1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/assembler.hpp" 28 #include "asm/assembler.inline.hpp" 29 #include "ci/ciEnv.hpp" 30 #include "compiler/compileTask.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "jvm.h" 42 #include "memory/resourceArea.hpp" 43 #include "memory/universe.hpp" 44 #include "nativeInst_aarch64.hpp" 45 #include "oops/accessDecorators.hpp" 46 #include "oops/compressedOops.inline.hpp" 47 #include "oops/klass.inline.hpp" 48 #include "runtime/continuation.hpp" 49 #include "runtime/icache.hpp" 50 #include "runtime/interfaceSupport.inline.hpp" 51 #include "runtime/javaThread.hpp" 52 #include "runtime/jniHandles.inline.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "utilities/globalDefinitions.hpp" 56 #include "utilities/powerOfTwo.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_LIRAssembler.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "oops/oop.hpp" 62 #include "opto/compile.hpp" 63 #include "opto/node.hpp" 64 #include "opto/output.hpp" 65 #endif 66 67 #include <sys/types.h> 68 69 #ifdef PRODUCT 70 #define BLOCK_COMMENT(str) /* nothing */ 71 #else 72 #define BLOCK_COMMENT(str) block_comment(str) 73 #endif 74 #define STOP(str) stop(str); 75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 76 77 #ifdef ASSERT 78 extern "C" void disnm(intptr_t p); 79 #endif 80 // Target-dependent relocation processing 81 // 82 // Instruction sequences whose target may need to be retrieved or 83 // patched are distinguished by their leading instruction, sorting 84 // them into three main instruction groups and related subgroups. 85 // 86 // 1) Branch, Exception and System (insn count = 1) 87 // 1a) Unconditional branch (immediate): 88 // b/bl imm19 89 // 1b) Compare & branch (immediate): 90 // cbz/cbnz Rt imm19 91 // 1c) Test & branch (immediate): 92 // tbz/tbnz Rt imm14 93 // 1d) Conditional branch (immediate): 94 // b.cond imm19 95 // 96 // 2) Loads and Stores (insn count = 1) 97 // 2a) Load register literal: 98 // ldr Rt imm19 99 // 100 // 3) Data Processing Immediate (insn count = 2 or 3) 101 // 3a) PC-rel. addressing 102 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 103 // adr/adrp Rx imm21; add Ry Rx #imm12 104 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 105 // adr/adrp Rx imm21 106 // adr/adrp Rx imm21; movk Rx #imm16<<32 107 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 108 // The latter form can only happen when the target is an 109 // ExternalAddress, and (by definition) ExternalAddresses don't 110 // move. Because of that property, there is never any need to 111 // patch the last of the three instructions. However, 112 // MacroAssembler::target_addr_for_insn takes all three 113 // instructions into account and returns the correct address. 114 // 3b) Move wide (immediate) 115 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 116 // 117 // A switch on a subset of the instruction's bits provides an 118 // efficient dispatch to these subcases. 119 // 120 // insn[28:26] -> main group ('x' == don't care) 121 // 00x -> UNALLOCATED 122 // 100 -> Data Processing Immediate 123 // 101 -> Branch, Exception and System 124 // x1x -> Loads and Stores 125 // 126 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 127 // n.b. in some cases extra bits need to be checked to verify the 128 // instruction is as expected 129 // 130 // 1) ... xx101x Branch, Exception and System 131 // 1a) 00___x Unconditional branch (immediate) 132 // 1b) 01___0 Compare & branch (immediate) 133 // 1c) 01___1 Test & branch (immediate) 134 // 1d) 10___0 Conditional branch (immediate) 135 // other Should not happen 136 // 137 // 2) ... xxx1x0 Loads and Stores 138 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 139 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 140 // strictly should be 64 bit non-FP/SIMD i.e. 141 // 0101_000 (i.e. requires insn[31:24] == 01011000) 142 // 143 // 3) ... xx100x Data Processing Immediate 144 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 145 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 146 // strictly should be 64 bit movz #imm16<<0 147 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 148 // 149 class RelocActions { 150 protected: 151 typedef int (*reloc_insn)(address insn_addr, address &target); 152 153 virtual reloc_insn adrpMem() = 0; 154 virtual reloc_insn adrpAdd() = 0; 155 virtual reloc_insn adrpMovk() = 0; 156 157 const address _insn_addr; 158 const uint32_t _insn; 159 160 static uint32_t insn_at(address insn_addr, int n) { 161 return ((uint32_t*)insn_addr)[n]; 162 } 163 uint32_t insn_at(int n) const { 164 return insn_at(_insn_addr, n); 165 } 166 167 public: 168 169 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 170 RelocActions(address insn_addr, uint32_t insn) 171 : _insn_addr(insn_addr), _insn(insn) {} 172 173 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 174 virtual int conditionalBranch(address insn_addr, address &target) = 0; 175 virtual int testAndBranch(address insn_addr, address &target) = 0; 176 virtual int loadStore(address insn_addr, address &target) = 0; 177 virtual int adr(address insn_addr, address &target) = 0; 178 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 179 virtual int immediate(address insn_addr, address &target) = 0; 180 virtual void verify(address insn_addr, address &target) = 0; 181 182 int ALWAYSINLINE run(address insn_addr, address &target) { 183 int instructions = 1; 184 185 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 186 switch(dispatch) { 187 case 0b001010: 188 case 0b001011: { 189 instructions = unconditionalBranch(insn_addr, target); 190 break; 191 } 192 case 0b101010: // Conditional branch (immediate) 193 case 0b011010: { // Compare & branch (immediate) 194 instructions = conditionalBranch(insn_addr, target); 195 break; 196 } 197 case 0b011011: { 198 instructions = testAndBranch(insn_addr, target); 199 break; 200 } 201 case 0b001100: 202 case 0b001110: 203 case 0b011100: 204 case 0b011110: 205 case 0b101100: 206 case 0b101110: 207 case 0b111100: 208 case 0b111110: { 209 // load/store 210 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 211 // Load register (literal) 212 instructions = loadStore(insn_addr, target); 213 break; 214 } else { 215 // nothing to do 216 assert(target == 0, "did not expect to relocate target for polling page load"); 217 } 218 break; 219 } 220 case 0b001000: 221 case 0b011000: 222 case 0b101000: 223 case 0b111000: { 224 // adr/adrp 225 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 226 int shift = Instruction_aarch64::extract(_insn, 31, 31); 227 if (shift) { 228 uint32_t insn2 = insn_at(1); 229 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 230 Instruction_aarch64::extract(_insn, 4, 0) == 231 Instruction_aarch64::extract(insn2, 9, 5)) { 232 instructions = adrp(insn_addr, target, adrpMem()); 233 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 234 Instruction_aarch64::extract(_insn, 4, 0) == 235 Instruction_aarch64::extract(insn2, 4, 0)) { 236 instructions = adrp(insn_addr, target, adrpAdd()); 237 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 238 Instruction_aarch64::extract(_insn, 4, 0) == 239 Instruction_aarch64::extract(insn2, 4, 0)) { 240 instructions = adrp(insn_addr, target, adrpMovk()); 241 } else { 242 ShouldNotReachHere(); 243 } 244 } else { 245 instructions = adr(insn_addr, target); 246 } 247 break; 248 } 249 case 0b001001: 250 case 0b011001: 251 case 0b101001: 252 case 0b111001: { 253 instructions = immediate(insn_addr, target); 254 break; 255 } 256 default: { 257 ShouldNotReachHere(); 258 } 259 } 260 261 verify(insn_addr, target); 262 return instructions * NativeInstruction::instruction_size; 263 } 264 }; 265 266 class Patcher : public RelocActions { 267 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 268 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 269 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 270 271 public: 272 Patcher(address insn_addr) : RelocActions(insn_addr) {} 273 274 virtual int unconditionalBranch(address insn_addr, address &target) { 275 intptr_t offset = (target - insn_addr) >> 2; 276 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 277 return 1; 278 } 279 virtual int conditionalBranch(address insn_addr, address &target) { 280 intptr_t offset = (target - insn_addr) >> 2; 281 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 282 return 1; 283 } 284 virtual int testAndBranch(address insn_addr, address &target) { 285 intptr_t offset = (target - insn_addr) >> 2; 286 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 287 return 1; 288 } 289 virtual int loadStore(address insn_addr, address &target) { 290 intptr_t offset = (target - insn_addr) >> 2; 291 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 292 return 1; 293 } 294 virtual int adr(address insn_addr, address &target) { 295 #ifdef ASSERT 296 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 297 #endif 298 // PC-rel. addressing 299 ptrdiff_t offset = target - insn_addr; 300 int offset_lo = offset & 3; 301 offset >>= 2; 302 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 303 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 304 return 1; 305 } 306 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 307 int instructions = 1; 308 #ifdef ASSERT 309 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 310 #endif 311 ptrdiff_t offset = target - insn_addr; 312 instructions = 2; 313 precond(inner != nullptr); 314 // Give the inner reloc a chance to modify the target. 315 address adjusted_target = target; 316 instructions = (*inner)(insn_addr, adjusted_target); 317 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 318 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 319 offset = adr_page - pc_page; 320 int offset_lo = offset & 3; 321 offset >>= 2; 322 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 323 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 324 return instructions; 325 } 326 static int adrpMem_impl(address insn_addr, address &target) { 327 uintptr_t dest = (uintptr_t)target; 328 int offset_lo = dest & 0xfff; 329 uint32_t insn2 = insn_at(insn_addr, 1); 330 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 331 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 332 guarantee(((dest >> size) << size) == dest, "misaligned target"); 333 return 2; 334 } 335 static int adrpAdd_impl(address insn_addr, address &target) { 336 uintptr_t dest = (uintptr_t)target; 337 int offset_lo = dest & 0xfff; 338 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 339 return 2; 340 } 341 static int adrpMovk_impl(address insn_addr, address &target) { 342 uintptr_t dest = uintptr_t(target); 343 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 344 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 345 target = address(dest); 346 return 2; 347 } 348 virtual int immediate(address insn_addr, address &target) { 349 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 350 uint64_t dest = (uint64_t)target; 351 // Move wide constant 352 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 353 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 354 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 355 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 356 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 357 return 3; 358 } 359 virtual void verify(address insn_addr, address &target) { 360 #ifdef ASSERT 361 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 362 if (!(address_is == target)) { 363 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 364 disnm((intptr_t)insn_addr); 365 assert(address_is == target, "should be"); 366 } 367 #endif 368 } 369 }; 370 371 // If insn1 and insn2 use the same register to form an address, either 372 // by an offsetted LDR or a simple ADD, return the offset. If the 373 // second instruction is an LDR, the offset may be scaled. 374 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 375 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 376 Instruction_aarch64::extract(insn1, 4, 0) == 377 Instruction_aarch64::extract(insn2, 9, 5)) { 378 // Load/store register (unsigned immediate) 379 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 380 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 381 byte_offset <<= size; 382 return true; 383 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 384 Instruction_aarch64::extract(insn1, 4, 0) == 385 Instruction_aarch64::extract(insn2, 4, 0)) { 386 // add (immediate) 387 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 388 return true; 389 } 390 return false; 391 } 392 393 class AArch64Decoder : public RelocActions { 394 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 395 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 396 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 397 398 public: 399 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 400 401 virtual int loadStore(address insn_addr, address &target) { 402 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 403 target = insn_addr + (offset << 2); 404 return 1; 405 } 406 virtual int unconditionalBranch(address insn_addr, address &target) { 407 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 408 target = insn_addr + (offset << 2); 409 return 1; 410 } 411 virtual int conditionalBranch(address insn_addr, address &target) { 412 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 413 target = address(((uint64_t)insn_addr + (offset << 2))); 414 return 1; 415 } 416 virtual int testAndBranch(address insn_addr, address &target) { 417 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 418 target = address(((uint64_t)insn_addr + (offset << 2))); 419 return 1; 420 } 421 virtual int adr(address insn_addr, address &target) { 422 // PC-rel. addressing 423 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 424 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 425 target = address((uint64_t)insn_addr + offset); 426 return 1; 427 } 428 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 429 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 430 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 431 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 432 int shift = 12; 433 offset <<= shift; 434 uint64_t target_page = ((uint64_t)insn_addr) + offset; 435 target_page &= ((uint64_t)-1) << shift; 436 uint32_t insn2 = insn_at(1); 437 target = address(target_page); 438 precond(inner != nullptr); 439 (*inner)(insn_addr, target); 440 return 2; 441 } 442 static int adrpMem_impl(address insn_addr, address &target) { 443 uint32_t insn2 = insn_at(insn_addr, 1); 444 // Load/store register (unsigned immediate) 445 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 446 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 447 byte_offset <<= size; 448 target += byte_offset; 449 return 2; 450 } 451 static int adrpAdd_impl(address insn_addr, address &target) { 452 uint32_t insn2 = insn_at(insn_addr, 1); 453 // add (immediate) 454 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 455 target += byte_offset; 456 return 2; 457 } 458 static int adrpMovk_impl(address insn_addr, address &target) { 459 uint32_t insn2 = insn_at(insn_addr, 1); 460 uint64_t dest = uint64_t(target); 461 dest = (dest & 0xffff0000ffffffff) | 462 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 463 target = address(dest); 464 465 // We know the destination 4k page. Maybe we have a third 466 // instruction. 467 uint32_t insn = insn_at(insn_addr, 0); 468 uint32_t insn3 = insn_at(insn_addr, 2); 469 ptrdiff_t byte_offset; 470 if (offset_for(insn, insn3, byte_offset)) { 471 target += byte_offset; 472 return 3; 473 } else { 474 return 2; 475 } 476 } 477 virtual int immediate(address insn_addr, address &target) { 478 uint32_t *insns = (uint32_t *)insn_addr; 479 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 480 // Move wide constant: movz, movk, movk. See movptr(). 481 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 482 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 483 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 484 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 485 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 486 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 487 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 488 return 3; 489 } 490 virtual void verify(address insn_addr, address &target) { 491 } 492 }; 493 494 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 495 AArch64Decoder decoder(insn_addr, insn); 496 address target; 497 decoder.run(insn_addr, target); 498 return target; 499 } 500 501 // Patch any kind of instruction; there may be several instructions. 502 // Return the total length (in bytes) of the instructions. 503 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 504 Patcher patcher(insn_addr); 505 return patcher.run(insn_addr, target); 506 } 507 508 int MacroAssembler::patch_oop(address insn_addr, address o) { 509 int instructions; 510 unsigned insn = *(unsigned*)insn_addr; 511 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 512 513 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 514 // narrow OOPs by setting the upper 16 bits in the first 515 // instruction. 516 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 517 // Move narrow OOP 518 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 519 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 520 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 521 instructions = 2; 522 } else { 523 // Move wide OOP 524 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 525 uintptr_t dest = (uintptr_t)o; 526 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 527 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 528 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 529 instructions = 3; 530 } 531 return instructions * NativeInstruction::instruction_size; 532 } 533 534 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 535 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 536 // We encode narrow ones by setting the upper 16 bits in the first 537 // instruction. 538 NativeInstruction *insn = nativeInstruction_at(insn_addr); 539 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 540 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 541 542 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 543 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 544 return 2 * NativeInstruction::instruction_size; 545 } 546 547 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 548 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 549 return nullptr; 550 } 551 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 552 } 553 554 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 555 if (acquire) { 556 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 557 ldar(tmp, tmp); 558 } else { 559 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 560 } 561 if (at_return) { 562 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 563 // we may safely use the sp instead to perform the stack watermark check. 564 cmp(in_nmethod ? sp : rfp, tmp); 565 br(Assembler::HI, slow_path); 566 } else { 567 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 568 } 569 } 570 571 void MacroAssembler::rt_call(address dest, Register tmp) { 572 CodeBlob *cb = CodeCache::find_blob(dest); 573 if (cb) { 574 far_call(RuntimeAddress(dest)); 575 } else { 576 lea(tmp, RuntimeAddress(dest)); 577 blr(tmp); 578 } 579 } 580 581 void MacroAssembler::push_cont_fastpath(Register java_thread) { 582 if (!Continuations::enabled()) return; 583 Label done; 584 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 585 cmp(sp, rscratch1); 586 br(Assembler::LS, done); 587 mov(rscratch1, sp); // we can't use sp as the source in str 588 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 589 bind(done); 590 } 591 592 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 593 if (!Continuations::enabled()) return; 594 Label done; 595 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 596 cmp(sp, rscratch1); 597 br(Assembler::LO, done); 598 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 599 bind(done); 600 } 601 602 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 603 // we must set sp to zero to clear frame 604 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 605 606 // must clear fp, so that compiled frames are not confused; it is 607 // possible that we need it only for debugging 608 if (clear_fp) { 609 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 610 } 611 612 // Always clear the pc because it could have been set by make_walkable() 613 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 614 } 615 616 // Calls to C land 617 // 618 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 619 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 620 // has to be reset to 0. This is required to allow proper stack traversal. 621 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 622 Register last_java_fp, 623 Register last_java_pc, 624 Register scratch) { 625 626 if (last_java_pc->is_valid()) { 627 str(last_java_pc, Address(rthread, 628 JavaThread::frame_anchor_offset() 629 + JavaFrameAnchor::last_Java_pc_offset())); 630 } 631 632 // determine last_java_sp register 633 if (last_java_sp == sp) { 634 mov(scratch, sp); 635 last_java_sp = scratch; 636 } else if (!last_java_sp->is_valid()) { 637 last_java_sp = esp; 638 } 639 640 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 641 642 // last_java_fp is optional 643 if (last_java_fp->is_valid()) { 644 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 645 } 646 } 647 648 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 649 Register last_java_fp, 650 address last_java_pc, 651 Register scratch) { 652 assert(last_java_pc != nullptr, "must provide a valid PC"); 653 654 adr(scratch, last_java_pc); 655 str(scratch, Address(rthread, 656 JavaThread::frame_anchor_offset() 657 + JavaFrameAnchor::last_Java_pc_offset())); 658 659 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 660 } 661 662 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 663 Register last_java_fp, 664 Label &L, 665 Register scratch) { 666 if (L.is_bound()) { 667 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 668 } else { 669 InstructionMark im(this); 670 L.add_patch_at(code(), locator()); 671 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 672 } 673 } 674 675 static inline bool target_needs_far_branch(address addr) { 676 // codecache size <= 128M 677 if (!MacroAssembler::far_branches()) { 678 return false; 679 } 680 // codecache size > 240M 681 if (MacroAssembler::codestub_branch_needs_far_jump()) { 682 return true; 683 } 684 // codecache size: 128M..240M 685 return !CodeCache::is_non_nmethod(addr); 686 } 687 688 void MacroAssembler::far_call(Address entry, Register tmp) { 689 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 690 assert(CodeCache::find_blob(entry.target()) != nullptr, 691 "destination of far call not found in code cache"); 692 assert(entry.rspec().type() == relocInfo::external_word_type 693 || entry.rspec().type() == relocInfo::runtime_call_type 694 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 695 if (target_needs_far_branch(entry.target())) { 696 uint64_t offset; 697 // We can use ADRP here because we know that the total size of 698 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 699 adrp(tmp, entry, offset); 700 add(tmp, tmp, offset); 701 blr(tmp); 702 } else { 703 bl(entry); 704 } 705 } 706 707 int MacroAssembler::far_jump(Address entry, Register tmp) { 708 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 709 assert(CodeCache::find_blob(entry.target()) != nullptr, 710 "destination of far call not found in code cache"); 711 assert(entry.rspec().type() == relocInfo::external_word_type 712 || entry.rspec().type() == relocInfo::runtime_call_type 713 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 714 address start = pc(); 715 if (target_needs_far_branch(entry.target())) { 716 uint64_t offset; 717 // We can use ADRP here because we know that the total size of 718 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 719 adrp(tmp, entry, offset); 720 add(tmp, tmp, offset); 721 br(tmp); 722 } else { 723 b(entry); 724 } 725 return pc() - start; 726 } 727 728 void MacroAssembler::reserved_stack_check() { 729 // testing if reserved zone needs to be enabled 730 Label no_reserved_zone_enabling; 731 732 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 733 cmp(sp, rscratch1); 734 br(Assembler::LO, no_reserved_zone_enabling); 735 736 enter(); // LR and FP are live. 737 lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone)); 738 mov(c_rarg0, rthread); 739 blr(rscratch1); 740 leave(); 741 742 // We have already removed our own frame. 743 // throw_delayed_StackOverflowError will think that it's been 744 // called by our caller. 