1 /*
2 * Copyright (c) 2000, 2024, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "asm/assembler.hpp"
29 #include "c1/c1_CodeStubs.hpp"
30 #include "c1/c1_Compilation.hpp"
31 #include "c1/c1_LIRAssembler.hpp"
32 #include "c1/c1_MacroAssembler.hpp"
33 #include "c1/c1_Runtime1.hpp"
34 #include "c1/c1_ValueStack.hpp"
35 #include "ci/ciArrayKlass.hpp"
36 #include "ci/ciInstance.hpp"
37 #include "code/compiledIC.hpp"
38 #include "gc/shared/collectedHeap.hpp"
39 #include "gc/shared/gc_globals.hpp"
40 #include "nativeInst_aarch64.hpp"
41 #include "oops/objArrayKlass.hpp"
42 #include "runtime/frame.inline.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "runtime/stubRoutines.hpp"
45 #include "utilities/powerOfTwo.hpp"
46 #include "vmreg_aarch64.inline.hpp"
47
48
49 #ifndef PRODUCT
50 #define COMMENT(x) do { __ block_comment(x); } while (0)
51 #else
52 #define COMMENT(x)
53 #endif
54
55 NEEDS_CLEANUP // remove this definitions ?
56 const Register IC_Klass = rscratch2; // where the IC klass is cached
57 const Register SYNC_header = r0; // synchronization header
58 const Register SHIFT_count = r0; // where count for shift operations must be
59
60 #define __ _masm->
61
62
63 static void select_different_registers(Register preserve,
64 Register extra,
65 Register &tmp1,
66 Register &tmp2) {
67 if (tmp1 == preserve) {
68 assert_different_registers(tmp1, tmp2, extra);
69 tmp1 = extra;
70 } else if (tmp2 == preserve) {
71 assert_different_registers(tmp1, tmp2, extra);
72 tmp2 = extra;
73 }
74 assert_different_registers(preserve, tmp1, tmp2);
75 }
76
77
78
79 static void select_different_registers(Register preserve,
80 Register extra,
81 Register &tmp1,
82 Register &tmp2,
83 Register &tmp3) {
84 if (tmp1 == preserve) {
85 assert_different_registers(tmp1, tmp2, tmp3, extra);
86 tmp1 = extra;
87 } else if (tmp2 == preserve) {
88 assert_different_registers(tmp1, tmp2, tmp3, extra);
89 tmp2 = extra;
90 } else if (tmp3 == preserve) {
91 assert_different_registers(tmp1, tmp2, tmp3, extra);
92 tmp3 = extra;
93 }
94 assert_different_registers(preserve, tmp1, tmp2, tmp3);
95 }
96
97
98 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
99
100
101 LIR_Opr LIR_Assembler::receiverOpr() {
102 return FrameMap::receiver_opr;
103 }
104
105 LIR_Opr LIR_Assembler::osrBufferPointer() {
106 return FrameMap::as_pointer_opr(receiverOpr()->as_register());
107 }
108
109 //--------------fpu register translations-----------------------
110
111
112 address LIR_Assembler::float_constant(float f) {
113 address const_addr = __ float_constant(f);
114 if (const_addr == nullptr) {
115 bailout("const section overflow");
116 return __ code()->consts()->start();
117 } else {
118 return const_addr;
119 }
120 }
121
122
123 address LIR_Assembler::double_constant(double d) {
124 address const_addr = __ double_constant(d);
125 if (const_addr == nullptr) {
126 bailout("const section overflow");
127 return __ code()->consts()->start();
128 } else {
129 return const_addr;
130 }
131 }
132
133 address LIR_Assembler::int_constant(jlong n) {
134 address const_addr = __ long_constant(n);
135 if (const_addr == nullptr) {
136 bailout("const section overflow");
137 return __ code()->consts()->start();
138 } else {
139 return const_addr;
140 }
141 }
142
143 void LIR_Assembler::breakpoint() { Unimplemented(); }
144
145 void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
146
147 void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
148
149 bool LIR_Assembler::is_literal_address(LIR_Address* addr) { Unimplemented(); return false; }
150 //-------------------------------------------
151
152 static Register as_reg(LIR_Opr op) {
153 return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
154 }
155
156 static jlong as_long(LIR_Opr data) {
157 jlong result;
158 switch (data->type()) {
159 case T_INT:
160 result = (data->as_jint());
161 break;
162 case T_LONG:
163 result = (data->as_jlong());
164 break;
165 default:
166 ShouldNotReachHere();
167 result = 0; // unreachable
168 }
169 return result;
170 }
171
172 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
173 Register base = addr->base()->as_pointer_register();
174 LIR_Opr opr = addr->index();
175 if (opr->is_cpu_register()) {
176 Register index;
177 if (opr->is_single_cpu())
178 index = opr->as_register();
179 else
180 index = opr->as_register_lo();
181 assert(addr->disp() == 0, "must be");
182 switch(opr->type()) {
183 case T_INT:
184 return Address(base, index, Address::sxtw(addr->scale()));
185 case T_LONG:
186 return Address(base, index, Address::lsl(addr->scale()));
187 default:
188 ShouldNotReachHere();
189 }
190 } else {
191 assert(addr->scale() == 0,
192 "expected for immediate operand, was: %d", addr->scale());
193 ptrdiff_t offset = ptrdiff_t(addr->disp());
194 // NOTE: Does not handle any 16 byte vector access.
195 const uint type_size = type2aelembytes(addr->type(), true);
196 return __ legitimize_address(Address(base, offset), type_size, tmp);
197 }
198 return Address();
199 }
200
201 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
202 ShouldNotReachHere();
203 return Address();
204 }
205
206 Address LIR_Assembler::as_Address(LIR_Address* addr) {
207 return as_Address(addr, rscratch1);
208 }
209
210 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
211 return as_Address(addr, rscratch1); // Ouch
212 // FIXME: This needs to be much more clever. See x86.
213 }
214
215 // Ensure a valid Address (base + offset) to a stack-slot. If stack access is
216 // not encodable as a base + (immediate) offset, generate an explicit address
217 // calculation to hold the address in a temporary register.
218 Address LIR_Assembler::stack_slot_address(int index, uint size, Register tmp, int adjust) {
219 precond(size == 4 || size == 8);
220 Address addr = frame_map()->address_for_slot(index, adjust);
221 precond(addr.getMode() == Address::base_plus_offset);
222 precond(addr.base() == sp);
223 precond(addr.offset() > 0);
224 uint mask = size - 1;
225 assert((addr.offset() & mask) == 0, "scaled offsets only");
226 return __ legitimize_address(addr, size, tmp);
227 }
228
229 void LIR_Assembler::osr_entry() {
230 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
231 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
232 ValueStack* entry_state = osr_entry->state();
233 int number_of_locks = entry_state->locks_size();
234
235 // we jump here if osr happens with the interpreter
236 // state set up to continue at the beginning of the
237 // loop that triggered osr - in particular, we have
238 // the following registers setup:
239 //
240 // r2: osr buffer
241 //
242
243 // build frame
244 ciMethod* m = compilation()->method();
245 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
246
247 // OSR buffer is
248 //
249 // locals[nlocals-1..0]
250 // monitors[0..number_of_locks]
251 //
252 // locals is a direct copy of the interpreter frame so in the osr buffer
253 // so first slot in the local array is the last local from the interpreter
254 // and last slot is local[0] (receiver) from the interpreter
255 //
256 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
257 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
258 // in the interpreter frame (the method lock if a sync method)
259
260 // Initialize monitors in the compiled activation.
261 // r2: pointer to osr buffer
262 //
263 // All other registers are dead at this point and the locals will be
264 // copied into place by code emitted in the IR.
265
266 Register OSR_buf = osrBufferPointer()->as_pointer_register();
267 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
268 int monitor_offset = BytesPerWord * method()->max_locals() +
269 (2 * BytesPerWord) * (number_of_locks - 1);
270 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
271 // the OSR buffer using 2 word entries: first the lock and then
272 // the oop.
273 for (int i = 0; i < number_of_locks; i++) {
274 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
275 #ifdef ASSERT
276 // verify the interpreter's monitor has a non-null object
277 {
278 Label L;
279 __ ldr(rscratch1, Address(OSR_buf, slot_offset + 1*BytesPerWord));
280 __ cbnz(rscratch1, L);
281 __ stop("locked object is null");
282 __ bind(L);
283 }
284 #endif
285 __ ldr(r19, Address(OSR_buf, slot_offset));
286 __ ldr(r20, Address(OSR_buf, slot_offset + BytesPerWord));
287 __ str(r19, frame_map()->address_for_monitor_lock(i));
288 __ str(r20, frame_map()->address_for_monitor_object(i));
289 }
290 }
291 }
292
293
294 // inline cache check; done before the frame is built.
295 int LIR_Assembler::check_icache() {
296 Register receiver = FrameMap::receiver_opr->as_register();
297 Register ic_klass = IC_Klass;
298 int start_offset = __ offset();
299 __ inline_cache_check(receiver, ic_klass);
300
301 // if icache check fails, then jump to runtime routine
302 // Note: RECEIVER must still contain the receiver!
303 Label dont;
304 __ br(Assembler::EQ, dont);
305 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
306
307 // We align the verified entry point unless the method body
308 // (including its inline cache check) will fit in a single 64-byte
309 // icache line.
310 if (! method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
311 // force alignment after the cache check.
312 __ align(CodeEntryAlignment);
313 }
314
315 __ bind(dont);
316 return start_offset;
317 }
318
319 void LIR_Assembler::clinit_barrier(ciMethod* method) {
320 assert(VM_Version::supports_fast_class_init_checks(), "sanity");
321 assert(!method->holder()->is_not_initialized(), "initialization should have been started");
322
323 Label L_skip_barrier;
324
325 __ mov_metadata(rscratch2, method->holder()->constant_encoding());
326 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier /*L_fast_path*/);
327 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
328 __ bind(L_skip_barrier);
329 }
330
331 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
332 if (o == nullptr) {
333 __ mov(reg, zr);
334 } else {
335 __ movoop(reg, o);
336 }
337 }
338
339 void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
340 address target = nullptr;
341 relocInfo::relocType reloc_type = relocInfo::none;
342
343 switch (patching_id(info)) {
344 case PatchingStub::access_field_id:
345 target = Runtime1::entry_for(Runtime1::access_field_patching_id);
346 reloc_type = relocInfo::section_word_type;
347 break;
348 case PatchingStub::load_klass_id:
349 target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
350 reloc_type = relocInfo::metadata_type;
351 break;
352 case PatchingStub::load_mirror_id:
353 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
354 reloc_type = relocInfo::oop_type;
355 break;
356 case PatchingStub::load_appendix_id:
357 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
358 reloc_type = relocInfo::oop_type;
359 break;
360 default: ShouldNotReachHere();
361 }
362
363 __ far_call(RuntimeAddress(target));
364 add_call_info_here(info);
365 }
366
367 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
368 deoptimize_trap(info);
369 }
370
371
372 // This specifies the rsp decrement needed to build the frame
373 int LIR_Assembler::initial_frame_size_in_bytes() const {
374 // if rounding, must let FrameMap know!
375
376 return in_bytes(frame_map()->framesize_in_bytes());
377 }
378
379
380 int LIR_Assembler::emit_exception_handler() {
381 // generate code for exception handler
382 address handler_base = __ start_a_stub(exception_handler_size());
383 if (handler_base == nullptr) {
384 // not enough space left for the handler
385 bailout("exception handler overflow");
386 return -1;
387 }
388
389 int offset = code_offset();
390
391 // the exception oop and pc are in r0, and r3
392 // no other registers need to be preserved, so invalidate them
393 __ invalidate_registers(false, true, true, false, true, true);
394
395 // check that there is really an exception
396 __ verify_not_null_oop(r0);
397
398 // search an exception handler (r0: exception oop, r3: throwing pc)
399 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
400 __ should_not_reach_here();
401 guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
402 __ end_a_stub();
403
404 return offset;
405 }
406
407
408 // Emit the code to remove the frame from the stack in the exception
409 // unwind path.
