1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include <sys/types.h> 27 28 #include "precompiled.hpp" 29 #include "asm/assembler.hpp" 30 #include "asm/assembler.inline.hpp" 31 #include "ci/ciEnv.hpp" 32 #include "compiler/compileTask.hpp" 33 #include "compiler/disassembler.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSet.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "gc/shared/cardTableBarrierSet.hpp" 38 #include "gc/shared/cardTable.hpp" 39 #include "gc/shared/collectedHeap.hpp" 40 #include "gc/shared/tlab_globals.hpp" 41 #include "interpreter/bytecodeHistogram.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "jvm.h" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "nativeInst_aarch64.hpp" 47 #include "oops/accessDecorators.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_LIRAssembler.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "oops/oop.hpp" 63 #include "opto/compile.hpp" 64 #include "opto/node.hpp" 65 #include "opto/output.hpp" 66 #endif 67 68 #ifdef PRODUCT 69 #define BLOCK_COMMENT(str) /* nothing */ 70 #else 71 #define BLOCK_COMMENT(str) block_comment(str) 72 #endif 73 #define STOP(str) stop(str); 74 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 75 76 #ifdef ASSERT 77 extern "C" void disnm(intptr_t p); 78 #endif 79 // Target-dependent relocation processing 80 // 81 // Instruction sequences whose target may need to be retrieved or 82 // patched are distinguished by their leading instruction, sorting 83 // them into three main instruction groups and related subgroups. 84 // 85 // 1) Branch, Exception and System (insn count = 1) 86 // 1a) Unconditional branch (immediate): 87 // b/bl imm19 88 // 1b) Compare & branch (immediate): 89 // cbz/cbnz Rt imm19 90 // 1c) Test & branch (immediate): 91 // tbz/tbnz Rt imm14 92 // 1d) Conditional branch (immediate): 93 // b.cond imm19 94 // 95 // 2) Loads and Stores (insn count = 1) 96 // 2a) Load register literal: 97 // ldr Rt imm19 98 // 99 // 3) Data Processing Immediate (insn count = 2 or 3) 100 // 3a) PC-rel. addressing 101 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 102 // adr/adrp Rx imm21; add Ry Rx #imm12 103 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 104 // adr/adrp Rx imm21 105 // adr/adrp Rx imm21; movk Rx #imm16<<32 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 107 // The latter form can only happen when the target is an 108 // ExternalAddress, and (by definition) ExternalAddresses don't 109 // move. Because of that property, there is never any need to 110 // patch the last of the three instructions. However, 111 // MacroAssembler::target_addr_for_insn takes all three 112 // instructions into account and returns the correct address. 113 // 3b) Move wide (immediate) 114 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 115 // 116 // A switch on a subset of the instruction's bits provides an 117 // efficient dispatch to these subcases. 118 // 119 // insn[28:26] -> main group ('x' == don't care) 120 // 00x -> UNALLOCATED 121 // 100 -> Data Processing Immediate 122 // 101 -> Branch, Exception and System 123 // x1x -> Loads and Stores 124 // 125 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 126 // n.b. in some cases extra bits need to be checked to verify the 127 // instruction is as expected 128 // 129 // 1) ... xx101x Branch, Exception and System 130 // 1a) 00___x Unconditional branch (immediate) 131 // 1b) 01___0 Compare & branch (immediate) 132 // 1c) 01___1 Test & branch (immediate) 133 // 1d) 10___0 Conditional branch (immediate) 134 // other Should not happen 135 // 136 // 2) ... xxx1x0 Loads and Stores 137 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 138 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 139 // strictly should be 64 bit non-FP/SIMD i.e. 140 // 0101_000 (i.e. requires insn[31:24] == 01011000) 141 // 142 // 3) ... xx100x Data Processing Immediate 143 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 144 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 145 // strictly should be 64 bit movz #imm16<<0 146 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 147 // 148 class RelocActions { 149 protected: 150 typedef int (*reloc_insn)(address insn_addr, address &target); 151 152 virtual reloc_insn adrpMem() = 0; 153 virtual reloc_insn adrpAdd() = 0; 154 virtual reloc_insn adrpMovk() = 0; 155 156 const address _insn_addr; 157 const uint32_t _insn; 158 159 static uint32_t insn_at(address insn_addr, int n) { 160 return ((uint32_t*)insn_addr)[n]; 161 } 162 uint32_t insn_at(int n) const { 163 return insn_at(_insn_addr, n); 164 } 165 166 public: 167 168 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 169 RelocActions(address insn_addr, uint32_t insn) 170 : _insn_addr(insn_addr), _insn(insn) {} 171 172 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 173 virtual int conditionalBranch(address insn_addr, address &target) = 0; 174 virtual int testAndBranch(address insn_addr, address &target) = 0; 175 virtual int loadStore(address insn_addr, address &target) = 0; 176 virtual int adr(address insn_addr, address &target) = 0; 177 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 178 virtual int immediate(address insn_addr, address &target) = 0; 179 virtual void verify(address insn_addr, address &target) = 0; 180 181 int ALWAYSINLINE run(address insn_addr, address &target) { 182 int instructions = 1; 183 184 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 185 switch(dispatch) { 186 case 0b001010: 187 case 0b001011: { 188 instructions = unconditionalBranch(insn_addr, target); 189 break; 190 } 191 case 0b101010: // Conditional branch (immediate) 192 case 0b011010: { // Compare & branch (immediate) 193 instructions = conditionalBranch(insn_addr, target); 194 break; 195 } 196 case 0b011011: { 197 instructions = testAndBranch(insn_addr, target); 198 break; 199 } 200 case 0b001100: 201 case 0b001110: 202 case 0b011100: 203 case 0b011110: 204 case 0b101100: 205 case 0b101110: 206 case 0b111100: 207 case 0b111110: { 208 // load/store 209 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 210 // Load register (literal) 211 instructions = loadStore(insn_addr, target); 212 break; 213 } else { 214 // nothing to do 215 assert(target == 0, "did not expect to relocate target for polling page load"); 216 } 217 break; 218 } 219 case 0b001000: 220 case 0b011000: 221 case 0b101000: 222 case 0b111000: { 223 // adr/adrp 224 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 225 int shift = Instruction_aarch64::extract(_insn, 31, 31); 226 if (shift) { 227 uint32_t insn2 = insn_at(1); 228 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 229 Instruction_aarch64::extract(_insn, 4, 0) == 230 Instruction_aarch64::extract(insn2, 9, 5)) { 231 instructions = adrp(insn_addr, target, adrpMem()); 232 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 233 Instruction_aarch64::extract(_insn, 4, 0) == 234 Instruction_aarch64::extract(insn2, 4, 0)) { 235 instructions = adrp(insn_addr, target, adrpAdd()); 236 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 237 Instruction_aarch64::extract(_insn, 4, 0) == 238 Instruction_aarch64::extract(insn2, 4, 0)) { 239 instructions = adrp(insn_addr, target, adrpMovk()); 240 } else { 241 ShouldNotReachHere(); 242 } 243 } else { 244 instructions = adr(insn_addr, target); 245 } 246 break; 247 } 248 case 0b001001: 249 case 0b011001: 250 case 0b101001: 251 case 0b111001: { 252 instructions = immediate(insn_addr, target); 253 break; 254 } 255 default: { 256 ShouldNotReachHere(); 257 } 258 } 259 260 verify(insn_addr, target); 261 return instructions * NativeInstruction::instruction_size; 262 } 263 }; 264 265 class Patcher : public RelocActions { 266 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 267 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 268 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 269 270 public: 271 Patcher(address insn_addr) : RelocActions(insn_addr) {} 272 273 virtual int unconditionalBranch(address insn_addr, address &target) { 274 intptr_t offset = (target - insn_addr) >> 2; 275 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 276 return 1; 277 } 278 virtual int conditionalBranch(address insn_addr, address &target) { 279 intptr_t offset = (target - insn_addr) >> 2; 280 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 281 return 1; 282 } 283 virtual int testAndBranch(address insn_addr, address &target) { 284 intptr_t offset = (target - insn_addr) >> 2; 285 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 286 return 1; 287 } 288 virtual int loadStore(address insn_addr, address &target) { 289 intptr_t offset = (target - insn_addr) >> 2; 290 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 291 return 1; 292 } 293 virtual int adr(address insn_addr, address &target) { 294 #ifdef ASSERT 295 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 296 #endif 297 // PC-rel. addressing 298 ptrdiff_t offset = target - insn_addr; 299 int offset_lo = offset & 3; 300 offset >>= 2; 301 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 302 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 303 return 1; 304 } 305 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 306 int instructions = 1; 307 #ifdef ASSERT 308 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 309 #endif 310 ptrdiff_t offset = target - insn_addr; 311 instructions = 2; 312 precond(inner != nullptr); 313 // Give the inner reloc a chance to modify the target. 314 address adjusted_target = target; 315 instructions = (*inner)(insn_addr, adjusted_target); 316 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 317 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 318 offset = adr_page - pc_page; 319 int offset_lo = offset & 3; 320 offset >>= 2; 321 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 322 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 323 return instructions; 324 } 325 static int adrpMem_impl(address insn_addr, address &target) { 326 uintptr_t dest = (uintptr_t)target; 327 int offset_lo = dest & 0xfff; 328 uint32_t insn2 = insn_at(insn_addr, 1); 329 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 330 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 331 guarantee(((dest >> size) << size) == dest, "misaligned target"); 332 return 2; 333 } 334 static int adrpAdd_impl(address insn_addr, address &target) { 335 uintptr_t dest = (uintptr_t)target; 336 int offset_lo = dest & 0xfff; 337 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 338 return 2; 339 } 340 static int adrpMovk_impl(address insn_addr, address &target) { 341 uintptr_t dest = uintptr_t(target); 342 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 343 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 344 target = address(dest); 345 return 2; 346 } 347 virtual int immediate(address insn_addr, address &target) { 348 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 349 uint64_t dest = (uint64_t)target; 350 // Move wide constant 351 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 352 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 353 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 354 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 355 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 356 return 3; 357 } 358 virtual void verify(address insn_addr, address &target) { 359 #ifdef ASSERT 360 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 361 if (!(address_is == target)) { 362 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 363 disnm((intptr_t)insn_addr); 364 assert(address_is == target, "should be"); 365 } 366 #endif 367 } 368 }; 369 370 // If insn1 and insn2 use the same register to form an address, either 371 // by an offsetted LDR or a simple ADD, return the offset. If the 372 // second instruction is an LDR, the offset may be scaled. 373 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 374 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 375 Instruction_aarch64::extract(insn1, 4, 0) == 376 Instruction_aarch64::extract(insn2, 9, 5)) { 377 // Load/store register (unsigned immediate) 378 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 379 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 380 byte_offset <<= size; 381 return true; 382 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 383 Instruction_aarch64::extract(insn1, 4, 0) == 384 Instruction_aarch64::extract(insn2, 4, 0)) { 385 // add (immediate) 386 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 387 return true; 388 } 389 return false; 390 } 391 392 class AArch64Decoder : public RelocActions { 393 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 394 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 395 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 396 397 public: 398 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 399 400 virtual int loadStore(address insn_addr, address &target) { 401 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 402 target = insn_addr + (offset << 2); 403 return 1; 404 } 405 virtual int unconditionalBranch(address insn_addr, address &target) { 406 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 407 target = insn_addr + (offset << 2); 408 return 1; 409 } 410 virtual int conditionalBranch(address insn_addr, address &target) { 411 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 412 target = address(((uint64_t)insn_addr + (offset << 2))); 413 return 1; 414 } 415 virtual int testAndBranch(address insn_addr, address &target) { 416 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 417 target = address(((uint64_t)insn_addr + (offset << 2))); 418 return 1; 419 } 420 virtual int adr(address insn_addr, address &target) { 421 // PC-rel. addressing 422 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 423 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 424 target = address((uint64_t)insn_addr + offset); 425 return 1; 426 } 427 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 428 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 429 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 430 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 431 int shift = 12; 432 offset <<= shift; 433 uint64_t target_page = ((uint64_t)insn_addr) + offset; 434 target_page &= ((uint64_t)-1) << shift; 435 uint32_t insn2 = insn_at(1); 436 target = address(target_page); 437 precond(inner != nullptr); 438 (*inner)(insn_addr, target); 439 return 2; 440 } 441 static int adrpMem_impl(address insn_addr, address &target) { 442 uint32_t insn2 = insn_at(insn_addr, 1); 443 // Load/store register (unsigned immediate) 444 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 445 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 446 byte_offset <<= size; 447 target += byte_offset; 448 return 2; 449 } 450 static int adrpAdd_impl(address insn_addr, address &target) { 451 uint32_t insn2 = insn_at(insn_addr, 1); 452 // add (immediate) 453 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 454 target += byte_offset; 455 return 2; 456 } 457 static int adrpMovk_impl(address insn_addr, address &target) { 458 uint32_t insn2 = insn_at(insn_addr, 1); 459 uint64_t dest = uint64_t(target); 460 dest = (dest & 0xffff0000ffffffff) | 461 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 462 target = address(dest); 463 464 // We know the destination 4k page. Maybe we have a third 465 // instruction. 466 uint32_t insn = insn_at(insn_addr, 0); 467 uint32_t insn3 = insn_at(insn_addr, 2); 468 ptrdiff_t byte_offset; 469 if (offset_for(insn, insn3, byte_offset)) { 470 target += byte_offset; 471 return 3; 472 } else { 473 return 2; 474 } 475 } 476 virtual int immediate(address insn_addr, address &target) { 477 uint32_t *insns = (uint32_t *)insn_addr; 478 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 479 // Move wide constant: movz, movk, movk. See movptr(). 480 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 481 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 482 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 483 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 484 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 485 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 486 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 487 return 3; 488 } 489 virtual void verify(address insn_addr, address &target) { 490 } 491 }; 492 493 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 494 AArch64Decoder decoder(insn_addr, insn); 495 address target; 496 decoder.run(insn_addr, target); 497 return target; 498 } 499 500 // Patch any kind of instruction; there may be several instructions. 501 // Return the total length (in bytes) of the instructions. 502 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 503 Patcher patcher(insn_addr); 504 return patcher.run(insn_addr, target); 505 } 506 507 int MacroAssembler::patch_oop(address insn_addr, address o) { 508 int instructions; 509 unsigned insn = *(unsigned*)insn_addr; 510 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 511 512 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 513 // narrow OOPs by setting the upper 16 bits in the first 514 // instruction. 515 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 516 // Move narrow OOP 517 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 518 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 519 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 520 instructions = 2; 521 } else { 522 // Move wide OOP 523 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 524 uintptr_t dest = (uintptr_t)o; 525 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 526 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 527 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 528 instructions = 3; 529 } 530 return instructions * NativeInstruction::instruction_size; 531 } 532 533 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 534 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 535 // We encode narrow ones by setting the upper 16 bits in the first 536 // instruction. 537 NativeInstruction *insn = nativeInstruction_at(insn_addr); 538 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 539 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 540 541 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 542 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 543 return 2 * NativeInstruction::instruction_size; 544 } 545 546 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 547 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 548 return nullptr; 549 } 550 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 551 } 552 553 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 554 if (acquire) { 555 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 556 ldar(tmp, tmp); 557 } else { 558 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 } 560 if (at_return) { 561 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 562 // we may safely use the sp instead to perform the stack watermark check. 563 cmp(in_nmethod ? sp : rfp, tmp); 564 br(Assembler::HI, slow_path); 565 } else { 566 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 567 } 568 } 569 570 void MacroAssembler::rt_call(address dest, Register tmp) { 571 CodeBlob *cb = CodeCache::find_blob(dest); 572 if (cb) { 573 far_call(RuntimeAddress(dest)); 574 } else { 575 lea(tmp, RuntimeAddress(dest)); 576 blr(tmp); 577 } 578 } 579 580 void MacroAssembler::push_cont_fastpath(Register java_thread) { 581 if (!Continuations::enabled()) return; 582 Label done; 583 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 584 cmp(sp, rscratch1); 585 br(Assembler::LS, done); 586 mov(rscratch1, sp); // we can't use sp as the source in str 587 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 588 bind(done); 589 } 590 591 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 592 if (!Continuations::enabled()) return; 593 Label done; 594 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 595 cmp(sp, rscratch1); 596 br(Assembler::LO, done); 597 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 bind(done); 599 } 600 601 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 602 // we must set sp to zero to clear frame 603 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 604 605 // must clear fp, so that compiled frames are not confused; it is 606 // possible that we need it only for debugging 607 if (clear_fp) { 608 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 609 } 610 611 // Always clear the pc because it could have been set by make_walkable() 612 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 613 } 614 615 // Calls to C land 616 // 617 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 618 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 619 // has to be reset to 0. This is required to allow proper stack traversal. 620 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 621 Register last_java_fp, 622 Register last_java_pc, 623 Register scratch) { 624 625 if (last_java_pc->is_valid()) { 626 str(last_java_pc, Address(rthread, 627 JavaThread::frame_anchor_offset() 628 + JavaFrameAnchor::last_Java_pc_offset())); 629 } 630 631 // determine last_java_sp register 632 if (last_java_sp == sp) { 633 mov(scratch, sp); 634 last_java_sp = scratch; 635 } else if (!last_java_sp->is_valid()) { 636 last_java_sp = esp; 637 } 638 639 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 640 641 // last_java_fp is optional 642 if (last_java_fp->is_valid()) { 643 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 644 } 645 } 646 647 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 648 Register last_java_fp, 649 address last_java_pc, 650 Register scratch) { 651 assert(last_java_pc != nullptr, "must provide a valid PC"); 652 653 adr(scratch, last_java_pc); 654 str(scratch, Address(rthread, 655 JavaThread::frame_anchor_offset() 656 + JavaFrameAnchor::last_Java_pc_offset())); 657 658 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 659 } 660 661 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 662 Register last_java_fp, 663 Label &L, 664 Register scratch) { 665 if (L.is_bound()) { 666 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 667 } else { 668 InstructionMark im(this); 669 L.add_patch_at(code(), locator()); 670 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 671 } 672 } 673 674 static inline bool target_needs_far_branch(address addr) { 675 // codecache size <= 128M 676 if (!MacroAssembler::far_branches()) { 677 return false; 678 } 679 // codecache size > 240M 680 if (MacroAssembler::codestub_branch_needs_far_jump()) { 681 return true; 682 } 683 // codecache size: 128M..240M 684 return !CodeCache::is_non_nmethod(addr); 685 } 686 687 void MacroAssembler::far_call(Address entry, Register tmp) { 688 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 689 assert(CodeCache::find_blob(entry.target()) != nullptr, 690 "destination of far call not found in code cache"); 691 assert(entry.rspec().type() == relocInfo::external_word_type 692 || entry.rspec().type() == relocInfo::runtime_call_type 693 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 694 if (target_needs_far_branch(entry.target())) { 695 uint64_t offset; 696 // We can use ADRP here because we know that the total size of 697 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 698 adrp(tmp, entry, offset); 699 add(tmp, tmp, offset); 700 blr(tmp); 701 } else { 702 bl(entry); 703 } 704 } 705 706 int MacroAssembler::far_jump(Address entry, Register tmp) { 707 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 708 assert(CodeCache::find_blob(entry.target()) != nullptr, 709 "destination of far call not found in code cache"); 710 assert(entry.rspec().type() == relocInfo::external_word_type 711 || entry.rspec().type() == relocInfo::runtime_call_type 712 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 713 address start = pc(); 714 if (target_needs_far_branch(entry.target())) { 715 uint64_t offset; 716 // We can use ADRP here because we know that the total size of 717 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 718 adrp(tmp, entry, offset); 719 add(tmp, tmp, offset); 720 br(tmp); 721 } else { 722 b(entry); 723 } 724 return pc() - start; 725 } 726 727 void MacroAssembler::reserved_stack_check() { 728 // testing if reserved zone needs to be enabled 729 Label no_reserved_zone_enabling; 730 731 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 732 cmp(sp, rscratch1); 733 br(Assembler::LO, no_reserved_zone_enabling); 734 735 enter(); // LR and FP are live. 736 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 737 mov(c_rarg0, rthread); 738 blr(rscratch1); 739 leave(); 740 741 // We have already removed our own frame. 742 // throw_delayed_StackOverflowError will think that it's been 743 // called by our caller. 