745 lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 746 br(rscratch1); 747 should_not_reach_here(); 748 749 bind(no_reserved_zone_enabling); 750 } 751 752 static void pass_arg0(MacroAssembler* masm, Register arg) { 753 if (c_rarg0 != arg ) { 754 masm->mov(c_rarg0, arg); 755 } 756 } 757 758 static void pass_arg1(MacroAssembler* masm, Register arg) { 759 if (c_rarg1 != arg ) { 760 masm->mov(c_rarg1, arg); 761 } 762 } 763 764 static void pass_arg2(MacroAssembler* masm, Register arg) { 765 if (c_rarg2 != arg ) { 766 masm->mov(c_rarg2, arg); 767 } 768 } 769 770 static void pass_arg3(MacroAssembler* masm, Register arg) { 771 if (c_rarg3 != arg ) { 772 masm->mov(c_rarg3, arg); 773 } 774 } 775 776 void MacroAssembler::call_VM_base(Register oop_result, 777 Register java_thread, 778 Register last_java_sp, 779 address entry_point, 780 int number_of_arguments, 781 bool check_exceptions) { 782 // determine java_thread register 783 if (!java_thread->is_valid()) { 784 java_thread = rthread; 785 } 786 787 // determine last_java_sp register 788 if (!last_java_sp->is_valid()) { 789 last_java_sp = esp; 790 } 791 792 // debugging support 793 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 794 assert(java_thread == rthread, "unexpected register"); 795 #ifdef ASSERT 796 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 797 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 798 #endif // ASSERT 799 800 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 801 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 802 803 // push java thread (becomes first argument of C function) 804 805 mov(c_rarg0, java_thread); 806 807 // set last Java frame before call 808 assert(last_java_sp != rfp, "can't use rfp"); 809 810 Label l; 811 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 812 813 // do the call, remove parameters 814 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 815 816 // lr could be poisoned with PAC signature during throw_pending_exception 817 // if it was tail-call optimized by compiler, since lr is not callee-saved 818 // reload it with proper value 819 adr(lr, l); 820 821 // reset last Java frame 822 // Only interpreter should have to clear fp 823 reset_last_Java_frame(true); 824 825 // C++ interp handles this in the interpreter 826 check_and_handle_popframe(java_thread); 827 check_and_handle_earlyret(java_thread); 828 829 if (check_exceptions) { 830 // check for pending exceptions (java_thread is set upon return) 831 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 832 Label ok; 833 cbz(rscratch1, ok); 834 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 835 br(rscratch1); 836 bind(ok); 837 } 838 839 // get oop result if there is one and reset the value in the thread 840 if (oop_result->is_valid()) { 841 get_vm_result(oop_result, java_thread); 842 } 843 } 844 845 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 846 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 847 } 848 849 // Check the entry target is always reachable from any branch. 850 static bool is_always_within_branch_range(Address entry) { 851 const address target = entry.target(); 852 853 if (!CodeCache::contains(target)) { 854 // We always use trampolines for callees outside CodeCache. 855 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 856 return false; 857 } 858 859 if (!MacroAssembler::far_branches()) { 860 return true; 861 } 862 863 if (entry.rspec().type() == relocInfo::runtime_call_type) { 864 // Runtime calls are calls of a non-compiled method (stubs, adapters). 865 // Non-compiled methods stay forever in CodeCache. 866 // We check whether the longest possible branch is within the branch range. 867 assert(CodeCache::find_blob(target) != nullptr && 868 !CodeCache::find_blob(target)->is_compiled(), 869 "runtime call of compiled method"); 870 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 871 const address left_longest_branch_start = CodeCache::low_bound(); 872 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 873 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 874 return is_reachable; 875 } 876 877 return false; 878 } 879 880 // Maybe emit a call via a trampoline. If the code cache is small 881 // trampolines won't be emitted. 882 address MacroAssembler::trampoline_call(Address entry) { 883 assert(entry.rspec().type() == relocInfo::runtime_call_type 884 || entry.rspec().type() == relocInfo::opt_virtual_call_type 885 || entry.rspec().type() == relocInfo::static_call_type 886 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 887 888 address target = entry.target(); 889 890 if (!is_always_within_branch_range(entry)) { 891 if (!in_scratch_emit_size()) { 892 // We don't want to emit a trampoline if C2 is generating dummy 893 // code during its branch shortening phase. 894 if (entry.rspec().type() == relocInfo::runtime_call_type) { 895 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 896 code()->share_trampoline_for(entry.target(), offset()); 897 } else { 898 address stub = emit_trampoline_stub(offset(), target); 899 if (stub == nullptr) { 900 postcond(pc() == badAddress); 901 return nullptr; // CodeCache is full 902 } 903 } 904 } 905 target = pc(); 906 } 907 908 address call_pc = pc(); 909 relocate(entry.rspec()); 910 bl(target); 911 912 postcond(pc() != badAddress); 913 return call_pc; 914 } 915 916 // Emit a trampoline stub for a call to a target which is too far away. 917 // 918 // code sequences: 919 // 920 // call-site: 921 // branch-and-link to <destination> or <trampoline stub> 922 // 923 // Related trampoline stub for this call site in the stub section: 924 // load the call target from the constant pool 925 // branch (LR still points to the call site above) 926 927 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 928 address dest) { 929 // Max stub size: alignment nop, TrampolineStub. 930 address stub = start_a_stub(max_trampoline_stub_size()); 931 if (stub == nullptr) { 932 return nullptr; // CodeBuffer::expand failed 933 } 934 935 // Create a trampoline stub relocation which relates this trampoline stub 936 // with the call instruction at insts_call_instruction_offset in the 937 // instructions code-section. 938 align(wordSize); 939 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 940 + insts_call_instruction_offset)); 941 const int stub_start_offset = offset(); 942 943 // Now, create the trampoline stub's code: 944 // - load the call 945 // - call 946 Label target; 947 ldr(rscratch1, target); 948 br(rscratch1); 949 bind(target); 950 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 951 "should be"); 952 emit_int64((int64_t)dest); 953 954 const address stub_start_addr = addr_at(stub_start_offset); 955 956 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 957 958 end_a_stub(); 959 return stub_start_addr; 960 } 961 962 int MacroAssembler::max_trampoline_stub_size() { 963 // Max stub size: alignment nop, TrampolineStub. 964 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 965 } 966 967 void MacroAssembler::emit_static_call_stub() { 968 // CompiledDirectStaticCall::set_to_interpreted knows the 969 // exact layout of this stub. 970 971 isb(); 972 mov_metadata(rmethod, nullptr); 973 974 // Jump to the entry point of the c2i stub. 975 movptr(rscratch1, 0); 976 br(rscratch1); 977 } 978 979 int MacroAssembler::static_call_stub_size() { 980 // isb; movk; movz; movz; movk; movz; movz; br 981 return 8 * NativeInstruction::instruction_size; 982 } 983 984 void MacroAssembler::c2bool(Register x) { 985 // implements x == 0 ? 0 : 1 986 // note: must only look at least-significant byte of x 987 // since C-style booleans are stored in one byte 988 // only! (was bug) 989 tst(x, 0xff); 990 cset(x, Assembler::NE); 991 } 992 993 address MacroAssembler::ic_call(address entry, jint method_index) { 994 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 995 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 996 // uintptr_t offset; 997 // ldr_constant(rscratch2, const_ptr); 998 movptr(rscratch2, (uintptr_t)Universe::non_oop_word()); 999 return trampoline_call(Address(entry, rh)); 1000 } 1001 1002 // Implementation of call_VM versions 1003 1004 void MacroAssembler::call_VM(Register oop_result, 1005 address entry_point, 1006 bool check_exceptions) { 1007 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1008 } 1009 1010 void MacroAssembler::call_VM(Register oop_result, 1011 address entry_point, 1012 Register arg_1, 1013 bool check_exceptions) { 1014 pass_arg1(this, arg_1); 1015 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1016 } 1017 1018 void MacroAssembler::call_VM(Register oop_result, 1019 address entry_point, 1020 Register arg_1, 1021 Register arg_2, 1022 bool check_exceptions) { 1023 assert(arg_1 != c_rarg2, "smashed arg"); 1024 pass_arg2(this, arg_2); 1025 pass_arg1(this, arg_1); 1026 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1027 } 1028 1029 void MacroAssembler::call_VM(Register oop_result, 1030 address entry_point, 1031 Register arg_1, 1032 Register arg_2, 1033 Register arg_3, 1034 bool check_exceptions) { 1035 assert(arg_1 != c_rarg3, "smashed arg"); 1036 assert(arg_2 != c_rarg3, "smashed arg"); 1037 pass_arg3(this, arg_3); 1038 1039 assert(arg_1 != c_rarg2, "smashed arg"); 1040 pass_arg2(this, arg_2); 1041 1042 pass_arg1(this, arg_1); 1043 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1044 } 1045 1046 void MacroAssembler::call_VM(Register oop_result, 1047 Register last_java_sp, 1048 address entry_point, 1049 int number_of_arguments, 1050 bool check_exceptions) { 1051 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1052 } 1053 1054 void MacroAssembler::call_VM(Register oop_result, 1055 Register last_java_sp, 1056 address entry_point, 1057 Register arg_1, 1058 bool check_exceptions) { 1059 pass_arg1(this, arg_1); 1060 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1061 } 1062 1063 void MacroAssembler::call_VM(Register oop_result, 1064 Register last_java_sp, 1065 address entry_point, 1066 Register arg_1, 1067 Register arg_2, 1068 bool check_exceptions) { 1069 1070 assert(arg_1 != c_rarg2, "smashed arg"); 1071 pass_arg2(this, arg_2); 1072 pass_arg1(this, arg_1); 1073 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1074 } 1075 1076 void MacroAssembler::call_VM(Register oop_result, 1077 Register last_java_sp, 1078 address entry_point, 1079 Register arg_1, 1080 Register arg_2, 1081 Register arg_3, 1082 bool check_exceptions) { 1083 assert(arg_1 != c_rarg3, "smashed arg"); 1084 assert(arg_2 != c_rarg3, "smashed arg"); 1085 pass_arg3(this, arg_3); 1086 assert(arg_1 != c_rarg2, "smashed arg"); 1087 pass_arg2(this, arg_2); 1088 pass_arg1(this, arg_1); 1089 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1090 } 1091 1092 1093 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1094 ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1095 str(zr, Address(java_thread, JavaThread::vm_result_offset())); 1096 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1097 } 1098 1099 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1100 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1101 str(zr, Address(java_thread, JavaThread::vm_result_2_offset())); 1102 } 1103 1104 void MacroAssembler::align(int modulus) { 1105 while (offset() % modulus != 0) nop(); 1106 } 1107 1108 void MacroAssembler::post_call_nop() { 1109 if (!Continuations::enabled()) { 1110 return; 1111 } 1112 InstructionMark im(this); 1113 relocate(post_call_nop_Relocation::spec()); 1114 InlineSkippedInstructionsCounter skipCounter(this); 1115 nop(); 1116 movk(zr, 0); 1117 movk(zr, 0); 1118 } 1119 1120 // these are no-ops overridden by InterpreterMacroAssembler 1121 1122 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1123 1124 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1125 1126 // Look up the method for a megamorphic invokeinterface call. 1127 // The target method is determined by <intf_klass, itable_index>. 1128 // The receiver klass is in recv_klass. 1129 // On success, the result will be in method_result, and execution falls through. 1130 // On failure, execution transfers to the given label. 1131 void MacroAssembler::lookup_interface_method(Register recv_klass, 1132 Register intf_klass, 1133 RegisterOrConstant itable_index, 1134 Register method_result, 1135 Register scan_temp, 1136 Label& L_no_such_interface, 1137 bool return_method) { 1138 assert_different_registers(recv_klass, intf_klass, scan_temp); 1139 assert_different_registers(method_result, intf_klass, scan_temp); 1140 assert(recv_klass != method_result || !return_method, 1141 "recv_klass can be destroyed when method isn't needed"); 1142 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1143 "caller must use same register for non-constant itable index as for method"); 1144 1145 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1146 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1147 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1148 int scan_step = itableOffsetEntry::size() * wordSize; 1149 int vte_size = vtableEntry::size_in_bytes(); 1150 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1151 1152 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1153 1154 // %%% Could store the aligned, prescaled offset in the klassoop. 1155 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1156 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1157 add(scan_temp, scan_temp, vtable_base); 1158 1159 if (return_method) { 1160 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1161 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1162 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1163 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1164 if (itentry_off) 1165 add(recv_klass, recv_klass, itentry_off); 1166 } 1167 1168 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1169 // if (scan->interface() == intf) { 1170 // result = (klass + scan->offset() + itable_index); 1171 // } 1172 // } 1173 Label search, found_method; 1174 1175 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1176 cmp(intf_klass, method_result); 1177 br(Assembler::EQ, found_method); 1178 bind(search); 1179 // Check that the previous entry is non-null. A null entry means that 1180 // the receiver class doesn't implement the interface, and wasn't the 1181 // same as when the caller was compiled. 1182 cbz(method_result, L_no_such_interface); 1183 if (itableOffsetEntry::interface_offset() != 0) { 1184 add(scan_temp, scan_temp, scan_step); 1185 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1186 } else { 1187 ldr(method_result, Address(pre(scan_temp, scan_step))); 1188 } 1189 cmp(intf_klass, method_result); 1190 br(Assembler::NE, search); 1191 1192 bind(found_method); 1193 1194 // Got a hit. 1195 if (return_method) { 1196 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1197 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1198 } 1199 } 1200 1201 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1202 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder 1203 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1204 // The target method is determined by <holder_klass, itable_index>. 1205 // The receiver klass is in recv_klass. 1206 // On success, the result will be in method_result, and execution falls through. 1207 // On failure, execution transfers to the given label. 1208 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1209 Register holder_klass, 1210 Register resolved_klass, 1211 Register method_result, 1212 Register temp_itbl_klass, 1213 Register scan_temp, 1214 int itable_index, 1215 Label& L_no_such_interface) { 1216 // 'method_result' is only used as output register at the very end of this method. 1217 // Until then we can reuse it as 'holder_offset'. 1218 Register holder_offset = method_result; 1219 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1220 1221 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1222 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1223 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1224 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1225 1226 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1227 1228 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1229 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1230 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1231 // temp_itbl_klass = itable[0]._interface; 1232 int vtblEntrySize = vtableEntry::size_in_bytes(); 1233 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1234 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1235 mov(holder_offset, zr); 1236 // scan_temp = &(itable[0]._interface) 1237 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1238 1239 // Initial checks: 1240 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1241 // - if (itable[0] == holder_klass), shortcut to "holder found" 1242 // - if (itable[0] == 0), no such interface 1243 cmp(resolved_klass, holder_klass); 1244 br(Assembler::NE, L_loop_search_resolved_entry); 1245 cmp(holder_klass, temp_itbl_klass); 1246 br(Assembler::EQ, L_holder_found); 1247 cbz(temp_itbl_klass, L_no_such_interface); 1248 1249 // Loop: Look for holder_klass record in itable 1250 // do { 1251 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1252 // if (temp_itbl_klass == holder_klass) { 1253 // goto L_holder_found; // Found! 1254 // } 1255 // } while (temp_itbl_klass != 0); 1256 // goto L_no_such_interface // Not found. 1257 Label L_search_holder; 1258 bind(L_search_holder); 1259 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1260 cmp(holder_klass, temp_itbl_klass); 1261 br(Assembler::EQ, L_holder_found); 1262 cbnz(temp_itbl_klass, L_search_holder); 1263 1264 b(L_no_such_interface); 1265 1266 // Loop: Look for resolved_class record in itable 1267 // while (true) { 1268 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1269 // if (temp_itbl_klass == 0) { 1270 // goto L_no_such_interface; 1271 // } 1272 // if (temp_itbl_klass == resolved_klass) { 1273 // goto L_resolved_found; // Found! 1274 // } 1275 // if (temp_itbl_klass == holder_klass) { 1276 // holder_offset = scan_temp; 1277 // } 1278 // } 1279 // 1280 Label L_loop_search_resolved; 1281 bind(L_loop_search_resolved); 1282 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1283 bind(L_loop_search_resolved_entry); 1284 cbz(temp_itbl_klass, L_no_such_interface); 1285 cmp(resolved_klass, temp_itbl_klass); 1286 br(Assembler::EQ, L_resolved_found); 1287 cmp(holder_klass, temp_itbl_klass); 1288 br(Assembler::NE, L_loop_search_resolved); 1289 mov(holder_offset, scan_temp); 1290 b(L_loop_search_resolved); 1291 1292 // See if we already have a holder klass. If not, go and scan for it. 1293 bind(L_resolved_found); 1294 cbz(holder_offset, L_search_holder); 1295 mov(scan_temp, holder_offset); 1296 1297 // Finally, scan_temp contains holder_klass vtable offset 1298 bind(L_holder_found); 1299 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1300 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1301 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1302 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1303 } 1304 1305 // virtual method calling 1306 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1307 RegisterOrConstant vtable_index, 1308 Register method_result) { 1309 assert(vtableEntry::size() * wordSize == 8, 1310 "adjust the scaling in the code below"); 1311 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1312 1313 if (vtable_index.is_register()) { 1314 lea(method_result, Address(recv_klass, 1315 vtable_index.as_register(), 1316 Address::lsl(LogBytesPerWord))); 1317 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1318 } else { 1319 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1320 ldr(method_result, 1321 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1322 } 1323 } 1324 1325 void MacroAssembler::check_klass_subtype(Register sub_klass, 1326 Register super_klass, 1327 Register temp_reg, 1328 Label& L_success) { 1329 Label L_failure; 1330 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1331 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1332 bind(L_failure); 1333 } 1334 1335 1336 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1337 Register super_klass, 1338 Register temp_reg, 1339 Label* L_success, 1340 Label* L_failure, 1341 Label* L_slow_path, 1342 RegisterOrConstant super_check_offset) { 1343 assert_different_registers(sub_klass, super_klass, temp_reg); 1344 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 1345 if (super_check_offset.is_register()) { 1346 assert_different_registers(sub_klass, super_klass, 1347 super_check_offset.as_register()); 1348 } else if (must_load_sco) { 1349 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1350 } 1351 1352 Label L_fallthrough; 1353 int label_nulls = 0; 1354 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1355 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1356 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1357 assert(label_nulls <= 1, "at most one null in the batch"); 1358 1359 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1360 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1361 Address super_check_offset_addr(super_klass, sco_offset); 1362 1363 // Hacked jmp, which may only be used just before L_fallthrough. 1364 #define final_jmp(label) \ 1365 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1366 else b(label) /*omit semi*/ 1367 1368 // If the pointers are equal, we are done (e.g., String[] elements). 1369 // This self-check enables sharing of secondary supertype arrays among 1370 // non-primary types such as array-of-interface. Otherwise, each such 1371 // type would need its own customized SSA. 1372 // We move this check to the front of the fast path because many 1373 // type checks are in fact trivially successful in this manner, 1374 // so we get a nicely predicted branch right at the start of the check. 1375 cmp(sub_klass, super_klass); 1376 br(Assembler::EQ, *L_success); 1377 1378 // Check the supertype display: 1379 if (must_load_sco) { 1380 ldrw(temp_reg, super_check_offset_addr); 1381 super_check_offset = RegisterOrConstant(temp_reg); 1382 } 1383 Address super_check_addr(sub_klass, super_check_offset); 1384 ldr(rscratch1, super_check_addr); 1385 cmp(super_klass, rscratch1); // load displayed supertype 1386 1387 // This check has worked decisively for primary supers. 1388 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1389 // (Secondary supers are interfaces and very deeply nested subtypes.) 1390 // This works in the same check above because of a tricky aliasing 1391 // between the super_cache and the primary super display elements. 1392 // (The 'super_check_addr' can address either, as the case requires.) 1393 // Note that the cache is updated below if it does not help us find 1394 // what we need immediately. 1395 // So if it was a primary super, we can just fail immediately. 1396 // Otherwise, it's the slow path for us (no success at this point). 1397 1398 if (super_check_offset.is_register()) { 1399 br(Assembler::EQ, *L_success); 1400 subs(zr, super_check_offset.as_register(), sc_offset); 1401 if (L_failure == &L_fallthrough) { 1402 br(Assembler::EQ, *L_slow_path); 1403 } else { 1404 br(Assembler::NE, *L_failure); 1405 final_jmp(*L_slow_path); 1406 } 1407 } else if (super_check_offset.as_constant() == sc_offset) { 1408 // Need a slow path; fast failure is impossible. 1409 if (L_slow_path == &L_fallthrough) { 1410 br(Assembler::EQ, *L_success); 1411 } else { 1412 br(Assembler::NE, *L_slow_path); 1413 final_jmp(*L_success); 1414 } 1415 } else { 1416 // No slow path; it's a fast decision. 1417 if (L_failure == &L_fallthrough) { 1418 br(Assembler::EQ, *L_success); 1419 } else { 1420 br(Assembler::NE, *L_failure); 1421 final_jmp(*L_success); 1422 } 1423 } 1424 1425 bind(L_fallthrough); 1426 1427 #undef final_jmp 1428 } 1429 1430 // These two are taken from x86, but they look generally useful 1431 1432 // scans count pointer sized words at [addr] for occurrence of value, 1433 // generic 1434 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1435 Register scratch) { 1436 Label Lloop, Lexit; 1437 cbz(count, Lexit); 1438 bind(Lloop); 1439 ldr(scratch, post(addr, wordSize)); 1440 cmp(value, scratch); 1441 br(EQ, Lexit); 1442 sub(count, count, 1); 1443 cbnz(count, Lloop); 1444 bind(Lexit); 1445 } 1446 1447 // scans count 4 byte words at [addr] for occurrence of value, 1448 // generic 1449 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1450 Register scratch) { 1451 Label Lloop, Lexit; 1452 cbz(count, Lexit); 1453 bind(Lloop); 1454 ldrw(scratch, post(addr, wordSize)); 1455 cmpw(value, scratch); 1456 br(EQ, Lexit); 1457 sub(count, count, 1); 1458 cbnz(count, Lloop); 1459 bind(Lexit); 1460 } 1461 1462 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1463 Register super_klass, 1464 Register temp_reg, 1465 Register temp2_reg, 1466 Label* L_success, 1467 Label* L_failure, 1468 bool set_cond_codes) { 1469 assert_different_registers(sub_klass, super_klass, temp_reg); 1470 if (temp2_reg != noreg) 1471 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1472 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1473 1474 Label L_fallthrough; 1475 int label_nulls = 0; 1476 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1477 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1478 assert(label_nulls <= 1, "at most one null in the batch"); 1479 1480 // a couple of useful fields in sub_klass: 1481 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1482 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1483 Address secondary_supers_addr(sub_klass, ss_offset); 1484 Address super_cache_addr( sub_klass, sc_offset); 1485 1486 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1487 1488 // Do a linear scan of the secondary super-klass chain. 1489 // This code is rarely used, so simplicity is a virtue here. 1490 // The repne_scan instruction uses fixed registers, which we must spill. 1491 // Don't worry too much about pre-existing connections with the input regs. 1492 1493 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1494 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1495 1496 RegSet pushed_registers; 1497 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1498 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1499 1500 if (super_klass != r0) { 1501 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1502 } 1503 1504 push(pushed_registers, sp); 1505 1506 // Get super_klass value into r0 (even if it was in r5 or r2). 1507 if (super_klass != r0) { 1508 mov(r0, super_klass); 1509 } 1510 1511 #ifndef PRODUCT 1512 mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr); 1513 Address pst_counter_addr(rscratch2); 1514 ldr(rscratch1, pst_counter_addr); 1515 add(rscratch1, rscratch1, 1); 1516 str(rscratch1, pst_counter_addr); 1517 #endif //PRODUCT 1518 1519 // We will consult the secondary-super array. 