1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_aarch64.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 50 // Get method->_constMethod->_result_type 51 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 52 ldr(rscratch1, Address(rscratch1, Method::const_offset())); 53 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset())); 54 55 Label done, notBool, notByte, notChar; 56 57 // common case first 58 cmpw(rscratch1, T_INT); 59 br(Assembler::EQ, done); 60 61 // mask integer result to narrower return type. 62 cmpw(rscratch1, T_BOOLEAN); 63 br(Assembler::NE, notBool); 64 andw(result, result, 0x1); 65 b(done); 66 67 bind(notBool); 68 cmpw(rscratch1, T_BYTE); 69 br(Assembler::NE, notByte); 70 sbfx(result, result, 0, 8); 71 b(done); 72 73 bind(notByte); 74 cmpw(rscratch1, T_CHAR); 75 br(Assembler::NE, notChar); 76 ubfx(result, result, 0, 16); // truncate upper 16 bits 77 b(done); 78 79 bind(notChar); 80 sbfx(result, result, 0, 16); // sign-extend short 81 82 // Nothing to do for T_INT 83 bind(done); 84 } 85 86 void InterpreterMacroAssembler::jump_to_entry(address entry) { 87 assert(entry, "Entry must have been generated by now"); 88 b(entry); 89 } 90 91 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 92 if (JvmtiExport::can_pop_frame()) { 93 Label L; 94 // Initiate popframe handling only if it is not already being 95 // processed. If the flag has the popframe_processing bit set, it 96 // means that this code is called *during* popframe handling - we 97 // don't want to reenter. 98 // This method is only called just after the call into the vm in 99 // call_VM_base, so the arg registers are available. 100 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 101 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L); 102 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L); 103 // Call Interpreter::remove_activation_preserving_args_entry() to get the 104 // address of the same-named entrypoint in the generated interpreter code. 105 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 106 br(r0); 107 bind(L); 108 } 109 } 110 111 112 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 113 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset())); 114 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset()); 115 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset()); 116 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset()); 117 switch (state) { 118 case atos: ldr(r0, oop_addr); 119 str(zr, oop_addr); 120 interp_verify_oop(r0, state); break; 121 case ltos: ldr(r0, val_addr); break; 122 case btos: // fall through 123 case ztos: // fall through 124 case ctos: // fall through 125 case stos: // fall through 126 case itos: ldrw(r0, val_addr); break; 127 case ftos: ldrs(v0, val_addr); break; 128 case dtos: ldrd(v0, val_addr); break; 129 case vtos: /* nothing to do */ break; 130 default : ShouldNotReachHere(); 131 } 132 // Clean up tos value in the thread object 133 movw(rscratch1, (int) ilgl); 134 strw(rscratch1, tos_addr); 135 strw(zr, val_addr); 136 } 137 138 139 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 140 if (JvmtiExport::can_force_early_return()) { 141 Label L; 142 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 143 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit; 144 145 // Initiate earlyret handling only if it is not already being processed. 146 // If the flag has the earlyret_processing bit set, it means that this code 147 // is called *during* earlyret handling - we don't want to reenter. 148 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset())); 149 cmpw(rscratch1, JvmtiThreadState::earlyret_pending); 150 br(Assembler::NE, L); 151 152 // Call Interpreter::remove_activation_early_entry() to get the address of the 153 // same-named entrypoint in the generated interpreter code. 154 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 155 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset())); 156 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1); 157 br(r0); 158 bind(L); 159 } 160 } 161 162 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp( 163 Register reg, 164 int bcp_offset) { 165 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 166 ldrh(reg, Address(rbcp, bcp_offset)); 167 rev16(reg, reg); 168 } 169 170 void InterpreterMacroAssembler::get_dispatch() { 171 uint64_t offset; 172 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 173 // Use add() here after ARDP, rather than lea(). 174 // lea() does not generate anything if its offset is zero. 175 // However, relocs expect to find either an ADD or a load/store 176 // insn after an ADRP. add() always generates an ADD insn, even 177 // for add(Rn, Rn, 0). 178 add(rdispatch, rdispatch, offset); 179 } 180 181 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 182 int bcp_offset, 183 size_t index_size) { 184 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 185 if (index_size == sizeof(u2)) { 186 load_unsigned_short(index, Address(rbcp, bcp_offset)); 187 } else if (index_size == sizeof(u4)) { 188 // assert(EnableInvokeDynamic, "giant index used only for JSR 292"); 189 ldrw(index, Address(rbcp, bcp_offset)); 190 // Check if the secondary index definition is still ~x, otherwise 191 // we have to change the following assembler code to calculate the 192 // plain index. 193 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 194 eonw(index, index, zr); // convert to plain index 195 } else if (index_size == sizeof(u1)) { 196 load_unsigned_byte(index, Address(rbcp, bcp_offset)); 197 } else { 198 ShouldNotReachHere(); 199 } 200 } 201 202 // Return 203 // Rindex: index into constant pool 204 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 205 // 206 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 207 // the true address of the cache entry. 208 // 209 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 210 Register index, 211 int bcp_offset, 212 size_t index_size) { 213 assert_different_registers(cache, index); 214 assert_different_registers(cache, rcpool); 215 get_cache_index_at_bcp(index, bcp_offset, index_size); 216 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 217 // convert from field index to ConstantPoolCacheEntry 218 // aarch64 already has the cache in rcpool so there is no need to 219 // install it in cache. instead we pre-add the indexed offset to 220 // rcpool and return it in cache. All clients of this method need to 221 // be modified accordingly. 222 add(cache, rcpool, index, Assembler::LSL, 5); 223 } 224 225 226 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 227 Register index, 228 Register bytecode, 229 int byte_no, 230 int bcp_offset, 231 size_t index_size) { 232 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 233 // We use a 32-bit load here since the layout of 64-bit words on 234 // little-endian machines allow us that. 235 // n.b. unlike x86 cache already includes the index offset 236 lea(bytecode, Address(cache, 237 ConstantPoolCache::base_offset() 238 + ConstantPoolCacheEntry::indices_offset())); 239 ldarw(bytecode, bytecode); 240 const int shift_count = (1 + byte_no) * BitsPerByte; 241 ubfx(bytecode, bytecode, shift_count, BitsPerByte); 242 } 243 244 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 245 Register tmp, 246 int bcp_offset, 247 size_t index_size) { 248 assert(cache != tmp, "must use different register"); 249 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 250 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 251 // convert from field index to ConstantPoolCacheEntry index 252 // and from word offset to byte offset 253 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 254 ldr(cache, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 255 // skip past the header 256 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 257 add(cache, cache, tmp, Assembler::LSL, 2 + LogBytesPerWord); // construct pointer to cache entry 258 } 259 260 void InterpreterMacroAssembler::get_method_counters(Register method, 261 Register mcs, Label& skip) { 262 Label has_counters; 263 ldr(mcs, Address(method, Method::method_counters_offset())); 264 cbnz(mcs, has_counters); 265 call_VM(noreg, CAST_FROM_FN_PTR(address, 266 InterpreterRuntime::build_method_counters), method); 267 ldr(mcs, Address(method, Method::method_counters_offset())); 268 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory 269 bind(has_counters); 270 } 271 272 // Load object from cpool->resolved_references(index) 273 void InterpreterMacroAssembler::load_resolved_reference_at_index( 274 Register result, Register index, Register tmp) { 275 assert_different_registers(result, index); 276 277 get_constant_pool(result); 278 // load pointer for resolved_references[] objArray 279 ldr(result, Address(result, ConstantPool::cache_offset())); 280 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 281 resolve_oop_handle(result, tmp, rscratch2); 282 // Add in the index 283 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 284 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2); 285 } 286 287 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 288 Register cpool, Register index, Register klass, Register temp) { 289 add(temp, cpool, index, LSL, LogBytesPerWord); 290 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 291 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 292 add(klass, klass, temp, LSL, LogBytesPerWord); 293 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 294 } 295 296 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 297 Register method, 298 Register cache) { 299 const int method_offset = in_bytes( 300 ConstantPoolCache::base_offset() + 301 ((byte_no == TemplateTable::f2_byte) 302 ? ConstantPoolCacheEntry::f2_offset() 303 : ConstantPoolCacheEntry::f1_offset())); 304 305 ldr(method, Address(cache, method_offset)); // get f1 Method* 306 } 307 308 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 309 // subtype of super_klass. 310 // 311 // Args: 312 // r0: superklass 313 // Rsub_klass: subklass 314 // 315 // Kills: 316 // r2, r5 317 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 318 Label& ok_is_subtype) { 319 assert(Rsub_klass != r0, "r0 holds superklass"); 320 assert(Rsub_klass != r2, "r2 holds 2ndary super array length"); 321 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr"); 322 323 // Profile the not-null value's klass. 324 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5 325 326 // Do the check. 327 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2 328 329 // Profile the failure of the check. 330 profile_typecheck_failed(r2); // blows r2 331 } 332 333 // Java Expression Stack 334 335 void InterpreterMacroAssembler::pop_ptr(Register r) { 336 ldr(r, post(esp, wordSize)); 337 } 338 339 void InterpreterMacroAssembler::pop_i(Register r) { 340 ldrw(r, post(esp, wordSize)); 341 } 342 343 void InterpreterMacroAssembler::pop_l(Register r) { 344 ldr(r, post(esp, 2 * Interpreter::stackElementSize)); 345 } 346 347 void InterpreterMacroAssembler::push_ptr(Register r) { 348 str(r, pre(esp, -wordSize)); 349 } 350 351 void InterpreterMacroAssembler::push_i(Register r) { 352 str(r, pre(esp, -wordSize)); 353 } 354 355 void InterpreterMacroAssembler::push_l(Register r) { 356 str(zr, pre(esp, -wordSize)); 357 str(r, pre(esp, - wordSize)); 358 } 359 360 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 361 ldrs(r, post(esp, wordSize)); 362 } 363 364 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 365 ldrd(r, post(esp, 2 * Interpreter::stackElementSize)); 366 } 367 368 void InterpreterMacroAssembler::push_f(FloatRegister r) { 369 strs(r, pre(esp, -wordSize)); 370 } 371 372 void InterpreterMacroAssembler::push_d(FloatRegister r) { 373 strd(r, pre(esp, 2* -wordSize)); 374 } 375 376 void InterpreterMacroAssembler::pop(TosState state) { 377 switch (state) { 378 case atos: pop_ptr(); break; 379 case btos: 380 case ztos: 381 case ctos: 382 case stos: 383 case itos: pop_i(); break; 384 case ltos: pop_l(); break; 385 case ftos: pop_f(); break; 386 case dtos: pop_d(); break; 387 case vtos: /* nothing to do */ break; 388 default: ShouldNotReachHere(); 389 } 390 interp_verify_oop(r0, state); 391 } 392 393 void InterpreterMacroAssembler::push(TosState state) { 394 interp_verify_oop(r0, state); 395 switch (state) { 396 case atos: push_ptr(); break; 397 case btos: 398 case ztos: 399 case ctos: 400 case stos: 401 case itos: push_i(); break; 402 case ltos: push_l(); break; 403 case ftos: push_f(); break; 404 case dtos: push_d(); break; 405 case vtos: /* nothing to do */ break; 406 default : ShouldNotReachHere(); 407 } 408 } 409 410 // Helpers for swap and dup 411 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 412 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 413 } 414 415 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 416 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 417 } 418 419 void InterpreterMacroAssembler::load_float(Address src) { 420 ldrs(v0, src); 421 } 422 423 void InterpreterMacroAssembler::load_double(Address src) { 424 ldrd(v0, src); 425 } 426 427 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 428 // set sender sp 429 mov(r19_sender_sp, sp); 430 // record last_sp 431 str(esp, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 432 } 433 434 // Jump to from_interpreted entry of a call unless single stepping is possible 435 // in this thread in which case we must call the i2i entry 436 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 437 prepare_to_jump_from_interpreted(); 438 439 if (JvmtiExport::can_post_interpreter_events()) { 440 Label run_compiled_code; 441 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 442 // compiled code in threads for which the event is enabled. Check here for 443 // interp_only_mode if these events CAN be enabled. 444 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 445 cbzw(rscratch1, run_compiled_code); 446 ldr(rscratch1, Address(method, Method::interpreter_entry_offset())); 447 br(rscratch1); 448 bind(run_compiled_code); 449 } 450 451 ldr(rscratch1, Address(method, Method::from_interpreted_offset())); 452 br(rscratch1); 453 } 454 455 // The following two routines provide a hook so that an implementation 456 // can schedule the dispatch in two parts. amd64 does not do this. 457 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 458 } 459 460 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 461 dispatch_next(state, step); 462 } 463 464 void InterpreterMacroAssembler::dispatch_base(TosState state, 465 address* table, 466 bool verifyoop, 467 bool generate_poll) { 468 if (VerifyActivationFrameSize) { 469 Unimplemented(); 470 } 471 if (verifyoop) { 472 interp_verify_oop(r0, state); 473 } 474 475 Label safepoint; 476 address* const safepoint_table = Interpreter::safept_table(state); 477 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 478 479 if (needs_thread_local_poll) { 480 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 481 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset())); 482 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint); 483 } 484 485 if (table == Interpreter::dispatch_table(state)) { 486 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state)); 487 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3))); 488 } else { 489 mov(rscratch2, (address)table); 490 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 491 } 492 br(rscratch2); 493 494 if (needs_thread_local_poll) { 495 bind(safepoint); 496 lea(rscratch2, ExternalAddress((address)safepoint_table)); 497 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3))); 498 br(rscratch2); 499 } 500 } 501 502 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 503 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 504 } 505 506 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 507 dispatch_base(state, Interpreter::normal_table(state)); 508 } 509 510 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 511 dispatch_base(state, Interpreter::normal_table(state), false); 512 } 513 514 515 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 516 // load next bytecode 517 ldrb(rscratch1, Address(pre(rbcp, step))); 518 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll); 519 } 520 521 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 522 // load current bytecode 523 ldrb(rscratch1, Address(rbcp, 0)); 524 dispatch_base(state, table); 525 } 526 527 // remove activation 528 // 529 // Apply stack watermark barrier. 