744 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 745 br(rscratch1); 746 should_not_reach_here(); 747 748 bind(no_reserved_zone_enabling); 749 } 750 751 static void pass_arg0(MacroAssembler* masm, Register arg) { 752 if (c_rarg0 != arg ) { 753 masm->mov(c_rarg0, arg); 754 } 755 } 756 757 static void pass_arg1(MacroAssembler* masm, Register arg) { 758 if (c_rarg1 != arg ) { 759 masm->mov(c_rarg1, arg); 760 } 761 } 762 763 static void pass_arg2(MacroAssembler* masm, Register arg) { 764 if (c_rarg2 != arg ) { 765 masm->mov(c_rarg2, arg); 766 } 767 } 768 769 static void pass_arg3(MacroAssembler* masm, Register arg) { 770 if (c_rarg3 != arg ) { 771 masm->mov(c_rarg3, arg); 772 } 773 } 774 775 void MacroAssembler::call_VM_base(Register oop_result, 776 Register java_thread, 777 Register last_java_sp, 778 address entry_point, 779 int number_of_arguments, 780 bool check_exceptions) { 781 // determine java_thread register 782 if (!java_thread->is_valid()) { 783 java_thread = rthread; 784 } 785 786 // determine last_java_sp register 787 if (!last_java_sp->is_valid()) { 788 last_java_sp = esp; 789 } 790 791 // debugging support 792 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 793 assert(java_thread == rthread, "unexpected register"); 794 #ifdef ASSERT 795 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 796 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 797 #endif // ASSERT 798 799 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 800 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 801 802 // push java thread (becomes first argument of C function) 803 804 mov(c_rarg0, java_thread); 805 806 // set last Java frame before call 807 assert(last_java_sp != rfp, "can't use rfp"); 808 809 Label l; 810 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 811 812 // do the call, remove parameters 813 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 814 815 // lr could be poisoned with PAC signature during throw_pending_exception 816 // if it was tail-call optimized by compiler, since lr is not callee-saved 817 // reload it with proper value 818 adr(lr, l); 819 820 // reset last Java frame 821 // Only interpreter should have to clear fp 822 reset_last_Java_frame(true); 823 824 // C++ interp handles this in the interpreter 825 check_and_handle_popframe(java_thread); 826 check_and_handle_earlyret(java_thread); 827 828 if (check_exceptions) { 829 // check for pending exceptions (java_thread is set upon return) 830 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 831 Label ok; 832 cbz(rscratch1, ok); 833 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 834 br(rscratch1); 835 bind(ok); 836 } 837 838 // get oop result if there is one and reset the value in the thread 839 if (oop_result->is_valid()) { 840 get_vm_result(oop_result, java_thread); 841 } 842 } 843 844 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 845 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 846 } 847 848 // Check the entry target is always reachable from any branch. 849 static bool is_always_within_branch_range(Address entry) { 850 const address target = entry.target(); 851 852 if (!CodeCache::contains(target)) { 853 // We always use trampolines for callees outside CodeCache. 854 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 855 return false; 856 } 857 858 if (!MacroAssembler::far_branches()) { 859 return true; 860 } 861 862 if (entry.rspec().type() == relocInfo::runtime_call_type) { 863 // Runtime calls are calls of a non-compiled method (stubs, adapters). 864 // Non-compiled methods stay forever in CodeCache. 865 // We check whether the longest possible branch is within the branch range. 866 assert(CodeCache::find_blob(target) != nullptr && 867 !CodeCache::find_blob(target)->is_compiled(), 868 "runtime call of compiled method"); 869 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 870 const address left_longest_branch_start = CodeCache::low_bound(); 871 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 872 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 873 return is_reachable; 874 } 875 876 return false; 877 } 878 879 // Maybe emit a call via a trampoline. If the code cache is small 880 // trampolines won't be emitted. 881 address MacroAssembler::trampoline_call(Address entry) { 882 assert(entry.rspec().type() == relocInfo::runtime_call_type 883 || entry.rspec().type() == relocInfo::opt_virtual_call_type 884 || entry.rspec().type() == relocInfo::static_call_type 885 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 886 887 address target = entry.target(); 888 889 if (!is_always_within_branch_range(entry)) { 890 if (!in_scratch_emit_size()) { 891 // We don't want to emit a trampoline if C2 is generating dummy 892 // code during its branch shortening phase. 893 if (entry.rspec().type() == relocInfo::runtime_call_type) { 894 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 895 code()->share_trampoline_for(entry.target(), offset()); 896 } else { 897 address stub = emit_trampoline_stub(offset(), target); 898 if (stub == nullptr) { 899 postcond(pc() == badAddress); 900 return nullptr; // CodeCache is full 901 } 902 } 903 } 904 target = pc(); 905 } 906 907 address call_pc = pc(); 908 relocate(entry.rspec()); 909 bl(target); 910 911 postcond(pc() != badAddress); 912 return call_pc; 913 } 914 915 // Emit a trampoline stub for a call to a target which is too far away. 916 // 917 // code sequences: 918 // 919 // call-site: 920 // branch-and-link to <destination> or <trampoline stub> 921 // 922 // Related trampoline stub for this call site in the stub section: 923 // load the call target from the constant pool 924 // branch (LR still points to the call site above) 925 926 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 927 address dest) { 928 // Max stub size: alignment nop, TrampolineStub. 929 address stub = start_a_stub(max_trampoline_stub_size()); 930 if (stub == nullptr) { 931 return nullptr; // CodeBuffer::expand failed 932 } 933 934 // Create a trampoline stub relocation which relates this trampoline stub 935 // with the call instruction at insts_call_instruction_offset in the 936 // instructions code-section. 937 align(wordSize); 938 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 939 + insts_call_instruction_offset)); 940 const int stub_start_offset = offset(); 941 942 // Now, create the trampoline stub's code: 943 // - load the call 944 // - call 945 Label target; 946 ldr(rscratch1, target); 947 br(rscratch1); 948 bind(target); 949 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 950 "should be"); 951 emit_int64((int64_t)dest); 952 953 const address stub_start_addr = addr_at(stub_start_offset); 954 955 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 956 957 end_a_stub(); 958 return stub_start_addr; 959 } 960 961 int MacroAssembler::max_trampoline_stub_size() { 962 // Max stub size: alignment nop, TrampolineStub. 963 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 964 } 965 966 void MacroAssembler::emit_static_call_stub() { 967 // CompiledDirectStaticCall::set_to_interpreted knows the 968 // exact layout of this stub. 969 970 isb(); 971 mov_metadata(rmethod, nullptr); 972 973 // Jump to the entry point of the c2i stub. 974 movptr(rscratch1, 0); 975 br(rscratch1); 976 } 977 978 int MacroAssembler::static_call_stub_size() { 979 // isb; movk; movz; movz; movk; movz; movz; br 980 return 8 * NativeInstruction::instruction_size; 981 } 982 983 void MacroAssembler::c2bool(Register x) { 984 // implements x == 0 ? 0 : 1 985 // note: must only look at least-significant byte of x 986 // since C-style booleans are stored in one byte 987 // only! (was bug) 988 tst(x, 0xff); 989 cset(x, Assembler::NE); 990 } 991 992 address MacroAssembler::ic_call(address entry, jint method_index) { 993 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 994 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 995 // uintptr_t offset; 996 // ldr_constant(rscratch2, const_ptr); 997 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 998 return trampoline_call(Address(entry, rh)); 999 } 1000 1001 // Implementation of call_VM versions 1002 1003 void MacroAssembler::call_VM(Register oop_result, 1004 address entry_point, 1005 bool check_exceptions) { 1006 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1007 } 1008 1009 void MacroAssembler::call_VM(Register oop_result, 1010 address entry_point, 1011 Register arg_1, 1012 bool check_exceptions) { 1013 pass_arg1(this, arg_1); 1014 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1015 } 1016 1017 void MacroAssembler::call_VM(Register oop_result, 1018 address entry_point, 1019 Register arg_1, 1020 Register arg_2, 1021 bool check_exceptions) { 1022 assert(arg_1 != c_rarg2, "smashed arg"); 1023 pass_arg2(this, arg_2); 1024 pass_arg1(this, arg_1); 1025 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1026 } 1027 1028 void MacroAssembler::call_VM(Register oop_result, 1029 address entry_point, 1030 Register arg_1, 1031 Register arg_2, 1032 Register arg_3, 1033 bool check_exceptions) { 1034 assert(arg_1 != c_rarg3, "smashed arg"); 1035 assert(arg_2 != c_rarg3, "smashed arg"); 1036 pass_arg3(this, arg_3); 1037 1038 assert(arg_1 != c_rarg2, "smashed arg"); 1039 pass_arg2(this, arg_2); 1040 1041 pass_arg1(this, arg_1); 1042 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1043 } 1044 1045 void MacroAssembler::call_VM(Register oop_result, 1046 Register last_java_sp, 1047 address entry_point, 1048 int number_of_arguments, 1049 bool check_exceptions) { 1050 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1051 } 1052 1053 void MacroAssembler::call_VM(Register oop_result, 1054 Register last_java_sp, 1055 address entry_point, 1056 Register arg_1, 1057 bool check_exceptions) { 1058 pass_arg1(this, arg_1); 1059 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1060 } 1061 1062 void MacroAssembler::call_VM(Register oop_result, 1063 Register last_java_sp, 1064 address entry_point, 1065 Register arg_1, 1066 Register arg_2, 1067 bool check_exceptions) { 1068 1069 assert(arg_1 != c_rarg2, "smashed arg"); 1070 pass_arg2(this, arg_2); 1071 pass_arg1(this, arg_1); 1072 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1073 } 1074 1075 void MacroAssembler::call_VM(Register oop_result, 1076 Register last_java_sp, 1077 address entry_point, 1078 Register arg_1, 1079 Register arg_2, 1080 Register arg_3, 1081 bool check_exceptions) { 1082 assert(arg_1 != c_rarg3, "smashed arg"); 1083 assert(arg_2 != c_rarg3, "smashed arg"); 1084 pass_arg3(this, arg_3); 1085 assert(arg_1 != c_rarg2, "smashed arg"); 1086 pass_arg2(this, arg_2); 1087 pass_arg1(this, arg_1); 1088 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1089 } 1090 1091 1092 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1093 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1094 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1095 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1096 } 1097 1098 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1099 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1100 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1101 } 1102 1103 void MacroAssembler::align(int modulus) { 1104 while (offset() % modulus != 0) nop(); 1105 } 1106 1107 void MacroAssembler::post_call_nop() { 1108 if (!Continuations::enabled()) { 1109 return; 1110 } 1111 InstructionMark im(this); 1112 relocate(post_call_nop_Relocation::spec()); 1113 InlineSkippedInstructionsCounter skipCounter(this); 1114 nop(); 1115 movk(zr, 0); 1116 movk(zr, 0); 1117 } 1118 1119 // these are no-ops overridden by InterpreterMacroAssembler 1120 1121 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1122 1123 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1124 1125 // Look up the method for a megamorphic invokeinterface call. 1126 // The target method is determined by <intf_klass, itable_index>. 1127 // The receiver klass is in recv_klass. 1128 // On success, the result will be in method_result, and execution falls through. 1129 // On failure, execution transfers to the given label. 1130 void MacroAssembler::lookup_interface_method(Register recv_klass, 1131 Register intf_klass, 1132 RegisterOrConstant itable_index, 1133 Register method_result, 1134 Register scan_temp, 1135 Label& L_no_such_interface, 1136 bool return_method) { 1137 assert_different_registers(recv_klass, intf_klass, scan_temp); 1138 assert_different_registers(method_result, intf_klass, scan_temp); 1139 assert(recv_klass != method_result || !return_method, 1140 "recv_klass can be destroyed when method isn't needed"); 1141 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1142 "caller must use same register for non-constant itable index as for method"); 1143 1144 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1145 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1146 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1147 int scan_step = itableOffsetEntry::size() * wordSize; 1148 int vte_size = vtableEntry::size_in_bytes(); 1149 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1150 1151 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1152 1153 // %%% Could store the aligned, prescaled offset in the klassoop. 1154 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1155 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1156 add(scan_temp, scan_temp, vtable_base); 1157 1158 if (return_method) { 1159 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1160 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1161 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1162 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1163 if (itentry_off) 1164 add(recv_klass, recv_klass, itentry_off); 1165 } 1166 1167 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1168 // if (scan->interface() == intf) { 1169 // result = (klass + scan->offset() + itable_index); 1170 // } 1171 // } 1172 Label search, found_method; 1173 1174 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1175 cmp(intf_klass, method_result); 1176 br(Assembler::EQ, found_method); 1177 bind(search); 1178 // Check that the previous entry is non-null. A null entry means that 1179 // the receiver class doesn't implement the interface, and wasn't the 1180 // same as when the caller was compiled. 1181 cbz(method_result, L_no_such_interface); 1182 if (itableOffsetEntry::interface_offset() != 0) { 1183 add(scan_temp, scan_temp, scan_step); 1184 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1185 } else { 1186 ldr(method_result, Address(pre(scan_temp, scan_step))); 1187 } 1188 cmp(intf_klass, method_result); 1189 br(Assembler::NE, search); 1190 1191 bind(found_method); 1192 1193 // Got a hit. 1194 if (return_method) { 1195 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1196 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1197 } 1198 } 1199 1200 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1201 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder 1202 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1203 // The target method is determined by <holder_klass, itable_index>. 1204 // The receiver klass is in recv_klass. 1205 // On success, the result will be in method_result, and execution falls through. 1206 // On failure, execution transfers to the given label. 1207 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1208 Register holder_klass, 1209 Register resolved_klass, 1210 Register method_result, 1211 Register temp_itbl_klass, 1212 Register scan_temp, 1213 int itable_index, 1214 Label& L_no_such_interface) { 1215 // 'method_result' is only used as output register at the very end of this method. 1216 // Until then we can reuse it as 'holder_offset'. 1217 Register holder_offset = method_result; 1218 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1219 1220 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1221 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1222 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1223 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1224 1225 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1226 1227 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1228 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1229 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1230 // temp_itbl_klass = itable[0]._interface; 1231 int vtblEntrySize = vtableEntry::size_in_bytes(); 1232 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1233 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1234 mov(holder_offset, zr); 1235 // scan_temp = &(itable[0]._interface) 1236 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1237 1238 // Initial checks: 1239 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1240 // - if (itable[0] == holder_klass), shortcut to "holder found" 1241 // - if (itable[0] == 0), no such interface 1242 cmp(resolved_klass, holder_klass); 1243 br(Assembler::NE, L_loop_search_resolved_entry); 1244 cmp(holder_klass, temp_itbl_klass); 1245 br(Assembler::EQ, L_holder_found); 1246 cbz(temp_itbl_klass, L_no_such_interface); 1247 1248 // Loop: Look for holder_klass record in itable 1249 // do { 1250 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1251 // if (temp_itbl_klass == holder_klass) { 1252 // goto L_holder_found; // Found! 1253 // } 1254 // } while (temp_itbl_klass != 0); 1255 // goto L_no_such_interface // Not found. 1256 Label L_search_holder; 1257 bind(L_search_holder); 1258 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1259 cmp(holder_klass, temp_itbl_klass); 1260 br(Assembler::EQ, L_holder_found); 1261 cbnz(temp_itbl_klass, L_search_holder); 1262 1263 b(L_no_such_interface); 1264 1265 // Loop: Look for resolved_class record in itable 1266 // while (true) { 1267 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1268 // if (temp_itbl_klass == 0) { 1269 // goto L_no_such_interface; 1270 // } 1271 // if (temp_itbl_klass == resolved_klass) { 1272 // goto L_resolved_found; // Found! 1273 // } 1274 // if (temp_itbl_klass == holder_klass) { 1275 // holder_offset = scan_temp; 1276 // } 1277 // } 1278 // 1279 Label L_loop_search_resolved; 1280 bind(L_loop_search_resolved); 1281 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1282 bind(L_loop_search_resolved_entry); 1283 cbz(temp_itbl_klass, L_no_such_interface); 1284 cmp(resolved_klass, temp_itbl_klass); 1285 br(Assembler::EQ, L_resolved_found); 1286 cmp(holder_klass, temp_itbl_klass); 1287 br(Assembler::NE, L_loop_search_resolved); 1288 mov(holder_offset, scan_temp); 1289 b(L_loop_search_resolved); 1290 1291 // See if we already have a holder klass. If not, go and scan for it. 1292 bind(L_resolved_found); 1293 cbz(holder_offset, L_search_holder); 1294 mov(scan_temp, holder_offset); 1295 1296 // Finally, scan_temp contains holder_klass vtable offset 1297 bind(L_holder_found); 1298 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1299 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1300 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1301 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1302 } 1303 1304 // virtual method calling 1305 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1306 RegisterOrConstant vtable_index, 1307 Register method_result) { 1308 assert(vtableEntry::size() * wordSize == 8, 1309 "adjust the scaling in the code below"); 1310 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1311 1312 if (vtable_index.is_register()) { 1313 lea(method_result, Address(recv_klass, 1314 vtable_index.as_register(), 1315 Address::lsl(LogBytesPerWord))); 1316 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1317 } else { 1318 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1319 ldr(method_result, 1320 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1321 } 1322 } 1323 1324 void MacroAssembler::check_klass_subtype(Register sub_klass, 1325 Register super_klass, 1326 Register temp_reg, 1327 Label& L_success) { 1328 Label L_failure; 1329 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1330 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1331 bind(L_failure); 1332 } 1333 1334 1335 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1336 Register super_klass, 1337 Register temp_reg, 1338 Label* L_success, 1339 Label* L_failure, 1340 Label* L_slow_path, 1341 RegisterOrConstant super_check_offset) { 1342 assert_different_registers(sub_klass, super_klass, temp_reg); 1343 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1344 if (super_check_offset.is_register()) { 1345 assert_different_registers(sub_klass, super_klass, 1346 super_check_offset.as_register()); 1347 } else if (must_load_sco) { 1348 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1349 } 1350 1351 Label L_fallthrough; 1352 int label_nulls = 0; 1353 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1354 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1355 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1356 assert(label_nulls <= 1, "at most one null in the batch"); 1357 1358 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1359 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1360 Address super_check_offset_addr(super_klass, sco_offset); 1361 1362 // Hacked jmp, which may only be used just before L_fallthrough. 1363 #define final_jmp(label) \ 1364 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1365 else b(label) /*omit semi*/ 1366 1367 // If the pointers are equal, we are done (e.g., String[] elements). 1368 // This self-check enables sharing of secondary supertype arrays among 1369 // non-primary types such as array-of-interface. Otherwise, each such 1370 // type would need its own customized SSA. 1371 // We move this check to the front of the fast path because many 1372 // type checks are in fact trivially successful in this manner, 1373 // so we get a nicely predicted branch right at the start of the check. 1374 cmp(sub_klass, super_klass); 1375 br(Assembler::EQ, *L_success); 1376 1377 // Check the supertype display: 1378 if (must_load_sco) { 1379 ldrw(temp_reg, super_check_offset_addr); 1380 super_check_offset = RegisterOrConstant(temp_reg); 1381 } 1382 Address super_check_addr(sub_klass, super_check_offset); 1383 ldr(rscratch1, super_check_addr); 1384 cmp(super_klass, rscratch1); // load displayed supertype 1385 1386 // This check has worked decisively for primary supers. 1387 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1388 // (Secondary supers are interfaces and very deeply nested subtypes.) 1389 // This works in the same check above because of a tricky aliasing 1390 // between the super_cache and the primary super display elements. 1391 // (The 'super_check_addr' can address either, as the case requires.) 1392 // Note that the cache is updated below if it does not help us find 1393 // what we need immediately. 1394 // So if it was a primary super, we can just fail immediately. 1395 // Otherwise, it's the slow path for us (no success at this point). 1396 1397 if (super_check_offset.is_register()) { 1398 br(Assembler::EQ, *L_success); 1399 subs(zr, super_check_offset.as_register(), sc_offset); 1400 if (L_failure == &L_fallthrough) { 1401 br(Assembler::EQ, *L_slow_path); 1402 } else { 1403 br(Assembler::NE, *L_failure); 1404 final_jmp(*L_slow_path); 1405 } 1406 } else if (super_check_offset.as_constant() == sc_offset) { 1407 // Need a slow path; fast failure is impossible. 1408 if (L_slow_path == &L_fallthrough) { 1409 br(Assembler::EQ, *L_success); 1410 } else { 1411 br(Assembler::NE, *L_slow_path); 1412 final_jmp(*L_success); 1413 } 1414 } else { 1415 // No slow path; it's a fast decision. 1416 if (L_failure == &L_fallthrough) { 1417 br(Assembler::EQ, *L_success); 1418 } else { 1419 br(Assembler::NE, *L_failure); 1420 final_jmp(*L_success); 1421 } 1422 } 1423 1424 bind(L_fallthrough); 1425 1426 #undef final_jmp 1427 } 1428 1429 // These two are taken from x86, but they look generally useful 1430 1431 // scans count pointer sized words at [addr] for occurrence of value, 1432 // generic 1433 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1434 Register scratch) { 1435 Label Lloop, Lexit; 1436 cbz(count, Lexit); 1437 bind(Lloop); 1438 ldr(scratch, post(addr, wordSize)); 1439 cmp(value, scratch); 1440 br(EQ, Lexit); 1441 sub(count, count, 1); 1442 cbnz(count, Lloop); 1443 bind(Lexit); 1444 } 1445 1446 // scans count 4 byte words at [addr] for occurrence of value, 1447 // generic 1448 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1449 Register scratch) { 1450 Label Lloop, Lexit; 1451 cbz(count, Lexit); 1452 bind(Lloop); 1453 ldrw(scratch, post(addr, wordSize)); 1454 cmpw(value, scratch); 1455 br(EQ, Lexit); 1456 sub(count, count, 1); 1457 cbnz(count, Lloop); 1458 bind(Lexit); 1459 } 1460 1461 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1462 Register super_klass, 1463 Register temp_reg, 1464 Register temp2_reg, 1465 Label* L_success, 1466 Label* L_failure, 1467 bool set_cond_codes) { 1468 assert_different_registers(sub_klass, super_klass, temp_reg); 1469 if (temp2_reg != noreg) 1470 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1471 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1472 1473 Label L_fallthrough; 1474 int label_nulls = 0; 1475 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1476 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1477 assert(label_nulls <= 1, "at most one null in the batch"); 1478 1479 // a couple of useful fields in sub_klass: 1480 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1481 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1482 Address secondary_supers_addr(sub_klass, ss_offset); 1483 Address super_cache_addr( sub_klass, sc_offset); 1484 1485 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1486 1487 // Do a linear scan of the secondary super-klass chain. 1488 // This code is rarely used, so simplicity is a virtue here. 1489 // The repne_scan instruction uses fixed registers, which we must spill. 1490 // Don't worry too much about pre-existing connections with the input regs. 1491 1492 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1493 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1494 1495 RegSet pushed_registers; 1496 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1497 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1498 1499 if (super_klass != r0) { 1500 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1501 } 1502 1503 push(pushed_registers, sp); 1504 1505 // Get super_klass value into r0 (even if it was in r5 or r2). 