346 inline size_t byte_size_in_exact_unit(size_t s) {
347 #ifdef _LP64
348 if (s >= G && (s % G) == 0) {
349 return s / G;
350 }
351 #endif
352 if (s >= M && (s % M) == 0) {
353 return s / M;
354 }
355 if (s >= K && (s % K) == 0) {
356 return s / K;
357 }
358 return s;
359 }
360
361 #define EXACTFMT SIZE_FORMAT "%s"
362 #define EXACTFMTARGS(s) byte_size_in_exact_unit(s), exact_unit_for_byte_size(s)
363
364 // Memory size transition formatting.
365
366 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
367
368 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
369 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
370
371 //----------------------------------------------------------------------------------------------------
372 // VM type definitions
373
374 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
375 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
376
377 typedef intptr_t intx;
378 typedef uintptr_t uintx;
379
380 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1);
381 const intx max_intx = (uintx)min_intx - 1;
382 const uintx max_uintx = (uintx)-1;
383
384 // Table of values:
385 // sizeof intx 4 8
386 // min_intx 0x80000000 0x8000000000000000
387 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF
388 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF
389
390 typedef unsigned int uint; NEEDS_CLEANUP
391
392
393 //----------------------------------------------------------------------------------------------------
394 // Java type definitions
395
396 // All kinds of 'plain' byte addresses
397 typedef signed char s_char;
398 typedef unsigned char u_char;
399 typedef u_char* address;
400 typedef uintptr_t address_word; // unsigned integer which will hold a pointer
401 // except for some implementations of a C++
402 // linkage pointer to function. Should never
403 // need one of those to be placed in this
404 // type anyway.
405
406 // Utility functions to "portably" (?) bit twiddle pointers
407 // Where portable means keep ANSI C++ compilers quiet
408
409 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); }
410 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); }
411
412 // Utility functions to "portably" make cast to/from function pointers.
413
414 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; }
415 inline address_word castable_address(address x) { return address_word(x) ; }
416 inline address_word castable_address(void* x) { return address_word(x) ; }
417
418 // Pointer subtraction.
419 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
420 // the range we might need to find differences from one end of the heap
421 // to the other.
422 // A typical use might be:
423 // if (pointer_delta(end(), top()) >= size) {
424 // // enough room for an object of size
425 // ...
426 // and then additions like
427 // ... top() + size ...
428 // are safe because we know that top() is at least size below end().
429 inline size_t pointer_delta(const volatile void* left,
430 const volatile void* right,
431 size_t element_size) {
432 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right));
433 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
434 }
435
436 // A version specialized for HeapWord*'s.
437 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
438 return pointer_delta(left, right, sizeof(HeapWord));
439 }
440 // A version specialized for MetaWord*'s.
441 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
442 return pointer_delta(left, right, sizeof(MetaWord));
443 }
444
445 //
446 // ANSI C++ does not allow casting from one pointer type to a function pointer
447 // directly without at best a warning. This macro accomplishes it silently
448 // In every case that is present at this point the value be cast is a pointer
449 // to a C linkage function. In some case the type used for the cast reflects
450 // that linkage and a picky compiler would not complain. In other cases because
451 // there is no convenient place to place a typedef with extern C linkage (i.e
452 // a platform dependent header file) it doesn't. At this point no compiler seems
453 // picky enough to catch these instances (which are few). It is possible that
454 // using templates could fix these for all cases. This use of templates is likely
455 // so far from the middle of the road that it is likely to be problematic in
456 // many C++ compilers.
457 //
458 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
459 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
460
461 // In many places we've added C-style casts to silence compiler
462 // warnings, for example when truncating a size_t to an int when we
463 // know the size_t is a small struct. Such casts are risky because
464 // they effectively disable useful compiler warnings. We can make our
465 // lives safer with this function, which ensures that any cast is
466 // reversible without loss of information. It doesn't check
467 // everything: it isn't intended to make sure that pointer types are
468 // compatible, for example.