410 int LIR_Assembler::emit_unwind_handler() {
411 #ifndef PRODUCT
412 if (CommentedAssembly) {
413 _masm->block_comment("Unwind handler");
414 }
415 #endif
416
417 int offset = code_offset();
418
419 // Fetch the exception from TLS and clear out exception related thread state
420 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
421 __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
422 __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
423
424 __ bind(_unwind_handler_entry);
425 __ verify_not_null_oop(r0);
426 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
427 __ mov(r19, r0); // Preserve the exception
428 }
429
430 // Perform needed unlocking
431 MonitorExitStub* stub = nullptr;
432 if (method()->is_synchronized()) {
433 monitor_address(0, FrameMap::r0_opr);
434 stub = new MonitorExitStub(FrameMap::r0_opr, true, 0);
435 if (LockingMode == LM_MONITOR) {
436 __ b(*stub->entry());
437 } else {
438 __ unlock_object(r5, r4, r0, r6, *stub->entry());
439 }
440 __ bind(*stub->continuation());
441 }
442
443 if (compilation()->env()->dtrace_method_probes()) {
444 __ mov(c_rarg0, rthread);
445 __ mov_metadata(c_rarg1, method()->constant_encoding());
446 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
447 }
448
449 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
450 __ mov(r0, r19); // Restore the exception
451 }
452
453 // remove the activation and dispatch to the unwind handler
454 __ block_comment("remove_frame and dispatch to the unwind handler");
455 __ remove_frame(initial_frame_size_in_bytes());
456 __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
457
458 // Emit the slow path assembly
459 if (stub != nullptr) {
460 stub->emit_code(this);
461 }
462
463 return offset;
464 }
465
466
467 int LIR_Assembler::emit_deopt_handler() {
468 // generate code for exception handler
469 address handler_base = __ start_a_stub(deopt_handler_size());
470 if (handler_base == nullptr) {
471 // not enough space left for the handler
472 bailout("deopt handler overflow");
473 return -1;
474 }
475
476 int offset = code_offset();
477
478 __ adr(lr, pc());
479 __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
480 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
481 __ end_a_stub();
482
483 return offset;
484 }
485
486 void LIR_Assembler::add_debug_info_for_branch(address adr, CodeEmitInfo* info) {
487 _masm->code_section()->relocate(adr, relocInfo::poll_type);
488 int pc_offset = code_offset();
489 flush_debug_info(pc_offset);
490 info->record_debug_info(compilation()->debug_info_recorder(), pc_offset);
491 if (info->exception_handlers() != nullptr) {
492 compilation()->add_exception_handlers_for_pco(pc_offset, info->exception_handlers());
493 }
494 }
495
496 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
497 assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == r0, "word returns are in r0,");
498
499 // Pop the stack before the safepoint code
500 __ remove_frame(initial_frame_size_in_bytes());
501
502 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
503 __ reserved_stack_check();
504 }
505
506 code_stub->set_safepoint_offset(__ offset());
507 __ relocate(relocInfo::poll_return_type);
508 __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
509 __ ret(lr);
510 }
511
512 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
513 guarantee(info != nullptr, "Shouldn't be null");
514 __ get_polling_page(rscratch1, relocInfo::poll_type);
515 add_debug_info_for_branch(info); // This isn't just debug info:
516 // it's the oop map
517 __ read_polling_page(rscratch1, relocInfo::poll_type);
518 return __ offset();
519 }
520
521
522 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
523 if (from_reg == r31_sp)
524 from_reg = sp;
525 if (to_reg == r31_sp)
526 to_reg = sp;
527 __ mov(to_reg, from_reg);
528 }
529
530 void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
531
532
533 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
534 assert(src->is_constant(), "should not call otherwise");
535 assert(dest->is_register(), "should not call otherwise");
536 LIR_Const* c = src->as_constant_ptr();
537
538 switch (c->type()) {
539 case T_INT: {
540 assert(patch_code == lir_patch_none, "no patching handled here");
541 __ movw(dest->as_register(), c->as_jint());
542 break;
543 }
544
545 case T_ADDRESS: {
546 assert(patch_code == lir_patch_none, "no patching handled here");
547 __ mov(dest->as_register(), c->as_jint());
548 break;
549 }
550
551 case T_LONG: {
552 assert(patch_code == lir_patch_none, "no patching handled here");
553 __ mov(dest->as_register_lo(), (intptr_t)c->as_jlong());
554 break;
555 }
556
557 case T_OBJECT: {
558 if (patch_code == lir_patch_none) {
559 jobject2reg(c->as_jobject(), dest->as_register());
560 } else {
561 jobject2reg_with_patching(dest->as_register(), info);
562 }
563 break;
564 }
565
566 case T_METADATA: {
567 if (patch_code != lir_patch_none) {
568 klass2reg_with_patching(dest->as_register(), info);
569 } else {
570 __ mov_metadata(dest->as_register(), c->as_metadata());
571 }
572 break;
573 }
574
575 case T_FLOAT: {
576 if (__ operand_valid_for_float_immediate(c->as_jfloat())) {
577 __ fmovs(dest->as_float_reg(), (c->as_jfloat()));
578 } else {
579 __ adr(rscratch1, InternalAddress(float_constant(c->as_jfloat())));
580 __ ldrs(dest->as_float_reg(), Address(rscratch1));
581 }
582 break;
583 }
584
585 case T_DOUBLE: {
586 if (__ operand_valid_for_float_immediate(c->as_jdouble())) {
587 __ fmovd(dest->as_double_reg(), (c->as_jdouble()));
588 } else {
589 __ adr(rscratch1, InternalAddress(double_constant(c->as_jdouble())));
590 __ ldrd(dest->as_double_reg(), Address(rscratch1));
591 }
592 break;
593 }
594
595 default:
596 ShouldNotReachHere();
597 }
598 }
599
600 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
601 LIR_Const* c = src->as_constant_ptr();
602 switch (c->type()) {
603 case T_OBJECT:
604 {
605 if (! c->as_jobject())
606 __ str(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
607 else {
608 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
609 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
610 }
611 }
612 break;
613 case T_ADDRESS:
614 {
615 const2reg(src, FrameMap::rscratch1_opr, lir_patch_none, nullptr);
616 reg2stack(FrameMap::rscratch1_opr, dest, c->type(), false);
617 }
618 case T_INT:
619 case T_FLOAT:
620 {
621 Register reg = zr;
622 if (c->as_jint_bits() == 0)
623 __ strw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
624 else {
625 __ movw(rscratch1, c->as_jint_bits());
626 __ strw(rscratch1, frame_map()->address_for_slot(dest->single_stack_ix()));
627 }
628 }
629 break;
630 case T_LONG:
631 case T_DOUBLE:
632 {
633 Register reg = zr;
634 if (c->as_jlong_bits() == 0)
635 __ str(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
636 lo_word_offset_in_bytes));
637 else {
638 __ mov(rscratch1, (intptr_t)c->as_jlong_bits());
639 __ str(rscratch1, frame_map()->address_for_slot(dest->double_stack_ix(),
640 lo_word_offset_in_bytes));
641 }
642 }
643 break;
644 default:
645 ShouldNotReachHere();
646 }
647 }
648
649 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
650 assert(src->is_constant(), "should not call otherwise");
651 LIR_Const* c = src->as_constant_ptr();
652 LIR_Address* to_addr = dest->as_address_ptr();
653
654 void (Assembler::* insn)(Register Rt, const Address &adr);
655
656 switch (type) {
657 case T_ADDRESS:
658 assert(c->as_jint() == 0, "should be");
659 insn = &Assembler::str;
660 break;
661 case T_LONG:
662 assert(c->as_jlong() == 0, "should be");
663 insn = &Assembler::str;
664 break;
665 case T_INT:
666 assert(c->as_jint() == 0, "should be");
667 insn = &Assembler::strw;
668 break;
669 case T_OBJECT:
670 case T_ARRAY:
671 assert(c->as_jobject() == 0, "should be");
672 if (UseCompressedOops && !wide) {
673 insn = &Assembler::strw;
674 } else {
675 insn = &Assembler::str;
676 }
677 break;
678 case T_CHAR:
679 case T_SHORT:
680 assert(c->as_jint() == 0, "should be");
681 insn = &Assembler::strh;
682 break;
683 case T_BOOLEAN:
684 case T_BYTE:
685 assert(c->as_jint() == 0, "should be");
686 insn = &Assembler::strb;
687 break;
688 default:
689 ShouldNotReachHere();
690 insn = &Assembler::str; // unreachable
691 }
692
693 if (info) add_debug_info_for_null_check_here(info);
694 (_masm->*insn)(zr, as_Address(to_addr, rscratch1));
695 }
696
697 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
698 assert(src->is_register(), "should not call otherwise");
699 assert(dest->is_register(), "should not call otherwise");
700
701 // move between cpu-registers
702 if (dest->is_single_cpu()) {
703 if (src->type() == T_LONG) {
704 // Can do LONG -> OBJECT
705 move_regs(src->as_register_lo(), dest->as_register());
706 return;
707 }
708 assert(src->is_single_cpu(), "must match");
709 if (src->type() == T_OBJECT) {
710 __ verify_oop(src->as_register());
711 }
712 move_regs(src->as_register(), dest->as_register());
713
714 } else if (dest->is_double_cpu()) {
715 if (is_reference_type(src->type())) {
716 // Surprising to me but we can see move of a long to t_object
717 __ verify_oop(src->as_register());
718 move_regs(src->as_register(), dest->as_register_lo());
719 return;
720 }
721 assert(src->is_double_cpu(), "must match");
722 Register f_lo = src->as_register_lo();
723 Register f_hi = src->as_register_hi();
724 Register t_lo = dest->as_register_lo();
725 Register t_hi = dest->as_register_hi();
726 assert(f_hi == f_lo, "must be same");
727 assert(t_hi == t_lo, "must be same");
728 move_regs(f_lo, t_lo);
729
730 } else if (dest->is_single_fpu()) {
731 __ fmovs(dest->as_float_reg(), src->as_float_reg());
732
733 } else if (dest->is_double_fpu()) {
734 __ fmovd(dest->as_double_reg(), src->as_double_reg());
735
736 } else {
737 ShouldNotReachHere();
738 }
739 }
740
741 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
742 precond(src->is_register() && dest->is_stack());
743
744 uint const c_sz32 = sizeof(uint32_t);
745 uint const c_sz64 = sizeof(uint64_t);
746
747 if (src->is_single_cpu()) {
748 int index = dest->single_stack_ix();
749 if (is_reference_type(type)) {
750 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
751 __ verify_oop(src->as_register());
752 } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
753 __ str(src->as_register(), stack_slot_address(index, c_sz64, rscratch1));
754 } else {
755 __ strw(src->as_register(), stack_slot_address(index, c_sz32, rscratch1));
756 }
757
758 } else if (src->is_double_cpu()) {
759 int index = dest->double_stack_ix();
760 Address dest_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
761 __ str(src->as_register_lo(), dest_addr_LO);
762
763 } else if (src->is_single_fpu()) {
764 int index = dest->single_stack_ix();
765 __ strs(src->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
766
767 } else if (src->is_double_fpu()) {
768 int index = dest->double_stack_ix();
769 __ strd(src->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
770
771 } else {
772 ShouldNotReachHere();
773 }
774 }
775
776
777 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
778 LIR_Address* to_addr = dest->as_address_ptr();
779 PatchingStub* patch = nullptr;
780 Register compressed_src = rscratch1;
781
782 if (patch_code != lir_patch_none) {
783 deoptimize_trap(info);
784 return;
785 }
786
787 if (is_reference_type(type)) {
788 __ verify_oop(src->as_register());
789
790 if (UseCompressedOops && !wide) {
791 __ encode_heap_oop(compressed_src, src->as_register());
792 } else {
793 compressed_src = src->as_register();
794 }
795 }
796
797 int null_check_here = code_offset();
798 switch (type) {
799 case T_FLOAT: {
800 __ strs(src->as_float_reg(), as_Address(to_addr));
801 break;
802 }
803
804 case T_DOUBLE: {
805 __ strd(src->as_double_reg(), as_Address(to_addr));
806 break;
807 }
808
809 case T_ARRAY: // fall through
810 case T_OBJECT: // fall through
811 if (UseCompressedOops && !wide) {
812 __ strw(compressed_src, as_Address(to_addr, rscratch2));
813 } else {
814 __ str(compressed_src, as_Address(to_addr));
815 }
816 break;
817 case T_METADATA:
818 // We get here to store a method pointer to the stack to pass to
819 // a dtrace runtime call. This can't work on 64 bit with
820 // compressed klass ptrs: T_METADATA can be a compressed klass
821 // ptr or a 64 bit method pointer.
822 ShouldNotReachHere();
823 __ str(src->as_register(), as_Address(to_addr));
824 break;
825 case T_ADDRESS:
826 __ str(src->as_register(), as_Address(to_addr));
827 break;
828 case T_INT:
829 __ strw(src->as_register(), as_Address(to_addr));
830 break;
831
832 case T_LONG: {
833 __ str(src->as_register_lo(), as_Address_lo(to_addr));
834 break;
835 }
836
837 case T_BYTE: // fall through
838 case T_BOOLEAN: {
839 __ strb(src->as_register(), as_Address(to_addr));
840 break;
841 }
842
843 case T_CHAR: // fall through
844 case T_SHORT:
845 __ strh(src->as_register(), as_Address(to_addr));
846 break;
847
848 default:
849 ShouldNotReachHere();
850 }
851 if (info != nullptr) {
852 add_debug_info_for_null_check(null_check_here, info);
853 }
854 }
855
856
857 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
858 precond(src->is_stack() && dest->is_register());
859
860 uint const c_sz32 = sizeof(uint32_t);
861 uint const c_sz64 = sizeof(uint64_t);
862
863 if (dest->is_single_cpu()) {
864 int index = src->single_stack_ix();
865 if (is_reference_type(type)) {
866 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
867 __ verify_oop(dest->as_register());
868 } else if (type == T_METADATA || type == T_ADDRESS) {
869 __ ldr(dest->as_register(), stack_slot_address(index, c_sz64, rscratch1));
870 } else {
871 __ ldrw(dest->as_register(), stack_slot_address(index, c_sz32, rscratch1));
872 }
873
874 } else if (dest->is_double_cpu()) {
875 int index = src->double_stack_ix();
876 Address src_addr_LO = stack_slot_address(index, c_sz64, rscratch1, lo_word_offset_in_bytes);
877 __ ldr(dest->as_register_lo(), src_addr_LO);
878
879 } else if (dest->is_single_fpu()) {
880 int index = src->single_stack_ix();
881 __ ldrs(dest->as_float_reg(), stack_slot_address(index, c_sz32, rscratch1));
882
883 } else if (dest->is_double_fpu()) {
884 int index = src->double_stack_ix();
885 __ ldrd(dest->as_double_reg(), stack_slot_address(index, c_sz64, rscratch1));
886
887 } else {
888 ShouldNotReachHere();
889 }
890 }
891
892
893 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
894 address target = nullptr;
895 relocInfo::relocType reloc_type = relocInfo::none;
896
897 switch (patching_id(info)) {
898 case PatchingStub::access_field_id:
899 target = Runtime1::entry_for(Runtime1::access_field_patching_id);
900 reloc_type = relocInfo::section_word_type;
901 break;
902 case PatchingStub::load_klass_id:
903 target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
904 reloc_type = relocInfo::metadata_type;
905 break;
906 case PatchingStub::load_mirror_id:
907 target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
908 reloc_type = relocInfo::oop_type;
909 break;
910 case PatchingStub::load_appendix_id:
911 target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
912 reloc_type = relocInfo::oop_type;
913 break;
914 default: ShouldNotReachHere();
915 }
916
917 __ far_call(RuntimeAddress(target));
918 add_call_info_here(info);
919 }
920
921 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
922
923 LIR_Opr temp;
924 if (type == T_LONG || type == T_DOUBLE)
925 temp = FrameMap::rscratch1_long_opr;
926 else
927 temp = FrameMap::rscratch1_opr;
928
929 stack2reg(src, temp, src->type());
930 reg2stack(temp, dest, dest->type(), false);
931 }
932
933
934 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
935 LIR_Address* addr = src->as_address_ptr();
936 LIR_Address* from_addr = src->as_address_ptr();
937
938 if (addr->base()->type() == T_OBJECT) {
939 __ verify_oop(addr->base()->as_pointer_register());
940 }
941
942 if (patch_code != lir_patch_none) {
943 deoptimize_trap(info);
944 return;
945 }
946
947 if (info != nullptr) {
948 add_debug_info_for_null_check_here(info);
949 }
950 int null_check_here = code_offset();
951 switch (type) {
952 case T_FLOAT: {
953 __ ldrs(dest->as_float_reg(), as_Address(from_addr));
954 break;
955 }
956
957 case T_DOUBLE: {
958 __ ldrd(dest->as_double_reg(), as_Address(from_addr));
959 break;
960 }
961
962 case T_ARRAY: // fall through
963 case T_OBJECT: // fall through
964 if (UseCompressedOops && !wide) {
965 __ ldrw(dest->as_register(), as_Address(from_addr));
966 } else {
967 __ ldr(dest->as_register(), as_Address(from_addr));
968 }
969 break;
970 case T_METADATA:
971 // We get here to store a method pointer to the stack to pass to
972 // a dtrace runtime call. This can't work on 64 bit with
973 // compressed klass ptrs: T_METADATA can be a compressed klass
974 // ptr or a 64 bit method pointer.