530 // Unlock the receiver if this is a synchronized method. 531 // Unlock any Java monitors from synchronized blocks. 532 // Remove the activation from the stack. 533 // 534 // If there are locked Java monitors 535 // If throw_monitor_exception 536 // throws IllegalMonitorStateException 537 // Else if install_monitor_exception 538 // installs IllegalMonitorStateException 539 // Else 540 // no error processing 541 void InterpreterMacroAssembler::remove_activation( 542 TosState state, 543 bool throw_monitor_exception, 544 bool install_monitor_exception, 545 bool notify_jvmdi) { 546 // Note: Registers r3 xmm0 may be in use for the 547 // result check if synchronized method 548 Label unlocked, unlock, no_unlock; 549 550 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 551 // that would normally not be safe to use. Such bad returns into unsafe territory of 552 // the stack, will call InterpreterRuntime::at_unwind. 553 Label slow_path; 554 Label fast_path; 555 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 556 br(Assembler::AL, fast_path); 557 bind(slow_path); 558 push(state); 559 set_last_Java_frame(esp, rfp, (address)pc(), rscratch1); 560 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 561 reset_last_Java_frame(true); 562 pop(state); 563 bind(fast_path); 564 565 // get the value of _do_not_unlock_if_synchronized into r3 566 const Address do_not_unlock_if_synchronized(rthread, 567 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 568 ldrb(r3, do_not_unlock_if_synchronized); 569 strb(zr, do_not_unlock_if_synchronized); // reset the flag 570 571 // get method access flags 572 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 573 ldr(r2, Address(r1, Method::access_flags_offset())); 574 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked); 575 576 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 577 // is set. 578 cbnz(r3, no_unlock); 579 580 // unlock monitor 581 push(state); // save result 582 583 // BasicObjectLock will be first in list, since this is a 584 // synchronized method. However, need to check that the object has 585 // not been unlocked by an explicit monitorexit bytecode. 586 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset * 587 wordSize - (int) sizeof(BasicObjectLock)); 588 // We use c_rarg1 so that if we go slow path it will be the correct 589 // register for unlock_object to pass to VM directly 590 lea(c_rarg1, monitor); // address of first monitor 591 592 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 593 cbnz(r0, unlock); 594 595 pop(state); 596 if (throw_monitor_exception) { 597 // Entry already unlocked, need to throw exception 598 call_VM(noreg, CAST_FROM_FN_PTR(address, 599 InterpreterRuntime::throw_illegal_monitor_state_exception)); 600 should_not_reach_here(); 601 } else { 602 // Monitor already unlocked during a stack unroll. If requested, 603 // install an illegal_monitor_state_exception. Continue with 604 // stack unrolling. 605 if (install_monitor_exception) { 606 call_VM(noreg, CAST_FROM_FN_PTR(address, 607 InterpreterRuntime::new_illegal_monitor_state_exception)); 608 } 609 b(unlocked); 610 } 611 612 bind(unlock); 613 unlock_object(c_rarg1); 614 pop(state); 615 616 // Check that for block-structured locking (i.e., that all locked 617 // objects has been unlocked) 618 bind(unlocked); 619 620 // r0: Might contain return value 621 622 // Check that all monitors are unlocked 623 { 624 Label loop, exception, entry, restart; 625 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 626 const Address monitor_block_top( 627 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 628 const Address monitor_block_bot( 629 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 630 631 bind(restart); 632 // We use c_rarg1 so that if we go slow path it will be the correct 633 // register for unlock_object to pass to VM directly 634 ldr(c_rarg1, monitor_block_top); // points to current entry, starting 635 // with top-most entry 636 lea(r19, monitor_block_bot); // points to word before bottom of 637 // monitor block 638 b(entry); 639 640 // Entry already locked, need to throw exception 641 bind(exception); 642 643 if (throw_monitor_exception) { 644 // Throw exception 645 MacroAssembler::call_VM(noreg, 646 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 647 throw_illegal_monitor_state_exception)); 648 should_not_reach_here(); 649 } else { 650 // Stack unrolling. Unlock object and install illegal_monitor_exception. 651 // Unlock does not block, so don't have to worry about the frame. 652 // We don't have to preserve c_rarg1 since we are going to throw an exception. 653 654 push(state); 655 unlock_object(c_rarg1); 656 pop(state); 657 658 if (install_monitor_exception) { 659 call_VM(noreg, CAST_FROM_FN_PTR(address, 660 InterpreterRuntime:: 661 new_illegal_monitor_state_exception)); 662 } 663 664 b(restart); 665 } 666 667 bind(loop); 668 // check if current entry is used 669 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 670 cbnz(rscratch1, exception); 671 672 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 673 bind(entry); 674 cmp(c_rarg1, r19); // check if bottom reached 675 br(Assembler::NE, loop); // if not at bottom then check this entry 676 } 677 678 bind(no_unlock); 679 680 // jvmti support 681 if (notify_jvmdi) { 682 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 683 } else { 684 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 685 } 686 687 // remove activation 688 // get sender esp 689 ldr(rscratch2, 690 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 691 if (StackReservedPages > 0) { 692 // testing if reserved zone needs to be re-enabled 693 Label no_reserved_zone_enabling; 694 695 // check if already enabled - if so no re-enabling needed 696 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 697 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 698 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled); 699 br(Assembler::EQ, no_reserved_zone_enabling); 700 701 // look for an overflow into the stack reserved zone, i.e. 702 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation 703 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 704 cmp(rscratch2, rscratch1); 705 br(Assembler::LS, no_reserved_zone_enabling); 706 707 call_VM_leaf( 708 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 709 call_VM(noreg, CAST_FROM_FN_PTR(address, 710 InterpreterRuntime::throw_delayed_StackOverflowError)); 711 should_not_reach_here(); 712 713 bind(no_reserved_zone_enabling); 714 } 715 716 // restore sender esp 717 mov(esp, rscratch2); 718 // remove frame anchor 719 leave(); 720 // If we're returning to interpreted code we will shortly be 721 // adjusting SP to allow some space for ESP. If we're returning to 722 // compiled code the saved sender SP was saved in sender_sp, so this 723 // restores it. 724 andr(sp, esp, -16); 725 } 726 727 // Lock object 728 // 729 // Args: 730 // c_rarg1: BasicObjectLock to be used for locking 731 // 732 // Kills: 733 // r0 734 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs) 735 // rscratch1, rscratch2 (scratch regs) 736 void