1520 ldr(r5, secondary_supers_addr); 1521 // Load the array length. 1522 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1523 // Skip to start of data. 1524 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1525 1526 cmp(sp, zr); // Clear Z flag; SP is never zero 1527 // Scan R2 words at [R5] for an occurrence of R0. 1528 // Set NZ/Z based on last compare. 1529 repne_scan(r5, r0, r2, rscratch1); 1530 1531 // Unspill the temp. registers: 1532 pop(pushed_registers, sp); 1533 1534 br(Assembler::NE, *L_failure); 1535 1536 // Success. Cache the super we found and proceed in triumph. 1537 str(super_klass, super_cache_addr); 1538 1539 if (L_success != &L_fallthrough) { 1540 b(*L_success); 1541 } 1542 1543 #undef IS_A_TEMP 1544 1545 bind(L_fallthrough); 1546 } 1547 1548 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 1549 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 1550 assert_different_registers(klass, rthread, scratch); 1551 1552 Label L_fallthrough, L_tmp; 1553 if (L_fast_path == nullptr) { 1554 L_fast_path = &L_fallthrough; 1555 } else if (L_slow_path == nullptr) { 1556 L_slow_path = &L_fallthrough; 1557 } 1558 // Fast path check: class is fully initialized 1559 ldrb(scratch, Address(klass, InstanceKlass::init_state_offset())); 1560 subs(zr, scratch, InstanceKlass::fully_initialized); 1561 br(Assembler::EQ, *L_fast_path); 1562 1563 // Fast path check: current thread is initializer thread 1564 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 1565 cmp(rthread, scratch); 1566 1567 if (L_slow_path == &L_fallthrough) { 1568 br(Assembler::EQ, *L_fast_path); 1569 bind(*L_slow_path); 1570 } else if (L_fast_path == &L_fallthrough) { 1571 br(Assembler::NE, *L_slow_path); 1572 bind(*L_fast_path); 1573 } else { 1574 Unimplemented(); 1575 } 1576 } 1577 1578 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 1579 if (!VerifyOops) return; 1580 1581 // Pass register number to verify_oop_subroutine 1582 const char* b = nullptr; 1583 { 1584 ResourceMark rm; 1585 stringStream ss; 1586 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 1587 b = code_string(ss.as_string()); 1588 } 1589 BLOCK_COMMENT("verify_oop {"); 1590 1591 strip_return_address(); // This might happen within a stack frame. 1592 protect_return_address(); 1593 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1594 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1595 1596 mov(r0, reg); 1597 movptr(rscratch1, (uintptr_t)(address)b); 1598 1599 // call indirectly to solve generation ordering problem 1600 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1601 ldr(rscratch2, Address(rscratch2)); 1602 blr(rscratch2); 1603 1604 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1605 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1606 authenticate_return_address(); 1607 1608 BLOCK_COMMENT("} verify_oop"); 1609 } 1610 1611 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 1612 if (!VerifyOops) return; 1613 1614 const char* b = nullptr; 1615 { 1616 ResourceMark rm; 1617 stringStream ss; 1618 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 1619 b = code_string(ss.as_string()); 1620 } 1621 BLOCK_COMMENT("verify_oop_addr {"); 1622 1623 strip_return_address(); // This might happen within a stack frame. 1624 protect_return_address(); 1625 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 1626 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 1627 1628 // addr may contain sp so we will have to adjust it based on the 1629 // pushes that we just did. 1630 if (addr.uses(sp)) { 1631 lea(r0, addr); 1632 ldr(r0, Address(r0, 4 * wordSize)); 1633 } else { 1634 ldr(r0, addr); 1635 } 1636 movptr(rscratch1, (uintptr_t)(address)b); 1637 1638 // call indirectly to solve generation ordering problem 1639 lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 1640 ldr(rscratch2, Address(rscratch2)); 1641 blr(rscratch2); 1642 1643 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 1644 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 1645 authenticate_return_address(); 1646 1647 BLOCK_COMMENT("} verify_oop_addr"); 1648 } 1649 1650 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 1651 int extra_slot_offset) { 1652 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 1653 int stackElementSize = Interpreter::stackElementSize; 1654 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 1655 #ifdef ASSERT 1656 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 1657 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 1658 #endif 1659 if (arg_slot.is_constant()) { 1660 return Address(esp, arg_slot.as_constant() * stackElementSize 1661 + offset); 1662 } else { 1663 add(rscratch1, esp, arg_slot.as_register(), 1664 ext::uxtx, exact_log2(stackElementSize)); 1665 return Address(rscratch1, offset); 1666 } 1667 } 1668 1669 void MacroAssembler::call_VM_leaf_base(address entry_point, 1670 int number_of_arguments, 1671 Label *retaddr) { 1672 Label E, L; 1673 1674 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 1675 1676 mov(rscratch1, entry_point); 1677 blr(rscratch1); 1678 if (retaddr) 1679 bind(*retaddr); 1680 1681 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 1682 } 1683 1684 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1685 call_VM_leaf_base(entry_point, number_of_arguments); 1686 } 1687 1688 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1689 pass_arg0(this, arg_0); 1690 call_VM_leaf_base(entry_point, 1); 1691 } 1692 1693 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1694 pass_arg0(this, arg_0); 1695 pass_arg1(this, arg_1); 1696 call_VM_leaf_base(entry_point, 2); 1697 } 1698 1699 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 1700 Register arg_1, Register arg_2) { 1701 pass_arg0(this, arg_0); 1702 pass_arg1(this, arg_1); 1703 pass_arg2(this, arg_2); 1704 call_VM_leaf_base(entry_point, 3); 1705 } 1706 1707 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1708 pass_arg0(this, arg_0); 1709 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1710 } 1711 1712 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1713 1714 assert(arg_0 != c_rarg1, "smashed arg"); 1715 pass_arg1(this, arg_1); 1716 pass_arg0(this, arg_0); 1717 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1718 } 1719 1720 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1721 assert(arg_0 != c_rarg2, "smashed arg"); 1722 assert(arg_1 != c_rarg2, "smashed arg"); 1723 pass_arg2(this, arg_2); 1724 assert(arg_0 != c_rarg1, "smashed arg"); 1725 pass_arg1(this, arg_1); 1726 pass_arg0(this, arg_0); 1727 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1728 } 1729 1730 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1731 assert(arg_0 != c_rarg3, "smashed arg"); 1732 assert(arg_1 != c_rarg3, "smashed arg"); 1733 assert(arg_2 != c_rarg3, "smashed arg"); 1734 pass_arg3(this, arg_3); 1735 assert(arg_0 != c_rarg2, "smashed arg"); 1736 assert(arg_1 != c_rarg2, "smashed arg"); 1737 pass_arg2(this, arg_2); 1738 assert(arg_0 != c_rarg1, "smashed arg"); 1739 pass_arg1(this, arg_1); 1740 pass_arg0(this, arg_0); 1741 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1742 } 1743 1744 void MacroAssembler::null_check(Register reg, int offset) { 1745 if (needs_explicit_null_check(offset)) { 1746 // provoke OS null exception if reg is null by 1747 // accessing M[reg] w/o changing any registers 1748 // NOTE: this is plenty to provoke a segv 1749 ldr(zr, Address(reg)); 1750 } else { 1751 // nothing to do, (later) access of M[reg + offset] 1752 // will provoke OS null exception if reg is null 1753 } 1754 } 1755 1756 // MacroAssembler protected routines needed to implement 1757 // public methods 1758 1759 void MacroAssembler::mov(Register r, Address dest) { 1760 code_section()->relocate(pc(), dest.rspec()); 1761 uint64_t imm64 = (uint64_t)dest.target(); 1762 movptr(r, imm64); 1763 } 1764 1765 // Move a constant pointer into r. In AArch64 mode the virtual 1766 // address space is 48 bits in size, so we only need three 1767 // instructions to create a patchable instruction sequence that can 1768 // reach anywhere. 1769 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 1770 #ifndef PRODUCT 1771 { 1772 char buffer[64]; 1773 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 1774 block_comment(buffer); 1775 } 1776 #endif 1777 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 1778 movz(r, imm64 & 0xffff); 1779 imm64 >>= 16; 1780 movk(r, imm64 & 0xffff, 16); 1781 imm64 >>= 16; 1782 movk(r, imm64 & 0xffff, 32); 1783 } 1784 1785 // Macro to mov replicated immediate to vector register. 1786 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 1787 // the upper 56/48/32 bits must be zeros for B/H/S type. 1788 // Vd will get the following values for different arrangements in T 1789 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 1790 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 1791 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 1792 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 1793 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 1794 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 1795 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 1796 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 1797 // Clobbers rscratch1 1798 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 1799 assert(T != T1Q, "unsupported"); 1800 if (T == T1D || T == T2D) { 1801 int imm = operand_valid_for_movi_immediate(imm64, T); 1802 if (-1 != imm) { 1803 movi(Vd, T, imm); 1804 } else { 1805 mov(rscratch1, imm64); 1806 dup(Vd, T, rscratch1); 1807 } 1808 return; 1809 } 1810 1811 #ifdef ASSERT 1812 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 1813 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 1814 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 1815 #endif 1816 int shift = operand_valid_for_movi_immediate(imm64, T); 1817 uint32_t imm32 = imm64 & 0xffffffffULL; 1818 if (shift >= 0) { 1819 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 1820 } else { 1821 movw(rscratch1, imm32); 1822 dup(Vd, T, rscratch1); 1823 } 1824 } 1825 1826 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 1827 { 1828 #ifndef PRODUCT 1829 { 1830 char buffer[64]; 1831 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 1832 block_comment(buffer); 1833 } 1834 #endif 1835 if (operand_valid_for_logical_immediate(false, imm64)) { 1836 orr(dst, zr, imm64); 1837 } else { 1838 // we can use a combination of MOVZ or MOVN with 1839 // MOVK to build up the constant 1840 uint64_t imm_h[4]; 1841 int zero_count = 0; 1842 int neg_count = 0; 1843 int i; 1844 for (i = 0; i < 4; i++) { 1845 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 1846 if (imm_h[i] == 0) { 1847 zero_count++; 1848 } else if (imm_h[i] == 0xffffL) { 1849 neg_count++; 1850 } 1851 } 1852 if (zero_count == 4) { 1853 // one MOVZ will do 1854 movz(dst, 0); 1855 } else if (neg_count == 4) { 1856 // one MOVN will do 1857 movn(dst, 0); 1858 } else if (zero_count == 3) { 1859 for (i = 0; i < 4; i++) { 1860 if (imm_h[i] != 0L) { 1861 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1862 break; 1863 } 1864 } 1865 } else if (neg_count == 3) { 1866 // one MOVN will do 1867 for (int i = 0; i < 4; i++) { 1868 if (imm_h[i] != 0xffffL) { 1869 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1870 break; 1871 } 1872 } 1873 } else if (zero_count == 2) { 1874 // one MOVZ and one MOVK will do 1875 for (i = 0; i < 3; i++) { 1876 if (imm_h[i] != 0L) { 1877 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1878 i++; 1879 break; 1880 } 1881 } 1882 for (;i < 4; i++) { 1883 if (imm_h[i] != 0L) { 1884 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1885 } 1886 } 1887 } else if (neg_count == 2) { 1888 // one MOVN and one MOVK will do 1889 for (i = 0; i < 4; i++) { 1890 if (imm_h[i] != 0xffffL) { 1891 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1892 i++; 1893 break; 1894 } 1895 } 1896 for (;i < 4; i++) { 1897 if (imm_h[i] != 0xffffL) { 1898 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1899 } 1900 } 1901 } else if (zero_count == 1) { 1902 // one MOVZ and two MOVKs will do 1903 for (i = 0; i < 4; i++) { 1904 if (imm_h[i] != 0L) { 1905 movz(dst, (uint32_t)imm_h[i], (i << 4)); 1906 i++; 1907 break; 1908 } 1909 } 1910 for (;i < 4; i++) { 1911 if (imm_h[i] != 0x0L) { 1912 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1913 } 1914 } 1915 } else if (neg_count == 1) { 1916 // one MOVN and two MOVKs will do 1917 for (i = 0; i < 4; i++) { 1918 if (imm_h[i] != 0xffffL) { 1919 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 1920 i++; 1921 break; 1922 } 1923 } 1924 for (;i < 4; i++) { 1925 if (imm_h[i] != 0xffffL) { 1926 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1927 } 1928 } 1929 } else { 1930 // use a MOVZ and 3 MOVKs (makes it easier to debug) 1931 movz(dst, (uint32_t)imm_h[0], 0); 1932 for (i = 1; i < 4; i++) { 1933 movk(dst, (uint32_t)imm_h[i], (i << 4)); 1934 } 1935 } 1936 } 1937 } 1938 1939 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 1940 { 1941 #ifndef PRODUCT 1942 { 1943 char buffer[64]; 1944 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 1945 block_comment(buffer); 1946 } 1947 #endif 1948 if (operand_valid_for_logical_immediate(true, imm32)) { 1949 orrw(dst, zr, imm32); 1950 } else { 1951 // we can use MOVZ, MOVN or two calls to MOVK to build up the 1952 // constant 1953 uint32_t imm_h[2]; 1954 imm_h[0] = imm32 & 0xffff; 1955 imm_h[1] = ((imm32 >> 16) & 0xffff); 1956 if (imm_h[0] == 0) { 1957 movzw(dst, imm_h[1], 16); 1958 } else if (imm_h[0] == 0xffff) { 1959 movnw(dst, imm_h[1] ^ 0xffff, 16); 1960 } else if (imm_h[1] == 0) { 1961 movzw(dst, imm_h[0], 0); 1962 } else if (imm_h[1] == 0xffff) { 1963 movnw(dst, imm_h[0] ^ 0xffff, 0); 1964 } else { 1965 // use a MOVZ and MOVK (makes it easier to debug) 1966 movzw(dst, imm_h[0], 0); 1967 movkw(dst, imm_h[1], 16); 1968 } 1969 } 1970 } 1971 1972 // Form an address from base + offset in Rd. Rd may or may 1973 // not actually be used: you must use the Address that is returned. 1974 // It is up to you to ensure that the shift provided matches the size 1975 // of your data. 1976 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 1977 if (Address::offset_ok_for_immed(byte_offset, shift)) 1978 // It fits; no need for any heroics 1979 return Address(base, byte_offset); 1980 1981 // Don't do anything clever with negative or misaligned offsets 1982 unsigned mask = (1 << shift) - 1; 1983 if (byte_offset < 0 || byte_offset & mask) { 1984 mov(Rd, byte_offset); 1985 add(Rd, base, Rd); 1986 return Address(Rd); 1987 } 1988 1989 // See if we can do this with two 12-bit offsets 1990 { 1991 uint64_t word_offset = byte_offset >> shift; 1992 uint64_t masked_offset = word_offset & 0xfff000; 1993 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 1994 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 1995 add(Rd, base, masked_offset << shift); 1996 word_offset -= masked_offset; 1997 return Address(Rd, word_offset << shift); 1998 } 1999 } 2000 2001 // Do it the hard way 2002 mov(Rd, byte_offset); 2003 add(Rd, base, Rd); 2004 return Address(Rd); 2005 } 2006 2007 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2008 bool want_remainder, Register scratch) 2009 { 2010 // Full implementation of Java idiv and irem. The function 2011 // returns the (pc) offset of the div instruction - may be needed 2012 // for implicit exceptions. 2013 // 2014 // constraint : ra/rb =/= scratch 2015 // normal case 2016 // 2017 // input : ra: dividend 2018 // rb: divisor 2019 // 2020 // result: either 2021 // quotient (= ra idiv rb) 2022 // remainder (= ra irem rb) 2023 2024 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2025 2026 int idivl_offset = offset(); 2027 if (! want_remainder) { 2028 sdivw(result, ra, rb); 2029 } else { 2030 sdivw(scratch, ra, rb); 2031 Assembler::msubw(result, scratch, rb, ra); 2032 } 2033 2034 return idivl_offset; 2035 } 2036 2037 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2038 bool want_remainder, Register scratch) 2039 { 2040 // Full implementation of Java ldiv and lrem. The function 2041 // returns the (pc) offset of the div instruction - may be needed 2042 // for implicit exceptions. 2043 // 2044 // constraint : ra/rb =/= scratch 2045 // normal case 2046 // 2047 // input : ra: dividend 2048 // rb: divisor 2049 // 2050 // result: either 2051 // quotient (= ra idiv rb) 2052 // remainder (= ra irem rb) 2053 2054 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2055 2056 int idivq_offset = offset(); 2057 if (! want_remainder) { 2058 sdiv(result, ra, rb); 2059 } else { 2060 sdiv(scratch, ra, rb); 2061 Assembler::msub(result, scratch, rb, ra); 2062 } 2063 2064 return idivq_offset; 2065 } 2066 2067 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2068 address prev = pc() - NativeMembar::instruction_size; 2069 address last = code()->last_insn(); 2070 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2071 NativeMembar *bar = NativeMembar_at(prev); 2072 // We are merging two memory barrier instructions. On AArch64 we 2073 // can do this simply by ORing them together. 2074 bar->set_kind(bar->get_kind() | order_constraint); 2075 BLOCK_COMMENT("merged membar"); 2076 } else { 2077 code()->set_last_insn(pc()); 2078 dmb(Assembler::barrier(order_constraint)); 2079 } 2080 } 2081 2082 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2083 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2084 merge_ldst(rt, adr, size_in_bytes, is_store); 2085 code()->clear_last_insn(); 2086 return true; 2087 } else { 2088 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2089 const uint64_t mask = size_in_bytes - 1; 2090 if (adr.getMode() == Address::base_plus_offset && 2091 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2092 code()->set_last_insn(pc()); 2093 } 2094 return false; 2095 } 2096 } 2097 2098 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2099 // We always try to merge two adjacent loads into one ldp. 2100 if (!try_merge_ldst(Rx, adr, 8, false)) { 2101 Assembler::ldr(Rx, adr); 2102 } 2103 } 2104 2105 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2106 // We always try to merge two adjacent loads into one ldp. 2107 if (!try_merge_ldst(Rw, adr, 4, false)) { 2108 Assembler::ldrw(Rw, adr); 2109 } 2110 } 2111 2112 void MacroAssembler::str(Register Rx, const Address &adr) { 2113 // We always try to merge two adjacent stores into one stp. 2114 if (!try_merge_ldst(Rx, adr, 8, true)) { 2115 Assembler::str(Rx, adr); 2116 } 2117 } 2118 2119 void MacroAssembler::strw(Register Rw, const Address &adr) { 2120 // We always try to merge two adjacent stores into one stp. 2121 if (!try_merge_ldst(Rw, adr, 4, true)) { 2122 Assembler::strw(Rw, adr); 2123 } 2124 } 2125 2126 // MacroAssembler routines found actually to be needed 2127 2128 void MacroAssembler::push(Register src) 2129 { 2130 str(src, Address(pre(esp, -1 * wordSize))); 2131 } 2132 2133 void MacroAssembler::pop(Register dst) 2134 { 2135 ldr(dst, Address(post(esp, 1 * wordSize))); 2136 } 2137 2138 // Note: load_unsigned_short used to be called load_unsigned_word. 2139 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2140 int off = offset(); 2141 ldrh(dst, src); 2142 return off; 2143 } 2144 2145 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2146 int off = offset(); 2147 ldrb(dst, src); 2148 return off; 2149 } 2150 2151 int MacroAssembler::load_signed_short(Register dst, Address src) { 2152 int off = offset(); 2153 ldrsh(dst, src); 2154 return off; 2155 } 2156 2157 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2158 int off = offset(); 2159 ldrsb(dst, src); 2160 return off; 2161 } 2162 2163 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2164 int off = offset(); 2165 ldrshw(dst, src); 2166 return off; 2167 } 2168 2169 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2170 int off = offset(); 2171 ldrsbw(dst, src); 2172 return off; 2173 } 2174 2175 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2176 switch (size_in_bytes) { 2177 case 8: ldr(dst, src); break; 2178 case 4: ldrw(dst, src); break; 2179 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2180 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2181 default: ShouldNotReachHere(); 2182 } 2183 } 2184 2185 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2186 switch (size_in_bytes) { 2187 case 8: str(src, dst); break; 2188 case 4: strw(src, dst); break; 2189 case 2: strh(src, dst); break; 2190 case 1: strb(src, dst); break; 2191 default: ShouldNotReachHere(); 2192 } 2193 } 2194 2195 void MacroAssembler::decrementw(Register reg, int value) 2196 { 2197 if (value < 0) { incrementw(reg, -value); return; } 2198 if (value == 0) { return; } 2199 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2200 /* else */ { 2201 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2202 movw(rscratch2, (unsigned)value); 2203 subw(reg, reg, rscratch2); 2204 } 2205 } 2206 2207 void MacroAssembler::decrement(Register reg, int value) 2208 { 2209 if (value < 0) { increment(reg, -value); return; } 2210 if (value == 0) { return; } 2211 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2212 /* else */ { 2213 assert(reg != rscratch2, "invalid dst for register decrement"); 2214 mov(rscratch2, (uint64_t)value); 2215 sub(reg, reg, rscratch2); 2216 } 2217 } 2218 2219 void MacroAssembler::decrementw(Address dst, int value) 2220 { 2221 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2222 if (dst.getMode() == Address::literal) { 2223 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2224 lea(rscratch2, dst); 2225 dst = Address(rscratch2); 2226 } 2227 ldrw(rscratch1, dst); 2228 decrementw(rscratch1, value); 2229 strw(rscratch1, dst); 2230 } 2231 2232 void MacroAssembler::decrement(Address dst, int value) 2233 { 2234 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2235 if (dst.getMode() == Address::literal) { 2236 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2237 lea(rscratch2, dst); 2238 dst = Address(rscratch2); 2239 } 2240 ldr(rscratch1, dst); 2241 decrement(rscratch1, value); 2242 str(rscratch1, dst); 2243 } 2244 2245 void MacroAssembler::incrementw(Register reg, int value) 2246 { 2247 if (value < 0) { decrementw(reg, -value); return; } 2248 if (value == 0) { return; } 2249 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2250 /* else */ { 2251 assert(reg != rscratch2, "invalid dst for register increment"); 2252 movw(rscratch2, (unsigned)value); 2253 addw(reg, reg, rscratch2); 2254 } 2255 } 2256 2257 void MacroAssembler::increment(Register reg, int value) 2258 { 2259 if (value < 0) { decrement(reg, -value); return; } 2260 if (value == 0) { return; } 2261 if (value < (1 << 12)) { add(reg, reg, value); return; } 2262 /* else */ { 2263 assert(reg != rscratch2, "invalid dst for register increment"); 2264 movw(rscratch2, (unsigned)value); 2265 add(reg, reg, rscratch2); 2266 } 2267 } 2268 2269 void MacroAssembler::incrementw(Address dst, int value) 2270 { 2271 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2272 if (dst.getMode() == Address::literal) { 2273 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2274 lea(rscratch2, dst); 2275 dst = Address(rscratch2); 2276 } 2277 ldrw(rscratch1, dst); 2278 incrementw(rscratch1, value); 2279 strw(rscratch1, dst); 2280 } 2281 2282 void MacroAssembler::increment(Address dst, int value) 2283 { 2284 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2285 if (dst.getMode() == Address::literal) { 2286 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2287 lea(rscratch2, dst); 2288 dst = Address(rscratch2); 2289 } 2290 ldr(rscratch1, dst); 2291 increment(rscratch1, value); 2292 str(rscratch1, dst); 2293 } 2294 2295 // Push lots of registers in the bit set supplied. Don't push sp. 2296 // Return the number of words pushed 2297 int MacroAssembler::push(unsigned int bitset, Register stack) { 2298 int words_pushed = 0; 2299 2300 // Scan bitset to accumulate register pairs 2301 unsigned char regs[32]; 2302 int count = 0; 2303 for (int reg = 0; reg <= 30; reg++) { 2304 if (1 & bitset) 2305 regs[count++] = reg; 2306 bitset >>= 1; 2307 } 2308 regs[count++] = zr->raw_encoding(); 2309 count &= ~1; // Only push an even number of regs 2310 2311 if (count) { 2312 stp(as_Register(regs[0]), as_Register(regs[1]), 2313 Address(pre(stack, -count * wordSize))); 2314 words_pushed += 2; 2315 } 2316 for (int i = 2; i < count; i += 2) { 2317 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2318 Address(stack, i * wordSize)); 2319 words_pushed += 2; 2320 } 2321 2322 assert(words_pushed == count, "oops, pushed != count"); 2323 2324 return count; 2325 } 2326 2327 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2328 int words_pushed = 0; 2329 2330 // Scan bitset to accumulate register pairs 2331 unsigned char regs[32]; 2332 int count = 0; 2333 for (int reg = 0; reg <= 30; reg++) { 2334 if (1 & bitset) 2335 regs[count++] = reg; 2336 bitset >>= 1; 2337 } 2338 regs[count++] = zr->raw_encoding(); 2339 count &= ~1; 2340 2341 for (int i = 2; i < count; i += 2) { 2342 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2343 Address(stack, i * wordSize)); 2344 words_pushed += 2; 2345 } 2346 if (count) { 2347 ldp(as_Register(regs[0]), as_Register(regs[1]), 2348 Address(post(stack, count * wordSize))); 2349 words_pushed += 2; 2350 } 2351 2352 assert(words_pushed == count, "oops, pushed != count"); 2353 2354 return count; 2355 } 2356 2357 // Push lots of registers in the bit set supplied. Don't push sp. 2358 // Return the number of dwords pushed 2359 int MacroAssembler::push_fp(unsigned int bitset, Register stack) { 2360 int words_pushed = 0; 2361 bool use_sve = false; 2362 int sve_vector_size_in_bytes = 0; 2363 2364 #ifdef COMPILER2 2365 use_sve = Matcher::supports_scalable_vector(); 2366 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2367 #endif 2368 2369 // Scan bitset to accumulate register pairs 2370 unsigned char regs[32]; 2371 int count = 0; 2372 for (int reg = 0; reg <= 31; reg++) { 2373 if (1 & bitset) 2374 regs[count++] = reg; 2375 bitset >>= 1; 2376 } 2377 2378 if (count == 0) { 2379 return 0; 2380 } 2381 2382 // SVE 2383 if (use_sve && sve_vector_size_in_bytes > 16) { 2384 sub(stack, stack, sve_vector_size_in_bytes * count); 2385 for (int i = 0; i < count; i++) { 2386 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2387 } 2388 return count * sve_vector_size_in_bytes / 8; 2389 } 2390 2391 // NEON 2392 if (count == 1) { 2393 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2394 return 2; 2395 } 2396 2397 bool odd = (count & 1) == 1; 2398 int push_slots = count + (odd ? 