1506 if (super_klass != r0) { 1507 mov(r0, super_klass); 1508 } 1509 1510 #ifndef PRODUCT 1511 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1512 Address pst_counter_addr(rscratch2); 1513 ldr(rscratch1, pst_counter_addr); 1514 add(rscratch1, rscratch1, 1); 1515 str(rscratch1, pst_counter_addr); 1516 #endif //PRODUCT 1517 1518 // We will consult the secondary-super array. 1519 ldr(r5, secondary_supers_addr); 1520 // Load the array length. 1521 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1522 // Skip to start of data. 1523 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1524 1525 cmp(sp, zr); // Clear Z flag; SP is never zero 1526 // Scan R2 words at [R5] for an occurrence of R0. 1527 // Set NZ/Z based on last compare. 1528 repne_scan(r5, r0, r2, rscratch1); 1529 1530 // Unspill the temp. registers: 1531 pop(pushed_registers, sp); 1532 1533 br(Assembler::NE, *L_failure); 1534 1535 // Success. Cache the super we found and proceed in triumph. 1536 str(super_klass, super_cache_addr); 1537 1538 if (L_success != &L_fallthrough) { 1539 b(*L_success); 1540 } 1541 1542 #undef IS_A_TEMP 1543 1544 bind(L_fallthrough); 1545 } 1546 1547 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1548 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 1549 assert_different_registers(klass, rthread, scratch); 1550 1551 Label L_fallthrough, L_tmp; 1552 if (L_fast_path == nullptr) { 1553 L_fast_path = &L_fallthrough; 1554 } else if (L_slow_path == nullptr) { 1555 L_slow_path = &L_fallthrough; 1556 } 1557 // Fast path check: class is fully initialized 1558 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1559 subs(zr, scratch, InstanceKlass::fully_initialized); 1560 br(Assembler::EQ, *L_fast_path); 1561 1562 // Fast path check: current thread is initializer thread 1563 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1564 cmp(rthread, scratch); 1565 1566 if (L_slow_path == &L_fallthrough) { 1567 br(Assembler::EQ, *L_fast_path); 1568 bind(*L_slow_path); 1569 } else if (L_fast_path == &L_fallthrough) { 1570 br(Assembler::NE, *L_slow_path); 1571 bind(*L_fast_path); 1572 } else { 1573 Unimplemented(); 1574 } 1575 } 1576 1577 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 1578 if (!VerifyOops) return; 1579 1580 // Pass register number to verify_oop_subroutine 1581 const char* b = nullptr; 1582 { 1583 ResourceMark rm; 1584 stringStream ss; 1585 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 1586 b = code_string(ss.as_string()); 1587 } 1588 BLOCK_COMMENT("verify_oop {"); 1589 1590 strip_return_address(); // This might happen within a stack frame. 1591 protect_return_address(); 1592 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1593 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1594 1595 mov(r0, reg); 1596 movptr(rscratch1, (uintptr_t)(address)b); 1597 1598 // call indirectly to solve generation ordering problem 1599 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1600 ldr(rscratch2, Address(rscratch2)); 1601 blr(rscratch2); 1602 1603 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1604 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1605 authenticate_return_address(); 1606 1607 BLOCK_COMMENT("} verify_oop"); 1608 } 1609 1610 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 1611 if (!VerifyOops) return; 1612 1613 const char* b = nullptr; 1614 { 1615 ResourceMark rm; 1616 stringStream ss; 1617 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 1618 b = code_string(ss.as_string()); 1619 } 1620 BLOCK_COMMENT("verify_oop_addr {"); 1621 1622 strip_return_address(); // This might happen within a stack frame. 1623 protect_return_address(); 1624 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1625 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1626 1627 // addr may contain sp so we will have to adjust it based on the 1628 // pushes that we just did. 1629 if (addr.uses(sp)) { 1630 lea(r0, addr); 1631 ldr(r0, Address(r0, 4 * wordSize)); 1632 } else { 1633 ldr(r0, addr); 1634 } 1635 movptr(rscratch1, (uintptr_t)(address)b); 1636 1637 // call indirectly to solve generation ordering problem 1638 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1639 ldr(rscratch2, Address(rscratch2)); 1640 blr(rscratch2); 1641 1642 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1643 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1644 authenticate_return_address(); 1645 1646 BLOCK_COMMENT("} verify_oop_addr"); 1647 } 1648 1649 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1650 int extra_slot_offset) { 1651 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1652 int stackElementSize = Interpreter::stackElementSize; 1653 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1654 #ifdef ASSERT 1655 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1656 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1657 #endif 1658 if (arg_slot.is_constant()) { 1659 return Address(esp, arg_slot.as_constant() * stackElementSize 1660 + offset); 1661 } else { 1662 add(rscratch1, esp, arg_slot.as_register(), 1663 ext::uxtx, exact_log2(stackElementSize)); 1664 return Address(rscratch1, offset); 1665 } 1666 } 1667 1668 void MacroAssembler::call_VM_leaf_base(address entry_point, 1669 int number_of_arguments, 1670 Label *retaddr) { 1671 Label E, L; 1672 1673 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1674 1675 mov(rscratch1, entry_point); 1676 blr(rscratch1); 1677 if (retaddr) 1678 bind(*retaddr); 1679 1680 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1681 } 1682 1683 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1684 call_VM_leaf_base(entry_point, number_of_arguments); 1685 } 1686 1687 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1688 pass_arg0(this, arg_0); 1689 call_VM_leaf_base(entry_point, 1); 1690 } 1691 1692 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1693 pass_arg0(this, arg_0); 1694 pass_arg1(this, arg_1); 1695 call_VM_leaf_base(entry_point, 2); 1696 } 1697 1698 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1699 Register arg_1, Register arg_2) { 1700 pass_arg0(this, arg_0); 1701 pass_arg1(this, arg_1); 1702 pass_arg2(this, arg_2); 1703 call_VM_leaf_base(entry_point, 3); 1704 } 1705 1706 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1707 pass_arg0(this, arg_0); 1708 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1709 } 1710 1711 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1712 1713 assert(arg_0 != c_rarg1, "smashed arg"); 1714 pass_arg1(this, arg_1); 1715 pass_arg0(this, arg_0); 1716 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1717 } 1718 1719 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1720 assert(arg_0 != c_rarg2, "smashed arg"); 1721 assert(arg_1 != c_rarg2, "smashed arg"); 1722 pass_arg2(this, arg_2); 1723 assert(arg_0 != c_rarg1, "smashed arg"); 1724 pass_arg1(this, arg_1); 1725 pass_arg0(this, arg_0); 1726 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1727 } 1728 1729 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1730 assert(arg_0 != c_rarg3, "smashed arg"); 1731 assert(arg_1 != c_rarg3, "smashed arg"); 1732 assert(arg_2 != c_rarg3, "smashed arg"); 1733 pass_arg3(this, arg_3); 1734 assert(arg_0 != c_rarg2, "smashed arg"); 1735 assert(arg_1 != c_rarg2, "smashed arg"); 1736 pass_arg2(this, arg_2); 1737 assert(arg_0 != c_rarg1, "smashed arg"); 1738 pass_arg1(this, arg_1); 1739 pass_arg0(this, arg_0); 1740 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1741 } 1742 1743 void MacroAssembler::null_check(Register reg, int offset) { 1744 if (needs_explicit_null_check(offset)) { 1745 // provoke OS null exception if reg is null by 1746 // accessing M[reg] w/o changing any registers 1747 // NOTE: this is plenty to provoke a segv 1748 ldr(zr, Address(reg)); 1749 } else { 1750 // nothing to do, (later) access of M[reg + offset] 1751 // will provoke OS null exception if reg is null 1752 } 1753 } 1754 1755 // MacroAssembler protected routines needed to implement 1756 // public methods 1757 1758 void MacroAssembler::mov(Register r, Address dest) { 1759 code_section()->relocate(pc(), dest.rspec()); 1760 uint64_t imm64 = (uint64_t)dest.target(); 1761 movptr(r, imm64); 1762 } 1763 1764 // Move a constant pointer into r. In AArch64 mode the virtual 1765 // address space is 48 bits in size, so we only need three 1766 // instructions to create a patchable instruction sequence that can 1767 // reach anywhere. 1768 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1769 #ifndef PRODUCT 1770 { 1771 char buffer[64]; 1772 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1773 block_comment(buffer); 1774 } 1775 #endif 1776 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1777 movz(r, imm64 & 0xffff); 1778 imm64 >>= 16; 1779 movk(r, imm64 & 0xffff, 16); 1780 imm64 >>= 16; 1781 movk(r, imm64 & 0xffff, 32); 1782 } 1783 1784 // Macro to mov replicated immediate to vector register. 1785 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1786 // the upper 56/48/32 bits must be zeros for B/H/S type. 1787 // Vd will get the following values for different arrangements in T 1788 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1789 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1790 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1791 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1792 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1793 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1794 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1795 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1796 // Clobbers rscratch1 1797 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1798 assert(T != T1Q, "unsupported"); 1799 if (T == T1D || T == T2D) { 1800 int imm = operand_valid_for_movi_immediate(imm64, T); 1801 if (-1 != imm) { 1802 movi(Vd, T, imm); 1803 } else { 1804 mov(rscratch1, imm64); 1805 dup(Vd, T, rscratch1); 1806 } 1807 return; 1808 } 1809 1810 #ifdef ASSERT 1811 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1812 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1813 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1814 #endif 1815 int shift = operand_valid_for_movi_immediate(imm64, T); 1816 uint32_t imm32 = imm64 & 0xffffffffULL; 1817 if (shift >= 0) { 1818 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1819 } else { 1820 movw(rscratch1, imm32); 1821 dup(Vd, T, rscratch1); 1822 } 1823 } 1824 1825 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1826 { 1827 #ifndef PRODUCT 1828 { 1829 char buffer[64]; 1830 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1831 block_comment(buffer); 1832 } 1833 #endif 1834 if (operand_valid_for_logical_immediate(false, imm64)) { 1835 orr(dst, zr, imm64); 1836 } else { 1837 // we can use a combination of MOVZ or MOVN with 1838 // MOVK to build up the constant 1839 uint64_t imm_h[4]; 1840 int zero_count = 0; 1841 int neg_count = 0; 1842 int i; 1843 for (i = 0; i < 4; i++) { 1844 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1845 if (imm_h[i] == 0) { 1846 zero_count++; 1847 } else if (imm_h[i] == 0xffffL) { 1848 neg_count++; 1849 } 1850 } 1851 if (zero_count == 4) { 1852 // one MOVZ will do 1853 movz(dst, 0); 1854 } else if (neg_count == 4) { 1855 // one MOVN will do 1856 movn(dst, 0); 1857 } else if (zero_count == 3) { 1858 for (i = 0; i < 4; i++) { 1859 if (imm_h[i] != 0L) { 1860 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1861 break; 1862 } 1863 } 1864 } else if (neg_count == 3) { 1865 // one MOVN will do 1866 for (int i = 0; i < 4; i++) { 1867 if (imm_h[i] != 0xffffL) { 1868 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1869 break; 1870 } 1871 } 1872 } else if (zero_count == 2) { 1873 // one MOVZ and one MOVK will do 1874 for (i = 0; i < 3; i++) { 1875 if (imm_h[i] != 0L) { 1876 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1877 i++; 1878 break; 1879 } 1880 } 1881 for (;i < 4; i++) { 1882 if (imm_h[i] != 0L) { 1883 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1884 } 1885 } 1886 } else if (neg_count == 2) { 1887 // one MOVN and one MOVK will do 1888 for (i = 0; i < 4; i++) { 1889 if (imm_h[i] != 0xffffL) { 1890 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1891 i++; 1892 break; 1893 } 1894 } 1895 for (;i < 4; i++) { 1896 if (imm_h[i] != 0xffffL) { 1897 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1898 } 1899 } 1900 } else if (zero_count == 1) { 1901 // one MOVZ and two MOVKs will do 1902 for (i = 0; i < 4; i++) { 1903 if (imm_h[i] != 0L) { 1904 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1905 i++; 1906 break; 1907 } 1908 } 1909 for (;i < 4; i++) { 1910 if (imm_h[i] != 0x0L) { 1911 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1912 } 1913 } 1914 } else if (neg_count == 1) { 1915 // one MOVN and two MOVKs will do 1916 for (i = 0; i < 4; i++) { 1917 if (imm_h[i] != 0xffffL) { 1918 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1919 i++; 1920 break; 1921 } 1922 } 1923 for (;i < 4; i++) { 1924 if (imm_h[i] != 0xffffL) { 1925 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1926 } 1927 } 1928 } else { 1929 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1930 movz(dst, (uint32_t)imm_h[0], 0); 1931 for (i = 1; i < 4; i++) { 1932 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1933 } 1934 } 1935 } 1936 } 1937 1938 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1939 { 1940 #ifndef PRODUCT 1941 { 1942 char buffer[64]; 1943 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1944 block_comment(buffer); 1945 } 1946 #endif 1947 if (operand_valid_for_logical_immediate(true, imm32)) { 1948 orrw(dst, zr, imm32); 1949 } else { 1950 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1951 // constant 1952 uint32_t imm_h[2]; 1953 imm_h[0] = imm32 & 0xffff; 1954 imm_h[1] = ((imm32 >> 16) & 0xffff); 1955 if (imm_h[0] == 0) { 1956 movzw(dst, imm_h[1], 16); 1957 } else if (imm_h[0] == 0xffff) { 1958 movnw(dst, imm_h[1] ^ 0xffff, 16); 1959 } else if (imm_h[1] == 0) { 1960 movzw(dst, imm_h[0], 0); 1961 } else if (imm_h[1] == 0xffff) { 1962 movnw(dst, imm_h[0] ^ 0xffff, 0); 1963 } else { 1964 // use a MOVZ and MOVK (makes it easier to debug) 1965 movzw(dst, imm_h[0], 0); 1966 movkw(dst, imm_h[1], 16); 1967 } 1968 } 1969 } 1970 1971 // Form an address from base + offset in Rd. Rd may or may 1972 // not actually be used: you must use the Address that is returned. 1973 // It is up to you to ensure that the shift provided matches the size 1974 // of your data. 1975 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1976 if (Address::offset_ok_for_immed(byte_offset, shift)) 1977 // It fits; no need for any heroics 1978 return Address(base, byte_offset); 1979 1980 // Don't do anything clever with negative or misaligned offsets 1981 unsigned mask = (1 << shift) - 1; 1982 if (byte_offset < 0 || byte_offset & mask) { 1983 mov(Rd, byte_offset); 1984 add(Rd, base, Rd); 1985 return Address(Rd); 1986 } 1987 1988 // See if we can do this with two 12-bit offsets 1989 { 1990 uint64_t word_offset = byte_offset >> shift; 1991 uint64_t masked_offset = word_offset & 0xfff000; 1992 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1993 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1994 add(Rd, base, masked_offset << shift); 1995 word_offset -= masked_offset; 1996 return Address(Rd, word_offset << shift); 1997 } 1998 } 1999 2000 // Do it the hard way 2001 mov(Rd, byte_offset); 2002 add(Rd, base, Rd); 2003 return Address(Rd); 2004 } 2005 2006 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2007 bool want_remainder, Register scratch) 2008 { 2009 // Full implementation of Java idiv and irem. The function 2010 // returns the (pc) offset of the div instruction - may be needed 2011 // for implicit exceptions. 2012 // 2013 // constraint : ra/rb =/= scratch 2014 // normal case 2015 // 2016 // input : ra: dividend 2017 // rb: divisor 2018 // 2019 // result: either 2020 // quotient (= ra idiv rb) 2021 // remainder (= ra irem rb) 2022 2023 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2024 2025 int idivl_offset = offset(); 2026 if (! want_remainder) { 2027 sdivw(result, ra, rb); 2028 } else { 2029 sdivw(scratch, ra, rb); 2030 Assembler::msubw(result, scratch, rb, ra); 2031 } 2032 2033 return idivl_offset; 2034 } 2035 2036 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2037 bool want_remainder, Register scratch) 2038 { 2039 // Full implementation of Java ldiv and lrem. The function 2040 // returns the (pc) offset of the div instruction - may be needed 2041 // for implicit exceptions. 2042 // 2043 // constraint : ra/rb =/= scratch 2044 // normal case 2045 // 2046 // input : ra: dividend 2047 // rb: divisor 2048 // 2049 // result: either 2050 // quotient (= ra idiv rb) 2051 // remainder (= ra irem rb) 2052 2053 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2054 2055 int idivq_offset = offset(); 2056 if (! want_remainder) { 2057 sdiv(result, ra, rb); 2058 } else { 2059 sdiv(scratch, ra, rb); 2060 Assembler::msub(result, scratch, rb, ra); 2061 } 2062 2063 return idivq_offset; 2064 } 2065 2066 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2067 address prev = pc() - NativeMembar::instruction_size; 2068 address last = code()->last_insn(); 2069 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2070 NativeMembar *bar = NativeMembar_at(prev); 2071 // We are merging two memory barrier instructions. On AArch64 we 2072 // can do this simply by ORing them together. 2073 bar->set_kind(bar->get_kind() | order_constraint); 2074 BLOCK_COMMENT("merged membar"); 2075 } else { 2076 code()->set_last_insn(pc()); 2077 dmb(Assembler::barrier(order_constraint)); 2078 } 2079 } 2080 2081 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2082 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2083 merge_ldst(rt, adr, size_in_bytes, is_store); 2084 code()->clear_last_insn(); 2085 return true; 2086 } else { 2087 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2088 const uint64_t mask = size_in_bytes - 1; 2089 if (adr.getMode() == Address::base_plus_offset && 2090 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2091 code()->set_last_insn(pc()); 2092 } 2093 return false; 2094 } 2095 } 2096 2097 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2098 // We always try to merge two adjacent loads into one ldp. 2099 if (!try_merge_ldst(Rx, adr, 8, false)) { 2100 Assembler::ldr(Rx, adr); 2101 } 2102 } 2103 2104 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2105 // We always try to merge two adjacent loads into one ldp. 2106 if (!try_merge_ldst(Rw, adr, 4, false)) { 2107 Assembler::ldrw(Rw, adr); 2108 } 2109 } 2110 2111 void MacroAssembler::str(Register Rx, const Address &adr) { 2112 // We always try to merge two adjacent stores into one stp. 2113 if (!try_merge_ldst(Rx, adr, 8, true)) { 2114 Assembler::str(Rx, adr); 2115 } 2116 } 2117 2118 void MacroAssembler::strw(Register Rw, const Address &adr) { 2119 // We always try to merge two adjacent stores into one stp. 2120 if (!try_merge_ldst(Rw, adr, 4, true)) { 2121 Assembler::strw(Rw, adr); 2122 } 2123 } 2124 2125 // MacroAssembler routines found actually to be needed 2126 2127 void MacroAssembler::push(Register src) 2128 { 2129 str(src, Address(pre(esp, -1 * wordSize))); 2130 } 2131 2132 void MacroAssembler::pop(Register dst) 2133 { 2134 ldr(dst, Address(post(esp, 1 * wordSize))); 2135 } 2136 2137 // Note: load_unsigned_short used to be called load_unsigned_word. 2138 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2139 int off = offset(); 2140 ldrh(dst, src); 2141 return off; 2142 } 2143 2144 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2145 int off = offset(); 2146 ldrb(dst, src); 2147 return off; 2148 } 2149 2150 int MacroAssembler::load_signed_short(Register dst, Address src) { 2151 int off = offset(); 2152 ldrsh(dst, src); 2153 return off; 2154 } 2155 2156 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2157 int off = offset(); 2158 ldrsb(dst, src); 2159 return off; 2160 } 2161 2162 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2163 int off = offset(); 2164 ldrshw(dst, src); 2165 return off; 2166 } 2167 2168 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2169 int off = offset(); 2170 ldrsbw(dst, src); 2171 return off; 2172 } 2173 2174 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2175 switch (size_in_bytes) { 2176 case 8: ldr(dst, src); break; 2177 case 4: ldrw(dst, src); break; 2178 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2179 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2180 default: ShouldNotReachHere(); 2181 } 2182 } 2183 2184 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2185 switch (size_in_bytes) { 2186 case 8: str(src, dst); break; 2187 case 4: strw(src, dst); break; 2188 case 2: strh(src, dst); break; 2189 case 1: strb(src, dst); break; 2190 default: ShouldNotReachHere(); 2191 } 2192 } 2193 2194 void MacroAssembler::decrementw(Register reg, int value) 2195 { 2196 if (value < 0) { incrementw(reg, -value); return; } 2197 if (value == 0) { return; } 2198 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2199 /* else */ { 2200 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2201 movw(rscratch2, (unsigned)value); 2202 subw(reg, reg, rscratch2); 2203 } 2204 } 2205 2206 void MacroAssembler::decrement(Register reg, int value) 2207 { 2208 if (value < 0) { increment(reg, -value); return; } 2209 if (value == 0) { return; } 2210 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2211 /* else */ { 2212 assert(reg != rscratch2, "invalid dst for register decrement"); 2213 mov(rscratch2, (uint64_t)value); 2214 sub(reg, reg, rscratch2); 2215 } 2216 } 2217 2218 void MacroAssembler::decrementw(Address dst, int value) 2219 { 2220 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2221 if (dst.getMode() == Address::literal) { 2222 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2223 lea(rscratch2, dst); 2224 dst = Address(rscratch2); 2225 } 2226 ldrw(rscratch1, dst); 2227 decrementw(rscratch1, value); 2228 strw(rscratch1, dst); 2229 } 2230 2231 void MacroAssembler::decrement(Address dst, int value) 2232 { 2233 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2234 if (dst.getMode() == Address::literal) { 2235 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2236 lea(rscratch2, dst); 2237 dst = Address(rscratch2); 2238 } 2239 ldr(rscratch1, dst); 2240 decrement(rscratch1, value); 2241 str(rscratch1, dst); 2242 } 2243 2244 void MacroAssembler::incrementw(Register reg, int value) 2245 { 2246 if (value < 0) { decrementw(reg, -value); return; } 2247 if (value == 0) { return; } 2248 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2249 /* else */ { 2250 assert(reg != rscratch2, "invalid dst for register increment"); 2251 movw(rscratch2, (unsigned)value); 2252 addw(reg, reg, rscratch2); 2253 } 2254 } 2255 2256 void MacroAssembler::increment(Register reg, int value) 2257 { 2258 if (value < 0) { decrement(reg, -value); return; } 2259 if (value == 0) { return; } 2260 if (value < (1 << 12)) { add(reg, reg, value); return; } 2261 /* else */ { 2262 assert(reg != rscratch2, "invalid dst for register increment"); 2263 movw(rscratch2, (unsigned)value); 2264 add(reg, reg, rscratch2); 2265 } 2266 } 2267 2268 void MacroAssembler::incrementw(Address dst, int value) 2269 { 2270 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2271 if (dst.getMode() == Address::literal) { 2272 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2273 lea(rscratch2, dst); 2274 dst = Address(rscratch2); 2275 } 2276 ldrw(rscratch1, dst); 2277 incrementw(rscratch1, value); 2278 strw(rscratch1, dst); 2279 } 2280 2281 void MacroAssembler::increment(Address dst, int value) 2282 { 2283 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2284 if (dst.getMode() == Address::literal) { 2285 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2286 lea(rscratch2, dst); 2287 dst = Address(rscratch2); 2288 } 2289 ldr(rscratch1, dst); 2290 increment(rscratch1, value); 2291 str(rscratch1, dst); 2292 } 2293 2294 // Push lots of registers in the bit set supplied. Don't push sp. 2295 // Return the number of words pushed 2296 int MacroAssembler::push(unsigned int bitset, Register stack) { 2297 int words_pushed = 0; 2298 2299 // Scan bitset to accumulate register pairs 2300 unsigned char regs[32]; 2301 int count = 0; 2302 for (int reg = 0; reg <= 30; reg++) { 2303 if (1 & bitset) 2304 regs[count++] = reg; 2305 bitset >>= 1; 2306 } 2307 regs[count++] = zr->raw_encoding(); 2308 count &= ~1; // Only push an even number of regs 2309 2310 if (count) { 2311 stp(as_Register(regs[0]), as_Register(regs[1]), 2312 Address(pre(stack, -count * wordSize))); 2313 words_pushed += 2; 2314 } 2315 for (int i = 2; i < count; i += 2) { 2316 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2317 Address(stack, i * wordSize)); 2318 words_pushed += 2; 2319 } 2320 2321 assert(words_pushed == count, "oops, pushed != count"); 2322 2323 return count; 2324 } 2325 2326 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2327 int words_pushed = 0; 2328 2329 // Scan bitset to accumulate register pairs 2330 unsigned char regs[32]; 2331 int count = 0; 2332 for (int reg = 0; reg <= 30; reg++) { 2333 if (1 & bitset) 2334 regs[count++] = reg; 2335 bitset >>= 1; 2336 } 2337 regs[count++] = zr->raw_encoding(); 2338 count &= ~1; 2339 2340 for (int i = 2; i < count; i += 2) { 2341 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2342 Address(stack, i * wordSize)); 2343 words_pushed += 2; 2344 } 2345 if (count) { 2346 ldp(as_Register(regs[0]), as_Register(regs[1]), 2347 Address(post(stack, count * wordSize))); 2348 words_pushed += 2; 2349 } 2350 2351 assert(words_pushed == count, "oops, pushed != count"); 2352 2353 return count; 2354 } 2355 2356 // Push lots of registers in the bit set supplied. Don't push sp. 2357 // Return the number of dwords pushed 2358 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2359 int words_pushed = 0; 2360 bool use_sve = false; 2361 int sve_vector_size_in_bytes = 0; 2362 2363 #ifdef COMPILER2 2364 use_sve = Matcher::supports_scalable_vector(); 2365 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2366 #endif 2367 2368 // Scan bitset to accumulate register pairs 2369 unsigned char regs[32]; 2370 int count = 0; 2371 for (int reg = 0; reg <= 31; reg++) { 2372 if (1 & bitset) 2373 regs[count++] = reg; 2374 bitset >>= 1; 2375 } 2376 2377 if (count == 0) { 2378 return 0; 2379 } 2380 2381 // SVE 2382 if (use_sve && sve_vector_size_in_bytes > 16) { 2383 sub(stack, stack, sve_vector_size_in_bytes * count); 2384 for (int i = 0; i < count; i++) { 2385 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2386 } 2387 return count * sve_vector_size_in_bytes / 8; 2388 } 2389 2390 // NEON 2391 if (count == 1) { 2392 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2393 return 2; 2394 } 2395 2396 bool odd = (count & 1) == 1; 2397 int push_slots = count + (odd ? 