InterpreterMacroAssembler::lock_object(Register lock_reg) 737 { 738 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 739 if (LockingMode == LM_MONITOR) { 740 call_VM(noreg, 741 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 742 lock_reg); 743 } else { 744 Label count, done; 745 746 const Register swap_reg = r0; 747 const Register tmp = c_rarg2; 748 const Register obj_reg = c_rarg3; // Will contain the oop 749 const Register tmp2 = c_rarg4; 750 const Register tmp3 = c_rarg5; 751 752 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 753 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 754 const int mark_offset = lock_offset + 755 BasicLock::displaced_header_offset_in_bytes(); 756 757 Label slow_case; 758 759 // Load object pointer into obj_reg %c_rarg3 760 ldr(obj_reg, Address(lock_reg, obj_offset)); 761 762 if (DiagnoseSyncOnValueBasedClasses != 0) { 763 load_klass(tmp, obj_reg); 764 ldrw(tmp, Address(tmp, Klass::access_flags_offset())); 765 tstw(tmp, JVM_ACC_IS_VALUE_BASED_CLASS); 766 br(Assembler::NE, slow_case); 767 } 768 769 if (LockingMode == LM_LIGHTWEIGHT) { 770 lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case); 771 b(count); 772 } else if (LockingMode == LM_LEGACY) { 773 // Load (object->mark() | 1) into swap_reg 774 ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 775 orr(swap_reg, rscratch1, 1); 776 777 // Save (object->mark() | 1) into BasicLock's displaced header 778 str(swap_reg, Address(lock_reg, mark_offset)); 779 780 assert(lock_offset == 0, 781 "displached header must be first word in BasicObjectLock"); 782 783 Label fail; 784 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 785 786 // Fast check for recursive lock. 787 // 788 // Can apply the optimization only if this is a stack lock 789 // allocated in this thread. For efficiency, we can focus on 790 // recently allocated stack locks (instead of reading the stack 791 // base and checking whether 'mark' points inside the current 792 // thread stack): 793 // 1) (mark & 7) == 0, and 794 // 2) sp <= mark < mark + os::pagesize() 795 // 796 // Warning: sp + os::pagesize can overflow the stack base. We must 797 // neither apply the optimization for an inflated lock allocated 798 // just above the thread stack (this is why condition 1 matters) 799 // nor apply the optimization if the stack lock is inside the stack 800 // of another thread. The latter is avoided even in case of overflow 801 // because we have guard pages at the end of all stacks. Hence, if 802 // we go over the stack base and hit the stack of another thread, 803 // this should not be in a writeable area that could contain a 804 // stack lock allocated by that thread. As a consequence, a stack 805 // lock less than page size away from sp is guaranteed to be 806 // owned by the current thread. 807 // 808 // These 3 tests can be done by evaluating the following 809 // expression: ((mark - sp) & (7 - os::vm_page_size())), 810 // assuming both stack pointer and pagesize have their 811 // least significant 3 bits clear. 812 // NOTE: the mark is in swap_reg %r0 as the result of cmpxchg 813 // NOTE2: aarch64 does not like to subtract sp from rn so take a 814 // copy 815 mov(rscratch1, sp); 816 sub(swap_reg, swap_reg, rscratch1); 817 ands(swap_reg, swap_reg, (uint64_t)(7 - (int)os::vm_page_size())); 818 819 // Save the test result, for recursive case, the result is zero 820 str(swap_reg, Address(lock_reg, mark_offset)); 821 br(Assembler::EQ, count); 822 } 823 bind(slow_case); 824 825 // Call the runtime routine for slow case 826 if (LockingMode == LM_LIGHTWEIGHT) { 827 call_VM(noreg, 828 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 829 obj_reg); 830 } else { 831 call_VM(noreg, 832 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 833 lock_reg); 834 } 835 b(done); 836 837 bind(count); 838 increment(Address(rthread, JavaThread::held_monitor_count_offset())); 839 840 bind(done); 841 } 842 } 843 844 845 // Unlocks an object. Used in monitorexit bytecode and 846 // remove_activation. Throws an IllegalMonitorException if object is 847 // not locked by current thread. 848 // 849 // Args: 850 // c_rarg1: BasicObjectLock for lock 851 // 852 // Kills: 853 // r0 854 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 855 // rscratch1, rscratch2 (scratch regs) 856 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 857 { 858 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 859 860 if (LockingMode == LM_MONITOR) { 861 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 862 } else { 863 Label count, done; 864 865 const Register swap_reg = r0; 866 const Register header_reg = c_rarg2; // Will contain the old oopMark 867 const Register obj_reg = c_rarg3; // Will contain the oop 868 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 869 870 save_bcp(); // Save in case of exception 871 872 if (LockingMode != LM_LIGHTWEIGHT) { 873 // Convert from BasicObjectLock structure to object and BasicLock 874 // structure Store the BasicLock address into %r0 875 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 876 } 877 878 // Load oop into obj_reg(%c_rarg3) 879 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 880 881 // Free entry 882 str(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 883 884 if (LockingMode == LM_LIGHTWEIGHT) { 885 Label slow_case; 886 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 887 b(count); 888 bind(slow_case); 889 } else if (LockingMode == LM_LEGACY) { 890 // Load the old header from BasicLock structure 891 ldr(header_reg, Address(swap_reg, 892 BasicLock::displaced_header_offset_in_bytes())); 893 894 // Test for recursion 895 cbz(header_reg, count); 896 897 // Atomic swap back the old header 898 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 899 } 900 // Call the runtime routine for slow case. 901 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 902 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 903 b(done); 904 905 bind(count); 906 decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 907 908 bind(done); 909 restore_bcp(); 910 } 911 } 912 913 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 914 Label& zero_continue) { 915 assert(ProfileInterpreter, "must be profiling interpreter"); 916 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 917 cbz(mdp, zero_continue); 918 } 919 920 // Set the method data pointer for the current bcp. 921 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 922 assert(ProfileInterpreter, "must be profiling interpreter"); 923 Label set_mdp; 924 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 925 926 // Test MDO to avoid the call if it is null. 927 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset()))); 928 cbz(r0, set_mdp); 929 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp); 930 // r0: mdi 931 // mdo is guaranteed to be non-zero here, we checked for it before the call. 932 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 933 lea(r1, Address(r1, in_bytes(MethodData::data_offset()))); 934 add(r0, r1, r0); 935 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 936 bind(set_mdp); 937 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 938 } 939 940 void InterpreterMacroAssembler::verify_method_data_pointer() { 941 assert(ProfileInterpreter, "must be profiling interpreter"); 942 #ifdef ASSERT 943 Label verify_continue; 944 stp(r0, r1, Address(pre(sp, -2 * wordSize))); 945 stp(r2, r3, Address(pre(sp, -2 * wordSize))); 946 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue 947 get_method(r1); 948 949 // If the mdp is valid, it will point to a DataLayout header which is 950 // consistent with the bcp. The converse is highly probable also. 951 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset()))); 952 ldr(rscratch1, Address(r1, Method::const_offset())); 953 add(r2, r2, rscratch1, Assembler::LSL); 954 