469 template <typename T2, typename T1>
470 T2 checked_cast(T1 thing) {
471 T2 result = static_cast<T2>(thing);
472 assert(static_cast<T1>(result) == thing, "must be");
473 return result;
474 }
475
476 // Need the correct linkage to call qsort without warnings
477 extern "C" {
478 typedef int (*_sort_Fn)(const void *, const void *);
479 }
480
481 // Unsigned byte types for os and stream.hpp
482
483 // Unsigned one, two, four and eigth byte quantities used for describing
484 // the .class file format. See JVM book chapter 4.
485
486 typedef jubyte u1;
487 typedef jushort u2;
488 typedef juint u4;
489 typedef julong u8;
490
491 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte
492 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort
493 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint
494 const julong max_julong = (julong)-1; // 0xFF....FF largest julong
495
496 typedef jbyte s1;
497 typedef jshort s2;
498 typedef jint s4;
499 typedef jlong s8;
500
501 const jbyte min_jbyte = -(1 << 7); // smallest jbyte
502 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte
503 const jshort min_jshort = -(1 << 15); // smallest jshort
504 const jshort max_jshort = (1 << 15) - 1; // largest jshort
505
506 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
507 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint
508
509 const jint min_jintFloat = (jint)(0x00000001);
510 const jfloat min_jfloat = jfloat_cast(min_jintFloat);
511 const jint max_jintFloat = (jint)(0x7f7fffff);
512 const jfloat max_jfloat = jfloat_cast(max_jintFloat);
513
514 //----------------------------------------------------------------------------------------------------
515 // JVM spec restrictions
516
517 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134)
518
519 //----------------------------------------------------------------------------------------------------
520 // Object alignment, in units of HeapWords.
521 //
522 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
523 // reference fields can be naturally aligned.
524
525 extern int MinObjAlignment;
526 extern int MinObjAlignmentInBytes;
527 extern int MinObjAlignmentInBytesMask;
528
529 extern int LogMinObjAlignment;
530 extern int LogMinObjAlignmentInBytes;
531
532 const int LogKlassAlignmentInBytes = 3;
533 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize;
534 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes;
535 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize;
536
537 // Maximal size of heap where unscaled compression can be used. Also upper bound
538 // for heap placement: 4GB.
539 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
540 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
541 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
542 extern uint64_t OopEncodingHeapMax;
543
544 // Maximal size of compressed class space. Above this limit compression is not possible.
545 // Also upper bound for placement of zero based class space. (Class space is further limited
546 // to be < 3G, see arguments.cpp.)
547 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
548
549 // Machine dependent stuff
550
551 // The maximum size of the code cache. Can be overridden by targets.
552 #define CODE_CACHE_SIZE_LIMIT (2*G)
553 // Allow targets to reduce the default size of the code cache.
554 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
555
556 #include CPU_HEADER(globalDefinitions)
557
558 // To assure the IRIW property on processors that are not multiple copy
559 // atomic, sync instructions must be issued between volatile reads to
560 // assure their ordering, instead of after volatile stores.
561 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
562 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
563 #ifdef CPU_MULTI_COPY_ATOMIC
564 // Not needed.
565 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
566 #else
567 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
568 // Final decision is subject to JEP 188: Java Memory Model Update.
569 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
570 #endif
571
572 // The expected size in bytes of a cache line, used to pad data structures.
573 #ifndef DEFAULT_CACHE_LINE_SIZE
574 #define DEFAULT_CACHE_LINE_SIZE 64
575 #endif
576
577
578 //----------------------------------------------------------------------------------------------------
579 // Utility macros for compilers
580 // used to silence compiler warnings
581
582 #define Unused_Variable(var) var
583
584
585 //----------------------------------------------------------------------------------------------------
586 // Miscellaneous
587
588 // 6302670 Eliminate Hotspot __fabsf dependency
589 // All fabs() callers should call this function instead, which will implicitly
590 // convert the operand to double, avoiding a dependency on __fabsf which
591 // doesn't exist in early versions of Solaris 8.
592 inline double fabsd(double value) {
593 return fabs(value);
594 }
595
596 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
597 // is zero, return 0.0.