1 : 0); 2398 2399 // Always pushing full 128 bit registers. 2400 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2401 words_pushed += 2; 2402 2403 for (int i = 2; i + 1 < count; i += 2) { 2404 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2405 words_pushed += 2; 2406 } 2407 2408 if (odd) { 2409 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2410 words_pushed++; 2411 } 2412 2413 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2414 return count * 2; 2415 } 2416 2417 // Return the number of dwords popped 2418 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2419 int words_pushed = 0; 2420 bool use_sve = false; 2421 int sve_vector_size_in_bytes = 0; 2422 2423 #ifdef COMPILER2 2424 use_sve = Matcher::supports_scalable_vector(); 2425 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2426 #endif 2427 // Scan bitset to accumulate register pairs 2428 unsigned char regs[32]; 2429 int count = 0; 2430 for (int reg = 0; reg <= 31; reg++) { 2431 if (1 & bitset) 2432 regs[count++] = reg; 2433 bitset >>= 1; 2434 } 2435 2436 if (count == 0) { 2437 return 0; 2438 } 2439 2440 // SVE 2441 if (use_sve && sve_vector_size_in_bytes > 16) { 2442 for (int i = count - 1; i >= 0; i--) { 2443 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2444 } 2445 add(stack, stack, sve_vector_size_in_bytes * count); 2446 return count * sve_vector_size_in_bytes / 8; 2447 } 2448 2449 // NEON 2450 if (count == 1) { 2451 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2452 return 2; 2453 } 2454 2455 bool odd = (count & 1) == 1; 2456 int push_slots = count + (odd ? 1 : 0); 2457 2458 if (odd) { 2459 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2460 words_pushed++; 2461 } 2462 2463 for (int i = 2; i + 1 < count; i += 2) { 2464 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2465 words_pushed += 2; 2466 } 2467 2468 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2469 words_pushed += 2; 2470 2471 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2472 2473 return count * 2; 2474 } 2475 2476 // Return the number of dwords pushed 2477 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 2478 bool use_sve = false; 2479 int sve_predicate_size_in_slots = 0; 2480 2481 #ifdef COMPILER2 2482 use_sve = Matcher::supports_scalable_vector(); 2483 if (use_sve) { 2484 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2485 } 2486 #endif 2487 2488 if (!use_sve) { 2489 return 0; 2490 } 2491 2492 unsigned char regs[PRegister::number_of_registers]; 2493 int count = 0; 2494 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2495 if (1 & bitset) 2496 regs[count++] = reg; 2497 bitset >>= 1; 2498 } 2499 2500 if (count == 0) { 2501 return 0; 2502 } 2503 2504 int total_push_bytes = align_up(sve_predicate_size_in_slots * 2505 VMRegImpl::stack_slot_size * count, 16); 2506 sub(stack, stack, total_push_bytes); 2507 for (int i = 0; i < count; i++) { 2508 sve_str(as_PRegister(regs[i]), Address(stack, i)); 2509 } 2510 return total_push_bytes / 8; 2511 } 2512 2513 // Return the number of dwords popped 2514 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 2515 bool use_sve = false; 2516 int sve_predicate_size_in_slots = 0; 2517 2518 #ifdef COMPILER2 2519 use_sve = Matcher::supports_scalable_vector(); 2520 if (use_sve) { 2521 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2522 } 2523 #endif 2524 2525 if (!use_sve) { 2526 return 0; 2527 } 2528 2529 unsigned char regs[PRegister::number_of_registers]; 2530 int count = 0; 2531 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2532 if (1 & bitset) 2533 regs[count++] = reg; 2534 bitset >>= 1; 2535 } 2536 2537 if (count == 0) { 2538 return 0; 2539 } 2540 2541 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 2542 VMRegImpl::stack_slot_size * count, 16); 2543 for (int i = count - 1; i >= 0; i--) { 2544 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 2545 } 2546 add(stack, stack, total_pop_bytes); 2547 return total_pop_bytes / 8; 2548 } 2549 2550 #ifdef ASSERT 2551 void MacroAssembler::verify_heapbase(const char* msg) { 2552 #if 0 2553 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2554 assert (Universe::heap() != nullptr, "java heap should be initialized"); 2555 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 2556 // rheapbase is allocated as general register 2557 return; 2558 } 2559 if (CheckCompressedOops) { 2560 Label ok; 2561 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2562 cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2563 br(Assembler::EQ, ok); 2564 stop(msg); 2565 bind(ok); 2566 pop(1 << rscratch1->encoding(), sp); 2567 } 2568 #endif 2569 } 2570 #endif 2571 2572 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 2573 assert_different_registers(value, tmp1, tmp2); 2574 Label done, tagged, weak_tagged; 2575 2576 cbz(value, done); // Use null as-is. 2577 tst(value, JNIHandles::tag_mask); // Test for tag. 2578 br(Assembler::NE, tagged); 2579 2580 // Resolve local handle 2581 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 2582 verify_oop(value); 2583 b(done); 2584 2585 bind(tagged); 2586 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 2587 tbnz(value, 0, weak_tagged); // Test for weak tag. 2588 2589 // Resolve global handle 2590 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2591 verify_oop(value); 2592 b(done); 2593 2594 bind(weak_tagged); 2595 // Resolve jweak. 2596 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 2597 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 2598 verify_oop(value); 2599 2600 bind(done); 2601 } 2602 2603 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 2604 assert_different_registers(value, tmp1, tmp2); 2605 Label done; 2606 2607 cbz(value, done); // Use null as-is. 2608 2609 #ifdef ASSERT 2610 { 2611 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 2612 Label valid_global_tag; 2613 tbnz(value, 1, valid_global_tag); // Test for global tag 2614 stop("non global jobject using resolve_global_jobject"); 2615 bind(valid_global_tag); 2616 } 2617 #endif 2618 2619 // Resolve global handle 2620 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2621 verify_oop(value); 2622 2623 bind(done); 2624 } 2625 2626 void MacroAssembler::stop(const char* msg) { 2627 BLOCK_COMMENT(msg); 2628 dcps1(0xdeae); 2629 emit_int64((uintptr_t)msg); 2630 } 2631 2632 void MacroAssembler::unimplemented(const char* what) { 2633 const char* buf = nullptr; 2634 { 2635 ResourceMark rm; 2636 stringStream ss; 2637 ss.print("unimplemented: %s", what); 2638 buf = code_string(ss.as_string()); 2639 } 2640 stop(buf); 2641 } 2642 2643 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 2644 #ifdef ASSERT 2645 Label OK; 2646 br(cc, OK); 2647 stop(msg); 2648 bind(OK); 2649 #endif 2650 } 2651 2652 // If a constant does not fit in an immediate field, generate some 2653 // number of MOV instructions and then perform the operation. 2654 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2655 add_sub_imm_insn insn1, 2656 add_sub_reg_insn insn2, 2657 bool is32) { 2658 assert(Rd != zr, "Rd = zr and not setting flags?"); 2659 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2660 if (fits) { 2661 (this->*insn1)(Rd, Rn, imm); 2662 } else { 2663 if (uabs(imm) < (1 << 24)) { 2664 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2665 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2666 } else { 2667 assert_different_registers(Rd, Rn); 2668 mov(Rd, imm); 2669 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2670 } 2671 } 2672 } 2673 2674 // Separate vsn which sets the flags. Optimisations are more restricted 2675 // because we must set the flags correctly. 2676 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2677 add_sub_imm_insn insn1, 2678 add_sub_reg_insn insn2, 2679 bool is32) { 2680 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2681 if (fits) { 2682 (this->*insn1)(Rd, Rn, imm); 2683 } else { 2684 assert_different_registers(Rd, Rn); 2685 assert(Rd != zr, "overflow in immediate operand"); 2686 mov(Rd, imm); 2687 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2688 } 2689 } 2690 2691 2692 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2693 if (increment.is_register()) { 2694 add(Rd, Rn, increment.as_register()); 2695 } else { 2696 add(Rd, Rn, increment.as_constant()); 2697 } 2698 } 2699 2700 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2701 if (increment.is_register()) { 2702 addw(Rd, Rn, increment.as_register()); 2703 } else { 2704 addw(Rd, Rn, increment.as_constant()); 2705 } 2706 } 2707 2708 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2709 if (decrement.is_register()) { 2710 sub(Rd, Rn, decrement.as_register()); 2711 } else { 2712 sub(Rd, Rn, decrement.as_constant()); 2713 } 2714 } 2715 2716 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2717 if (decrement.is_register()) { 2718 subw(Rd, Rn, decrement.as_register()); 2719 } else { 2720 subw(Rd, Rn, decrement.as_constant()); 2721 } 2722 } 2723 2724 void MacroAssembler::reinit_heapbase() 2725 { 2726 if (UseCompressedOops) { 2727 if (Universe::is_fully_initialized()) { 2728 mov(rheapbase, CompressedOops::ptrs_base()); 2729 } else { 2730 lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2731 ldr(rheapbase, Address(rheapbase)); 2732 } 2733 } 2734 } 2735 2736 // this simulates the behaviour of the x86 cmpxchg instruction using a 2737 // load linked/store conditional pair. we use the acquire/release 2738 // versions of these instructions so that we flush pending writes as 2739 // per Java semantics. 2740 2741 // n.b the x86 version assumes the old value to be compared against is 2742 // in rax and updates rax with the value located in memory if the 2743 // cmpxchg fails. we supply a register for the old value explicitly 2744 2745 // the aarch64 load linked/store conditional instructions do not 2746 // accept an offset. so, unlike x86, we must provide a plain register 2747 // to identify the memory word to be compared/exchanged rather than a 2748 // register+offset Address. 2749 2750 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2751 Label &succeed, Label *fail) { 2752 // oldv holds comparison value 2753 // newv holds value to write in exchange 2754 // addr identifies memory word to compare against/update 2755 if (UseLSE) { 2756 mov(tmp, oldv); 2757 casal(Assembler::xword, oldv, newv, addr); 2758 cmp(tmp, oldv); 2759 br(Assembler::EQ, succeed); 2760 membar(AnyAny); 2761 } else { 2762 Label retry_load, nope; 2763 prfm(Address(addr), PSTL1STRM); 2764 bind(retry_load); 2765 // flush and load exclusive from the memory location 2766 // and fail if it is not what we expect 2767 ldaxr(tmp, addr); 2768 cmp(tmp, oldv); 2769 br(Assembler::NE, nope); 2770 // if we store+flush with no intervening write tmp will be zero 2771 stlxr(tmp, newv, addr); 2772 cbzw(tmp, succeed); 2773 // retry so we only ever return after a load fails to compare 2774 // ensures we don't return a stale value after a failed write. 2775 b(retry_load); 2776 // if the memory word differs we return it in oldv and signal a fail 2777 bind(nope); 2778 membar(AnyAny); 2779 mov(oldv, tmp); 2780 } 2781 if (fail) 2782 b(*fail); 2783 } 2784 2785 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2786 Label &succeed, Label *fail) { 2787 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2788 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2789 } 2790 2791 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2792 Label &succeed, Label *fail) { 2793 // oldv holds comparison value 2794 // newv holds value to write in exchange 2795 // addr identifies memory word to compare against/update 2796 // tmp returns 0/1 for success/failure 2797 if (UseLSE) { 2798 mov(tmp, oldv); 2799 casal(Assembler::word, oldv, newv, addr); 2800 cmp(tmp, oldv); 2801 br(Assembler::EQ, succeed); 2802 membar(AnyAny); 2803 } else { 2804 Label retry_load, nope; 2805 prfm(Address(addr), PSTL1STRM); 2806 bind(retry_load); 2807 // flush and load exclusive from the memory location 2808 // and fail if it is not what we expect 2809 ldaxrw(tmp, addr); 2810 cmp(tmp, oldv); 2811 br(Assembler::NE, nope); 2812 // if we store+flush with no intervening write tmp will be zero 2813 stlxrw(tmp, newv, addr); 2814 cbzw(tmp, succeed); 2815 // retry so we only ever return after a load fails to compare 2816 // ensures we don't return a stale value after a failed write. 2817 b(retry_load); 2818 // if the memory word differs we return it in oldv and signal a fail 2819 bind(nope); 2820 membar(AnyAny); 2821 mov(oldv, tmp); 2822 } 2823 if (fail) 2824 b(*fail); 2825 } 2826 2827 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2828 // doesn't retry and may fail spuriously. If the oldval is wanted, 2829 // Pass a register for the result, otherwise pass noreg. 2830 2831 // Clobbers rscratch1 2832 void MacroAssembler::cmpxchg(Register addr, Register expected, 2833 Register new_val, 2834 enum operand_size size, 2835 bool acquire, bool release, 2836 bool weak, 2837 Register result) { 2838 if (result == noreg) result = rscratch1; 2839 BLOCK_COMMENT("cmpxchg {"); 2840 if (UseLSE) { 2841 mov(result, expected); 2842 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2843 compare_eq(result, expected, size); 2844 #ifdef ASSERT 2845 // Poison rscratch1 which is written on !UseLSE branch 2846 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 2847 #endif 2848 } else { 2849 Label retry_load, done; 2850 prfm(Address(addr), PSTL1STRM); 2851 bind(retry_load); 2852 load_exclusive(result, addr, size, acquire); 2853 compare_eq(result, expected, size); 2854 br(Assembler::NE, done); 2855 store_exclusive(rscratch1, new_val, addr, size, release); 2856 if (weak) { 2857 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2858 } else { 2859 cbnzw(rscratch1, retry_load); 2860 } 2861 bind(done); 2862 } 2863 BLOCK_COMMENT("} cmpxchg"); 2864 } 2865 2866 // A generic comparison. Only compares for equality, clobbers rscratch1. 2867 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2868 if (size == xword) { 2869 cmp(rm, rn); 2870 } else if (size == word) { 2871 cmpw(rm, rn); 2872 } else if (size == halfword) { 2873 eorw(rscratch1, rm, rn); 2874 ands(zr, rscratch1, 0xffff); 2875 } else if (size == byte) { 2876 eorw(rscratch1, rm, rn); 2877 ands(zr, rscratch1, 0xff); 2878 } else { 2879 ShouldNotReachHere(); 2880 } 2881 } 2882 2883 2884 static bool different(Register a, RegisterOrConstant b, Register c) { 2885 if (b.is_constant()) 2886 return a != c; 2887 else 2888 return a != b.as_register() && a != c && b.as_register() != c; 2889 } 2890 2891 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2892 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2893 if (UseLSE) { \ 2894 prev = prev->is_valid() ? prev : zr; \ 2895 if (incr.is_register()) { \ 2896 AOP(sz, incr.as_register(), prev, addr); \ 2897 } else { \ 2898 mov(rscratch2, incr.as_constant()); \ 2899 AOP(sz, rscratch2, prev, addr); \ 2900 } \ 2901 return; \ 2902 } \ 2903 Register result = rscratch2; \ 2904 if (prev->is_valid()) \ 2905 result = different(prev, incr, addr) ? prev : rscratch2; \ 2906 \ 2907 Label retry_load; \ 2908 prfm(Address(addr), PSTL1STRM); \ 2909 bind(retry_load); \ 2910 LDXR(result, addr); \ 2911 OP(rscratch1, result, incr); \ 2912 STXR(rscratch2, rscratch1, addr); \ 2913 cbnzw(rscratch2, retry_load); \ 2914 if (prev->is_valid() && prev != result) { \ 2915 IOP(prev, rscratch1, incr); \ 2916 } \ 2917 } 2918 2919 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2920 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2921 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2922 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2923 2924 #undef ATOMIC_OP 2925 2926 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2927 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2928 if (UseLSE) { \ 2929 prev = prev->is_valid() ? prev : zr; \ 2930 AOP(sz, newv, prev, addr); \ 2931 return; \ 2932 } \ 2933 Register result = rscratch2; \ 2934 if (prev->is_valid()) \ 2935 result = different(prev, newv, addr) ? prev : rscratch2; \ 2936 \ 2937 Label retry_load; \ 2938 prfm(Address(addr), PSTL1STRM); \ 2939 bind(retry_load); \ 2940 LDXR(result, addr); \ 2941 STXR(rscratch1, newv, addr); \ 2942 cbnzw(rscratch1, retry_load); \ 2943 if (prev->is_valid() && prev != result) \ 2944 mov(prev, result); \ 2945 } 2946 2947 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2948 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2949 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2950 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2951 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2952 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2953 2954 #undef ATOMIC_XCHG 2955 2956 #ifndef PRODUCT 2957 extern "C" void findpc(intptr_t x); 2958 #endif 2959 2960 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2961 { 2962 // In order to get locks to work, we need to fake a in_VM state 2963 if (ShowMessageBoxOnError ) { 2964 JavaThread* thread = JavaThread::current(); 2965 JavaThreadState saved_state = thread->thread_state(); 2966 thread->set_thread_state(_thread_in_vm); 2967 #ifndef PRODUCT 2968 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2969 ttyLocker ttyl; 2970 BytecodeCounter::print(); 2971 } 2972 #endif 2973 if (os::message_box(msg, "Execution stopped, print registers?")) { 2974 ttyLocker ttyl; 2975 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2976 #ifndef PRODUCT 2977 tty->cr(); 2978 findpc(pc); 2979 tty->cr(); 2980 #endif 2981 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2982 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2983 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2984 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2985 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2986 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2987 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2988 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2989 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2990 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2991 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2992 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2993 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2994 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2995 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2996 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2997 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2998 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 2999 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3000 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3001 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3002 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3003 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3004 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3005 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3006 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3007 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3008 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3009 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3010 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3011 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3012 BREAKPOINT; 3013 } 3014 } 3015 fatal("DEBUG MESSAGE: %s", msg); 3016 } 3017 3018 RegSet MacroAssembler::call_clobbered_gp_registers() { 3019 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3020 #ifndef R18_RESERVED 3021 regs += r18_tls; 3022 #endif 3023 return regs; 3024 } 3025 3026 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3027 int step = 4 * wordSize; 3028 push(call_clobbered_gp_registers() - exclude, sp); 3029 sub(sp, sp, step); 3030 mov(rscratch1, -step); 3031 // Push v0-v7, v16-v31. 3032 for (int i = 31; i>= 4; i -= 4) { 3033 if (i <= v7->encoding() || i >= v16->encoding()) 3034 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3035 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3036 } 3037 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3038 as_FloatRegister(3), T1D, Address(sp)); 3039 } 3040 3041 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3042 for (int i = 0; i < 32; i += 4) { 3043 if (i <= v7->encoding() || i >= v16->encoding()) 3044 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3045 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3046 } 3047 3048 reinitialize_ptrue(); 3049 3050 pop(call_clobbered_gp_registers() - exclude, sp); 3051 } 3052 3053 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3054 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3055 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3056 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3057 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3058 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3059 sve_str(as_FloatRegister(i), Address(sp, i)); 3060 } 3061 } else { 3062 int step = (save_vectors ? 8 : 4) * wordSize; 3063 mov(rscratch1, -step); 3064 sub(sp, sp, step); 3065 for (int i = 28; i >= 4; i -= 4) { 3066 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3067 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3068 } 3069 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3070 } 3071 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3072 sub(sp, sp, total_predicate_in_bytes); 3073 for (int i = 0; i < PRegister::number_of_registers; i++) { 3074 sve_str(as_PRegister(i), Address(sp, i)); 3075 } 3076 } 3077 } 3078 3079 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3080 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3081 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3082 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3083 sve_ldr(as_PRegister(i), Address(sp, i)); 3084 } 3085 add(sp, sp, total_predicate_in_bytes); 3086 } 3087 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3088 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3089 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3090 } 3091 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3092 } else { 3093 int step = (restore_vectors ? 8 : 4) * wordSize; 3094 for (int i = 0; i <= 28; i += 4) 3095 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3096 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3097 } 3098 3099 // We may use predicate registers and rely on ptrue with SVE, 3100 // regardless of wide vector (> 8 bytes) used or not. 3101 if (use_sve) { 3102 reinitialize_ptrue(); 3103 } 3104 3105 // integer registers except lr & sp 3106 pop(RegSet::range(r0, r17), sp); 3107 #ifdef R18_RESERVED 3108 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3109 pop(RegSet::range(r20, r29), sp); 3110 #else 3111 pop(RegSet::range(r18_tls, r29), sp); 3112 #endif 3113 } 3114 3115 /** 3116 * Helpers for multiply_to_len(). 3117 */ 3118 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3119 Register src1, Register src2) { 3120 adds(dest_lo, dest_lo, src1); 3121 adc(dest_hi, dest_hi, zr); 3122 adds(dest_lo, dest_lo, src2); 3123 adc(final_dest_hi, dest_hi, zr); 3124 } 3125 3126 // Generate an address from (r + r1 extend offset). "size" is the 3127 // size of the operand. The result may be in rscratch2. 3128 Address MacroAssembler::offsetted_address(Register r, Register r1, 3129 Address::extend ext, int offset, int size) { 3130 if (offset || (ext.shift() % size != 0)) { 3131 lea(rscratch2, Address(r, r1, ext)); 3132 return Address(rscratch2, offset); 3133 } else { 3134 return Address(r, r1, ext); 3135 } 3136 } 3137 3138 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3139 { 3140 assert(offset >= 0, "spill to negative address?"); 3141 // Offset reachable ? 