lea(r2, Address(r2, ConstMethod::codes_offset())); 955 cmp(r2, rbcp); 956 br(Assembler::EQ, verify_continue); 957 // r1: method 958 // rbcp: bcp // rbcp == 22 959 // r3: mdp 960 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 961 r1, rbcp, r3); 962 bind(verify_continue); 963 ldp(r2, r3, Address(post(sp, 2 * wordSize))); 964 ldp(r0, r1, Address(post(sp, 2 * wordSize))); 965 #endif // ASSERT 966 } 967 968 969 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 970 int constant, 971 Register value) { 972 assert(ProfileInterpreter, "must be profiling interpreter"); 973 Address data(mdp_in, constant); 974 str(value, data); 975 } 976 977 978 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 979 int constant, 980 bool decrement) { 981 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 982 } 983 984 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 985 Register reg, 986 int constant, 987 bool decrement) { 988 assert(ProfileInterpreter, "must be profiling interpreter"); 989 // %%% this does 64bit counters at best it is wasting space 990 // at worst it is a rare bug when counters overflow 991 992 assert_different_registers(rscratch2, rscratch1, mdp_in, reg); 993 994 Address addr1(mdp_in, constant); 995 Address addr2(rscratch2, reg, Address::lsl(0)); 996 Address &addr = addr1; 997 if (reg != noreg) { 998 lea(rscratch2, addr1); 999 addr = addr2; 1000 } 1001 1002 if (decrement) { 1003 // Decrement the register. Set condition codes. 1004 // Intel does this 1005 // addptr(data, (int32_t) -DataLayout::counter_increment); 1006 // If the decrement causes the counter to overflow, stay negative 1007 // Label L; 1008 // jcc(Assembler::negative, L); 1009 // addptr(data, (int32_t) DataLayout::counter_increment); 1010 // so we do this 1011 ldr(rscratch1, addr); 1012 subs(rscratch1, rscratch1, (unsigned)DataLayout::counter_increment); 1013 Label L; 1014 br(Assembler::LO, L); // skip store if counter underflow 1015 str(rscratch1, addr); 1016 bind(L); 1017 } else { 1018 assert(DataLayout::counter_increment == 1, 1019 "flow-free idiom only works with 1"); 1020 // Intel does this 1021 // Increment the register. Set carry flag. 1022 // addptr(data, DataLayout::counter_increment); 1023 // If the increment causes the counter to overflow, pull back by 1. 1024 // sbbptr(data, (int32_t)0); 1025 // so we do this 1026 ldr(rscratch1, addr); 1027 adds(rscratch1, rscratch1, DataLayout::counter_increment); 1028 Label L; 1029 br(Assembler::CS, L); // skip store if counter overflow 1030 str(rscratch1, addr); 1031 bind(L); 1032 } 1033 } 1034 1035 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1036 int flag_byte_constant) { 1037 assert(ProfileInterpreter, "must be profiling interpreter"); 1038 int flags_offset = in_bytes(DataLayout::flags_offset()); 1039 // Set the flag 1040 ldrb(rscratch1, Address(mdp_in, flags_offset)); 1041 orr(rscratch1, rscratch1, flag_byte_constant); 1042 strb(rscratch1, Address(mdp_in, flags_offset)); 1043 } 1044 1045 1046 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1047 int offset, 1048 Register value, 1049 Register test_value_out, 1050 Label& not_equal_continue) { 1051 assert(ProfileInterpreter, "must be profiling interpreter"); 1052 if (test_value_out == noreg) { 1053 ldr(rscratch1, Address(mdp_in, offset)); 1054 cmp(value, rscratch1); 1055 } else { 1056 // Put the test value into a register, so caller can use it: 1057 ldr(test_value_out, Address(mdp_in, offset)); 1058 cmp(value, test_value_out); 1059 } 1060 br(Assembler::NE, not_equal_continue); 1061 } 1062 1063 1064 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1065 int offset_of_disp) { 1066 assert(ProfileInterpreter, "must be profiling interpreter"); 1067 ldr(rscratch1, Address(mdp_in, offset_of_disp)); 1068 add(mdp_in, mdp_in, rscratch1, LSL); 1069 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1070 } 1071 1072 1073 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1074 Register reg, 1075 int offset_of_disp) { 1076 assert(ProfileInterpreter, "must be profiling interpreter"); 1077 lea(rscratch1, Address(mdp_in, offset_of_disp)); 1078 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0))); 1079 add(mdp_in, mdp_in, rscratch1, LSL); 1080 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1081 } 1082 1083 1084 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1085 int constant) { 1086 assert(ProfileInterpreter, "must be profiling interpreter"); 1087 add(mdp_in, mdp_in, (unsigned)constant); 1088 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1089 } 1090 1091 1092 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1093 assert(ProfileInterpreter, "must be profiling interpreter"); 1094 // save/restore across call_VM 1095 stp(zr, return_bci, Address(pre(sp, -2 * wordSize))); 1096 call_VM(noreg, 1097 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1098 return_bci); 1099 ldp(zr, return_bci, Address(post(sp, 2 * wordSize))); 1100 } 1101 1102 1103 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1104 Register bumped_count) { 1105 if (ProfileInterpreter) { 1106 Label profile_continue; 1107 1108 // If no method data exists, go to profile_continue. 1109 // Otherwise, assign to mdp 1110 test_method_data_pointer(mdp, profile_continue); 1111 1112 // We are taking a branch. Increment the taken count. 1113 // We inline increment_mdp_data_at to return bumped_count in a register 1114 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1115 Address data(mdp, in_bytes(JumpData::taken_offset())); 1116 ldr(bumped_count, data); 1117 assert(DataLayout::counter_increment == 1, 1118 "flow-free idiom only works with 1"); 1119 // Intel does this to catch overflow 1120 // addptr(bumped_count, DataLayout::counter_increment); 1121 // sbbptr(bumped_count, 0); 1122 // so we do this 1123 adds(bumped_count, bumped_count, DataLayout::counter_increment); 1124 Label L; 1125 br(Assembler::CS, L); // skip store if counter overflow 1126 str(bumped_count, data); 1127 bind(L); 1128 // The method data pointer needs to be updated to reflect the new target. 1129 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1130 bind(profile_continue); 1131 } 1132 } 1133 1134 1135 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1136 if (ProfileInterpreter) { 1137 Label profile_continue; 1138 1139 // If no method data exists, go to profile_continue. 1140 test_method_data_pointer(mdp, profile_continue); 1141 1142 // We are taking a branch. Increment the not taken count. 1143 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1144 1145 // The method data pointer needs to be updated to correspond to 1146 // the next bytecode 1147 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1148 bind(profile_continue); 1149 } 1150 } 1151 1152 1153 void InterpreterMacroAssembler::profile_call(Register mdp) { 1154 if (ProfileInterpreter) { 1155 Label profile_continue; 1156 1157 // If no method data exists, go to profile_continue. 1158 test_method_data_pointer(mdp, profile_continue); 1159 1160 // We are making a call. Increment the count. 1161 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1162 1163 // The method data pointer needs to be updated to reflect the new target. 1164 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1165 bind(profile_continue); 1166 } 1167 } 1168 1169 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1170 if (ProfileInterpreter) { 1171 Label profile_continue; 1172 1173 // If no method data exists, go to profile_continue. 1174 test_method_data_pointer(mdp, profile_continue); 1175 1176 // We are making a call. Increment the count. 1177 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1178 1179 // The method data pointer needs to be updated to reflect the new target. 