975 ShouldNotReachHere();
976 __ ldr(dest->as_register(), as_Address(from_addr));
977 break;
978 case T_ADDRESS:
979 __ ldr(dest->as_register(), as_Address(from_addr));
980 break;
981 case T_INT:
982 __ ldrw(dest->as_register(), as_Address(from_addr));
983 break;
984
985 case T_LONG: {
986 __ ldr(dest->as_register_lo(), as_Address_lo(from_addr));
987 break;
988 }
989
990 case T_BYTE:
991 __ ldrsb(dest->as_register(), as_Address(from_addr));
992 break;
993 case T_BOOLEAN: {
994 __ ldrb(dest->as_register(), as_Address(from_addr));
995 break;
996 }
997
998 case T_CHAR:
999 __ ldrh(dest->as_register(), as_Address(from_addr));
1000 break;
1001 case T_SHORT:
1002 __ ldrsh(dest->as_register(), as_Address(from_addr));
1003 break;
1004
1005 default:
1006 ShouldNotReachHere();
1007 }
1008
1009 if (is_reference_type(type)) {
1010 if (UseCompressedOops && !wide) {
1011 __ decode_heap_oop(dest->as_register());
1012 }
1013
1014 if (!(UseZGC && !ZGenerational)) {
1015 // Load barrier has not yet been applied, so ZGC can't verify the oop here
1016 __ verify_oop(dest->as_register());
1017 }
1018 }
1019 }
1020
1021
1022 int LIR_Assembler::array_element_size(BasicType type) const {
1023 int elem_size = type2aelembytes(type);
1024 return exact_log2(elem_size);
1025 }
1026
1027
1028 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1029 switch (op->code()) {
1030 case lir_idiv:
1031 case lir_irem:
1032 arithmetic_idiv(op->code(),
1033 op->in_opr1(),
1034 op->in_opr2(),
1035 op->in_opr3(),
1036 op->result_opr(),
1037 op->info());
1038 break;
1039 case lir_fmad:
1040 __ fmaddd(op->result_opr()->as_double_reg(),
1041 op->in_opr1()->as_double_reg(),
1042 op->in_opr2()->as_double_reg(),
1043 op->in_opr3()->as_double_reg());
1044 break;
1045 case lir_fmaf:
1046 __ fmadds(op->result_opr()->as_float_reg(),
1047 op->in_opr1()->as_float_reg(),
1048 op->in_opr2()->as_float_reg(),
1049 op->in_opr3()->as_float_reg());
1050 break;
1051 default: ShouldNotReachHere(); break;
1052 }
1053 }
1054
1055 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1056 #ifdef ASSERT
1057 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1058 if (op->block() != nullptr) _branch_target_blocks.append(op->block());
1059 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1060 #endif
1061
1062 if (op->cond() == lir_cond_always) {
1063 if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1064 __ b(*(op->label()));
1065 } else {
1066 Assembler::Condition acond;
1067 if (op->code() == lir_cond_float_branch) {
1068 bool is_unordered = (op->ublock() == op->block());
1069 // Assembler::EQ does not permit unordered branches, so we add
1070 // another branch here. Likewise, Assembler::NE does not permit
1071 // ordered branches.
1072 if ((is_unordered && op->cond() == lir_cond_equal)
1073 || (!is_unordered && op->cond() == lir_cond_notEqual))
1074 __ br(Assembler::VS, *(op->ublock()->label()));
1075 switch(op->cond()) {
1076 case lir_cond_equal: acond = Assembler::EQ; break;
1077 case lir_cond_notEqual: acond = Assembler::NE; break;
1078 case lir_cond_less: acond = (is_unordered ? Assembler::LT : Assembler::LO); break;
1079 case lir_cond_lessEqual: acond = (is_unordered ? Assembler::LE : Assembler::LS); break;
1080 case lir_cond_greaterEqual: acond = (is_unordered ? Assembler::HS : Assembler::GE); break;
1081 case lir_cond_greater: acond = (is_unordered ? Assembler::HI : Assembler::GT); break;
1082 default: ShouldNotReachHere();
1083 acond = Assembler::EQ; // unreachable
1084 }
1085 } else {
1086 switch (op->cond()) {
1087 case lir_cond_equal: acond = Assembler::EQ; break;
1088 case lir_cond_notEqual: acond = Assembler::NE; break;
1089 case lir_cond_less: acond = Assembler::LT; break;
1090 case lir_cond_lessEqual: acond = Assembler::LE; break;
1091 case lir_cond_greaterEqual: acond = Assembler::GE; break;
1092 case lir_cond_greater: acond = Assembler::GT; break;
1093 case lir_cond_belowEqual: acond = Assembler::LS; break;
1094 case lir_cond_aboveEqual: acond = Assembler::HS; break;
1095 default: ShouldNotReachHere();
1096 acond = Assembler::EQ; // unreachable
1097 }
1098 }
1099 __ br(acond,*(op->label()));
1100 }
1101 }
1102
1103
1104
1105 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1106 LIR_Opr src = op->in_opr();
1107 LIR_Opr dest = op->result_opr();
1108
1109 switch (op->bytecode()) {
1110 case Bytecodes::_i2f:
1111 {
1112 __ scvtfws(dest->as_float_reg(), src->as_register());
1113 break;
1114 }
1115 case Bytecodes::_i2d:
1116 {
1117 __ scvtfwd(dest->as_double_reg(), src->as_register());
1118 break;
1119 }
1120 case Bytecodes::_l2d:
1121 {
1122 __ scvtfd(dest->as_double_reg(), src->as_register_lo());
1123 break;
1124 }
1125 case Bytecodes::_l2f:
1126 {
1127 __ scvtfs(dest->as_float_reg(), src->as_register_lo());
1128 break;
1129 }
1130 case Bytecodes::_f2d:
1131 {
1132 __ fcvts(dest->as_double_reg(), src->as_float_reg());
1133 break;
1134 }
1135 case Bytecodes::_d2f:
1136 {
1137 __ fcvtd(dest->as_float_reg(), src->as_double_reg());
1138 break;
1139 }
1140 case Bytecodes::_i2c:
1141 {
1142 __ ubfx(dest->as_register(), src->as_register(), 0, 16);
1143 break;
1144 }
1145 case Bytecodes::_i2l:
1146 {
1147 __ sxtw(dest->as_register_lo(), src->as_register());
1148 break;
1149 }
1150 case Bytecodes::_i2s:
1151 {
1152 __ sxth(dest->as_register(), src->as_register());
1153 break;
1154 }
1155 case Bytecodes::_i2b:
1156 {
1157 __ sxtb(dest->as_register(), src->as_register());
1158 break;
1159 }
1160 case Bytecodes::_l2i:
1161 {
1162 _masm->block_comment("FIXME: This could be a no-op");
1163 __ uxtw(dest->as_register(), src->as_register_lo());
1164 break;
1165 }
1166 case Bytecodes::_d2l:
1167 {
1168 __ fcvtzd(dest->as_register_lo(), src->as_double_reg());
1169 break;
1170 }
1171 case Bytecodes::_f2i:
1172 {
1173 __ fcvtzsw(dest->as_register(), src->as_float_reg());
1174 break;
1175 }
1176 case Bytecodes::_f2l:
1177 {
1178 __ fcvtzs(dest->as_register_lo(), src->as_float_reg());
1179 break;
1180 }
1181 case Bytecodes::_d2i:
1182 {
1183 __ fcvtzdw(dest->as_register(), src->as_double_reg());
1184 break;
1185 }
1186 default: ShouldNotReachHere();
1187 }
1188 }
1189
1190 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1191 if (op->init_check()) {
1192 __ ldrb(rscratch1, Address(op->klass()->as_register(),
1193 InstanceKlass::init_state_offset()));
1194 __ cmpw(rscratch1, InstanceKlass::fully_initialized);
1195 add_debug_info_for_null_check_here(op->stub()->info());
1196 __ br(Assembler::NE, *op->stub()->entry());
1197 }
1198 __ allocate_object(op->obj()->as_register(),
1199 op->tmp1()->as_register(),
1200 op->tmp2()->as_register(),
1201 op->header_size(),
1202 op->object_size(),
1203 op->klass()->as_register(),
1204 *op->stub()->entry());
1205 __ bind(*op->stub()->continuation());
1206 }
1207
1208 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1209 Register len = op->len()->as_register();
1210 __ uxtw(len, len);
1211
1212 if (UseSlowPath ||
1213 (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1214 (!UseFastNewTypeArray && !is_reference_type(op->type()))) {
1215 __ b(*op->stub()->entry());
1216 } else {
1217 Register tmp1 = op->tmp1()->as_register();
1218 Register tmp2 = op->tmp2()->as_register();
1219 Register tmp3 = op->tmp3()->as_register();
1220 if (len == tmp1) {
1221 tmp1 = tmp3;
1222 } else if (len == tmp2) {
1223 tmp2 = tmp3;
1224 } else if (len == tmp3) {
1225 // everything is ok
1226 } else {
1227 __ mov(tmp3, len);
1228 }
1229 __ allocate_array(op->obj()->as_register(),
1230 len,
1231 tmp1,
1232 tmp2,
1233 arrayOopDesc::base_offset_in_bytes(op->type()),
1234 array_element_size(op->type()),
1235 op->klass()->as_register(),
1236 *op->stub()->entry());
1237 }
1238 __ bind(*op->stub()->continuation());
1239 }
1240
1241 void LIR_Assembler::type_profile_helper(Register mdo,
1242 ciMethodData *md, ciProfileData *data,
1243 Register recv, Label* update_done) {
1244 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1245 Label next_test;
1246 // See if the receiver is receiver[n].
1247 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1248 __ ldr(rscratch1, Address(rscratch2));
1249 __ cmp(recv, rscratch1);
1250 __ br(Assembler::NE, next_test);
1251 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1252 __ addptr(data_addr, DataLayout::counter_increment);
1253 __ b(*update_done);
1254 __ bind(next_test);
1255 }
1256
1257 // Didn't find receiver; find next empty slot and fill it in
1258 for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1259 Label next_test;
1260 __ lea(rscratch2,
1261 Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1262 Address recv_addr(rscratch2);
1263 __ ldr(rscratch1, recv_addr);
1264 __ cbnz(rscratch1, next_test);
1265 __ str(recv, recv_addr);
1266 __ mov(rscratch1, DataLayout::counter_increment);
1267 __ lea(rscratch2, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
1268 __ str(rscratch1, Address(rscratch2));
1269 __ b(*update_done);
1270 __ bind(next_test);
1271 }
1272 }
1273
1274 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1275 // we always need a stub for the failure case.