3142 // Not aligned - 9 bits signed offset 3143 // Aligned - 12 bits unsigned offset shifted 3144 Register base = sp; 3145 if ((offset & (size-1)) && offset >= (1<<8)) { 3146 add(tmp, base, offset & ((1<<12)-1)); 3147 base = tmp; 3148 offset &= -1u<<12; 3149 } 3150 3151 if (offset >= (1<<12) * size) { 3152 add(tmp, base, offset & (((1<<12)-1)<<12)); 3153 base = tmp; 3154 offset &= ~(((1<<12)-1)<<12); 3155 } 3156 3157 return Address(base, offset); 3158 } 3159 3160 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3161 assert(offset >= 0, "spill to negative address?"); 3162 3163 Register base = sp; 3164 3165 // An immediate offset in the range 0 to 255 which is multiplied 3166 // by the current vector or predicate register size in bytes. 3167 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3168 return Address(base, offset / sve_reg_size_in_bytes); 3169 } 3170 3171 add(tmp, base, offset); 3172 return Address(tmp); 3173 } 3174 3175 // Checks whether offset is aligned. 3176 // Returns true if it is, else false. 3177 bool MacroAssembler::merge_alignment_check(Register base, 3178 size_t size, 3179 int64_t cur_offset, 3180 int64_t prev_offset) const { 3181 if (AvoidUnalignedAccesses) { 3182 if (base == sp) { 3183 // Checks whether low offset if aligned to pair of registers. 3184 int64_t pair_mask = size * 2 - 1; 3185 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3186 return (offset & pair_mask) == 0; 3187 } else { // If base is not sp, we can't guarantee the access is aligned. 3188 return false; 3189 } 3190 } else { 3191 int64_t mask = size - 1; 3192 // Load/store pair instruction only supports element size aligned offset. 3193 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3194 } 3195 } 3196 3197 // Checks whether current and previous loads/stores can be merged. 3198 // Returns true if it can be merged, else false. 3199 bool MacroAssembler::ldst_can_merge(Register rt, 3200 const Address &adr, 3201 size_t cur_size_in_bytes, 3202 bool is_store) const { 3203 address prev = pc() - NativeInstruction::instruction_size; 3204 address last = code()->last_insn(); 3205 3206 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3207 return false; 3208 } 3209 3210 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3211 return false; 3212 } 3213 3214 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3215 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3216 3217 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3218 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3219 3220 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3221 return false; 3222 } 3223 3224 int64_t max_offset = 63 * prev_size_in_bytes; 3225 int64_t min_offset = -64 * prev_size_in_bytes; 3226 3227 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3228 3229 // Only same base can be merged. 3230 if (adr.base() != prev_ldst->base()) { 3231 return false; 3232 } 3233 3234 int64_t cur_offset = adr.offset(); 3235 int64_t prev_offset = prev_ldst->offset(); 3236 size_t diff = abs(cur_offset - prev_offset); 3237 if (diff != prev_size_in_bytes) { 3238 return false; 3239 } 3240 3241 // Following cases can not be merged: 3242 // ldr x2, [x2, #8] 3243 // ldr x3, [x2, #16] 3244 // or: 3245 // ldr x2, [x3, #8] 3246 // ldr x2, [x3, #16] 3247 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3248 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3249 return false; 3250 } 3251 3252 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3253 // Offset range must be in ldp/stp instruction's range. 3254 if (low_offset > max_offset || low_offset < min_offset) { 3255 return false; 3256 } 3257 3258 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3259 return true; 3260 } 3261 3262 return false; 3263 } 3264 3265 // Merge current load/store with previous load/store into ldp/stp. 3266 void MacroAssembler::merge_ldst(Register rt, 3267 const Address &adr, 3268 size_t cur_size_in_bytes, 3269 bool is_store) { 3270 3271 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3272 3273 Register rt_low, rt_high; 3274 address prev = pc() - NativeInstruction::instruction_size; 3275 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3276 3277 int64_t offset; 3278 3279 if (adr.offset() < prev_ldst->offset()) { 3280 offset = adr.offset(); 3281 rt_low = rt; 3282 rt_high = prev_ldst->target(); 3283 } else { 3284 offset = prev_ldst->offset(); 3285 rt_low = prev_ldst->target(); 3286 rt_high = rt; 3287 } 3288 3289 Address adr_p = Address(prev_ldst->base(), offset); 3290 // Overwrite previous generated binary. 3291 code_section()->set_end(prev); 3292 3293 const size_t sz = prev_ldst->size_in_bytes(); 3294 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3295 if (!is_store) { 3296 BLOCK_COMMENT("merged ldr pair"); 3297 if (sz == 8) { 3298 ldp(rt_low, rt_high, adr_p); 3299 } else { 3300 ldpw(rt_low, rt_high, adr_p); 3301 } 3302 } else { 3303 BLOCK_COMMENT("merged str pair"); 3304 if (sz == 8) { 3305 stp(rt_low, rt_high, adr_p); 3306 } else { 3307 stpw(rt_low, rt_high, adr_p); 3308 } 3309 } 3310 } 3311 3312 /** 3313 * Multiply 64 bit by 64 bit first loop. 3314 */ 3315 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3316 Register y, Register y_idx, Register z, 3317 Register carry, Register product, 3318 Register idx, Register kdx) { 3319 // 3320 // jlong carry, x[], y[], z[]; 3321 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3322 // huge_128 product = y[idx] * x[xstart] + carry; 3323 // z[kdx] = (jlong)product; 3324 // carry = (jlong)(product >>> 64); 3325 // } 3326 // z[xstart] = carry; 3327 // 3328 3329 Label L_first_loop, L_first_loop_exit; 3330 Label L_one_x, L_one_y, L_multiply; 3331 3332 subsw(xstart, xstart, 1); 3333 br(Assembler::MI, L_one_x); 3334 3335 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3336 ldr(x_xstart, Address(rscratch1)); 3337 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3338 3339 bind(L_first_loop); 3340 subsw(idx, idx, 1); 3341 br(Assembler::MI, L_first_loop_exit); 3342 subsw(idx, idx, 1); 3343 br(Assembler::MI, L_one_y); 3344 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3345 ldr(y_idx, Address(rscratch1)); 3346 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3347 bind(L_multiply); 3348 3349 // AArch64 has a multiply-accumulate instruction that we can't use 3350 // here because it has no way to process carries, so we have to use 3351 // separate add and adc instructions. Bah. 3352 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3353 mul(product, x_xstart, y_idx); 3354 adds(product, product, carry); 3355 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3356 3357 subw(kdx, kdx, 2); 3358 ror(product, product, 32); // back to big-endian 3359 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3360 3361 b(L_first_loop); 3362 3363 bind(L_one_y); 3364 ldrw(y_idx, Address(y, 0)); 3365 b(L_multiply); 3366 3367 bind(L_one_x); 3368 ldrw(x_xstart, Address(x, 0)); 3369 b(L_first_loop); 3370 3371 bind(L_first_loop_exit); 3372 } 3373 3374 /** 3375 * Multiply 128 bit by 128. Unrolled inner loop. 3376 * 3377 */ 3378 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3379 Register carry, Register carry2, 3380 Register idx, Register jdx, 3381 Register yz_idx1, Register yz_idx2, 3382 Register tmp, Register tmp3, Register tmp4, 3383 Register tmp6, Register product_hi) { 3384 3385 // jlong carry, x[], y[], z[]; 3386 // int kdx = ystart+1; 3387 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3388 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3389 // jlong carry2 = (jlong)(tmp3 >>> 64); 3390 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3391 // carry = (jlong)(tmp4 >>> 64); 3392 // z[kdx+idx+1] = (jlong)tmp3; 3393 // z[kdx+idx] = (jlong)tmp4; 3394 // } 3395 // idx += 2; 3396 // if (idx > 0) { 3397 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3398 // z[kdx+idx] = (jlong)yz_idx1; 3399 // carry = (jlong)(yz_idx1 >>> 64); 3400 // } 3401 // 3402 3403 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3404 3405 lsrw(jdx, idx, 2); 3406 3407 bind(L_third_loop); 3408 3409 subsw(jdx, jdx, 1); 3410 br(Assembler::MI, L_third_loop_exit); 3411 subw(idx, idx, 4); 3412 3413 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3414 3415 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3416 3417 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3418 3419 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3420 ror(yz_idx2, yz_idx2, 32); 3421 3422 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3423 3424 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3425 umulh(tmp4, product_hi, yz_idx1); 3426 3427 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3428 ror(rscratch2, rscratch2, 32); 3429 3430 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3431 umulh(carry2, product_hi, yz_idx2); 3432 3433 // propagate sum of both multiplications into carry:tmp4:tmp3 3434 adds(tmp3, tmp3, carry); 3435 adc(tmp4, tmp4, zr); 3436 adds(tmp3, tmp3, rscratch1); 3437 adcs(tmp4, tmp4, tmp); 3438 adc(carry, carry2, zr); 3439 adds(tmp4, tmp4, rscratch2); 3440 adc(carry, carry, zr); 3441 3442 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3443 ror(tmp4, tmp4, 32); 3444 stp(tmp4, tmp3, Address(tmp6, 0)); 3445 3446 b(L_third_loop); 3447 bind (L_third_loop_exit); 3448 3449 andw (idx, idx, 0x3); 3450 cbz(idx, L_post_third_loop_done); 3451 3452 Label L_check_1; 3453 subsw(idx, idx, 2); 3454 br(Assembler::MI, L_check_1); 3455 3456 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3457 ldr(yz_idx1, Address(rscratch1, 0)); 3458 ror(yz_idx1, yz_idx1, 32); 3459 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3460 umulh(tmp4, product_hi, yz_idx1); 3461 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3462 ldr(yz_idx2, Address(rscratch1, 0)); 3463 ror(yz_idx2, yz_idx2, 32); 3464 3465 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3466 3467 ror(tmp3, tmp3, 32); 3468 str(tmp3, Address(rscratch1, 0)); 3469 3470 bind (L_check_1); 3471 3472 andw (idx, idx, 0x1); 3473 subsw(idx, idx, 1); 3474 br(Assembler::MI, L_post_third_loop_done); 3475 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3476 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3477 umulh(carry2, tmp4, product_hi); 3478 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3479 3480 add2_with_carry(carry2, tmp3, tmp4, carry); 3481 3482 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3483 extr(carry, carry2, tmp3, 32); 3484 3485 bind(L_post_third_loop_done); 3486 } 3487 3488 /** 3489 * Code for BigInteger::multiplyToLen() intrinsic. 3490 * 3491 * r0: x 3492 * r1: xlen 3493 * r2: y 3494 * r3: ylen 3495 * r4: z 3496 * r5: zlen 3497 * r10: tmp1 3498 * r11: tmp2 3499 * r12: tmp3 3500 * r13: tmp4 3501 * r14: tmp5 3502 * r15: tmp6 3503 * r16: tmp7 3504 * 3505 */ 3506 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3507 Register z, Register zlen, 3508 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3509 Register tmp5, Register tmp6, Register product_hi) { 3510 3511 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3512 3513 const Register idx = tmp1; 3514 const Register kdx = tmp2; 3515 const Register xstart = tmp3; 3516 3517 const Register y_idx = tmp4; 3518 const Register carry = tmp5; 3519 const Register product = xlen; 3520 const Register x_xstart = zlen; // reuse register 3521 3522 // First Loop. 3523 // 3524 // final static long LONG_MASK = 0xffffffffL; 3525 // int xstart = xlen - 1; 3526 // int ystart = ylen - 1; 3527 // long carry = 0; 3528 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3529 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3530 // z[kdx] = (int)product; 3531 // carry = product >>> 32; 3532 // } 3533 // z[xstart] = (int)carry; 3534 // 3535 3536 movw(idx, ylen); // idx = ylen; 3537 movw(kdx, zlen); // kdx = xlen+ylen; 3538 mov(carry, zr); // carry = 0; 3539 3540 Label L_done; 3541 3542 movw(xstart, xlen); 3543 subsw(xstart, xstart, 1); 3544 br(Assembler::MI, L_done); 3545 3546 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3547 3548 Label L_second_loop; 3549 cbzw(kdx, L_second_loop); 3550 3551 Label L_carry; 3552 subw(kdx, kdx, 1); 3553 cbzw(kdx, L_carry); 3554 3555 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3556 lsr(carry, carry, 32); 3557 subw(kdx, kdx, 1); 3558 3559 bind(L_carry); 3560 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3561 3562 // Second and third (nested) loops. 3563 // 3564 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3565 // carry = 0; 3566 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3567 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3568 // (z[k] & LONG_MASK) + carry; 3569 // z[k] = (int)product; 3570 // carry = product >>> 32; 3571 // } 3572 // z[i] = (int)carry; 3573 // } 3574 // 3575 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3576 3577 const Register jdx = tmp1; 3578 3579 bind(L_second_loop); 3580 mov(carry, zr); // carry = 0; 3581 movw(jdx, ylen); // j = ystart+1 3582 3583 subsw(xstart, xstart, 1); // i = xstart-1; 3584 br(Assembler::MI, L_done); 3585 3586 str(z, Address(pre(sp, -4 * wordSize))); 3587 3588 Label L_last_x; 3589 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3590 subsw(xstart, xstart, 1); // i = xstart-1; 3591 br(Assembler::MI, L_last_x); 3592 3593 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3594 ldr(product_hi, Address(rscratch1)); 3595 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3596 3597 Label L_third_loop_prologue; 3598 bind(L_third_loop_prologue); 3599 3600 str(ylen, Address(sp, wordSize)); 3601 stp(x, xstart, Address(sp, 2 * wordSize)); 3602 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3603 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3604 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3605 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3606 3607 addw(tmp3, xlen, 1); 3608 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3609 subsw(tmp3, tmp3, 1); 3610 br(Assembler::MI, L_done); 3611 3612 lsr(carry, carry, 32); 3613 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3614 b(L_second_loop); 3615 3616 // Next infrequent code is moved outside loops. 3617 bind(L_last_x); 3618 ldrw(product_hi, Address(x, 0)); 3619 b(L_third_loop_prologue); 3620 3621 bind(L_done); 3622 } 3623 3624 // Code for BigInteger::mulAdd intrinsic 3625 // out = r0 3626 // in = r1 3627 // offset = r2 (already out.length-offset) 3628 // len = r3 3629 // k = r4 3630 // 3631 // pseudo code from java implementation: 3632 // carry = 0; 3633 // offset = out.length-offset - 1; 3634 // for (int j=len-1; j >= 0; j--) { 3635 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3636 // out[offset--] = (int)product; 3637 // carry = product >>> 32; 3638 // } 3639 // return (int)carry; 3640 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3641 Register len, Register k) { 3642 Label LOOP, END; 3643 // pre-loop 3644 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3645 csel(out, zr, out, Assembler::EQ); 3646 br(Assembler::EQ, END); 3647 add(in, in, len, LSL, 2); // in[j+1] address 3648 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3649 mov(out, zr); // used to keep carry now 3650 BIND(LOOP); 3651 ldrw(rscratch1, Address(pre(in, -4))); 3652 madd(rscratch1, rscratch1, k, out); 3653 ldrw(rscratch2, Address(pre(offset, -4))); 3654 add(rscratch1, rscratch1, rscratch2); 3655 strw(rscratch1, Address(offset)); 3656 lsr(out, rscratch1, 32); 3657 subs(len, len, 1); 3658 br(Assembler::NE, LOOP); 3659 BIND(END); 3660 } 3661 3662 /** 3663 * Emits code to update CRC-32 with a byte value according to constants in table 3664 * 3665 * @param [in,out]crc Register containing the crc. 3666 * @param [in]val Register containing the byte to fold into the CRC. 3667 * @param [in]table Register containing the table of crc constants. 3668 * 3669 * uint32_t crc; 3670 * val = crc_table[(val ^ crc) & 0xFF]; 3671 * crc = val ^ (crc >> 8); 3672 * 3673 */ 3674 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3675 eor(val, val, crc); 3676 andr(val, val, 0xff); 3677 ldrw(val, Address(table, val, Address::lsl(2))); 3678 eor(crc, val, crc, Assembler::LSR, 8); 3679 } 3680 3681 /** 3682 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3683 * 3684 * @param [in,out]crc Register containing the crc. 3685 * @param [in]v Register containing the 32-bit to fold into the CRC. 3686 * @param [in]table0 Register containing table 0 of crc constants. 3687 * @param [in]table1 Register containing table 1 of crc constants. 3688 * @param [in]table2 Register containing table 2 of crc constants. 3689 * @param [in]table3 Register containing table 3 of crc constants. 3690 * 3691 * uint32_t crc; 3692 * v = crc ^ v 3693 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3694 * 3695 */ 3696 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3697 Register table0, Register table1, Register table2, Register table3, 3698 bool upper) { 3699 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3700 uxtb(tmp, v); 3701 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3702 ubfx(tmp, v, 8, 8); 3703 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3704 eor(crc, crc, tmp); 3705 ubfx(tmp, v, 16, 8); 3706 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3707 eor(crc, crc, tmp); 3708 ubfx(tmp, v, 24, 8); 3709 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3710 eor(crc, crc, tmp); 3711 } 3712 3713 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 3714 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 3715 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 3716 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 3717 3718 subs(tmp0, len, 384); 3719 mvnw(crc, crc); 3720 br(Assembler::GE, CRC_by128_pre); 3721 BIND(CRC_less128); 3722 subs(len, len, 32); 3723 br(Assembler::GE, CRC_by32_loop); 3724 BIND(CRC_less32); 3725 adds(len, len, 32 - 4); 3726 br(Assembler::GE, CRC_by4_loop); 3727 adds(len, len, 4); 3728 br(Assembler::GT, CRC_by1_loop); 3729 b(L_exit); 3730 3731 BIND(CRC_by32_loop); 3732 ldp(tmp0, tmp1, Address(buf)); 3733 crc32x(crc, crc, tmp0); 3734 ldp(tmp2, tmp3, Address(buf, 16)); 3735 crc32x(crc, crc, tmp1); 3736 add(buf, buf, 32); 3737 crc32x(crc, crc, tmp2); 3738 subs(len, len, 32); 3739 crc32x(crc, crc, tmp3); 3740 br(Assembler::GE, CRC_by32_loop); 3741 cmn(len, (u1)32); 3742 br(Assembler::NE, CRC_less32); 3743 b(L_exit); 3744 3745 BIND(CRC_by4_loop); 3746 ldrw(tmp0, Address(post(buf, 4))); 3747 subs(len, len, 4); 3748 crc32w(crc, crc, tmp0); 3749 br(Assembler::GE, CRC_by4_loop); 3750 adds(len, len, 4); 3751 br(Assembler::LE, L_exit); 3752 BIND(CRC_by1_loop); 3753 ldrb(tmp0, Address(post(buf, 1))); 3754 subs(len, len, 1); 3755 crc32b(crc, crc, tmp0); 3756 br(Assembler::GT, CRC_by1_loop); 3757 b(L_exit); 3758 3759 BIND(CRC_by128_pre); 3760 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 3761 4*256*sizeof(juint) + 8*sizeof(juint)); 3762 mov(crc, 0); 3763 crc32x(crc, crc, tmp0); 3764 crc32x(crc, crc, tmp1); 3765 3766 cbnz(len, CRC_less128); 3767 3768 BIND(L_exit); 3769 mvnw(crc, crc); 3770 } 3771 3772 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3773 Register len, Register tmp0, Register tmp1, Register tmp2, 3774 Register tmp3) { 3775 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3776 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3777 3778 mvnw(crc, crc); 3779 3780 subs(len, len, 128); 3781 br(Assembler::GE, CRC_by64_pre); 3782 BIND(CRC_less64); 3783 adds(len, len, 128-32); 3784 br(Assembler::GE, CRC_by32_loop); 3785 BIND(CRC_less32); 3786 adds(len, len, 32-4); 3787 br(Assembler::GE, CRC_by4_loop); 3788 adds(len, len, 4); 3789 br(Assembler::GT, CRC_by1_loop); 3790 b(L_exit); 3791 3792 BIND(CRC_by32_loop); 3793 ldp(tmp0, tmp1, Address(post(buf, 16))); 3794 subs(len, len, 32); 3795 crc32x(crc, crc, tmp0); 3796 ldr(tmp2, Address(post(buf, 8))); 3797 crc32x(crc, crc, tmp1); 3798 ldr(tmp3, Address(post(buf, 8))); 3799 crc32x(crc, crc, tmp2); 3800 crc32x(crc, crc, tmp3); 3801 br(Assembler::GE, CRC_by32_loop); 3802 cmn(len, (u1)32); 3803 br(Assembler::NE, CRC_less32); 3804 b(L_exit); 3805 3806 BIND(CRC_by4_loop); 3807 ldrw(tmp0, Address(post(buf, 4))); 3808 subs(len, len, 4); 3809 crc32w(crc, crc, tmp0); 3810 br(Assembler::GE, CRC_by4_loop); 3811 adds(len, len, 4); 3812 br(Assembler::LE, L_exit); 3813 BIND(CRC_by1_loop); 3814 ldrb(tmp0, Address(post(buf, 1))); 3815 subs(len, len, 1); 3816 crc32b(crc, crc, tmp0); 3817 br(Assembler::GT, CRC_by1_loop); 3818 b(L_exit); 3819 3820 BIND(CRC_by64_pre); 3821 sub(buf, buf, 8); 3822 ldp(tmp0, tmp1, Address(buf, 8)); 3823 crc32x(crc, crc, tmp0); 3824 ldr(tmp2, Address(buf, 24)); 3825 crc32x(crc, crc, tmp1); 3826 ldr(tmp3, Address(buf, 32)); 3827 crc32x(crc, crc, tmp2); 3828 ldr(tmp0, Address(buf, 40)); 3829 crc32x(crc, crc, tmp3); 3830 ldr(tmp1, Address(buf, 48)); 3831 crc32x(crc, crc, tmp0); 3832 ldr(tmp2, Address(buf, 56)); 3833 crc32x(crc, crc, tmp1); 3834 ldr(tmp3, Address(pre(buf, 64))); 3835 3836 b(CRC_by64_loop); 3837 3838 align(CodeEntryAlignment); 3839 BIND(CRC_by64_loop); 3840 subs(len, len, 64); 3841 crc32x(crc, crc, tmp2); 3842 ldr(tmp0, Address(buf, 8)); 3843 crc32x(crc, crc, tmp3); 3844 ldr(tmp1, Address(buf, 16)); 3845 crc32x(crc, crc, tmp0); 3846 ldr(tmp2, Address(buf, 24)); 3847 crc32x(crc, crc, tmp1); 3848 ldr(tmp3, Address(buf, 32)); 3849 crc32x(crc, crc, tmp2); 3850 ldr(tmp0, Address(buf, 40)); 3851 crc32x(crc, crc, tmp3); 3852 ldr(tmp1, Address(buf, 48)); 3853 crc32x(crc, crc, tmp0); 3854 ldr(tmp2, Address(buf, 56)); 3855 crc32x(crc, crc, tmp1); 3856 ldr(tmp3, Address(pre(buf, 64))); 3857 br(Assembler::GE, CRC_by64_loop); 3858 3859 // post-loop 3860 crc32x(crc, crc, tmp2); 3861 crc32x(crc, crc, tmp3); 3862 3863 sub(len, len, 64); 3864 add(buf, buf, 8); 3865 cmn(len, (u1)128); 3866 br(Assembler::NE, CRC_less64); 3867 BIND(L_exit); 3868 mvnw(crc, crc); 3869 } 3870 3871 /** 3872 * @param crc register containing existing CRC (32-bit) 3873 * @param buf register pointing to input byte buffer (byte*) 3874 * @param len register containing number of bytes 3875 * @param table register that will contain address of CRC table 3876 * @param tmp scratch register 3877 */ 3878 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3879 Register table0, Register table1, Register table2, Register table3, 3880 Register tmp, Register tmp2, Register tmp3) { 3881 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3882 3883 if (UseCryptoPmullForCRC32) { 3884 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 3885 return; 3886 } 3887 3888 if (UseCRC32) { 3889 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3890 return; 3891 } 3892 3893 mvnw(crc, crc); 3894 3895 { 3896 uint64_t offset; 3897 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3898 add(table0, table0, offset); 3899 } 3900 add(table1, table0, 1*256*sizeof(juint)); 3901 add(table2, table0, 2*256*sizeof(juint)); 3902 add(table3, table0, 3*256*sizeof(juint)); 3903 3904 if (UseNeon) { 3905 cmp(len, (u1)64); 3906 br(Assembler::LT, L_by16); 3907 eor(v16, T16B, v16, v16); 3908 3909 Label L_fold; 3910 3911 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3912 3913 ld1(v0, v1, T2D, post(buf, 32)); 3914 ld1r(v4, T2D, post(tmp, 8)); 3915 ld1r(v5, T2D, post(tmp, 8)); 3916 ld1r(v6, T2D, post(tmp, 8)); 3917 ld1r(v7, T2D, post(tmp, 8)); 3918 mov(v16, S, 0, crc); 3919 3920 eor(v0, T16B, v0, v16); 3921 sub(len, len, 64); 3922 3923 BIND(L_fold); 3924 pmull(v22, T8H, v0, v5, T8B); 3925 pmull(v20, T8H, v0, v7, T8B); 3926 pmull(v23, T8H, v0, v4, T8B); 3927 pmull(v21, T8H, v0, v6, T8B); 3928 3929 pmull2(v18, T8H, v0, v5, T16B); 3930 pmull2(v16, T8H, v0, v7, T16B); 3931 pmull2(v19, T8H, v0, v4, T16B); 3932 pmull2(v17, T8H, v0, v6, T16B); 3933 3934 uzp1(v24, T8H, v20, v22); 3935 uzp2(v25, T8H, v20, v22); 3936 eor(v20, T16B, v24, v25); 3937 3938 uzp1(v26, T8H, v16, v18); 3939 uzp2(v27, T8H, v16, v18); 3940 eor(v16, T16B, v26, v27); 3941 3942 ushll2(v22, T4S, v20, T8H, 8); 3943 ushll(v20, T4S, v20, T4H, 8); 3944 3945 ushll2(v18, T4S, v16, T8H, 8); 3946 ushll(v16, T4S, v16, T4H, 8); 3947 3948 eor(v22, T16B, v23, v22); 3949 eor(v18, T16B, v19, v18); 3950 eor(v20, T16B, v21, v20); 3951 eor(v16, T16B, v17, v16); 3952 3953 uzp1(v17, T2D, v16, v20); 3954 uzp2(v21, T2D, v16, v20); 3955 eor(v17, T16B, v17, v21); 3956 3957 ushll2(v20, T2D, v17, T4S, 16); 3958 ushll(v16, T2D, v17, T2S, 16); 3959 3960 eor(v20, T16B, v20, v22); 3961 eor(v16, T16B, v16, v18); 3962 3963 uzp1(v17, T2D, v20, v16); 3964 uzp2(v21, T2D, v20, v16); 3965 eor(v28, T16B, v17, v21); 3966 3967 pmull(v22, T8H, v1, v5, T8B); 3968 pmull(v20, T8H, v1, v7, T8B); 3969 pmull(v23, T8H, v1, v4, T8B); 3970 pmull(v21, T8H, v1, v6, T8B); 3971 3972 pmull2(v18, T8H, v1, v5, T16B); 3973 pmull2(v16, T8H, v1, v7, T16B); 3974 pmull2(v19, T8H, v1, v4, T16B); 3975 pmull2(v17, T8H, v1, v6, T16B); 3976 3977 ld1(v0, v1, T2D, post(buf, 32)); 3978 3979 uzp1(v24, T8H, v20, v22); 3980 uzp2(v25, T8H, v20, v22); 3981 eor(v20, T16B, v24, v25); 3982 3983 uzp1(v26, T8H, v16, v18); 3984 uzp2(v27, T8H, v16, v18); 3985 eor(v16, T16B, v26, v27); 3986 3987 ushll2(v22, T4S, v20, T8H, 8); 3988 ushll(v20, T4S, v20, T4H, 8); 3989 3990 ushll2(v18, T4S, v16, T8H, 8); 3991 ushll(v16, T4S, v16, T4H, 8); 3992 3993 eor(v22, T16B, v23, v22); 3994 eor(v18, T16B, v19, v18); 3995 eor(v20, T16B, v21, v20); 3996 eor(v16, T16B, v17, v16); 3997 3998 uzp1(v17, T2D, v16, v20); 3999 uzp2(v21, T2D, v16, v20); 4000 eor(v16, T16B, v17, v21); 4001 4002 ushll2(v20, T2D, v16, T4S, 16); 4003 ushll(v16, T2D, v16, T2S, 16); 4004 4005 eor(v20, T16B, v22, v20); 4006 eor(v16, T16B, v16, v18); 4007 4008 uzp1(v17, T2D, v20, v16); 4009 uzp2(v21, T2D, v20, v16); 4010 eor(v20, T16B, v17, v21); 4011 4012 shl(v16, T2D, v28, 1); 4013 shl(v17, T2D, v20, 1); 4014 4015 eor(v0, T16B, v0, v16); 4016 eor(v1, T16B, v1, v17); 4017 4018 subs(len, len, 32); 4019 br(Assembler::GE, L_fold); 4020 4021 mov(crc, 0); 4022 mov(tmp, v0, D, 