1180 update_mdp_by_constant(mdp, 1181 in_bytes(VirtualCallData:: 1182 virtual_call_data_size())); 1183 bind(profile_continue); 1184 } 1185 } 1186 1187 1188 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1189 Register mdp, 1190 Register reg2, 1191 bool receiver_can_be_null) { 1192 if (ProfileInterpreter) { 1193 Label profile_continue; 1194 1195 // If no method data exists, go to profile_continue. 1196 test_method_data_pointer(mdp, profile_continue); 1197 1198 Label skip_receiver_profile; 1199 if (receiver_can_be_null) { 1200 Label not_null; 1201 // We are making a call. Increment the count for null receiver. 1202 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1203 b(skip_receiver_profile); 1204 bind(not_null); 1205 } 1206 1207 // Record the receiver type. 1208 record_klass_in_profile(receiver, mdp, reg2, true); 1209 bind(skip_receiver_profile); 1210 1211 // The method data pointer needs to be updated to reflect the new target. 1212 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1213 bind(profile_continue); 1214 } 1215 } 1216 1217 // This routine creates a state machine for updating the multi-row 1218 // type profile at a virtual call site (or other type-sensitive bytecode). 1219 // The machine visits each row (of receiver/count) until the receiver type 1220 // is found, or until it runs out of rows. At the same time, it remembers 1221 // the location of the first empty row. (An empty row records null for its 1222 // receiver, and can be allocated for a newly-observed receiver type.) 1223 // Because there are two degrees of freedom in the state, a simple linear 1224 // search will not work; it must be a decision tree. Hence this helper 1225 // function is recursive, to generate the required tree structured code. 1226 // It's the interpreter, so we are trading off code space for speed. 1227 // See below for example code. 1228 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1229 Register receiver, Register mdp, 1230 Register reg2, int start_row, 1231 Label& done, bool is_virtual_call) { 1232 if (TypeProfileWidth == 0) { 1233 if (is_virtual_call) { 1234 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1235 } 1236 #if INCLUDE_JVMCI 1237 else if (EnableJVMCI) { 1238 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1239 } 1240 #endif // INCLUDE_JVMCI 1241 } else { 1242 int non_profiled_offset = -1; 1243 if (is_virtual_call) { 1244 non_profiled_offset = in_bytes(CounterData::count_offset()); 1245 } 1246 #if INCLUDE_JVMCI 1247 else if (EnableJVMCI) { 1248 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1249 } 1250 #endif // INCLUDE_JVMCI 1251 1252 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1253 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1254 } 1255 } 1256 1257 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1258 Register reg2, int start_row, Label& done, int total_rows, 1259 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1260 int non_profiled_offset) { 1261 int last_row = total_rows - 1; 1262 assert(start_row <= last_row, "must be work left to do"); 1263 // Test this row for both the item and for null. 1264 // Take any of three different outcomes: 1265 // 1. found item => increment count and goto done 1266 // 2. found null => keep looking for case 1, maybe allocate this cell 1267 // 3. found something else => keep looking for cases 1 and 2 1268 // Case 3 is handled by a recursive call. 1269 for (int row = start_row; row <= last_row; row++) { 1270 Label next_test; 1271 bool test_for_null_also = (row == start_row); 1272 1273 // See if the item is item[n]. 1274 int item_offset = in_bytes(item_offset_fn(row)); 1275 test_mdp_data_at(mdp, item_offset, item, 1276 (test_for_null_also ? reg2 : noreg), 1277 next_test); 1278 // (Reg2 now contains the item from the CallData.) 1279 1280 // The item is item[n]. Increment count[n]. 1281 int count_offset = in_bytes(item_count_offset_fn(row)); 1282 increment_mdp_data_at(mdp, count_offset); 1283 b(done); 1284 bind(next_test); 1285 1286 if (test_for_null_also) { 1287 Label found_null; 1288 // Failed the equality check on item[n]... Test for null. 1289 if (start_row == last_row) { 1290 // The only thing left to do is handle the null case. 1291 if (non_profiled_offset >= 0) { 1292 cbz(reg2, found_null); 1293 // Item did not match any saved item and there is no empty row for it. 1294 // Increment total counter to indicate polymorphic case. 1295 increment_mdp_data_at(mdp, non_profiled_offset); 1296 b(done); 1297 bind(found_null); 1298 } else { 1299 cbnz(reg2, done); 1300 } 1301 break; 1302 } 1303 // Since null is rare, make it be the branch-taken case. 1304 cbz(reg2, found_null); 1305 1306 // Put all the "Case 3" tests here. 1307 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1308 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1309 1310 // Found a null. Keep searching for a matching item, 1311 // but remember that this is an empty (unused) slot. 1312 bind(found_null); 1313 } 1314 } 1315 1316 // In the fall-through case, we found no matching item, but we 1317 // observed the item[start_row] is null. 1318 1319 // Fill in the item field and increment the count. 1320 int item_offset = in_bytes(item_offset_fn(start_row)); 1321 set_mdp_data_at(mdp, item_offset, item); 1322 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1323 mov(reg2, DataLayout::counter_increment); 1324 set_mdp_data_at(mdp, count_offset, reg2); 1325 if (start_row > 0) { 1326 b(done); 1327 } 1328 } 1329 1330 // Example state machine code for three profile rows: 1331 // // main copy of decision tree, rooted at row[1] 1332 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1333 // if (row[0].rec != nullptr) { 1334 // // inner copy of decision tree, rooted at row[1] 1335 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1336 // if (row[1].rec != nullptr) { 1337 // // degenerate decision tree, rooted at row[2] 1338 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1339 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1340 // row[2].init(rec); goto done; 1341 // } else { 1342 // // remember row[1] is empty 1343 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1344 // row[1].init(rec); goto done; 1345 // } 1346 // } else { 1347 // // remember row[0] is empty 1348 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1349 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1350 // row[0].init(rec); goto done; 1351 // } 1352 // done: 1353 1354 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1355 Register mdp, Register reg2, 1356 bool is_virtual_call) { 1357 assert(ProfileInterpreter, "must be profiling"); 1358 Label done; 1359 1360 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1361 1362 bind (done); 1363 } 1364 1365 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1366 Register mdp) { 1367 if (ProfileInterpreter) { 1368 Label profile_continue; 1369 uint row; 1370 1371 // If no method data exists, go to profile_continue. 1372 test_method_data_pointer(mdp, profile_continue); 1373 1374 // Update the total ret count. 1375 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1376 1377 for (row = 0; row < RetData::row_limit(); row++) { 1378 Label next_test; 1379 1380 // See if return_bci is equal to bci[n]: 1381 test_mdp_data_at(mdp, 1382 in_bytes(RetData::bci_offset(row)), 1383 return_bci, noreg, 1384 next_test); 1385 1386 // return_bci is equal to bci[n]. Increment the count. 1387 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1388 1389 // The method data pointer needs to be updated to reflect the new target. 1390 update_mdp_by_offset(mdp, 1391 in_bytes(RetData::bci_displacement_offset(row))); 1392 b(profile_continue); 1393 bind(next_test); 1394 } 1395 1396 update_mdp_for_ret(return_bci); 1397 1398 bind(profile_continue); 1399 } 1400 } 1401 1402 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1403 if (ProfileInterpreter) { 1404 Label profile_continue; 1405 1406 // If no method data exists, go to profile_continue. 