1 : 0); 2399 2400 // Always pushing full 128 bit registers. 2401 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2402 words_pushed += 2; 2403 2404 for (int i = 2; i + 1 < count; i += 2) { 2405 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2406 words_pushed += 2; 2407 } 2408 2409 if (odd) { 2410 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2411 words_pushed++; 2412 } 2413 2414 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2415 return count * 2; 2416 } 2417 2418 // Return the number of dwords popped 2419 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) { 2420 int words_pushed = 0; 2421 bool use_sve = false; 2422 int sve_vector_size_in_bytes = 0; 2423 2424 #ifdef COMPILER2 2425 use_sve = Matcher::supports_scalable_vector(); 2426 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2427 #endif 2428 // Scan bitset to accumulate register pairs 2429 unsigned char regs[32]; 2430 int count = 0; 2431 for (int reg = 0; reg <= 31; reg++) { 2432 if (1 & bitset) 2433 regs[count++] = reg; 2434 bitset >>= 1; 2435 } 2436 2437 if (count == 0) { 2438 return 0; 2439 } 2440 2441 // SVE 2442 if (use_sve && sve_vector_size_in_bytes > 16) { 2443 for (int i = count - 1; i >= 0; i--) { 2444 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 2445 } 2446 add(stack, stack, sve_vector_size_in_bytes * count); 2447 return count * sve_vector_size_in_bytes / 8; 2448 } 2449 2450 // NEON 2451 if (count == 1) { 2452 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 2453 return 2; 2454 } 2455 2456 bool odd = (count & 1) == 1; 2457 int push_slots = count + (odd ? 1 : 0); 2458 2459 if (odd) { 2460 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2461 words_pushed++; 2462 } 2463 2464 for (int i = 2; i + 1 < count; i += 2) { 2465 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2466 words_pushed += 2; 2467 } 2468 2469 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 2470 words_pushed += 2; 2471 2472 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2473 2474 return count * 2; 2475 } 2476 2477 // Return the number of dwords pushed 2478 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 2479 bool use_sve = false; 2480 int sve_predicate_size_in_slots = 0; 2481 2482 #ifdef COMPILER2 2483 use_sve = Matcher::supports_scalable_vector(); 2484 if (use_sve) { 2485 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2486 } 2487 #endif 2488 2489 if (!use_sve) { 2490 return 0; 2491 } 2492 2493 unsigned char regs[PRegister::number_of_registers]; 2494 int count = 0; 2495 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2496 if (1 & bitset) 2497 regs[count++] = reg; 2498 bitset >>= 1; 2499 } 2500 2501 if (count == 0) { 2502 return 0; 2503 } 2504 2505 int total_push_bytes = align_up(sve_predicate_size_in_slots * 2506 VMRegImpl::stack_slot_size * count, 16); 2507 sub(stack, stack, total_push_bytes); 2508 for (int i = 0; i < count; i++) { 2509 sve_str(as_PRegister(regs[i]), Address(stack, i)); 2510 } 2511 return total_push_bytes / 8; 2512 } 2513 2514 // Return the number of dwords popped 2515 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 2516 bool use_sve = false; 2517 int sve_predicate_size_in_slots = 0; 2518 2519 #ifdef COMPILER2 2520 use_sve = Matcher::supports_scalable_vector(); 2521 if (use_sve) { 2522 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 2523 } 2524 #endif 2525 2526 if (!use_sve) { 2527 return 0; 2528 } 2529 2530 unsigned char regs[PRegister::number_of_registers]; 2531 int count = 0; 2532 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 2533 if (1 & bitset) 2534 regs[count++] = reg; 2535 bitset >>= 1; 2536 } 2537 2538 if (count == 0) { 2539 return 0; 2540 } 2541 2542 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 2543 VMRegImpl::stack_slot_size * count, 16); 2544 for (int i = count - 1; i >= 0; i--) { 2545 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 2546 } 2547 add(stack, stack, total_pop_bytes); 2548 return total_pop_bytes / 8; 2549 } 2550 2551 #ifdef ASSERT 2552 void MacroAssembler::verify_heapbase(const char* msg) { 2553 #if 0 2554 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 2555 assert (Universe::heap() != nullptr, "java heap should be initialized"); 2556 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 2557 // rheapbase is allocated as general register 2558 return; 2559 } 2560 if (CheckCompressedOops) { 2561 Label ok; 2562 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 2563 cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2564 br(Assembler::EQ, ok); 2565 stop(msg); 2566 bind(ok); 2567 pop(1 << rscratch1->encoding(), sp); 2568 } 2569 #endif 2570 } 2571 #endif 2572 2573 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 2574 assert_different_registers(value, tmp1, tmp2); 2575 Label done, tagged, weak_tagged; 2576 2577 cbz(value, done); // Use null as-is. 2578 tst(value, JNIHandles::tag_mask); // Test for tag. 2579 br(Assembler::NE, tagged); 2580 2581 // Resolve local handle 2582 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 2583 verify_oop(value); 2584 b(done); 2585 2586 bind(tagged); 2587 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 2588 tbnz(value, 0, weak_tagged); // Test for weak tag. 2589 2590 // Resolve global handle 2591 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2592 verify_oop(value); 2593 b(done); 2594 2595 bind(weak_tagged); 2596 // Resolve jweak. 2597 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 2598 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 2599 verify_oop(value); 2600 2601 bind(done); 2602 } 2603 2604 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 2605 assert_different_registers(value, tmp1, tmp2); 2606 Label done; 2607 2608 cbz(value, done); // Use null as-is. 2609 2610 #ifdef ASSERT 2611 { 2612 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 2613 Label valid_global_tag; 2614 tbnz(value, 1, valid_global_tag); // Test for global tag 2615 stop("non global jobject using resolve_global_jobject"); 2616 bind(valid_global_tag); 2617 } 2618 #endif 2619 2620 // Resolve global handle 2621 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 2622 verify_oop(value); 2623 2624 bind(done); 2625 } 2626 2627 void MacroAssembler::stop(const char* msg) { 2628 BLOCK_COMMENT(msg); 2629 dcps1(0xdeae); 2630 emit_int64((uintptr_t)msg); 2631 } 2632 2633 void MacroAssembler::unimplemented(const char* what) { 2634 const char* buf = nullptr; 2635 { 2636 ResourceMark rm; 2637 stringStream ss; 2638 ss.print("unimplemented: %s", what); 2639 buf = code_string(ss.as_string()); 2640 } 2641 stop(buf); 2642 } 2643 2644 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 2645 #ifdef ASSERT 2646 Label OK; 2647 br(cc, OK); 2648 stop(msg); 2649 bind(OK); 2650 #endif 2651 } 2652 2653 // If a constant does not fit in an immediate field, generate some 2654 // number of MOV instructions and then perform the operation. 2655 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 2656 add_sub_imm_insn insn1, 2657 add_sub_reg_insn insn2, 2658 bool is32) { 2659 assert(Rd != zr, "Rd = zr and not setting flags?"); 2660 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2661 if (fits) { 2662 (this->*insn1)(Rd, Rn, imm); 2663 } else { 2664 if (uabs(imm) < (1 << 24)) { 2665 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 2666 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 2667 } else { 2668 assert_different_registers(Rd, Rn); 2669 mov(Rd, imm); 2670 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2671 } 2672 } 2673 } 2674 2675 // Separate vsn which sets the flags. Optimisations are more restricted 2676 // because we must set the flags correctly. 2677 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 2678 add_sub_imm_insn insn1, 2679 add_sub_reg_insn insn2, 2680 bool is32) { 2681 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 2682 if (fits) { 2683 (this->*insn1)(Rd, Rn, imm); 2684 } else { 2685 assert_different_registers(Rd, Rn); 2686 assert(Rd != zr, "overflow in immediate operand"); 2687 mov(Rd, imm); 2688 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 2689 } 2690 } 2691 2692 2693 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 2694 if (increment.is_register()) { 2695 add(Rd, Rn, increment.as_register()); 2696 } else { 2697 add(Rd, Rn, increment.as_constant()); 2698 } 2699 } 2700 2701 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 2702 if (increment.is_register()) { 2703 addw(Rd, Rn, increment.as_register()); 2704 } else { 2705 addw(Rd, Rn, increment.as_constant()); 2706 } 2707 } 2708 2709 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 2710 if (decrement.is_register()) { 2711 sub(Rd, Rn, decrement.as_register()); 2712 } else { 2713 sub(Rd, Rn, decrement.as_constant()); 2714 } 2715 } 2716 2717 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 2718 if (decrement.is_register()) { 2719 subw(Rd, Rn, decrement.as_register()); 2720 } else { 2721 subw(Rd, Rn, decrement.as_constant()); 2722 } 2723 } 2724 2725 void MacroAssembler::reinit_heapbase() 2726 { 2727 if (UseCompressedOops) { 2728 if (Universe::is_fully_initialized()) { 2729 mov(rheapbase, CompressedOops::ptrs_base()); 2730 } else { 2731 lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 2732 ldr(rheapbase, Address(rheapbase)); 2733 } 2734 } 2735 } 2736 2737 // this simulates the behaviour of the x86 cmpxchg instruction using a 2738 // load linked/store conditional pair. we use the acquire/release 2739 // versions of these instructions so that we flush pending writes as 2740 // per Java semantics. 2741 2742 // n.b the x86 version assumes the old value to be compared against is 2743 // in rax and updates rax with the value located in memory if the 2744 // cmpxchg fails. we supply a register for the old value explicitly 2745 2746 // the aarch64 load linked/store conditional instructions do not 2747 // accept an offset. so, unlike x86, we must provide a plain register 2748 // to identify the memory word to be compared/exchanged rather than a 2749 // register+offset Address. 2750 2751 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 2752 Label &succeed, Label *fail) { 2753 // oldv holds comparison value 2754 // newv holds value to write in exchange 2755 // addr identifies memory word to compare against/update 2756 if (UseLSE) { 2757 mov(tmp, oldv); 2758 casal(Assembler::xword, oldv, newv, addr); 2759 cmp(tmp, oldv); 2760 br(Assembler::EQ, succeed); 2761 membar(AnyAny); 2762 } else { 2763 Label retry_load, nope; 2764 prfm(Address(addr), PSTL1STRM); 2765 bind(retry_load); 2766 // flush and load exclusive from the memory location 2767 // and fail if it is not what we expect 2768 ldaxr(tmp, addr); 2769 cmp(tmp, oldv); 2770 br(Assembler::NE, nope); 2771 // if we store+flush with no intervening write tmp will be zero 2772 stlxr(tmp, newv, addr); 2773 cbzw(tmp, succeed); 2774 // retry so we only ever return after a load fails to compare 2775 // ensures we don't return a stale value after a failed write. 2776 b(retry_load); 2777 // if the memory word differs we return it in oldv and signal a fail 2778 bind(nope); 2779 membar(AnyAny); 2780 mov(oldv, tmp); 2781 } 2782 if (fail) 2783 b(*fail); 2784 } 2785 2786 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 2787 Label &succeed, Label *fail) { 2788 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 2789 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 2790 } 2791 2792 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 2793 Label &succeed, Label *fail) { 2794 // oldv holds comparison value 2795 // newv holds value to write in exchange 2796 // addr identifies memory word to compare against/update 2797 // tmp returns 0/1 for success/failure 2798 if (UseLSE) { 2799 mov(tmp, oldv); 2800 casal(Assembler::word, oldv, newv, addr); 2801 cmp(tmp, oldv); 2802 br(Assembler::EQ, succeed); 2803 membar(AnyAny); 2804 } else { 2805 Label retry_load, nope; 2806 prfm(Address(addr), PSTL1STRM); 2807 bind(retry_load); 2808 // flush and load exclusive from the memory location 2809 // and fail if it is not what we expect 2810 ldaxrw(tmp, addr); 2811 cmp(tmp, oldv); 2812 br(Assembler::NE, nope); 2813 // if we store+flush with no intervening write tmp will be zero 2814 stlxrw(tmp, newv, addr); 2815 cbzw(tmp, succeed); 2816 // retry so we only ever return after a load fails to compare 2817 // ensures we don't return a stale value after a failed write. 2818 b(retry_load); 2819 // if the memory word differs we return it in oldv and signal a fail 2820 bind(nope); 2821 membar(AnyAny); 2822 mov(oldv, tmp); 2823 } 2824 if (fail) 2825 b(*fail); 2826 } 2827 2828 // A generic CAS; success or failure is in the EQ flag. A weak CAS 2829 // doesn't retry and may fail spuriously. If the oldval is wanted, 2830 // Pass a register for the result, otherwise pass noreg. 2831 2832 // Clobbers rscratch1 2833 void MacroAssembler::cmpxchg(Register addr, Register expected, 2834 Register new_val, 2835 enum operand_size size, 2836 bool acquire, bool release, 2837 bool weak, 2838 Register result) { 2839 if (result == noreg) result = rscratch1; 2840 BLOCK_COMMENT("cmpxchg {"); 2841 if (UseLSE) { 2842 mov(result, expected); 2843 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 2844 compare_eq(result, expected, size); 2845 #ifdef ASSERT 2846 // Poison rscratch1 which is written on !UseLSE branch 2847 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 2848 #endif 2849 } else { 2850 Label retry_load, done; 2851 prfm(Address(addr), PSTL1STRM); 2852 bind(retry_load); 2853 load_exclusive(result, addr, size, acquire); 2854 compare_eq(result, expected, size); 2855 br(Assembler::NE, done); 2856 store_exclusive(rscratch1, new_val, addr, size, release); 2857 if (weak) { 2858 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 2859 } else { 2860 cbnzw(rscratch1, retry_load); 2861 } 2862 bind(done); 2863 } 2864 BLOCK_COMMENT("} cmpxchg"); 2865 } 2866 2867 // A generic comparison. Only compares for equality, clobbers rscratch1. 2868 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 2869 if (size == xword) { 2870 cmp(rm, rn); 2871 } else if (size == word) { 2872 cmpw(rm, rn); 2873 } else if (size == halfword) { 2874 eorw(rscratch1, rm, rn); 2875 ands(zr, rscratch1, 0xffff); 2876 } else if (size == byte) { 2877 eorw(rscratch1, rm, rn); 2878 ands(zr, rscratch1, 0xff); 2879 } else { 2880 ShouldNotReachHere(); 2881 } 2882 } 2883 2884 2885 static bool different(Register a, RegisterOrConstant b, Register c) { 2886 if (b.is_constant()) 2887 return a != c; 2888 else 2889 return a != b.as_register() && a != c && b.as_register() != c; 2890 } 2891 2892 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 2893 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 2894 if (UseLSE) { \ 2895 prev = prev->is_valid() ? prev : zr; \ 2896 if (incr.is_register()) { \ 2897 AOP(sz, incr.as_register(), prev, addr); \ 2898 } else { \ 2899 mov(rscratch2, incr.as_constant()); \ 2900 AOP(sz, rscratch2, prev, addr); \ 2901 } \ 2902 return; \ 2903 } \ 2904 Register result = rscratch2; \ 2905 if (prev->is_valid()) \ 2906 result = different(prev, incr, addr) ? prev : rscratch2; \ 2907 \ 2908 Label retry_load; \ 2909 prfm(Address(addr), PSTL1STRM); \ 2910 bind(retry_load); \ 2911 LDXR(result, addr); \ 2912 OP(rscratch1, result, incr); \ 2913 STXR(rscratch2, rscratch1, addr); \ 2914 cbnzw(rscratch2, retry_load); \ 2915 if (prev->is_valid() && prev != result) { \ 2916 IOP(prev, rscratch1, incr); \ 2917 } \ 2918 } 2919 2920 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 2921 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 2922 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 2923 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 2924 2925 #undef ATOMIC_OP 2926 2927 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 2928 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 2929 if (UseLSE) { \ 2930 prev = prev->is_valid() ? prev : zr; \ 2931 AOP(sz, newv, prev, addr); \ 2932 return; \ 2933 } \ 2934 Register result = rscratch2; \ 2935 if (prev->is_valid()) \ 2936 result = different(prev, newv, addr) ? prev : rscratch2; \ 2937 \ 2938 Label retry_load; \ 2939 prfm(Address(addr), PSTL1STRM); \ 2940 bind(retry_load); \ 2941 LDXR(result, addr); \ 2942 STXR(rscratch1, newv, addr); \ 2943 cbnzw(rscratch1, retry_load); \ 2944 if (prev->is_valid() && prev != result) \ 2945 mov(prev, result); \ 2946 } 2947 2948 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 2949 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 2950 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 2951 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 2952 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 2953 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 2954 2955 #undef ATOMIC_XCHG 2956 2957 #ifndef PRODUCT 2958 extern "C" void findpc(intptr_t x); 2959 #endif 2960 2961 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 2962 { 2963 // In order to get locks to work, we need to fake a in_VM state 2964 if (ShowMessageBoxOnError ) { 2965 JavaThread* thread = JavaThread::current(); 2966 JavaThreadState saved_state = thread->thread_state(); 2967 thread->set_thread_state(_thread_in_vm); 2968 #ifndef PRODUCT 2969 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 2970 ttyLocker ttyl; 2971 BytecodeCounter::print(); 2972 } 2973 #endif 2974 if (os::message_box(msg, "Execution stopped, print registers?")) { 2975 ttyLocker ttyl; 2976 tty->print_cr(" pc = 0x%016" PRIx64, pc); 2977 #ifndef PRODUCT 2978 tty->cr(); 2979 findpc(pc); 2980 tty->cr(); 2981 #endif 2982 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 2983 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 2984 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 2985 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 2986 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 2987 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 2988 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 2989 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 2990 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 2991 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 2992 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 2993 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 2994 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 2995 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 2996 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 2997 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 2998 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 2999 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3000 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3001 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3002 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3003 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3004 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3005 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3006 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3007 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3008 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3009 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3010 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3011 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3012 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3013 BREAKPOINT; 3014 } 3015 } 3016 fatal("DEBUG MESSAGE: %s", msg); 3017 } 3018 3019 RegSet MacroAssembler::call_clobbered_gp_registers() { 3020 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3021 #ifndef R18_RESERVED 3022 regs += r18_tls; 3023 #endif 3024 return regs; 3025 } 3026 3027 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3028 int step = 4 * wordSize; 3029 push(call_clobbered_gp_registers() - exclude, sp); 3030 sub(sp, sp, step); 3031 mov(rscratch1, -step); 3032 // Push v0-v7, v16-v31. 3033 for (int i = 31; i>= 4; i -= 4) { 3034 if (i <= v7->encoding() || i >= v16->encoding()) 3035 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3036 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3037 } 3038 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3039 as_FloatRegister(3), T1D, Address(sp)); 3040 } 3041 3042 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3043 for (int i = 0; i < 32; i += 4) { 3044 if (i <= v7->encoding() || i >= v16->encoding()) 3045 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3046 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3047 } 3048 3049 reinitialize_ptrue(); 3050 3051 pop(call_clobbered_gp_registers() - exclude, sp); 3052 } 3053 3054 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3055 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3056 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3057 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3058 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3059 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3060 sve_str(as_FloatRegister(i), Address(sp, i)); 3061 } 3062 } else { 3063 int step = (save_vectors ? 8 : 4) * wordSize; 3064 mov(rscratch1, -step); 3065 sub(sp, sp, step); 3066 for (int i = 28; i >= 4; i -= 4) { 3067 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3068 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3069 } 3070 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3071 } 3072 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3073 sub(sp, sp, total_predicate_in_bytes); 3074 for (int i = 0; i < PRegister::number_of_registers; i++) { 3075 sve_str(as_PRegister(i), Address(sp, i)); 3076 } 3077 } 3078 } 3079 3080 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3081 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3082 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3083 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3084 sve_ldr(as_PRegister(i), Address(sp, i)); 3085 } 3086 add(sp, sp, total_predicate_in_bytes); 3087 } 3088 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3089 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3090 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3091 } 3092 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3093 } else { 3094 int step = (restore_vectors ? 8 : 4) * wordSize; 3095 for (int i = 0; i <= 28; i += 4) 3096 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3097 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3098 } 3099 3100 // We may use predicate registers and rely on ptrue with SVE, 3101 // regardless of wide vector (> 8 bytes) used or not. 3102 if (use_sve) { 3103 reinitialize_ptrue(); 3104 } 3105 3106 // integer registers except lr & sp 3107 pop(RegSet::range(r0, r17), sp); 3108 #ifdef R18_RESERVED 3109 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3110 pop(RegSet::range(r20, r29), sp); 3111 #else 3112 pop(RegSet::range(r18_tls, r29), sp); 3113 #endif 3114 } 3115 3116 /** 3117 * Helpers for multiply_to_len(). 3118 */ 3119 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3120 Register src1, Register src2) { 3121 adds(dest_lo, dest_lo, src1); 3122 adc(dest_hi, dest_hi, zr); 3123 adds(dest_lo, dest_lo, src2); 3124 adc(final_dest_hi, dest_hi, zr); 3125 } 3126 3127 // Generate an address from (r + r1 extend offset). "size" is the 3128 // size of the operand. The result may be in rscratch2. 3129 Address MacroAssembler::offsetted_address(Register r, Register r1, 3130 Address::extend ext, int offset, int size) { 3131 if (offset || (ext.shift() % size != 0)) { 3132 lea(rscratch2, Address(r, r1, ext)); 3133 return Address(rscratch2, offset); 3134 } else { 3135 return Address(r, r1, ext); 3136 } 3137 } 3138 3139 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3140 { 3141 assert(offset >= 0, "spill to negative address?"); 3142 // Offset reachable ? 3143 // Not aligned - 9 bits signed offset 3144 // Aligned - 12 bits unsigned offset shifted 3145 Register base = sp; 3146 if ((offset & (size-1)) && offset >= (1<<8)) { 3147 add(tmp, base, offset & ((1<<12)-1)); 3148 base = tmp; 3149 offset &= -1u<<12; 3150 } 3151 3152 if (offset >= (1<<12) * size) { 3153 add(tmp, base, offset & (((1<<12)-1)<<12)); 3154 base = tmp; 3155 offset &= ~(((1<<12)-1)<<12); 3156 } 3157 3158 return Address(base, offset); 3159 } 3160 3161 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3162 assert(offset >= 0, "spill to negative address?"); 3163 3164 Register base = sp; 3165 3166 // An immediate offset in the range 0 to 255 which is multiplied 3167 // by the current vector or predicate register size in bytes. 3168 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3169 return Address(base, offset / sve_reg_size_in_bytes); 3170 } 3171 3172 add(tmp, base, offset); 3173 return Address(tmp); 3174 } 3175 3176 // Checks whether offset is aligned. 3177 // Returns true if it is, else false. 3178 bool MacroAssembler::merge_alignment_check(Register base, 3179 size_t size, 3180 int64_t cur_offset, 3181 int64_t prev_offset) const { 3182 if (AvoidUnalignedAccesses) { 3183 if (base == sp) { 3184 // Checks whether low offset if aligned to pair of registers. 