1276 CodeStub* stub = op->stub();
1277 Register obj = op->object()->as_register();
1278 Register k_RInfo = op->tmp1()->as_register();
1279 Register klass_RInfo = op->tmp2()->as_register();
1280 Register dst = op->result_opr()->as_register();
1281 ciKlass* k = op->klass();
1282 Register Rtmp1 = noreg;
1283
1284 // check if it needs to be profiled
1285 ciMethodData* md;
1286 ciProfileData* data;
1287
1288 const bool should_profile = op->should_profile();
1289
1290 if (should_profile) {
1291 ciMethod* method = op->profiled_method();
1292 assert(method != nullptr, "Should have method");
1293 int bci = op->profiled_bci();
1294 md = method->method_data_or_null();
1295 assert(md != nullptr, "Sanity");
1296 data = md->bci_to_data(bci);
1297 assert(data != nullptr, "need data for type check");
1298 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1299 }
1300 Label profile_cast_success, profile_cast_failure;
1301 Label *success_target = should_profile ? &profile_cast_success : success;
1302 Label *failure_target = should_profile ? &profile_cast_failure : failure;
1303
1304 if (obj == k_RInfo) {
1305 k_RInfo = dst;
1306 } else if (obj == klass_RInfo) {
1307 klass_RInfo = dst;
1308 }
1309 if (k->is_loaded() && !UseCompressedClassPointers) {
1310 select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1311 } else {
1312 Rtmp1 = op->tmp3()->as_register();
1313 select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1314 }
1315
1316 assert_different_registers(obj, k_RInfo, klass_RInfo);
1317
1318 if (should_profile) {
1319 Label not_null;
1320 __ cbnz(obj, not_null);
1321 // Object is null; update MDO and exit
1322 Register mdo = klass_RInfo;
1323 __ mov_metadata(mdo, md->constant_encoding());
1324 Address data_addr
1325 = __ form_address(rscratch2, mdo,
1326 md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1327 0);
1328 __ ldrb(rscratch1, data_addr);
1329 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1330 __ strb(rscratch1, data_addr);
1331 __ b(*obj_is_null);
1332 __ bind(not_null);
1333 } else {
1334 __ cbz(obj, *obj_is_null);
1335 }
1336
1337 if (!k->is_loaded()) {
1338 klass2reg_with_patching(k_RInfo, op->info_for_patch());
1339 } else {
1340 __ mov_metadata(k_RInfo, k->constant_encoding());
1341 }
1342 __ verify_oop(obj);
1343
1344 if (op->fast_check()) {
1345 // get object class
1346 // not a safepoint as obj null check happens earlier
1347 __ load_klass(rscratch1, obj);
1348 __ cmp( rscratch1, k_RInfo);
1349
1350 __ br(Assembler::NE, *failure_target);
1351 // successful cast, fall through to profile or jump
1352 } else {
1353 // get object class
1354 // not a safepoint as obj null check happens earlier
1355 __ load_klass(klass_RInfo, obj);
1356 if (k->is_loaded()) {
1357 // See if we get an immediate positive hit
1358 __ ldr(rscratch1, Address(klass_RInfo, int64_t(k->super_check_offset())));
1359 __ cmp(k_RInfo, rscratch1);
1360 if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1361 __ br(Assembler::NE, *failure_target);
1362 // successful cast, fall through to profile or jump
1363 } else {
1364 // See if we get an immediate positive hit
1365 __ br(Assembler::EQ, *success_target);
1366 // check for self
1367 __ cmp(klass_RInfo, k_RInfo);
1368 __ br(Assembler::EQ, *success_target);
1369
1370 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1371 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1372 __ ldr(klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1373 // result is a boolean
1374 __ cbzw(klass_RInfo, *failure_target);
1375 // successful cast, fall through to profile or jump
1376 }
1377 } else {
1378 // perform the fast part of the checking logic
1379 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1380 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1381 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1382 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1383 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1384 // result is a boolean
1385 __ cbz(k_RInfo, *failure_target);
1386 // successful cast, fall through to profile or jump
1387 }
1388 }
1389 if (should_profile) {
1390 Register mdo = klass_RInfo, recv = k_RInfo;
1391 __ bind(profile_cast_success);
1392 __ mov_metadata(mdo, md->constant_encoding());
1393 __ load_klass(recv, obj);
1394 Label update_done;
1395 type_profile_helper(mdo, md, data, recv, success);
1396 __ b(*success);
1397
1398 __ bind(profile_cast_failure);
1399 __ mov_metadata(mdo, md->constant_encoding());
1400 Address counter_addr
1401 = __ form_address(rscratch2, mdo,
1402 md->byte_offset_of_slot(data, CounterData::count_offset()),
1403 0);
1404 __ ldr(rscratch1, counter_addr);
1405 __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1406 __ str(rscratch1, counter_addr);
1407 __ b(*failure);
1408 }
1409 __ b(*success);
1410 }
1411
1412
1413 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1414 const bool should_profile = op->should_profile();
1415
1416 LIR_Code code = op->code();
1417 if (code == lir_store_check) {
1418 Register value = op->object()->as_register();
1419 Register array = op->array()->as_register();
1420 Register k_RInfo = op->tmp1()->as_register();
1421 Register klass_RInfo = op->tmp2()->as_register();
1422 Register Rtmp1 = op->tmp3()->as_register();
1423
1424 CodeStub* stub = op->stub();
1425
1426 // check if it needs to be profiled
1427 ciMethodData* md;
1428 ciProfileData* data;
1429
1430 if (should_profile) {
1431 ciMethod* method = op->profiled_method();
1432 assert(method != nullptr, "Should have method");
1433 int bci = op->profiled_bci();
1434 md = method->method_data_or_null();
1435 assert(md != nullptr, "Sanity");
1436 data = md->bci_to_data(bci);
1437 assert(data != nullptr, "need data for type check");
1438 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1439 }
1440 Label profile_cast_success, profile_cast_failure, done;
1441 Label *success_target = should_profile ? &profile_cast_success : &done;
1442 Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
1443
1444 if (should_profile) {
1445 Label not_null;
1446 __ cbnz(value, not_null);
1447 // Object is null; update MDO and exit
1448 Register mdo = klass_RInfo;
1449 __ mov_metadata(mdo, md->constant_encoding());
1450 Address data_addr
1451 = __ form_address(rscratch2, mdo,
1452 md->byte_offset_of_slot(data, DataLayout::flags_offset()),
1453 0);
1454 __ ldrb(rscratch1, data_addr);
1455 __ orr(rscratch1, rscratch1, BitData::null_seen_byte_constant());
1456 __ strb(rscratch1, data_addr);
1457 __ b(done);
1458 __ bind(not_null);
1459 } else {
1460 __ cbz(value, done);
1461 }
1462
1463 add_debug_info_for_null_check_here(op->info_for_exception());
1464 __ load_klass(k_RInfo, array);
1465 __ load_klass(klass_RInfo, value);
1466
1467 // get instance klass (it's already uncompressed)
1468 __ ldr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1469 // perform the fast part of the checking logic
1470 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1471 // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1472 __ stp(klass_RInfo, k_RInfo, Address(__ pre(sp, -2 * wordSize)));
1473 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1474 __ ldp(k_RInfo, klass_RInfo, Address(__ post(sp, 2 * wordSize)));
1475 // result is a boolean
1476 __ cbzw(k_RInfo, *failure_target);
1477 // fall through to the success case
1478
1479 if (should_profile) {
1480 Register mdo = klass_RInfo, recv = k_RInfo;
1481 __ bind(profile_cast_success);
1482 __ mov_metadata(mdo, md->constant_encoding());
1483 __ load_klass(recv, value);
1484 Label update_done;
1485 type_profile_helper(mdo, md, data, recv, &done);
1486 __ b(done);
1487
1488 __ bind(profile_cast_failure);
1489 __ mov_metadata(mdo, md->constant_encoding());
1490 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1491 __ lea(rscratch2, counter_addr);
1492 __ ldr(rscratch1, Address(rscratch2));
1493 __ sub(rscratch1, rscratch1, DataLayout::counter_increment);
1494 __ str(rscratch1, Address(rscratch2));
1495 __ b(*stub->entry());
1496 }
1497
1498 __ bind(done);
1499 } else if (code == lir_checkcast) {
1500 Register obj = op->object()->as_register();
1501 Register dst = op->result_opr()->as_register();
1502 Label success;
1503 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1504 __ bind(success);
1505 if (dst != obj) {
1506 __ mov(dst, obj);
1507 }
1508 } else if (code == lir_instanceof) {
1509 Register obj = op->object()->as_register();
1510 Register dst = op->result_opr()->as_register();
1511 Label success, failure, done;
1512 emit_typecheck_helper(op, &success, &failure, &failure);
1513 __ bind(failure);
1514 __ mov(dst, zr);
1515 __ b(done);
1516 __ bind(success);
1517 __ mov(dst, 1);
1518 __ bind(done);
1519 } else {
1520 ShouldNotReachHere();
1521 }
1522 }
1523
1524 void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
1525 __ cmpxchg(addr, cmpval, newval, Assembler::word, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1526 __ cset(rscratch1, Assembler::NE);
1527 __ membar(__ AnyAny);
1528 }
1529
1530 void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
1531 __ cmpxchg(addr, cmpval, newval, Assembler::xword, /* acquire*/ true, /* release*/ true, /* weak*/ false, rscratch1);
1532 __ cset(rscratch1, Assembler::NE);
1533 __ membar(__ AnyAny);
1534 }
1535
1536
1537 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1538 assert(VM_Version::supports_cx8(), "wrong machine");
1539 Register addr;
1540 if (op->addr()->is_register()) {
1541 addr = as_reg(op->addr());
1542 } else {
1543 assert(op->addr()->is_address(), "what else?");
1544 LIR_Address* addr_ptr = op->addr()->as_address_ptr();
1545 assert(addr_ptr->disp() == 0, "need 0 disp");
1546 assert(addr_ptr->index() == LIR_Opr::illegalOpr(), "need 0 index");
1547 addr = as_reg(addr_ptr->base());
1548 }
1549 Register newval = as_reg(op->new_value());
1550 Register cmpval = as_reg(op->cmp_value());
1551
1552 if (op->code() == lir_cas_obj) {
1553 if (UseCompressedOops) {
1554 Register t1 = op->tmp1()->as_register();
1555 assert(op->tmp1()->is_valid(), "must be");
1556 __ encode_heap_oop(t1, cmpval);
1557 cmpval = t1;
1558 __ encode_heap_oop(rscratch2, newval);
1559 newval = rscratch2;
1560 casw(addr, newval, cmpval);
1561 } else {
1562 casl(addr, newval, cmpval);
1563 }
1564 } else if (op->code() == lir_cas_int) {
1565 casw(addr, newval, cmpval);
1566 } else {
1567 casl(addr, newval, cmpval);
1568 }
1569 }
1570
1571
1572 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1573 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1574 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on aarch64");
1575
1576 Assembler::Condition acond, ncond;
1577 switch (condition) {
1578 case lir_cond_equal: acond = Assembler::EQ; ncond = Assembler::NE; break;
1579 case lir_cond_notEqual: acond = Assembler::NE; ncond = Assembler::EQ; break;
1580 case lir_cond_less: acond = Assembler::LT; ncond = Assembler::GE; break;
1581 case lir_cond_lessEqual: acond = Assembler::LE; ncond = Assembler::GT; break;
1582 case lir_cond_greaterEqual: acond = Assembler::GE; ncond = Assembler::LT; break;
1583 case lir_cond_greater: acond = Assembler::GT; ncond = Assembler::LE; break;
1584 case lir_cond_belowEqual:
1585 case lir_cond_aboveEqual:
1586 default: ShouldNotReachHere();
1587 acond = Assembler::EQ; ncond = Assembler::NE; // unreachable
1588 }
1589
1590 assert(result->is_single_cpu() || result->is_double_cpu(),
1591 "expect single register for result");
1592 if (opr1->is_constant() && opr2->is_constant()
1593 && opr1->type() == T_INT && opr2->type() == T_INT) {
1594 jint val1 = opr1->as_jint();
1595 jint val2 = opr2->as_jint();
1596 if (val1 == 0 && val2 == 1) {
1597 __ cset(result->as_register(), ncond);
1598 return;
1599 } else if (val1 == 1 && val2 == 0) {
1600 __ cset(result->as_register(), acond);
1601 return;
1602 }
1603 }
1604
1605 if (opr1->is_constant() && opr2->is_constant()
1606 && opr1->type() == T_LONG && opr2->type() == T_LONG) {
1607 jlong val1 = opr1->as_jlong();
1608 jlong val2 = opr2->as_jlong();
1609 if (val1 == 0 && val2 == 1) {
1610 __ cset(result->as_register_lo(), ncond);
1611 return;
1612 } else if (val1 == 1 && val2 == 0) {
1613 __ cset(result->as_register_lo(), acond);
1614 return;
1615 }
1616 }
1617
1618 if (opr1->is_stack()) {
1619 stack2reg(opr1, FrameMap::rscratch1_opr, result->type());
1620 opr1 = FrameMap::rscratch1_opr;
1621 } else if (opr1->is_constant()) {
1622 LIR_Opr tmp
1623 = opr1->type() == T_LONG ? FrameMap::rscratch1_long_opr : FrameMap::rscratch1_opr;
1624 const2reg(opr1, tmp, lir_patch_none, nullptr);
1625 opr1 = tmp;
1626 }
1627
1628 if (opr2->is_stack()) {
1629 stack2reg(opr2, FrameMap::rscratch2_opr, result->type());
1630 opr2 = FrameMap::rscratch2_opr;
1631 } else if (opr2->is_constant()) {
1632 LIR_Opr tmp
1633 = opr2->type() == T_LONG ? FrameMap::rscratch2_long_opr : FrameMap::rscratch2_opr;
1634 const2reg(opr2, tmp, lir_patch_none, nullptr);
1635 opr2 = tmp;
1636 }
1637
1638 if (result->type() == T_LONG)
1639 __ csel(result->as_register_lo(), opr1->as_register_lo(), opr2->as_register_lo(), acond);
1640 else
1641 __ csel(result->as_register(), opr1->as_register(), opr2->as_register(), acond);
1642 }
1643
1644 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1645 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1646
1647 if (left->is_single_cpu()) {
1648 Register lreg = left->as_register();
1649 Register dreg = as_reg(dest);
1650
1651 if (right->is_single_cpu()) {
1652 // cpu register - cpu register
1653
1654 assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT,
1655 "should be");
1656 Register rreg = right->as_register();
1657 switch (code) {
1658 case lir_add: __ addw (dest->as_register(), lreg, rreg); break;
1659 case lir_sub: __ subw (dest->as_register(), lreg, rreg); break;
1660 case lir_mul: __ mulw (dest->as_register(), lreg, rreg); break;
1661 default: ShouldNotReachHere();
1662 }
1663
1664 } else if (right->is_double_cpu()) {
1665 Register rreg = right->as_register_lo();
1666 // single_cpu + double_cpu: can happen with obj+long
1667 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1668 switch (code) {
1669 case lir_add: __ add(dreg, lreg, rreg); break;
1670 case lir_sub: __ sub(dreg, lreg, rreg); break;
1671 default: ShouldNotReachHere();
1672 }
1673 } else if (right->is_constant()) {
1674 // cpu register - constant
1675 jlong c;
1676
1677 // FIXME. This is fugly: we really need to factor all this logic.