1407 test_method_data_pointer(mdp, profile_continue); 1408 1409 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1410 1411 // The method data pointer needs to be updated. 1412 int mdp_delta = in_bytes(BitData::bit_data_size()); 1413 if (TypeProfileCasts) { 1414 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1415 } 1416 update_mdp_by_constant(mdp, mdp_delta); 1417 1418 bind(profile_continue); 1419 } 1420 } 1421 1422 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1423 if (ProfileInterpreter && TypeProfileCasts) { 1424 Label profile_continue; 1425 1426 // If no method data exists, go to profile_continue. 1427 test_method_data_pointer(mdp, profile_continue); 1428 1429 int count_offset = in_bytes(CounterData::count_offset()); 1430 // Back up the address, since we have already bumped the mdp. 1431 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1432 1433 // *Decrement* the counter. We expect to see zero or small negatives. 1434 increment_mdp_data_at(mdp, count_offset, true); 1435 1436 bind (profile_continue); 1437 } 1438 } 1439 1440 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1441 if (ProfileInterpreter) { 1442 Label profile_continue; 1443 1444 // If no method data exists, go to profile_continue. 1445 test_method_data_pointer(mdp, profile_continue); 1446 1447 // The method data pointer needs to be updated. 1448 int mdp_delta = in_bytes(BitData::bit_data_size()); 1449 if (TypeProfileCasts) { 1450 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1451 1452 // Record the object type. 1453 record_klass_in_profile(klass, mdp, reg2, false); 1454 } 1455 update_mdp_by_constant(mdp, mdp_delta); 1456 1457 bind(profile_continue); 1458 } 1459 } 1460 1461 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1462 if (ProfileInterpreter) { 1463 Label profile_continue; 1464 1465 // If no method data exists, go to profile_continue. 1466 test_method_data_pointer(mdp, profile_continue); 1467 1468 // Update the default case count 1469 increment_mdp_data_at(mdp, 1470 in_bytes(MultiBranchData::default_count_offset())); 1471 1472 // The method data pointer needs to be updated. 1473 update_mdp_by_offset(mdp, 1474 in_bytes(MultiBranchData:: 1475 default_displacement_offset())); 1476 1477 bind(profile_continue); 1478 } 1479 } 1480 1481 void InterpreterMacroAssembler::profile_switch_case(Register index, 1482 Register mdp, 1483 Register reg2) { 1484 if (ProfileInterpreter) { 1485 Label profile_continue; 1486 1487 // If no method data exists, go to profile_continue. 1488 test_method_data_pointer(mdp, profile_continue); 1489 1490 // Build the base (index * per_case_size_in_bytes()) + 1491 // case_array_offset_in_bytes() 1492 movw(reg2, in_bytes(MultiBranchData::per_case_size())); 1493 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset())); 1494 Assembler::maddw(index, index, reg2, rscratch1); 1495 1496 // Update the case count 1497 increment_mdp_data_at(mdp, 1498 index, 1499 in_bytes(MultiBranchData::relative_count_offset())); 1500 1501 // The method data pointer needs to be updated. 1502 update_mdp_by_offset(mdp, 1503 index, 1504 in_bytes(MultiBranchData:: 1505 relative_displacement_offset())); 1506 1507 bind(profile_continue); 1508 } 1509 } 1510 1511 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 1512 if (state == atos) { 1513 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 1514 } 1515 } 1516 1517 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1518 1519 1520 void InterpreterMacroAssembler::notify_method_entry() { 1521 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1522 // track stack depth. If it is possible to enter interp_only_mode we add 1523 // the code to check if the event should be sent. 1524 if (JvmtiExport::can_post_interpreter_events()) { 1525 Label L; 1526 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1527 cbzw(r3, L); 1528 call_VM(noreg, CAST_FROM_FN_PTR(address, 1529 InterpreterRuntime::post_method_entry)); 1530 bind(L); 1531 } 1532 1533 { 1534 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1535 get_method(c_rarg1); 1536 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1537 rthread, c_rarg1); 1538 } 1539 1540 // RedefineClasses() tracing support for obsolete method entry 1541 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1542 get_method(c_rarg1); 1543 call_VM_leaf( 1544 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1545 rthread, c_rarg1); 1546 } 1547 1548 } 1549 1550 1551 void InterpreterMacroAssembler::notify_method_exit( 1552 TosState state, NotifyMethodExitMode mode) { 1553 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1554 // track stack depth. If it is possible to enter interp_only_mode we add 1555 // the code to check if the event should be sent. 1556 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1557 Label L; 1558 // Note: frame::interpreter_frame_result has a dependency on how the 1559 // method result is saved across the call to post_method_exit. If this 1560 // is changed then the interpreter_frame_result implementation will 1561 // need to be updated too. 1562 1563 // template interpreter will leave the result on the top of the stack. 1564 push(state); 1565 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset())); 1566 cbz(r3, L); 1567 call_VM(noreg, 1568 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1569 bind(L); 1570 pop(state); 1571 } 1572 1573 { 1574 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1575 push(state); 1576 get_method(c_rarg1); 1577 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1578 rthread, c_rarg1); 1579 pop(state); 1580 } 1581 } 1582 1583 1584 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1585 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1586 int increment, Address mask, 1587 Register scratch, Register scratch2, 1588 bool preloaded, Condition cond, 1589 Label* where) { 1590 if (!preloaded) { 1591 ldrw(scratch, counter_addr); 1592 } 1593 add(scratch, scratch, increment); 1594 strw(scratch, counter_addr); 1595 ldrw(scratch2, mask); 1596 ands(scratch, scratch, scratch2); 1597 br(cond, *where); 1598 } 1599 1600 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1601 int number_of_arguments) { 1602 // interpreter specific 1603 // 1604 // Note: No need to save/restore rbcp & rlocals pointer since these 1605 // are callee saved registers and no blocking/ GC can happen 1606 // in leaf calls. 1607 #ifdef ASSERT 1608 { 1609 Label L; 1610 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1611 cbz(rscratch1, L); 1612 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1613 " last_sp != nullptr"); 1614 bind(L); 1615 } 1616 #endif /* ASSERT */ 1617 // super call 1618 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1619 } 1620 1621 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1622 Register java_thread, 1623 Register last_java_sp, 1624 address entry_point, 1625 int number_of_arguments, 1626 bool check_exceptions) { 1627 // interpreter specific 1628 // 1629 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1630 // really make a difference for these runtime calls, since they are 1631 // slow anyway. Btw., bcp must be saved/restored since it may change 1632 // due to GC. 1633 // assert(java_thread == noreg , "not expecting a precomputed java thread"); 1634 save_bcp(); 1635 #ifdef ASSERT 1636 { 1637 Label L; 1638 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1639 cbz(rscratch1, L); 1640 stop("InterpreterMacroAssembler::call_VM_base:" 1641 " last_sp != nullptr"); 1642 bind(L); 1643 } 1644 #endif /* ASSERT */ 1645 // super call 1646 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1647 entry_point, number_of_arguments, 1648 check_exceptions); 1649 // interpreter specific 1650 restore_bcp(); 1651 restore_locals(); 1652 } 1653 1654 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 1655 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 1656 Label update, next, none; 1657 1658 verify_oop(obj); 1659 1660 cbnz(obj, update); 1661 orptr(mdo_addr, TypeEntries::null_seen); 1662 b(next); 1663 1664 bind(update); 1665 load_klass(obj, obj); 1666 1667 ldr(rscratch1, mdo_addr); 1668 eor(obj, obj, rscratch1); 1669 tst(obj, TypeEntries::type_klass_mask); 1670 br(Assembler::EQ, next); // klass seen before, nothing to 1671 // do. The unknown bit may have been 1672 // set already but no need to check. 