598 template<typename T>
599 inline double percent_of(T numerator, T denominator) {
600 return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
601 }
602
603 //----------------------------------------------------------------------------------------------------
604 // Special casts
605 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
606 typedef union {
607 jfloat f;
608 jint i;
609 } FloatIntConv;
610
611 typedef union {
612 jdouble d;
613 jlong l;
614 julong ul;
615 } DoubleLongConv;
616
617 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; }
618 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; }
619
620 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; }
621 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; }
622 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; }
623
624 inline jint low (jlong value) { return jint(value); }
625 inline jint high(jlong value) { return jint(value >> 32); }
626
627 // the fancy casts are a hopefully portable way
628 // to do unsigned 32 to 64 bit type conversion
629 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32;
630 *value |= (jlong)(julong)(juint)low; }
631
632 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff;
633 *value |= (jlong)high << 32; }
634
635 inline jlong jlong_from(jint h, jint l) {
636 jlong result = 0; // initialization to avoid warning
637 set_high(&result, h);
638 set_low(&result, l);
639 return result;
640 }
641
642 union jlong_accessor {
643 jint words[2];
644 jlong long_value;
645 };
646
647 void basic_types_init(); // cannot define here; uses assert
648
649
650 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
651 enum BasicType {
652 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
653 T_BOOLEAN = JVM_T_BOOLEAN,
654 T_CHAR = JVM_T_CHAR,
655 T_FLOAT = JVM_T_FLOAT,
656 T_DOUBLE = JVM_T_DOUBLE,
657 T_BYTE = JVM_T_BYTE,
658 T_SHORT = JVM_T_SHORT,
659 T_INT = JVM_T_INT,
660 T_LONG = JVM_T_LONG,
661 // The remaining values are not part of any standard.
662 // T_OBJECT and T_VOID denote two more semantic choices
663 // for method return values.
664 // T_OBJECT and T_ARRAY describe signature syntax.
665 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
666 // internal references within the JVM as if they were Java
667 // types in their own right.
668 T_OBJECT = 12,
669 T_ARRAY = 13,
670 T_VOID = 14,
671 T_ADDRESS = 15,
672 T_NARROWOOP = 16,
673 T_METADATA = 17,
674 T_NARROWKLASS = 18,
675 T_CONFLICT = 19, // for stack value type with conflicting contents
676 T_ILLEGAL = 99
677 };
678
679 #define SIGNATURE_TYPES_DO(F, N) \
680 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \
681 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \
682 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \
683 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \
684 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \
685 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \
686 F(JVM_SIGNATURE_INT, T_INT, N) \
687 F(JVM_SIGNATURE_LONG, T_LONG, N) \
688 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \
689 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \
690 F(JVM_SIGNATURE_VOID, T_VOID, N) \
691 /*end*/
692
693 inline bool is_java_type(BasicType t) {
694 return T_BOOLEAN <= t && t <= T_VOID;
695 }
696
697 inline bool is_java_primitive(BasicType t) {
698 return T_BOOLEAN <= t && t <= T_LONG;
699 }
700
701 inline bool is_subword_type(BasicType t) {
702 // these guys are processed exactly like T_INT in calling sequences:
703 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
704 }
705
706 inline bool is_signed_subword_type(BasicType t) {
707 return (t == T_BYTE || t == T_SHORT);
708 }
709
710 inline bool is_double_word_type(BasicType t) {
711 return (t == T_DOUBLE || t == T_LONG);
712 }
713
714 inline bool is_reference_type(BasicType t) {
715 return (t == T_OBJECT || t == T_ARRAY);
716 }
717
718 inline bool is_integral_type(BasicType t) {
719 return is_subword_type(t) || t == T_INT || t == T_LONG;
720 }
721
722 inline bool is_floating_point_type(BasicType t) {
723 return (t == T_FLOAT || t == T_DOUBLE);
724 }
725
726 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar
727 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
728 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements
729 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char*