1678 switch(right->type()) {
1679 case T_LONG:
1680 c = right->as_constant_ptr()->as_jlong();
1681 break;
1682 case T_INT:
1683 case T_ADDRESS:
1684 c = right->as_constant_ptr()->as_jint();
1685 break;
1686 default:
1687 ShouldNotReachHere();
1688 c = 0; // unreachable
1689 break;
1690 }
1691
1692 assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
1693 if (c == 0 && dreg == lreg) {
1694 COMMENT("effective nop elided");
1695 return;
1696 }
1697 switch(left->type()) {
1698 case T_INT:
1699 switch (code) {
1700 case lir_add: __ addw(dreg, lreg, c); break;
1701 case lir_sub: __ subw(dreg, lreg, c); break;
1702 default: ShouldNotReachHere();
1703 }
1704 break;
1705 case T_OBJECT:
1706 case T_ADDRESS:
1707 switch (code) {
1708 case lir_add: __ add(dreg, lreg, c); break;
1709 case lir_sub: __ sub(dreg, lreg, c); break;
1710 default: ShouldNotReachHere();
1711 }
1712 break;
1713 default:
1714 ShouldNotReachHere();
1715 }
1716 } else {
1717 ShouldNotReachHere();
1718 }
1719
1720 } else if (left->is_double_cpu()) {
1721 Register lreg_lo = left->as_register_lo();
1722
1723 if (right->is_double_cpu()) {
1724 // cpu register - cpu register
1725 Register rreg_lo = right->as_register_lo();
1726 switch (code) {
1727 case lir_add: __ add (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1728 case lir_sub: __ sub (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1729 case lir_mul: __ mul (dest->as_register_lo(), lreg_lo, rreg_lo); break;
1730 case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false, rscratch1); break;
1731 case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true, rscratch1); break;
1732 default:
1733 ShouldNotReachHere();
1734 }
1735
1736 } else if (right->is_constant()) {
1737 jlong c = right->as_constant_ptr()->as_jlong();
1738 Register dreg = as_reg(dest);
1739 switch (code) {
1740 case lir_add:
1741 case lir_sub:
1742 if (c == 0 && dreg == lreg_lo) {
1743 COMMENT("effective nop elided");
1744 return;
1745 }
1746 code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
1747 break;
1748 case lir_div:
1749 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1750 if (c == 1) {
1751 // move lreg_lo to dreg if divisor is 1
1752 __ mov(dreg, lreg_lo);
1753 } else {
1754 unsigned int shift = log2i_exact(c);
1755 // use rscratch1 as intermediate result register
1756 __ asr(rscratch1, lreg_lo, 63);
1757 __ add(rscratch1, lreg_lo, rscratch1, Assembler::LSR, 64 - shift);
1758 __ asr(dreg, rscratch1, shift);
1759 }
1760 break;
1761 case lir_rem:
1762 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1763 if (c == 1) {
1764 // move 0 to dreg if divisor is 1
1765 __ mov(dreg, zr);
1766 } else {
1767 // use rscratch1 as intermediate result register
1768 __ negs(rscratch1, lreg_lo);
1769 __ andr(dreg, lreg_lo, c - 1);
1770 __ andr(rscratch1, rscratch1, c - 1);
1771 __ csneg(dreg, dreg, rscratch1, Assembler::MI);
1772 }
1773 break;
1774 default:
1775 ShouldNotReachHere();
1776 }
1777 } else {
1778 ShouldNotReachHere();
1779 }
1780 } else if (left->is_single_fpu()) {
1781 assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
1782 switch (code) {
1783 case lir_add: __ fadds (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1784 case lir_sub: __ fsubs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1785 case lir_mul: __ fmuls (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1786 case lir_div: __ fdivs (dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
1787 default:
1788 ShouldNotReachHere();
1789 }
1790 } else if (left->is_double_fpu()) {
1791 if (right->is_double_fpu()) {
1792 // fpu register - fpu register
1793 switch (code) {
1794 case lir_add: __ faddd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1795 case lir_sub: __ fsubd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1796 case lir_mul: __ fmuld (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1797 case lir_div: __ fdivd (dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
1798 default:
1799 ShouldNotReachHere();
1800 }
1801 } else {
1802 if (right->is_constant()) {
1803 ShouldNotReachHere();
1804 }
1805 ShouldNotReachHere();
1806 }
1807 } else if (left->is_single_stack() || left->is_address()) {
1808 assert(left == dest, "left and dest must be equal");
1809 ShouldNotReachHere();
1810 } else {
1811 ShouldNotReachHere();
1812 }
1813 }
1814
1815 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) { Unimplemented(); }
1816
1817
1818 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
1819 switch(code) {
1820 case lir_abs : __ fabsd(dest->as_double_reg(), value->as_double_reg()); break;
1821 case lir_sqrt: __ fsqrtd(dest->as_double_reg(), value->as_double_reg()); break;
1822 case lir_f2hf: __ flt_to_flt16(dest->as_register(), value->as_float_reg(), tmp->as_float_reg()); break;
1823 case lir_hf2f: __ flt16_to_flt(dest->as_float_reg(), value->as_register(), tmp->as_float_reg()); break;
1824 default : ShouldNotReachHere();
1825 }
1826 }
1827
1828 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1829
1830 assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
1831 Register Rleft = left->is_single_cpu() ? left->as_register() :
1832 left->as_register_lo();
1833 if (dst->is_single_cpu()) {
1834 Register Rdst = dst->as_register();
1835 if (right->is_constant()) {
1836 switch (code) {
1837 case lir_logic_and: __ andw (Rdst, Rleft, right->as_jint()); break;
1838 case lir_logic_or: __ orrw (Rdst, Rleft, right->as_jint()); break;
1839 case lir_logic_xor: __ eorw (Rdst, Rleft, right->as_jint()); break;
1840 default: ShouldNotReachHere(); break;
1841 }
1842 } else {
1843 Register Rright = right->is_single_cpu() ? right->as_register() :
1844 right->as_register_lo();
1845 switch (code) {
1846 case lir_logic_and: __ andw (Rdst, Rleft, Rright); break;
1847 case lir_logic_or: __ orrw (Rdst, Rleft, Rright); break;
1848 case lir_logic_xor: __ eorw (Rdst, Rleft, Rright); break;
1849 default: ShouldNotReachHere(); break;
1850 }
1851 }
1852 } else {
1853 Register Rdst = dst->as_register_lo();
1854 if (right->is_constant()) {
1855 switch (code) {
1856 case lir_logic_and: __ andr (Rdst, Rleft, right->as_jlong()); break;
1857 case lir_logic_or: __ orr (Rdst, Rleft, right->as_jlong()); break;
1858 case lir_logic_xor: __ eor (Rdst, Rleft, right->as_jlong()); break;
1859 default: ShouldNotReachHere(); break;
1860 }
1861 } else {
1862 Register Rright = right->is_single_cpu() ? right->as_register() :
1863 right->as_register_lo();
1864 switch (code) {
1865 case lir_logic_and: __ andr (Rdst, Rleft, Rright); break;
1866 case lir_logic_or: __ orr (Rdst, Rleft, Rright); break;
1867 case lir_logic_xor: __ eor (Rdst, Rleft, Rright); break;
1868 default: ShouldNotReachHere(); break;
1869 }
1870 }
1871 }
1872 }
1873
1874
1875
1876 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal, LIR_Opr result, CodeEmitInfo* info) {
1877
1878 // opcode check
1879 assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
1880 bool is_irem = (code == lir_irem);
1881
1882 // operand check
1883 assert(left->is_single_cpu(), "left must be register");
1884 assert(right->is_single_cpu() || right->is_constant(), "right must be register or constant");
1885 assert(result->is_single_cpu(), "result must be register");
1886 Register lreg = left->as_register();
1887 Register dreg = result->as_register();
1888
1889 // power-of-2 constant check and codegen
1890 if (right->is_constant()) {
1891 int c = right->as_constant_ptr()->as_jint();
1892 assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
1893 if (is_irem) {
1894 if (c == 1) {
1895 // move 0 to dreg if divisor is 1
1896 __ movw(dreg, zr);
1897 } else {
1898 // use rscratch1 as intermediate result register
1899 __ negsw(rscratch1, lreg);
1900 __ andw(dreg, lreg, c - 1);
1901 __ andw(rscratch1, rscratch1, c - 1);
1902 __ csnegw(dreg, dreg, rscratch1, Assembler::MI);
1903 }
1904 } else {
1905 if (c == 1) {
1906 // move lreg to dreg if divisor is 1
1907 __ movw(dreg, lreg);
1908 } else {
1909 unsigned int shift = exact_log2(c);
1910 // use rscratch1 as intermediate result register
1911 __ asrw(rscratch1, lreg, 31);
1912 __ addw(rscratch1, lreg, rscratch1, Assembler::LSR, 32 - shift);
1913 __ asrw(dreg, rscratch1, shift);
1914 }
1915 }
1916 } else {
1917 Register rreg = right->as_register();
1918 __ corrected_idivl(dreg, lreg, rreg, is_irem, rscratch1);
1919 }
1920 }
1921
1922
1923 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1924 if (opr1->is_constant() && opr2->is_single_cpu()) {
1925 // tableswitch
1926 Register reg = as_reg(opr2);
1927 struct tableswitch &table = switches[opr1->as_constant_ptr()->as_jint()];
1928 __ tableswitch(reg, table._first_key, table._last_key, table._branches, table._after);
1929 } else if (opr1->is_single_cpu() || opr1->is_double_cpu()) {
1930 Register reg1 = as_reg(opr1);
1931 if (opr2->is_single_cpu()) {
1932 // cpu register - cpu register
1933 Register reg2 = opr2->as_register();
1934 if (is_reference_type(opr1->type())) {
1935 __ cmpoop(reg1, reg2);
1936 } else {
1937 assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1938 __ cmpw(reg1, reg2);
1939 }
1940 return;
1941 }
1942 if (opr2->is_double_cpu()) {
1943 // cpu register - cpu register
1944 Register reg2 = opr2->as_register_lo();
1945 __ cmp(reg1, reg2);
1946 return;
1947 }
1948
1949 if (opr2->is_constant()) {
1950 bool is_32bit = false; // width of register operand
1951 jlong imm;
1952
1953 switch(opr2->type()) {
1954 case T_INT:
1955 imm = opr2->as_constant_ptr()->as_jint();
1956 is_32bit = true;
1957 break;
1958 case T_LONG:
1959 imm = opr2->as_constant_ptr()->as_jlong();
1960 break;
1961 case T_ADDRESS:
1962 imm = opr2->as_constant_ptr()->as_jint();
1963 break;
1964 case T_METADATA:
1965 imm = (intptr_t)(opr2->as_constant_ptr()->as_metadata());
1966 break;
1967 case T_OBJECT:
1968 case T_ARRAY:
1969 jobject2reg(opr2->as_constant_ptr()->as_jobject(), rscratch1);
1970 __ cmpoop(reg1, rscratch1);
1971 return;
1972 default:
1973 ShouldNotReachHere();
1974 imm = 0; // unreachable
1975 break;
1976 }
1977
1978 if (Assembler::operand_valid_for_add_sub_immediate(imm)) {
1979 if (is_32bit)
1980 __ cmpw(reg1, imm);
1981 else
1982 __ subs(zr, reg1, imm);
1983 return;
1984 } else {
1985 __ mov(rscratch1, imm);
1986 if (is_32bit)
1987 __ cmpw(reg1, rscratch1);
1988 else
1989 __ cmp(reg1, rscratch1);
1990 return;
1991 }
1992 } else
1993 ShouldNotReachHere();
1994 } else if (opr1->is_single_fpu()) {
1995 FloatRegister reg1 = opr1->as_float_reg();
1996 assert(opr2->is_single_fpu(), "expect single float register");
1997 FloatRegister reg2 = opr2->as_float_reg();
1998 __ fcmps(reg1, reg2);
1999 } else if (opr1->is_double_fpu()) {
2000 FloatRegister reg1 = opr1->as_double_reg();
2001 assert(opr2->is_double_fpu(), "expect double float register");
2002 FloatRegister reg2 = opr2->as_double_reg();
2003 __ fcmpd(reg1, reg2);
2004 } else {
2005 ShouldNotReachHere();
2006 }
2007 }
2008
2009 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
2010 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2011 bool is_unordered_less = (code == lir_ucmp_fd2i);
2012 if (left->is_single_fpu()) {
2013 __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
2014 } else if (left->is_double_fpu()) {
2015 __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
2016 } else {
2017 ShouldNotReachHere();
2018 }
2019 } else if (code == lir_cmp_l2i) {
2020 Label done;
2021 __ cmp(left->as_register_lo(), right->as_register_lo());
2022 __ mov(dst->as_register(), (uint64_t)-1L);
2023 __ br(Assembler::LT, done);
2024 __ csinc(dst->as_register(), zr, zr, Assembler::EQ);
2025 __ bind(done);
2026 } else {
2027 ShouldNotReachHere();
2028 }
2029 }
2030
2031
2032 void LIR_Assembler::align_call(LIR_Code code) { }
2033
2034
2035 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2036 address call = __ trampoline_call(Address(op->addr(), rtype));
2037 if (call == nullptr) {
2038 bailout("trampoline stub overflow");
2039 return;
2040 }
2041 add_call_info(code_offset(), op->info());
2042 __ post_call_nop();
2043 }
2044
2045
2046 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2047 address call = __ ic_call(op->addr());
2048 if (call == nullptr) {
2049 bailout("trampoline stub overflow");
2050 return;
2051 }
2052 add_call_info(code_offset(), op->info());
2053 __ post_call_nop();
2054 }
2055
2056 void LIR_Assembler::emit_static_call_stub() {
2057 address call_pc = __ pc();
2058 address stub = __ start_a_stub(call_stub_size());
2059 if (stub == nullptr) {
2060 bailout("static call stub overflow");
2061 return;
2062 }
2063
2064 int start = __ offset();
2065
2066 __ relocate(static_stub_Relocation::spec(call_pc));
2067 __ emit_static_call_stub();
2068
2069 assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size()
2070 <= call_stub_size(), "stub too big");
2071 __ end_a_stub();
2072 }
2073
2074
2075 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2076 assert(exceptionOop->as_register() == r0, "must match");
2077 assert(exceptionPC->as_register() == r3, "must match");
2078
2079 // exception object is not added to oop map by LinearScan
2080 // (LinearScan assumes that no oops are in fixed registers)
2081 info->add_register_oop(exceptionOop);
2082 Runtime1::StubID unwind_id;
2083
2084 // get current pc information
2085 // pc is only needed if the method has an exception handler, the unwind code does not need it.