0); 4023 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4024 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4025 mov(tmp, v0, D, 1); 4026 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4027 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4028 mov(tmp, v1, D, 0); 4029 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4030 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4031 mov(tmp, v1, D, 1); 4032 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4033 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4034 4035 add(len, len, 32); 4036 } 4037 4038 BIND(L_by16); 4039 subs(len, len, 16); 4040 br(Assembler::GE, L_by16_loop); 4041 adds(len, len, 16-4); 4042 br(Assembler::GE, L_by4_loop); 4043 adds(len, len, 4); 4044 br(Assembler::GT, L_by1_loop); 4045 b(L_exit); 4046 4047 BIND(L_by4_loop); 4048 ldrw(tmp, Address(post(buf, 4))); 4049 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4050 subs(len, len, 4); 4051 br(Assembler::GE, L_by4_loop); 4052 adds(len, len, 4); 4053 br(Assembler::LE, L_exit); 4054 BIND(L_by1_loop); 4055 subs(len, len, 1); 4056 ldrb(tmp, Address(post(buf, 1))); 4057 update_byte_crc32(crc, tmp, table0); 4058 br(Assembler::GT, L_by1_loop); 4059 b(L_exit); 4060 4061 align(CodeEntryAlignment); 4062 BIND(L_by16_loop); 4063 subs(len, len, 16); 4064 ldp(tmp, tmp3, Address(post(buf, 16))); 4065 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4066 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4067 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4068 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4069 br(Assembler::GE, L_by16_loop); 4070 adds(len, len, 16-4); 4071 br(Assembler::GE, L_by4_loop); 4072 adds(len, len, 4); 4073 br(Assembler::GT, L_by1_loop); 4074 BIND(L_exit); 4075 mvnw(crc, crc); 4076 } 4077 4078 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4079 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4080 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4081 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4082 4083 subs(tmp0, len, 384); 4084 br(Assembler::GE, CRC_by128_pre); 4085 BIND(CRC_less128); 4086 subs(len, len, 32); 4087 br(Assembler::GE, CRC_by32_loop); 4088 BIND(CRC_less32); 4089 adds(len, len, 32 - 4); 4090 br(Assembler::GE, CRC_by4_loop); 4091 adds(len, len, 4); 4092 br(Assembler::GT, CRC_by1_loop); 4093 b(L_exit); 4094 4095 BIND(CRC_by32_loop); 4096 ldp(tmp0, tmp1, Address(buf)); 4097 crc32cx(crc, crc, tmp0); 4098 ldr(tmp2, Address(buf, 16)); 4099 crc32cx(crc, crc, tmp1); 4100 ldr(tmp3, Address(buf, 24)); 4101 crc32cx(crc, crc, tmp2); 4102 add(buf, buf, 32); 4103 subs(len, len, 32); 4104 crc32cx(crc, crc, tmp3); 4105 br(Assembler::GE, CRC_by32_loop); 4106 cmn(len, (u1)32); 4107 br(Assembler::NE, CRC_less32); 4108 b(L_exit); 4109 4110 BIND(CRC_by4_loop); 4111 ldrw(tmp0, Address(post(buf, 4))); 4112 subs(len, len, 4); 4113 crc32cw(crc, crc, tmp0); 4114 br(Assembler::GE, CRC_by4_loop); 4115 adds(len, len, 4); 4116 br(Assembler::LE, L_exit); 4117 BIND(CRC_by1_loop); 4118 ldrb(tmp0, Address(post(buf, 1))); 4119 subs(len, len, 1); 4120 crc32cb(crc, crc, tmp0); 4121 br(Assembler::GT, CRC_by1_loop); 4122 b(L_exit); 4123 4124 BIND(CRC_by128_pre); 4125 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4126 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4127 mov(crc, 0); 4128 crc32cx(crc, crc, tmp0); 4129 crc32cx(crc, crc, tmp1); 4130 4131 cbnz(len, CRC_less128); 4132 4133 BIND(L_exit); 4134 } 4135 4136 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4137 Register len, Register tmp0, Register tmp1, Register tmp2, 4138 Register tmp3) { 4139 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4140 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4141 4142 subs(len, len, 128); 4143 br(Assembler::GE, CRC_by64_pre); 4144 BIND(CRC_less64); 4145 adds(len, len, 128-32); 4146 br(Assembler::GE, CRC_by32_loop); 4147 BIND(CRC_less32); 4148 adds(len, len, 32-4); 4149 br(Assembler::GE, CRC_by4_loop); 4150 adds(len, len, 4); 4151 br(Assembler::GT, CRC_by1_loop); 4152 b(L_exit); 4153 4154 BIND(CRC_by32_loop); 4155 ldp(tmp0, tmp1, Address(post(buf, 16))); 4156 subs(len, len, 32); 4157 crc32cx(crc, crc, tmp0); 4158 ldr(tmp2, Address(post(buf, 8))); 4159 crc32cx(crc, crc, tmp1); 4160 ldr(tmp3, Address(post(buf, 8))); 4161 crc32cx(crc, crc, tmp2); 4162 crc32cx(crc, crc, tmp3); 4163 br(Assembler::GE, CRC_by32_loop); 4164 cmn(len, (u1)32); 4165 br(Assembler::NE, CRC_less32); 4166 b(L_exit); 4167 4168 BIND(CRC_by4_loop); 4169 ldrw(tmp0, Address(post(buf, 4))); 4170 subs(len, len, 4); 4171 crc32cw(crc, crc, tmp0); 4172 br(Assembler::GE, CRC_by4_loop); 4173 adds(len, len, 4); 4174 br(Assembler::LE, L_exit); 4175 BIND(CRC_by1_loop); 4176 ldrb(tmp0, Address(post(buf, 1))); 4177 subs(len, len, 1); 4178 crc32cb(crc, crc, tmp0); 4179 br(Assembler::GT, CRC_by1_loop); 4180 b(L_exit); 4181 4182 BIND(CRC_by64_pre); 4183 sub(buf, buf, 8); 4184 ldp(tmp0, tmp1, Address(buf, 8)); 4185 crc32cx(crc, crc, tmp0); 4186 ldr(tmp2, Address(buf, 24)); 4187 crc32cx(crc, crc, tmp1); 4188 ldr(tmp3, Address(buf, 32)); 4189 crc32cx(crc, crc, tmp2); 4190 ldr(tmp0, Address(buf, 40)); 4191 crc32cx(crc, crc, tmp3); 4192 ldr(tmp1, Address(buf, 48)); 4193 crc32cx(crc, crc, tmp0); 4194 ldr(tmp2, Address(buf, 56)); 4195 crc32cx(crc, crc, tmp1); 4196 ldr(tmp3, Address(pre(buf, 64))); 4197 4198 b(CRC_by64_loop); 4199 4200 align(CodeEntryAlignment); 4201 BIND(CRC_by64_loop); 4202 subs(len, len, 64); 4203 crc32cx(crc, crc, tmp2); 4204 ldr(tmp0, Address(buf, 8)); 4205 crc32cx(crc, crc, tmp3); 4206 ldr(tmp1, Address(buf, 16)); 4207 crc32cx(crc, crc, tmp0); 4208 ldr(tmp2, Address(buf, 24)); 4209 crc32cx(crc, crc, tmp1); 4210 ldr(tmp3, Address(buf, 32)); 4211 crc32cx(crc, crc, tmp2); 4212 ldr(tmp0, Address(buf, 40)); 4213 crc32cx(crc, crc, tmp3); 4214 ldr(tmp1, Address(buf, 48)); 4215 crc32cx(crc, crc, tmp0); 4216 ldr(tmp2, Address(buf, 56)); 4217 crc32cx(crc, crc, tmp1); 4218 ldr(tmp3, Address(pre(buf, 64))); 4219 br(Assembler::GE, CRC_by64_loop); 4220 4221 // post-loop 4222 crc32cx(crc, crc, tmp2); 4223 crc32cx(crc, crc, tmp3); 4224 4225 sub(len, len, 64); 4226 add(buf, buf, 8); 4227 cmn(len, (u1)128); 4228 br(Assembler::NE, CRC_less64); 4229 BIND(L_exit); 4230 } 4231 4232 /** 4233 * @param crc register containing existing CRC (32-bit) 4234 * @param buf register pointing to input byte buffer (byte*) 4235 * @param len register containing number of bytes 4236 * @param table register that will contain address of CRC table 4237 * @param tmp scratch register 4238 */ 4239 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4240 Register table0, Register table1, Register table2, Register table3, 4241 Register tmp, Register tmp2, Register tmp3) { 4242 if (UseCryptoPmullForCRC32) { 4243 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4244 } else { 4245 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4246 } 4247 } 4248 4249 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4250 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4251 Label CRC_by128_loop; 4252 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4253 4254 sub(len, len, 256); 4255 Register table = tmp0; 4256 { 4257 uint64_t offset; 4258 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4259 add(table, table, offset); 4260 } 4261 add(table, table, table_offset); 4262 4263 // Registers v0..v7 are used as data registers. 4264 // Registers v16..v31 are used as tmp registers. 4265 sub(buf, buf, 0x10); 4266 ldrq(v0, Address(buf, 0x10)); 4267 ldrq(v1, Address(buf, 0x20)); 4268 ldrq(v2, Address(buf, 0x30)); 4269 ldrq(v3, Address(buf, 0x40)); 4270 ldrq(v4, Address(buf, 0x50)); 4271 ldrq(v5, Address(buf, 0x60)); 4272 ldrq(v6, Address(buf, 0x70)); 4273 ldrq(v7, Address(pre(buf, 0x80))); 4274 4275 movi(v31, T4S, 0); 4276 mov(v31, S, 0, crc); 4277 eor(v0, T16B, v0, v31); 4278 4279 // Register v16 contains constants from the crc table. 4280 ldrq(v16, Address(table)); 4281 b(CRC_by128_loop); 4282 4283 align(OptoLoopAlignment); 4284 BIND(CRC_by128_loop); 4285 pmull (v17, T1Q, v0, v16, T1D); 4286 pmull2(v18, T1Q, v0, v16, T2D); 4287 ldrq(v0, Address(buf, 0x10)); 4288 eor3(v0, T16B, v17, v18, v0); 4289 4290 pmull (v19, T1Q, v1, v16, T1D); 4291 pmull2(v20, T1Q, v1, v16, T2D); 4292 ldrq(v1, Address(buf, 0x20)); 4293 eor3(v1, T16B, v19, v20, v1); 4294 4295 pmull (v21, T1Q, v2, v16, T1D); 4296 pmull2(v22, T1Q, v2, v16, T2D); 4297 ldrq(v2, Address(buf, 0x30)); 4298 eor3(v2, T16B, v21, v22, v2); 4299 4300 pmull (v23, T1Q, v3, v16, T1D); 4301 pmull2(v24, T1Q, v3, v16, T2D); 4302 ldrq(v3, Address(buf, 0x40)); 4303 eor3(v3, T16B, v23, v24, v3); 4304 4305 pmull (v25, T1Q, v4, v16, T1D); 4306 pmull2(v26, T1Q, v4, v16, T2D); 4307 ldrq(v4, Address(buf, 0x50)); 4308 eor3(v4, T16B, v25, v26, v4); 4309 4310 pmull (v27, T1Q, v5, v16, T1D); 4311 pmull2(v28, T1Q, v5, v16, T2D); 4312 ldrq(v5, Address(buf, 0x60)); 4313 eor3(v5, T16B, v27, v28, v5); 4314 4315 pmull (v29, T1Q, v6, v16, T1D); 4316 pmull2(v30, T1Q, v6, v16, T2D); 4317 ldrq(v6, Address(buf, 0x70)); 4318 eor3(v6, T16B, v29, v30, v6); 4319 4320 // Reuse registers v23, v24. 4321 // Using them won't block the first instruction of the next iteration. 4322 pmull (v23, T1Q, v7, v16, T1D); 4323 pmull2(v24, T1Q, v7, v16, T2D); 4324 ldrq(v7, Address(pre(buf, 0x80))); 4325 eor3(v7, T16B, v23, v24, v7); 4326 4327 subs(len, len, 0x80); 4328 br(Assembler::GE, CRC_by128_loop); 4329 4330 // fold into 512 bits 4331 // Use v31 for constants because v16 can be still in use. 4332 ldrq(v31, Address(table, 0x10)); 4333 4334 pmull (v17, T1Q, v0, v31, T1D); 4335 pmull2(v18, T1Q, v0, v31, T2D); 4336 eor3(v0, T16B, v17, v18, v4); 4337 4338 pmull (v19, T1Q, v1, v31, T1D); 4339 pmull2(v20, T1Q, v1, v31, T2D); 4340 eor3(v1, T16B, v19, v20, v5); 4341 4342 pmull (v21, T1Q, v2, v31, T1D); 4343 pmull2(v22, T1Q, v2, v31, T2D); 4344 eor3(v2, T16B, v21, v22, v6); 4345 4346 pmull (v23, T1Q, v3, v31, T1D); 4347 pmull2(v24, T1Q, v3, v31, T2D); 4348 eor3(v3, T16B, v23, v24, v7); 4349 4350 // fold into 128 bits 4351 // Use v17 for constants because v31 can be still in use. 4352 ldrq(v17, Address(table, 0x20)); 4353 pmull (v25, T1Q, v0, v17, T1D); 4354 pmull2(v26, T1Q, v0, v17, T2D); 4355 eor3(v3, T16B, v3, v25, v26); 4356 4357 // Use v18 for constants because v17 can be still in use. 4358 ldrq(v18, Address(table, 0x30)); 4359 pmull (v27, T1Q, v1, v18, T1D); 4360 pmull2(v28, T1Q, v1, v18, T2D); 4361 eor3(v3, T16B, v3, v27, v28); 4362 4363 // Use v19 for constants because v18 can be still in use. 4364 ldrq(v19, Address(table, 0x40)); 4365 pmull (v29, T1Q, v2, v19, T1D); 4366 pmull2(v30, T1Q, v2, v19, T2D); 4367 eor3(v0, T16B, v3, v29, v30); 4368 4369 add(len, len, 0x80); 4370 add(buf, buf, 0x10); 4371 4372 mov(tmp0, v0, D, 0); 4373 mov(tmp1, v0, D, 1); 4374 } 4375 4376 SkipIfEqual::SkipIfEqual( 4377 MacroAssembler* masm, const bool* flag_addr, bool value) { 4378 _masm = masm; 4379 uint64_t offset; 4380 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 4381 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 4382 if (value) { 4383 _masm->cbnzw(rscratch1, _label); 4384 } else { 4385 _masm->cbzw(rscratch1, _label); 4386 } 4387 } 4388 4389 SkipIfEqual::~SkipIfEqual() { 4390 _masm->bind(_label); 4391 } 4392 4393 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4394 Address adr; 4395 switch(dst.getMode()) { 4396 case Address::base_plus_offset: 4397 // This is the expected mode, although we allow all the other 4398 // forms below. 4399 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4400 break; 4401 default: 4402 lea(rscratch2, dst); 4403 adr = Address(rscratch2); 4404 break; 4405 } 4406 ldr(rscratch1, adr); 4407 add(rscratch1, rscratch1, src); 4408 str(rscratch1, adr); 4409 } 4410 4411 void MacroAssembler::cmpptr(Register src1, Address src2) { 4412 uint64_t offset; 4413 adrp(rscratch1, src2, offset); 4414 ldr(rscratch1, Address(rscratch1, offset)); 4415 cmp(src1, rscratch1); 4416 } 4417 4418 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4419 cmp(obj1, obj2); 4420 } 4421 4422 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 4423 load_method_holder(rresult, rmethod); 4424 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 4425 } 4426 4427 void MacroAssembler::load_method_holder(Register holder, Register method) { 4428 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 4429 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 4430 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 4431 } 4432 4433 void MacroAssembler::load_klass(Register dst, Register src) { 4434 if (UseCompressedClassPointers) { 4435 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4436 decode_klass_not_null(dst); 4437 } else { 4438 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4439 } 4440 } 4441 4442 // ((OopHandle)result).resolve(); 4443 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 4444 // OopHandle::resolve is an indirection. 4445 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 4446 } 4447 4448 // ((WeakHandle)result).resolve(); 4449 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 4450 assert_different_registers(result, tmp1, tmp2); 4451 Label resolved; 4452 4453 // A null weak handle resolves to null. 4454 cbz(result, resolved); 4455 4456 // Only 64 bit platforms support GCs that require a tmp register 4457 // WeakHandle::resolve is an indirection like jweak. 4458 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4459 result, Address(result), tmp1, tmp2); 4460 bind(resolved); 4461 } 4462 4463 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 4464 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 4465 ldr(dst, Address(rmethod, Method::const_offset())); 4466 ldr(dst, Address(dst, ConstMethod::constants_offset())); 4467 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 4468 ldr(dst, Address(dst, mirror_offset)); 4469 resolve_oop_handle(dst, tmp1, tmp2); 4470 } 4471 4472 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 4473 if (UseCompressedClassPointers) { 4474 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4475 if (CompressedKlassPointers::base() == nullptr) { 4476 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 4477 return; 4478 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 4479 && CompressedKlassPointers::shift() == 0) { 4480 // Only the bottom 32 bits matter 4481 cmpw(trial_klass, tmp); 4482 return; 4483 } 4484 decode_klass_not_null(tmp); 4485 } else { 4486 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4487 } 4488 cmp(trial_klass, tmp); 4489 } 4490 4491 void MacroAssembler::store_klass(Register dst, Register src) { 4492 // FIXME: Should this be a store release? concurrent gcs assumes 4493 // klass length is valid if klass field is not null. 4494 if (UseCompressedClassPointers) { 4495 encode_klass_not_null(src); 4496 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4497 } else { 4498 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4499 } 4500 } 4501 4502 void MacroAssembler::store_klass_gap(Register dst, Register src) { 4503 if (UseCompressedClassPointers) { 4504 // Store to klass gap in destination 4505 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 4506 } 4507 } 4508 4509 // Algorithm must match CompressedOops::encode. 4510 void MacroAssembler::encode_heap_oop(Register d, Register s) { 4511 #ifdef ASSERT 4512 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 4513 #endif 4514 verify_oop_msg(s, "broken oop in encode_heap_oop"); 4515 if (CompressedOops::base() == nullptr) { 4516 if (CompressedOops::shift() != 0) { 4517 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4518 lsr(d, s, LogMinObjAlignmentInBytes); 4519 } else { 4520 mov(d, s); 4521 } 4522 } else { 4523 subs(d, s, rheapbase); 4524 csel(d, d, zr, Assembler::HS); 4525 lsr(d, d, LogMinObjAlignmentInBytes); 4526 4527 /* Old algorithm: is this any worse? 4528 Label nonnull; 4529 cbnz(r, nonnull); 4530 sub(r, r, rheapbase); 4531 bind(nonnull); 4532 lsr(r, r, LogMinObjAlignmentInBytes); 4533 */ 4534 } 4535 } 4536 4537 void MacroAssembler::encode_heap_oop_not_null(Register r) { 4538 #ifdef ASSERT 4539 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 4540 if (CheckCompressedOops) { 4541 Label ok; 4542 cbnz(r, ok); 4543 stop("null oop passed to encode_heap_oop_not_null"); 4544 bind(ok); 4545 } 4546 #endif 4547 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 4548 if (CompressedOops::base() != nullptr) { 4549 sub(r, r, rheapbase); 4550 } 4551 if (CompressedOops::shift() != 0) { 4552 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4553 lsr(r, r, LogMinObjAlignmentInBytes); 4554 } 4555 } 4556 4557 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 4558 #ifdef ASSERT 4559 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 4560 if (CheckCompressedOops) { 4561 Label ok; 4562 cbnz(src, ok); 4563 stop("null oop passed to encode_heap_oop_not_null2"); 4564 bind(ok); 4565 } 4566 #endif 4567 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 4568 4569 Register data = src; 4570 if (CompressedOops::base() != nullptr) { 4571 sub(dst, src, rheapbase); 4572 data = dst; 4573 } 4574 if (CompressedOops::shift() != 0) { 4575 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4576 lsr(dst, data, LogMinObjAlignmentInBytes); 4577 data = dst; 4578 } 4579 if (data == src) 4580 mov(dst, src); 4581 } 4582 4583 void MacroAssembler::decode_heap_oop(Register d, Register s) { 4584 #ifdef ASSERT 4585 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 4586 #endif 4587 if (CompressedOops::base() == nullptr) { 4588 if (CompressedOops::shift() != 0 || d != s) { 4589 lsl(d, s, CompressedOops::shift()); 4590 } 4591 } else { 4592 Label done; 4593 if (d != s) 4594 mov(d, s); 4595 cbz(s, done); 4596 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 4597 bind(done); 4598 } 4599 verify_oop_msg(d, "broken oop in decode_heap_oop"); 4600 } 4601 4602 void MacroAssembler::decode_heap_oop_not_null(Register r) { 4603 assert (UseCompressedOops, "should only be used for compressed headers"); 4604 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4605 // Cannot assert, unverified entry point counts instructions (see .ad file) 4606 // vtableStubs also counts instructions in pd_code_size_limit. 4607 // Also do not verify_oop as this is called by verify_oop. 4608 if (CompressedOops::shift() != 0) { 4609 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4610 if (CompressedOops::base() != nullptr) { 4611 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4612 } else { 4613 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4614 } 4615 } else { 4616 assert (CompressedOops::base() == nullptr, "sanity"); 4617 } 4618 } 4619 4620 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4621 assert (UseCompressedOops, "should only be used for compressed headers"); 4622 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4623 // Cannot assert, unverified entry point counts instructions (see .ad file) 4624 // vtableStubs also counts instructions in pd_code_size_limit. 4625 // Also do not verify_oop as this is called by verify_oop. 4626 if (CompressedOops::shift() != 0) { 4627 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4628 if (CompressedOops::base() != nullptr) { 4629 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4630 } else { 4631 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4632 } 4633 } else { 4634 assert (CompressedOops::base() == nullptr, "sanity"); 4635 if (dst != src) { 4636 mov(dst, src); 4637 } 4638 } 4639 } 4640 4641 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4642 4643 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4644 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4645 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4646 4647 if (_klass_decode_mode != KlassDecodeNone) { 4648 return _klass_decode_mode; 4649 } 4650 4651 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4652 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4653 4654 if (CompressedKlassPointers::base() == nullptr) { 4655 return (_klass_decode_mode = KlassDecodeZero); 4656 } 4657 4658 if (operand_valid_for_logical_immediate( 4659 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4660 const uint64_t range_mask = 4661 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4662 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4663 return (_klass_decode_mode = KlassDecodeXor); 4664 } 4665 } 4666 4667 const uint64_t shifted_base = 4668 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4669 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4670 "compressed class base bad alignment"); 4671 4672 return (_klass_decode_mode = KlassDecodeMovk); 4673 } 4674 4675 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4676 switch (klass_decode_mode()) { 4677 case KlassDecodeZero: 4678 if (CompressedKlassPointers::shift() != 0) { 4679 lsr(dst, src, LogKlassAlignmentInBytes); 4680 } else { 4681 if (dst != src) mov(dst, src); 4682 } 4683 break; 4684 4685 case KlassDecodeXor: 4686 if (CompressedKlassPointers::shift() != 0) { 4687 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4688 lsr(dst, dst, LogKlassAlignmentInBytes); 4689 } else { 4690 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4691 } 4692 break; 4693 4694 case KlassDecodeMovk: 4695 if (CompressedKlassPointers::shift() != 0) { 4696 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4697 } else { 4698 movw(dst, src); 4699 } 4700 break; 4701 4702 case KlassDecodeNone: 4703 ShouldNotReachHere(); 4704 break; 4705 } 4706 } 4707 4708 void MacroAssembler::encode_klass_not_null(Register r) { 4709 encode_klass_not_null(r, r); 4710 } 4711 4712 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4713 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4714 4715 switch (klass_decode_mode()) { 4716 case KlassDecodeZero: 4717 if (CompressedKlassPointers::shift() != 0) { 4718 lsl(dst, src, LogKlassAlignmentInBytes); 4719 } else { 4720 if (dst != src) mov(dst, src); 4721 } 4722 break; 4723 4724 case KlassDecodeXor: 4725 if (CompressedKlassPointers::shift() != 0) { 4726 lsl(dst, src, LogKlassAlignmentInBytes); 4727 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4728 } else { 4729 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4730 } 4731 break; 4732 4733 case KlassDecodeMovk: { 4734 const uint64_t shifted_base = 4735 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4736 4737 if (dst != src) movw(dst, src); 4738 movk(dst, shifted_base >> 32, 32); 4739 4740 if (CompressedKlassPointers::shift() != 0) { 4741 lsl(dst, dst, LogKlassAlignmentInBytes); 4742 } 4743 4744 break; 4745 } 4746 4747 case KlassDecodeNone: 4748 ShouldNotReachHere(); 4749 break; 4750 } 4751 } 4752 4753 void MacroAssembler::decode_klass_not_null(Register r) { 4754 decode_klass_not_null(r, r); 4755 } 4756 4757 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4758 #ifdef ASSERT 4759 { 4760 ThreadInVMfromUnknown tiv; 4761 assert (UseCompressedOops, "should only be used for compressed oops"); 4762 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4763 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4764 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4765 } 4766 #endif 4767 int oop_index = oop_recorder()->find_index(obj); 4768 InstructionMark im(this); 4769 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4770 code_section()->relocate(inst_mark(), rspec); 4771 movz(dst, 0xDEAD, 16); 4772 movk(dst, 0xBEEF); 4773 } 4774 4775 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4776 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4777 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4778 int index = oop_recorder()->find_index(k); 4779 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4780 4781 InstructionMark im(this); 4782 RelocationHolder rspec = metadata_Relocation::spec(index); 4783 code_section()->relocate(inst_mark(), rspec); 4784 narrowKlass nk = CompressedKlassPointers::encode(k); 4785 movz(dst, (nk >> 16), 16); 4786 movk(dst, nk & 0xffff); 4787 } 4788 4789 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4790 Register dst, Address src, 4791 Register tmp1, Register tmp2) { 4792 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4793 decorators = AccessInternal::decorator_fixup(decorators, type); 4794 bool as_raw = (decorators & AS_RAW) != 0; 4795 if (as_raw) { 4796 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 4797 } else { 4798 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 4799 } 4800 } 4801 4802 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4803 Address dst, Register val, 4804 Register tmp1, Register tmp2, Register tmp3) { 4805 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4806 decorators = AccessInternal::decorator_fixup(decorators, type); 4807 bool as_raw = (decorators & AS_RAW) != 0; 4808 if (as_raw) { 4809 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4810 } else { 4811 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4812 } 4813 } 4814 4815 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4816 Register tmp2, DecoratorSet decorators) { 4817 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 4818 } 4819 4820 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4821 Register tmp2, DecoratorSet decorators) { 4822 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 4823 } 4824 4825 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 4826 Register tmp2, Register tmp3, DecoratorSet decorators) { 4827 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 4828 } 4829 4830 // Used for storing nulls. 