730 extern BasicType name2type(const char* name);
731
732 const char* type2name(BasicType t);
733
734 inline jlong max_signed_integer(BasicType bt) {
735 if (bt == T_INT) {
736 return max_jint;
737 }
738 assert(bt == T_LONG, "unsupported");
739 return max_jlong;
740 }
741
742 inline jlong min_signed_integer(BasicType bt) {
743 if (bt == T_INT) {
744 return min_jint;
745 }
746 assert(bt == T_LONG, "unsupported");
747 return min_jlong;
748 }
749
750 // Auxiliary math routines
751 // least common multiple
752 extern size_t lcm(size_t a, size_t b);
753
754
755 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
756 enum BasicTypeSize {
757 T_BOOLEAN_size = 1,
758 T_CHAR_size = 1,
759 T_FLOAT_size = 1,
760 T_DOUBLE_size = 2,
761 T_BYTE_size = 1,
762 T_SHORT_size = 1,
763 T_INT_size = 1,
764 T_LONG_size = 2,
765 T_OBJECT_size = 1,
766 T_ARRAY_size = 1,
767 T_NARROWOOP_size = 1,
768 T_NARROWKLASS_size = 1,
769 T_VOID_size = 0
770 };
771
772 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
773 inline int parameter_type_word_count(BasicType t) {
774 if (is_double_word_type(t)) return 2;
775 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
776 assert(type2size[t] == 1, "must be");
777 return 1;
778 }
779
780 // maps a BasicType to its instance field storage type:
781 // all sub-word integral types are widened to T_INT
782 extern BasicType type2field[T_CONFLICT+1];
783 extern BasicType type2wfield[T_CONFLICT+1];
784
785
786 // size in bytes
787 enum ArrayElementSize {
788 T_BOOLEAN_aelem_bytes = 1,
789 T_CHAR_aelem_bytes = 2,
790 T_FLOAT_aelem_bytes = 4,
791 T_DOUBLE_aelem_bytes = 8,
792 T_BYTE_aelem_bytes = 1,
793 T_SHORT_aelem_bytes = 2,
794 T_INT_aelem_bytes = 4,
795 T_LONG_aelem_bytes = 8,
796 #ifdef _LP64
797 T_OBJECT_aelem_bytes = 8,
798 T_ARRAY_aelem_bytes = 8,
799 #else
800 T_OBJECT_aelem_bytes = 4,
801 T_ARRAY_aelem_bytes = 4,
802 #endif
803 T_NARROWOOP_aelem_bytes = 4,
804 T_NARROWKLASS_aelem_bytes = 4,
805 T_VOID_aelem_bytes = 0
806 };
807
808 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
809 #ifdef ASSERT
810 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
811 #else
812 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
813 #endif
814
815
816 // JavaValue serves as a container for arbitrary Java values.
817
818 class JavaValue {
819
820 public:
821 typedef union JavaCallValue {
822 jfloat f;
823 jdouble d;
824 jint i;
825 jlong l;
826 jobject h;
827 oopDesc* o;
828 } JavaCallValue;
829
830 private:
831 BasicType _type;
832 JavaCallValue _value;
833
834 public:
835 JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
836
837 JavaValue(jfloat value) {
838 _type = T_FLOAT;
839 _value.f = value;
840 }
841
842 JavaValue(jdouble value) {
843 _type = T_DOUBLE;
844 _value.d = value;
845 }
846
847 jfloat get_jfloat() const { return _value.f; }
848 jdouble get_jdouble() const { return _value.d; }
849 jint get_jint() const { return _value.i; }
850 jlong get_jlong() const { return _value.l; }
851 jobject get_jobject() const { return _value.h; }
852 oopDesc* get_oop() const { return _value.o; }
853 JavaCallValue* get_value_addr() { return &_value; }
854 BasicType get_type() const { return _type; }
855
856 void set_jfloat(jfloat f) { _value.f = f;}
857 void set_jdouble(jdouble d) { _value.d = d;}
858 void set_jint(jint i) { _value.i = i;}
859 void set_jlong(jlong l) { _value.l = l;}
860 void set_jobject(jobject h) { _value.h = h;}
861 void set_oop(oopDesc* o) { _value.o = o;}
862 void set_type(BasicType t) { _type = t; }
863
864 jboolean get_jboolean() const { return (jboolean) (_value.i);}
865 jbyte get_jbyte() const { return (jbyte) (_value.i);}
866 jchar get_jchar() const { return (jchar) (_value.i);}
867 jshort get_jshort() const { return (jshort) (_value.i);}
868
869 };
870
871
872 // TosState describes the top-of-stack state before and after the execution of
873 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
874 // registers. The TosState corresponds to the 'machine representation' of this cached
875 // value. There's 4 states corresponding to the JAVA types int, long, float & double
876 // as well as a 5th state in case the top-of-stack value is actually on the top
877 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
878 // state when it comes to machine representation but is used separately for (oop)
879 // type specific operations (e.g. verification code).