2086 if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
2087 // As no instructions have been generated yet for this LIR node it's
2088 // possible that an oop map already exists for the current offset.
2089 // In that case insert an dummy NOP here to ensure all oop map PCs
2090 // are unique. See JDK-8237483.
2091 __ nop();
2092 }
2093 int pc_for_athrow_offset = __ offset();
2094 InternalAddress pc_for_athrow(__ pc());
2095 __ adr(exceptionPC->as_register(), pc_for_athrow);
2096 add_call_info(pc_for_athrow_offset, info); // for exception handler
2097
2098 __ verify_not_null_oop(r0);
2099 // search an exception handler (r0: exception oop, r3: throwing pc)
2100 if (compilation()->has_fpu_code()) {
2101 unwind_id = Runtime1::handle_exception_id;
2102 } else {
2103 unwind_id = Runtime1::handle_exception_nofpu_id;
2104 }
2105 __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2106
2107 // FIXME: enough room for two byte trap ????
2108 __ nop();
2109 }
2110
2111
2112 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2113 assert(exceptionOop->as_register() == r0, "must match");
2114
2115 __ b(_unwind_handler_entry);
2116 }
2117
2118
2119 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2120 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2121 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2122
2123 switch (left->type()) {
2124 case T_INT: {
2125 switch (code) {
2126 case lir_shl: __ lslvw (dreg, lreg, count->as_register()); break;
2127 case lir_shr: __ asrvw (dreg, lreg, count->as_register()); break;
2128 case lir_ushr: __ lsrvw (dreg, lreg, count->as_register()); break;
2129 default:
2130 ShouldNotReachHere();
2131 break;
2132 }
2133 break;
2134 case T_LONG:
2135 case T_ADDRESS:
2136 case T_OBJECT:
2137 switch (code) {
2138 case lir_shl: __ lslv (dreg, lreg, count->as_register()); break;
2139 case lir_shr: __ asrv (dreg, lreg, count->as_register()); break;
2140 case lir_ushr: __ lsrv (dreg, lreg, count->as_register()); break;
2141 default:
2142 ShouldNotReachHere();
2143 break;
2144 }
2145 break;
2146 default:
2147 ShouldNotReachHere();
2148 break;
2149 }
2150 }
2151 }
2152
2153
2154 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2155 Register dreg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
2156 Register lreg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
2157
2158 switch (left->type()) {
2159 case T_INT: {
2160 switch (code) {
2161 case lir_shl: __ lslw (dreg, lreg, count); break;
2162 case lir_shr: __ asrw (dreg, lreg, count); break;
2163 case lir_ushr: __ lsrw (dreg, lreg, count); break;
2164 default:
2165 ShouldNotReachHere();
2166 break;
2167 }
2168 break;
2169 case T_LONG:
2170 case T_ADDRESS:
2171 case T_OBJECT:
2172 switch (code) {
2173 case lir_shl: __ lsl (dreg, lreg, count); break;
2174 case lir_shr: __ asr (dreg, lreg, count); break;
2175 case lir_ushr: __ lsr (dreg, lreg, count); break;
2176 default:
2177 ShouldNotReachHere();
2178 break;
2179 }
2180 break;
2181 default:
2182 ShouldNotReachHere();
2183 break;
2184 }
2185 }
2186 }
2187
2188
2189 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
2190 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2191 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2192 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2193 __ str (r, Address(sp, offset_from_rsp_in_bytes));
2194 }
2195
2196
2197 void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
2198 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2199 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2200 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2201 __ mov (rscratch1, c);
2202 __ str (rscratch1, Address(sp, offset_from_rsp_in_bytes));
2203 }
2204
2205
2206 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
2207 ShouldNotReachHere();
2208 assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
2209 int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
2210 assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2211 __ lea(rscratch1, __ constant_oop_address(o));
2212 __ str(rscratch1, Address(sp, offset_from_rsp_in_bytes));
2213 }
2214
2215
2216 // This code replaces a call to arraycopy; no exception may
2217 // be thrown in this code, they must be thrown in the System.arraycopy
2218 // activation frame; we could save some checks if this would not be the case
2219 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2220 ciArrayKlass* default_type = op->expected_type();
2221 Register src = op->src()->as_register();
2222 Register dst = op->dst()->as_register();
2223 Register src_pos = op->src_pos()->as_register();
2224 Register dst_pos = op->dst_pos()->as_register();
2225 Register length = op->length()->as_register();
2226 Register tmp = op->tmp()->as_register();
2227
2228 CodeStub* stub = op->stub();
2229 int flags = op->flags();
2230 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
2231 if (is_reference_type(basic_type)) basic_type = T_OBJECT;
2232
2233 // if we don't know anything, just go through the generic arraycopy
2234 if (default_type == nullptr // || basic_type == T_OBJECT
2235 ) {
2236 Label done;
2237 assert(src == r1 && src_pos == r2, "mismatch in calling convention");
2238
2239 // Save the arguments in case the generic arraycopy fails and we
2240 // have to fall back to the JNI stub
2241 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2242 __ stp(length, src_pos, Address(sp, 2*BytesPerWord));
2243 __ str(src, Address(sp, 4*BytesPerWord));
2244
2245 address copyfunc_addr = StubRoutines::generic_arraycopy();
2246 assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
2247
2248 // The arguments are in java calling convention so we shift them
2249 // to C convention
2250 assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
2251 __ mov(c_rarg0, j_rarg0);
2252 assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
2253 __ mov(c_rarg1, j_rarg1);
2254 assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
2255 __ mov(c_rarg2, j_rarg2);
2256 assert_different_registers(c_rarg3, j_rarg4);
2257 __ mov(c_rarg3, j_rarg3);
2258 __ mov(c_rarg4, j_rarg4);
2259 #ifndef PRODUCT
2260 if (PrintC1Statistics) {
2261 __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
2262 }
2263 #endif
2264 __ far_call(RuntimeAddress(copyfunc_addr));
2265
2266 __ cbz(r0, *stub->continuation());
2267
2268 // Reload values from the stack so they are where the stub
2269 // expects them.
2270 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2271 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
2272 __ ldr(src, Address(sp, 4*BytesPerWord));
2273
2274 // r0 is -1^K where K == partial copied count
2275 __ eonw(rscratch1, r0, zr);
2276 // adjust length down and src/end pos up by partial copied count
2277 __ subw(length, length, rscratch1);
2278 __ addw(src_pos, src_pos, rscratch1);
2279 __ addw(dst_pos, dst_pos, rscratch1);
2280 __ b(*stub->entry());
2281
2282 __ bind(*stub->continuation());
2283 return;
2284 }
2285
2286 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2287
2288 int elem_size = type2aelembytes(basic_type);
2289 int scale = exact_log2(elem_size);
2290
2291 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2292 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2293
2294 // test for null
2295 if (flags & LIR_OpArrayCopy::src_null_check) {
2296 __ cbz(src, *stub->entry());
2297 }
2298 if (flags & LIR_OpArrayCopy::dst_null_check) {
2299 __ cbz(dst, *stub->entry());
2300 }
2301
2302 // If the compiler was not able to prove that exact type of the source or the destination
2303 // of the arraycopy is an array type, check at runtime if the source or the destination is
2304 // an instance type.
2305 if (flags & LIR_OpArrayCopy::type_check) {
2306 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2307 __ load_klass(tmp, dst);
2308 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2309 __ cmpw(rscratch1, Klass::_lh_neutral_value);
2310 __ br(Assembler::GE, *stub->entry());
2311 }
2312
2313 if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2314 __ load_klass(tmp, src);
2315 __ ldrw(rscratch1, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2316 __ cmpw(rscratch1, Klass::_lh_neutral_value);
2317 __ br(Assembler::GE, *stub->entry());
2318 }
2319 }
2320
2321 // check if negative
2322 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2323 __ cmpw(src_pos, 0);
2324 __ br(Assembler::LT, *stub->entry());
2325 }
2326 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2327 __ cmpw(dst_pos, 0);
2328 __ br(Assembler::LT, *stub->entry());
2329 }
2330
2331 if (flags & LIR_OpArrayCopy::length_positive_check) {
2332 __ cmpw(length, 0);
2333 __ br(Assembler::LT, *stub->entry());
2334 }
2335
2336 if (flags & LIR_OpArrayCopy::src_range_check) {
2337 __ addw(tmp, src_pos, length);
2338 __ ldrw(rscratch1, src_length_addr);
2339 __ cmpw(tmp, rscratch1);
2340 __ br(Assembler::HI, *stub->entry());
2341 }
2342 if (flags & LIR_OpArrayCopy::dst_range_check) {
2343 __ addw(tmp, dst_pos, length);
2344 __ ldrw(rscratch1, dst_length_addr);
2345 __ cmpw(tmp, rscratch1);
2346 __ br(Assembler::HI, *stub->entry());
2347 }
2348
2349 if (flags & LIR_OpArrayCopy::type_check) {
2350 // We don't know the array types are compatible
2351 if (basic_type != T_OBJECT) {
2352 // Simple test for basic type arrays
2353 __ cmp_klass(src, dst, tmp, rscratch1);
2354 __ br(Assembler::NE, *stub->entry());
2355 } else {
2356 // For object arrays, if src is a sub class of dst then we can
2357 // safely do the copy.
2358 Label cont, slow;
2359
2360 #define PUSH(r1, r2) \
2361 stp(r1, r2, __ pre(sp, -2 * wordSize));
2362
2363 #define POP(r1, r2) \
2364 ldp(r1, r2, __ post(sp, 2 * wordSize));
2365
2366 __ PUSH(src, dst);
2367
2368 __ load_klass(src, src);
2369 __ load_klass(dst, dst);
2370
2371 __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
2372
2373 __ PUSH(src, dst);
2374 __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
2375 __ POP(src, dst);
2376
2377 __ cbnz(src, cont);
2378
2379 __ bind(slow);
2380 __ POP(src, dst);
2381
2382 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2383 if (copyfunc_addr != nullptr) { // use stub if available
2384 // src is not a sub class of dst so we have to do a
2385 // per-element check.
2386
2387 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2388 if ((flags & mask) != mask) {
2389 // Check that at least both of them object arrays.
2390 assert(flags & mask, "one of the two should be known to be an object array");
2391
2392 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2393 __ load_klass(tmp, src);
2394 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2395 __ load_klass(tmp, dst);
2396 }
2397 int lh_offset = in_bytes(Klass::layout_helper_offset());
2398 Address klass_lh_addr(tmp, lh_offset);
2399 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2400 __ ldrw(rscratch1, klass_lh_addr);
2401 __ mov(rscratch2, objArray_lh);
2402 __ eorw(rscratch1, rscratch1, rscratch2);
2403 __ cbnzw(rscratch1, *stub->entry());
2404 }
2405
2406 // Spill because stubs can use any register they like and it's
2407 // easier to restore just those that we care about.