3185 int64_t pair_mask = size * 2 - 1; 3186 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3187 return (offset & pair_mask) == 0; 3188 } else { // If base is not sp, we can't guarantee the access is aligned. 3189 return false; 3190 } 3191 } else { 3192 int64_t mask = size - 1; 3193 // Load/store pair instruction only supports element size aligned offset. 3194 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3195 } 3196 } 3197 3198 // Checks whether current and previous loads/stores can be merged. 3199 // Returns true if it can be merged, else false. 3200 bool MacroAssembler::ldst_can_merge(Register rt, 3201 const Address &adr, 3202 size_t cur_size_in_bytes, 3203 bool is_store) const { 3204 address prev = pc() - NativeInstruction::instruction_size; 3205 address last = code()->last_insn(); 3206 3207 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3208 return false; 3209 } 3210 3211 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3212 return false; 3213 } 3214 3215 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3216 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3217 3218 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3219 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3220 3221 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3222 return false; 3223 } 3224 3225 int64_t max_offset = 63 * prev_size_in_bytes; 3226 int64_t min_offset = -64 * prev_size_in_bytes; 3227 3228 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3229 3230 // Only same base can be merged. 3231 if (adr.base() != prev_ldst->base()) { 3232 return false; 3233 } 3234 3235 int64_t cur_offset = adr.offset(); 3236 int64_t prev_offset = prev_ldst->offset(); 3237 size_t diff = abs(cur_offset - prev_offset); 3238 if (diff != prev_size_in_bytes) { 3239 return false; 3240 } 3241 3242 // Following cases can not be merged: 3243 // ldr x2, [x2, #8] 3244 // ldr x3, [x2, #16] 3245 // or: 3246 // ldr x2, [x3, #8] 3247 // ldr x2, [x3, #16] 3248 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3249 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3250 return false; 3251 } 3252 3253 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3254 // Offset range must be in ldp/stp instruction's range. 3255 if (low_offset > max_offset || low_offset < min_offset) { 3256 return false; 3257 } 3258 3259 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3260 return true; 3261 } 3262 3263 return false; 3264 } 3265 3266 // Merge current load/store with previous load/store into ldp/stp. 3267 void MacroAssembler::merge_ldst(Register rt, 3268 const Address &adr, 3269 size_t cur_size_in_bytes, 3270 bool is_store) { 3271 3272 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3273 3274 Register rt_low, rt_high; 3275 address prev = pc() - NativeInstruction::instruction_size; 3276 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3277 3278 int64_t offset; 3279 3280 if (adr.offset() < prev_ldst->offset()) { 3281 offset = adr.offset(); 3282 rt_low = rt; 3283 rt_high = prev_ldst->target(); 3284 } else { 3285 offset = prev_ldst->offset(); 3286 rt_low = prev_ldst->target(); 3287 rt_high = rt; 3288 } 3289 3290 Address adr_p = Address(prev_ldst->base(), offset); 3291 // Overwrite previous generated binary. 3292 code_section()->set_end(prev); 3293 3294 const size_t sz = prev_ldst->size_in_bytes(); 3295 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3296 if (!is_store) { 3297 BLOCK_COMMENT("merged ldr pair"); 3298 if (sz == 8) { 3299 ldp(rt_low, rt_high, adr_p); 3300 } else { 3301 ldpw(rt_low, rt_high, adr_p); 3302 } 3303 } else { 3304 BLOCK_COMMENT("merged str pair"); 3305 if (sz == 8) { 3306 stp(rt_low, rt_high, adr_p); 3307 } else { 3308 stpw(rt_low, rt_high, adr_p); 3309 } 3310 } 3311 } 3312 3313 /** 3314 * Multiply 64 bit by 64 bit first loop. 3315 */ 3316 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3317 Register y, Register y_idx, Register z, 3318 Register carry, Register product, 3319 Register idx, Register kdx) { 3320 // 3321 // jlong carry, x[], y[], z[]; 3322 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3323 // huge_128 product = y[idx] * x[xstart] + carry; 3324 // z[kdx] = (jlong)product; 3325 // carry = (jlong)(product >>> 64); 3326 // } 3327 // z[xstart] = carry; 3328 // 3329 3330 Label L_first_loop, L_first_loop_exit; 3331 Label L_one_x, L_one_y, L_multiply; 3332 3333 subsw(xstart, xstart, 1); 3334 br(Assembler::MI, L_one_x); 3335 3336 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3337 ldr(x_xstart, Address(rscratch1)); 3338 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3339 3340 bind(L_first_loop); 3341 subsw(idx, idx, 1); 3342 br(Assembler::MI, L_first_loop_exit); 3343 subsw(idx, idx, 1); 3344 br(Assembler::MI, L_one_y); 3345 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3346 ldr(y_idx, Address(rscratch1)); 3347 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3348 bind(L_multiply); 3349 3350 // AArch64 has a multiply-accumulate instruction that we can't use 3351 // here because it has no way to process carries, so we have to use 3352 // separate add and adc instructions. Bah. 3353 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3354 mul(product, x_xstart, y_idx); 3355 adds(product, product, carry); 3356 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3357 3358 subw(kdx, kdx, 2); 3359 ror(product, product, 32); // back to big-endian 3360 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3361 3362 b(L_first_loop); 3363 3364 bind(L_one_y); 3365 ldrw(y_idx, Address(y, 0)); 3366 b(L_multiply); 3367 3368 bind(L_one_x); 3369 ldrw(x_xstart, Address(x, 0)); 3370 b(L_first_loop); 3371 3372 bind(L_first_loop_exit); 3373 } 3374 3375 /** 3376 * Multiply 128 bit by 128. Unrolled inner loop. 3377 * 3378 */ 3379 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3380 Register carry, Register carry2, 3381 Register idx, Register jdx, 3382 Register yz_idx1, Register yz_idx2, 3383 Register tmp, Register tmp3, Register tmp4, 3384 Register tmp6, Register product_hi) { 3385 3386 // jlong carry, x[], y[], z[]; 3387 // int kdx = ystart+1; 3388 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 3389 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 3390 // jlong carry2 = (jlong)(tmp3 >>> 64); 3391 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 3392 // carry = (jlong)(tmp4 >>> 64); 3393 // z[kdx+idx+1] = (jlong)tmp3; 3394 // z[kdx+idx] = (jlong)tmp4; 3395 // } 3396 // idx += 2; 3397 // if (idx > 0) { 3398 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 3399 // z[kdx+idx] = (jlong)yz_idx1; 3400 // carry = (jlong)(yz_idx1 >>> 64); 3401 // } 3402 // 3403 3404 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 3405 3406 lsrw(jdx, idx, 2); 3407 3408 bind(L_third_loop); 3409 3410 subsw(jdx, jdx, 1); 3411 br(Assembler::MI, L_third_loop_exit); 3412 subw(idx, idx, 4); 3413 3414 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3415 3416 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 3417 3418 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3419 3420 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 3421 ror(yz_idx2, yz_idx2, 32); 3422 3423 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 3424 3425 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3426 umulh(tmp4, product_hi, yz_idx1); 3427 3428 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 3429 ror(rscratch2, rscratch2, 32); 3430 3431 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 3432 umulh(carry2, product_hi, yz_idx2); 3433 3434 // propagate sum of both multiplications into carry:tmp4:tmp3 3435 adds(tmp3, tmp3, carry); 3436 adc(tmp4, tmp4, zr); 3437 adds(tmp3, tmp3, rscratch1); 3438 adcs(tmp4, tmp4, tmp); 3439 adc(carry, carry2, zr); 3440 adds(tmp4, tmp4, rscratch2); 3441 adc(carry, carry, zr); 3442 3443 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 3444 ror(tmp4, tmp4, 32); 3445 stp(tmp4, tmp3, Address(tmp6, 0)); 3446 3447 b(L_third_loop); 3448 bind (L_third_loop_exit); 3449 3450 andw (idx, idx, 0x3); 3451 cbz(idx, L_post_third_loop_done); 3452 3453 Label L_check_1; 3454 subsw(idx, idx, 2); 3455 br(Assembler::MI, L_check_1); 3456 3457 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3458 ldr(yz_idx1, Address(rscratch1, 0)); 3459 ror(yz_idx1, yz_idx1, 32); 3460 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 3461 umulh(tmp4, product_hi, yz_idx1); 3462 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3463 ldr(yz_idx2, Address(rscratch1, 0)); 3464 ror(yz_idx2, yz_idx2, 32); 3465 3466 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 3467 3468 ror(tmp3, tmp3, 32); 3469 str(tmp3, Address(rscratch1, 0)); 3470 3471 bind (L_check_1); 3472 3473 andw (idx, idx, 0x1); 3474 subsw(idx, idx, 1); 3475 br(Assembler::MI, L_post_third_loop_done); 3476 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3477 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 3478 umulh(carry2, tmp4, product_hi); 3479 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3480 3481 add2_with_carry(carry2, tmp3, tmp4, carry); 3482 3483 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 3484 extr(carry, carry2, tmp3, 32); 3485 3486 bind(L_post_third_loop_done); 3487 } 3488 3489 /** 3490 * Code for BigInteger::multiplyToLen() intrinsic. 3491 * 3492 * r0: x 3493 * r1: xlen 3494 * r2: y 3495 * r3: ylen 3496 * r4: z 3497 * r5: zlen 3498 * r10: tmp1 3499 * r11: tmp2 3500 * r12: tmp3 3501 * r13: tmp4 3502 * r14: tmp5 3503 * r15: tmp6 3504 * r16: tmp7 3505 * 3506 */ 3507 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 3508 Register z, Register zlen, 3509 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 3510 Register tmp5, Register tmp6, Register product_hi) { 3511 3512 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6); 3513 3514 const Register idx = tmp1; 3515 const Register kdx = tmp2; 3516 const Register xstart = tmp3; 3517 3518 const Register y_idx = tmp4; 3519 const Register carry = tmp5; 3520 const Register product = xlen; 3521 const Register x_xstart = zlen; // reuse register 3522 3523 // First Loop. 3524 // 3525 // final static long LONG_MASK = 0xffffffffL; 3526 // int xstart = xlen - 1; 3527 // int ystart = ylen - 1; 3528 // long carry = 0; 3529 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3530 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 3531 // z[kdx] = (int)product; 3532 // carry = product >>> 32; 3533 // } 3534 // z[xstart] = (int)carry; 3535 // 3536 3537 movw(idx, ylen); // idx = ylen; 3538 movw(kdx, zlen); // kdx = xlen+ylen; 3539 mov(carry, zr); // carry = 0; 3540 3541 Label L_done; 3542 3543 movw(xstart, xlen); 3544 subsw(xstart, xstart, 1); 3545 br(Assembler::MI, L_done); 3546 3547 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 3548 3549 Label L_second_loop; 3550 cbzw(kdx, L_second_loop); 3551 3552 Label L_carry; 3553 subw(kdx, kdx, 1); 3554 cbzw(kdx, L_carry); 3555 3556 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3557 lsr(carry, carry, 32); 3558 subw(kdx, kdx, 1); 3559 3560 bind(L_carry); 3561 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 3562 3563 // Second and third (nested) loops. 3564 // 3565 // for (int i = xstart-1; i >= 0; i--) { // Second loop 3566 // carry = 0; 3567 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 3568 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 3569 // (z[k] & LONG_MASK) + carry; 3570 // z[k] = (int)product; 3571 // carry = product >>> 32; 3572 // } 3573 // z[i] = (int)carry; 3574 // } 3575 // 3576 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 3577 3578 const Register jdx = tmp1; 3579 3580 bind(L_second_loop); 3581 mov(carry, zr); // carry = 0; 3582 movw(jdx, ylen); // j = ystart+1 3583 3584 subsw(xstart, xstart, 1); // i = xstart-1; 3585 br(Assembler::MI, L_done); 3586 3587 str(z, Address(pre(sp, -4 * wordSize))); 3588 3589 Label L_last_x; 3590 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 3591 subsw(xstart, xstart, 1); // i = xstart-1; 3592 br(Assembler::MI, L_last_x); 3593 3594 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 3595 ldr(product_hi, Address(rscratch1)); 3596 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 3597 3598 Label L_third_loop_prologue; 3599 bind(L_third_loop_prologue); 3600 3601 str(ylen, Address(sp, wordSize)); 3602 stp(x, xstart, Address(sp, 2 * wordSize)); 3603 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 3604 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 3605 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 3606 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 3607 3608 addw(tmp3, xlen, 1); 3609 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3610 subsw(tmp3, tmp3, 1); 3611 br(Assembler::MI, L_done); 3612 3613 lsr(carry, carry, 32); 3614 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 3615 b(L_second_loop); 3616 3617 // Next infrequent code is moved outside loops. 3618 bind(L_last_x); 3619 ldrw(product_hi, Address(x, 0)); 3620 b(L_third_loop_prologue); 3621 3622 bind(L_done); 3623 } 3624 3625 // Code for BigInteger::mulAdd intrinsic 3626 // out = r0 3627 // in = r1 3628 // offset = r2 (already out.length-offset) 3629 // len = r3 3630 // k = r4 3631 // 3632 // pseudo code from java implementation: 3633 // carry = 0; 3634 // offset = out.length-offset - 1; 3635 // for (int j=len-1; j >= 0; j--) { 3636 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 3637 // out[offset--] = (int)product; 3638 // carry = product >>> 32; 3639 // } 3640 // return (int)carry; 3641 void MacroAssembler::mul_add(Register out, Register in, Register offset, 3642 Register len, Register k) { 3643 Label LOOP, END; 3644 // pre-loop 3645 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 3646 csel(out, zr, out, Assembler::EQ); 3647 br(Assembler::EQ, END); 3648 add(in, in, len, LSL, 2); // in[j+1] address 3649 add(offset, out, offset, LSL, 2); // out[offset + 1] address 3650 mov(out, zr); // used to keep carry now 3651 BIND(LOOP); 3652 ldrw(rscratch1, Address(pre(in, -4))); 3653 madd(rscratch1, rscratch1, k, out); 3654 ldrw(rscratch2, Address(pre(offset, -4))); 3655 add(rscratch1, rscratch1, rscratch2); 3656 strw(rscratch1, Address(offset)); 3657 lsr(out, rscratch1, 32); 3658 subs(len, len, 1); 3659 br(Assembler::NE, LOOP); 3660 BIND(END); 3661 } 3662 3663 /** 3664 * Emits code to update CRC-32 with a byte value according to constants in table 3665 * 3666 * @param [in,out]crc Register containing the crc. 3667 * @param [in]val Register containing the byte to fold into the CRC. 3668 * @param [in]table Register containing the table of crc constants. 3669 * 3670 * uint32_t crc; 3671 * val = crc_table[(val ^ crc) & 0xFF]; 3672 * crc = val ^ (crc >> 8); 3673 * 3674 */ 3675 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 3676 eor(val, val, crc); 3677 andr(val, val, 0xff); 3678 ldrw(val, Address(table, val, Address::lsl(2))); 3679 eor(crc, val, crc, Assembler::LSR, 8); 3680 } 3681 3682 /** 3683 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 3684 * 3685 * @param [in,out]crc Register containing the crc. 3686 * @param [in]v Register containing the 32-bit to fold into the CRC. 3687 * @param [in]table0 Register containing table 0 of crc constants. 3688 * @param [in]table1 Register containing table 1 of crc constants. 3689 * @param [in]table2 Register containing table 2 of crc constants. 3690 * @param [in]table3 Register containing table 3 of crc constants. 3691 * 3692 * uint32_t crc; 3693 * v = crc ^ v 3694 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 3695 * 3696 */ 3697 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 3698 Register table0, Register table1, Register table2, Register table3, 3699 bool upper) { 3700 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 3701 uxtb(tmp, v); 3702 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 3703 ubfx(tmp, v, 8, 8); 3704 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 3705 eor(crc, crc, tmp); 3706 ubfx(tmp, v, 16, 8); 3707 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 3708 eor(crc, crc, tmp); 3709 ubfx(tmp, v, 24, 8); 3710 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 3711 eor(crc, crc, tmp); 3712 } 3713 3714 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 3715 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 3716 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 3717 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 3718 3719 subs(tmp0, len, 384); 3720 mvnw(crc, crc); 3721 br(Assembler::GE, CRC_by128_pre); 3722 BIND(CRC_less128); 3723 subs(len, len, 32); 3724 br(Assembler::GE, CRC_by32_loop); 3725 BIND(CRC_less32); 3726 adds(len, len, 32 - 4); 3727 br(Assembler::GE, CRC_by4_loop); 3728 adds(len, len, 4); 3729 br(Assembler::GT, CRC_by1_loop); 3730 b(L_exit); 3731 3732 BIND(CRC_by32_loop); 3733 ldp(tmp0, tmp1, Address(buf)); 3734 crc32x(crc, crc, tmp0); 3735 ldp(tmp2, tmp3, Address(buf, 16)); 3736 crc32x(crc, crc, tmp1); 3737 add(buf, buf, 32); 3738 crc32x(crc, crc, tmp2); 3739 subs(len, len, 32); 3740 crc32x(crc, crc, tmp3); 3741 br(Assembler::GE, CRC_by32_loop); 3742 cmn(len, (u1)32); 3743 br(Assembler::NE, CRC_less32); 3744 b(L_exit); 3745 3746 BIND(CRC_by4_loop); 3747 ldrw(tmp0, Address(post(buf, 4))); 3748 subs(len, len, 4); 3749 crc32w(crc, crc, tmp0); 3750 br(Assembler::GE, CRC_by4_loop); 3751 adds(len, len, 4); 3752 br(Assembler::LE, L_exit); 3753 BIND(CRC_by1_loop); 3754 ldrb(tmp0, Address(post(buf, 1))); 3755 subs(len, len, 1); 3756 crc32b(crc, crc, tmp0); 3757 br(Assembler::GT, CRC_by1_loop); 3758 b(L_exit); 3759 3760 BIND(CRC_by128_pre); 3761 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 3762 4*256*sizeof(juint) + 8*sizeof(juint)); 3763 mov(crc, 0); 3764 crc32x(crc, crc, tmp0); 3765 crc32x(crc, crc, tmp1); 3766 3767 cbnz(len, CRC_less128); 3768 3769 BIND(L_exit); 3770 mvnw(crc, crc); 3771 } 3772 3773 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 3774 Register len, Register tmp0, Register tmp1, Register tmp2, 3775 Register tmp3) { 3776 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 3777 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 3778 3779 mvnw(crc, crc); 3780 3781 subs(len, len, 128); 3782 br(Assembler::GE, CRC_by64_pre); 3783 BIND(CRC_less64); 3784 adds(len, len, 128-32); 3785 br(Assembler::GE, CRC_by32_loop); 3786 BIND(CRC_less32); 3787 adds(len, len, 32-4); 3788 br(Assembler::GE, CRC_by4_loop); 3789 adds(len, len, 4); 3790 br(Assembler::GT, CRC_by1_loop); 3791 b(L_exit); 3792 3793 BIND(CRC_by32_loop); 3794 ldp(tmp0, tmp1, Address(post(buf, 16))); 3795 subs(len, len, 32); 3796 crc32x(crc, crc, tmp0); 3797 ldr(tmp2, Address(post(buf, 8))); 3798 crc32x(crc, crc, tmp1); 3799 ldr(tmp3, Address(post(buf, 8))); 3800 crc32x(crc, crc, tmp2); 3801 crc32x(crc, crc, tmp3); 3802 br(Assembler::GE, CRC_by32_loop); 3803 cmn(len, (u1)32); 3804 br(Assembler::NE, CRC_less32); 3805 b(L_exit); 3806 3807 BIND(CRC_by4_loop); 3808 ldrw(tmp0, Address(post(buf, 4))); 3809 subs(len, len, 4); 3810 crc32w(crc, crc, tmp0); 3811 br(Assembler::GE, CRC_by4_loop); 3812 adds(len, len, 4); 3813 br(Assembler::LE, L_exit); 3814 BIND(CRC_by1_loop); 3815 ldrb(tmp0, Address(post(buf, 1))); 3816 subs(len, len, 1); 3817 crc32b(crc, crc, tmp0); 3818 br(Assembler::GT, CRC_by1_loop); 3819 b(L_exit); 3820 3821 BIND(CRC_by64_pre); 3822 sub(buf, buf, 8); 3823 ldp(tmp0, tmp1, Address(buf, 8)); 3824 crc32x(crc, crc, tmp0); 3825 ldr(tmp2, Address(buf, 24)); 3826 crc32x(crc, crc, tmp1); 3827 ldr(tmp3, Address(buf, 32)); 3828 crc32x(crc, crc, tmp2); 3829 ldr(tmp0, Address(buf, 40)); 3830 crc32x(crc, crc, tmp3); 3831 ldr(tmp1, Address(buf, 48)); 3832 crc32x(crc, crc, tmp0); 3833 ldr(tmp2, Address(buf, 56)); 3834 crc32x(crc, crc, tmp1); 3835 ldr(tmp3, Address(pre(buf, 64))); 3836 3837 b(CRC_by64_loop); 3838 3839 align(CodeEntryAlignment); 3840 BIND(CRC_by64_loop); 3841 subs(len, len, 64); 3842 crc32x(crc, crc, tmp2); 3843 ldr(tmp0, Address(buf, 8)); 3844 crc32x(crc, crc, tmp3); 3845 ldr(tmp1, Address(buf, 16)); 3846 crc32x(crc, crc, tmp0); 3847 ldr(tmp2, Address(buf, 24)); 3848 crc32x(crc, crc, tmp1); 3849 ldr(tmp3, Address(buf, 32)); 3850 crc32x(crc, crc, tmp2); 3851 ldr(tmp0, Address(buf, 40)); 3852 crc32x(crc, crc, tmp3); 3853 ldr(tmp1, Address(buf, 48)); 3854 crc32x(crc, crc, tmp0); 3855 ldr(tmp2, Address(buf, 56)); 3856 crc32x(crc, crc, tmp1); 3857 ldr(tmp3, Address(pre(buf, 64))); 3858 br(Assembler::GE, CRC_by64_loop); 3859 3860 // post-loop 3861 crc32x(crc, crc, tmp2); 3862 crc32x(crc, crc, tmp3); 3863 3864 sub(len, len, 64); 3865 add(buf, buf, 8); 3866 cmn(len, (u1)128); 3867 br(Assembler::NE, CRC_less64); 3868 BIND(L_exit); 3869 mvnw(crc, crc); 3870 } 3871 3872 /** 3873 * @param crc register containing existing CRC (32-bit) 3874 * @param buf register pointing to input byte buffer (byte*) 3875 * @param len register containing number of bytes 3876 * @param table register that will contain address of CRC table 3877 * @param tmp scratch register 3878 */ 3879 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 3880 Register table0, Register table1, Register table2, Register table3, 3881 Register tmp, Register tmp2, Register tmp3) { 3882 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 3883 3884 if (UseCryptoPmullForCRC32) { 3885 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 3886 return; 3887 } 3888 3889 if (UseCRC32) { 3890 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 3891 return; 3892 } 3893 3894 mvnw(crc, crc); 3895 3896 { 3897 uint64_t offset; 3898 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 3899 add(table0, table0, offset); 3900 } 3901 add(table1, table0, 1*256*sizeof(juint)); 3902 add(table2, table0, 2*256*sizeof(juint)); 3903 add(table3, table0, 3*256*sizeof(juint)); 3904 3905 if (UseNeon) { 3906 cmp(len, (u1)64); 3907 br(Assembler::LT, L_by16); 3908 eor(v16, T16B, v16, v16); 3909 3910 Label L_fold; 3911 3912 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 3913 3914 ld1(v0, v1, T2D, post(buf, 32)); 3915 ld1r(v4, T2D, post(tmp, 8)); 3916 ld1r(v5, T2D, post(tmp, 8)); 3917 ld1r(v6, T2D, post(tmp, 8)); 3918 ld1r(v7, T2D, post(tmp, 8)); 3919 mov(v16, S, 0, crc); 3920 3921 eor(v0, T16B, v0, v16); 3922 sub(len, len, 64); 3923 3924 BIND(L_fold); 3925 pmull(v22, T8H, v0, v5, T8B); 3926 pmull(v20, T8H, v0, v7, T8B); 3927 pmull(v23, T8H, v0, v4, T8B); 3928 pmull(v21, T8H, v0, v6, T8B); 3929 3930 pmull2(v18, T8H, v0, v5, T16B); 3931 pmull2(v16, T8H, v0, v7, T16B); 3932 pmull2(v19, T8H, v0, v4, T16B); 3933 pmull2(v17, T8H, v0, v6, T16B); 3934 3935 uzp1(v24, T8H, v20, v22); 3936 uzp2(v25, T8H, v20, v22); 3937 eor(v20, T16B, v24, v25); 3938 3939 uzp1(v26, T8H, v16, v18); 3940 uzp2(v27, T8H, v16, v18); 3941 eor(v16, T16B, v26, v27); 3942 3943 ushll2(v22, T4S, v20, T8H, 8); 3944 ushll(v20, T4S, v20, T4H, 8); 3945 3946 ushll2(v18, T4S, v16, T8H, 8); 3947 ushll(v16, T4S, v16, T4H, 8); 3948 3949 eor(v22, T16B, v23, v22); 3950 eor(v18, T16B, v19, v18); 3951 eor(v20, T16B, v21, v20); 3952 eor(v16, T16B, v17, v16); 3953 3954 uzp1(v17, T2D, v16, v20); 3955 uzp2(v21, T2D, v16, v20); 3956 eor(v17, T16B, v17, v21); 3957 3958 ushll2(v20, T2D, v17, T4S, 16); 3959 ushll(v16, T2D, v17, T2S, 16); 3960 3961 eor(v20, T16B, v20, v22); 3962 eor(v16, T16B, v16, v18); 3963 3964 uzp1(v17, T2D, v20, v16); 3965 uzp2(v21, T2D, v20, v16); 3966 eor(v28, T16B, v17, v21); 3967 3968 pmull(v22, T8H, v1, v5, T8B); 3969 pmull(v20, T8H, v1, v7, T8B); 3970 pmull(v23, T8H, v1, v4, T8B); 3971 pmull(v21, T8H, v1, v6, T8B); 3972 3973 pmull2(v18, T8H, v1, v5, T16B); 3974 pmull2(v16, T8H, v1, v7, T16B); 3975 pmull2(v19, T8H, v1, v4, T16B); 3976 pmull2(v17, T8H, v1, v6, T16B); 3977 3978 ld1(v0, v1, T2D, post(buf, 32)); 3979 3980 uzp1(v24, T8H, v20, v22); 3981 uzp2(v25, T8H, v20, v22); 3982 eor(v20, T16B, v24, v25); 3983 3984 uzp1(v26, T8H, v16, v18); 3985 uzp2(v27, T8H, v16, v18); 3986 eor(v16, T16B, v26, v27); 3987 3988 ushll2(v22, T4S, v20, T8H, 8); 3989 ushll(v20, T4S, v20, T4H, 8); 3990 3991 ushll2(v18, T4S, v16, T8H, 8); 3992 ushll(v16, T4S, v16, T4H, 8); 3993 3994 eor(v22, T16B, v23, v22); 3995 eor(v18, T16B, v19, v18); 3996 eor(v20, T16B, v21, v20); 3997 eor(v16, T16B, v17, v16); 3998 3999 uzp1(v17, T2D, v16, v20); 4000 uzp2(v21, T2D, v16, v20); 4001 eor(v16, T16B, v17, v21); 4002 4003 ushll2(v20, T2D, v16, T4S, 16); 4004 ushll(v16, T2D, v16, T2S, 16); 4005 4006 eor(v20, T16B, v22, v20); 4007 eor(v16, T16B, v16, v18); 4008 4009 uzp1(v17, T2D, v20, v16); 4010 uzp2(v21, T2D, v20, v16); 4011 eor(v20, T16B, v17, v21); 4012 4013 shl(v16, T2D, v28, 1); 4014 shl(v17, T2D, v20, 1); 4015 4016 eor(v0, T16B, v0, v16); 4017 eor(v1, T16B, v1, v17); 4018 4019 subs(len, len, 32); 4020 br(Assembler::GE, L_fold); 4021 4022 mov(crc, 0); 4023 mov(tmp, v0, D, 0); 4024 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4025 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4026 mov(tmp, v0, D, 1); 4027 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4028 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4029 mov(tmp, v1, D, 0); 4030 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4031 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4032 mov(tmp, v1, D, 1); 4033 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4034 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4035 4036 add(len, len, 32); 4037 } 4038 4039 BIND(L_by16); 4040 subs(len, len, 16); 4041 br(Assembler::GE, L_by16_loop); 4042 adds(len, len, 16-4); 4043 br(Assembler::GE, L_by4_loop); 4044 adds(len, len, 4); 4045 br(Assembler::GT, L_by1_loop); 4046 b(L_exit); 4047 4048 BIND(L_by4_loop); 4049 ldrw(tmp, Address(post(buf, 4))); 4050 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4051 subs(len, len, 4); 4052 br(Assembler::GE, L_by4_loop); 4053 adds(len, len, 4); 4054 br(Assembler::LE, L_exit); 4055 BIND(L_by1_loop); 4056 subs(len, len, 1); 4057 ldrb(tmp, Address(post(buf, 1))); 4058 update_byte_crc32(crc, tmp, table0); 4059 br(Assembler::GT, L_by1_loop); 4060 b(L_exit); 4061 4062 align(CodeEntryAlignment); 