4831 void MacroAssembler::store_heap_oop_null(Address dst) { 4832 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 4833 } 4834 4835 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4836 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 4837 int index = oop_recorder()->allocate_metadata_index(obj); 4838 RelocationHolder rspec = metadata_Relocation::spec(index); 4839 return Address((address)obj, rspec); 4840 } 4841 4842 // Move an oop into a register. 4843 void MacroAssembler::movoop(Register dst, jobject obj) { 4844 int oop_index; 4845 if (obj == nullptr) { 4846 oop_index = oop_recorder()->allocate_oop_index(obj); 4847 } else { 4848 #ifdef ASSERT 4849 { 4850 ThreadInVMfromUnknown tiv; 4851 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4852 } 4853 #endif 4854 oop_index = oop_recorder()->find_index(obj); 4855 } 4856 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4857 4858 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 4859 mov(dst, Address((address)obj, rspec)); 4860 } else { 4861 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4862 ldr_constant(dst, Address(dummy, rspec)); 4863 } 4864 4865 } 4866 4867 // Move a metadata address into a register. 4868 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4869 int oop_index; 4870 if (obj == nullptr) { 4871 oop_index = oop_recorder()->allocate_metadata_index(obj); 4872 } else { 4873 oop_index = oop_recorder()->find_index(obj); 4874 } 4875 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4876 mov(dst, Address((address)obj, rspec)); 4877 } 4878 4879 Address MacroAssembler::constant_oop_address(jobject obj) { 4880 #ifdef ASSERT 4881 { 4882 ThreadInVMfromUnknown tiv; 4883 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4884 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4885 } 4886 #endif 4887 int oop_index = oop_recorder()->find_index(obj); 4888 return Address((address)obj, oop_Relocation::spec(oop_index)); 4889 } 4890 4891 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4892 void MacroAssembler::tlab_allocate(Register obj, 4893 Register var_size_in_bytes, 4894 int con_size_in_bytes, 4895 Register t1, 4896 Register t2, 4897 Label& slow_case) { 4898 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4899 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4900 } 4901 4902 void MacroAssembler::verify_tlab() { 4903 #ifdef ASSERT 4904 if (UseTLAB && VerifyOops) { 4905 Label next, ok; 4906 4907 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4908 4909 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4910 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4911 cmp(rscratch2, rscratch1); 4912 br(Assembler::HS, next); 4913 STOP("assert(top >= start)"); 4914 should_not_reach_here(); 4915 4916 bind(next); 4917 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4918 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4919 cmp(rscratch2, rscratch1); 4920 br(Assembler::HS, ok); 4921 STOP("assert(top <= end)"); 4922 should_not_reach_here(); 4923 4924 bind(ok); 4925 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4926 } 4927 #endif 4928 } 4929 4930 // Writes to stack successive pages until offset reached to check for 4931 // stack overflow + shadow pages. This clobbers tmp. 4932 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4933 assert_different_registers(tmp, size, rscratch1); 4934 mov(tmp, sp); 4935 // Bang stack for total size given plus shadow page size. 4936 // Bang one page at a time because large size can bang beyond yellow and 4937 // red zones. 4938 Label loop; 4939 mov(rscratch1, (int)os::vm_page_size()); 4940 bind(loop); 4941 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 4942 subsw(size, size, rscratch1); 4943 str(size, Address(tmp)); 4944 br(Assembler::GT, loop); 4945 4946 // Bang down shadow pages too. 4947 // At this point, (tmp-0) is the last address touched, so don't 4948 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4949 // was post-decremented.) Skip this address by starting at i=1, and 4950 // touch a few more pages below. N.B. It is important to touch all 4951 // the way down to and including i=StackShadowPages. 4952 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 4953 // this could be any sized move but this is can be a debugging crumb 4954 // so the bigger the better. 4955 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 4956 str(size, Address(tmp)); 4957 } 4958 } 4959 4960 // Move the address of the polling page into dest. 4961 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 4962 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 4963 } 4964 4965 // Read the polling page. The address of the polling page must 4966 // already be in r. 4967 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 4968 address mark; 4969 { 4970 InstructionMark im(this); 4971 code_section()->relocate(inst_mark(), rtype); 4972 ldrw(zr, Address(r, 0)); 4973 mark = inst_mark(); 4974 } 4975 verify_cross_modify_fence_not_required(); 4976 return mark; 4977 } 4978 4979 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 4980 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 4981 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 4982 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 4983 uint64_t dest_page = (uint64_t)dest.target() >> 12; 4984 int64_t offset_low = dest_page - low_page; 4985 int64_t offset_high = dest_page - high_page; 4986 4987 assert(is_valid_AArch64_address(dest.target()), "bad address"); 4988 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 4989 4990 InstructionMark im(this); 4991 code_section()->relocate(inst_mark(), dest.rspec()); 4992 // 8143067: Ensure that the adrp can reach the dest from anywhere within 4993 // the code cache so that if it is relocated we know it will still reach 4994 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 4995 _adrp(reg1, dest.target()); 4996 } else { 4997 uint64_t target = (uint64_t)dest.target(); 4998 uint64_t adrp_target 4999 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5000 5001 _adrp(reg1, (address)adrp_target); 5002 movk(reg1, target >> 32, 32); 5003 } 5004 byte_offset = (uint64_t)dest.target() & 0xfff; 5005 } 5006 5007 void MacroAssembler::load_byte_map_base(Register reg) { 5008 CardTable::CardValue* byte_map_base = 5009 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5010 5011 // Strictly speaking the byte_map_base isn't an address at all, and it might 5012 // even be negative. It is thus materialised as a constant. 5013 mov(reg, (uint64_t)byte_map_base); 5014 } 5015 5016 void MacroAssembler::build_frame(int framesize) { 5017 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5018 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5019 protect_return_address(); 5020 if (framesize < ((1 << 9) + 2 * wordSize)) { 5021 sub(sp, sp, framesize); 5022 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5023 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5024 } else { 5025 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5026 if (PreserveFramePointer) mov(rfp, sp); 5027 if (framesize < ((1 << 12) + 2 * wordSize)) 5028 sub(sp, sp, framesize - 2 * wordSize); 5029 else { 5030 mov(rscratch1, framesize - 2 * wordSize); 5031 sub(sp, sp, rscratch1); 5032 } 5033 } 5034 verify_cross_modify_fence_not_required(); 5035 } 5036 5037 void MacroAssembler::remove_frame(int framesize) { 5038 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5039 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5040 if (framesize < ((1 << 9) + 2 * wordSize)) { 5041 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5042 add(sp, sp, framesize); 5043 } else { 5044 if (framesize < ((1 << 12) + 2 * wordSize)) 5045 add(sp, sp, framesize - 2 * wordSize); 5046 else { 5047 mov(rscratch1, framesize - 2 * wordSize); 5048 add(sp, sp, rscratch1); 5049 } 5050 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5051 } 5052 authenticate_return_address(); 5053 } 5054 5055 5056 // This method counts leading positive bytes (highest bit not set) in provided byte array 5057 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5058 // Simple and most common case of aligned small array which is not at the 5059 // end of memory page is placed here. All other cases are in stub. 5060 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5061 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5062 assert_different_registers(ary1, len, result); 5063 5064 mov(result, len); 5065 cmpw(len, 0); 5066 br(LE, DONE); 5067 cmpw(len, 4 * wordSize); 5068 br(GE, STUB_LONG); // size > 32 then go to stub 5069 5070 int shift = 64 - exact_log2(os::vm_page_size()); 5071 lsl(rscratch1, ary1, shift); 5072 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5073 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5074 br(CS, STUB); // at the end of page then go to stub 5075 subs(len, len, wordSize); 5076 br(LT, END); 5077 5078 BIND(LOOP); 5079 ldr(rscratch1, Address(post(ary1, wordSize))); 5080 tst(rscratch1, UPPER_BIT_MASK); 5081 br(NE, SET_RESULT); 5082 subs(len, len, wordSize); 5083 br(GE, LOOP); 5084 cmpw(len, -wordSize); 5085 br(EQ, DONE); 5086 5087 BIND(END); 5088 ldr(rscratch1, Address(ary1)); 5089 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5090 lslv(rscratch1, rscratch1, rscratch2); 5091 tst(rscratch1, UPPER_BIT_MASK); 5092 br(NE, SET_RESULT); 5093 b(DONE); 5094 5095 BIND(STUB); 5096 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5097 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5098 address tpc1 = trampoline_call(count_pos); 5099 if (tpc1 == nullptr) { 5100 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5101 postcond(pc() == badAddress); 5102 return nullptr; 5103 } 5104 b(DONE); 5105 5106 BIND(STUB_LONG); 5107 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5108 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5109 address tpc2 = trampoline_call(count_pos_long); 5110 if (tpc2 == nullptr) { 5111 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5112 postcond(pc() == badAddress); 5113 return nullptr; 5114 } 5115 b(DONE); 5116 5117 BIND(SET_RESULT); 5118 5119 add(len, len, wordSize); 5120 sub(result, result, len); 5121 5122 BIND(DONE); 5123 postcond(pc() != badAddress); 5124 return pc(); 5125 } 5126 5127 // Clobbers: rscratch1, rscratch2, rflags 5128 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5129 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5130 Register tmp4, Register tmp5, Register result, 5131 Register cnt1, int elem_size) { 5132 Label DONE, SAME; 5133 Register tmp1 = rscratch1; 5134 Register tmp2 = rscratch2; 5135 Register cnt2 = tmp2; // cnt2 only used in array length compare 5136 int elem_per_word = wordSize/elem_size; 5137 int log_elem_size = exact_log2(elem_size); 5138 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5139 int base_offset 5140 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5141 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5142 5143 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5144 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5145 5146 #ifndef PRODUCT 5147 { 5148 const char kind = (elem_size == 2) ? 'U' : 'L'; 5149 char comment[64]; 5150 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5151 BLOCK_COMMENT(comment); 5152 } 5153 #endif 5154 5155 // if (a1 == a2) 5156 // return true; 5157 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5158 br(EQ, SAME); 5159 5160 if (UseSimpleArrayEquals) { 5161 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5162 // if (a1 == nullptr || a2 == nullptr) 5163 // return false; 5164 // a1 & a2 == 0 means (some-pointer is null) or 5165 // (very-rare-or-even-probably-impossible-pointer-values) 5166 // so, we can save one branch in most cases 5167 tst(a1, a2); 5168 mov(result, false); 5169 br(EQ, A_MIGHT_BE_NULL); 5170 // if (a1.length != a2.length) 5171 // return false; 5172 bind(A_IS_NOT_NULL); 5173 ldrw(cnt1, Address(a1, length_offset)); 5174 ldrw(cnt2, Address(a2, length_offset)); 5175 eorw(tmp5, cnt1, cnt2); 5176 cbnzw(tmp5, DONE); 5177 lea(a1, Address(a1, base_offset)); 5178 lea(a2, Address(a2, base_offset)); 5179 // Check for short strings, i.e. smaller than wordSize. 5180 subs(cnt1, cnt1, elem_per_word); 5181 br(Assembler::LT, SHORT); 5182 // Main 8 byte comparison loop. 5183 bind(NEXT_WORD); { 5184 ldr(tmp1, Address(post(a1, wordSize))); 5185 ldr(tmp2, Address(post(a2, wordSize))); 5186 subs(cnt1, cnt1, elem_per_word); 5187 eor(tmp5, tmp1, tmp2); 5188 cbnz(tmp5, DONE); 5189 } br(GT, NEXT_WORD); 5190 // Last longword. In the case where length == 4 we compare the 5191 // same longword twice, but that's still faster than another 5192 // conditional branch. 5193 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5194 // length == 4. 5195 if (log_elem_size > 0) 5196 lsl(cnt1, cnt1, log_elem_size); 5197 ldr(tmp3, Address(a1, cnt1)); 5198 ldr(tmp4, Address(a2, cnt1)); 5199 eor(tmp5, tmp3, tmp4); 5200 cbnz(tmp5, DONE); 5201 b(SAME); 5202 bind(A_MIGHT_BE_NULL); 5203 // in case both a1 and a2 are not-null, proceed with loads 5204 cbz(a1, DONE); 5205 cbz(a2, DONE); 5206 b(A_IS_NOT_NULL); 5207 bind(SHORT); 5208 5209 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5210 { 5211 ldrw(tmp1, Address(post(a1, 4))); 5212 ldrw(tmp2, Address(post(a2, 4))); 5213 eorw(tmp5, tmp1, tmp2); 5214 cbnzw(tmp5, DONE); 5215 } 5216 bind(TAIL03); 5217 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5218 { 5219 ldrh(tmp3, Address(post(a1, 2))); 5220 ldrh(tmp4, Address(post(a2, 2))); 5221 eorw(tmp5, tmp3, tmp4); 5222 cbnzw(tmp5, DONE); 5223 } 5224 bind(TAIL01); 5225 if (elem_size == 1) { // Only needed when comparing byte arrays. 5226 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5227 { 5228 ldrb(tmp1, a1); 5229 ldrb(tmp2, a2); 5230 eorw(tmp5, tmp1, tmp2); 5231 cbnzw(tmp5, DONE); 5232 } 5233 } 5234 } else { 5235 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5236 CSET_EQ, LAST_CHECK; 5237 mov(result, false); 5238 cbz(a1, DONE); 5239 ldrw(cnt1, Address(a1, length_offset)); 5240 cbz(a2, DONE); 5241 ldrw(cnt2, Address(a2, length_offset)); 5242 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5243 // faster to perform another branch before comparing a1 and a2 5244 cmp(cnt1, (u1)elem_per_word); 5245 br(LE, SHORT); // short or same 5246 ldr(tmp3, Address(pre(a1, base_offset))); 5247 subs(zr, cnt1, stubBytesThreshold); 5248 br(GE, STUB); 5249 ldr(tmp4, Address(pre(a2, base_offset))); 5250 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5251 cmp(cnt2, cnt1); 5252 br(NE, DONE); 5253 5254 // Main 16 byte comparison loop with 2 exits 5255 bind(NEXT_DWORD); { 5256 ldr(tmp1, Address(pre(a1, wordSize))); 5257 ldr(tmp2, Address(pre(a2, wordSize))); 5258 subs(cnt1, cnt1, 2 * elem_per_word); 5259 br(LE, TAIL); 5260 eor(tmp4, tmp3, tmp4); 5261 cbnz(tmp4, DONE); 5262 ldr(tmp3, Address(pre(a1, wordSize))); 5263 ldr(tmp4, Address(pre(a2, wordSize))); 5264 cmp(cnt1, (u1)elem_per_word); 5265 br(LE, TAIL2); 5266 cmp(tmp1, tmp2); 5267 } br(EQ, NEXT_DWORD); 5268 b(DONE); 5269 5270 bind(TAIL); 5271 eor(tmp4, tmp3, tmp4); 5272 eor(tmp2, tmp1, tmp2); 5273 lslv(tmp2, tmp2, tmp5); 5274 orr(tmp5, tmp4, tmp2); 5275 cmp(tmp5, zr); 5276 b(CSET_EQ); 5277 5278 bind(TAIL2); 5279 eor(tmp2, tmp1, tmp2); 5280 cbnz(tmp2, DONE); 5281 b(LAST_CHECK); 5282 5283 bind(STUB); 5284 ldr(tmp4, Address(pre(a2, base_offset))); 5285 cmp(cnt2, cnt1); 5286 br(NE, DONE); 5287 if (elem_size == 2) { // convert to byte counter 5288 lsl(cnt1, cnt1, 1); 5289 } 5290 eor(tmp5, tmp3, tmp4); 5291 cbnz(tmp5, DONE); 5292 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5293 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5294 address tpc = trampoline_call(stub); 5295 if (tpc == nullptr) { 5296 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5297 postcond(pc() == badAddress); 5298 return nullptr; 5299 } 5300 b(DONE); 5301 5302 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5303 // so, if a2 == null => return false(0), else return true, so we can return a2 5304 mov(result, a2); 5305 b(DONE); 5306 bind(SHORT); 5307 cmp(cnt2, cnt1); 5308 br(NE, DONE); 5309 cbz(cnt1, SAME); 5310 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5311 ldr(tmp3, Address(a1, base_offset)); 5312 ldr(tmp4, Address(a2, base_offset)); 5313 bind(LAST_CHECK); 5314 eor(tmp4, tmp3, tmp4); 5315 lslv(tmp5, tmp4, tmp5); 5316 cmp(tmp5, zr); 5317 bind(CSET_EQ); 5318 cset(result, EQ); 5319 b(DONE); 5320 } 5321 5322 bind(SAME); 5323 mov(result, true); 5324 // That's it. 5325 bind(DONE); 5326 5327 BLOCK_COMMENT("} array_equals"); 5328 postcond(pc() != badAddress); 5329 return pc(); 5330 } 5331 5332 // Compare Strings 5333 5334 // For Strings we're passed the address of the first characters in a1 5335 // and a2 and the length in cnt1. 5336 // elem_size is the element size in bytes: either 1 or 2. 5337 // There are two implementations. For arrays >= 8 bytes, all 5338 // comparisons (including the final one, which may overlap) are 5339 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 5340 // halfword, then a short, and then a byte. 5341 5342 void MacroAssembler::string_equals(Register a1, Register a2, 5343 Register result, Register cnt1, int elem_size) 5344 { 5345 Label SAME, DONE, SHORT, NEXT_WORD; 5346 Register tmp1 = rscratch1; 5347 Register tmp2 = rscratch2; 5348 Register cnt2 = tmp2; // cnt2 only used in array length compare 5349 5350 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 5351 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5352 5353 #ifndef PRODUCT 5354 { 5355 const char kind = (elem_size == 2) ? 'U' : 'L'; 5356 char comment[64]; 5357 snprintf(comment, sizeof comment, "{string_equals%c", kind); 5358 BLOCK_COMMENT(comment); 5359 } 5360 #endif 5361 5362 mov(result, false); 5363 5364 // Check for short strings, i.e. smaller than wordSize. 5365 subs(cnt1, cnt1, wordSize); 5366 br(Assembler::LT, SHORT); 5367 // Main 8 byte comparison loop. 5368 bind(NEXT_WORD); { 5369 ldr(tmp1, Address(post(a1, wordSize))); 5370 ldr(tmp2, Address(post(a2, wordSize))); 5371 subs(cnt1, cnt1, wordSize); 5372 eor(tmp1, tmp1, tmp2); 5373 cbnz(tmp1, DONE); 5374 } br(GT, NEXT_WORD); 5375 // Last longword. In the case where length == 4 we compare the 5376 // same longword twice, but that's still faster than another 5377 // conditional branch. 5378 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5379 // length == 4. 5380 ldr(tmp1, Address(a1, cnt1)); 5381 ldr(tmp2, Address(a2, cnt1)); 5382 eor(tmp2, tmp1, tmp2); 5383 cbnz(tmp2, DONE); 5384 b(SAME); 5385 5386 bind(SHORT); 5387 Label TAIL03, TAIL01; 5388 5389 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 5390 { 5391 ldrw(tmp1, Address(post(a1, 4))); 5392 ldrw(tmp2, Address(post(a2, 4))); 5393 eorw(tmp1, tmp1, tmp2); 5394 cbnzw(tmp1, DONE); 5395 } 5396 bind(TAIL03); 5397 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 5398 { 5399 ldrh(tmp1, Address(post(a1, 2))); 5400 ldrh(tmp2, Address(post(a2, 2))); 5401 eorw(tmp1, tmp1, tmp2); 5402 cbnzw(tmp1, DONE); 5403 } 5404 bind(TAIL01); 5405 if (elem_size == 1) { // Only needed when comparing 1-byte elements 5406 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5407 { 5408 ldrb(tmp1, a1); 5409 ldrb(tmp2, a2); 5410 eorw(tmp1, tmp1, tmp2); 5411 cbnzw(tmp1, DONE); 5412 } 5413 } 5414 // Arrays are equal. 5415 bind(SAME); 5416 mov(result, true); 5417 5418 // That's it. 5419 bind(DONE); 5420 BLOCK_COMMENT("} string_equals"); 5421 } 5422 5423 5424 // The size of the blocks erased by the zero_blocks stub. We must 5425 // handle anything smaller than this ourselves in zero_words(). 5426 const int MacroAssembler::zero_words_block_size = 8; 5427 5428 // zero_words() is used by C2 ClearArray patterns and by 5429 // C1_MacroAssembler. It is as small as possible, handling small word 5430 // counts locally and delegating anything larger to the zero_blocks 5431 // stub. It is expanded many times in compiled code, so it is 5432 // important to keep it short. 5433 5434 // ptr: Address of a buffer to be zeroed. 5435 // cnt: Count in HeapWords. 5436 // 5437 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 5438 address MacroAssembler::zero_words(Register ptr, Register cnt) 5439 { 5440 assert(is_power_of_2(zero_words_block_size), "adjust this"); 5441 5442 BLOCK_COMMENT("zero_words {"); 5443 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 5444 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5445 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5446 5447 subs(rscratch1, cnt, zero_words_block_size); 5448 Label around; 5449 br(LO, around); 5450 { 5451 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5452 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5453 // Make sure this is a C2 compilation. C1 allocates space only for 5454 // trampoline stubs generated by Call LIR ops, and in any case it 5455 // makes sense for a C1 compilation task to proceed as quickly as 5456 // possible. 5457 CompileTask* task; 5458 if (StubRoutines::aarch64::complete() 5459 && Thread::current()->is_Compiler_thread() 5460 && (task = ciEnv::current()->task()) 5461 && is_c2_compile(task->comp_level())) { 5462 address tpc = trampoline_call(zero_blocks); 5463 if (tpc == nullptr) { 5464 DEBUG_ONLY(reset_labels(around)); 5465 return nullptr; 5466 } 5467 } else { 5468 far_call(zero_blocks); 5469 } 5470 } 5471 bind(around); 5472 5473 // We have a few words left to do. zero_blocks has adjusted r10 and r11 5474 // for us. 5475 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 5476 Label l; 5477 tbz(cnt, exact_log2(i), l); 5478 for (int j = 0; j < i; j += 2) { 5479 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 5480 } 5481 bind(l); 5482 } 5483 { 5484 Label l; 5485 tbz(cnt, 0, l); 5486 str(zr, Address(ptr)); 5487 bind(l); 5488 } 5489 5490 BLOCK_COMMENT("} zero_words"); 5491 return pc(); 5492 } 5493 5494 // base: Address of a buffer to be zeroed, 8 bytes aligned. 5495 // cnt: Immediate count in HeapWords. 5496 // 5497 // r10, r11, rscratch1, and rscratch2 are clobbered. 5498 address MacroAssembler::zero_words(Register base, uint64_t cnt) 5499 { 5500 assert(wordSize <= BlockZeroingLowLimit, 5501 "increase BlockZeroingLowLimit"); 5502 address result = nullptr; 5503 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 5504 #ifndef PRODUCT 5505 { 5506 char buf[64]; 5507 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 5508 BLOCK_COMMENT(buf); 5509 } 5510 #endif 5511 if (cnt >= 16) { 5512 uint64_t loops = cnt/16; 5513 if (loops > 1) { 5514 mov(rscratch2, loops - 1); 5515 } 5516 { 5517 Label loop; 5518 bind(loop); 5519 for (int i = 0; i < 16; i += 2) { 5520 stp(zr, zr, Address(base, i * BytesPerWord)); 5521 } 5522 add(base, base, 16 * BytesPerWord); 5523 if (loops > 1) { 5524 subs(rscratch2, rscratch2, 1); 5525 br(GE, loop); 5526 } 5527 } 5528 } 5529 cnt %= 16; 5530 int i = cnt & 1; // store any odd word to start 5531 if (i) str(zr, Address(base)); 5532 for (; i < (int)cnt; i += 2) { 5533 stp(zr, zr, Address(base, i * wordSize)); 5534 } 5535 BLOCK_COMMENT("} zero_words"); 5536 result = pc(); 5537 } else { 5538 mov(r10, base); mov(r11, cnt); 5539 result = zero_words(r10, r11); 5540 } 5541 return result; 5542 } 5543 5544 // Zero blocks of memory by using DC ZVA. 5545 // 5546 // Aligns the base address first sufficiently for DC ZVA, then uses 5547 // DC ZVA repeatedly for every full block. cnt is the size to be 5548 // zeroed in HeapWords. Returns the count of words left to be zeroed 5549 // in cnt. 5550 // 5551 // NOTE: This is intended to be used in the zero_blocks() stub. If 5552 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 5553 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 5554 Register tmp = rscratch1; 5555 Register tmp2 = rscratch2; 5556 int zva_length = VM_Version::zva_length(); 5557 Label initial_table_end, loop_zva; 5558 Label fini; 5559 5560 // Base must be 16 byte aligned. If not just return and let caller handle it 5561 tst(base, 0x0f); 5562 br(Assembler::NE, fini); 5563 // Align base with ZVA length. 5564 neg(tmp, base); 5565 andr(tmp, tmp, zva_length - 1); 5566 5567 // tmp: the number of bytes to be filled to align the base with ZVA length. 5568 add(base, base, tmp); 5569 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5570 adr(tmp2, initial_table_end); 5571 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5572 br(tmp2); 5573 5574 for (int i = -zva_length + 16; i < 0; i += 16) 5575 stp(zr, zr, Address(base, i)); 5576 bind(initial_table_end); 5577 5578 sub(cnt, cnt, zva_length >> 3); 5579 bind(loop_zva); 5580 dc(Assembler::ZVA, base); 5581 subs(cnt, cnt, zva_length >> 3); 5582 add(base, base, zva_length); 5583 br(Assembler::GE, loop_zva); 5584 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 5585 bind(fini); 5586 } 5587 5588 // base: Address of a buffer to be filled, 8 bytes aligned. 5589 // cnt: Count in 8-byte unit. 5590 // value: Value to be filled with. 5591 // base will point to the end of the buffer after filling. 5592 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 5593 { 5594 // Algorithm: 5595 // 5596 // if (cnt == 0) { 5597 // return; 5598 // } 5599 // if ((p & 8) != 0) { 5600 // *p++ = v; 5601 // } 5602 // 5603 // scratch1 = cnt & 14; 5604 // cnt -= scratch1; 5605 // p += scratch1; 5606 // switch (scratch1 / 2) { 5607 // do { 5608 // cnt -= 16; 5609 // p[-16] = v; 5610 // p[-15] = v; 5611 // case 7: 5612 // p[-14] = v; 5613 // p[-13] = v; 5614 // case 6: 5615 // p[-12] = v; 5616 // p[-11] = v; 5617 // // ... 