2408 __ stp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2409 __ stp(length, src_pos, Address(sp, 2*BytesPerWord));
2410 __ str(src, Address(sp, 4*BytesPerWord));
2411
2412 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2413 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2414 assert_different_registers(c_rarg0, dst, dst_pos, length);
2415 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2416 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2417 assert_different_registers(c_rarg1, dst, length);
2418 __ uxtw(c_rarg2, length);
2419 assert_different_registers(c_rarg2, dst);
2420
2421 __ load_klass(c_rarg4, dst);
2422 __ ldr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
2423 __ ldrw(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
2424 __ far_call(RuntimeAddress(copyfunc_addr));
2425
2426 #ifndef PRODUCT
2427 if (PrintC1Statistics) {
2428 Label failed;
2429 __ cbnz(r0, failed);
2430 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
2431 __ bind(failed);
2432 }
2433 #endif
2434
2435 __ cbz(r0, *stub->continuation());
2436
2437 #ifndef PRODUCT
2438 if (PrintC1Statistics) {
2439 __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
2440 }
2441 #endif
2442 assert_different_registers(dst, dst_pos, length, src_pos, src, r0, rscratch1);
2443
2444 // Restore previously spilled arguments
2445 __ ldp(dst, dst_pos, Address(sp, 0*BytesPerWord));
2446 __ ldp(length, src_pos, Address(sp, 2*BytesPerWord));
2447 __ ldr(src, Address(sp, 4*BytesPerWord));
2448
2449 // return value is -1^K where K is partial copied count
2450 __ eonw(rscratch1, r0, zr);
2451 // adjust length down and src/end pos up by partial copied count
2452 __ subw(length, length, rscratch1);
2453 __ addw(src_pos, src_pos, rscratch1);
2454 __ addw(dst_pos, dst_pos, rscratch1);
2455 }
2456
2457 __ b(*stub->entry());
2458
2459 __ bind(cont);
2460 __ POP(src, dst);
2461 }
2462 }
2463
2464 #ifdef ASSERT
2465 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2466 // Sanity check the known type with the incoming class. For the
2467 // primitive case the types must match exactly with src.klass and
2468 // dst.klass each exactly matching the default type. For the
2469 // object array case, if no type check is needed then either the
2470 // dst type is exactly the expected type and the src type is a
2471 // subtype which we can't check or src is the same array as dst
2472 // but not necessarily exactly of type default_type.
2473 Label known_ok, halt;
2474 __ mov_metadata(tmp, default_type->constant_encoding());
2475
2476 if (basic_type != T_OBJECT) {
2477 __ cmp_klass(dst, tmp, rscratch1);
2478 __ br(Assembler::NE, halt);
2479 __ cmp_klass(src, tmp, rscratch1);
2480 __ br(Assembler::EQ, known_ok);
2481 } else {
2482 __ cmp_klass(dst, tmp, rscratch1);
2483 __ br(Assembler::EQ, known_ok);
2484 __ cmp(src, dst);
2485 __ br(Assembler::EQ, known_ok);
2486 }
2487 __ bind(halt);
2488 __ stop("incorrect type information in arraycopy");
2489 __ bind(known_ok);
2490 }
2491 #endif
2492
2493 #ifndef PRODUCT
2494 if (PrintC1Statistics) {
2495 __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
2496 }
2497 #endif
2498
2499 __ lea(c_rarg0, Address(src, src_pos, Address::uxtw(scale)));
2500 __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
2501 assert_different_registers(c_rarg0, dst, dst_pos, length);
2502 __ lea(c_rarg1, Address(dst, dst_pos, Address::uxtw(scale)));
2503 __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
2504 assert_different_registers(c_rarg1, dst, length);
2505 __ uxtw(c_rarg2, length);
2506 assert_different_registers(c_rarg2, dst);
2507
2508 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2509 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2510 const char *name;
2511 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2512
2513 CodeBlob *cb = CodeCache::find_blob(entry);
2514 if (cb) {
2515 __ far_call(RuntimeAddress(entry));
2516 } else {
2517 __ call_VM_leaf(entry, 3);
2518 }
2519
2520 __ bind(*stub->continuation());
2521 }
2522
2523
2524
2525
2526 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2527 Register obj = op->obj_opr()->as_register(); // may not be an oop
2528 Register hdr = op->hdr_opr()->as_register();
2529 Register lock = op->lock_opr()->as_register();
2530 Register temp = op->scratch_opr()->as_register();
2531 if (LockingMode == LM_MONITOR) {
2532 if (op->info() != nullptr) {
2533 add_debug_info_for_null_check_here(op->info());
2534 __ null_check(obj, -1);
2535 }
2536 __ b(*op->stub()->entry());
2537 } else if (op->code() == lir_lock) {
2538 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2539 // add debug info for NullPointerException only if one is possible
2540 int null_check_offset = __ lock_object(hdr, obj, lock, temp, *op->stub()->entry());
2541 if (op->info() != nullptr) {
2542 add_debug_info_for_null_check(null_check_offset, op->info());
2543 }
2544 // done
2545 } else if (op->code() == lir_unlock) {
2546 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2547 __ unlock_object(hdr, obj, lock, temp, *op->stub()->entry());
2548 } else {
2549 Unimplemented();
2550 }
2551 __ bind(*op->stub()->continuation());
2552 }
2553
2554 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2555 Register obj = op->obj()->as_pointer_register();
2556 Register result = op->result_opr()->as_pointer_register();
2557
2558 CodeEmitInfo* info = op->info();
2559 if (info != nullptr) {
2560 add_debug_info_for_null_check_here(info);
2561 }
2562
2563 if (UseCompressedClassPointers) {
2564 if (UseCompactObjectHeaders) {
2565 // Check if we can take the (common) fast path, if obj is unlocked.
2566 __ ldr(result, Address(obj, oopDesc::mark_offset_in_bytes()));
2567 __ tst(result, markWord::monitor_value);
2568 __ br(Assembler::NE, *op->stub()->entry());
2569 __ bind(*op->stub()->continuation());
2570
2571 // Shift to get proper narrow Klass*.
2572 __ lsr(result, result, markWord::klass_shift);
2573 } else {
2574 __ ldrw(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2575 }
2576 __ decode_klass_not_null(result);
2577 } else {
2578 __ ldr(result, Address (obj, oopDesc::klass_offset_in_bytes()));
2579 }
2580 }
2581
2582 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2583 ciMethod* method = op->profiled_method();
2584 int bci = op->profiled_bci();
2585 ciMethod* callee = op->profiled_callee();
2586
2587 // Update counter for all call types
2588 ciMethodData* md = method->method_data_or_null();
2589 assert(md != nullptr, "Sanity");
2590 ciProfileData* data = md->bci_to_data(bci);
2591 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2592 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
2593 Register mdo = op->mdo()->as_register();
2594 __ mov_metadata(mdo, md->constant_encoding());
2595 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2596 // Perform additional virtual call profiling for invokevirtual and
2597 // invokeinterface bytecodes
2598 if (op->should_profile_receiver_type()) {
2599 assert(op->recv()->is_single_cpu(), "recv must be allocated");
2600 Register recv = op->recv()->as_register();
2601 assert_different_registers(mdo, recv);
2602 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2603 ciKlass* known_klass = op->known_holder();
2604 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2605 // We know the type that will be seen at this call site; we can
2606 // statically update the MethodData* rather than needing to do
2607 // dynamic tests on the receiver type
2608
2609 // NOTE: we should probably put a lock around this search to
2610 // avoid collisions by concurrent compilations
2611 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2612 uint i;
2613 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2614 ciKlass* receiver = vc_data->receiver(i);
2615 if (known_klass->equals(receiver)) {
2616 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2617 __ addptr(data_addr, DataLayout::counter_increment);
2618 return;
2619 }
2620 }
2621
2622 // Receiver type not found in profile data; select an empty slot
2623
2624 // Note that this is less efficient than it should be because it
2625 // always does a write to the receiver part of the
2626 // VirtualCallData rather than just the first time
2627 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2628 ciKlass* receiver = vc_data->receiver(i);
2629 if (receiver == nullptr) {
2630 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2631 __ mov_metadata(rscratch1, known_klass->constant_encoding());
2632 __ lea(rscratch2, recv_addr);
2633 __ str(rscratch1, Address(rscratch2));
2634 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2635 __ addptr(data_addr, DataLayout::counter_increment);
2636 return;
2637 }
2638 }
2639 } else {
2640 __ load_klass(recv, recv);
2641 Label update_done;
2642 type_profile_helper(mdo, md, data, recv, &update_done);
2643 // Receiver did not match any saved receiver and there is no empty row for it.
2644 // Increment total counter to indicate polymorphic case.
2645 __ addptr(counter_addr, DataLayout::counter_increment);
2646
2647 __ bind(update_done);
2648 }
2649 } else {
2650 // Static call
2651 __ addptr(counter_addr, DataLayout::counter_increment);
2652 }
2653 }
2654
2655
2656 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
2657 Unimplemented();
2658 }
2659
2660
2661 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
2662 __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
2663 }
2664
2665 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2666 assert(op->crc()->is_single_cpu(), "crc must be register");
2667 assert(op->val()->is_single_cpu(), "byte value must be register");
2668 assert(op->result_opr()->is_single_cpu(), "result must be register");
2669 Register crc = op->crc()->as_register();
2670 Register val = op->val()->as_register();
2671 Register res = op->result_opr()->as_register();
2672
2673 assert_different_registers(val, crc, res);
2674 uint64_t offset;
2675 __ adrp(res, ExternalAddress(StubRoutines::crc_table_addr()), offset);
2676 __ add(res, res, offset);
2677
2678 __ mvnw(crc, crc); // ~crc
2679 __ update_byte_crc32(crc, val, res);
2680 __ mvnw(res, crc); // ~crc
2681 }
2682
2683 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2684 COMMENT("emit_profile_type {");
2685 Register obj = op->obj()->as_register();
2686 Register tmp = op->tmp()->as_pointer_register();
2687 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2688 ciKlass* exact_klass = op->exact_klass();
2689 intptr_t current_klass = op->current_klass();
2690 bool not_null = op->not_null();
2691 bool no_conflict = op->no_conflict();
2692
2693 Label update, next, none;
2694
2695 bool do_null = !not_null;
2696 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2697 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2698
2699 assert(do_null || do_update, "why are we here?");
2700 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2701 assert(mdo_addr.base() != rscratch1, "wrong register");
2702
2703 __ verify_oop(obj);
2704
2705 if (tmp != obj) {
2706 assert_different_registers(obj, tmp, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2707 __ mov(tmp, obj);
2708 } else {
2709 assert_different_registers(obj, rscratch1, rscratch2, mdo_addr.base(), mdo_addr.index());
2710 }
2711 if (do_null) {
2712 __ cbnz(tmp, update);
2713 if (!TypeEntries::was_null_seen(current_klass)) {
2714 __ ldr(rscratch2, mdo_addr);
2715 __ orr(rscratch2, rscratch2, TypeEntries::null_seen);
2716 __ str(rscratch2, mdo_addr);
2717 }
2718 if (do_update) {
2719 #ifndef ASSERT
2720 __ b(next);
2721 }
2722 #else
2723 __ b(next);
2724 }
2725 } else {
2726 __ cbnz(tmp, update);
2727 __ stop("unexpected null obj");
2728 #endif
2729 }
2730
2731 __ bind(update);
2732
2733 if (do_update) {
2734 #ifdef ASSERT
2735 if (exact_klass != nullptr) {
2736 Label ok;
2737 __ load_klass(tmp, tmp);
2738 __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2739 __ eor(rscratch1, tmp, rscratch1);
2740 __ cbz(rscratch1, ok);
2741 __ stop("exact klass and actual klass differ");
2742 __ bind(ok);
2743 }
2744 #endif
2745 if (!no_conflict) {
2746 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
2747 if (exact_klass != nullptr) {
2748 __ mov_metadata(tmp, exact_klass->constant_encoding());
2749 } else {
2750 __ load_klass(tmp, tmp);
2751 }
2752
2753 __ ldr(rscratch2, mdo_addr);
2754 __ eor(tmp, tmp, rscratch2);
2755 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2756 // klass seen before, nothing to do. The unknown bit may have been
2757 // set already but no need to check.
2758 __ cbz(rscratch1, next);
2759
2760 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2761
2762 if (TypeEntries::is_type_none(current_klass)) {
2763 __ cbz(rscratch2, none);
2764 __ cmp(rscratch2, (u1)TypeEntries::null_seen);
2765 __ br(Assembler::EQ, none);
2766 // There is a chance that the checks above
2767 // fail if another thread has just set the
2768 // profiling to this obj's klass
2769 __ dmb(Assembler::ISHLD);
2770 __ eor(tmp, tmp, rscratch2); // get back original value before XOR
2771 __ ldr(rscratch2, mdo_addr);
2772 __ eor(tmp, tmp, rscratch2);
2773 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2774 __ cbz(rscratch1, next);
2775 }
2776 } else {
2777 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2778 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2779
2780 __ ldr(tmp, mdo_addr);
2781 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2782 }
2783
2784 // different than before. Cannot keep accurate profile.
2785 __ ldr(rscratch2, mdo_addr);
2786 __ orr(rscratch2, rscratch2, TypeEntries::type_unknown);
2787 __ str(rscratch2, mdo_addr);
2788
2789 if (TypeEntries::is_type_none(current_klass)) {
2790 __ b(next);
2791
2792 __ bind(none);
2793 // first time here. Set profile type.
2794 __ str(tmp, mdo_addr);
2795 #ifdef ASSERT
2796 __ andr(tmp, tmp, TypeEntries::type_mask);
2797 __ verify_klass_ptr(tmp);
2798 #endif
2799 }
2800 } else {
2801 // There's a single possible klass at this profile point
2802 assert(exact_klass != nullptr, "should be");
2803 if (TypeEntries::is_type_none(current_klass)) {
2804 __ mov_metadata(tmp, exact_klass->constant_encoding());
2805 __ ldr(rscratch2, mdo_addr);
2806 __ eor(tmp, tmp, rscratch2);
2807 __ andr(rscratch1, tmp, TypeEntries::type_klass_mask);
2808 __ cbz(rscratch1, next);
2809 #ifdef ASSERT
2810 {
2811 Label ok;
2812 __ ldr(rscratch1, mdo_addr);
2813 __ cbz(rscratch1, ok);
2814 __ cmp(rscratch1, (u1)TypeEntries::null_seen);
2815 __ br(Assembler::EQ, ok);
2816 // may have been set by another thread
2817 __ dmb(Assembler::ISHLD);
2818 __ mov_metadata(rscratch1, exact_klass->constant_encoding());
2819 __ ldr(rscratch2, mdo_addr);
2820 __ eor(rscratch2, rscratch1, rscratch2);
2821 __ andr(rscratch2, rscratch2, TypeEntries::type_mask);
2822 __ cbz(rscratch2, ok);
2823
2824 __ stop("unexpected profiling mismatch");
2825 __ bind(ok);
2826 }
2827 #endif
2828 // first time here. Set profile type.
2829 __ str(tmp, mdo_addr);
2830 #ifdef ASSERT
2831 __ andr(tmp, tmp, TypeEntries::type_mask);
2832 __ verify_klass_ptr(tmp);
2833 #endif
2834 } else {
2835 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
2836 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2837
2838 __ ldr(tmp, mdo_addr);
2839 __ tbnz(tmp, exact_log2(TypeEntries::type_unknown), next); // already unknown. Nothing to do anymore.
2840
2841 __ orr(tmp, tmp, TypeEntries::type_unknown);
2842 __ str(tmp, mdo_addr);
2843 // FIXME: Write barrier needed here?
2844 }
2845 }
2846
2847 __ bind(next);
2848 }
2849 COMMENT("} emit_profile_type");
2850 }
2851
2852
2853 void LIR_Assembler::align_backward_branch_target() {
2854 }
2855
2856
2857 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2858 // tmp must be unused
2859 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2860
2861 if (left->is_single_cpu()) {
2862 assert(dest->is_single_cpu(), "expect single result reg");
2863 __ negw(dest->as_register(), left->as_register());
2864 } else if (left->is_double_cpu()) {
2865 assert(dest->is_double_cpu(), "expect double result reg");
2866 __ neg(dest->as_register_lo(), left->as_register_lo());
2867 } else if (left->is_single_fpu()) {
2868 assert(dest->is_single_fpu(), "expect single float result reg");
2869 __ fnegs(dest->as_float_reg(), left->as_float_reg());
2870 } else {
2871 assert(left->is_double_fpu(), "expect double float operand reg");
2872 assert(dest->is_double_fpu(), "expect double float result reg");
2873 __ fnegd(dest->as_double_reg(), left->as_double_reg());
2874 }
2875 }
2876
2877
2878 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2879 if (patch_code != lir_patch_none) {
2880 deoptimize_trap(info);
2881 return;
2882 }
2883
2884 __ lea(dest->as_register_lo(), as_Address(addr->as_address_ptr()));
2885 }
2886
2887
2888 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2889 assert(!tmp->is_valid(), "don't need temporary");
2890
2891 CodeBlob *cb = CodeCache::find_blob(dest);
2892 if (cb) {
2893 __ far_call(RuntimeAddress(dest));
2894 } else {
2895 __ mov(rscratch1, RuntimeAddress(dest));
2896 __ blr(rscratch1);
2897 }
2898
2899 if (info != nullptr) {
2900 add_call_info_here(info);
2901 }
2902 __ post_call_nop();
2903 }
2904
2905 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2906 if (dest->is_address() || src->is_address()) {
2907 move_op(src, dest, type, lir_patch_none, info,
2908 /*pop_fpu_stack*/false, /*wide*/false);
2909 } else {
2910 ShouldNotReachHere();
2911 }
2912 }
2913
2914 #ifdef ASSERT
2915 // emit run-time assertion
2916 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2917 assert(op->code() == lir_assert, "must be");
2918
2919 if (op->in_opr1()->is_valid()) {
2920 assert(op->in_opr2()->is_valid(), "both operands must be valid");
2921 comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
2922 } else {
2923 assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
2924 assert(op->condition() == lir_cond_always, "no other conditions allowed");
2925 }
2926
2927 Label ok;
2928 if (op->condition() != lir_cond_always) {
2929 Assembler::Condition acond = Assembler::AL;
2930 switch (op->condition()) {
2931 case lir_cond_equal: acond = Assembler::EQ; break;
2932 case lir_cond_notEqual: acond = Assembler::NE; break;
2933 case lir_cond_less: acond = Assembler::LT; break;
2934 case lir_cond_lessEqual: acond = Assembler::LE; break;
2935 case lir_cond_greaterEqual: acond = Assembler::GE; break;
2936 case lir_cond_greater: acond = Assembler::GT; break;
2937 case lir_cond_belowEqual: acond = Assembler::LS; break;
2938 case lir_cond_aboveEqual: acond = Assembler::HS; break;
2939 default: ShouldNotReachHere();
2940 }
2941 __ br(acond, ok);
2942 }
2943 if (op->halt()) {
2944 const char* str = __ code_string(op->msg());
2945 __ stop(str);
2946 } else {
2947 breakpoint();
2948 }
2949 __ bind(ok);
2950 }
2951 #endif
2952
2953 #ifndef PRODUCT
2954 #define COMMENT(x) do { __ block_comment(x); } while (0)
2955 #else
2956 #define COMMENT(x)
2957 #endif
2958
2959 void LIR_Assembler::membar() {
2960 COMMENT("membar");
2961 __ membar(MacroAssembler::AnyAny);
2962 }
2963
2964 void LIR_Assembler::membar_acquire() {
2965 __ membar(Assembler::LoadLoad|Assembler::LoadStore);
2966 }
2967
2968 void LIR_Assembler::membar_release() {
2969 __ membar(Assembler::LoadStore|Assembler::StoreStore);
2970 }
2971
2972 void LIR_Assembler::membar_loadload() {
2973 __ membar(Assembler::LoadLoad);
2974 }
2975
2976 void LIR_Assembler::membar_storestore() {
2977 __ membar(MacroAssembler::StoreStore);
2978 }
2979
2980 void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
2981
2982 void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
2983
2984 void LIR_Assembler::on_spin_wait() {
2985 __ spin_wait();
2986 }
2987
2988 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2989 __ mov(result_reg->as_register(), rthread);
2990 }
2991
2992
2993 void LIR_Assembler::peephole(LIR_List *lir) {
2994 #if 0
2995 if (tableswitch_count >= max_tableswitches)
2996 return;
2997
2998 /*
2999 This finite-state automaton recognizes sequences of compare-and-
3000 branch instructions. We will turn them into a tableswitch. You
3001 could argue that C1 really shouldn't be doing this sort of
3002 optimization, but without it the code is really horrible.
3003 */
3004
3005 enum { start_s, cmp1_s, beq_s, cmp_s } state;
3006 int first_key, last_key = -2147483648;
3007 int next_key = 0;
3008 int start_insn = -1;
3009 int last_insn = -1;
3010 Register reg = noreg;
3011 LIR_Opr reg_opr;
3012 state = start_s;
3013
3014 LIR_OpList* inst = lir->instructions_list();
3015 for (int i = 0; i < inst->length(); i++) {
3016 LIR_Op* op = inst->at(i);
3017 switch (state) {
3018 case start_s:
3019 first_key = -1;
3020 start_insn = i;
3021 switch (op->code()) {
3022 case lir_cmp:
3023 LIR_Opr opr1 = op->as_Op2()->in_opr1();
3024 LIR_Opr opr2 = op->as_Op2()->in_opr2();
3025 if (opr1->is_cpu_register() && opr1->is_single_cpu()
3026 && opr2->is_constant()
3027 && opr2->type() == T_INT) {
3028 reg_opr = opr1;
3029 reg = opr1->as_register();
3030 first_key = opr2->as_constant_ptr()->as_jint();
3031 next_key = first_key + 1;
3032 state = cmp_s;
3033 goto next_state;
3034 }
3035 break;
3036 }
3037 break;
3038 case cmp_s:
3039 switch (op->code()) {
3040 case lir_branch:
3041 if (op->as_OpBranch()->cond() == lir_cond_equal) {
3042 state = beq_s;
3043 last_insn = i;
3044 goto next_state;
3045 }
3046 }
3047 state = start_s;
3048 break;
3049 case beq_s:
3050 switch (op->code()) {
3051 case lir_cmp: {
3052 LIR_Opr opr1 = op->as_Op2()->in_opr1();
3053 LIR_Opr opr2 = op->as_Op2()->in_opr2();
3054 if (opr1->is_cpu_register() && opr1->is_single_cpu()
3055 && opr1->as_register() == reg
3056 && opr2->is_constant()
3057 && opr2->type() == T_INT
3058 && opr2->as_constant_ptr()->as_jint() == next_key) {
3059 last_key = next_key;
3060 next_key++;
3061 state = cmp_s;
3062 goto next_state;
3063 }
3064 }
3065 }
3066 last_key = next_key;
3067 state = start_s;
3068 break;
3069 default:
3070 assert(false, "impossible state");
3071 }
3072 if (state == start_s) {
3073 if (first_key < last_key - 5L && reg != noreg) {
3074 {
3075 // printf("found run register %d starting at insn %d low value %d high value %d\n",
3076 // reg->encoding(),
3077 // start_insn, first_key, last_key);
3078 // for (int i = 0; i < inst->length(); i++) {
3079 // inst->at(i)->print();
3080 // tty->print("\n");
3081 // }
3082 // tty->print("\n");
3083 }
3084
3085 struct tableswitch *sw = &switches[tableswitch_count];
3086 sw->_insn_index = start_insn, sw->_first_key = first_key,
3087 sw->_last_key = last_key, sw->_reg = reg;
3088 inst->insert_before(last_insn + 1, new LIR_OpLabel(&sw->_after));
3089 {
3090 // Insert the new table of branches
3091 int offset = last_insn;
3092 for (int n = first_key; n < last_key; n++) {
3093 inst->insert_before
3094 (last_insn + 1,
3095 new LIR_OpBranch(lir_cond_always, T_ILLEGAL,
3096 inst->at(offset)->as_OpBranch()->label()));
3097 offset -= 2, i++;
3098 }
3099 }
3100 // Delete all the old compare-and-branch instructions
3101 for (int n = first_key; n < last_key; n++) {
3102 inst->remove_at(start_insn);
3103 inst->remove_at(start_insn);
3104 }
3105 // Insert the tableswitch instruction
3106 inst->insert_before(start_insn,
3107 new LIR_Op2(lir_cmp, lir_cond_always,
3108 LIR_OprFact::intConst(tableswitch_count),
3109 reg_opr));
3110 inst->insert_before(start_insn + 1, new LIR_OpLabel(&sw->_branches));
3111 tableswitch_count++;
3112 }
3113 reg = noreg;
3114 last_key = -2147483648;
3115 }
3116 next_state:
3117 ;
3118 }
3119 #endif
3120 }
3121
3122 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
3123 Address addr = as_Address(src->as_address_ptr());
3124 BasicType type = src->type();
3125 bool is_oop = is_reference_type(type);
3126
3127 void (MacroAssembler::* add)(Register prev, RegisterOrConstant incr, Register addr);
3128 void (MacroAssembler::* xchg)(Register prev, Register newv, Register addr);
3129
3130 switch(type) {
3131 case T_INT:
3132 xchg = &MacroAssembler::atomic_xchgalw;
3133 add = &MacroAssembler::atomic_addalw;
3134 break;
3135 case T_LONG:
3136 xchg = &MacroAssembler::atomic_xchgal;
3137 add = &MacroAssembler::atomic_addal;
3138 break;
3139 case T_OBJECT:
3140 case T_ARRAY:
3141 if (UseCompressedOops) {
3142 xchg = &MacroAssembler::atomic_xchgalw;
3143 add = &MacroAssembler::atomic_addalw;
3144 } else {
3145 xchg = &MacroAssembler::atomic_xchgal;
3146 add = &MacroAssembler::atomic_addal;
3147 }
3148 break;
3149 default:
3150 ShouldNotReachHere();
3151 xchg = &MacroAssembler::atomic_xchgal;
3152 add = &MacroAssembler::atomic_addal; // unreachable
3153 }
3154
3155 switch (code) {
3156 case lir_xadd:
3157 {
3158 RegisterOrConstant inc;
3159 Register tmp = as_reg(tmp_op);
3160 Register dst = as_reg(dest);
3161 if (data->is_constant()) {
3162 inc = RegisterOrConstant(as_long(data));
3163 assert_different_registers(dst, addr.base(), tmp,
3164 rscratch1, rscratch2);
3165 } else {
3166 inc = RegisterOrConstant(as_reg(data));
3167 assert_different_registers(inc.as_register(), dst, addr.base(), tmp,
3168 rscratch1, rscratch2);
3169 }
3170 __ lea(tmp, addr);
3171 (_masm->*add)(dst, inc, tmp);
3172 break;
3173 }
3174 case lir_xchg:
3175 {
3176 Register tmp = tmp_op->as_register();
3177 Register obj = as_reg(data);
3178 Register dst = as_reg(dest);
3179 if (is_oop && UseCompressedOops) {
3180 __ encode_heap_oop(rscratch2, obj);
3181 obj = rscratch2;
3182 }
3183 assert_different_registers(obj, addr.base(), tmp, rscratch1);
3184 assert_different_registers(dst, addr.base(), tmp, rscratch1);
3185 __ lea(tmp, addr);
3186 (_masm->*xchg)(dst, obj, tmp);
3187 if (is_oop && UseCompressedOops) {
3188 __ decode_heap_oop(dst);
3189 }
3190 }
3191 break;
3192 default:
3193 ShouldNotReachHere();
3194 }
3195 __ membar(__ AnyAny);
3196 }
3197
3198 #undef __