880
881 enum TosState { // describes the tos cache contents
882 btos = 0, // byte, bool tos cached
883 ztos = 1, // byte, bool tos cached
884 ctos = 2, // char tos cached
885 stos = 3, // short tos cached
886 itos = 4, // int tos cached
887 ltos = 5, // long tos cached
888 ftos = 6, // float tos cached
889 dtos = 7, // double tos cached
890 atos = 8, // object cached
891 vtos = 9, // tos not cached
892 number_of_states,
893 ilgl // illegal state: should not occur
894 };
895
896
897 inline TosState as_TosState(BasicType type) {
898 switch (type) {
899 case T_BYTE : return btos;
900 case T_BOOLEAN: return ztos;
901 case T_CHAR : return ctos;
902 case T_SHORT : return stos;
903 case T_INT : return itos;
904 case T_LONG : return ltos;
905 case T_FLOAT : return ftos;
906 case T_DOUBLE : return dtos;
907 case T_VOID : return vtos;
908 case T_ARRAY : // fall through
909 case T_OBJECT : return atos;
910 default : return ilgl;
911 }
912 }
913
914 inline BasicType as_BasicType(TosState state) {
915 switch (state) {
916 case btos : return T_BYTE;
917 case ztos : return T_BOOLEAN;
918 case ctos : return T_CHAR;
919 case stos : return T_SHORT;
920 case itos : return T_INT;
921 case ltos : return T_LONG;
922 case ftos : return T_FLOAT;
923 case dtos : return T_DOUBLE;
924 case atos : return T_OBJECT;
925 case vtos : return T_VOID;
926 default : return T_ILLEGAL;
927 }
928 }
929
930
931 // Helper function to convert BasicType info into TosState
932 // Note: Cannot define here as it uses global constant at the time being.
933 TosState as_TosState(BasicType type);
934
935
936 // JavaThreadState keeps track of which part of the code a thread is executing in. This
937 // information is needed by the safepoint code.
938 //
939 // There are 4 essential states:
940 //
941 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code)
942 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles
943 // _thread_in_vm : Executing in the vm
944 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub)
945 //
946 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
947 // a transition from one state to another. These extra states makes it possible for the safepoint code to
948 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
949 //
950 // Given a state, the xxxx_trans state can always be found by adding 1.
951 //
952 enum JavaThreadState {
953 _thread_uninitialized = 0, // should never happen (missing initialization)
954 _thread_new = 2, // just starting up, i.e., in process of being initialized
955 _thread_new_trans = 3, // corresponding transition state (not used, included for completness)
956 _thread_in_native = 4, // running in native code
957 _thread_in_native_trans = 5, // corresponding transition state
958 _thread_in_vm = 6, // running in VM
959 _thread_in_vm_trans = 7, // corresponding transition state
960 _thread_in_Java = 8, // running in Java or in stub code
961 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completness)
962 _thread_blocked = 10, // blocked in vm
963 _thread_blocked_trans = 11, // corresponding transition state
964 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation
965 };
966
967 enum LockingMode {
968 // Use only heavy monitors for locking
969 LM_MONITOR = 0,
970 // Legacy stack-locking, with monitors as 2nd tier
971 LM_LEGACY = 1,
972 // New lightweight locking, with monitors as 2nd tier
973 LM_LIGHTWEIGHT = 2
974 };
975
976 //----------------------------------------------------------------------------------------------------
977 // Special constants for debugging
978
979 const jint badInt = -3; // generic "bad int" value
980 const intptr_t badAddressVal = -2; // generic "bad address" value
981 const intptr_t badOopVal = -1; // generic "bad oop" value
982 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
983 const int badStackSegVal = 0xCA; // value used to zap stack segments
984 const int badHandleValue = 0xBC; // value used to zap vm handle area
985 const int badResourceValue = 0xAB; // value used to zap resource area
986 const int freeBlockPad = 0xBA; // value used to pad freed blocks.