1673 1674 tbnz(obj, exact_log2(TypeEntries::type_unknown), next); 1675 // already unknown. Nothing to do anymore. 1676 1677 cbz(rscratch1, none); 1678 cmp(rscratch1, (u1)TypeEntries::null_seen); 1679 br(Assembler::EQ, none); 1680 // There is a chance that the checks above 1681 // fail if another thread has just set the 1682 // profiling to this obj's klass 1683 eor(obj, obj, rscratch1); // get back original value before XOR 1684 ldr(rscratch1, mdo_addr); 1685 eor(obj, obj, rscratch1); 1686 tst(obj, TypeEntries::type_klass_mask); 1687 br(Assembler::EQ, next); 1688 1689 // different than before. Cannot keep accurate profile. 1690 orptr(mdo_addr, TypeEntries::type_unknown); 1691 b(next); 1692 1693 bind(none); 1694 // first time here. Set profile type. 1695 str(obj, mdo_addr); 1696 #ifdef ASSERT 1697 andr(obj, obj, TypeEntries::type_mask); 1698 verify_klass_ptr(obj); 1699 #endif 1700 1701 bind(next); 1702 } 1703 1704 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1705 if (!ProfileInterpreter) { 1706 return; 1707 } 1708 1709 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1710 Label profile_continue; 1711 1712 test_method_data_pointer(mdp, profile_continue); 1713 1714 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1715 1716 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1717 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag)); 1718 br(Assembler::NE, profile_continue); 1719 1720 if (MethodData::profile_arguments()) { 1721 Label done; 1722 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1723 1724 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1725 if (i > 0 || MethodData::profile_return()) { 1726 // If return value type is profiled we may have no argument to profile 1727 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1728 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count()); 1729 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count()); 1730 add(rscratch1, mdp, off_to_args); 1731 br(Assembler::LT, done); 1732 } 1733 ldr(tmp, Address(callee, Method::const_offset())); 1734 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1735 // stack offset o (zero based) from the start of the argument 1736 // list, for n arguments translates into offset n - o - 1 from 1737 // the end of the argument list 1738 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i)))); 1739 sub(tmp, tmp, rscratch1); 1740 sub(tmp, tmp, 1); 1741 Address arg_addr = argument_address(tmp); 1742 ldr(tmp, arg_addr); 1743 1744 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))); 1745 profile_obj_type(tmp, mdo_arg_addr); 1746 1747 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1748 off_to_args += to_add; 1749 } 1750 1751 if (MethodData::profile_return()) { 1752 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1753 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1754 } 1755 1756 add(rscratch1, mdp, off_to_args); 1757 bind(done); 1758 mov(mdp, rscratch1); 1759 1760 if (MethodData::profile_return()) { 1761 // We're right after the type profile for the last 1762 // argument. tmp is the number of cells left in the 1763 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1764 // if there's a return to profile. 1765 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1766 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size)); 1767 } 1768 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize)); 1769 } else { 1770 assert(MethodData::profile_return(), "either profile call args or call ret"); 1771 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1772 } 1773 1774 // mdp points right after the end of the 1775 // CallTypeData/VirtualCallTypeData, right after the cells for the 1776 // return value type if there's one 1777 1778 bind(profile_continue); 1779 } 1780 } 1781 1782 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1783 assert_different_registers(mdp, ret, tmp, rbcp); 1784 if (ProfileInterpreter && MethodData::profile_return()) { 1785 Label profile_continue, done; 1786 1787 test_method_data_pointer(mdp, profile_continue); 1788 1789 if (MethodData::profile_return_jsr292_only()) { 1790 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1791 1792 // If we don't profile all invoke bytecodes we must make sure 1793 // it's a bytecode we indeed profile. We can't go back to the 1794 // beginning of the ProfileData we intend to update to check its 1795 // type because we're right after it and we don't known its 1796 // length 1797 Label do_profile; 1798 ldrb(rscratch1, Address(rbcp, 0)); 1799 cmp(rscratch1, (u1)Bytecodes::_invokedynamic); 1800 br(Assembler::EQ, do_profile); 1801 cmp(rscratch1, (u1)Bytecodes::_invokehandle); 1802 br(Assembler::EQ, do_profile); 1803 get_method(tmp); 1804 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset())); 1805 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1806 br(Assembler::NE, profile_continue); 1807 1808 bind(do_profile); 1809 } 1810 1811 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1812 mov(tmp, ret); 1813 profile_obj_type(tmp, mdo_ret_addr); 1814 1815 bind(profile_continue); 1816 } 1817 } 1818 1819 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 1820 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2); 1821 if (ProfileInterpreter && MethodData::profile_parameters()) { 1822 Label profile_continue, done; 1823 1824 test_method_data_pointer(mdp, profile_continue); 1825 1826 // Load the offset of the area within the MDO used for 1827 // parameters. If it's negative we're not profiling any parameters 1828 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1829 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set 1830 1831 // Compute a pointer to the area for parameters from the offset 1832 // and move the pointer to the slot for the last 1833 // parameters. Collect profiling from last parameter down. 1834 // mdo start + parameters offset + array length - 1 1835 add(mdp, mdp, tmp1); 1836 ldr(tmp1, Address(mdp, ArrayData::array_len_offset())); 1837 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1838 1839 Label loop; 1840 bind(loop); 1841 1842 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1843 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1844 int per_arg_scale = exact_log2(DataLayout::cell_size); 1845 add(rscratch1, mdp, off_base); 1846 add(rscratch2, mdp, type_base); 1847 1848 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale)); 1849 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale)); 1850 1851 // load offset on the stack from the slot for this parameter 1852 ldr(tmp2, arg_off); 1853 neg(tmp2, tmp2); 1854 // read the parameter from the local area 1855 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize))); 1856 1857 // profile the parameter 1858 profile_obj_type(tmp2, arg_type); 1859 1860 // go to next parameter 1861 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count()); 1862 br(Assembler::GE, loop); 1863 1864 bind(profile_continue); 1865 } 1866 } 1867 1868 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1869 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1870 get_cache_index_at_bcp(index, 1, sizeof(u4)); 1871 // Get address of invokedynamic array 1872 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1873 // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo) 1874 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1875 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1876 lea(cache, Address(cache, index)); 1877 }