4063 BIND(L_by16_loop); 4064 subs(len, len, 16); 4065 ldp(tmp, tmp3, Address(post(buf, 16))); 4066 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4067 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4068 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4069 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4070 br(Assembler::GE, L_by16_loop); 4071 adds(len, len, 16-4); 4072 br(Assembler::GE, L_by4_loop); 4073 adds(len, len, 4); 4074 br(Assembler::GT, L_by1_loop); 4075 BIND(L_exit); 4076 mvnw(crc, crc); 4077 } 4078 4079 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4080 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4081 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4082 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4083 4084 subs(tmp0, len, 384); 4085 br(Assembler::GE, CRC_by128_pre); 4086 BIND(CRC_less128); 4087 subs(len, len, 32); 4088 br(Assembler::GE, CRC_by32_loop); 4089 BIND(CRC_less32); 4090 adds(len, len, 32 - 4); 4091 br(Assembler::GE, CRC_by4_loop); 4092 adds(len, len, 4); 4093 br(Assembler::GT, CRC_by1_loop); 4094 b(L_exit); 4095 4096 BIND(CRC_by32_loop); 4097 ldp(tmp0, tmp1, Address(buf)); 4098 crc32cx(crc, crc, tmp0); 4099 ldr(tmp2, Address(buf, 16)); 4100 crc32cx(crc, crc, tmp1); 4101 ldr(tmp3, Address(buf, 24)); 4102 crc32cx(crc, crc, tmp2); 4103 add(buf, buf, 32); 4104 subs(len, len, 32); 4105 crc32cx(crc, crc, tmp3); 4106 br(Assembler::GE, CRC_by32_loop); 4107 cmn(len, (u1)32); 4108 br(Assembler::NE, CRC_less32); 4109 b(L_exit); 4110 4111 BIND(CRC_by4_loop); 4112 ldrw(tmp0, Address(post(buf, 4))); 4113 subs(len, len, 4); 4114 crc32cw(crc, crc, tmp0); 4115 br(Assembler::GE, CRC_by4_loop); 4116 adds(len, len, 4); 4117 br(Assembler::LE, L_exit); 4118 BIND(CRC_by1_loop); 4119 ldrb(tmp0, Address(post(buf, 1))); 4120 subs(len, len, 1); 4121 crc32cb(crc, crc, tmp0); 4122 br(Assembler::GT, CRC_by1_loop); 4123 b(L_exit); 4124 4125 BIND(CRC_by128_pre); 4126 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4127 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4128 mov(crc, 0); 4129 crc32cx(crc, crc, tmp0); 4130 crc32cx(crc, crc, tmp1); 4131 4132 cbnz(len, CRC_less128); 4133 4134 BIND(L_exit); 4135 } 4136 4137 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4138 Register len, Register tmp0, Register tmp1, Register tmp2, 4139 Register tmp3) { 4140 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4141 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4142 4143 subs(len, len, 128); 4144 br(Assembler::GE, CRC_by64_pre); 4145 BIND(CRC_less64); 4146 adds(len, len, 128-32); 4147 br(Assembler::GE, CRC_by32_loop); 4148 BIND(CRC_less32); 4149 adds(len, len, 32-4); 4150 br(Assembler::GE, CRC_by4_loop); 4151 adds(len, len, 4); 4152 br(Assembler::GT, CRC_by1_loop); 4153 b(L_exit); 4154 4155 BIND(CRC_by32_loop); 4156 ldp(tmp0, tmp1, Address(post(buf, 16))); 4157 subs(len, len, 32); 4158 crc32cx(crc, crc, tmp0); 4159 ldr(tmp2, Address(post(buf, 8))); 4160 crc32cx(crc, crc, tmp1); 4161 ldr(tmp3, Address(post(buf, 8))); 4162 crc32cx(crc, crc, tmp2); 4163 crc32cx(crc, crc, tmp3); 4164 br(Assembler::GE, CRC_by32_loop); 4165 cmn(len, (u1)32); 4166 br(Assembler::NE, CRC_less32); 4167 b(L_exit); 4168 4169 BIND(CRC_by4_loop); 4170 ldrw(tmp0, Address(post(buf, 4))); 4171 subs(len, len, 4); 4172 crc32cw(crc, crc, tmp0); 4173 br(Assembler::GE, CRC_by4_loop); 4174 adds(len, len, 4); 4175 br(Assembler::LE, L_exit); 4176 BIND(CRC_by1_loop); 4177 ldrb(tmp0, Address(post(buf, 1))); 4178 subs(len, len, 1); 4179 crc32cb(crc, crc, tmp0); 4180 br(Assembler::GT, CRC_by1_loop); 4181 b(L_exit); 4182 4183 BIND(CRC_by64_pre); 4184 sub(buf, buf, 8); 4185 ldp(tmp0, tmp1, Address(buf, 8)); 4186 crc32cx(crc, crc, tmp0); 4187 ldr(tmp2, Address(buf, 24)); 4188 crc32cx(crc, crc, tmp1); 4189 ldr(tmp3, Address(buf, 32)); 4190 crc32cx(crc, crc, tmp2); 4191 ldr(tmp0, Address(buf, 40)); 4192 crc32cx(crc, crc, tmp3); 4193 ldr(tmp1, Address(buf, 48)); 4194 crc32cx(crc, crc, tmp0); 4195 ldr(tmp2, Address(buf, 56)); 4196 crc32cx(crc, crc, tmp1); 4197 ldr(tmp3, Address(pre(buf, 64))); 4198 4199 b(CRC_by64_loop); 4200 4201 align(CodeEntryAlignment); 4202 BIND(CRC_by64_loop); 4203 subs(len, len, 64); 4204 crc32cx(crc, crc, tmp2); 4205 ldr(tmp0, Address(buf, 8)); 4206 crc32cx(crc, crc, tmp3); 4207 ldr(tmp1, Address(buf, 16)); 4208 crc32cx(crc, crc, tmp0); 4209 ldr(tmp2, Address(buf, 24)); 4210 crc32cx(crc, crc, tmp1); 4211 ldr(tmp3, Address(buf, 32)); 4212 crc32cx(crc, crc, tmp2); 4213 ldr(tmp0, Address(buf, 40)); 4214 crc32cx(crc, crc, tmp3); 4215 ldr(tmp1, Address(buf, 48)); 4216 crc32cx(crc, crc, tmp0); 4217 ldr(tmp2, Address(buf, 56)); 4218 crc32cx(crc, crc, tmp1); 4219 ldr(tmp3, Address(pre(buf, 64))); 4220 br(Assembler::GE, CRC_by64_loop); 4221 4222 // post-loop 4223 crc32cx(crc, crc, tmp2); 4224 crc32cx(crc, crc, tmp3); 4225 4226 sub(len, len, 64); 4227 add(buf, buf, 8); 4228 cmn(len, (u1)128); 4229 br(Assembler::NE, CRC_less64); 4230 BIND(L_exit); 4231 } 4232 4233 /** 4234 * @param crc register containing existing CRC (32-bit) 4235 * @param buf register pointing to input byte buffer (byte*) 4236 * @param len register containing number of bytes 4237 * @param table register that will contain address of CRC table 4238 * @param tmp scratch register 4239 */ 4240 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4241 Register table0, Register table1, Register table2, Register table3, 4242 Register tmp, Register tmp2, Register tmp3) { 4243 if (UseCryptoPmullForCRC32) { 4244 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4245 } else { 4246 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4247 } 4248 } 4249 4250 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4251 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4252 Label CRC_by128_loop; 4253 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4254 4255 sub(len, len, 256); 4256 Register table = tmp0; 4257 { 4258 uint64_t offset; 4259 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4260 add(table, table, offset); 4261 } 4262 add(table, table, table_offset); 4263 4264 // Registers v0..v7 are used as data registers. 4265 // Registers v16..v31 are used as tmp registers. 4266 sub(buf, buf, 0x10); 4267 ldrq(v0, Address(buf, 0x10)); 4268 ldrq(v1, Address(buf, 0x20)); 4269 ldrq(v2, Address(buf, 0x30)); 4270 ldrq(v3, Address(buf, 0x40)); 4271 ldrq(v4, Address(buf, 0x50)); 4272 ldrq(v5, Address(buf, 0x60)); 4273 ldrq(v6, Address(buf, 0x70)); 4274 ldrq(v7, Address(pre(buf, 0x80))); 4275 4276 movi(v31, T4S, 0); 4277 mov(v31, S, 0, crc); 4278 eor(v0, T16B, v0, v31); 4279 4280 // Register v16 contains constants from the crc table. 4281 ldrq(v16, Address(table)); 4282 b(CRC_by128_loop); 4283 4284 align(OptoLoopAlignment); 4285 BIND(CRC_by128_loop); 4286 pmull (v17, T1Q, v0, v16, T1D); 4287 pmull2(v18, T1Q, v0, v16, T2D); 4288 ldrq(v0, Address(buf, 0x10)); 4289 eor3(v0, T16B, v17, v18, v0); 4290 4291 pmull (v19, T1Q, v1, v16, T1D); 4292 pmull2(v20, T1Q, v1, v16, T2D); 4293 ldrq(v1, Address(buf, 0x20)); 4294 eor3(v1, T16B, v19, v20, v1); 4295 4296 pmull (v21, T1Q, v2, v16, T1D); 4297 pmull2(v22, T1Q, v2, v16, T2D); 4298 ldrq(v2, Address(buf, 0x30)); 4299 eor3(v2, T16B, v21, v22, v2); 4300 4301 pmull (v23, T1Q, v3, v16, T1D); 4302 pmull2(v24, T1Q, v3, v16, T2D); 4303 ldrq(v3, Address(buf, 0x40)); 4304 eor3(v3, T16B, v23, v24, v3); 4305 4306 pmull (v25, T1Q, v4, v16, T1D); 4307 pmull2(v26, T1Q, v4, v16, T2D); 4308 ldrq(v4, Address(buf, 0x50)); 4309 eor3(v4, T16B, v25, v26, v4); 4310 4311 pmull (v27, T1Q, v5, v16, T1D); 4312 pmull2(v28, T1Q, v5, v16, T2D); 4313 ldrq(v5, Address(buf, 0x60)); 4314 eor3(v5, T16B, v27, v28, v5); 4315 4316 pmull (v29, T1Q, v6, v16, T1D); 4317 pmull2(v30, T1Q, v6, v16, T2D); 4318 ldrq(v6, Address(buf, 0x70)); 4319 eor3(v6, T16B, v29, v30, v6); 4320 4321 // Reuse registers v23, v24. 4322 // Using them won't block the first instruction of the next iteration. 4323 pmull (v23, T1Q, v7, v16, T1D); 4324 pmull2(v24, T1Q, v7, v16, T2D); 4325 ldrq(v7, Address(pre(buf, 0x80))); 4326 eor3(v7, T16B, v23, v24, v7); 4327 4328 subs(len, len, 0x80); 4329 br(Assembler::GE, CRC_by128_loop); 4330 4331 // fold into 512 bits 4332 // Use v31 for constants because v16 can be still in use. 4333 ldrq(v31, Address(table, 0x10)); 4334 4335 pmull (v17, T1Q, v0, v31, T1D); 4336 pmull2(v18, T1Q, v0, v31, T2D); 4337 eor3(v0, T16B, v17, v18, v4); 4338 4339 pmull (v19, T1Q, v1, v31, T1D); 4340 pmull2(v20, T1Q, v1, v31, T2D); 4341 eor3(v1, T16B, v19, v20, v5); 4342 4343 pmull (v21, T1Q, v2, v31, T1D); 4344 pmull2(v22, T1Q, v2, v31, T2D); 4345 eor3(v2, T16B, v21, v22, v6); 4346 4347 pmull (v23, T1Q, v3, v31, T1D); 4348 pmull2(v24, T1Q, v3, v31, T2D); 4349 eor3(v3, T16B, v23, v24, v7); 4350 4351 // fold into 128 bits 4352 // Use v17 for constants because v31 can be still in use. 4353 ldrq(v17, Address(table, 0x20)); 4354 pmull (v25, T1Q, v0, v17, T1D); 4355 pmull2(v26, T1Q, v0, v17, T2D); 4356 eor3(v3, T16B, v3, v25, v26); 4357 4358 // Use v18 for constants because v17 can be still in use. 4359 ldrq(v18, Address(table, 0x30)); 4360 pmull (v27, T1Q, v1, v18, T1D); 4361 pmull2(v28, T1Q, v1, v18, T2D); 4362 eor3(v3, T16B, v3, v27, v28); 4363 4364 // Use v19 for constants because v18 can be still in use. 4365 ldrq(v19, Address(table, 0x40)); 4366 pmull (v29, T1Q, v2, v19, T1D); 4367 pmull2(v30, T1Q, v2, v19, T2D); 4368 eor3(v0, T16B, v3, v29, v30); 4369 4370 add(len, len, 0x80); 4371 add(buf, buf, 0x10); 4372 4373 mov(tmp0, v0, D, 0); 4374 mov(tmp1, v0, D, 1); 4375 } 4376 4377 SkipIfEqual::SkipIfEqual( 4378 MacroAssembler* masm, const bool* flag_addr, bool value) { 4379 _masm = masm; 4380 uint64_t offset; 4381 _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset); 4382 _masm->ldrb(rscratch1, Address(rscratch1, offset)); 4383 if (value) { 4384 _masm->cbnzw(rscratch1, _label); 4385 } else { 4386 _masm->cbzw(rscratch1, _label); 4387 } 4388 } 4389 4390 SkipIfEqual::~SkipIfEqual() { 4391 _masm->bind(_label); 4392 } 4393 4394 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4395 Address adr; 4396 switch(dst.getMode()) { 4397 case Address::base_plus_offset: 4398 // This is the expected mode, although we allow all the other 4399 // forms below. 4400 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4401 break; 4402 default: 4403 lea(rscratch2, dst); 4404 adr = Address(rscratch2); 4405 break; 4406 } 4407 ldr(rscratch1, adr); 4408 add(rscratch1, rscratch1, src); 4409 str(rscratch1, adr); 4410 } 4411 4412 void MacroAssembler::cmpptr(Register src1, Address src2) { 4413 uint64_t offset; 4414 adrp(rscratch1, src2, offset); 4415 ldr(rscratch1, Address(rscratch1, offset)); 4416 cmp(src1, rscratch1); 4417 } 4418 4419 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 4420 cmp(obj1, obj2); 4421 } 4422 4423 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 4424 load_method_holder(rresult, rmethod); 4425 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 4426 } 4427 4428 void MacroAssembler::load_method_holder(Register holder, Register method) { 4429 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 4430 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 4431 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 4432 } 4433 4434 // Loads the obj's Klass* into dst. 4435 // Preserves all registers (incl src, rscratch1 and rscratch2). 4436 void MacroAssembler::load_nklass_compact(Register dst, Register src) { 4437 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 4438 4439 Label fast; 4440 4441 // Check if we can take the (common) fast path, if obj is unlocked. 4442 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 4443 tbz(dst, exact_log2(markWord::monitor_value), fast); 4444 4445 // Fetch displaced header 4446 ldr(dst, Address(dst, OM_OFFSET_NO_MONITOR_VALUE_TAG(header))); 4447 4448 // Fast-path: shift to get narrowKlass. 4449 bind(fast); 4450 lsr(dst, dst, markWord::klass_shift); 4451 } 4452 4453 void MacroAssembler::load_klass(Register dst, Register src) { 4454 if (UseCompactObjectHeaders) { 4455 load_nklass_compact(dst, src); 4456 decode_klass_not_null(dst); 4457 } else if (UseCompressedClassPointers) { 4458 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4459 decode_klass_not_null(dst); 4460 } else { 4461 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 4462 } 4463 } 4464 4465 // ((OopHandle)result).resolve(); 4466 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 4467 // OopHandle::resolve is an indirection. 4468 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 4469 } 4470 4471 // ((WeakHandle)result).resolve(); 4472 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 4473 assert_different_registers(result, tmp1, tmp2); 4474 Label resolved; 4475 4476 // A null weak handle resolves to null. 4477 cbz(result, resolved); 4478 4479 // Only 64 bit platforms support GCs that require a tmp register 4480 // WeakHandle::resolve is an indirection like jweak. 4481 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 4482 result, Address(result), tmp1, tmp2); 4483 bind(resolved); 4484 } 4485 4486 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 4487 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 4488 ldr(dst, Address(rmethod, Method::const_offset())); 4489 ldr(dst, Address(dst, ConstMethod::constants_offset())); 4490 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 4491 ldr(dst, Address(dst, mirror_offset)); 4492 resolve_oop_handle(dst, tmp1, tmp2); 4493 } 4494 4495 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) { 4496 assert_different_registers(oop, trial_klass, tmp); 4497 if (UseCompressedClassPointers) { 4498 if (UseCompactObjectHeaders) { 4499 load_nklass_compact(tmp, oop); 4500 } else { 4501 ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4502 } 4503 if (CompressedKlassPointers::base() == nullptr) { 4504 cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift()); 4505 return; 4506 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 4507 && CompressedKlassPointers::shift() == 0) { 4508 // Only the bottom 32 bits matter 4509 cmpw(trial_klass, tmp); 4510 return; 4511 } 4512 decode_klass_not_null(tmp); 4513 } else { 4514 ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes())); 4515 } 4516 cmp(trial_klass, tmp); 4517 } 4518 4519 void MacroAssembler::cmp_klass(Register src, Register dst, Register tmp1, Register tmp2) { 4520 if (UseCompactObjectHeaders) { 4521 load_nklass_compact(tmp1, src); 4522 load_nklass_compact(tmp2, dst); 4523 cmpw(tmp1, tmp2); 4524 } else if (UseCompressedClassPointers) { 4525 ldrw(tmp1, Address(src, oopDesc::klass_offset_in_bytes())); 4526 ldrw(tmp2, Address(dst, oopDesc::klass_offset_in_bytes())); 4527 cmpw(tmp1, tmp2); 4528 } else { 4529 ldr(tmp1, Address(src, oopDesc::klass_offset_in_bytes())); 4530 ldr(tmp2, Address(dst, oopDesc::klass_offset_in_bytes())); 4531 cmp(tmp1, tmp2); 4532 } 4533 } 4534 4535 void MacroAssembler::store_klass(Register dst, Register src) { 4536 // FIXME: Should this be a store release? concurrent gcs assumes 4537 // klass length is valid if klass field is not null. 4538 assert(!UseCompactObjectHeaders, "not with compact headers"); 4539 if (UseCompressedClassPointers) { 4540 encode_klass_not_null(src); 4541 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4542 } else { 4543 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 4544 } 4545 } 4546 4547 void MacroAssembler::store_klass_gap(Register dst, Register src) { 4548 assert(!UseCompactObjectHeaders, "not with compact headers"); 4549 if (UseCompressedClassPointers) { 4550 // Store to klass gap in destination 4551 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 4552 } 4553 } 4554 4555 // Algorithm must match CompressedOops::encode. 4556 void MacroAssembler::encode_heap_oop(Register d, Register s) { 4557 #ifdef ASSERT 4558 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 4559 #endif 4560 verify_oop_msg(s, "broken oop in encode_heap_oop"); 4561 if (CompressedOops::base() == nullptr) { 4562 if (CompressedOops::shift() != 0) { 4563 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4564 lsr(d, s, LogMinObjAlignmentInBytes); 4565 } else { 4566 mov(d, s); 4567 } 4568 } else { 4569 subs(d, s, rheapbase); 4570 csel(d, d, zr, Assembler::HS); 4571 lsr(d, d, LogMinObjAlignmentInBytes); 4572 4573 /* Old algorithm: is this any worse? 4574 Label nonnull; 4575 cbnz(r, nonnull); 4576 sub(r, r, rheapbase); 4577 bind(nonnull); 4578 lsr(r, r, LogMinObjAlignmentInBytes); 4579 */ 4580 } 4581 } 4582 4583 void MacroAssembler::encode_heap_oop_not_null(Register r) { 4584 #ifdef ASSERT 4585 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 4586 if (CheckCompressedOops) { 4587 Label ok; 4588 cbnz(r, ok); 4589 stop("null oop passed to encode_heap_oop_not_null"); 4590 bind(ok); 4591 } 4592 #endif 4593 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 4594 if (CompressedOops::base() != nullptr) { 4595 sub(r, r, rheapbase); 4596 } 4597 if (CompressedOops::shift() != 0) { 4598 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4599 lsr(r, r, LogMinObjAlignmentInBytes); 4600 } 4601 } 4602 4603 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 4604 #ifdef ASSERT 4605 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 4606 if (CheckCompressedOops) { 4607 Label ok; 4608 cbnz(src, ok); 4609 stop("null oop passed to encode_heap_oop_not_null2"); 4610 bind(ok); 4611 } 4612 #endif 4613 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 4614 4615 Register data = src; 4616 if (CompressedOops::base() != nullptr) { 4617 sub(dst, src, rheapbase); 4618 data = dst; 4619 } 4620 if (CompressedOops::shift() != 0) { 4621 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4622 lsr(dst, data, LogMinObjAlignmentInBytes); 4623 data = dst; 4624 } 4625 if (data == src) 4626 mov(dst, src); 4627 } 4628 4629 void MacroAssembler::decode_heap_oop(Register d, Register s) { 4630 #ifdef ASSERT 4631 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 4632 #endif 4633 if (CompressedOops::base() == nullptr) { 4634 if (CompressedOops::shift() != 0 || d != s) { 4635 lsl(d, s, CompressedOops::shift()); 4636 } 4637 } else { 4638 Label done; 4639 if (d != s) 4640 mov(d, s); 4641 cbz(s, done); 4642 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 4643 bind(done); 4644 } 4645 verify_oop_msg(d, "broken oop in decode_heap_oop"); 4646 } 4647 4648 void MacroAssembler::decode_heap_oop_not_null(Register r) { 4649 assert (UseCompressedOops, "should only be used for compressed headers"); 4650 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4651 // Cannot assert, unverified entry point counts instructions (see .ad file) 4652 // vtableStubs also counts instructions in pd_code_size_limit. 4653 // Also do not verify_oop as this is called by verify_oop. 4654 if (CompressedOops::shift() != 0) { 4655 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4656 if (CompressedOops::base() != nullptr) { 4657 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4658 } else { 4659 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 4660 } 4661 } else { 4662 assert (CompressedOops::base() == nullptr, "sanity"); 4663 } 4664 } 4665 4666 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 4667 assert (UseCompressedOops, "should only be used for compressed headers"); 4668 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4669 // Cannot assert, unverified entry point counts instructions (see .ad file) 4670 // vtableStubs also counts instructions in pd_code_size_limit. 4671 // Also do not verify_oop as this is called by verify_oop. 4672 if (CompressedOops::shift() != 0) { 4673 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 4674 if (CompressedOops::base() != nullptr) { 4675 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4676 } else { 4677 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 4678 } 4679 } else { 4680 assert (CompressedOops::base() == nullptr, "sanity"); 4681 if (dst != src) { 4682 mov(dst, src); 4683 } 4684 } 4685 } 4686 4687 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 4688 4689 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 4690 assert(UseCompressedClassPointers, "not using compressed class pointers"); 4691 assert(Metaspace::initialized(), "metaspace not initialized yet"); 4692 4693 if (_klass_decode_mode != KlassDecodeNone) { 4694 return _klass_decode_mode; 4695 } 4696 4697 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift() 4698 || 0 == CompressedKlassPointers::shift(), "decode alg wrong"); 4699 4700 if (CompressedKlassPointers::base() == nullptr) { 4701 return (_klass_decode_mode = KlassDecodeZero); 4702 } 4703 4704 if (operand_valid_for_logical_immediate( 4705 /*is32*/false, (uint64_t)CompressedKlassPointers::base())) { 4706 const uint64_t range_mask = 4707 (1ULL << log2i(CompressedKlassPointers::range())) - 1; 4708 if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) { 4709 return (_klass_decode_mode = KlassDecodeXor); 4710 } 4711 } 4712 4713 const uint64_t shifted_base = 4714 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4715 guarantee((shifted_base & 0xffff0000ffffffff) == 0, 4716 "compressed class base bad alignment"); 4717 4718 return (_klass_decode_mode = KlassDecodeMovk); 4719 } 4720 4721 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 4722 switch (klass_decode_mode()) { 4723 case KlassDecodeZero: 4724 if (CompressedKlassPointers::shift() != 0) { 4725 lsr(dst, src, LogKlassAlignmentInBytes); 4726 } else { 4727 if (dst != src) mov(dst, src); 4728 } 4729 break; 4730 4731 case KlassDecodeXor: 4732 if (CompressedKlassPointers::shift() != 0) { 4733 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4734 lsr(dst, dst, LogKlassAlignmentInBytes); 4735 } else { 4736 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4737 } 4738 break; 4739 4740 case KlassDecodeMovk: 4741 if (CompressedKlassPointers::shift() != 0) { 4742 ubfx(dst, src, LogKlassAlignmentInBytes, 32); 4743 } else { 4744 movw(dst, src); 4745 } 4746 break; 4747 4748 case KlassDecodeNone: 4749 ShouldNotReachHere(); 4750 break; 4751 } 4752 } 4753 4754 void MacroAssembler::encode_klass_not_null(Register r) { 4755 encode_klass_not_null(r, r); 4756 } 4757 4758 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 4759 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4760 4761 switch (klass_decode_mode()) { 4762 case KlassDecodeZero: 4763 if (CompressedKlassPointers::shift() != 0) { 4764 lsl(dst, src, LogKlassAlignmentInBytes); 4765 } else { 4766 if (dst != src) mov(dst, src); 4767 } 4768 break; 4769 4770 case KlassDecodeXor: 4771 if (CompressedKlassPointers::shift() != 0) { 4772 lsl(dst, src, LogKlassAlignmentInBytes); 4773 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 4774 } else { 4775 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 4776 } 4777 break; 4778 4779 case KlassDecodeMovk: { 4780 const uint64_t shifted_base = 4781 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 4782 4783 if (dst != src) movw(dst, src); 4784 movk(dst, shifted_base >> 32, 32); 4785 4786 if (CompressedKlassPointers::shift() != 0) { 4787 lsl(dst, dst, LogKlassAlignmentInBytes); 4788 } 4789 4790 break; 4791 } 4792 4793 case KlassDecodeNone: 4794 ShouldNotReachHere(); 4795 break; 4796 } 4797 } 4798 4799 void MacroAssembler::decode_klass_not_null(Register r) { 4800 decode_klass_not_null(r, r); 4801 } 4802 4803 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 4804 #ifdef ASSERT 4805 { 4806 ThreadInVMfromUnknown tiv; 4807 assert (UseCompressedOops, "should only be used for compressed oops"); 4808 assert (Universe::heap() != nullptr, "java heap should be initialized"); 4809 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4810 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4811 } 4812 #endif 4813 int oop_index = oop_recorder()->find_index(obj); 4814 InstructionMark im(this); 4815 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4816 code_section()->relocate(inst_mark(), rspec); 4817 movz(dst, 0xDEAD, 16); 4818 movk(dst, 0xBEEF); 4819 } 4820 4821 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 4822 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 4823 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4824 int index = oop_recorder()->find_index(k); 4825 assert(! Universe::heap()->is_in(k), "should not be an oop"); 4826 4827 InstructionMark im(this); 4828 RelocationHolder rspec = metadata_Relocation::spec(index); 4829 code_section()->relocate(inst_mark(), rspec); 4830 narrowKlass nk = CompressedKlassPointers::encode(k); 4831 movz(dst, (nk >> 16), 16); 4832 movk(dst, nk & 0xffff); 4833 } 4834 4835 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 4836 Register dst, Address src, 4837 Register tmp1, Register tmp2) { 4838 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4839 decorators = AccessInternal::decorator_fixup(decorators, type); 4840 bool as_raw = (decorators & AS_RAW) != 0; 4841 if (as_raw) { 4842 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 4843 } else { 4844 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 4845 } 4846 } 4847 4848 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 4849 Address dst, Register val, 4850 Register tmp1, Register tmp2, Register tmp3) { 4851 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4852 decorators = AccessInternal::decorator_fixup(decorators, type); 4853 bool as_raw = (decorators & AS_RAW) != 0; 4854 if (as_raw) { 4855 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4856 } else { 4857 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 4858 } 4859 } 4860 4861 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 4862 Register tmp2, DecoratorSet decorators) { 4863 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 4864 } 4865 4866 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 4867 Register tmp2, DecoratorSet decorators) { 4868 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 4869 } 4870 4871 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 4872 Register tmp2, Register tmp3, DecoratorSet decorators) { 4873 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 4874 } 4875 4876 // Used for storing nulls. 4877 void MacroAssembler::store_heap_oop_null(Address dst) { 4878 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 4879 } 4880 4881 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 4882 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 4883 int index = oop_recorder()->allocate_metadata_index(obj); 4884 RelocationHolder rspec = metadata_Relocation::spec(index); 4885 return Address((address)obj, rspec); 4886 } 4887 4888 // Move an oop into a register. 4889 void MacroAssembler::movoop(Register dst, jobject obj) { 4890 int oop_index; 4891 if (obj == nullptr) { 4892 oop_index = oop_recorder()->allocate_oop_index(obj); 4893 } else { 4894 #ifdef ASSERT 4895 { 4896 ThreadInVMfromUnknown tiv; 4897 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 4898 } 4899 #endif 4900 oop_index = oop_recorder()->find_index(obj); 4901 } 4902 RelocationHolder rspec = oop_Relocation::spec(oop_index); 4903 4904 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 4905 mov(dst, Address((address)obj, rspec)); 4906 } else { 4907 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 4908 ldr_constant(dst, Address(dummy, rspec)); 4909 } 4910 4911 } 4912 4913 // Move a metadata address into a register. 4914 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 4915 int oop_index; 4916 if (obj == nullptr) { 4917 oop_index = oop_recorder()->allocate_metadata_index(obj); 4918 } else { 4919 oop_index = oop_recorder()->find_index(obj); 4920 } 4921 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 4922 mov(dst, Address((address)obj, rspec)); 4923 } 4924 4925 Address MacroAssembler::constant_oop_address(jobject obj) { 4926 #ifdef ASSERT 4927 { 4928 ThreadInVMfromUnknown tiv; 4929 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 4930 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 4931 } 4932 #endif 4933 int oop_index = oop_recorder()->find_index(obj); 4934 return Address((address)obj, oop_Relocation::spec(oop_index)); 4935 } 4936 4937 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 4938 void MacroAssembler::tlab_allocate(Register obj, 4939 Register var_size_in_bytes, 4940 int con_size_in_bytes, 4941 Register t1, 4942 Register t2, 4943 Label& slow_case) { 4944 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 4945 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 4946 } 4947 4948 void MacroAssembler::verify_tlab() { 4949 #ifdef ASSERT 4950 if (UseTLAB && VerifyOops) { 4951 Label next, ok; 4952 4953 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 4954 4955 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4956 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 4957 cmp(rscratch2, rscratch1); 4958 br(Assembler::HS, next); 4959 STOP("assert(top >= start)"); 4960 should_not_reach_here(); 4961 4962 bind(next); 4963 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 4964 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 4965 cmp(rscratch2, rscratch1); 4966 br(Assembler::HS, ok); 4967 STOP("assert(top <= end)"); 4968 should_not_reach_here(); 4969 4970 bind(ok); 4971 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 4972 } 4973 #endif 4974 } 4975 4976 // Writes to stack successive pages until offset reached to check for 4977 // stack overflow + shadow pages. This clobbers tmp. 4978 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 4979 assert_different_registers(tmp, size, rscratch1); 4980 mov(tmp, sp); 4981 // Bang stack for total size given plus shadow page size. 4982 // Bang one page at a time because large size can bang beyond yellow and 4983 // red zones. 4984 Label loop; 4985 mov(rscratch1, (int)os::vm_page_size()); 4986 bind(loop); 4987 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 4988 subsw(size, size, rscratch1); 4989 str(size, Address(tmp)); 4990 br(Assembler::GT, loop); 4991 4992 // Bang down shadow pages too. 4993 // At this point, (tmp-0) is the last address touched, so don't 4994 // touch it again. (It was touched as (tmp-pagesize) but then tmp 4995 // was post-decremented.) Skip this address by starting at i=1, and 4996 // touch a few more pages below. N.B. It is important to touch all 4997 // the way down to and including i=StackShadowPages. 4998 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 4999 // this could be any sized move but this is can be a debugging crumb 5000 // so the bigger the better. 5001 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5002 str(size, Address(tmp)); 5003 } 5004 } 5005 5006 // Move the address of the polling page into dest. 5007 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5008 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5009 } 5010 5011 // Read the polling page. The address of the polling page must 5012 // already be in r. 5013 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5014 address mark; 5015 { 5016 InstructionMark im(this); 5017 code_section()->relocate(inst_mark(), rtype); 5018 ldrw(zr, Address(r, 0)); 5019 mark = inst_mark(); 5020 } 5021 verify_cross_modify_fence_not_required(); 5022 return mark; 5023 } 5024 5025 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5026 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5027 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5028 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5029 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5030 int64_t offset_low = dest_page - low_page; 5031 int64_t offset_high = dest_page - high_page; 5032 5033 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5034 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5035 5036 InstructionMark im(this); 5037 code_section()->relocate(inst_mark(), dest.rspec()); 5038 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5039 // the code cache so that if it is relocated we know it will still reach 5040 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5041 _adrp(reg1, dest.target()); 5042 } else { 5043 uint64_t target = (uint64_t)dest.target(); 5044 uint64_t adrp_target 5045 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5046 5047 _adrp(reg1, (address)adrp_target); 5048 movk(reg1, target >> 32, 32); 5049 } 5050 byte_offset = (uint64_t)dest.target() & 0xfff; 5051 } 5052 5053 void MacroAssembler::load_byte_map_base(Register reg) { 5054 CardTable::CardValue* byte_map_base = 5055 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5056 5057 // Strictly speaking the byte_map_base isn't an address at all, and it might 5058 // even be negative. It is thus materialised as a constant. 5059 mov(reg, (uint64_t)byte_map_base); 5060 } 5061 5062 void MacroAssembler::build_frame(int framesize) { 5063 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5064 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5065 protect_return_address(); 5066 if (framesize < ((1 << 9) + 2 * wordSize)) { 5067 sub(sp, sp, framesize); 5068 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5069 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5070 } else { 5071 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5072 if (PreserveFramePointer) mov(rfp, sp); 5073 if (framesize < ((1 << 12) + 2 * wordSize)) 5074 sub(sp, sp, framesize - 2 * wordSize); 5075 else { 5076 mov(rscratch1, framesize - 2 * wordSize); 5077 sub(sp, sp, rscratch1); 5078 } 5079 } 5080 verify_cross_modify_fence_not_required(); 5081 } 5082 5083 void MacroAssembler::remove_frame(int framesize) { 5084 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5085 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5086 if (framesize < ((1 << 9) + 2 * wordSize)) { 5087 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5088 add(sp, sp, framesize); 5089 } else { 5090 if (framesize < ((1 << 12) + 2 * wordSize)) 5091 add(sp, sp, framesize - 2 * wordSize); 5092 else { 5093 mov(rscratch1, framesize - 2 * wordSize); 5094 add(sp, sp, rscratch1); 5095 } 5096 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5097 } 5098 authenticate_return_address(); 5099 } 5100 5101 5102 // This method counts leading positive bytes (highest bit not set) in provided byte array 5103 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5104 // Simple and most common case of aligned small array which is not at the 5105 // end of memory page is placed here. All other cases are in stub. 5106 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5107 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5108 assert_different_registers(ary1, len, result); 5109 5110 mov(result, len); 5111 cmpw(len, 0); 5112 br(LE, DONE); 5113 cmpw(len, 4 * wordSize); 5114 br(GE, STUB_LONG); // size > 32 then go to stub 5115 5116 int shift = 64 - exact_log2(os::vm_page_size()); 5117 lsl(rscratch1, ary1, shift); 5118 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5119 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5120 br(CS, STUB); // at the end of page then go to stub 5121 subs(len, len, wordSize); 5122 br(LT, END); 5123 5124 BIND(LOOP); 5125 ldr(rscratch1, Address(post(ary1, wordSize))); 5126 tst(rscratch1, UPPER_BIT_MASK); 5127 br(NE, SET_RESULT); 5128 subs(len, len, wordSize); 5129 br(GE, LOOP); 5130 cmpw(len, -wordSize); 5131 br(EQ, DONE); 5132 5133 BIND(END); 5134 ldr(rscratch1, Address(ary1)); 5135 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5136 lslv(rscratch1, rscratch1, rscratch2); 5137 tst(rscratch1, UPPER_BIT_MASK); 5138 br(NE, SET_RESULT); 5139 b(DONE); 5140 5141 BIND(STUB); 5142 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5143 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5144 address tpc1 = trampoline_call(count_pos); 5145 if (tpc1 == nullptr) { 5146 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5147 postcond(pc() == badAddress); 5148 return nullptr; 5149 } 5150 b(DONE); 5151 5152 BIND(STUB_LONG); 5153 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5154 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5155 address tpc2 = trampoline_call(count_pos_long); 5156 if (tpc2 == nullptr) { 5157 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5158 postcond(pc() == badAddress); 5159 return nullptr; 5160 } 5161 b(DONE); 5162 5163 BIND(SET_RESULT); 5164 5165 add(len, len, wordSize); 5166 sub(result, result, len); 5167 5168 BIND(DONE); 5169 postcond(pc() != badAddress); 5170 return pc(); 5171 } 5172 5173 // Clobbers: rscratch1, rscratch2, rflags 5174 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5175 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5176 Register tmp4, Register tmp5, Register result, 5177 Register cnt1, int elem_size) { 5178 Label DONE, SAME; 5179 Register tmp1 = rscratch1; 5180 Register tmp2 = rscratch2; 5181 Register cnt2 = tmp2; // cnt2 only used in array length compare 5182 int elem_per_word = wordSize/elem_size; 5183 int log_elem_size = exact_log2(elem_size); 5184 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5185 int base_offset 5186 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5187 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5188 5189 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5190 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5191 5192 #ifndef PRODUCT 5193 { 5194 const char kind = (elem_size == 2) ? 'U' : 'L'; 5195 char comment[64]; 5196 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5197 BLOCK_COMMENT(comment); 5198 } 5199 #endif 5200 5201 // if (a1 == a2) 5202 // return true; 5203 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5204 br(EQ, SAME); 5205 5206 if (UseSimpleArrayEquals) { 5207 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5208 // if (a1 == nullptr || a2 == nullptr) 5209 // return false; 5210 // a1 & a2 == 0 means (some-pointer is null) or 5211 // (very-rare-or-even-probably-impossible-pointer-values) 5212 // so, we can save one branch in most cases 5213 tst(a1, a2); 5214 mov(result, false); 5215 br(EQ, A_MIGHT_BE_NULL); 5216 // if (a1.length != a2.length) 5217 // return false; 5218 bind(A_IS_NOT_NULL); 5219 ldrw(cnt1, Address(a1, length_offset)); 5220 ldrw(cnt2, Address(a2, length_offset)); 5221 eorw(tmp5, cnt1, cnt2); 5222 cbnzw(tmp5, DONE); 5223 lea(a1, Address(a1, base_offset)); 5224 lea(a2, Address(a2, base_offset)); 5225 // Check for short strings, i.e. smaller than wordSize. 5226 subs(cnt1, cnt1, elem_per_word); 5227 br(Assembler::LT, SHORT); 5228 // Main 8 byte comparison loop. 5229 bind(NEXT_WORD); { 5230 ldr(tmp1, Address(post(a1, wordSize))); 5231 ldr(tmp2, Address(post(a2, wordSize))); 5232 subs(cnt1, cnt1, elem_per_word); 5233 eor(tmp5, tmp1, tmp2); 5234 cbnz(tmp5, DONE); 5235 } br(GT, NEXT_WORD); 5236 // Last longword. In the case where length == 4 we compare the 5237 // same longword twice, but that's still faster than another 5238 // conditional branch. 5239 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5240 // length == 4. 5241 if (log_elem_size > 0) 5242 lsl(cnt1, cnt1, log_elem_size); 5243 ldr(tmp3, Address(a1, cnt1)); 5244 ldr(tmp4, Address(a2, cnt1)); 5245 eor(tmp5, tmp3, tmp4); 5246 cbnz(tmp5, DONE); 5247 b(SAME); 5248 bind(A_MIGHT_BE_NULL); 5249 // in case both a1 and a2 are not-null, proceed with loads 5250 cbz(a1, DONE); 5251 cbz(a2, DONE); 5252 b(A_IS_NOT_NULL); 5253 bind(SHORT); 5254 5255 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5256 { 5257 ldrw(tmp1, Address(post(a1, 4))); 5258 ldrw(tmp2, Address(post(a2, 4))); 5259 eorw(tmp5, tmp1, tmp2); 5260 cbnzw(tmp5, DONE); 5261 } 5262 bind(TAIL03); 5263 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5264 { 5265 ldrh(tmp3, Address(post(a1, 2))); 5266 ldrh(tmp4, Address(post(a2, 2))); 5267 eorw(tmp5, tmp3, tmp4); 5268 cbnzw(tmp5, DONE); 5269 } 5270 bind(TAIL01); 5271 if (elem_size == 1) { // Only needed when comparing byte arrays. 5272 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5273 { 5274 ldrb(tmp1, a1); 5275 ldrb(tmp2, a2); 5276 eorw(tmp5, tmp1, tmp2); 5277 cbnzw(tmp5, DONE); 5278 } 5279 } 5280 } else { 5281 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5282 CSET_EQ, LAST_CHECK; 5283 mov(result, false); 5284 cbz(a1, DONE); 5285 ldrw(cnt1, Address(a1, length_offset)); 5286 cbz(a2, DONE); 5287 ldrw(cnt2, Address(a2, length_offset)); 5288 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5289 // faster to perform another branch before comparing a1 and a2 5290 cmp(cnt1, (u1)elem_per_word); 5291 br(LE, SHORT); // short or same 5292 ldr(tmp3, Address(pre(a1, base_offset))); 5293 subs(zr, cnt1, stubBytesThreshold); 5294 br(GE, STUB); 5295 ldr(tmp4, Address(pre(a2, base_offset))); 5296 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5297 cmp(cnt2, cnt1); 5298 br(NE, DONE); 5299 5300 // Main 16 byte comparison loop with 2 exits 5301 bind(NEXT_DWORD); { 5302 ldr(tmp1, Address(pre(a1, wordSize))); 5303 ldr(tmp2, Address(pre(a2, wordSize))); 5304 subs(cnt1, cnt1, 2 * elem_per_word); 5305 br(LE, TAIL); 5306 eor(tmp4, tmp3, tmp4); 5307 cbnz(tmp4, DONE); 5308 ldr(tmp3, Address(pre(a1, wordSize))); 5309 ldr(tmp4, Address(pre(a2, wordSize))); 5310 cmp(cnt1, (u1)elem_per_word); 5311 br(LE, TAIL2); 5312 cmp(tmp1, tmp2); 5313 } br(EQ, NEXT_DWORD); 5314 b(DONE); 5315 5316 bind(TAIL); 5317 eor(tmp4, tmp3, tmp4); 5318 eor(tmp2, tmp1, tmp2); 5319 lslv(tmp2, tmp2, tmp5); 5320 orr(tmp5, tmp4, tmp2); 5321 cmp(tmp5, zr); 5322 b(CSET_EQ); 5323 5324 bind(TAIL2); 5325 eor(tmp2, tmp1, tmp2); 5326 cbnz(tmp2, DONE); 5327 b(LAST_CHECK); 5328 5329 bind(STUB); 5330 ldr(tmp4, Address(pre(a2, base_offset))); 5331 cmp(cnt2, cnt1); 5332 br(NE, DONE); 5333 if (elem_size == 2) { // convert to byte counter 5334 lsl(cnt1, cnt1, 1); 5335 } 5336 eor(tmp5, tmp3, tmp4); 5337 cbnz(tmp5, DONE); 5338 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5339 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5340 address tpc = trampoline_call(stub); 5341 if (tpc == nullptr) { 5342 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5343 postcond(pc() == badAddress); 5344 return nullptr; 5345 } 5346 b(DONE); 5347 5348 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 5349 // so, if a2 == null => return false(0), else return true, so we can return a2 5350 mov(result, a2); 5351 b(DONE); 5352 bind(SHORT); 5353 cmp(cnt2, cnt1); 5354 br(NE, DONE); 5355 cbz(cnt1, SAME); 5356 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5357 ldr(tmp3, Address(a1, base_offset)); 5358 ldr(tmp4, Address(a2, base_offset)); 5359 bind(LAST_CHECK); 5360 eor(tmp4, tmp3, tmp4); 5361 lslv(tmp5, tmp4, tmp5); 5362 cmp(tmp5, zr); 5363 bind(CSET_EQ); 5364 cset(result, EQ); 5365 b(DONE); 5366 } 5367 5368 bind(SAME); 5369 mov(result, true); 5370 // That's it. 5371 bind(DONE); 5372 5373 BLOCK_COMMENT("} array_equals"); 5374 postcond(pc() != badAddress); 5375 return pc(); 5376 } 5377 5378 // Compare Strings 5379 5380 // For Strings we're passed the address of the first characters in a1 5381 // and a2 and the length in cnt1. 5382 // elem_size is the element size in bytes: either 1 or 2. 5383 // There are two implementations. For arrays >= 8 bytes, all 5384 // comparisons (including the final one, which may overlap) are 5385 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 5386 // halfword, then a short, and then a byte. 5387 5388 void MacroAssembler::string_equals(Register a1, Register a2, 5389 Register result, Register cnt1, int elem_size) 5390 { 5391 Label SAME, DONE, SHORT, NEXT_WORD; 5392 Register tmp1 = rscratch1; 5393 Register tmp2 = rscratch2; 5394 Register cnt2 = tmp2; // cnt2 only used in array length compare 5395 5396 assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte"); 5397 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5398 5399 #ifndef PRODUCT 5400 { 5401 const char kind = (elem_size == 2) ? 'U' : 'L'; 5402 char comment[64]; 5403 snprintf(comment, sizeof comment, "{string_equals%c", kind); 5404 BLOCK_COMMENT(comment); 5405 } 5406 #endif 5407 5408 mov(result, false); 5409 5410 // Check for short strings, i.e. smaller than wordSize. 5411 subs(cnt1, cnt1, wordSize); 5412 br(Assembler::LT, SHORT); 5413 // Main 8 byte comparison loop. 5414 bind(NEXT_WORD); { 5415 ldr(tmp1, Address(post(a1, wordSize))); 5416 ldr(tmp2, Address(post(a2, wordSize))); 5417 subs(cnt1, cnt1, wordSize); 5418 eor(tmp1, tmp1, tmp2); 5419 cbnz(tmp1, DONE); 5420 } br(GT, NEXT_WORD); 5421 // Last longword. In the case where length == 4 we compare the 5422 // same longword twice, but that's still faster than another 5423 // conditional branch. 5424 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5425 // length == 4. 5426 ldr(tmp1, Address(a1, cnt1)); 5427 ldr(tmp2, Address(a2, cnt1)); 5428 eor(tmp2, tmp1, tmp2); 5429 cbnz(tmp2, DONE); 5430 b(SAME); 5431 5432 bind(SHORT); 5433 Label TAIL03, TAIL01; 5434 5435 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 5436 { 5437 ldrw(tmp1, Address(post(a1, 4))); 5438 ldrw(tmp2, Address(post(a2, 4))); 5439 eorw(tmp1, tmp1, tmp2); 5440 cbnzw(tmp1, DONE); 5441 } 5442 bind(TAIL03); 5443 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 5444 { 5445 ldrh(tmp1, Address(post(a1, 2))); 5446 ldrh(tmp2, Address(post(a2, 2))); 5447 eorw(tmp1, tmp1, tmp2); 5448 cbnzw(tmp1, DONE); 5449 } 5450 bind(TAIL01); 5451 if (elem_size == 1) { // Only needed when comparing 1-byte elements 5452 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5453 { 5454 ldrb(tmp1, a1); 5455 ldrb(tmp2, a2); 5456 eorw(tmp1, tmp1, tmp2); 5457 cbnzw(tmp1, DONE); 5458 } 5459 } 5460 // Arrays are equal. 5461 bind(SAME); 5462 mov(result, true); 5463 5464 // That's it. 5465 bind(DONE); 5466 BLOCK_COMMENT("} string_equals"); 5467 } 5468 5469 5470 // The size of the blocks erased by the zero_blocks stub. We must 5471 // handle anything smaller than this ourselves in zero_words(). 5472 const int MacroAssembler::zero_words_block_size = 8; 5473 5474 // zero_words() is used by C2 ClearArray patterns and by 5475 // C1_MacroAssembler. It is as small as possible, handling small word 5476 // counts locally and delegating anything larger to the zero_blocks 5477 // stub. It is expanded many times in compiled code, so it is 5478 // important to keep it short. 5479 5480 // ptr: Address of a buffer to be zeroed. 5481 // cnt: Count in HeapWords. 5482 // 5483 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 5484 address MacroAssembler::zero_words(Register ptr, Register cnt) 5485 { 5486 assert(is_power_of_2(zero_words_block_size), "adjust this"); 5487 5488 BLOCK_COMMENT("zero_words {"); 5489 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 5490 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5491 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5492 5493 subs(rscratch1, cnt, zero_words_block_size); 5494 Label around; 5495 br(LO, around); 5496 { 5497 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 5498 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 5499 // Make sure this is a C2 compilation. C1 allocates space only for 5500 // trampoline stubs generated by Call LIR ops, and in any case it 5501 // makes sense for a C1 compilation task to proceed as quickly as 5502 // possible. 5503 CompileTask* task; 5504 if (StubRoutines::aarch64::complete() 5505 && Thread::current()->is_Compiler_thread() 5506 && (task = ciEnv::current()->task()) 5507 && is_c2_compile(task->comp_level())) { 5508 address tpc = trampoline_call(zero_blocks); 5509 if (tpc == nullptr) { 5510 DEBUG_ONLY(reset_labels(around)); 5511 return nullptr; 5512 } 5513 } else { 5514 far_call(zero_blocks); 5515 } 5516 } 5517 bind(around); 5518 5519 // We have a few words left to do. zero_blocks has adjusted r10 and r11 5520 // for us. 5521 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 5522 Label l; 5523 tbz(cnt, exact_log2(i), l); 5524 for (int j = 0; j < i; j += 2) { 5525 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 5526 } 5527 bind(l); 5528 } 5529 { 5530 Label l; 5531 tbz(cnt, 0, l); 5532 str(zr, Address(ptr)); 5533 bind(l); 5534 } 5535 5536 BLOCK_COMMENT("} zero_words"); 5537 return pc(); 5538 } 5539 5540 // base: Address of a buffer to be zeroed, 8 bytes aligned. 5541 // cnt: Immediate count in HeapWords. 5542 // 5543 // r10, r11, rscratch1, and rscratch2 are clobbered. 5544 address MacroAssembler::zero_words(Register base, uint64_t cnt) 5545 { 5546 assert(wordSize <= BlockZeroingLowLimit, 5547 "increase BlockZeroingLowLimit"); 5548 address result = nullptr; 5549 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 5550 #ifndef PRODUCT 5551 { 5552 char buf[64]; 5553 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 5554 BLOCK_COMMENT(buf); 5555 } 5556 #endif 5557 if (cnt >= 16) { 5558 uint64_t loops = cnt/16; 5559 if (loops > 1) { 5560 mov(rscratch2, loops - 1); 5561 } 5562 { 5563 Label loop; 5564 bind(loop); 5565 for (int i = 0; i < 16; i += 2) { 5566 stp(zr, zr, Address(base, i * BytesPerWord)); 5567 } 5568 add(base, base, 16 * BytesPerWord); 5569 if (loops > 1) { 5570 subs(rscratch2, rscratch2, 1); 5571 br(GE, loop); 5572 } 5573 } 5574 } 5575 cnt %= 16; 5576 int i = cnt & 1; // store any odd word to start 5577 if (i) str(zr, Address(base)); 5578 for (; i < (int)cnt; i += 2) { 5579 stp(zr, zr, Address(base, i * wordSize)); 5580 } 5581 BLOCK_COMMENT("} zero_words"); 5582 result = pc(); 5583 } else { 5584 mov(r10, base); mov(r11, cnt); 5585 result = zero_words(r10, r11); 5586 } 5587 return result; 5588 } 5589 5590 // Zero blocks of memory by using DC ZVA. 5591 // 5592 // Aligns the base address first sufficiently for DC ZVA, then uses 5593 // DC ZVA repeatedly for every full block. cnt is the size to be 5594 // zeroed in HeapWords. Returns the count of words left to be zeroed 5595 // in cnt. 5596 // 5597 // NOTE: This is intended to be used in the zero_blocks() stub. If 5598 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 5599 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 5600 Register tmp = rscratch1; 5601 Register tmp2 = rscratch2; 5602 int zva_length = VM_Version::zva_length(); 5603 Label initial_table_end, loop_zva; 5604 Label fini; 5605 5606 // Base must be 16 byte aligned. If not just return and let caller handle it 5607 tst(base, 0x0f); 5608 br(Assembler::NE, fini); 5609 // Align base with ZVA length. 5610 neg(tmp, base); 5611 andr(tmp, tmp, zva_length - 1); 5612 5613 // tmp: the number of bytes to be filled to align the base with ZVA length. 5614 add(base, base, tmp); 5615 sub(cnt, cnt, tmp, Assembler::ASR, 3); 5616 adr(tmp2, initial_table_end); 5617 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 5618 br(tmp2); 5619 5620 for (int i = -zva_length + 16; i < 0; i += 16) 5621 stp(zr, zr, Address(base, i)); 5622 bind(initial_table_end); 5623 5624 sub(cnt, cnt, zva_length >> 3); 5625 bind(loop_zva); 5626 dc(Assembler::ZVA, base); 5627 subs(cnt, cnt, zva_length >> 3); 5628 add(base, base, zva_length); 5629 br(Assembler::GE, loop_zva); 5630 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 5631 bind(fini); 5632 } 5633 5634 // base: Address of a buffer to be filled, 8 bytes aligned. 5635 // cnt: Count in 8-byte unit. 5636 // value: Value to be filled with. 5637 // base will point to the end of the buffer after filling. 5638 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 5639 { 5640 // Algorithm: 5641 // 5642 // if (cnt == 0) { 5643 // return; 5644 // } 5645 // if ((p & 8) != 0) { 5646 // *p++ = v; 5647 // } 5648 // 5649 // scratch1 = cnt & 14; 5650 // cnt -= scratch1; 5651 // p += scratch1; 5652 // switch (scratch1 / 2) { 5653 // do { 5654 // cnt -= 16; 5655 // p[-16] = v; 5656 // p[-15] = v; 5657 // case 7: 5658 // p[-14] = v; 5659 // p[-13] = v; 5660 // case 6: 5661 // p[-12] = v; 5662 // p[-11] = v; 5663 // // ... 5664 // case 1: 5665 // p[-2] = v; 5666 // p[-1] = v; 5667 // case 0: 5668 // p += 16; 5669 // } while (cnt); 5670 // } 5671 // if ((cnt & 1) == 1) { 5672 // *p++ = v; 5673 // } 5674 5675 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 5676 5677 Label fini, skip, entry, loop; 5678 const int unroll = 8; // Number of stp instructions we'll unroll 5679 5680 cbz(cnt, fini); 5681 tbz(base, 3, skip); 5682 str(value, Address(post(base, 8))); 5683 sub(cnt, cnt, 1); 5684 bind(skip); 5685 5686 andr(rscratch1, cnt, (unroll-1) * 2); 5687 sub(cnt, cnt, rscratch1); 5688 add(base, base, rscratch1, Assembler::LSL, 3); 5689 adr(rscratch2, entry); 5690 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 5691 br(rscratch2); 5692 5693 bind(loop); 5694 add(base, base, unroll * 16); 5695 for (int i = -unroll; i < 0; i++) 5696 stp(value, value, Address(base, i * 16)); 5697 bind(entry); 5698 subs(cnt, cnt, unroll * 2); 5699 br(Assembler::GE, loop); 5700 5701 tbz(cnt, 0, fini); 5702 str(value, Address(post(base, 8))); 5703 bind(fini); 5704 } 5705 5706 // Intrinsic for 5707 // 5708 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 5709 // return the number of characters copied. 5710 // - java/lang/StringUTF16.compress 5711 // return zero (0) if copy fails, otherwise 'len'. 5712 // 5713 // This version always returns the number of characters copied, and does not 5714 // clobber the 'len' register. A successful copy will complete with the post- 5715 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 5716 // post-condition: 0 <= 'res' < 'len'. 5717 // 5718 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 5719 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 5720 // beyond the acceptable, even though the footprint would be smaller. 5721 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 5722 // avoid additional bloat. 5723 // 5724 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 5725 void MacroAssembler::encode_iso_array(Register src, Register dst, 5726 Register len, Register res, bool ascii, 5727 FloatRegister vtmp0, FloatRegister vtmp1, 5728 FloatRegister vtmp2, FloatRegister vtmp3, 5729 FloatRegister vtmp4, FloatRegister vtmp5) 5730 { 5731 Register cnt = res; 5732 Register max = rscratch1; 5733 Register chk = rscratch2; 5734 5735 prfm(Address(src), PLDL1STRM); 5736 movw(cnt, len); 5737 5738 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 5739 5740 Label LOOP_32, DONE_32, FAIL_32; 5741 5742 BIND(LOOP_32); 5743 { 5744 cmpw(cnt, 32); 5745 br(LT, DONE_32); 5746 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 5747 // Extract lower bytes. 5748 FloatRegister vlo0 = vtmp4; 5749 FloatRegister vlo1 = vtmp5; 5750 uzp1(vlo0, T16B, vtmp0, vtmp1); 5751 uzp1(vlo1, T16B, vtmp2, vtmp3); 5752 // Merge bits... 5753 orr(vtmp0, T16B, vtmp0, vtmp1); 5754 orr(vtmp2, T16B, vtmp2, vtmp3); 5755 // Extract merged upper bytes. 5756 FloatRegister vhix = vtmp0; 5757 uzp2(vhix, T16B, vtmp0, vtmp2); 5758 // ISO-check on hi-parts (all zero). 5759 // ASCII-check on lo-parts (no sign). 5760 FloatRegister vlox = vtmp1; // Merge lower bytes. 5761 ASCII(orr(vlox, T16B, vlo0, vlo1)); 5762 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 5763 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 5764 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 5765 ASCII(orr(chk, chk, max)); 5766 cbnz(chk, FAIL_32); 5767 subw(cnt, cnt, 32); 5768 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 5769 b(LOOP_32); 5770 } 5771 BIND(FAIL_32); 5772 sub(src, src, 64); 5773 BIND(DONE_32); 5774 5775 Label LOOP_8, SKIP_8; 5776 5777 BIND(LOOP_8); 5778 { 5779 cmpw(cnt, 8); 5780 br(LT, SKIP_8); 5781 FloatRegister vhi = vtmp0; 5782 FloatRegister vlo = vtmp1; 5783 ld1(vtmp3, T8H, src); 5784 uzp1(vlo, T16B, vtmp3, vtmp3); 5785 uzp2(vhi, T16B, vtmp3, vtmp3); 5786 // ISO-check on hi-parts (all zero). 5787 // ASCII-check on lo-parts (no sign). 5788 ASCII(cm(LT, vtmp2, T16B, vlo)); 5789 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 5790 ASCII(umov(max, vtmp2, B, 0)); 5791 ASCII(orr(chk, chk, max)); 5792 cbnz(chk, SKIP_8); 5793 5794 strd(vlo, Address(post(dst, 8))); 5795 subw(cnt, cnt, 8); 5796 add(src, src, 16); 5797 b(LOOP_8); 5798 } 5799 BIND(SKIP_8); 5800 5801 #undef ASCII 5802 5803 Label LOOP, DONE; 5804 5805 cbz(cnt, DONE); 5806 BIND(LOOP); 5807 { 5808 Register chr = rscratch1; 5809 ldrh(chr, Address(post(src, 2))); 5810 tst(chr, ascii ? 0xff80 : 0xff00); 5811 br(NE, DONE); 5812 strb(chr, Address(post(dst, 1))); 5813 subs(cnt, cnt, 1); 5814 br(GT, LOOP); 5815 } 5816 BIND(DONE); 5817 // Return index where we stopped. 5818 subw(res, len, cnt); 5819 } 5820 5821 // Inflate byte[] array to char[]. 5822 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 5823 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 5824 FloatRegister vtmp1, FloatRegister vtmp2, 5825 FloatRegister vtmp3, Register tmp4) { 5826 Label big, done, after_init, to_stub; 5827 5828 assert_different_registers(src, dst, len, tmp4, rscratch1); 5829 5830 fmovd(vtmp1, 0.0); 5831 lsrw(tmp4, len, 3); 5832 bind(after_init); 5833 cbnzw(tmp4, big); 5834 // Short string: less than 8 bytes. 5835 { 5836 Label loop, tiny; 5837 5838 cmpw(len, 4); 5839 br(LT, tiny); 5840 // Use SIMD to do 4 bytes. 5841 ldrs(vtmp2, post(src, 4)); 5842 zip1(vtmp3, T8B, vtmp2, vtmp1); 5843 subw(len, len, 4); 5844 strd(vtmp3, post(dst, 8)); 5845 5846 cbzw(len, done); 5847 5848 // Do the remaining bytes by steam. 5849 bind(loop); 5850 ldrb(tmp4, post(src, 1)); 5851 strh(tmp4, post(dst, 2)); 5852 subw(len, len, 1); 5853 5854 bind(tiny); 5855 cbnz(len, loop); 5856 5857 b(done); 5858 } 5859 5860 if (SoftwarePrefetchHintDistance >= 0) { 5861 bind(to_stub); 5862 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 5863 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 5864 address tpc = trampoline_call(stub); 5865 if (tpc == nullptr) { 5866 DEBUG_ONLY(reset_labels(big, done)); 5867 postcond(pc() == badAddress); 5868 return nullptr; 5869 } 5870 b(after_init); 5871 } 5872 5873 // Unpack the bytes 8 at a time. 5874 bind(big); 5875 { 5876 Label loop, around, loop_last, loop_start; 5877 5878 if (SoftwarePrefetchHintDistance >= 0) { 5879 const int large_loop_threshold = (64 + 16)/8; 5880 ldrd(vtmp2, post(src, 8)); 5881 andw(len, len, 7); 5882 cmp(tmp4, (u1)large_loop_threshold); 5883 br(GE, to_stub); 5884 b(loop_start); 5885 5886 bind(loop); 5887 ldrd(vtmp2, post(src, 8)); 5888 bind(loop_start); 5889 subs(tmp4, tmp4, 1); 5890 br(EQ, loop_last); 5891 zip1(vtmp2, T16B, vtmp2, vtmp1); 5892 ldrd(vtmp3, post(src, 8)); 5893 st1(vtmp2, T8H, post(dst, 16)); 5894 subs(tmp4, tmp4, 1); 5895 zip1(vtmp3, T16B, vtmp3, vtmp1); 5896 st1(vtmp3, T8H, post(dst, 16)); 5897 br(NE, loop); 5898 b(around); 5899 bind(loop_last); 5900 zip1(vtmp2, T16B, vtmp2, vtmp1); 5901 st1(vtmp2, T8H, post(dst, 16)); 5902 bind(around); 5903 cbz(len, done); 5904 } else { 5905 andw(len, len, 7); 5906 bind(loop); 5907 ldrd(vtmp2, post(src, 8)); 5908 sub(tmp4, tmp4, 1); 5909 zip1(vtmp3, T16B, vtmp2, vtmp1); 5910 st1(vtmp3, T8H, post(dst, 16)); 5911 cbnz(tmp4, loop); 5912 } 5913 } 5914 5915 // Do the tail of up to 8 bytes. 5916 add(src, src, len); 5917 ldrd(vtmp3, Address(src, -8)); 5918 add(dst, dst, len, ext::uxtw, 1); 5919 zip1(vtmp3, T16B, vtmp3, vtmp1); 5920 strq(vtmp3, Address(dst, -16)); 5921 5922 bind(done); 5923 postcond(pc() != badAddress); 5924 return pc(); 5925 } 5926 5927 // Compress char[] array to byte[]. 5928 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 5929 Register res, 5930 FloatRegister tmp0, FloatRegister tmp1, 5931 FloatRegister tmp2, FloatRegister tmp3, 5932 FloatRegister tmp4, FloatRegister tmp5) { 5933 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 5934 // Adjust result: res == len ? len : 0 5935 cmp(len, res); 5936 csel(res, res, zr, EQ); 5937 } 5938 5939 // java.math.round(double a) 5940 // Returns the closest long to the argument, with ties rounding to 5941 // positive infinity. This requires some fiddling for corner 5942 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 5943 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 5944 FloatRegister ftmp) { 5945 Label DONE; 5946 BLOCK_COMMENT("java_round_double: { "); 5947 fmovd(rscratch1, src); 5948 // Use RoundToNearestTiesAway unless src small and -ve. 5949 fcvtasd(dst, src); 5950 // Test if src >= 0 || abs(src) >= 0x1.0p52 5951 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 5952 mov(rscratch2, julong_cast(0x1.0p52)); 5953 cmp(rscratch1, rscratch2); 5954 br(HS, DONE); { 5955 // src < 0 && abs(src) < 0x1.0p52 5956 // src may have a fractional part, so add 0.5 5957 fmovd(ftmp, 0.5); 5958 faddd(ftmp, src, ftmp); 5959 // Convert double to jlong, use RoundTowardsNegative 5960 fcvtmsd(dst, ftmp); 5961 } 5962 bind(DONE); 5963 BLOCK_COMMENT("} java_round_double"); 5964 } 5965 5966 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 5967 FloatRegister ftmp) { 5968 Label DONE; 5969 BLOCK_COMMENT("java_round_float: { "); 5970 fmovs(rscratch1, src); 5971 // Use RoundToNearestTiesAway unless src small and -ve. 5972 fcvtassw(dst, src); 5973 // Test if src >= 0 || abs(src) >= 0x1.0p23 5974 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 5975 mov(rscratch2, jint_cast(0x1.0p23f)); 5976 cmp(rscratch1, rscratch2); 5977 br(HS, DONE); { 5978 // src < 0 && |src| < 0x1.0p23 5979 // src may have a fractional part, so add 0.5 5980 fmovs(ftmp, 0.5f); 5981 fadds(ftmp, src, ftmp); 5982 // Convert float to jint, use RoundTowardsNegative 5983 fcvtmssw(dst, ftmp); 5984 } 5985 bind(DONE); 5986 BLOCK_COMMENT("} java_round_float"); 5987 } 5988 5989 // get_thread() can be called anywhere inside generated code so we 5990 // need to save whatever non-callee save context might get clobbered 5991 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 5992 // the call setup code. 5993 // 5994 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 5995 // On other systems, the helper is a usual C function. 5996 // 5997 void MacroAssembler::get_thread(Register dst) { 5998 RegSet saved_regs = 5999 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6000 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6001 6002 protect_return_address(); 6003 push(saved_regs, sp); 6004 6005 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6006 blr(lr); 6007 if (dst != c_rarg0) { 6008 mov(dst, c_rarg0); 6009 } 6010 6011 pop(saved_regs, sp); 6012 authenticate_return_address(); 6013 } 6014 6015 void MacroAssembler::cache_wb(Address line) { 6016 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6017 assert(line.index() == noreg, "index should be noreg"); 6018 assert(line.offset() == 0, "offset should be 0"); 6019 // would like to assert this 6020 // assert(line._ext.shift == 0, "shift should be zero"); 6021 if (VM_Version::supports_dcpop()) { 6022 // writeback using clear virtual address to point of persistence 6023 dc(Assembler::CVAP, line.base()); 6024 } else { 6025 // no need to generate anything as Unsafe.writebackMemory should 6026 // never invoke this stub 6027 } 6028 } 6029 6030 void MacroAssembler::cache_wbsync(bool is_pre) { 6031 // we only need a barrier post sync 6032 if (!is_pre) { 6033 membar(Assembler::AnyAny); 6034 } 6035 } 6036 6037 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6038 // Make sure that native code does not change SVE vector length. 6039 if (!UseSVE) return; 6040 Label verify_ok; 6041 movw(tmp, zr); 6042 sve_inc(tmp, B); 6043 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6044 br(EQ, verify_ok); 6045 stop("Error: SVE vector length has changed since jvm startup"); 6046 bind(verify_ok); 6047 } 6048 6049 void MacroAssembler::verify_ptrue() { 6050 Label verify_ok; 6051 if (!UseSVE) { 6052 return; 6053 } 6054 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6055 sve_dec(rscratch1, B); 6056 cbz(rscratch1, verify_ok); 6057 stop("Error: the preserved predicate register (p7) elements are not all true"); 6058 bind(verify_ok); 6059 } 6060 6061 void MacroAssembler::safepoint_isb() { 6062 isb(); 6063 #ifndef PRODUCT 6064 if (VerifyCrossModifyFence) { 6065 // Clear the thread state. 6066 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6067 } 6068 #endif 6069 } 6070 6071 #ifndef PRODUCT 6072 void MacroAssembler::verify_cross_modify_fence_not_required() { 6073 if (VerifyCrossModifyFence) { 6074 // Check if thread needs a cross modify fence. 6075 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6076 Label fence_not_required; 6077 cbz(rscratch1, fence_not_required); 6078 // If it does then fail. 6079 lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure)); 6080 mov(c_rarg0, rthread); 6081 blr(rscratch1); 6082 bind(fence_not_required); 6083 } 6084 } 6085 #endif 6086 6087 void MacroAssembler::spin_wait() { 6088 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6089 switch (VM_Version::spin_wait_desc().inst()) { 6090 case SpinWait::NOP: 6091 nop(); 6092 break; 6093 case SpinWait::ISB: 6094 isb(); 6095 break; 6096 case SpinWait::YIELD: 6097 yield(); 6098 break; 6099 default: 6100 ShouldNotReachHere(); 6101 } 6102 } 6103 } 6104 6105 // Stack frame creation/removal 6106 6107 void MacroAssembler::enter(bool strip_ret_addr) { 6108 if (strip_ret_addr) { 6109 // Addresses can only be signed once. If there are multiple nested frames being created 6110 // in the same function, then the return address needs stripping first. 6111 strip_return_address(); 6112 } 6113 protect_return_address(); 6114 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6115 mov(rfp, sp); 6116 } 6117 6118 void MacroAssembler::leave() { 6119 mov(sp, rfp); 6120 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6121 authenticate_return_address(); 6122 } 6123 6124 // ROP Protection 6125 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6126 // destroying stack frames or whenever directly loading/storing the LR to memory. 6127 // If ROP protection is not set then these functions are no-ops. 6128 // For more details on PAC see pauth_aarch64.hpp. 6129 6130 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6131 // Uses value zero as the modifier. 6132 // 6133 void MacroAssembler::protect_return_address() { 6134 if (VM_Version::use_rop_protection()) { 6135 check_return_address(); 6136 paciaz(); 6137 } 6138 } 6139 6140 // Sign the return value in the given register. Use before updating the LR in the existing stack 6141 // frame for the current function. 6142 // Uses value zero as the modifier. 6143 // 6144 void MacroAssembler::protect_return_address(Register return_reg) { 6145 if (VM_Version::use_rop_protection()) { 6146 check_return_address(return_reg); 6147 paciza(return_reg); 6148 } 6149 } 6150 6151 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6152 // Uses value zero as the modifier. 6153 // 6154 void MacroAssembler::authenticate_return_address() { 6155 if (VM_Version::use_rop_protection()) { 6156 autiaz(); 6157 check_return_address(); 6158 } 6159 } 6160 6161 // Authenticate the return value in the given register. Use before updating the LR in the existing 6162 // stack frame for the current function. 6163 // Uses value zero as the modifier. 6164 // 6165 void MacroAssembler::authenticate_return_address(Register return_reg) { 6166 if (VM_Version::use_rop_protection()) { 6167 autiza(return_reg); 6168 check_return_address(return_reg); 6169 } 6170 } 6171 6172 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6173 // there is no guaranteed way of authenticating the LR. 6174 // 6175 void MacroAssembler::strip_return_address() { 6176 if (VM_Version::use_rop_protection()) { 6177 xpaclri(); 6178 } 6179 } 6180 6181 #ifndef PRODUCT 6182 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6183 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6184 // it is difficult to debug back to the callee function. 6185 // This function simply loads from the address in the given register. 6186 // Use directly after authentication to catch authentication failures. 6187 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6188 // 6189 void MacroAssembler::check_return_address(Register return_reg) { 6190 if (VM_Version::use_rop_protection()) { 6191 ldr(zr, Address(return_reg)); 6192 } 6193 } 6194 #endif 6195 6196 // The java_calling_convention describes stack locations as ideal slots on 6197 // a frame with no abi restrictions. Since we must observe abi restrictions 6198 // (like the placement of the register window) the slots must be biased by 6199 // the following value. 6200 static int reg2offset_in(VMReg r) { 6201 // Account for saved rfp and lr 6202 // This should really be in_preserve_stack_slots 6203 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6204 } 6205 6206 static int reg2offset_out(VMReg r) { 6207 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6208 } 6209 6210 // On 64bit we will store integer like items to the stack as 6211 // 64bits items (AArch64 ABI) even though java would only store 6212 // 32bits for a parameter. On 32bit it will simply be 32bits 6213 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6214 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6215 if (src.first()->is_stack()) { 6216 if (dst.first()->is_stack()) { 6217 // stack to stack 6218 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6219 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6220 } else { 6221 // stack to reg 6222 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6223 } 6224 } else if (dst.first()->is_stack()) { 6225 // reg to stack 6226 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6227 } else { 6228 if (dst.first() != src.first()) { 6229 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6230 } 6231 } 6232 } 6233 6234 // An oop arg. Must pass a handle not the oop itself 6235 void MacroAssembler::object_move( 6236 OopMap* map, 6237 int oop_handle_offset, 6238 int framesize_in_slots, 6239 VMRegPair src, 6240 VMRegPair dst, 6241 bool is_receiver, 6242 int* receiver_offset) { 6243 6244 // must pass a handle. First figure out the location we use as a handle 6245 6246 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6247 6248 // See if oop is null if it is we need no handle 6249 6250 if (src.first()->is_stack()) { 6251 6252 // Oop is already on the stack as an argument 6253 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6254 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6255 if (is_receiver) { 6256 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6257 } 6258 6259 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6260 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6261 // conditionally move a null 6262 cmp(rscratch1, zr); 6263 csel(rHandle, zr, rHandle, Assembler::EQ); 6264 } else { 6265 6266 // Oop is in an a register we must store it to the space we reserve 6267 // on the stack for oop_handles and pass a handle if oop is non-null 6268 6269 const Register rOop = src.first()->as_Register(); 6270 int oop_slot; 6271 if (rOop == j_rarg0) 6272 oop_slot = 0; 6273 else if (rOop == j_rarg1) 6274 oop_slot = 1; 6275 else if (rOop == j_rarg2) 6276 oop_slot = 2; 6277 else if (rOop == j_rarg3) 6278 oop_slot = 3; 6279 else if (rOop == j_rarg4) 6280 oop_slot = 4; 6281 else if (rOop == j_rarg5) 6282 oop_slot = 5; 6283 else if (rOop == j_rarg6) 6284 oop_slot = 6; 6285 else { 6286 assert(rOop == j_rarg7, "wrong register"); 6287 oop_slot = 7; 6288 } 6289 6290 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6291 int offset = oop_slot*VMRegImpl::stack_slot_size; 6292 6293 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6294 // Store oop in handle area, may be null 6295 str(rOop, Address(sp, offset)); 6296 if (is_receiver) { 6297 *receiver_offset = offset; 6298 } 6299 6300 cmp(rOop, zr); 6301 lea(rHandle, Address(sp, offset)); 6302 // conditionally move a null 6303 csel(rHandle, zr, rHandle, Assembler::EQ); 6304 } 6305 6306 // If arg is on the stack then place it otherwise it is already in correct reg. 6307 if (dst.first()->is_stack()) { 6308 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6309 } 6310 } 6311 6312 // A float arg may have to do float reg int reg conversion 6313 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6314 if (src.first()->is_stack()) { 6315 if (dst.first()->is_stack()) { 6316 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6317 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6318 } else { 6319 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6320 } 6321 } else if (src.first() != dst.first()) { 6322 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6323 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6324 else 6325 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6326 } 6327 } 6328 6329 // A long move 6330 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6331 if (src.first()->is_stack()) { 6332 if (dst.first()->is_stack()) { 6333 // stack to stack 6334 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6335 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6336 } else { 6337 // stack to reg 6338 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6339 } 6340 } else if (dst.first()->is_stack()) { 6341 // reg to stack 6342 // Do we really have to sign extend??? 6343 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6344 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6345 } else { 6346 if (dst.first() != src.first()) { 6347 mov(dst.first()->as_Register(), src.first()->as_Register()); 6348 } 6349 } 6350 } 6351 6352 6353 // A double move 6354 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 6355 if (src.first()->is_stack()) { 6356 if (dst.first()->is_stack()) { 6357 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6358 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6359 } else { 6360 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6361 } 6362 } else if (src.first() != dst.first()) { 6363 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6364 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6365 else 6366 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6367 } 6368 } 6369 6370 // Implements lightweight-locking. 6371 // 6372 // - obj: the object to be locked 6373 // - t1, t2, t3: temporary registers, will be destroyed 6374 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 6375 void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 6376 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6377 assert_different_registers(obj, t1, t2, t3, rscratch1); 6378 6379 Label push; 6380 const Register top = t1; 6381 const Register mark = t2; 6382 const Register t = t3; 6383 6384 // Preload the markWord. It is important that this is the first 6385 // instruction emitted as it is part of C1's null check semantics. 6386 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 6387 6388 // Check if the lock-stack is full. 6389 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6390 cmpw(top, (unsigned)LockStack::end_offset()); 6391 br(Assembler::GE, slow); 6392 6393 // Check for recursion. 6394 subw(t, top, oopSize); 6395 ldr(t, Address(rthread, t)); 6396 cmp(obj, t); 6397 br(Assembler::EQ, push); 6398 6399 // Check header for monitor (0b10). 6400 tst(mark, markWord::monitor_value); 6401 br(Assembler::NE, slow); 6402 6403 // Try to lock. Transition lock bits 0b01 => 0b00 6404 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 6405 orr(mark, mark, markWord::unlocked_value); 6406 eor(t, mark, markWord::unlocked_value); 6407 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 6408 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 6409 br(Assembler::NE, slow); 6410 6411 bind(push); 6412 // After successful lock, push object on lock-stack. 6413 str(obj, Address(rthread, top)); 6414 addw(top, top, oopSize); 6415 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6416 } 6417 6418 // Implements lightweight-unlocking. 6419 // 6420 // - obj: the object to be unlocked 6421 // - t1, t2, t3: temporary registers 6422 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 6423 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 6424 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 6425 // cmpxchg clobbers rscratch1. 6426 assert_different_registers(obj, t1, t2, t3, rscratch1); 6427 6428 #ifdef ASSERT 6429 { 6430 // Check for lock-stack underflow. 6431 Label stack_ok; 6432 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 6433 cmpw(t1, (unsigned)LockStack::start_offset()); 6434 br(Assembler::GE, stack_ok); 6435 STOP("Lock-stack underflow"); 6436 bind(stack_ok); 6437 } 6438 #endif 6439 6440 Label unlocked, push_and_slow; 6441 const Register top = t1; 6442 const Register mark = t2; 6443 const Register t = t3; 6444 6445 // Check if obj is top of lock-stack. 6446 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6447 subw(top, top, oopSize); 6448 ldr(t, Address(rthread, top)); 6449 cmp(obj, t); 6450 br(Assembler::NE, slow); 6451 6452 // Pop lock-stack. 6453 DEBUG_ONLY(str(zr, Address(rthread, top));) 6454 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6455 6456 // Check if recursive. 6457 subw(t, top, oopSize); 6458 ldr(t, Address(rthread, t)); 6459 cmp(obj, t); 6460 br(Assembler::EQ, unlocked); 6461 6462 // Not recursive. Check header for monitor (0b10). 6463 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 6464 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 6465 6466 #ifdef ASSERT 6467 // Check header not unlocked (0b01). 6468 Label not_unlocked; 6469 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 6470 stop("lightweight_unlock already unlocked"); 6471 bind(not_unlocked); 6472 #endif 6473 6474 // Try to unlock. Transition lock bits 0b00 => 0b01 6475 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 6476 orr(t, mark, markWord::unlocked_value); 6477 cmpxchg(obj, mark, t, Assembler::xword, 6478 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 6479 br(Assembler::EQ, unlocked); 6480 6481 bind(push_and_slow); 6482 // Restore lock-stack and handle the unlock in runtime. 6483 DEBUG_ONLY(str(obj, Address(rthread, top));) 6484 addw(top, top, oopSize); 6485 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 6486 b(slow); 6487 6488 bind(unlocked); 6489 }