987 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks.
988 const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk
989 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC
990 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC
991 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation
992 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation
993 const intptr_t badDispHeaderDeopt = 0xDE0BD000; // value to fill unused displaced header during deoptimization
994 const intptr_t badDispHeaderOSR = 0xDEAD05A0; // value to fill unused displaced header during OSR
995
996 // (These must be implemented as #defines because C++ compilers are
997 // not obligated to inline non-integral constants!)
998 #define badAddress ((address)::badAddressVal)
999 #define badOop (cast_to_oop(::badOopVal))
1000 #define badHeapWord (::badHeapWordVal)
1001
1002 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1003 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1004
1005 //----------------------------------------------------------------------------------------------------
1006 // Utility functions for bitfield manipulations
1007
1008 const intptr_t AllBits = ~0; // all bits set in a word
1009 const intptr_t NoBits = 0; // no bits set in a word
1010 const jlong NoLongBits = 0; // no bits set in a long
1011 const intptr_t OneBit = 1; // only right_most bit set in a word
1012
1013 // get a word with the n.th or the right-most or left-most n bits set
1014 // (note: #define used only so that they can be used in enum constant definitions)
1015 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1016 #define right_n_bits(n) (nth_bit(n) - 1)
1017
1018 // bit-operations using a mask m
1019 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; }
1020 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; }
1021 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; }
1022 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; }
1023 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1024
1025 // bit-operations using the n.th bit
1026 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); }
1027 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1028 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1029
1030 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1031 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1032 return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1033 }
1034
1035
1036 //----------------------------------------------------------------------------------------------------
1037 // Utility functions for integers
1038
1039 // Avoid use of global min/max macros which may cause unwanted double
1040 // evaluation of arguments.
1041 #ifdef max
1042 #undef max
1043 #endif
1044
1045 #ifdef min
1046 #undef min
1047 #endif
1048
1049 // It is necessary to use templates here. Having normal overloaded
1050 // functions does not work because it is necessary to provide both 32-
1051 // and 64-bit overloaded functions, which does not work, and having
1052 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1053 // will be even more error-prone than macros.
1054 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; }
1055 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; }
1056 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); }
1057 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); }
1058 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1059 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1060
1061 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; }
1062
1063 // Return the given value clamped to the range [min ... max]
1064 template<typename T>
1065 inline T clamp(T value, T min, T max) {
1066 assert(min <= max, "must be");
1067 return MIN2(MAX2(value, min), max);
1068 }
1069
1070 inline bool is_odd (intx x) { return x & 1; }
1071 inline bool is_even(intx x) { return !is_odd(x); }
1072
1073 // abs methods which cannot overflow and so are well-defined across
1074 // the entire domain of integer types.
1075 static inline unsigned int uabs(unsigned int n) {
1076 union {
1077 unsigned int result;
1078 int value;
1079 };
1080 result = n;
1081 if (value < 0) result = 0-result;
1082 return result;
1083 }
1084 static inline julong uabs(julong n) {
1085 union {
1086 julong result;
1087 jlong value;
1088 };
1089 result = n;
1090 if (value < 0) result = 0-result;
1091 return result;
1092 }
1093 static inline julong uabs(jlong n) { return uabs((julong)n); }
1094 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1095
1096 // "to" should be greater than "from."
1097 inline intx byte_size(void* from, void* to) {
1098 return (address)to - (address)from;
1099 }
1100
1101
1102 // Pack and extract shorts to/from ints:
1103
1104 inline int extract_low_short_from_int(jint x) {
1105 return x & 0xffff;
1106 }
1107
1108 inline int extract_high_short_from_int(jint x) {
1109 return (x >> 16) & 0xffff;
1110 }
1111
1112 inline int build_int_from_shorts( jushort low, jushort high ) {
1113 return ((int)((unsigned int)high << 16) | (unsigned int)low);
1114 }
1115
1116 // swap a & b
1117 template<class T> static void swap(T& a, T& b) {
1118 T tmp = a;
1119 a = b;
1120 b = tmp;
1121 }
1122
1123 // array_size_impl is a function that takes a reference to T[N] and
1124 // returns a reference to char[N]. It is not ODR-used, so not defined.