5618 // case 1: 5619 // p[-2] = v; 5620 // p[-1] = v; 5621 // case 0: 5622 // p += 16; 5623 // } while (cnt); 5624 // } 5625 // if ((cnt & 1) == 1) { 5626 // *p++ = v; 5627 // } 5628 5629 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5630 5631 Label fini, skip, entry, loop; 5632 const int unroll = 8; // Number of stp instructions we'll unroll 5633 5634 cbz(cnt, fini); 5635 tbz(base, 3, skip); 5636 str(value, Address(post(base, 8))); 5637 sub(cnt, cnt, 1); 5638 bind(skip); 5639 5640 andr(rscratch1, cnt, (unroll-1) * 2); 5641 sub(cnt, cnt, rscratch1); 5642 add(base, base, rscratch1, Assembler::LSL, 3); 5643 adr(rscratch2, entry); 5644 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5645 br(rscratch2); 5646 5647 bind(loop); 5648 add(base, base, unroll * 16); 5649 for (int i = -unroll; i < 0; i++) 5650 stp(value, value, Address(base, i * 16)); 5651 bind(entry); 5652 subs(cnt, cnt, unroll * 2); 5653 br(Assembler::GE, loop); 5654 5655 tbz(cnt, 0, fini); 5656 str(value, Address(post(base, 8))); 5657 bind(fini); 5658 } 5659 5660 // Intrinsic for 5661 // 5662 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 5663 // return the number of characters copied. 5664 // - java/lang/StringUTF16.compress 5665 // return zero (0) if copy fails, otherwise 'len'. 5666 // 5667 // This version always returns the number of characters copied, and does not 5668 // clobber the 'len' register. A successful copy will complete with the post- 5669 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 5670 // post-condition: 0 <= 'res' < 'len'. 5671 // 5672 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 5673 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 5674 // beyond the acceptable, even though the footprint would be smaller. 5675 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 5676 // avoid additional bloat. 5677 // 5678 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 5679 void MacroAssembler::encode_iso_array(Register src, Register dst, 5680 Register len, Register res, bool ascii, 5681 FloatRegister vtmp0, FloatRegister vtmp1, 5682 FloatRegister vtmp2, FloatRegister vtmp3, 5683 FloatRegister vtmp4, FloatRegister vtmp5) 5684 { 5685 Register cnt = res; 5686 Register max = rscratch1; 5687 Register chk = rscratch2; 5688 5689 prfm(Address(src), PLDL1STRM); 5690 movw(cnt, len); 5691 5692 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5693 5694 Label LOOP_32, DONE_32, FAIL_32; 5695 5696 BIND(LOOP_32); 5697 { 5698 cmpw(cnt, 32); 5699 br(LT, DONE_32); 5700 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5701 // Extract lower bytes. 5702 FloatRegister vlo0 = vtmp4; 5703 FloatRegister vlo1 = vtmp5; 5704 uzp1(vlo0, T16B, vtmp0, vtmp1); 5705 uzp1(vlo1, T16B, vtmp2, vtmp3); 5706 // Merge bits... 5707 orr(vtmp0, T16B, vtmp0, vtmp1); 5708 orr(vtmp2, T16B, vtmp2, vtmp3); 5709 // Extract merged upper bytes. 5710 FloatRegister vhix = vtmp0; 5711 uzp2(vhix, T16B, vtmp0, vtmp2); 5712 // ISO-check on hi-parts (all zero). 5713 // ASCII-check on lo-parts (no sign). 5714 FloatRegister vlox = vtmp1; // Merge lower bytes. 5715 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5716 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 5717 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5718 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5719 ASCII(orr(chk, chk, max)); 5720 cbnz(chk, FAIL_32); 5721 subw(cnt, cnt, 32); 5722 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5723 b(LOOP_32); 5724 } 5725 BIND(FAIL_32); 5726 sub(src, src, 64); 5727 BIND(DONE_32); 5728 5729 Label LOOP_8, SKIP_8; 5730 5731 BIND(LOOP_8); 5732 { 5733 cmpw(cnt, 8); 5734 br(LT, SKIP_8); 5735 FloatRegister vhi = vtmp0; 5736 FloatRegister vlo = vtmp1; 5737 ld1(vtmp3, T8H, src); 5738 uzp1(vlo, T16B, vtmp3, vtmp3); 5739 uzp2(vhi, T16B, vtmp3, vtmp3); 5740 // ISO-check on hi-parts (all zero). 5741 // ASCII-check on lo-parts (no sign). 5742 ASCII(cm(LT, vtmp2, T16B, vlo)); 5743 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 5744 ASCII(umov(max, vtmp2, B, 0)); 5745 ASCII(orr(chk, chk, max)); 5746 cbnz(chk, SKIP_8); 5747 5748 strd(vlo, Address(post(dst, 8))); 5749 subw(cnt, cnt, 8); 5750 add(src, src, 16); 5751 b(LOOP_8); 5752 } 5753 BIND(SKIP_8); 5754 5755 #undef ASCII 5756 5757 Label LOOP, DONE; 5758 5759 cbz(cnt, DONE); 5760 BIND(LOOP); 5761 { 5762 Register chr = rscratch1; 5763 ldrh(chr, Address(post(src, 2))); 5764 tst(chr, ascii ? 0xff80 : 0xff00); 5765 br(NE, DONE); 5766 strb(chr, Address(post(dst, 1))); 5767 subs(cnt, cnt, 1); 5768 br(GT, LOOP); 5769 } 5770 BIND(DONE); 5771 // Return index where we stopped. 5772 subw(res, len, cnt); 5773 } 5774 5775 // Inflate byte[] array to char[]. 5776 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 5777 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5778 FloatRegister vtmp1, FloatRegister vtmp2, 5779 FloatRegister vtmp3, Register tmp4) { 5780 Label big, done, after_init, to_stub; 5781 5782 assert_different_registers(src, dst, len, tmp4, rscratch1); 5783 5784 fmovd(vtmp1, 0.0); 5785 lsrw(tmp4, len, 3); 5786 bind(after_init); 5787 cbnzw(tmp4, big); 5788 // Short string: less than 8 bytes. 5789 { 5790 Label loop, tiny; 5791 5792 cmpw(len, 4); 5793 br(LT, tiny); 5794 // Use SIMD to do 4 bytes. 5795 ldrs(vtmp2, post(src, 4)); 5796 zip1(vtmp3, T8B, vtmp2, vtmp1); 5797 subw(len, len, 4); 5798 strd(vtmp3, post(dst, 8)); 5799 5800 cbzw(len, done); 5801 5802 // Do the remaining bytes by steam. 5803 bind(loop); 5804 ldrb(tmp4, post(src, 1)); 5805 strh(tmp4, post(dst, 2)); 5806 subw(len, len, 1); 5807 5808 bind(tiny); 5809 cbnz(len, loop); 5810 5811 b(done); 5812 } 5813 5814 if (SoftwarePrefetchHintDistance >= 0) { 5815 bind(to_stub); 5816 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5817 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 5818 address tpc = trampoline_call(stub); 5819 if (tpc == nullptr) { 5820 DEBUG_ONLY(reset_labels(big, done)); 5821 postcond(pc() == badAddress); 5822 return nullptr; 5823 } 5824 b(after_init); 5825 } 5826 5827 // Unpack the bytes 8 at a time. 5828 bind(big); 5829 { 5830 Label loop, around, loop_last, loop_start; 5831 5832 if (SoftwarePrefetchHintDistance >= 0) { 5833 const int large_loop_threshold = (64 + 16)/8; 5834 ldrd(vtmp2, post(src, 8)); 5835 andw(len, len, 7); 5836 cmp(tmp4, (u1)large_loop_threshold); 5837 br(GE, to_stub); 5838 b(loop_start); 5839 5840 bind(loop); 5841 ldrd(vtmp2, post(src, 8)); 5842 bind(loop_start); 5843 subs(tmp4, tmp4, 1); 5844 br(EQ, loop_last); 5845 zip1(vtmp2, T16B, vtmp2, vtmp1); 5846 ldrd(vtmp3, post(src, 8)); 5847 st1(vtmp2, T8H, post(dst, 16)); 5848 subs(tmp4, tmp4, 1); 5849 zip1(vtmp3, T16B, vtmp3, vtmp1); 5850 st1(vtmp3, T8H, post(dst, 16)); 5851 br(NE, loop); 5852 b(around); 5853 bind(loop_last); 5854 zip1(vtmp2, T16B, vtmp2, vtmp1); 5855 st1(vtmp2, T8H, post(dst, 16)); 5856 bind(around); 5857 cbz(len, done); 5858 } else { 5859 andw(len, len, 7); 5860 bind(loop); 5861 ldrd(vtmp2, post(src, 8)); 5862 sub(tmp4, tmp4, 1); 5863 zip1(vtmp3, T16B, vtmp2, vtmp1); 5864 st1(vtmp3, T8H, post(dst, 16)); 5865 cbnz(tmp4, loop); 5866 } 5867 } 5868 5869 // Do the tail of up to 8 bytes. 5870 add(src, src, len); 5871 ldrd(vtmp3, Address(src, -8)); 5872 add(dst, dst, len, ext::uxtw, 1); 5873 zip1(vtmp3, T16B, vtmp3, vtmp1); 5874 strq(vtmp3, Address(dst, -16)); 5875 5876 bind(done); 5877 postcond(pc() != badAddress); 5878 return pc(); 5879 } 5880 5881 // Compress char[] array to byte[]. 5882 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5883 Register res, 5884 FloatRegister tmp0, FloatRegister tmp1, 5885 FloatRegister tmp2, FloatRegister tmp3, 5886 FloatRegister tmp4, FloatRegister tmp5) { 5887 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 5888 // Adjust result: res == len ? len : 0 5889 cmp(len, res); 5890 csel(res, res, zr, EQ); 5891 } 5892 5893 // java.math.round(double a) 5894 // Returns the closest long to the argument, with ties rounding to 5895 // positive infinity. This requires some fiddling for corner 5896 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 5897 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 5898 FloatRegister ftmp) { 5899 Label DONE; 5900 BLOCK_COMMENT("java_round_double: { "); 5901 fmovd(rscratch1, src); 5902 // Use RoundToNearestTiesAway unless src small and -ve. 5903 fcvtasd(dst, src); 5904 // Test if src >= 0 || abs(src) >= 0x1.0p52 5905 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 5906 mov(rscratch2, julong_cast(0x1.0p52)); 5907 cmp(rscratch1, rscratch2); 5908 br(HS, DONE); { 5909 // src < 0 && abs(src) < 0x1.0p52 5910 // src may have a fractional part, so add 0.5 5911 fmovd(ftmp, 0.5); 5912 faddd(ftmp, src, ftmp); 5913 // Convert double to jlong, use RoundTowardsNegative 5914 fcvtmsd(dst, ftmp); 5915 } 5916 bind(DONE); 5917 BLOCK_COMMENT("} java_round_double"); 5918 } 5919 5920 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 5921 FloatRegister ftmp) { 5922 Label DONE; 5923 BLOCK_COMMENT("java_round_float: { "); 5924 fmovs(rscratch1, src); 5925 // Use RoundToNearestTiesAway unless src small and -ve. 5926 fcvtassw(dst, src); 5927 // Test if src >= 0 || abs(src) >= 0x1.0p23 5928 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 5929 mov(rscratch2, jint_cast(0x1.0p23f)); 5930 cmp(rscratch1, rscratch2); 5931 br(HS, DONE); { 5932 // src < 0 && |src| < 0x1.0p23 5933 // src may have a fractional part, so add 0.5 5934 fmovs(ftmp, 0.5f); 5935 fadds(ftmp, src, ftmp); 5936 // Convert float to jint, use RoundTowardsNegative 5937 fcvtmssw(dst, ftmp); 5938 } 5939 bind(DONE); 5940 BLOCK_COMMENT("} java_round_float"); 5941 } 5942 5943 // get_thread() can be called anywhere inside generated code so we 5944 // need to save whatever non-callee save context might get clobbered 5945 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5946 // the call setup code. 5947 // 5948 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5949 // On other systems, the helper is a usual C function. 5950 // 5951 void MacroAssembler::get_thread(Register dst) { 5952 RegSet saved_regs = 5953 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 5954 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 5955 5956 protect_return_address(); 5957 push(saved_regs, sp); 5958 5959 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 5960 blr(lr); 5961 if (dst != c_rarg0) { 5962 mov(dst, c_rarg0); 5963 } 5964 5965 pop(saved_regs, sp); 5966 authenticate_return_address(); 5967 } 5968 5969 void MacroAssembler::cache_wb(Address line) { 5970 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 5971 assert(line.index() == noreg, "index should be noreg"); 5972 assert(line.offset() == 0, "offset should be 0"); 5973 // would like to assert this 5974 // assert(line._ext.shift == 0, "shift should be zero"); 5975 if (VM_Version::supports_dcpop()) { 5976 // writeback using clear virtual address to point of persistence 5977 dc(Assembler::CVAP, line.base()); 5978 } else { 5979 // no need to generate anything as Unsafe.writebackMemory should 5980 // never invoke this stub 5981 } 5982 } 5983 5984 void MacroAssembler::cache_wbsync(bool is_pre) { 5985 // we only need a barrier post sync 5986 if (!is_pre) { 5987 membar(Assembler::AnyAny); 5988 } 5989 } 5990 5991 void MacroAssembler::verify_sve_vector_length(Register tmp) { 5992 // Make sure that native code does not change SVE vector length. 5993 if (!UseSVE) return; 5994 Label verify_ok; 5995 movw(tmp, zr); 5996 sve_inc(tmp, B); 5997 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 5998 br(EQ, verify_ok); 5999 stop("Error: SVE vector length has changed since jvm startup"); 6000 bind(verify_ok); 6001 } 6002 6003 void MacroAssembler::verify_ptrue() { 6004 Label verify_ok; 6005 if (!UseSVE) { 6006 return; 6007 } 6008 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6009 sve_dec(rscratch1, B); 6010 cbz(rscratch1, verify_ok); 6011 stop("Error: the preserved predicate register (p7) elements are not all true"); 6012 bind(verify_ok); 6013 } 6014 6015 void MacroAssembler::safepoint_isb() { 6016 isb(); 6017 #ifndef PRODUCT 6018 if (VerifyCrossModifyFence) { 6019 // Clear the thread state. 6020 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6021 } 6022 #endif 6023 } 6024 6025 #ifndef PRODUCT 6026 void MacroAssembler::verify_cross_modify_fence_not_required() { 6027 if (VerifyCrossModifyFence) { 6028 // Check if thread needs a cross modify fence. 6029 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6030 Label fence_not_required; 6031 cbz(rscratch1, fence_not_required); 6032 // If it does then fail. 6033 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 6034 mov(c_rarg0, rthread); 6035 blr(rscratch1); 6036 bind(fence_not_required); 6037 } 6038 } 6039 #endif 6040 6041 void MacroAssembler::spin_wait() { 6042 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6043 switch (VM_Version::spin_wait_desc().inst()) { 6044 case SpinWait::NOP: 6045 nop(); 6046 break; 6047 case SpinWait::ISB: 6048 isb(); 6049 break; 6050 case SpinWait::YIELD: 6051 yield(); 6052 break; 6053 default: 6054 ShouldNotReachHere(); 6055 } 6056 } 6057 } 6058 6059 // Stack frame creation/removal 6060 6061 void MacroAssembler::enter(bool strip_ret_addr) { 6062 if (strip_ret_addr) { 6063 // Addresses can only be signed once. If there are multiple nested frames being created 6064 // in the same function, then the return address needs stripping first. 6065 strip_return_address(); 6066 } 6067 protect_return_address(); 6068 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6069 mov(rfp, sp); 6070 } 6071 6072 void MacroAssembler::leave() { 6073 mov(sp, rfp); 6074 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6075 authenticate_return_address(); 6076 } 6077 6078 // ROP Protection 6079 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6080 // destroying stack frames or whenever directly loading/storing the LR to memory. 6081 // If ROP protection is not set then these functions are no-ops. 6082 // For more details on PAC see pauth_aarch64.hpp. 6083 6084 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6085 // Uses value zero as the modifier. 6086 // 6087 void MacroAssembler::protect_return_address() { 6088 if (VM_Version::use_rop_protection()) { 6089 check_return_address(); 6090 paciaz(); 6091 } 6092 } 6093 6094 // Sign the return value in the given register. Use before updating the LR in the existing stack 6095 // frame for the current function. 6096 // Uses value zero as the modifier. 6097 // 6098 void MacroAssembler::protect_return_address(Register return_reg) { 6099 if (VM_Version::use_rop_protection()) { 6100 check_return_address(return_reg); 6101 paciza(return_reg); 6102 } 6103 } 6104 6105 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6106 // Uses value zero as the modifier. 6107 // 6108 void MacroAssembler::authenticate_return_address() { 6109 if (VM_Version::use_rop_protection()) { 6110 autiaz(); 6111 check_return_address(); 6112 } 6113 } 6114 6115 // Authenticate the return value in the given register. Use before updating the LR in the existing 6116 // stack frame for the current function. 6117 // Uses value zero as the modifier. 6118 // 6119 void MacroAssembler::authenticate_return_address(Register return_reg) { 6120 if (VM_Version::use_rop_protection()) { 6121 autiza(return_reg); 6122 check_return_address(return_reg); 6123 } 6124 } 6125 6126 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6127 // there is no guaranteed way of authenticating the LR. 6128 // 6129 void MacroAssembler::strip_return_address() { 6130 if (VM_Version::use_rop_protection()) { 6131 xpaclri(); 6132 } 6133 } 6134 6135 #ifndef PRODUCT 6136 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6137 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6138 // it is difficult to debug back to the callee function. 6139 // This function simply loads from the address in the given register. 6140 // Use directly after authentication to catch authentication failures. 6141 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6142 // 6143 void MacroAssembler::check_return_address(Register return_reg) { 6144 if (VM_Version::use_rop_protection()) { 6145 ldr(zr, Address(return_reg)); 6146 } 6147 } 6148 #endif 6149 6150 // The java_calling_convention describes stack locations as ideal slots on 6151 // a frame with no abi restrictions. Since we must observe abi restrictions 6152 // (like the placement of the register window) the slots must be biased by 6153 // the following value. 6154 static int reg2offset_in(VMReg r) { 6155 // Account for saved rfp and lr 6156 // This should really be in_preserve_stack_slots 6157 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6158 } 6159 6160 static int reg2offset_out(VMReg r) { 6161 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6162 } 6163 6164 // On 64bit we will store integer like items to the stack as 6165 // 64bits items (AArch64 ABI) even though java would only store 6166 // 32bits for a parameter. On 32bit it will simply be 32bits 6167 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6168 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6169 if (src.first()->is_stack()) { 6170 if (dst.first()->is_stack()) { 6171 // stack to stack 6172 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6173 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6174 } else { 6175 // stack to reg 6176 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6177 } 6178 } else if (dst.first()->is_stack()) { 6179 // reg to stack 6180 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6181 } else { 6182 if (dst.first() != src.first()) { 6183 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6184 } 6185 } 6186 } 6187 6188 // An oop arg. Must pass a handle not the oop itself 6189 void MacroAssembler::object_move( 6190 OopMap* map, 6191 int oop_handle_offset, 6192 int framesize_in_slots, 6193 VMRegPair src, 6194 VMRegPair dst, 6195 bool is_receiver, 6196 int* receiver_offset) { 6197 6198 // must pass a handle. First figure out the location we use as a handle 6199 6200 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6201 6202 // See if oop is null if it is we need no handle 6203 6204 if (src.first()->is_stack()) { 6205 6206 // Oop is already on the stack as an argument 6207 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6208 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6209 if (is_receiver) { 6210 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6211 } 6212 6213 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6214 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6215 // conditionally move a null 6216 cmp(rscratch1, zr); 6217 csel(rHandle, zr, rHandle, Assembler::EQ); 6218 } else { 6219 6220 // Oop is in an a register we must store it to the space we reserve 6221 // on the stack for oop_handles and pass a handle if oop is non-null 6222 6223 const Register rOop = src.first()->as_Register(); 6224 int oop_slot; 6225 if (rOop == j_rarg0) 6226 oop_slot = 0; 6227 else if (rOop == j_rarg1) 6228 oop_slot = 1; 6229 else if (rOop == j_rarg2) 6230 oop_slot = 2; 6231 else if (rOop == j_rarg3) 6232 oop_slot = 3; 6233 else if (rOop == j_rarg4) 6234 oop_slot = 4; 6235 else if (rOop == j_rarg5) 6236 oop_slot = 5; 6237 else if (rOop == j_rarg6) 6238 oop_slot = 6; 6239 else { 6240 assert(rOop == j_rarg7, "wrong register"); 6241 oop_slot = 7; 6242 } 6243 6244 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6245 int offset = oop_slot*VMRegImpl::stack_slot_size; 6246 6247 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6248 // Store oop in handle area, may be null 6249 str(rOop, Address(sp, offset)); 6250 if (is_receiver) { 6251 *receiver_offset = offset; 6252 } 6253 6254 cmp(rOop, zr); 6255 lea(rHandle, Address(sp, offset)); 6256 // conditionally move a null 6257 csel(rHandle, zr, rHandle, Assembler::EQ); 6258 } 6259 6260 // If arg is on the stack then place it otherwise it is already in correct reg. 6261 if (dst.first()->is_stack()) { 6262 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6263 } 6264 } 6265 6266 // A float arg may have to do float reg int reg conversion 6267 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6268 if (src.first()->is_stack()) { 6269 if (dst.first()->is_stack()) { 6270 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6271 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6272 } else { 6273 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6274 } 6275 } else if (src.first() != dst.first()) { 6276 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6277 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6278 else 6279 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6280 } 6281 } 6282 6283 // A long move 6284 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6285 if (src.first()->is_stack()) { 6286 if (dst.first()->is_stack()) { 6287 // stack to stack 6288 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6289 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6290 } else { 6291 // stack to reg 6292 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6293 } 6294 } else if (dst.first()->is_stack()) { 6295 // reg to stack 6296 // Do we really have to sign extend??? 6297 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6298 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6299 } else { 6300 if (dst.first() != src.first()) { 6301 mov(dst.first()->as_Register(), src.first()->as_Register()); 6302 } 6303 } 6304 } 6305 6306 6307 // A double move 6308 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 6309 if (src.first()->is_stack()) { 6310 if (dst.first()->is_stack()) { 6311 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6312 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6313 } else { 6314 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6315 } 6316 } else if (src.first() != dst.first()) { 6317 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6318 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6319 else 6320 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6321 } 6322 } 6323 6324 // Implements lightweight-locking. 6325 // Branches to slow upon failure to lock the object, with ZF cleared. 6326 // Falls through upon success with ZF set. 6327 // 6328 // - obj: the object to be locked 6329 // - hdr: the header, already loaded from obj, will be destroyed 6330 // - t1, t2: temporary registers, will be destroyed 6331 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register t1, Register t2, Label& slow) { 6332 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6333 assert_different_registers(obj, hdr, t1, t2, rscratch1); 6334 6335 // Check if we would have space on lock-stack for the object. 6336 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6337 cmpw(t1, (unsigned)LockStack::end_offset() - 1); 6338 br(Assembler::GT, slow); 6339 6340 // Load (object->mark() | 1) into hdr 6341 orr(hdr, hdr, markWord::unlocked_value); 6342 // Clear lock-bits, into t2 6343 eor(t2, hdr, markWord::unlocked_value); 6344 // Try to swing header from unlocked to locked 6345 // Clobbers rscratch1 when UseLSE is false 6346 cmpxchg(/*addr*/ obj, /*expected*/ hdr, /*new*/ t2, Assembler::xword, 6347 /*acquire*/ true, /*release*/ true, /*weak*/ false, t1); 6348 br(Assembler::NE, slow); 6349 6350 // After successful lock, push object on lock-stack 6351 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6352 str(obj, Address(rthread, t1)); 6353 addw(t1, t1, oopSize); 6354 strw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6355 } 6356 6357 // Implements lightweight-unlocking. 6358 // Branches to slow upon failure, with ZF cleared. 6359 // Falls through upon success, with ZF set. 6360 // 6361 // - obj: the object to be unlocked 6362 // - hdr: the (pre-loaded) header of the object 6363 // - t1, t2: temporary registers 6364 void MacroAssembler::lightweight_unlock(Register obj, Register hdr, Register t1, Register t2, Label& slow) { 6365 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6366 assert_different_registers(obj, hdr, t1, t2, rscratch1); 6367 6368 #ifdef ASSERT 6369 { 6370 // The following checks rely on the fact that LockStack is only ever modified by 6371 // its owning thread, even if the lock got inflated concurrently; removal of LockStack 6372 // entries after inflation will happen delayed in that case. 6373 6374 // Check for lock-stack underflow. 6375 Label stack_ok; 6376 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6377 cmpw(t1, (unsigned)LockStack::start_offset()); 6378 br(Assembler::GT, stack_ok); 6379 STOP("Lock-stack underflow"); 6380 bind(stack_ok); 6381 } 6382 { 6383 // Check if the top of the lock-stack matches the unlocked object. 6384 Label tos_ok; 6385 subw(t1, t1, oopSize); 6386 ldr(t1, Address(rthread, t1)); 6387 cmpoop(t1, obj); 6388 br(Assembler::EQ, tos_ok); 6389 STOP("Top of lock-stack does not match the unlocked object"); 6390 bind(tos_ok); 6391 } 6392 { 6393 // Check that hdr is fast-locked. 6394 Label hdr_ok; 6395 tst(hdr, markWord::lock_mask_in_place); 6396 br(Assembler::EQ, hdr_ok); 6397 STOP("Header is not fast-locked"); 6398 bind(hdr_ok); 6399 } 6400 #endif 6401 6402 // Load the new header (unlocked) into t1 6403 orr(t1, hdr, markWord::unlocked_value); 6404 6405 // Try to swing header from locked to unlocked 6406 // Clobbers rscratch1 when UseLSE is false 6407 cmpxchg(obj, hdr, t1, Assembler::xword, 6408 /*acquire*/ true, /*release*/ true, /*weak*/ false, t2); 6409 br(Assembler::NE, slow); 6410 6411 // After successful unlock, pop object from lock-stack 6412 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6413 subw(t1, t1, oopSize); 6414 #ifdef ASSERT 6415 str(zr, Address(rthread, t1)); 6416 #endif 6417 strw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6418 }