1125 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1126
1127 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1128
1129 //----------------------------------------------------------------------------------------------------
1130 // Sum and product which can never overflow: they wrap, just like the
1131 // Java operations. Note that we don't intend these to be used for
1132 // general-purpose arithmetic: their purpose is to emulate Java
1133 // operations.
1134
1135 // The goal of this code to avoid undefined or implementation-defined
1136 // behavior. The use of an lvalue to reference cast is explicitly
1137 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para
1138 // 15 in C++03]
1139 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \
1140 inline TYPE NAME (TYPE in1, TYPE in2) { \
1141 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1142 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \
1143 return reinterpret_cast<TYPE&>(ures); \
1144 }
1145
1146 JAVA_INTEGER_OP(+, java_add, jint, juint)
1147 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1148 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1149 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1150 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1151 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1152
1153 #undef JAVA_INTEGER_OP
1154
1155 // Provide integer shift operations with Java semantics. No overflow
1156 // issues - left shifts simply discard shifted out bits. No undefined
1157 // behavior for large or negative shift quantities; instead the actual
1158 // shift distance is the argument modulo the lhs value's size in bits.
1159 // No undefined or implementation defined behavior for shifting negative
1160 // values; left shift discards bits, right shift sign extends. We use
1161 // the same safe conversion technique as above for java_add and friends.
1162 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \
1163 inline TYPE NAME (TYPE lhs, jint rhs) { \
1164 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \
1165 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \
1166 XTYPE xres = static_cast<XTYPE>(lhs); \
1167 xres OP ## = (rhs & rhs_mask); \
1168 return reinterpret_cast<TYPE&>(xres); \
1169 }
1170
1171 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1172 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1173 // For signed shift right, assume C++ implementation >> sign extends.
1174 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1175 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1176 // For >>> use C++ unsigned >>.
1177 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1178 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1179
1180 #undef JAVA_INTEGER_SHIFT_OP
1181
1182 //----------------------------------------------------------------------------------------------------
1183 // The goal of this code is to provide saturating operations for int/uint.
1184 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1185 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1186 inline int NAME (TYPE1 in1, TYPE2 in2) { \
1187 jlong res = static_cast<jlong>(in1); \
1188 res OP ## = static_cast<jlong>(in2); \
1189 if (res > max_jint) { \
1190 res = max_jint; \
1191 } else if (res < min_jint) { \
1192 res = min_jint; \
1193 } \
1194 return static_cast<int>(res); \
1195 }
1196
1197 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1198 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1199 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1200 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1201
1202 #undef SATURATED_INTEGER_OP
1203
1204 // Dereference vptr
1205 // All C++ compilers that we know of have the vtbl pointer in the first
1206 // word. If there are exceptions, this function needs to be made compiler
1207 // specific.
1208 static inline void* dereference_vptr(const void* addr) {
1209 return *(void**)addr;
1210 }
1211
1212 //----------------------------------------------------------------------------------------------------
1213 // String type aliases used by command line flag declarations and
1214 // processing utilities.
1215
1216 typedef const char* ccstr;
1217 typedef const char* ccstrlist; // represents string arguments which accumulate
1218
1219 //----------------------------------------------------------------------------------------------------
1220 // Default hash/equals functions used by ResourceHashtable and KVHashtable
1221
1222 template<typename K> unsigned primitive_hash(const K& k) {
1223 unsigned hash = (unsigned)((uintptr_t)k);
1224 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1225 }
1226
1227 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1228 return k0 == k1;
1229 }
1230
1231
1232 // Converts any type T to a reference type.
1233 template<typename T>
1234 std::add_rvalue_reference_t<T> declval() noexcept;
1235
1236 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP