1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/assembler.hpp"
  28 #include "asm/assembler.inline.hpp"
  29 #include "ci/ciEnv.hpp"
  30 #include "compiler/compileTask.hpp"
  31 #include "compiler/disassembler.hpp"
  32 #include "compiler/oopMap.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/barrierSetAssembler.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/cardTable.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/tlab_globals.hpp"
  39 #include "interpreter/bytecodeHistogram.hpp"
  40 #include "interpreter/interpreter.hpp"
  41 #include "jvm.h"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.hpp"
  44 #include "nativeInst_aarch64.hpp"
  45 #include "oops/accessDecorators.hpp"
  46 #include "oops/compressedOops.inline.hpp"
  47 #include "oops/klass.inline.hpp"
  48 #include "runtime/continuation.hpp"
  49 #include "runtime/icache.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/javaThread.hpp"
  52 #include "runtime/jniHandles.inline.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "utilities/globalDefinitions.hpp"
  56 #include "utilities/powerOfTwo.hpp"
  57 #ifdef COMPILER1
  58 #include "c1/c1_LIRAssembler.hpp"
  59 #endif
  60 #ifdef COMPILER2
  61 #include "oops/oop.hpp"
  62 #include "opto/compile.hpp"
  63 #include "opto/node.hpp"
  64 #include "opto/output.hpp"
  65 #endif
  66 
  67 #include <sys/types.h>
  68 
  69 #ifdef PRODUCT
  70 #define BLOCK_COMMENT(str) /* nothing */
  71 #else
  72 #define BLOCK_COMMENT(str) block_comment(str)
  73 #endif
  74 #define STOP(str) stop(str);
  75 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  76 
  77 #ifdef ASSERT
  78 extern "C" void disnm(intptr_t p);
  79 #endif
  80 // Target-dependent relocation processing
  81 //
  82 // Instruction sequences whose target may need to be retrieved or
  83 // patched are distinguished by their leading instruction, sorting
  84 // them into three main instruction groups and related subgroups.
  85 //
  86 // 1) Branch, Exception and System (insn count = 1)
  87 //    1a) Unconditional branch (immediate):
  88 //      b/bl imm19
  89 //    1b) Compare & branch (immediate):
  90 //      cbz/cbnz Rt imm19
  91 //    1c) Test & branch (immediate):
  92 //      tbz/tbnz Rt imm14
  93 //    1d) Conditional branch (immediate):
  94 //      b.cond imm19
  95 //
  96 // 2) Loads and Stores (insn count = 1)
  97 //    2a) Load register literal:
  98 //      ldr Rt imm19
  99 //
 100 // 3) Data Processing Immediate (insn count = 2 or 3)
 101 //    3a) PC-rel. addressing
 102 //      adr/adrp Rx imm21; ldr/str Ry Rx  #imm12
 103 //      adr/adrp Rx imm21; add Ry Rx  #imm12
 104 //      adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page]
 105 //      adr/adrp Rx imm21
 106 //      adr/adrp Rx imm21; movk Rx #imm16<<32
 107 //      adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page
 108 //      The latter form can only happen when the target is an
 109 //      ExternalAddress, and (by definition) ExternalAddresses don't
 110 //      move. Because of that property, there is never any need to
 111 //      patch the last of the three instructions. However,
 112 //      MacroAssembler::target_addr_for_insn takes all three
 113 //      instructions into account and returns the correct address.
 114 //    3b) Move wide (immediate)
 115 //      movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32;
 116 //
 117 // A switch on a subset of the instruction's bits provides an
 118 // efficient dispatch to these subcases.
 119 //
 120 // insn[28:26] -> main group ('x' == don't care)
 121 //   00x -> UNALLOCATED
 122 //   100 -> Data Processing Immediate
 123 //   101 -> Branch, Exception and System
 124 //   x1x -> Loads and Stores
 125 //
 126 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care).
 127 // n.b. in some cases extra bits need to be checked to verify the
 128 // instruction is as expected
 129 //
 130 // 1) ... xx101x Branch, Exception and System
 131 //   1a)  00___x Unconditional branch (immediate)
 132 //   1b)  01___0 Compare & branch (immediate)
 133 //   1c)  01___1 Test & branch (immediate)
 134 //   1d)  10___0 Conditional branch (immediate)
 135 //        other  Should not happen
 136 //
 137 // 2) ... xxx1x0 Loads and Stores
 138 //   2a)  xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0)
 139 //   2aa) x01__00 Load register literal (i.e. requires insn[29] == 0)
 140 //                strictly should be 64 bit non-FP/SIMD i.e.
 141 //       0101_000 (i.e. requires insn[31:24] == 01011000)
 142 //
 143 // 3) ... xx100x Data Processing Immediate
 144 //   3a)  xx___00 PC-rel. addressing (n.b. requires insn[24] == 0)
 145 //   3b)  xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01)
 146 //                 strictly should be 64 bit movz #imm16<<0
 147 //       110___10100 (i.e. requires insn[31:21] == 11010010100)
 148 //
 149 class RelocActions {
 150 protected:
 151   typedef int (*reloc_insn)(address insn_addr, address &target);
 152 
 153   virtual reloc_insn adrpMem() = 0;
 154   virtual reloc_insn adrpAdd() = 0;
 155   virtual reloc_insn adrpMovk() = 0;
 156 
 157   const address _insn_addr;
 158   const uint32_t _insn;
 159 
 160   static uint32_t insn_at(address insn_addr, int n) {
 161     return ((uint32_t*)insn_addr)[n];
 162   }
 163   uint32_t insn_at(int n) const {
 164     return insn_at(_insn_addr, n);
 165   }
 166 
 167 public:
 168 
 169   RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {}
 170   RelocActions(address insn_addr, uint32_t insn)
 171     :  _insn_addr(insn_addr), _insn(insn) {}
 172 
 173   virtual int unconditionalBranch(address insn_addr, address &target) = 0;
 174   virtual int conditionalBranch(address insn_addr, address &target) = 0;
 175   virtual int testAndBranch(address insn_addr, address &target) = 0;
 176   virtual int loadStore(address insn_addr, address &target) = 0;
 177   virtual int adr(address insn_addr, address &target) = 0;
 178   virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0;
 179   virtual int immediate(address insn_addr, address &target) = 0;
 180   virtual void verify(address insn_addr, address &target) = 0;
 181 
 182   int ALWAYSINLINE run(address insn_addr, address &target) {
 183     int instructions = 1;
 184 
 185     uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25);
 186     switch(dispatch) {
 187       case 0b001010:
 188       case 0b001011: {
 189         instructions = unconditionalBranch(insn_addr, target);
 190         break;
 191       }
 192       case 0b101010:   // Conditional branch (immediate)
 193       case 0b011010: { // Compare & branch (immediate)
 194         instructions = conditionalBranch(insn_addr, target);
 195           break;
 196       }
 197       case 0b011011: {
 198         instructions = testAndBranch(insn_addr, target);
 199         break;
 200       }
 201       case 0b001100:
 202       case 0b001110:
 203       case 0b011100:
 204       case 0b011110:
 205       case 0b101100:
 206       case 0b101110:
 207       case 0b111100:
 208       case 0b111110: {
 209         // load/store
 210         if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) {
 211           // Load register (literal)
 212           instructions = loadStore(insn_addr, target);
 213           break;
 214         } else {
 215           // nothing to do
 216           assert(target == 0, "did not expect to relocate target for polling page load");
 217         }
 218         break;
 219       }
 220       case 0b001000:
 221       case 0b011000:
 222       case 0b101000:
 223       case 0b111000: {
 224         // adr/adrp
 225         assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 226         int shift = Instruction_aarch64::extract(_insn, 31, 31);
 227         if (shift) {
 228           uint32_t insn2 = insn_at(1);
 229           if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 230               Instruction_aarch64::extract(_insn, 4, 0) ==
 231               Instruction_aarch64::extract(insn2, 9, 5)) {
 232             instructions = adrp(insn_addr, target, adrpMem());
 233           } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 234                      Instruction_aarch64::extract(_insn, 4, 0) ==
 235                      Instruction_aarch64::extract(insn2, 4, 0)) {
 236             instructions = adrp(insn_addr, target, adrpAdd());
 237           } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 &&
 238                      Instruction_aarch64::extract(_insn, 4, 0) ==
 239                      Instruction_aarch64::extract(insn2, 4, 0)) {
 240             instructions = adrp(insn_addr, target, adrpMovk());
 241           } else {
 242             ShouldNotReachHere();
 243           }
 244         } else {
 245           instructions = adr(insn_addr, target);
 246         }
 247         break;
 248       }
 249       case 0b001001:
 250       case 0b011001:
 251       case 0b101001:
 252       case 0b111001: {
 253         instructions = immediate(insn_addr, target);
 254         break;
 255       }
 256       default: {
 257         ShouldNotReachHere();
 258       }
 259     }
 260 
 261     verify(insn_addr, target);
 262     return instructions * NativeInstruction::instruction_size;
 263   }
 264 };
 265 
 266 class Patcher : public RelocActions {
 267   virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; }
 268   virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; }
 269   virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; }
 270 
 271 public:
 272   Patcher(address insn_addr) : RelocActions(insn_addr) {}
 273 
 274   virtual int unconditionalBranch(address insn_addr, address &target) {
 275     intptr_t offset = (target - insn_addr) >> 2;
 276     Instruction_aarch64::spatch(insn_addr, 25, 0, offset);
 277     return 1;
 278   }
 279   virtual int conditionalBranch(address insn_addr, address &target) {
 280     intptr_t offset = (target - insn_addr) >> 2;
 281     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 282     return 1;
 283   }
 284   virtual int testAndBranch(address insn_addr, address &target) {
 285     intptr_t offset = (target - insn_addr) >> 2;
 286     Instruction_aarch64::spatch(insn_addr, 18, 5, offset);
 287     return 1;
 288   }
 289   virtual int loadStore(address insn_addr, address &target) {
 290     intptr_t offset = (target - insn_addr) >> 2;
 291     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 292     return 1;
 293   }
 294   virtual int adr(address insn_addr, address &target) {
 295 #ifdef ASSERT
 296     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 297 #endif
 298     // PC-rel. addressing
 299     ptrdiff_t offset = target - insn_addr;
 300     int offset_lo = offset & 3;
 301     offset >>= 2;
 302     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 303     Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
 304     return 1;
 305   }
 306   virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
 307     int instructions = 1;
 308 #ifdef ASSERT
 309     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 310 #endif
 311     ptrdiff_t offset = target - insn_addr;
 312     instructions = 2;
 313     precond(inner != nullptr);
 314     // Give the inner reloc a chance to modify the target.
 315     address adjusted_target = target;
 316     instructions = (*inner)(insn_addr, adjusted_target);
 317     uintptr_t pc_page = (uintptr_t)insn_addr >> 12;
 318     uintptr_t adr_page = (uintptr_t)adjusted_target >> 12;
 319     offset = adr_page - pc_page;
 320     int offset_lo = offset & 3;
 321     offset >>= 2;
 322     Instruction_aarch64::spatch(insn_addr, 23, 5, offset);
 323     Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo);
 324     return instructions;
 325   }
 326   static int adrpMem_impl(address insn_addr, address &target) {
 327     uintptr_t dest = (uintptr_t)target;
 328     int offset_lo = dest & 0xfff;
 329     uint32_t insn2 = insn_at(insn_addr, 1);
 330     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 331     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size);
 332     guarantee(((dest >> size) << size) == dest, "misaligned target");
 333     return 2;
 334   }
 335   static int adrpAdd_impl(address insn_addr, address &target) {
 336     uintptr_t dest = (uintptr_t)target;
 337     int offset_lo = dest & 0xfff;
 338     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo);
 339     return 2;
 340   }
 341   static int adrpMovk_impl(address insn_addr, address &target) {
 342     uintptr_t dest = uintptr_t(target);
 343     Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32);
 344     dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL);
 345     target = address(dest);
 346     return 2;
 347   }
 348   virtual int immediate(address insn_addr, address &target) {
 349     assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
 350     uint64_t dest = (uint64_t)target;
 351     // Move wide constant
 352     assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 353     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 354     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 355     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 356     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 357     return 3;
 358   }
 359   virtual void verify(address insn_addr, address &target) {
 360 #ifdef ASSERT
 361     address address_is = MacroAssembler::target_addr_for_insn(insn_addr);
 362     if (!(address_is == target)) {
 363       tty->print_cr("%p at %p should be %p", address_is, insn_addr, target);
 364       disnm((intptr_t)insn_addr);
 365       assert(address_is == target, "should be");
 366     }
 367 #endif
 368   }
 369 };
 370 
 371 // If insn1 and insn2 use the same register to form an address, either
 372 // by an offsetted LDR or a simple ADD, return the offset. If the
 373 // second instruction is an LDR, the offset may be scaled.
 374 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) {
 375   if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 &&
 376       Instruction_aarch64::extract(insn1, 4, 0) ==
 377       Instruction_aarch64::extract(insn2, 9, 5)) {
 378     // Load/store register (unsigned immediate)
 379     byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 380     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 381     byte_offset <<= size;
 382     return true;
 383   } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 &&
 384              Instruction_aarch64::extract(insn1, 4, 0) ==
 385              Instruction_aarch64::extract(insn2, 4, 0)) {
 386     // add (immediate)
 387     byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 388     return true;
 389   }
 390   return false;
 391 }
 392 
 393 class AArch64Decoder : public RelocActions {
 394   virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; }
 395   virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; }
 396   virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; }
 397 
 398 public:
 399   AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {}
 400 
 401   virtual int loadStore(address insn_addr, address &target) {
 402     intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
 403     target = insn_addr + (offset << 2);
 404     return 1;
 405   }
 406   virtual int unconditionalBranch(address insn_addr, address &target) {
 407     intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0);
 408     target = insn_addr + (offset << 2);
 409     return 1;
 410   }
 411   virtual int conditionalBranch(address insn_addr, address &target) {
 412     intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5);
 413     target = address(((uint64_t)insn_addr + (offset << 2)));
 414     return 1;
 415   }
 416   virtual int testAndBranch(address insn_addr, address &target) {
 417     intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5);
 418     target = address(((uint64_t)insn_addr + (offset << 2)));
 419     return 1;
 420   }
 421   virtual int adr(address insn_addr, address &target) {
 422     // PC-rel. addressing
 423     intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
 424     offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
 425     target = address((uint64_t)insn_addr + offset);
 426     return 1;
 427   }
 428   virtual int adrp(address insn_addr, address &target, reloc_insn inner) {
 429     assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be");
 430     intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29);
 431     offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2;
 432     int shift = 12;
 433     offset <<= shift;
 434     uint64_t target_page = ((uint64_t)insn_addr) + offset;
 435     target_page &= ((uint64_t)-1) << shift;
 436     uint32_t insn2 = insn_at(1);
 437     target = address(target_page);
 438     precond(inner != nullptr);
 439     (*inner)(insn_addr, target);
 440     return 2;
 441   }
 442   static int adrpMem_impl(address insn_addr, address &target) {
 443     uint32_t insn2 = insn_at(insn_addr, 1);
 444     // Load/store register (unsigned immediate)
 445     ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 446     uint32_t size = Instruction_aarch64::extract(insn2, 31, 30);
 447     byte_offset <<= size;
 448     target += byte_offset;
 449     return 2;
 450   }
 451   static int adrpAdd_impl(address insn_addr, address &target) {
 452     uint32_t insn2 = insn_at(insn_addr, 1);
 453     // add (immediate)
 454     ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10);
 455     target += byte_offset;
 456     return 2;
 457   }
 458   static int adrpMovk_impl(address insn_addr, address &target) {
 459     uint32_t insn2 = insn_at(insn_addr, 1);
 460     uint64_t dest = uint64_t(target);
 461     dest = (dest & 0xffff0000ffffffff) |
 462       ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32);
 463     target = address(dest);
 464 
 465     // We know the destination 4k page. Maybe we have a third
 466     // instruction.
 467     uint32_t insn = insn_at(insn_addr, 0);
 468     uint32_t insn3 = insn_at(insn_addr, 2);
 469     ptrdiff_t byte_offset;
 470     if (offset_for(insn, insn3, byte_offset)) {
 471       target += byte_offset;
 472       return 3;
 473     } else {
 474       return 2;
 475     }
 476   }
 477   virtual int immediate(address insn_addr, address &target) {
 478     uint32_t *insns = (uint32_t *)insn_addr;
 479     assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be");
 480     // Move wide constant: movz, movk, movk.  See movptr().
 481     assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch");
 482     assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch");
 483     target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5))
 484                  + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16)
 485                  + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32));
 486     assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 487     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 488     return 3;
 489   }
 490   virtual void verify(address insn_addr, address &target) {
 491   }
 492 };
 493 
 494 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) {
 495   AArch64Decoder decoder(insn_addr, insn);
 496   address target;
 497   decoder.run(insn_addr, target);
 498   return target;
 499 }
 500 
 501 // Patch any kind of instruction; there may be several instructions.
 502 // Return the total length (in bytes) of the instructions.
 503 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) {
 504   Patcher patcher(insn_addr);
 505   return patcher.run(insn_addr, target);
 506 }
 507 
 508 int MacroAssembler::patch_oop(address insn_addr, address o) {
 509   int instructions;
 510   unsigned insn = *(unsigned*)insn_addr;
 511   assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 512 
 513   // OOPs are either narrow (32 bits) or wide (48 bits).  We encode
 514   // narrow OOPs by setting the upper 16 bits in the first
 515   // instruction.
 516   if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) {
 517     // Move narrow OOP
 518     uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
 519     Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 520     Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 521     instructions = 2;
 522   } else {
 523     // Move wide OOP
 524     assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch");
 525     uintptr_t dest = (uintptr_t)o;
 526     Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff);
 527     Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff);
 528     Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff);
 529     instructions = 3;
 530   }
 531   return instructions * NativeInstruction::instruction_size;
 532 }
 533 
 534 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) {
 535   // Metadata pointers are either narrow (32 bits) or wide (48 bits).
 536   // We encode narrow ones by setting the upper 16 bits in the first
 537   // instruction.
 538   NativeInstruction *insn = nativeInstruction_at(insn_addr);
 539   assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 &&
 540          nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch");
 541 
 542   Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16);
 543   Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff);
 544   return 2 * NativeInstruction::instruction_size;
 545 }
 546 
 547 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) {
 548   if (NativeInstruction::is_ldrw_to_zr(address(&insn))) {
 549     return nullptr;
 550   }
 551   return MacroAssembler::target_addr_for_insn(insn_addr, insn);
 552 }
 553 
 554 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) {
 555   if (acquire) {
 556     lea(tmp, Address(rthread, JavaThread::polling_word_offset()));
 557     ldar(tmp, tmp);
 558   } else {
 559     ldr(tmp, Address(rthread, JavaThread::polling_word_offset()));
 560   }
 561   if (at_return) {
 562     // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore,
 563     // we may safely use the sp instead to perform the stack watermark check.
 564     cmp(in_nmethod ? sp : rfp, tmp);
 565     br(Assembler::HI, slow_path);
 566   } else {
 567     tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path);
 568   }
 569 }
 570 
 571 void MacroAssembler::rt_call(address dest, Register tmp) {
 572   CodeBlob *cb = CodeCache::find_blob(dest);
 573   if (cb) {
 574     far_call(RuntimeAddress(dest));
 575   } else {
 576     lea(tmp, RuntimeAddress(dest));
 577     blr(tmp);
 578   }
 579 }
 580 
 581 void MacroAssembler::push_cont_fastpath(Register java_thread) {
 582   if (!Continuations::enabled()) return;
 583   Label done;
 584   ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 585   cmp(sp, rscratch1);
 586   br(Assembler::LS, done);
 587   mov(rscratch1, sp); // we can't use sp as the source in str
 588   str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 589   bind(done);
 590 }
 591 
 592 void MacroAssembler::pop_cont_fastpath(Register java_thread) {
 593   if (!Continuations::enabled()) return;
 594   Label done;
 595   ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset()));
 596   cmp(sp, rscratch1);
 597   br(Assembler::LO, done);
 598   str(zr, Address(java_thread, JavaThread::cont_fastpath_offset()));
 599   bind(done);
 600 }
 601 
 602 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 603   // we must set sp to zero to clear frame
 604   str(zr, Address(rthread, JavaThread::last_Java_sp_offset()));
 605 
 606   // must clear fp, so that compiled frames are not confused; it is
 607   // possible that we need it only for debugging
 608   if (clear_fp) {
 609     str(zr, Address(rthread, JavaThread::last_Java_fp_offset()));
 610   }
 611 
 612   // Always clear the pc because it could have been set by make_walkable()
 613   str(zr, Address(rthread, JavaThread::last_Java_pc_offset()));
 614 }
 615 
 616 // Calls to C land
 617 //
 618 // When entering C land, the rfp, & resp of the last Java frame have to be recorded
 619 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
 620 // has to be reset to 0. This is required to allow proper stack traversal.
 621 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 622                                          Register last_java_fp,
 623                                          Register last_java_pc,
 624                                          Register scratch) {
 625 
 626   if (last_java_pc->is_valid()) {
 627       str(last_java_pc, Address(rthread,
 628                                 JavaThread::frame_anchor_offset()
 629                                 + JavaFrameAnchor::last_Java_pc_offset()));
 630     }
 631 
 632   // determine last_java_sp register
 633   if (last_java_sp == sp) {
 634     mov(scratch, sp);
 635     last_java_sp = scratch;
 636   } else if (!last_java_sp->is_valid()) {
 637     last_java_sp = esp;
 638   }
 639 
 640   str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset()));
 641 
 642   // last_java_fp is optional
 643   if (last_java_fp->is_valid()) {
 644     str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset()));
 645   }
 646 }
 647 
 648 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 649                                          Register last_java_fp,
 650                                          address  last_java_pc,
 651                                          Register scratch) {
 652   assert(last_java_pc != nullptr, "must provide a valid PC");
 653 
 654   adr(scratch, last_java_pc);
 655   str(scratch, Address(rthread,
 656                        JavaThread::frame_anchor_offset()
 657                        + JavaFrameAnchor::last_Java_pc_offset()));
 658 
 659   set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch);
 660 }
 661 
 662 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 663                                          Register last_java_fp,
 664                                          Label &L,
 665                                          Register scratch) {
 666   if (L.is_bound()) {
 667     set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch);
 668   } else {
 669     InstructionMark im(this);
 670     L.add_patch_at(code(), locator());
 671     set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch);
 672   }
 673 }
 674 
 675 static inline bool target_needs_far_branch(address addr) {
 676   // codecache size <= 128M
 677   if (!MacroAssembler::far_branches()) {
 678     return false;
 679   }
 680   // codecache size > 240M
 681   if (MacroAssembler::codestub_branch_needs_far_jump()) {
 682     return true;
 683   }
 684   // codecache size: 128M..240M
 685   return !CodeCache::is_non_nmethod(addr);
 686 }
 687 
 688 void MacroAssembler::far_call(Address entry, Register tmp) {
 689   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 690   assert(CodeCache::find_blob(entry.target()) != nullptr,
 691          "destination of far call not found in code cache");
 692   assert(entry.rspec().type() == relocInfo::external_word_type
 693          || entry.rspec().type() == relocInfo::runtime_call_type
 694          || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
 695   if (target_needs_far_branch(entry.target())) {
 696     uint64_t offset;
 697     // We can use ADRP here because we know that the total size of
 698     // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
 699     adrp(tmp, entry, offset);
 700     add(tmp, tmp, offset);
 701     blr(tmp);
 702   } else {
 703     bl(entry);
 704   }
 705 }
 706 
 707 int MacroAssembler::far_jump(Address entry, Register tmp) {
 708   assert(ReservedCodeCacheSize < 4*G, "branch out of range");
 709   assert(CodeCache::find_blob(entry.target()) != nullptr,
 710          "destination of far call not found in code cache");
 711   assert(entry.rspec().type() == relocInfo::external_word_type
 712          || entry.rspec().type() == relocInfo::runtime_call_type
 713          || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type");
 714   address start = pc();
 715   if (target_needs_far_branch(entry.target())) {
 716     uint64_t offset;
 717     // We can use ADRP here because we know that the total size of
 718     // the code cache cannot exceed 2Gb (ADRP limit is 4GB).
 719     adrp(tmp, entry, offset);
 720     add(tmp, tmp, offset);
 721     br(tmp);
 722   } else {
 723     b(entry);
 724   }
 725   return pc() - start;
 726 }
 727 
 728 void MacroAssembler::reserved_stack_check() {
 729     // testing if reserved zone needs to be enabled
 730     Label no_reserved_zone_enabling;
 731 
 732     ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
 733     cmp(sp, rscratch1);
 734     br(Assembler::LO, no_reserved_zone_enabling);
 735 
 736     enter();   // LR and FP are live.
 737     lea(rscratch1, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
 738     mov(c_rarg0, rthread);
 739     blr(rscratch1);
 740     leave();
 741 
 742     // We have already removed our own frame.
 743     // throw_delayed_StackOverflowError will think that it's been
 744     // called by our caller.
 745     lea(rscratch1, RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
 746     br(rscratch1);
 747     should_not_reach_here();
 748 
 749     bind(no_reserved_zone_enabling);
 750 }
 751 
 752 static void pass_arg0(MacroAssembler* masm, Register arg) {
 753   if (c_rarg0 != arg ) {
 754     masm->mov(c_rarg0, arg);
 755   }
 756 }
 757 
 758 static void pass_arg1(MacroAssembler* masm, Register arg) {
 759   if (c_rarg1 != arg ) {
 760     masm->mov(c_rarg1, arg);
 761   }
 762 }
 763 
 764 static void pass_arg2(MacroAssembler* masm, Register arg) {
 765   if (c_rarg2 != arg ) {
 766     masm->mov(c_rarg2, arg);
 767   }
 768 }
 769 
 770 static void pass_arg3(MacroAssembler* masm, Register arg) {
 771   if (c_rarg3 != arg ) {
 772     masm->mov(c_rarg3, arg);
 773   }
 774 }
 775 
 776 void MacroAssembler::call_VM_base(Register oop_result,
 777                                   Register java_thread,
 778                                   Register last_java_sp,
 779                                   address  entry_point,
 780                                   int      number_of_arguments,
 781                                   bool     check_exceptions) {
 782    // determine java_thread register
 783   if (!java_thread->is_valid()) {
 784     java_thread = rthread;
 785   }
 786 
 787   // determine last_java_sp register
 788   if (!last_java_sp->is_valid()) {
 789     last_java_sp = esp;
 790   }
 791 
 792   // debugging support
 793   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
 794   assert(java_thread == rthread, "unexpected register");
 795 #ifdef ASSERT
 796   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
 797   // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");
 798 #endif // ASSERT
 799 
 800   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
 801   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
 802 
 803   // push java thread (becomes first argument of C function)
 804 
 805   mov(c_rarg0, java_thread);
 806 
 807   // set last Java frame before call
 808   assert(last_java_sp != rfp, "can't use rfp");
 809 
 810   Label l;
 811   set_last_Java_frame(last_java_sp, rfp, l, rscratch1);
 812 
 813   // do the call, remove parameters
 814   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
 815 
 816   // lr could be poisoned with PAC signature during throw_pending_exception
 817   // if it was tail-call optimized by compiler, since lr is not callee-saved
 818   // reload it with proper value
 819   adr(lr, l);
 820 
 821   // reset last Java frame
 822   // Only interpreter should have to clear fp
 823   reset_last_Java_frame(true);
 824 
 825    // C++ interp handles this in the interpreter
 826   check_and_handle_popframe(java_thread);
 827   check_and_handle_earlyret(java_thread);
 828 
 829   if (check_exceptions) {
 830     // check for pending exceptions (java_thread is set upon return)
 831     ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
 832     Label ok;
 833     cbz(rscratch1, ok);
 834     lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
 835     br(rscratch1);
 836     bind(ok);
 837   }
 838 
 839   // get oop result if there is one and reset the value in the thread
 840   if (oop_result->is_valid()) {
 841     get_vm_result(oop_result, java_thread);
 842   }
 843 }
 844 
 845 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
 846   call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
 847 }
 848 
 849 // Check the entry target is always reachable from any branch.
 850 static bool is_always_within_branch_range(Address entry) {
 851   const address target = entry.target();
 852 
 853   if (!CodeCache::contains(target)) {
 854     // We always use trampolines for callees outside CodeCache.
 855     assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target");
 856     return false;
 857   }
 858 
 859   if (!MacroAssembler::far_branches()) {
 860     return true;
 861   }
 862 
 863   if (entry.rspec().type() == relocInfo::runtime_call_type) {
 864     // Runtime calls are calls of a non-compiled method (stubs, adapters).
 865     // Non-compiled methods stay forever in CodeCache.
 866     // We check whether the longest possible branch is within the branch range.
 867     assert(CodeCache::find_blob(target) != nullptr &&
 868           !CodeCache::find_blob(target)->is_compiled(),
 869           "runtime call of compiled method");
 870     const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size;
 871     const address left_longest_branch_start = CodeCache::low_bound();
 872     const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) &&
 873                               Assembler::reachable_from_branch_at(right_longest_branch_start, target);
 874     return is_reachable;
 875   }
 876 
 877   return false;
 878 }
 879 
 880 // Maybe emit a call via a trampoline. If the code cache is small
 881 // trampolines won't be emitted.
 882 address MacroAssembler::trampoline_call(Address entry) {
 883   assert(entry.rspec().type() == relocInfo::runtime_call_type
 884          || entry.rspec().type() == relocInfo::opt_virtual_call_type
 885          || entry.rspec().type() == relocInfo::static_call_type
 886          || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
 887 
 888   address target = entry.target();
 889 
 890   if (!is_always_within_branch_range(entry)) {
 891     if (!in_scratch_emit_size()) {
 892       // We don't want to emit a trampoline if C2 is generating dummy
 893       // code during its branch shortening phase.
 894       if (entry.rspec().type() == relocInfo::runtime_call_type) {
 895         assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs");
 896         code()->share_trampoline_for(entry.target(), offset());
 897       } else {
 898         address stub = emit_trampoline_stub(offset(), target);
 899         if (stub == nullptr) {
 900           postcond(pc() == badAddress);
 901           return nullptr; // CodeCache is full
 902         }
 903       }
 904     }
 905     target = pc();
 906   }
 907 
 908   address call_pc = pc();
 909   relocate(entry.rspec());
 910   bl(target);
 911 
 912   postcond(pc() != badAddress);
 913   return call_pc;
 914 }
 915 
 916 // Emit a trampoline stub for a call to a target which is too far away.
 917 //
 918 // code sequences:
 919 //
 920 // call-site:
 921 //   branch-and-link to <destination> or <trampoline stub>
 922 //
 923 // Related trampoline stub for this call site in the stub section:
 924 //   load the call target from the constant pool
 925 //   branch (LR still points to the call site above)
 926 
 927 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
 928                                              address dest) {
 929   // Max stub size: alignment nop, TrampolineStub.
 930   address stub = start_a_stub(max_trampoline_stub_size());
 931   if (stub == nullptr) {
 932     return nullptr;  // CodeBuffer::expand failed
 933   }
 934 
 935   // Create a trampoline stub relocation which relates this trampoline stub
 936   // with the call instruction at insts_call_instruction_offset in the
 937   // instructions code-section.
 938   align(wordSize);
 939   relocate(trampoline_stub_Relocation::spec(code()->insts()->start()
 940                                             + insts_call_instruction_offset));
 941   const int stub_start_offset = offset();
 942 
 943   // Now, create the trampoline stub's code:
 944   // - load the call
 945   // - call
 946   Label target;
 947   ldr(rscratch1, target);
 948   br(rscratch1);
 949   bind(target);
 950   assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
 951          "should be");
 952   emit_int64((int64_t)dest);
 953 
 954   const address stub_start_addr = addr_at(stub_start_offset);
 955 
 956   assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
 957 
 958   end_a_stub();
 959   return stub_start_addr;
 960 }
 961 
 962 int MacroAssembler::max_trampoline_stub_size() {
 963   // Max stub size: alignment nop, TrampolineStub.
 964   return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
 965 }
 966 
 967 void MacroAssembler::emit_static_call_stub() {
 968   // CompiledDirectStaticCall::set_to_interpreted knows the
 969   // exact layout of this stub.
 970 
 971   isb();
 972   mov_metadata(rmethod, nullptr);
 973 
 974   // Jump to the entry point of the c2i stub.
 975   movptr(rscratch1, 0);
 976   br(rscratch1);
 977 }
 978 
 979 int MacroAssembler::static_call_stub_size() {
 980   // isb; movk; movz; movz; movk; movz; movz; br
 981   return 8 * NativeInstruction::instruction_size;
 982 }
 983 
 984 void MacroAssembler::c2bool(Register x) {
 985   // implements x == 0 ? 0 : 1
 986   // note: must only look at least-significant byte of x
 987   //       since C-style booleans are stored in one byte
 988   //       only! (was bug)
 989   tst(x, 0xff);
 990   cset(x, Assembler::NE);
 991 }
 992 
 993 address MacroAssembler::ic_call(address entry, jint method_index) {
 994   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
 995   // address const_ptr = long_constant((jlong)Universe::non_oop_word());
 996   // uintptr_t offset;
 997   // ldr_constant(rscratch2, const_ptr);
 998   movptr(rscratch2, (uintptr_t)Universe::non_oop_word());
 999   return trampoline_call(Address(entry, rh));
1000 }
1001 
1002 // Implementation of call_VM versions
1003 
1004 void MacroAssembler::call_VM(Register oop_result,
1005                              address entry_point,
1006                              bool check_exceptions) {
1007   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
1008 }
1009 
1010 void MacroAssembler::call_VM(Register oop_result,
1011                              address entry_point,
1012                              Register arg_1,
1013                              bool check_exceptions) {
1014   pass_arg1(this, arg_1);
1015   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
1016 }
1017 
1018 void MacroAssembler::call_VM(Register oop_result,
1019                              address entry_point,
1020                              Register arg_1,
1021                              Register arg_2,
1022                              bool check_exceptions) {
1023   assert(arg_1 != c_rarg2, "smashed arg");
1024   pass_arg2(this, arg_2);
1025   pass_arg1(this, arg_1);
1026   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
1027 }
1028 
1029 void MacroAssembler::call_VM(Register oop_result,
1030                              address entry_point,
1031                              Register arg_1,
1032                              Register arg_2,
1033                              Register arg_3,
1034                              bool check_exceptions) {
1035   assert(arg_1 != c_rarg3, "smashed arg");
1036   assert(arg_2 != c_rarg3, "smashed arg");
1037   pass_arg3(this, arg_3);
1038 
1039   assert(arg_1 != c_rarg2, "smashed arg");
1040   pass_arg2(this, arg_2);
1041 
1042   pass_arg1(this, arg_1);
1043   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
1044 }
1045 
1046 void MacroAssembler::call_VM(Register oop_result,
1047                              Register last_java_sp,
1048                              address entry_point,
1049                              int number_of_arguments,
1050                              bool check_exceptions) {
1051   call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
1052 }
1053 
1054 void MacroAssembler::call_VM(Register oop_result,
1055                              Register last_java_sp,
1056                              address entry_point,
1057                              Register arg_1,
1058                              bool check_exceptions) {
1059   pass_arg1(this, arg_1);
1060   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
1061 }
1062 
1063 void MacroAssembler::call_VM(Register oop_result,
1064                              Register last_java_sp,
1065                              address entry_point,
1066                              Register arg_1,
1067                              Register arg_2,
1068                              bool check_exceptions) {
1069 
1070   assert(arg_1 != c_rarg2, "smashed arg");
1071   pass_arg2(this, arg_2);
1072   pass_arg1(this, arg_1);
1073   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
1074 }
1075 
1076 void MacroAssembler::call_VM(Register oop_result,
1077                              Register last_java_sp,
1078                              address entry_point,
1079                              Register arg_1,
1080                              Register arg_2,
1081                              Register arg_3,
1082                              bool check_exceptions) {
1083   assert(arg_1 != c_rarg3, "smashed arg");
1084   assert(arg_2 != c_rarg3, "smashed arg");
1085   pass_arg3(this, arg_3);
1086   assert(arg_1 != c_rarg2, "smashed arg");
1087   pass_arg2(this, arg_2);
1088   pass_arg1(this, arg_1);
1089   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
1090 }
1091 
1092 
1093 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
1094   ldr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
1095   str(zr, Address(java_thread, JavaThread::vm_result_offset()));
1096   verify_oop_msg(oop_result, "broken oop in call_VM_base");
1097 }
1098 
1099 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
1100   ldr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
1101   str(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
1102 }
1103 
1104 void MacroAssembler::align(int modulus) {
1105   while (offset() % modulus != 0) nop();
1106 }
1107 
1108 void MacroAssembler::post_call_nop() {
1109   if (!Continuations::enabled()) {
1110     return;
1111   }
1112   InstructionMark im(this);
1113   relocate(post_call_nop_Relocation::spec());
1114   InlineSkippedInstructionsCounter skipCounter(this);
1115   nop();
1116   movk(zr, 0);
1117   movk(zr, 0);
1118 }
1119 
1120 // these are no-ops overridden by InterpreterMacroAssembler
1121 
1122 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { }
1123 
1124 void MacroAssembler::check_and_handle_popframe(Register java_thread) { }
1125 
1126 // Look up the method for a megamorphic invokeinterface call.
1127 // The target method is determined by <intf_klass, itable_index>.
1128 // The receiver klass is in recv_klass.
1129 // On success, the result will be in method_result, and execution falls through.
1130 // On failure, execution transfers to the given label.
1131 void MacroAssembler::lookup_interface_method(Register recv_klass,
1132                                              Register intf_klass,
1133                                              RegisterOrConstant itable_index,
1134                                              Register method_result,
1135                                              Register scan_temp,
1136                                              Label& L_no_such_interface,
1137                          bool return_method) {
1138   assert_different_registers(recv_klass, intf_klass, scan_temp);
1139   assert_different_registers(method_result, intf_klass, scan_temp);
1140   assert(recv_klass != method_result || !return_method,
1141      "recv_klass can be destroyed when method isn't needed");
1142   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
1143          "caller must use same register for non-constant itable index as for method");
1144 
1145   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
1146   int vtable_base = in_bytes(Klass::vtable_start_offset());
1147   int itentry_off = in_bytes(itableMethodEntry::method_offset());
1148   int scan_step   = itableOffsetEntry::size() * wordSize;
1149   int vte_size    = vtableEntry::size_in_bytes();
1150   assert(vte_size == wordSize, "else adjust times_vte_scale");
1151 
1152   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1153 
1154   // %%% Could store the aligned, prescaled offset in the klassoop.
1155   // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
1156   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3)));
1157   add(scan_temp, scan_temp, vtable_base);
1158 
1159   if (return_method) {
1160     // Adjust recv_klass by scaled itable_index, so we can free itable_index.
1161     assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
1162     // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
1163     lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3)));
1164     if (itentry_off)
1165       add(recv_klass, recv_klass, itentry_off);
1166   }
1167 
1168   // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) {
1169   //   if (scan->interface() == intf) {
1170   //     result = (klass + scan->offset() + itable_index);
1171   //   }
1172   // }
1173   Label search, found_method;
1174 
1175   ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1176   cmp(intf_klass, method_result);
1177   br(Assembler::EQ, found_method);
1178   bind(search);
1179   // Check that the previous entry is non-null.  A null entry means that
1180   // the receiver class doesn't implement the interface, and wasn't the
1181   // same as when the caller was compiled.
1182   cbz(method_result, L_no_such_interface);
1183   if (itableOffsetEntry::interface_offset() != 0) {
1184     add(scan_temp, scan_temp, scan_step);
1185     ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset()));
1186   } else {
1187     ldr(method_result, Address(pre(scan_temp, scan_step)));
1188   }
1189   cmp(intf_klass, method_result);
1190   br(Assembler::NE, search);
1191 
1192   bind(found_method);
1193 
1194   // Got a hit.
1195   if (return_method) {
1196     ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset()));
1197     ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0)));
1198   }
1199 }
1200 
1201 // Look up the method for a megamorphic invokeinterface call in a single pass over itable:
1202 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder
1203 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index
1204 // The target method is determined by <holder_klass, itable_index>.
1205 // The receiver klass is in recv_klass.
1206 // On success, the result will be in method_result, and execution falls through.
1207 // On failure, execution transfers to the given label.
1208 void MacroAssembler::lookup_interface_method_stub(Register recv_klass,
1209                                                   Register holder_klass,
1210                                                   Register resolved_klass,
1211                                                   Register method_result,
1212                                                   Register temp_itbl_klass,
1213                                                   Register scan_temp,
1214                                                   int itable_index,
1215                                                   Label& L_no_such_interface) {
1216   // 'method_result' is only used as output register at the very end of this method.
1217   // Until then we can reuse it as 'holder_offset'.
1218   Register holder_offset = method_result;
1219   assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset);
1220 
1221   int vtable_start_offset = in_bytes(Klass::vtable_start_offset());
1222   int itable_offset_entry_size = itableOffsetEntry::size() * wordSize;
1223   int ioffset = in_bytes(itableOffsetEntry::interface_offset());
1224   int ooffset = in_bytes(itableOffsetEntry::offset_offset());
1225 
1226   Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found;
1227 
1228   ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
1229   add(recv_klass, recv_klass, vtable_start_offset + ioffset);
1230   // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len;
1231   // temp_itbl_klass = itable[0]._interface;
1232   int vtblEntrySize = vtableEntry::size_in_bytes();
1233   assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3");
1234   ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1235   mov(holder_offset, zr);
1236   // scan_temp = &(itable[0]._interface)
1237   lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize))));
1238 
1239   // Initial checks:
1240   //   - if (holder_klass != resolved_klass), go to "scan for resolved"
1241   //   - if (itable[0] == holder_klass), shortcut to "holder found"
1242   //   - if (itable[0] == 0), no such interface
1243   cmp(resolved_klass, holder_klass);
1244   br(Assembler::NE, L_loop_search_resolved_entry);
1245   cmp(holder_klass, temp_itbl_klass);
1246   br(Assembler::EQ, L_holder_found);
1247   cbz(temp_itbl_klass, L_no_such_interface);
1248 
1249   // Loop: Look for holder_klass record in itable
1250   //   do {
1251   //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1252   //     if (temp_itbl_klass == holder_klass) {
1253   //       goto L_holder_found; // Found!
1254   //     }
1255   //   } while (temp_itbl_klass != 0);
1256   //   goto L_no_such_interface // Not found.
1257   Label L_search_holder;
1258   bind(L_search_holder);
1259     ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1260     cmp(holder_klass, temp_itbl_klass);
1261     br(Assembler::EQ, L_holder_found);
1262     cbnz(temp_itbl_klass, L_search_holder);
1263 
1264   b(L_no_such_interface);
1265 
1266   // Loop: Look for resolved_class record in itable
1267   //   while (true) {
1268   //     temp_itbl_klass = *(scan_temp += itable_offset_entry_size);
1269   //     if (temp_itbl_klass == 0) {
1270   //       goto L_no_such_interface;
1271   //     }
1272   //     if (temp_itbl_klass == resolved_klass) {
1273   //        goto L_resolved_found;  // Found!
1274   //     }
1275   //     if (temp_itbl_klass == holder_klass) {
1276   //        holder_offset = scan_temp;
1277   //     }
1278   //   }
1279   //
1280   Label L_loop_search_resolved;
1281   bind(L_loop_search_resolved);
1282     ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size)));
1283   bind(L_loop_search_resolved_entry);
1284     cbz(temp_itbl_klass, L_no_such_interface);
1285     cmp(resolved_klass, temp_itbl_klass);
1286     br(Assembler::EQ, L_resolved_found);
1287     cmp(holder_klass, temp_itbl_klass);
1288     br(Assembler::NE, L_loop_search_resolved);
1289     mov(holder_offset, scan_temp);
1290     b(L_loop_search_resolved);
1291 
1292   // See if we already have a holder klass. If not, go and scan for it.
1293   bind(L_resolved_found);
1294   cbz(holder_offset, L_search_holder);
1295   mov(scan_temp, holder_offset);
1296 
1297   // Finally, scan_temp contains holder_klass vtable offset
1298   bind(L_holder_found);
1299   ldrw(method_result, Address(scan_temp, ooffset - ioffset));
1300   add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset())
1301     - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass
1302   ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0)));
1303 }
1304 
1305 // virtual method calling
1306 void MacroAssembler::lookup_virtual_method(Register recv_klass,
1307                                            RegisterOrConstant vtable_index,
1308                                            Register method_result) {
1309   assert(vtableEntry::size() * wordSize == 8,
1310          "adjust the scaling in the code below");
1311   int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset());
1312 
1313   if (vtable_index.is_register()) {
1314     lea(method_result, Address(recv_klass,
1315                                vtable_index.as_register(),
1316                                Address::lsl(LogBytesPerWord)));
1317     ldr(method_result, Address(method_result, vtable_offset_in_bytes));
1318   } else {
1319     vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
1320     ldr(method_result,
1321         form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0));
1322   }
1323 }
1324 
1325 void MacroAssembler::check_klass_subtype(Register sub_klass,
1326                            Register super_klass,
1327                            Register temp_reg,
1328                            Label& L_success) {
1329   Label L_failure;
1330   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, nullptr);
1331   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr);
1332   bind(L_failure);
1333 }
1334 
1335 
1336 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
1337                                                    Register super_klass,
1338                                                    Register temp_reg,
1339                                                    Label* L_success,
1340                                                    Label* L_failure,
1341                                                    Label* L_slow_path,
1342                                         RegisterOrConstant super_check_offset) {
1343   assert_different_registers(sub_klass, super_klass, temp_reg);
1344   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
1345   if (super_check_offset.is_register()) {
1346     assert_different_registers(sub_klass, super_klass,
1347                                super_check_offset.as_register());
1348   } else if (must_load_sco) {
1349     assert(temp_reg != noreg, "supply either a temp or a register offset");
1350   }
1351 
1352   Label L_fallthrough;
1353   int label_nulls = 0;
1354   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1355   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1356   if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; }
1357   assert(label_nulls <= 1, "at most one null in the batch");
1358 
1359   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1360   int sco_offset = in_bytes(Klass::super_check_offset_offset());
1361   Address super_check_offset_addr(super_klass, sco_offset);
1362 
1363   // Hacked jmp, which may only be used just before L_fallthrough.
1364 #define final_jmp(label)                                                \
1365   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
1366   else                            b(label)                /*omit semi*/
1367 
1368   // If the pointers are equal, we are done (e.g., String[] elements).
1369   // This self-check enables sharing of secondary supertype arrays among
1370   // non-primary types such as array-of-interface.  Otherwise, each such
1371   // type would need its own customized SSA.
1372   // We move this check to the front of the fast path because many
1373   // type checks are in fact trivially successful in this manner,
1374   // so we get a nicely predicted branch right at the start of the check.
1375   cmp(sub_klass, super_klass);
1376   br(Assembler::EQ, *L_success);
1377 
1378   // Check the supertype display:
1379   if (must_load_sco) {
1380     ldrw(temp_reg, super_check_offset_addr);
1381     super_check_offset = RegisterOrConstant(temp_reg);
1382   }
1383   Address super_check_addr(sub_klass, super_check_offset);
1384   ldr(rscratch1, super_check_addr);
1385   cmp(super_klass, rscratch1); // load displayed supertype
1386 
1387   // This check has worked decisively for primary supers.
1388   // Secondary supers are sought in the super_cache ('super_cache_addr').
1389   // (Secondary supers are interfaces and very deeply nested subtypes.)
1390   // This works in the same check above because of a tricky aliasing
1391   // between the super_cache and the primary super display elements.
1392   // (The 'super_check_addr' can address either, as the case requires.)
1393   // Note that the cache is updated below if it does not help us find
1394   // what we need immediately.
1395   // So if it was a primary super, we can just fail immediately.
1396   // Otherwise, it's the slow path for us (no success at this point).
1397 
1398   if (super_check_offset.is_register()) {
1399     br(Assembler::EQ, *L_success);
1400     subs(zr, super_check_offset.as_register(), sc_offset);
1401     if (L_failure == &L_fallthrough) {
1402       br(Assembler::EQ, *L_slow_path);
1403     } else {
1404       br(Assembler::NE, *L_failure);
1405       final_jmp(*L_slow_path);
1406     }
1407   } else if (super_check_offset.as_constant() == sc_offset) {
1408     // Need a slow path; fast failure is impossible.
1409     if (L_slow_path == &L_fallthrough) {
1410       br(Assembler::EQ, *L_success);
1411     } else {
1412       br(Assembler::NE, *L_slow_path);
1413       final_jmp(*L_success);
1414     }
1415   } else {
1416     // No slow path; it's a fast decision.
1417     if (L_failure == &L_fallthrough) {
1418       br(Assembler::EQ, *L_success);
1419     } else {
1420       br(Assembler::NE, *L_failure);
1421       final_jmp(*L_success);
1422     }
1423   }
1424 
1425   bind(L_fallthrough);
1426 
1427 #undef final_jmp
1428 }
1429 
1430 // These two are taken from x86, but they look generally useful
1431 
1432 // scans count pointer sized words at [addr] for occurrence of value,
1433 // generic
1434 void MacroAssembler::repne_scan(Register addr, Register value, Register count,
1435                                 Register scratch) {
1436   Label Lloop, Lexit;
1437   cbz(count, Lexit);
1438   bind(Lloop);
1439   ldr(scratch, post(addr, wordSize));
1440   cmp(value, scratch);
1441   br(EQ, Lexit);
1442   sub(count, count, 1);
1443   cbnz(count, Lloop);
1444   bind(Lexit);
1445 }
1446 
1447 // scans count 4 byte words at [addr] for occurrence of value,
1448 // generic
1449 void MacroAssembler::repne_scanw(Register addr, Register value, Register count,
1450                                 Register scratch) {
1451   Label Lloop, Lexit;
1452   cbz(count, Lexit);
1453   bind(Lloop);
1454   ldrw(scratch, post(addr, wordSize));
1455   cmpw(value, scratch);
1456   br(EQ, Lexit);
1457   sub(count, count, 1);
1458   cbnz(count, Lloop);
1459   bind(Lexit);
1460 }
1461 
1462 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
1463                                                    Register super_klass,
1464                                                    Register temp_reg,
1465                                                    Register temp2_reg,
1466                                                    Label* L_success,
1467                                                    Label* L_failure,
1468                                                    bool set_cond_codes) {
1469   assert_different_registers(sub_klass, super_klass, temp_reg);
1470   if (temp2_reg != noreg)
1471     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1);
1472 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
1473 
1474   Label L_fallthrough;
1475   int label_nulls = 0;
1476   if (L_success == nullptr)   { L_success   = &L_fallthrough; label_nulls++; }
1477   if (L_failure == nullptr)   { L_failure   = &L_fallthrough; label_nulls++; }
1478   assert(label_nulls <= 1, "at most one null in the batch");
1479 
1480   // a couple of useful fields in sub_klass:
1481   int ss_offset = in_bytes(Klass::secondary_supers_offset());
1482   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
1483   Address secondary_supers_addr(sub_klass, ss_offset);
1484   Address super_cache_addr(     sub_klass, sc_offset);
1485 
1486   BLOCK_COMMENT("check_klass_subtype_slow_path");
1487 
1488   // Do a linear scan of the secondary super-klass chain.
1489   // This code is rarely used, so simplicity is a virtue here.
1490   // The repne_scan instruction uses fixed registers, which we must spill.
1491   // Don't worry too much about pre-existing connections with the input regs.
1492 
1493   assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super)
1494   assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter)
1495 
1496   RegSet pushed_registers;
1497   if (!IS_A_TEMP(r2))    pushed_registers += r2;
1498   if (!IS_A_TEMP(r5))    pushed_registers += r5;
1499 
1500   if (super_klass != r0) {
1501     if (!IS_A_TEMP(r0))   pushed_registers += r0;
1502   }
1503 
1504   push(pushed_registers, sp);
1505 
1506   // Get super_klass value into r0 (even if it was in r5 or r2).
1507   if (super_klass != r0) {
1508     mov(r0, super_klass);
1509   }
1510 
1511 #ifndef PRODUCT
1512   mov(rscratch2, (address)&SharedRuntime::_partial_subtype_ctr);
1513   Address pst_counter_addr(rscratch2);
1514   ldr(rscratch1, pst_counter_addr);
1515   add(rscratch1, rscratch1, 1);
1516   str(rscratch1, pst_counter_addr);
1517 #endif //PRODUCT
1518 
1519   // We will consult the secondary-super array.
1520   ldr(r5, secondary_supers_addr);
1521   // Load the array length.
1522   ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes()));
1523   // Skip to start of data.
1524   add(r5, r5, Array<Klass*>::base_offset_in_bytes());
1525 
1526   cmp(sp, zr); // Clear Z flag; SP is never zero
1527   // Scan R2 words at [R5] for an occurrence of R0.
1528   // Set NZ/Z based on last compare.
1529   repne_scan(r5, r0, r2, rscratch1);
1530 
1531   // Unspill the temp. registers:
1532   pop(pushed_registers, sp);
1533 
1534   br(Assembler::NE, *L_failure);
1535 
1536   // Success.  Cache the super we found and proceed in triumph.
1537   str(super_klass, super_cache_addr);
1538 
1539   if (L_success != &L_fallthrough) {
1540     b(*L_success);
1541   }
1542 
1543 #undef IS_A_TEMP
1544 
1545   bind(L_fallthrough);
1546 }
1547 
1548 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) {
1549   assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required");
1550   assert_different_registers(klass, rthread, scratch);
1551 
1552   Label L_fallthrough, L_tmp;
1553   if (L_fast_path == nullptr) {
1554     L_fast_path = &L_fallthrough;
1555   } else if (L_slow_path == nullptr) {
1556     L_slow_path = &L_fallthrough;
1557   }
1558   // Fast path check: class is fully initialized
1559   ldrb(scratch, Address(klass, InstanceKlass::init_state_offset()));
1560   subs(zr, scratch, InstanceKlass::fully_initialized);
1561   br(Assembler::EQ, *L_fast_path);
1562 
1563   // Fast path check: current thread is initializer thread
1564   ldr(scratch, Address(klass, InstanceKlass::init_thread_offset()));
1565   cmp(rthread, scratch);
1566 
1567   if (L_slow_path == &L_fallthrough) {
1568     br(Assembler::EQ, *L_fast_path);
1569     bind(*L_slow_path);
1570   } else if (L_fast_path == &L_fallthrough) {
1571     br(Assembler::NE, *L_slow_path);
1572     bind(*L_fast_path);
1573   } else {
1574     Unimplemented();
1575   }
1576 }
1577 
1578 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) {
1579   if (!VerifyOops) return;
1580 
1581   // Pass register number to verify_oop_subroutine
1582   const char* b = nullptr;
1583   {
1584     ResourceMark rm;
1585     stringStream ss;
1586     ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line);
1587     b = code_string(ss.as_string());
1588   }
1589   BLOCK_COMMENT("verify_oop {");
1590 
1591   strip_return_address(); // This might happen within a stack frame.
1592   protect_return_address();
1593   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1594   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1595 
1596   mov(r0, reg);
1597   movptr(rscratch1, (uintptr_t)(address)b);
1598 
1599   // call indirectly to solve generation ordering problem
1600   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1601   ldr(rscratch2, Address(rscratch2));
1602   blr(rscratch2);
1603 
1604   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1605   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1606   authenticate_return_address();
1607 
1608   BLOCK_COMMENT("} verify_oop");
1609 }
1610 
1611 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) {
1612   if (!VerifyOops) return;
1613 
1614   const char* b = nullptr;
1615   {
1616     ResourceMark rm;
1617     stringStream ss;
1618     ss.print("verify_oop_addr: %s (%s:%d)", s, file, line);
1619     b = code_string(ss.as_string());
1620   }
1621   BLOCK_COMMENT("verify_oop_addr {");
1622 
1623   strip_return_address(); // This might happen within a stack frame.
1624   protect_return_address();
1625   stp(r0, rscratch1, Address(pre(sp, -2 * wordSize)));
1626   stp(rscratch2, lr, Address(pre(sp, -2 * wordSize)));
1627 
1628   // addr may contain sp so we will have to adjust it based on the
1629   // pushes that we just did.
1630   if (addr.uses(sp)) {
1631     lea(r0, addr);
1632     ldr(r0, Address(r0, 4 * wordSize));
1633   } else {
1634     ldr(r0, addr);
1635   }
1636   movptr(rscratch1, (uintptr_t)(address)b);
1637 
1638   // call indirectly to solve generation ordering problem
1639   lea(rscratch2, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
1640   ldr(rscratch2, Address(rscratch2));
1641   blr(rscratch2);
1642 
1643   ldp(rscratch2, lr, Address(post(sp, 2 * wordSize)));
1644   ldp(r0, rscratch1, Address(post(sp, 2 * wordSize)));
1645   authenticate_return_address();
1646 
1647   BLOCK_COMMENT("} verify_oop_addr");
1648 }
1649 
1650 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
1651                                          int extra_slot_offset) {
1652   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
1653   int stackElementSize = Interpreter::stackElementSize;
1654   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
1655 #ifdef ASSERT
1656   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
1657   assert(offset1 - offset == stackElementSize, "correct arithmetic");
1658 #endif
1659   if (arg_slot.is_constant()) {
1660     return Address(esp, arg_slot.as_constant() * stackElementSize
1661                    + offset);
1662   } else {
1663     add(rscratch1, esp, arg_slot.as_register(),
1664         ext::uxtx, exact_log2(stackElementSize));
1665     return Address(rscratch1, offset);
1666   }
1667 }
1668 
1669 void MacroAssembler::call_VM_leaf_base(address entry_point,
1670                                        int number_of_arguments,
1671                                        Label *retaddr) {
1672   Label E, L;
1673 
1674   stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize)));
1675 
1676   mov(rscratch1, entry_point);
1677   blr(rscratch1);
1678   if (retaddr)
1679     bind(*retaddr);
1680 
1681   ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize)));
1682 }
1683 
1684 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
1685   call_VM_leaf_base(entry_point, number_of_arguments);
1686 }
1687 
1688 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
1689   pass_arg0(this, arg_0);
1690   call_VM_leaf_base(entry_point, 1);
1691 }
1692 
1693 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1694   pass_arg0(this, arg_0);
1695   pass_arg1(this, arg_1);
1696   call_VM_leaf_base(entry_point, 2);
1697 }
1698 
1699 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
1700                                   Register arg_1, Register arg_2) {
1701   pass_arg0(this, arg_0);
1702   pass_arg1(this, arg_1);
1703   pass_arg2(this, arg_2);
1704   call_VM_leaf_base(entry_point, 3);
1705 }
1706 
1707 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
1708   pass_arg0(this, arg_0);
1709   MacroAssembler::call_VM_leaf_base(entry_point, 1);
1710 }
1711 
1712 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
1713 
1714   assert(arg_0 != c_rarg1, "smashed arg");
1715   pass_arg1(this, arg_1);
1716   pass_arg0(this, arg_0);
1717   MacroAssembler::call_VM_leaf_base(entry_point, 2);
1718 }
1719 
1720 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
1721   assert(arg_0 != c_rarg2, "smashed arg");
1722   assert(arg_1 != c_rarg2, "smashed arg");
1723   pass_arg2(this, arg_2);
1724   assert(arg_0 != c_rarg1, "smashed arg");
1725   pass_arg1(this, arg_1);
1726   pass_arg0(this, arg_0);
1727   MacroAssembler::call_VM_leaf_base(entry_point, 3);
1728 }
1729 
1730 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
1731   assert(arg_0 != c_rarg3, "smashed arg");
1732   assert(arg_1 != c_rarg3, "smashed arg");
1733   assert(arg_2 != c_rarg3, "smashed arg");
1734   pass_arg3(this, arg_3);
1735   assert(arg_0 != c_rarg2, "smashed arg");
1736   assert(arg_1 != c_rarg2, "smashed arg");
1737   pass_arg2(this, arg_2);
1738   assert(arg_0 != c_rarg1, "smashed arg");
1739   pass_arg1(this, arg_1);
1740   pass_arg0(this, arg_0);
1741   MacroAssembler::call_VM_leaf_base(entry_point, 4);
1742 }
1743 
1744 void MacroAssembler::null_check(Register reg, int offset) {
1745   if (needs_explicit_null_check(offset)) {
1746     // provoke OS null exception if reg is null by
1747     // accessing M[reg] w/o changing any registers
1748     // NOTE: this is plenty to provoke a segv
1749     ldr(zr, Address(reg));
1750   } else {
1751     // nothing to do, (later) access of M[reg + offset]
1752     // will provoke OS null exception if reg is null
1753   }
1754 }
1755 
1756 // MacroAssembler protected routines needed to implement
1757 // public methods
1758 
1759 void MacroAssembler::mov(Register r, Address dest) {
1760   code_section()->relocate(pc(), dest.rspec());
1761   uint64_t imm64 = (uint64_t)dest.target();
1762   movptr(r, imm64);
1763 }
1764 
1765 // Move a constant pointer into r.  In AArch64 mode the virtual
1766 // address space is 48 bits in size, so we only need three
1767 // instructions to create a patchable instruction sequence that can
1768 // reach anywhere.
1769 void MacroAssembler::movptr(Register r, uintptr_t imm64) {
1770 #ifndef PRODUCT
1771   {
1772     char buffer[64];
1773     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64);
1774     block_comment(buffer);
1775   }
1776 #endif
1777   assert(imm64 < (1ull << 48), "48-bit overflow in address constant");
1778   movz(r, imm64 & 0xffff);
1779   imm64 >>= 16;
1780   movk(r, imm64 & 0xffff, 16);
1781   imm64 >>= 16;
1782   movk(r, imm64 & 0xffff, 32);
1783 }
1784 
1785 // Macro to mov replicated immediate to vector register.
1786 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is,
1787 //        the upper 56/48/32 bits must be zeros for B/H/S type.
1788 // Vd will get the following values for different arrangements in T
1789 //   imm64 == hex 000000gh  T8B:  Vd = ghghghghghghghgh
1790 //   imm64 == hex 000000gh  T16B: Vd = ghghghghghghghghghghghghghghghgh
1791 //   imm64 == hex 0000efgh  T4H:  Vd = efghefghefghefgh
1792 //   imm64 == hex 0000efgh  T8H:  Vd = efghefghefghefghefghefghefghefgh
1793 //   imm64 == hex abcdefgh  T2S:  Vd = abcdefghabcdefgh
1794 //   imm64 == hex abcdefgh  T4S:  Vd = abcdefghabcdefghabcdefghabcdefgh
1795 //   imm64 == hex abcdefgh  T1D:  Vd = 00000000abcdefgh
1796 //   imm64 == hex abcdefgh  T2D:  Vd = 00000000abcdefgh00000000abcdefgh
1797 // Clobbers rscratch1
1798 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) {
1799   assert(T != T1Q, "unsupported");
1800   if (T == T1D || T == T2D) {
1801     int imm = operand_valid_for_movi_immediate(imm64, T);
1802     if (-1 != imm) {
1803       movi(Vd, T, imm);
1804     } else {
1805       mov(rscratch1, imm64);
1806       dup(Vd, T, rscratch1);
1807     }
1808     return;
1809   }
1810 
1811 #ifdef ASSERT
1812   if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)");
1813   if (T == T4H || T == T8H) assert((imm64  & ~0xffff) == 0, "extraneous bits (T4H/T8H)");
1814   if (T == T2S || T == T4S) assert((imm64  & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)");
1815 #endif
1816   int shift = operand_valid_for_movi_immediate(imm64, T);
1817   uint32_t imm32 = imm64 & 0xffffffffULL;
1818   if (shift >= 0) {
1819     movi(Vd, T, (imm32 >> shift) & 0xff, shift);
1820   } else {
1821     movw(rscratch1, imm32);
1822     dup(Vd, T, rscratch1);
1823   }
1824 }
1825 
1826 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64)
1827 {
1828 #ifndef PRODUCT
1829   {
1830     char buffer[64];
1831     snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64);
1832     block_comment(buffer);
1833   }
1834 #endif
1835   if (operand_valid_for_logical_immediate(false, imm64)) {
1836     orr(dst, zr, imm64);
1837   } else {
1838     // we can use a combination of MOVZ or MOVN with
1839     // MOVK to build up the constant
1840     uint64_t imm_h[4];
1841     int zero_count = 0;
1842     int neg_count = 0;
1843     int i;
1844     for (i = 0; i < 4; i++) {
1845       imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL);
1846       if (imm_h[i] == 0) {
1847         zero_count++;
1848       } else if (imm_h[i] == 0xffffL) {
1849         neg_count++;
1850       }
1851     }
1852     if (zero_count == 4) {
1853       // one MOVZ will do
1854       movz(dst, 0);
1855     } else if (neg_count == 4) {
1856       // one MOVN will do
1857       movn(dst, 0);
1858     } else if (zero_count == 3) {
1859       for (i = 0; i < 4; i++) {
1860         if (imm_h[i] != 0L) {
1861           movz(dst, (uint32_t)imm_h[i], (i << 4));
1862           break;
1863         }
1864       }
1865     } else if (neg_count == 3) {
1866       // one MOVN will do
1867       for (int i = 0; i < 4; i++) {
1868         if (imm_h[i] != 0xffffL) {
1869           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
1870           break;
1871         }
1872       }
1873     } else if (zero_count == 2) {
1874       // one MOVZ and one MOVK will do
1875       for (i = 0; i < 3; i++) {
1876         if (imm_h[i] != 0L) {
1877           movz(dst, (uint32_t)imm_h[i], (i << 4));
1878           i++;
1879           break;
1880         }
1881       }
1882       for (;i < 4; i++) {
1883         if (imm_h[i] != 0L) {
1884           movk(dst, (uint32_t)imm_h[i], (i << 4));
1885         }
1886       }
1887     } else if (neg_count == 2) {
1888       // one MOVN and one MOVK will do
1889       for (i = 0; i < 4; i++) {
1890         if (imm_h[i] != 0xffffL) {
1891           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
1892           i++;
1893           break;
1894         }
1895       }
1896       for (;i < 4; i++) {
1897         if (imm_h[i] != 0xffffL) {
1898           movk(dst, (uint32_t)imm_h[i], (i << 4));
1899         }
1900       }
1901     } else if (zero_count == 1) {
1902       // one MOVZ and two MOVKs will do
1903       for (i = 0; i < 4; i++) {
1904         if (imm_h[i] != 0L) {
1905           movz(dst, (uint32_t)imm_h[i], (i << 4));
1906           i++;
1907           break;
1908         }
1909       }
1910       for (;i < 4; i++) {
1911         if (imm_h[i] != 0x0L) {
1912           movk(dst, (uint32_t)imm_h[i], (i << 4));
1913         }
1914       }
1915     } else if (neg_count == 1) {
1916       // one MOVN and two MOVKs will do
1917       for (i = 0; i < 4; i++) {
1918         if (imm_h[i] != 0xffffL) {
1919           movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4));
1920           i++;
1921           break;
1922         }
1923       }
1924       for (;i < 4; i++) {
1925         if (imm_h[i] != 0xffffL) {
1926           movk(dst, (uint32_t)imm_h[i], (i << 4));
1927         }
1928       }
1929     } else {
1930       // use a MOVZ and 3 MOVKs (makes it easier to debug)
1931       movz(dst, (uint32_t)imm_h[0], 0);
1932       for (i = 1; i < 4; i++) {
1933         movk(dst, (uint32_t)imm_h[i], (i << 4));
1934       }
1935     }
1936   }
1937 }
1938 
1939 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32)
1940 {
1941 #ifndef PRODUCT
1942     {
1943       char buffer[64];
1944       snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32);
1945       block_comment(buffer);
1946     }
1947 #endif
1948   if (operand_valid_for_logical_immediate(true, imm32)) {
1949     orrw(dst, zr, imm32);
1950   } else {
1951     // we can use MOVZ, MOVN or two calls to MOVK to build up the
1952     // constant
1953     uint32_t imm_h[2];
1954     imm_h[0] = imm32 & 0xffff;
1955     imm_h[1] = ((imm32 >> 16) & 0xffff);
1956     if (imm_h[0] == 0) {
1957       movzw(dst, imm_h[1], 16);
1958     } else if (imm_h[0] == 0xffff) {
1959       movnw(dst, imm_h[1] ^ 0xffff, 16);
1960     } else if (imm_h[1] == 0) {
1961       movzw(dst, imm_h[0], 0);
1962     } else if (imm_h[1] == 0xffff) {
1963       movnw(dst, imm_h[0] ^ 0xffff, 0);
1964     } else {
1965       // use a MOVZ and MOVK (makes it easier to debug)
1966       movzw(dst, imm_h[0], 0);
1967       movkw(dst, imm_h[1], 16);
1968     }
1969   }
1970 }
1971 
1972 // Form an address from base + offset in Rd.  Rd may or may
1973 // not actually be used: you must use the Address that is returned.
1974 // It is up to you to ensure that the shift provided matches the size
1975 // of your data.
1976 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) {
1977   if (Address::offset_ok_for_immed(byte_offset, shift))
1978     // It fits; no need for any heroics
1979     return Address(base, byte_offset);
1980 
1981   // Don't do anything clever with negative or misaligned offsets
1982   unsigned mask = (1 << shift) - 1;
1983   if (byte_offset < 0 || byte_offset & mask) {
1984     mov(Rd, byte_offset);
1985     add(Rd, base, Rd);
1986     return Address(Rd);
1987   }
1988 
1989   // See if we can do this with two 12-bit offsets
1990   {
1991     uint64_t word_offset = byte_offset >> shift;
1992     uint64_t masked_offset = word_offset & 0xfff000;
1993     if (Address::offset_ok_for_immed(word_offset - masked_offset, 0)
1994         && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) {
1995       add(Rd, base, masked_offset << shift);
1996       word_offset -= masked_offset;
1997       return Address(Rd, word_offset << shift);
1998     }
1999   }
2000 
2001   // Do it the hard way
2002   mov(Rd, byte_offset);
2003   add(Rd, base, Rd);
2004   return Address(Rd);
2005 }
2006 
2007 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb,
2008                                     bool want_remainder, Register scratch)
2009 {
2010   // Full implementation of Java idiv and irem.  The function
2011   // returns the (pc) offset of the div instruction - may be needed
2012   // for implicit exceptions.
2013   //
2014   // constraint : ra/rb =/= scratch
2015   //         normal case
2016   //
2017   // input : ra: dividend
2018   //         rb: divisor
2019   //
2020   // result: either
2021   //         quotient  (= ra idiv rb)
2022   //         remainder (= ra irem rb)
2023 
2024   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2025 
2026   int idivl_offset = offset();
2027   if (! want_remainder) {
2028     sdivw(result, ra, rb);
2029   } else {
2030     sdivw(scratch, ra, rb);
2031     Assembler::msubw(result, scratch, rb, ra);
2032   }
2033 
2034   return idivl_offset;
2035 }
2036 
2037 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb,
2038                                     bool want_remainder, Register scratch)
2039 {
2040   // Full implementation of Java ldiv and lrem.  The function
2041   // returns the (pc) offset of the div instruction - may be needed
2042   // for implicit exceptions.
2043   //
2044   // constraint : ra/rb =/= scratch
2045   //         normal case
2046   //
2047   // input : ra: dividend
2048   //         rb: divisor
2049   //
2050   // result: either
2051   //         quotient  (= ra idiv rb)
2052   //         remainder (= ra irem rb)
2053 
2054   assert(ra != scratch && rb != scratch, "reg cannot be scratch");
2055 
2056   int idivq_offset = offset();
2057   if (! want_remainder) {
2058     sdiv(result, ra, rb);
2059   } else {
2060     sdiv(scratch, ra, rb);
2061     Assembler::msub(result, scratch, rb, ra);
2062   }
2063 
2064   return idivq_offset;
2065 }
2066 
2067 void MacroAssembler::membar(Membar_mask_bits order_constraint) {
2068   address prev = pc() - NativeMembar::instruction_size;
2069   address last = code()->last_insn();
2070   if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) {
2071     NativeMembar *bar = NativeMembar_at(prev);
2072     // We are merging two memory barrier instructions.  On AArch64 we
2073     // can do this simply by ORing them together.
2074     bar->set_kind(bar->get_kind() | order_constraint);
2075     BLOCK_COMMENT("merged membar");
2076   } else {
2077     code()->set_last_insn(pc());
2078     dmb(Assembler::barrier(order_constraint));
2079   }
2080 }
2081 
2082 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) {
2083   if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) {
2084     merge_ldst(rt, adr, size_in_bytes, is_store);
2085     code()->clear_last_insn();
2086     return true;
2087   } else {
2088     assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported.");
2089     const uint64_t mask = size_in_bytes - 1;
2090     if (adr.getMode() == Address::base_plus_offset &&
2091         (adr.offset() & mask) == 0) { // only supports base_plus_offset.
2092       code()->set_last_insn(pc());
2093     }
2094     return false;
2095   }
2096 }
2097 
2098 void MacroAssembler::ldr(Register Rx, const Address &adr) {
2099   // We always try to merge two adjacent loads into one ldp.
2100   if (!try_merge_ldst(Rx, adr, 8, false)) {
2101     Assembler::ldr(Rx, adr);
2102   }
2103 }
2104 
2105 void MacroAssembler::ldrw(Register Rw, const Address &adr) {
2106   // We always try to merge two adjacent loads into one ldp.
2107   if (!try_merge_ldst(Rw, adr, 4, false)) {
2108     Assembler::ldrw(Rw, adr);
2109   }
2110 }
2111 
2112 void MacroAssembler::str(Register Rx, const Address &adr) {
2113   // We always try to merge two adjacent stores into one stp.
2114   if (!try_merge_ldst(Rx, adr, 8, true)) {
2115     Assembler::str(Rx, adr);
2116   }
2117 }
2118 
2119 void MacroAssembler::strw(Register Rw, const Address &adr) {
2120   // We always try to merge two adjacent stores into one stp.
2121   if (!try_merge_ldst(Rw, adr, 4, true)) {
2122     Assembler::strw(Rw, adr);
2123   }
2124 }
2125 
2126 // MacroAssembler routines found actually to be needed
2127 
2128 void MacroAssembler::push(Register src)
2129 {
2130   str(src, Address(pre(esp, -1 * wordSize)));
2131 }
2132 
2133 void MacroAssembler::pop(Register dst)
2134 {
2135   ldr(dst, Address(post(esp, 1 * wordSize)));
2136 }
2137 
2138 // Note: load_unsigned_short used to be called load_unsigned_word.
2139 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
2140   int off = offset();
2141   ldrh(dst, src);
2142   return off;
2143 }
2144 
2145 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
2146   int off = offset();
2147   ldrb(dst, src);
2148   return off;
2149 }
2150 
2151 int MacroAssembler::load_signed_short(Register dst, Address src) {
2152   int off = offset();
2153   ldrsh(dst, src);
2154   return off;
2155 }
2156 
2157 int MacroAssembler::load_signed_byte(Register dst, Address src) {
2158   int off = offset();
2159   ldrsb(dst, src);
2160   return off;
2161 }
2162 
2163 int MacroAssembler::load_signed_short32(Register dst, Address src) {
2164   int off = offset();
2165   ldrshw(dst, src);
2166   return off;
2167 }
2168 
2169 int MacroAssembler::load_signed_byte32(Register dst, Address src) {
2170   int off = offset();
2171   ldrsbw(dst, src);
2172   return off;
2173 }
2174 
2175 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) {
2176   switch (size_in_bytes) {
2177   case  8:  ldr(dst, src); break;
2178   case  4:  ldrw(dst, src); break;
2179   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
2180   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
2181   default:  ShouldNotReachHere();
2182   }
2183 }
2184 
2185 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) {
2186   switch (size_in_bytes) {
2187   case  8:  str(src, dst); break;
2188   case  4:  strw(src, dst); break;
2189   case  2:  strh(src, dst); break;
2190   case  1:  strb(src, dst); break;
2191   default:  ShouldNotReachHere();
2192   }
2193 }
2194 
2195 void MacroAssembler::decrementw(Register reg, int value)
2196 {
2197   if (value < 0)  { incrementw(reg, -value);      return; }
2198   if (value == 0) {                               return; }
2199   if (value < (1 << 12)) { subw(reg, reg, value); return; }
2200   /* else */ {
2201     guarantee(reg != rscratch2, "invalid dst for register decrement");
2202     movw(rscratch2, (unsigned)value);
2203     subw(reg, reg, rscratch2);
2204   }
2205 }
2206 
2207 void MacroAssembler::decrement(Register reg, int value)
2208 {
2209   if (value < 0)  { increment(reg, -value);      return; }
2210   if (value == 0) {                              return; }
2211   if (value < (1 << 12)) { sub(reg, reg, value); return; }
2212   /* else */ {
2213     assert(reg != rscratch2, "invalid dst for register decrement");
2214     mov(rscratch2, (uint64_t)value);
2215     sub(reg, reg, rscratch2);
2216   }
2217 }
2218 
2219 void MacroAssembler::decrementw(Address dst, int value)
2220 {
2221   assert(!dst.uses(rscratch1), "invalid dst for address decrement");
2222   if (dst.getMode() == Address::literal) {
2223     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2224     lea(rscratch2, dst);
2225     dst = Address(rscratch2);
2226   }
2227   ldrw(rscratch1, dst);
2228   decrementw(rscratch1, value);
2229   strw(rscratch1, dst);
2230 }
2231 
2232 void MacroAssembler::decrement(Address dst, int value)
2233 {
2234   assert(!dst.uses(rscratch1), "invalid address for decrement");
2235   if (dst.getMode() == Address::literal) {
2236     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2237     lea(rscratch2, dst);
2238     dst = Address(rscratch2);
2239   }
2240   ldr(rscratch1, dst);
2241   decrement(rscratch1, value);
2242   str(rscratch1, dst);
2243 }
2244 
2245 void MacroAssembler::incrementw(Register reg, int value)
2246 {
2247   if (value < 0)  { decrementw(reg, -value);      return; }
2248   if (value == 0) {                               return; }
2249   if (value < (1 << 12)) { addw(reg, reg, value); return; }
2250   /* else */ {
2251     assert(reg != rscratch2, "invalid dst for register increment");
2252     movw(rscratch2, (unsigned)value);
2253     addw(reg, reg, rscratch2);
2254   }
2255 }
2256 
2257 void MacroAssembler::increment(Register reg, int value)
2258 {
2259   if (value < 0)  { decrement(reg, -value);      return; }
2260   if (value == 0) {                              return; }
2261   if (value < (1 << 12)) { add(reg, reg, value); return; }
2262   /* else */ {
2263     assert(reg != rscratch2, "invalid dst for register increment");
2264     movw(rscratch2, (unsigned)value);
2265     add(reg, reg, rscratch2);
2266   }
2267 }
2268 
2269 void MacroAssembler::incrementw(Address dst, int value)
2270 {
2271   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2272   if (dst.getMode() == Address::literal) {
2273     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2274     lea(rscratch2, dst);
2275     dst = Address(rscratch2);
2276   }
2277   ldrw(rscratch1, dst);
2278   incrementw(rscratch1, value);
2279   strw(rscratch1, dst);
2280 }
2281 
2282 void MacroAssembler::increment(Address dst, int value)
2283 {
2284   assert(!dst.uses(rscratch1), "invalid dst for address increment");
2285   if (dst.getMode() == Address::literal) {
2286     assert(abs(value) < (1 << 12), "invalid value and address mode combination");
2287     lea(rscratch2, dst);
2288     dst = Address(rscratch2);
2289   }
2290   ldr(rscratch1, dst);
2291   increment(rscratch1, value);
2292   str(rscratch1, dst);
2293 }
2294 
2295 // Push lots of registers in the bit set supplied.  Don't push sp.
2296 // Return the number of words pushed
2297 int MacroAssembler::push(unsigned int bitset, Register stack) {
2298   int words_pushed = 0;
2299 
2300   // Scan bitset to accumulate register pairs
2301   unsigned char regs[32];
2302   int count = 0;
2303   for (int reg = 0; reg <= 30; reg++) {
2304     if (1 & bitset)
2305       regs[count++] = reg;
2306     bitset >>= 1;
2307   }
2308   regs[count++] = zr->raw_encoding();
2309   count &= ~1;  // Only push an even number of regs
2310 
2311   if (count) {
2312     stp(as_Register(regs[0]), as_Register(regs[1]),
2313        Address(pre(stack, -count * wordSize)));
2314     words_pushed += 2;
2315   }
2316   for (int i = 2; i < count; i += 2) {
2317     stp(as_Register(regs[i]), as_Register(regs[i+1]),
2318        Address(stack, i * wordSize));
2319     words_pushed += 2;
2320   }
2321 
2322   assert(words_pushed == count, "oops, pushed != count");
2323 
2324   return count;
2325 }
2326 
2327 int MacroAssembler::pop(unsigned int bitset, Register stack) {
2328   int words_pushed = 0;
2329 
2330   // Scan bitset to accumulate register pairs
2331   unsigned char regs[32];
2332   int count = 0;
2333   for (int reg = 0; reg <= 30; reg++) {
2334     if (1 & bitset)
2335       regs[count++] = reg;
2336     bitset >>= 1;
2337   }
2338   regs[count++] = zr->raw_encoding();
2339   count &= ~1;
2340 
2341   for (int i = 2; i < count; i += 2) {
2342     ldp(as_Register(regs[i]), as_Register(regs[i+1]),
2343        Address(stack, i * wordSize));
2344     words_pushed += 2;
2345   }
2346   if (count) {
2347     ldp(as_Register(regs[0]), as_Register(regs[1]),
2348        Address(post(stack, count * wordSize)));
2349     words_pushed += 2;
2350   }
2351 
2352   assert(words_pushed == count, "oops, pushed != count");
2353 
2354   return count;
2355 }
2356 
2357 // Push lots of registers in the bit set supplied.  Don't push sp.
2358 // Return the number of dwords pushed
2359 int MacroAssembler::push_fp(unsigned int bitset, Register stack) {
2360   int words_pushed = 0;
2361   bool use_sve = false;
2362   int sve_vector_size_in_bytes = 0;
2363 
2364 #ifdef COMPILER2
2365   use_sve = Matcher::supports_scalable_vector();
2366   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2367 #endif
2368 
2369   // Scan bitset to accumulate register pairs
2370   unsigned char regs[32];
2371   int count = 0;
2372   for (int reg = 0; reg <= 31; reg++) {
2373     if (1 & bitset)
2374       regs[count++] = reg;
2375     bitset >>= 1;
2376   }
2377 
2378   if (count == 0) {
2379     return 0;
2380   }
2381 
2382   // SVE
2383   if (use_sve && sve_vector_size_in_bytes > 16) {
2384     sub(stack, stack, sve_vector_size_in_bytes * count);
2385     for (int i = 0; i < count; i++) {
2386       sve_str(as_FloatRegister(regs[i]), Address(stack, i));
2387     }
2388     return count * sve_vector_size_in_bytes / 8;
2389   }
2390 
2391   // NEON
2392   if (count == 1) {
2393     strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2)));
2394     return 2;
2395   }
2396 
2397   bool odd = (count & 1) == 1;
2398   int push_slots = count + (odd ? 1 : 0);
2399 
2400   // Always pushing full 128 bit registers.
2401   stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2)));
2402   words_pushed += 2;
2403 
2404   for (int i = 2; i + 1 < count; i += 2) {
2405     stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2406     words_pushed += 2;
2407   }
2408 
2409   if (odd) {
2410     strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2411     words_pushed++;
2412   }
2413 
2414   assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2415   return count * 2;
2416 }
2417 
2418 // Return the number of dwords popped
2419 int MacroAssembler::pop_fp(unsigned int bitset, Register stack) {
2420   int words_pushed = 0;
2421   bool use_sve = false;
2422   int sve_vector_size_in_bytes = 0;
2423 
2424 #ifdef COMPILER2
2425   use_sve = Matcher::supports_scalable_vector();
2426   sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
2427 #endif
2428   // Scan bitset to accumulate register pairs
2429   unsigned char regs[32];
2430   int count = 0;
2431   for (int reg = 0; reg <= 31; reg++) {
2432     if (1 & bitset)
2433       regs[count++] = reg;
2434     bitset >>= 1;
2435   }
2436 
2437   if (count == 0) {
2438     return 0;
2439   }
2440 
2441   // SVE
2442   if (use_sve && sve_vector_size_in_bytes > 16) {
2443     for (int i = count - 1; i >= 0; i--) {
2444       sve_ldr(as_FloatRegister(regs[i]), Address(stack, i));
2445     }
2446     add(stack, stack, sve_vector_size_in_bytes * count);
2447     return count * sve_vector_size_in_bytes / 8;
2448   }
2449 
2450   // NEON
2451   if (count == 1) {
2452     ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2)));
2453     return 2;
2454   }
2455 
2456   bool odd = (count & 1) == 1;
2457   int push_slots = count + (odd ? 1 : 0);
2458 
2459   if (odd) {
2460     ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2));
2461     words_pushed++;
2462   }
2463 
2464   for (int i = 2; i + 1 < count; i += 2) {
2465     ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2));
2466     words_pushed += 2;
2467   }
2468 
2469   ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2)));
2470   words_pushed += 2;
2471 
2472   assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
2473 
2474   return count * 2;
2475 }
2476 
2477 // Return the number of dwords pushed
2478 int MacroAssembler::push_p(unsigned int bitset, Register stack) {
2479   bool use_sve = false;
2480   int sve_predicate_size_in_slots = 0;
2481 
2482 #ifdef COMPILER2
2483   use_sve = Matcher::supports_scalable_vector();
2484   if (use_sve) {
2485     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2486   }
2487 #endif
2488 
2489   if (!use_sve) {
2490     return 0;
2491   }
2492 
2493   unsigned char regs[PRegister::number_of_registers];
2494   int count = 0;
2495   for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2496     if (1 & bitset)
2497       regs[count++] = reg;
2498     bitset >>= 1;
2499   }
2500 
2501   if (count == 0) {
2502     return 0;
2503   }
2504 
2505   int total_push_bytes = align_up(sve_predicate_size_in_slots *
2506                                   VMRegImpl::stack_slot_size * count, 16);
2507   sub(stack, stack, total_push_bytes);
2508   for (int i = 0; i < count; i++) {
2509     sve_str(as_PRegister(regs[i]), Address(stack, i));
2510   }
2511   return total_push_bytes / 8;
2512 }
2513 
2514 // Return the number of dwords popped
2515 int MacroAssembler::pop_p(unsigned int bitset, Register stack) {
2516   bool use_sve = false;
2517   int sve_predicate_size_in_slots = 0;
2518 
2519 #ifdef COMPILER2
2520   use_sve = Matcher::supports_scalable_vector();
2521   if (use_sve) {
2522     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
2523   }
2524 #endif
2525 
2526   if (!use_sve) {
2527     return 0;
2528   }
2529 
2530   unsigned char regs[PRegister::number_of_registers];
2531   int count = 0;
2532   for (int reg = 0; reg < PRegister::number_of_registers; reg++) {
2533     if (1 & bitset)
2534       regs[count++] = reg;
2535     bitset >>= 1;
2536   }
2537 
2538   if (count == 0) {
2539     return 0;
2540   }
2541 
2542   int total_pop_bytes = align_up(sve_predicate_size_in_slots *
2543                                  VMRegImpl::stack_slot_size * count, 16);
2544   for (int i = count - 1; i >= 0; i--) {
2545     sve_ldr(as_PRegister(regs[i]), Address(stack, i));
2546   }
2547   add(stack, stack, total_pop_bytes);
2548   return total_pop_bytes / 8;
2549 }
2550 
2551 #ifdef ASSERT
2552 void MacroAssembler::verify_heapbase(const char* msg) {
2553 #if 0
2554   assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed");
2555   assert (Universe::heap() != nullptr, "java heap should be initialized");
2556   if (!UseCompressedOops || Universe::ptr_base() == nullptr) {
2557     // rheapbase is allocated as general register
2558     return;
2559   }
2560   if (CheckCompressedOops) {
2561     Label ok;
2562     push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1
2563     cmpptr(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
2564     br(Assembler::EQ, ok);
2565     stop(msg);
2566     bind(ok);
2567     pop(1 << rscratch1->encoding(), sp);
2568   }
2569 #endif
2570 }
2571 #endif
2572 
2573 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) {
2574   assert_different_registers(value, tmp1, tmp2);
2575   Label done, tagged, weak_tagged;
2576 
2577   cbz(value, done);           // Use null as-is.
2578   tst(value, JNIHandles::tag_mask); // Test for tag.
2579   br(Assembler::NE, tagged);
2580 
2581   // Resolve local handle
2582   access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2);
2583   verify_oop(value);
2584   b(done);
2585 
2586   bind(tagged);
2587   STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1);
2588   tbnz(value, 0, weak_tagged);    // Test for weak tag.
2589 
2590   // Resolve global handle
2591   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
2592   verify_oop(value);
2593   b(done);
2594 
2595   bind(weak_tagged);
2596   // Resolve jweak.
2597   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
2598                  value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2);
2599   verify_oop(value);
2600 
2601   bind(done);
2602 }
2603 
2604 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) {
2605   assert_different_registers(value, tmp1, tmp2);
2606   Label done;
2607 
2608   cbz(value, done);           // Use null as-is.
2609 
2610 #ifdef ASSERT
2611   {
2612     STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10);
2613     Label valid_global_tag;
2614     tbnz(value, 1, valid_global_tag); // Test for global tag
2615     stop("non global jobject using resolve_global_jobject");
2616     bind(valid_global_tag);
2617   }
2618 #endif
2619 
2620   // Resolve global handle
2621   access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2);
2622   verify_oop(value);
2623 
2624   bind(done);
2625 }
2626 
2627 void MacroAssembler::stop(const char* msg) {
2628   BLOCK_COMMENT(msg);
2629   dcps1(0xdeae);
2630   emit_int64((uintptr_t)msg);
2631 }
2632 
2633 void MacroAssembler::unimplemented(const char* what) {
2634   const char* buf = nullptr;
2635   {
2636     ResourceMark rm;
2637     stringStream ss;
2638     ss.print("unimplemented: %s", what);
2639     buf = code_string(ss.as_string());
2640   }
2641   stop(buf);
2642 }
2643 
2644 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) {
2645 #ifdef ASSERT
2646   Label OK;
2647   br(cc, OK);
2648   stop(msg);
2649   bind(OK);
2650 #endif
2651 }
2652 
2653 // If a constant does not fit in an immediate field, generate some
2654 // number of MOV instructions and then perform the operation.
2655 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
2656                                            add_sub_imm_insn insn1,
2657                                            add_sub_reg_insn insn2,
2658                                            bool is32) {
2659   assert(Rd != zr, "Rd = zr and not setting flags?");
2660   bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
2661   if (fits) {
2662     (this->*insn1)(Rd, Rn, imm);
2663   } else {
2664     if (uabs(imm) < (1 << 24)) {
2665        (this->*insn1)(Rd, Rn, imm & -(1 << 12));
2666        (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1));
2667     } else {
2668        assert_different_registers(Rd, Rn);
2669        mov(Rd, imm);
2670        (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2671     }
2672   }
2673 }
2674 
2675 // Separate vsn which sets the flags. Optimisations are more restricted
2676 // because we must set the flags correctly.
2677 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
2678                                              add_sub_imm_insn insn1,
2679                                              add_sub_reg_insn insn2,
2680                                              bool is32) {
2681   bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm);
2682   if (fits) {
2683     (this->*insn1)(Rd, Rn, imm);
2684   } else {
2685     assert_different_registers(Rd, Rn);
2686     assert(Rd != zr, "overflow in immediate operand");
2687     mov(Rd, imm);
2688     (this->*insn2)(Rd, Rn, Rd, LSL, 0);
2689   }
2690 }
2691 
2692 
2693 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) {
2694   if (increment.is_register()) {
2695     add(Rd, Rn, increment.as_register());
2696   } else {
2697     add(Rd, Rn, increment.as_constant());
2698   }
2699 }
2700 
2701 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) {
2702   if (increment.is_register()) {
2703     addw(Rd, Rn, increment.as_register());
2704   } else {
2705     addw(Rd, Rn, increment.as_constant());
2706   }
2707 }
2708 
2709 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) {
2710   if (decrement.is_register()) {
2711     sub(Rd, Rn, decrement.as_register());
2712   } else {
2713     sub(Rd, Rn, decrement.as_constant());
2714   }
2715 }
2716 
2717 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) {
2718   if (decrement.is_register()) {
2719     subw(Rd, Rn, decrement.as_register());
2720   } else {
2721     subw(Rd, Rn, decrement.as_constant());
2722   }
2723 }
2724 
2725 void MacroAssembler::reinit_heapbase()
2726 {
2727   if (UseCompressedOops) {
2728     if (Universe::is_fully_initialized()) {
2729       mov(rheapbase, CompressedOops::ptrs_base());
2730     } else {
2731       lea(rheapbase, ExternalAddress(CompressedOops::ptrs_base_addr()));
2732       ldr(rheapbase, Address(rheapbase));
2733     }
2734   }
2735 }
2736 
2737 // this simulates the behaviour of the x86 cmpxchg instruction using a
2738 // load linked/store conditional pair. we use the acquire/release
2739 // versions of these instructions so that we flush pending writes as
2740 // per Java semantics.
2741 
2742 // n.b the x86 version assumes the old value to be compared against is
2743 // in rax and updates rax with the value located in memory if the
2744 // cmpxchg fails. we supply a register for the old value explicitly
2745 
2746 // the aarch64 load linked/store conditional instructions do not
2747 // accept an offset. so, unlike x86, we must provide a plain register
2748 // to identify the memory word to be compared/exchanged rather than a
2749 // register+offset Address.
2750 
2751 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
2752                                 Label &succeed, Label *fail) {
2753   // oldv holds comparison value
2754   // newv holds value to write in exchange
2755   // addr identifies memory word to compare against/update
2756   if (UseLSE) {
2757     mov(tmp, oldv);
2758     casal(Assembler::xword, oldv, newv, addr);
2759     cmp(tmp, oldv);
2760     br(Assembler::EQ, succeed);
2761     membar(AnyAny);
2762   } else {
2763     Label retry_load, nope;
2764     prfm(Address(addr), PSTL1STRM);
2765     bind(retry_load);
2766     // flush and load exclusive from the memory location
2767     // and fail if it is not what we expect
2768     ldaxr(tmp, addr);
2769     cmp(tmp, oldv);
2770     br(Assembler::NE, nope);
2771     // if we store+flush with no intervening write tmp will be zero
2772     stlxr(tmp, newv, addr);
2773     cbzw(tmp, succeed);
2774     // retry so we only ever return after a load fails to compare
2775     // ensures we don't return a stale value after a failed write.
2776     b(retry_load);
2777     // if the memory word differs we return it in oldv and signal a fail
2778     bind(nope);
2779     membar(AnyAny);
2780     mov(oldv, tmp);
2781   }
2782   if (fail)
2783     b(*fail);
2784 }
2785 
2786 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
2787                                         Label &succeed, Label *fail) {
2788   assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
2789   cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
2790 }
2791 
2792 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
2793                                 Label &succeed, Label *fail) {
2794   // oldv holds comparison value
2795   // newv holds value to write in exchange
2796   // addr identifies memory word to compare against/update
2797   // tmp returns 0/1 for success/failure
2798   if (UseLSE) {
2799     mov(tmp, oldv);
2800     casal(Assembler::word, oldv, newv, addr);
2801     cmp(tmp, oldv);
2802     br(Assembler::EQ, succeed);
2803     membar(AnyAny);
2804   } else {
2805     Label retry_load, nope;
2806     prfm(Address(addr), PSTL1STRM);
2807     bind(retry_load);
2808     // flush and load exclusive from the memory location
2809     // and fail if it is not what we expect
2810     ldaxrw(tmp, addr);
2811     cmp(tmp, oldv);
2812     br(Assembler::NE, nope);
2813     // if we store+flush with no intervening write tmp will be zero
2814     stlxrw(tmp, newv, addr);
2815     cbzw(tmp, succeed);
2816     // retry so we only ever return after a load fails to compare
2817     // ensures we don't return a stale value after a failed write.
2818     b(retry_load);
2819     // if the memory word differs we return it in oldv and signal a fail
2820     bind(nope);
2821     membar(AnyAny);
2822     mov(oldv, tmp);
2823   }
2824   if (fail)
2825     b(*fail);
2826 }
2827 
2828 // A generic CAS; success or failure is in the EQ flag.  A weak CAS
2829 // doesn't retry and may fail spuriously.  If the oldval is wanted,
2830 // Pass a register for the result, otherwise pass noreg.
2831 
2832 // Clobbers rscratch1
2833 void MacroAssembler::cmpxchg(Register addr, Register expected,
2834                              Register new_val,
2835                              enum operand_size size,
2836                              bool acquire, bool release,
2837                              bool weak,
2838                              Register result) {
2839   if (result == noreg)  result = rscratch1;
2840   BLOCK_COMMENT("cmpxchg {");
2841   if (UseLSE) {
2842     mov(result, expected);
2843     lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true);
2844     compare_eq(result, expected, size);
2845 #ifdef ASSERT
2846     // Poison rscratch1 which is written on !UseLSE branch
2847     mov(rscratch1, 0x1f1f1f1f1f1f1f1f);
2848 #endif
2849   } else {
2850     Label retry_load, done;
2851     prfm(Address(addr), PSTL1STRM);
2852     bind(retry_load);
2853     load_exclusive(result, addr, size, acquire);
2854     compare_eq(result, expected, size);
2855     br(Assembler::NE, done);
2856     store_exclusive(rscratch1, new_val, addr, size, release);
2857     if (weak) {
2858       cmpw(rscratch1, 0u);  // If the store fails, return NE to our caller.
2859     } else {
2860       cbnzw(rscratch1, retry_load);
2861     }
2862     bind(done);
2863   }
2864   BLOCK_COMMENT("} cmpxchg");
2865 }
2866 
2867 // A generic comparison. Only compares for equality, clobbers rscratch1.
2868 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) {
2869   if (size == xword) {
2870     cmp(rm, rn);
2871   } else if (size == word) {
2872     cmpw(rm, rn);
2873   } else if (size == halfword) {
2874     eorw(rscratch1, rm, rn);
2875     ands(zr, rscratch1, 0xffff);
2876   } else if (size == byte) {
2877     eorw(rscratch1, rm, rn);
2878     ands(zr, rscratch1, 0xff);
2879   } else {
2880     ShouldNotReachHere();
2881   }
2882 }
2883 
2884 
2885 static bool different(Register a, RegisterOrConstant b, Register c) {
2886   if (b.is_constant())
2887     return a != c;
2888   else
2889     return a != b.as_register() && a != c && b.as_register() != c;
2890 }
2891 
2892 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz)                   \
2893 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
2894   if (UseLSE) {                                                         \
2895     prev = prev->is_valid() ? prev : zr;                                \
2896     if (incr.is_register()) {                                           \
2897       AOP(sz, incr.as_register(), prev, addr);                          \
2898     } else {                                                            \
2899       mov(rscratch2, incr.as_constant());                               \
2900       AOP(sz, rscratch2, prev, addr);                                   \
2901     }                                                                   \
2902     return;                                                             \
2903   }                                                                     \
2904   Register result = rscratch2;                                          \
2905   if (prev->is_valid())                                                 \
2906     result = different(prev, incr, addr) ? prev : rscratch2;            \
2907                                                                         \
2908   Label retry_load;                                                     \
2909   prfm(Address(addr), PSTL1STRM);                                       \
2910   bind(retry_load);                                                     \
2911   LDXR(result, addr);                                                   \
2912   OP(rscratch1, result, incr);                                          \
2913   STXR(rscratch2, rscratch1, addr);                                     \
2914   cbnzw(rscratch2, retry_load);                                         \
2915   if (prev->is_valid() && prev != result) {                             \
2916     IOP(prev, rscratch1, incr);                                         \
2917   }                                                                     \
2918 }
2919 
2920 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword)
2921 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word)
2922 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword)
2923 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word)
2924 
2925 #undef ATOMIC_OP
2926 
2927 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz)                            \
2928 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
2929   if (UseLSE) {                                                         \
2930     prev = prev->is_valid() ? prev : zr;                                \
2931     AOP(sz, newv, prev, addr);                                          \
2932     return;                                                             \
2933   }                                                                     \
2934   Register result = rscratch2;                                          \
2935   if (prev->is_valid())                                                 \
2936     result = different(prev, newv, addr) ? prev : rscratch2;            \
2937                                                                         \
2938   Label retry_load;                                                     \
2939   prfm(Address(addr), PSTL1STRM);                                       \
2940   bind(retry_load);                                                     \
2941   LDXR(result, addr);                                                   \
2942   STXR(rscratch1, newv, addr);                                          \
2943   cbnzw(rscratch1, retry_load);                                         \
2944   if (prev->is_valid() && prev != result)                               \
2945     mov(prev, result);                                                  \
2946 }
2947 
2948 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword)
2949 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word)
2950 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword)
2951 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word)
2952 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword)
2953 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word)
2954 
2955 #undef ATOMIC_XCHG
2956 
2957 #ifndef PRODUCT
2958 extern "C" void findpc(intptr_t x);
2959 #endif
2960 
2961 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
2962 {
2963   // In order to get locks to work, we need to fake a in_VM state
2964   if (ShowMessageBoxOnError ) {
2965     JavaThread* thread = JavaThread::current();
2966     JavaThreadState saved_state = thread->thread_state();
2967     thread->set_thread_state(_thread_in_vm);
2968 #ifndef PRODUCT
2969     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
2970       ttyLocker ttyl;
2971       BytecodeCounter::print();
2972     }
2973 #endif
2974     if (os::message_box(msg, "Execution stopped, print registers?")) {
2975       ttyLocker ttyl;
2976       tty->print_cr(" pc = 0x%016" PRIx64, pc);
2977 #ifndef PRODUCT
2978       tty->cr();
2979       findpc(pc);
2980       tty->cr();
2981 #endif
2982       tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]);
2983       tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]);
2984       tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]);
2985       tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]);
2986       tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]);
2987       tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]);
2988       tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]);
2989       tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]);
2990       tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]);
2991       tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]);
2992       tty->print_cr("r10 = 0x%016" PRIx64, regs[10]);
2993       tty->print_cr("r11 = 0x%016" PRIx64, regs[11]);
2994       tty->print_cr("r12 = 0x%016" PRIx64, regs[12]);
2995       tty->print_cr("r13 = 0x%016" PRIx64, regs[13]);
2996       tty->print_cr("r14 = 0x%016" PRIx64, regs[14]);
2997       tty->print_cr("r15 = 0x%016" PRIx64, regs[15]);
2998       tty->print_cr("r16 = 0x%016" PRIx64, regs[16]);
2999       tty->print_cr("r17 = 0x%016" PRIx64, regs[17]);
3000       tty->print_cr("r18 = 0x%016" PRIx64, regs[18]);
3001       tty->print_cr("r19 = 0x%016" PRIx64, regs[19]);
3002       tty->print_cr("r20 = 0x%016" PRIx64, regs[20]);
3003       tty->print_cr("r21 = 0x%016" PRIx64, regs[21]);
3004       tty->print_cr("r22 = 0x%016" PRIx64, regs[22]);
3005       tty->print_cr("r23 = 0x%016" PRIx64, regs[23]);
3006       tty->print_cr("r24 = 0x%016" PRIx64, regs[24]);
3007       tty->print_cr("r25 = 0x%016" PRIx64, regs[25]);
3008       tty->print_cr("r26 = 0x%016" PRIx64, regs[26]);
3009       tty->print_cr("r27 = 0x%016" PRIx64, regs[27]);
3010       tty->print_cr("r28 = 0x%016" PRIx64, regs[28]);
3011       tty->print_cr("r30 = 0x%016" PRIx64, regs[30]);
3012       tty->print_cr("r31 = 0x%016" PRIx64, regs[31]);
3013       BREAKPOINT;
3014     }
3015   }
3016   fatal("DEBUG MESSAGE: %s", msg);
3017 }
3018 
3019 RegSet MacroAssembler::call_clobbered_gp_registers() {
3020   RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2);
3021 #ifndef R18_RESERVED
3022   regs += r18_tls;
3023 #endif
3024   return regs;
3025 }
3026 
3027 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
3028   int step = 4 * wordSize;
3029   push(call_clobbered_gp_registers() - exclude, sp);
3030   sub(sp, sp, step);
3031   mov(rscratch1, -step);
3032   // Push v0-v7, v16-v31.
3033   for (int i = 31; i>= 4; i -= 4) {
3034     if (i <= v7->encoding() || i >= v16->encoding())
3035       st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1),
3036           as_FloatRegister(i), T1D, Address(post(sp, rscratch1)));
3037   }
3038   st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2),
3039       as_FloatRegister(3), T1D, Address(sp));
3040 }
3041 
3042 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
3043   for (int i = 0; i < 32; i += 4) {
3044     if (i <= v7->encoding() || i >= v16->encoding())
3045       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3046           as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize)));
3047   }
3048 
3049   reinitialize_ptrue();
3050 
3051   pop(call_clobbered_gp_registers() - exclude, sp);
3052 }
3053 
3054 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve,
3055                                     int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3056   push(RegSet::range(r0, r29), sp); // integer registers except lr & sp
3057   if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3058     sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3059     for (int i = 0; i < FloatRegister::number_of_registers; i++) {
3060       sve_str(as_FloatRegister(i), Address(sp, i));
3061     }
3062   } else {
3063     int step = (save_vectors ? 8 : 4) * wordSize;
3064     mov(rscratch1, -step);
3065     sub(sp, sp, step);
3066     for (int i = 28; i >= 4; i -= 4) {
3067       st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3068           as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1)));
3069     }
3070     st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp);
3071   }
3072   if (save_vectors && use_sve && total_predicate_in_bytes > 0) {
3073     sub(sp, sp, total_predicate_in_bytes);
3074     for (int i = 0; i < PRegister::number_of_registers; i++) {
3075       sve_str(as_PRegister(i), Address(sp, i));
3076     }
3077   }
3078 }
3079 
3080 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve,
3081                                    int sve_vector_size_in_bytes, int total_predicate_in_bytes) {
3082   if (restore_vectors && use_sve && total_predicate_in_bytes > 0) {
3083     for (int i = PRegister::number_of_registers - 1; i >= 0; i--) {
3084       sve_ldr(as_PRegister(i), Address(sp, i));
3085     }
3086     add(sp, sp, total_predicate_in_bytes);
3087   }
3088   if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) {
3089     for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) {
3090       sve_ldr(as_FloatRegister(i), Address(sp, i));
3091     }
3092     add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers);
3093   } else {
3094     int step = (restore_vectors ? 8 : 4) * wordSize;
3095     for (int i = 0; i <= 28; i += 4)
3096       ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2),
3097           as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step)));
3098   }
3099 
3100   // We may use predicate registers and rely on ptrue with SVE,
3101   // regardless of wide vector (> 8 bytes) used or not.
3102   if (use_sve) {
3103     reinitialize_ptrue();
3104   }
3105 
3106   // integer registers except lr & sp
3107   pop(RegSet::range(r0, r17), sp);
3108 #ifdef R18_RESERVED
3109   ldp(zr, r19, Address(post(sp, 2 * wordSize)));
3110   pop(RegSet::range(r20, r29), sp);
3111 #else
3112   pop(RegSet::range(r18_tls, r29), sp);
3113 #endif
3114 }
3115 
3116 /**
3117  * Helpers for multiply_to_len().
3118  */
3119 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
3120                                      Register src1, Register src2) {
3121   adds(dest_lo, dest_lo, src1);
3122   adc(dest_hi, dest_hi, zr);
3123   adds(dest_lo, dest_lo, src2);
3124   adc(final_dest_hi, dest_hi, zr);
3125 }
3126 
3127 // Generate an address from (r + r1 extend offset).  "size" is the
3128 // size of the operand.  The result may be in rscratch2.
3129 Address MacroAssembler::offsetted_address(Register r, Register r1,
3130                                           Address::extend ext, int offset, int size) {
3131   if (offset || (ext.shift() % size != 0)) {
3132     lea(rscratch2, Address(r, r1, ext));
3133     return Address(rscratch2, offset);
3134   } else {
3135     return Address(r, r1, ext);
3136   }
3137 }
3138 
3139 Address MacroAssembler::spill_address(int size, int offset, Register tmp)
3140 {
3141   assert(offset >= 0, "spill to negative address?");
3142   // Offset reachable ?
3143   //   Not aligned - 9 bits signed offset
3144   //   Aligned - 12 bits unsigned offset shifted
3145   Register base = sp;
3146   if ((offset & (size-1)) && offset >= (1<<8)) {
3147     add(tmp, base, offset & ((1<<12)-1));
3148     base = tmp;
3149     offset &= -1u<<12;
3150   }
3151 
3152   if (offset >= (1<<12) * size) {
3153     add(tmp, base, offset & (((1<<12)-1)<<12));
3154     base = tmp;
3155     offset &= ~(((1<<12)-1)<<12);
3156   }
3157 
3158   return Address(base, offset);
3159 }
3160 
3161 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) {
3162   assert(offset >= 0, "spill to negative address?");
3163 
3164   Register base = sp;
3165 
3166   // An immediate offset in the range 0 to 255 which is multiplied
3167   // by the current vector or predicate register size in bytes.
3168   if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) {
3169     return Address(base, offset / sve_reg_size_in_bytes);
3170   }
3171 
3172   add(tmp, base, offset);
3173   return Address(tmp);
3174 }
3175 
3176 // Checks whether offset is aligned.
3177 // Returns true if it is, else false.
3178 bool MacroAssembler::merge_alignment_check(Register base,
3179                                            size_t size,
3180                                            int64_t cur_offset,
3181                                            int64_t prev_offset) const {
3182   if (AvoidUnalignedAccesses) {
3183     if (base == sp) {
3184       // Checks whether low offset if aligned to pair of registers.
3185       int64_t pair_mask = size * 2 - 1;
3186       int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3187       return (offset & pair_mask) == 0;
3188     } else { // If base is not sp, we can't guarantee the access is aligned.
3189       return false;
3190     }
3191   } else {
3192     int64_t mask = size - 1;
3193     // Load/store pair instruction only supports element size aligned offset.
3194     return (cur_offset & mask) == 0 && (prev_offset & mask) == 0;
3195   }
3196 }
3197 
3198 // Checks whether current and previous loads/stores can be merged.
3199 // Returns true if it can be merged, else false.
3200 bool MacroAssembler::ldst_can_merge(Register rt,
3201                                     const Address &adr,
3202                                     size_t cur_size_in_bytes,
3203                                     bool is_store) const {
3204   address prev = pc() - NativeInstruction::instruction_size;
3205   address last = code()->last_insn();
3206 
3207   if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) {
3208     return false;
3209   }
3210 
3211   if (adr.getMode() != Address::base_plus_offset || prev != last) {
3212     return false;
3213   }
3214 
3215   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3216   size_t prev_size_in_bytes = prev_ldst->size_in_bytes();
3217 
3218   assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging.");
3219   assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging.");
3220 
3221   if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) {
3222     return false;
3223   }
3224 
3225   int64_t max_offset = 63 * prev_size_in_bytes;
3226   int64_t min_offset = -64 * prev_size_in_bytes;
3227 
3228   assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged.");
3229 
3230   // Only same base can be merged.
3231   if (adr.base() != prev_ldst->base()) {
3232     return false;
3233   }
3234 
3235   int64_t cur_offset = adr.offset();
3236   int64_t prev_offset = prev_ldst->offset();
3237   size_t diff = abs(cur_offset - prev_offset);
3238   if (diff != prev_size_in_bytes) {
3239     return false;
3240   }
3241 
3242   // Following cases can not be merged:
3243   // ldr x2, [x2, #8]
3244   // ldr x3, [x2, #16]
3245   // or:
3246   // ldr x2, [x3, #8]
3247   // ldr x2, [x3, #16]
3248   // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL.
3249   if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) {
3250     return false;
3251   }
3252 
3253   int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset;
3254   // Offset range must be in ldp/stp instruction's range.
3255   if (low_offset > max_offset || low_offset < min_offset) {
3256     return false;
3257   }
3258 
3259   if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) {
3260     return true;
3261   }
3262 
3263   return false;
3264 }
3265 
3266 // Merge current load/store with previous load/store into ldp/stp.
3267 void MacroAssembler::merge_ldst(Register rt,
3268                                 const Address &adr,
3269                                 size_t cur_size_in_bytes,
3270                                 bool is_store) {
3271 
3272   assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged.");
3273 
3274   Register rt_low, rt_high;
3275   address prev = pc() - NativeInstruction::instruction_size;
3276   NativeLdSt* prev_ldst = NativeLdSt_at(prev);
3277 
3278   int64_t offset;
3279 
3280   if (adr.offset() < prev_ldst->offset()) {
3281     offset = adr.offset();
3282     rt_low = rt;
3283     rt_high = prev_ldst->target();
3284   } else {
3285     offset = prev_ldst->offset();
3286     rt_low = prev_ldst->target();
3287     rt_high = rt;
3288   }
3289 
3290   Address adr_p = Address(prev_ldst->base(), offset);
3291   // Overwrite previous generated binary.
3292   code_section()->set_end(prev);
3293 
3294   const size_t sz = prev_ldst->size_in_bytes();
3295   assert(sz == 8 || sz == 4, "only supports 64/32bit merging.");
3296   if (!is_store) {
3297     BLOCK_COMMENT("merged ldr pair");
3298     if (sz == 8) {
3299       ldp(rt_low, rt_high, adr_p);
3300     } else {
3301       ldpw(rt_low, rt_high, adr_p);
3302     }
3303   } else {
3304     BLOCK_COMMENT("merged str pair");
3305     if (sz == 8) {
3306       stp(rt_low, rt_high, adr_p);
3307     } else {
3308       stpw(rt_low, rt_high, adr_p);
3309     }
3310   }
3311 }
3312 
3313 /**
3314  * Multiply 64 bit by 64 bit first loop.
3315  */
3316 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
3317                                            Register y, Register y_idx, Register z,
3318                                            Register carry, Register product,
3319                                            Register idx, Register kdx) {
3320   //
3321   //  jlong carry, x[], y[], z[];
3322   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3323   //    huge_128 product = y[idx] * x[xstart] + carry;
3324   //    z[kdx] = (jlong)product;
3325   //    carry  = (jlong)(product >>> 64);
3326   //  }
3327   //  z[xstart] = carry;
3328   //
3329 
3330   Label L_first_loop, L_first_loop_exit;
3331   Label L_one_x, L_one_y, L_multiply;
3332 
3333   subsw(xstart, xstart, 1);
3334   br(Assembler::MI, L_one_x);
3335 
3336   lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt)));
3337   ldr(x_xstart, Address(rscratch1));
3338   ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian
3339 
3340   bind(L_first_loop);
3341   subsw(idx, idx, 1);
3342   br(Assembler::MI, L_first_loop_exit);
3343   subsw(idx, idx, 1);
3344   br(Assembler::MI, L_one_y);
3345   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3346   ldr(y_idx, Address(rscratch1));
3347   ror(y_idx, y_idx, 32); // convert big-endian to little-endian
3348   bind(L_multiply);
3349 
3350   // AArch64 has a multiply-accumulate instruction that we can't use
3351   // here because it has no way to process carries, so we have to use
3352   // separate add and adc instructions.  Bah.
3353   umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product
3354   mul(product, x_xstart, y_idx);
3355   adds(product, product, carry);
3356   adc(carry, rscratch1, zr);   // x_xstart * y_idx + carry -> carry:product
3357 
3358   subw(kdx, kdx, 2);
3359   ror(product, product, 32); // back to big-endian
3360   str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong));
3361 
3362   b(L_first_loop);
3363 
3364   bind(L_one_y);
3365   ldrw(y_idx, Address(y,  0));
3366   b(L_multiply);
3367 
3368   bind(L_one_x);
3369   ldrw(x_xstart, Address(x,  0));
3370   b(L_first_loop);
3371 
3372   bind(L_first_loop_exit);
3373 }
3374 
3375 /**
3376  * Multiply 128 bit by 128. Unrolled inner loop.
3377  *
3378  */
3379 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
3380                                              Register carry, Register carry2,
3381                                              Register idx, Register jdx,
3382                                              Register yz_idx1, Register yz_idx2,
3383                                              Register tmp, Register tmp3, Register tmp4,
3384                                              Register tmp6, Register product_hi) {
3385 
3386   //   jlong carry, x[], y[], z[];
3387   //   int kdx = ystart+1;
3388   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
3389   //     huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
3390   //     jlong carry2  = (jlong)(tmp3 >>> 64);
3391   //     huge_128 tmp4 = (y[idx]   * product_hi) + z[kdx+idx] + carry2;
3392   //     carry  = (jlong)(tmp4 >>> 64);
3393   //     z[kdx+idx+1] = (jlong)tmp3;
3394   //     z[kdx+idx] = (jlong)tmp4;
3395   //   }
3396   //   idx += 2;
3397   //   if (idx > 0) {
3398   //     yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
3399   //     z[kdx+idx] = (jlong)yz_idx1;
3400   //     carry  = (jlong)(yz_idx1 >>> 64);
3401   //   }
3402   //
3403 
3404   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
3405 
3406   lsrw(jdx, idx, 2);
3407 
3408   bind(L_third_loop);
3409 
3410   subsw(jdx, jdx, 1);
3411   br(Assembler::MI, L_third_loop_exit);
3412   subw(idx, idx, 4);
3413 
3414   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3415 
3416   ldp(yz_idx2, yz_idx1, Address(rscratch1, 0));
3417 
3418   lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3419 
3420   ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
3421   ror(yz_idx2, yz_idx2, 32);
3422 
3423   ldp(rscratch2, rscratch1, Address(tmp6, 0));
3424 
3425   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3426   umulh(tmp4, product_hi, yz_idx1);
3427 
3428   ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian
3429   ror(rscratch2, rscratch2, 32);
3430 
3431   mul(tmp, product_hi, yz_idx2);   //  yz_idx2 * product_hi -> carry2:tmp
3432   umulh(carry2, product_hi, yz_idx2);
3433 
3434   // propagate sum of both multiplications into carry:tmp4:tmp3
3435   adds(tmp3, tmp3, carry);
3436   adc(tmp4, tmp4, zr);
3437   adds(tmp3, tmp3, rscratch1);
3438   adcs(tmp4, tmp4, tmp);
3439   adc(carry, carry2, zr);
3440   adds(tmp4, tmp4, rscratch2);
3441   adc(carry, carry, zr);
3442 
3443   ror(tmp3, tmp3, 32); // convert little-endian to big-endian
3444   ror(tmp4, tmp4, 32);
3445   stp(tmp4, tmp3, Address(tmp6, 0));
3446 
3447   b(L_third_loop);
3448   bind (L_third_loop_exit);
3449 
3450   andw (idx, idx, 0x3);
3451   cbz(idx, L_post_third_loop_done);
3452 
3453   Label L_check_1;
3454   subsw(idx, idx, 2);
3455   br(Assembler::MI, L_check_1);
3456 
3457   lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3458   ldr(yz_idx1, Address(rscratch1, 0));
3459   ror(yz_idx1, yz_idx1, 32);
3460   mul(tmp3, product_hi, yz_idx1);  //  yz_idx1 * product_hi -> tmp4:tmp3
3461   umulh(tmp4, product_hi, yz_idx1);
3462   lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3463   ldr(yz_idx2, Address(rscratch1, 0));
3464   ror(yz_idx2, yz_idx2, 32);
3465 
3466   add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2);
3467 
3468   ror(tmp3, tmp3, 32);
3469   str(tmp3, Address(rscratch1, 0));
3470 
3471   bind (L_check_1);
3472 
3473   andw (idx, idx, 0x1);
3474   subsw(idx, idx, 1);
3475   br(Assembler::MI, L_post_third_loop_done);
3476   ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt)));
3477   mul(tmp3, tmp4, product_hi);  //  tmp4 * product_hi -> carry2:tmp3
3478   umulh(carry2, tmp4, product_hi);
3479   ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3480 
3481   add2_with_carry(carry2, tmp3, tmp4, carry);
3482 
3483   strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt)));
3484   extr(carry, carry2, tmp3, 32);
3485 
3486   bind(L_post_third_loop_done);
3487 }
3488 
3489 /**
3490  * Code for BigInteger::multiplyToLen() intrinsic.
3491  *
3492  * r0: x
3493  * r1: xlen
3494  * r2: y
3495  * r3: ylen
3496  * r4:  z
3497  * r5: zlen
3498  * r10: tmp1
3499  * r11: tmp2
3500  * r12: tmp3
3501  * r13: tmp4
3502  * r14: tmp5
3503  * r15: tmp6
3504  * r16: tmp7
3505  *
3506  */
3507 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
3508                                      Register z, Register zlen,
3509                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4,
3510                                      Register tmp5, Register tmp6, Register product_hi) {
3511 
3512   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
3513 
3514   const Register idx = tmp1;
3515   const Register kdx = tmp2;
3516   const Register xstart = tmp3;
3517 
3518   const Register y_idx = tmp4;
3519   const Register carry = tmp5;
3520   const Register product  = xlen;
3521   const Register x_xstart = zlen;  // reuse register
3522 
3523   // First Loop.
3524   //
3525   //  final static long LONG_MASK = 0xffffffffL;
3526   //  int xstart = xlen - 1;
3527   //  int ystart = ylen - 1;
3528   //  long carry = 0;
3529   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
3530   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
3531   //    z[kdx] = (int)product;
3532   //    carry = product >>> 32;
3533   //  }
3534   //  z[xstart] = (int)carry;
3535   //
3536 
3537   movw(idx, ylen);      // idx = ylen;
3538   movw(kdx, zlen);      // kdx = xlen+ylen;
3539   mov(carry, zr);       // carry = 0;
3540 
3541   Label L_done;
3542 
3543   movw(xstart, xlen);
3544   subsw(xstart, xstart, 1);
3545   br(Assembler::MI, L_done);
3546 
3547   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
3548 
3549   Label L_second_loop;
3550   cbzw(kdx, L_second_loop);
3551 
3552   Label L_carry;
3553   subw(kdx, kdx, 1);
3554   cbzw(kdx, L_carry);
3555 
3556   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3557   lsr(carry, carry, 32);
3558   subw(kdx, kdx, 1);
3559 
3560   bind(L_carry);
3561   strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt)));
3562 
3563   // Second and third (nested) loops.
3564   //
3565   // for (int i = xstart-1; i >= 0; i--) { // Second loop
3566   //   carry = 0;
3567   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
3568   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
3569   //                    (z[k] & LONG_MASK) + carry;
3570   //     z[k] = (int)product;
3571   //     carry = product >>> 32;
3572   //   }
3573   //   z[i] = (int)carry;
3574   // }
3575   //
3576   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
3577 
3578   const Register jdx = tmp1;
3579 
3580   bind(L_second_loop);
3581   mov(carry, zr);                // carry = 0;
3582   movw(jdx, ylen);               // j = ystart+1
3583 
3584   subsw(xstart, xstart, 1);      // i = xstart-1;
3585   br(Assembler::MI, L_done);
3586 
3587   str(z, Address(pre(sp, -4 * wordSize)));
3588 
3589   Label L_last_x;
3590   lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j
3591   subsw(xstart, xstart, 1);       // i = xstart-1;
3592   br(Assembler::MI, L_last_x);
3593 
3594   lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt)));
3595   ldr(product_hi, Address(rscratch1));
3596   ror(product_hi, product_hi, 32);  // convert big-endian to little-endian
3597 
3598   Label L_third_loop_prologue;
3599   bind(L_third_loop_prologue);
3600 
3601   str(ylen, Address(sp, wordSize));
3602   stp(x, xstart, Address(sp, 2 * wordSize));
3603   multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
3604                           tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
3605   ldp(z, ylen, Address(post(sp, 2 * wordSize)));
3606   ldp(x, xlen, Address(post(sp, 2 * wordSize)));   // copy old xstart -> xlen
3607 
3608   addw(tmp3, xlen, 1);
3609   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
3610   subsw(tmp3, tmp3, 1);
3611   br(Assembler::MI, L_done);
3612 
3613   lsr(carry, carry, 32);
3614   strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt)));
3615   b(L_second_loop);
3616 
3617   // Next infrequent code is moved outside loops.
3618   bind(L_last_x);
3619   ldrw(product_hi, Address(x,  0));
3620   b(L_third_loop_prologue);
3621 
3622   bind(L_done);
3623 }
3624 
3625 // Code for BigInteger::mulAdd intrinsic
3626 // out     = r0
3627 // in      = r1
3628 // offset  = r2  (already out.length-offset)
3629 // len     = r3
3630 // k       = r4
3631 //
3632 // pseudo code from java implementation:
3633 // carry = 0;
3634 // offset = out.length-offset - 1;
3635 // for (int j=len-1; j >= 0; j--) {
3636 //     product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
3637 //     out[offset--] = (int)product;
3638 //     carry = product >>> 32;
3639 // }
3640 // return (int)carry;
3641 void MacroAssembler::mul_add(Register out, Register in, Register offset,
3642       Register len, Register k) {
3643     Label LOOP, END;
3644     // pre-loop
3645     cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches
3646     csel(out, zr, out, Assembler::EQ);
3647     br(Assembler::EQ, END);
3648     add(in, in, len, LSL, 2); // in[j+1] address
3649     add(offset, out, offset, LSL, 2); // out[offset + 1] address
3650     mov(out, zr); // used to keep carry now
3651     BIND(LOOP);
3652     ldrw(rscratch1, Address(pre(in, -4)));
3653     madd(rscratch1, rscratch1, k, out);
3654     ldrw(rscratch2, Address(pre(offset, -4)));
3655     add(rscratch1, rscratch1, rscratch2);
3656     strw(rscratch1, Address(offset));
3657     lsr(out, rscratch1, 32);
3658     subs(len, len, 1);
3659     br(Assembler::NE, LOOP);
3660     BIND(END);
3661 }
3662 
3663 /**
3664  * Emits code to update CRC-32 with a byte value according to constants in table
3665  *
3666  * @param [in,out]crc   Register containing the crc.
3667  * @param [in]val       Register containing the byte to fold into the CRC.
3668  * @param [in]table     Register containing the table of crc constants.
3669  *
3670  * uint32_t crc;
3671  * val = crc_table[(val ^ crc) & 0xFF];
3672  * crc = val ^ (crc >> 8);
3673  *
3674  */
3675 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
3676   eor(val, val, crc);
3677   andr(val, val, 0xff);
3678   ldrw(val, Address(table, val, Address::lsl(2)));
3679   eor(crc, val, crc, Assembler::LSR, 8);
3680 }
3681 
3682 /**
3683  * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3
3684  *
3685  * @param [in,out]crc   Register containing the crc.
3686  * @param [in]v         Register containing the 32-bit to fold into the CRC.
3687  * @param [in]table0    Register containing table 0 of crc constants.
3688  * @param [in]table1    Register containing table 1 of crc constants.
3689  * @param [in]table2    Register containing table 2 of crc constants.
3690  * @param [in]table3    Register containing table 3 of crc constants.
3691  *
3692  * uint32_t crc;
3693  *   v = crc ^ v
3694  *   crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24]
3695  *
3696  */
3697 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp,
3698         Register table0, Register table1, Register table2, Register table3,
3699         bool upper) {
3700   eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0);
3701   uxtb(tmp, v);
3702   ldrw(crc, Address(table3, tmp, Address::lsl(2)));
3703   ubfx(tmp, v, 8, 8);
3704   ldrw(tmp, Address(table2, tmp, Address::lsl(2)));
3705   eor(crc, crc, tmp);
3706   ubfx(tmp, v, 16, 8);
3707   ldrw(tmp, Address(table1, tmp, Address::lsl(2)));
3708   eor(crc, crc, tmp);
3709   ubfx(tmp, v, 24, 8);
3710   ldrw(tmp, Address(table0, tmp, Address::lsl(2)));
3711   eor(crc, crc, tmp);
3712 }
3713 
3714 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf,
3715         Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
3716     Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
3717     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
3718 
3719     subs(tmp0, len, 384);
3720     mvnw(crc, crc);
3721     br(Assembler::GE, CRC_by128_pre);
3722   BIND(CRC_less128);
3723     subs(len, len, 32);
3724     br(Assembler::GE, CRC_by32_loop);
3725   BIND(CRC_less32);
3726     adds(len, len, 32 - 4);
3727     br(Assembler::GE, CRC_by4_loop);
3728     adds(len, len, 4);
3729     br(Assembler::GT, CRC_by1_loop);
3730     b(L_exit);
3731 
3732   BIND(CRC_by32_loop);
3733     ldp(tmp0, tmp1, Address(buf));
3734     crc32x(crc, crc, tmp0);
3735     ldp(tmp2, tmp3, Address(buf, 16));
3736     crc32x(crc, crc, tmp1);
3737     add(buf, buf, 32);
3738     crc32x(crc, crc, tmp2);
3739     subs(len, len, 32);
3740     crc32x(crc, crc, tmp3);
3741     br(Assembler::GE, CRC_by32_loop);
3742     cmn(len, (u1)32);
3743     br(Assembler::NE, CRC_less32);
3744     b(L_exit);
3745 
3746   BIND(CRC_by4_loop);
3747     ldrw(tmp0, Address(post(buf, 4)));
3748     subs(len, len, 4);
3749     crc32w(crc, crc, tmp0);
3750     br(Assembler::GE, CRC_by4_loop);
3751     adds(len, len, 4);
3752     br(Assembler::LE, L_exit);
3753   BIND(CRC_by1_loop);
3754     ldrb(tmp0, Address(post(buf, 1)));
3755     subs(len, len, 1);
3756     crc32b(crc, crc, tmp0);
3757     br(Assembler::GT, CRC_by1_loop);
3758     b(L_exit);
3759 
3760   BIND(CRC_by128_pre);
3761     kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
3762       4*256*sizeof(juint) + 8*sizeof(juint));
3763     mov(crc, 0);
3764     crc32x(crc, crc, tmp0);
3765     crc32x(crc, crc, tmp1);
3766 
3767     cbnz(len, CRC_less128);
3768 
3769   BIND(L_exit);
3770     mvnw(crc, crc);
3771 }
3772 
3773 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf,
3774         Register len, Register tmp0, Register tmp1, Register tmp2,
3775         Register tmp3) {
3776     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
3777     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
3778 
3779     mvnw(crc, crc);
3780 
3781     subs(len, len, 128);
3782     br(Assembler::GE, CRC_by64_pre);
3783   BIND(CRC_less64);
3784     adds(len, len, 128-32);
3785     br(Assembler::GE, CRC_by32_loop);
3786   BIND(CRC_less32);
3787     adds(len, len, 32-4);
3788     br(Assembler::GE, CRC_by4_loop);
3789     adds(len, len, 4);
3790     br(Assembler::GT, CRC_by1_loop);
3791     b(L_exit);
3792 
3793   BIND(CRC_by32_loop);
3794     ldp(tmp0, tmp1, Address(post(buf, 16)));
3795     subs(len, len, 32);
3796     crc32x(crc, crc, tmp0);
3797     ldr(tmp2, Address(post(buf, 8)));
3798     crc32x(crc, crc, tmp1);
3799     ldr(tmp3, Address(post(buf, 8)));
3800     crc32x(crc, crc, tmp2);
3801     crc32x(crc, crc, tmp3);
3802     br(Assembler::GE, CRC_by32_loop);
3803     cmn(len, (u1)32);
3804     br(Assembler::NE, CRC_less32);
3805     b(L_exit);
3806 
3807   BIND(CRC_by4_loop);
3808     ldrw(tmp0, Address(post(buf, 4)));
3809     subs(len, len, 4);
3810     crc32w(crc, crc, tmp0);
3811     br(Assembler::GE, CRC_by4_loop);
3812     adds(len, len, 4);
3813     br(Assembler::LE, L_exit);
3814   BIND(CRC_by1_loop);
3815     ldrb(tmp0, Address(post(buf, 1)));
3816     subs(len, len, 1);
3817     crc32b(crc, crc, tmp0);
3818     br(Assembler::GT, CRC_by1_loop);
3819     b(L_exit);
3820 
3821   BIND(CRC_by64_pre);
3822     sub(buf, buf, 8);
3823     ldp(tmp0, tmp1, Address(buf, 8));
3824     crc32x(crc, crc, tmp0);
3825     ldr(tmp2, Address(buf, 24));
3826     crc32x(crc, crc, tmp1);
3827     ldr(tmp3, Address(buf, 32));
3828     crc32x(crc, crc, tmp2);
3829     ldr(tmp0, Address(buf, 40));
3830     crc32x(crc, crc, tmp3);
3831     ldr(tmp1, Address(buf, 48));
3832     crc32x(crc, crc, tmp0);
3833     ldr(tmp2, Address(buf, 56));
3834     crc32x(crc, crc, tmp1);
3835     ldr(tmp3, Address(pre(buf, 64)));
3836 
3837     b(CRC_by64_loop);
3838 
3839     align(CodeEntryAlignment);
3840   BIND(CRC_by64_loop);
3841     subs(len, len, 64);
3842     crc32x(crc, crc, tmp2);
3843     ldr(tmp0, Address(buf, 8));
3844     crc32x(crc, crc, tmp3);
3845     ldr(tmp1, Address(buf, 16));
3846     crc32x(crc, crc, tmp0);
3847     ldr(tmp2, Address(buf, 24));
3848     crc32x(crc, crc, tmp1);
3849     ldr(tmp3, Address(buf, 32));
3850     crc32x(crc, crc, tmp2);
3851     ldr(tmp0, Address(buf, 40));
3852     crc32x(crc, crc, tmp3);
3853     ldr(tmp1, Address(buf, 48));
3854     crc32x(crc, crc, tmp0);
3855     ldr(tmp2, Address(buf, 56));
3856     crc32x(crc, crc, tmp1);
3857     ldr(tmp3, Address(pre(buf, 64)));
3858     br(Assembler::GE, CRC_by64_loop);
3859 
3860     // post-loop
3861     crc32x(crc, crc, tmp2);
3862     crc32x(crc, crc, tmp3);
3863 
3864     sub(len, len, 64);
3865     add(buf, buf, 8);
3866     cmn(len, (u1)128);
3867     br(Assembler::NE, CRC_less64);
3868   BIND(L_exit);
3869     mvnw(crc, crc);
3870 }
3871 
3872 /**
3873  * @param crc   register containing existing CRC (32-bit)
3874  * @param buf   register pointing to input byte buffer (byte*)
3875  * @param len   register containing number of bytes
3876  * @param table register that will contain address of CRC table
3877  * @param tmp   scratch register
3878  */
3879 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len,
3880         Register table0, Register table1, Register table2, Register table3,
3881         Register tmp, Register tmp2, Register tmp3) {
3882   Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit;
3883 
3884   if (UseCryptoPmullForCRC32) {
3885       kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
3886       return;
3887   }
3888 
3889   if (UseCRC32) {
3890       kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3);
3891       return;
3892   }
3893 
3894     mvnw(crc, crc);
3895 
3896     {
3897       uint64_t offset;
3898       adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset);
3899       add(table0, table0, offset);
3900     }
3901     add(table1, table0, 1*256*sizeof(juint));
3902     add(table2, table0, 2*256*sizeof(juint));
3903     add(table3, table0, 3*256*sizeof(juint));
3904 
3905   if (UseNeon) {
3906       cmp(len, (u1)64);
3907       br(Assembler::LT, L_by16);
3908       eor(v16, T16B, v16, v16);
3909 
3910     Label L_fold;
3911 
3912       add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants
3913 
3914       ld1(v0, v1, T2D, post(buf, 32));
3915       ld1r(v4, T2D, post(tmp, 8));
3916       ld1r(v5, T2D, post(tmp, 8));
3917       ld1r(v6, T2D, post(tmp, 8));
3918       ld1r(v7, T2D, post(tmp, 8));
3919       mov(v16, S, 0, crc);
3920 
3921       eor(v0, T16B, v0, v16);
3922       sub(len, len, 64);
3923 
3924     BIND(L_fold);
3925       pmull(v22, T8H, v0, v5, T8B);
3926       pmull(v20, T8H, v0, v7, T8B);
3927       pmull(v23, T8H, v0, v4, T8B);
3928       pmull(v21, T8H, v0, v6, T8B);
3929 
3930       pmull2(v18, T8H, v0, v5, T16B);
3931       pmull2(v16, T8H, v0, v7, T16B);
3932       pmull2(v19, T8H, v0, v4, T16B);
3933       pmull2(v17, T8H, v0, v6, T16B);
3934 
3935       uzp1(v24, T8H, v20, v22);
3936       uzp2(v25, T8H, v20, v22);
3937       eor(v20, T16B, v24, v25);
3938 
3939       uzp1(v26, T8H, v16, v18);
3940       uzp2(v27, T8H, v16, v18);
3941       eor(v16, T16B, v26, v27);
3942 
3943       ushll2(v22, T4S, v20, T8H, 8);
3944       ushll(v20, T4S, v20, T4H, 8);
3945 
3946       ushll2(v18, T4S, v16, T8H, 8);
3947       ushll(v16, T4S, v16, T4H, 8);
3948 
3949       eor(v22, T16B, v23, v22);
3950       eor(v18, T16B, v19, v18);
3951       eor(v20, T16B, v21, v20);
3952       eor(v16, T16B, v17, v16);
3953 
3954       uzp1(v17, T2D, v16, v20);
3955       uzp2(v21, T2D, v16, v20);
3956       eor(v17, T16B, v17, v21);
3957 
3958       ushll2(v20, T2D, v17, T4S, 16);
3959       ushll(v16, T2D, v17, T2S, 16);
3960 
3961       eor(v20, T16B, v20, v22);
3962       eor(v16, T16B, v16, v18);
3963 
3964       uzp1(v17, T2D, v20, v16);
3965       uzp2(v21, T2D, v20, v16);
3966       eor(v28, T16B, v17, v21);
3967 
3968       pmull(v22, T8H, v1, v5, T8B);
3969       pmull(v20, T8H, v1, v7, T8B);
3970       pmull(v23, T8H, v1, v4, T8B);
3971       pmull(v21, T8H, v1, v6, T8B);
3972 
3973       pmull2(v18, T8H, v1, v5, T16B);
3974       pmull2(v16, T8H, v1, v7, T16B);
3975       pmull2(v19, T8H, v1, v4, T16B);
3976       pmull2(v17, T8H, v1, v6, T16B);
3977 
3978       ld1(v0, v1, T2D, post(buf, 32));
3979 
3980       uzp1(v24, T8H, v20, v22);
3981       uzp2(v25, T8H, v20, v22);
3982       eor(v20, T16B, v24, v25);
3983 
3984       uzp1(v26, T8H, v16, v18);
3985       uzp2(v27, T8H, v16, v18);
3986       eor(v16, T16B, v26, v27);
3987 
3988       ushll2(v22, T4S, v20, T8H, 8);
3989       ushll(v20, T4S, v20, T4H, 8);
3990 
3991       ushll2(v18, T4S, v16, T8H, 8);
3992       ushll(v16, T4S, v16, T4H, 8);
3993 
3994       eor(v22, T16B, v23, v22);
3995       eor(v18, T16B, v19, v18);
3996       eor(v20, T16B, v21, v20);
3997       eor(v16, T16B, v17, v16);
3998 
3999       uzp1(v17, T2D, v16, v20);
4000       uzp2(v21, T2D, v16, v20);
4001       eor(v16, T16B, v17, v21);
4002 
4003       ushll2(v20, T2D, v16, T4S, 16);
4004       ushll(v16, T2D, v16, T2S, 16);
4005 
4006       eor(v20, T16B, v22, v20);
4007       eor(v16, T16B, v16, v18);
4008 
4009       uzp1(v17, T2D, v20, v16);
4010       uzp2(v21, T2D, v20, v16);
4011       eor(v20, T16B, v17, v21);
4012 
4013       shl(v16, T2D, v28, 1);
4014       shl(v17, T2D, v20, 1);
4015 
4016       eor(v0, T16B, v0, v16);
4017       eor(v1, T16B, v1, v17);
4018 
4019       subs(len, len, 32);
4020       br(Assembler::GE, L_fold);
4021 
4022       mov(crc, 0);
4023       mov(tmp, v0, D, 0);
4024       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4025       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4026       mov(tmp, v0, D, 1);
4027       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4028       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4029       mov(tmp, v1, D, 0);
4030       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4031       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4032       mov(tmp, v1, D, 1);
4033       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4034       update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4035 
4036       add(len, len, 32);
4037   }
4038 
4039   BIND(L_by16);
4040     subs(len, len, 16);
4041     br(Assembler::GE, L_by16_loop);
4042     adds(len, len, 16-4);
4043     br(Assembler::GE, L_by4_loop);
4044     adds(len, len, 4);
4045     br(Assembler::GT, L_by1_loop);
4046     b(L_exit);
4047 
4048   BIND(L_by4_loop);
4049     ldrw(tmp, Address(post(buf, 4)));
4050     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3);
4051     subs(len, len, 4);
4052     br(Assembler::GE, L_by4_loop);
4053     adds(len, len, 4);
4054     br(Assembler::LE, L_exit);
4055   BIND(L_by1_loop);
4056     subs(len, len, 1);
4057     ldrb(tmp, Address(post(buf, 1)));
4058     update_byte_crc32(crc, tmp, table0);
4059     br(Assembler::GT, L_by1_loop);
4060     b(L_exit);
4061 
4062     align(CodeEntryAlignment);
4063   BIND(L_by16_loop);
4064     subs(len, len, 16);
4065     ldp(tmp, tmp3, Address(post(buf, 16)));
4066     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false);
4067     update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true);
4068     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false);
4069     update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true);
4070     br(Assembler::GE, L_by16_loop);
4071     adds(len, len, 16-4);
4072     br(Assembler::GE, L_by4_loop);
4073     adds(len, len, 4);
4074     br(Assembler::GT, L_by1_loop);
4075   BIND(L_exit);
4076     mvnw(crc, crc);
4077 }
4078 
4079 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
4080         Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) {
4081     Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit;
4082     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4083 
4084     subs(tmp0, len, 384);
4085     br(Assembler::GE, CRC_by128_pre);
4086   BIND(CRC_less128);
4087     subs(len, len, 32);
4088     br(Assembler::GE, CRC_by32_loop);
4089   BIND(CRC_less32);
4090     adds(len, len, 32 - 4);
4091     br(Assembler::GE, CRC_by4_loop);
4092     adds(len, len, 4);
4093     br(Assembler::GT, CRC_by1_loop);
4094     b(L_exit);
4095 
4096   BIND(CRC_by32_loop);
4097     ldp(tmp0, tmp1, Address(buf));
4098     crc32cx(crc, crc, tmp0);
4099     ldr(tmp2, Address(buf, 16));
4100     crc32cx(crc, crc, tmp1);
4101     ldr(tmp3, Address(buf, 24));
4102     crc32cx(crc, crc, tmp2);
4103     add(buf, buf, 32);
4104     subs(len, len, 32);
4105     crc32cx(crc, crc, tmp3);
4106     br(Assembler::GE, CRC_by32_loop);
4107     cmn(len, (u1)32);
4108     br(Assembler::NE, CRC_less32);
4109     b(L_exit);
4110 
4111   BIND(CRC_by4_loop);
4112     ldrw(tmp0, Address(post(buf, 4)));
4113     subs(len, len, 4);
4114     crc32cw(crc, crc, tmp0);
4115     br(Assembler::GE, CRC_by4_loop);
4116     adds(len, len, 4);
4117     br(Assembler::LE, L_exit);
4118   BIND(CRC_by1_loop);
4119     ldrb(tmp0, Address(post(buf, 1)));
4120     subs(len, len, 1);
4121     crc32cb(crc, crc, tmp0);
4122     br(Assembler::GT, CRC_by1_loop);
4123     b(L_exit);
4124 
4125   BIND(CRC_by128_pre);
4126     kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2,
4127       4*256*sizeof(juint) + 8*sizeof(juint) + 0x50);
4128     mov(crc, 0);
4129     crc32cx(crc, crc, tmp0);
4130     crc32cx(crc, crc, tmp1);
4131 
4132     cbnz(len, CRC_less128);
4133 
4134   BIND(L_exit);
4135 }
4136 
4137 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf,
4138         Register len, Register tmp0, Register tmp1, Register tmp2,
4139         Register tmp3) {
4140     Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit;
4141     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3);
4142 
4143     subs(len, len, 128);
4144     br(Assembler::GE, CRC_by64_pre);
4145   BIND(CRC_less64);
4146     adds(len, len, 128-32);
4147     br(Assembler::GE, CRC_by32_loop);
4148   BIND(CRC_less32);
4149     adds(len, len, 32-4);
4150     br(Assembler::GE, CRC_by4_loop);
4151     adds(len, len, 4);
4152     br(Assembler::GT, CRC_by1_loop);
4153     b(L_exit);
4154 
4155   BIND(CRC_by32_loop);
4156     ldp(tmp0, tmp1, Address(post(buf, 16)));
4157     subs(len, len, 32);
4158     crc32cx(crc, crc, tmp0);
4159     ldr(tmp2, Address(post(buf, 8)));
4160     crc32cx(crc, crc, tmp1);
4161     ldr(tmp3, Address(post(buf, 8)));
4162     crc32cx(crc, crc, tmp2);
4163     crc32cx(crc, crc, tmp3);
4164     br(Assembler::GE, CRC_by32_loop);
4165     cmn(len, (u1)32);
4166     br(Assembler::NE, CRC_less32);
4167     b(L_exit);
4168 
4169   BIND(CRC_by4_loop);
4170     ldrw(tmp0, Address(post(buf, 4)));
4171     subs(len, len, 4);
4172     crc32cw(crc, crc, tmp0);
4173     br(Assembler::GE, CRC_by4_loop);
4174     adds(len, len, 4);
4175     br(Assembler::LE, L_exit);
4176   BIND(CRC_by1_loop);
4177     ldrb(tmp0, Address(post(buf, 1)));
4178     subs(len, len, 1);
4179     crc32cb(crc, crc, tmp0);
4180     br(Assembler::GT, CRC_by1_loop);
4181     b(L_exit);
4182 
4183   BIND(CRC_by64_pre);
4184     sub(buf, buf, 8);
4185     ldp(tmp0, tmp1, Address(buf, 8));
4186     crc32cx(crc, crc, tmp0);
4187     ldr(tmp2, Address(buf, 24));
4188     crc32cx(crc, crc, tmp1);
4189     ldr(tmp3, Address(buf, 32));
4190     crc32cx(crc, crc, tmp2);
4191     ldr(tmp0, Address(buf, 40));
4192     crc32cx(crc, crc, tmp3);
4193     ldr(tmp1, Address(buf, 48));
4194     crc32cx(crc, crc, tmp0);
4195     ldr(tmp2, Address(buf, 56));
4196     crc32cx(crc, crc, tmp1);
4197     ldr(tmp3, Address(pre(buf, 64)));
4198 
4199     b(CRC_by64_loop);
4200 
4201     align(CodeEntryAlignment);
4202   BIND(CRC_by64_loop);
4203     subs(len, len, 64);
4204     crc32cx(crc, crc, tmp2);
4205     ldr(tmp0, Address(buf, 8));
4206     crc32cx(crc, crc, tmp3);
4207     ldr(tmp1, Address(buf, 16));
4208     crc32cx(crc, crc, tmp0);
4209     ldr(tmp2, Address(buf, 24));
4210     crc32cx(crc, crc, tmp1);
4211     ldr(tmp3, Address(buf, 32));
4212     crc32cx(crc, crc, tmp2);
4213     ldr(tmp0, Address(buf, 40));
4214     crc32cx(crc, crc, tmp3);
4215     ldr(tmp1, Address(buf, 48));
4216     crc32cx(crc, crc, tmp0);
4217     ldr(tmp2, Address(buf, 56));
4218     crc32cx(crc, crc, tmp1);
4219     ldr(tmp3, Address(pre(buf, 64)));
4220     br(Assembler::GE, CRC_by64_loop);
4221 
4222     // post-loop
4223     crc32cx(crc, crc, tmp2);
4224     crc32cx(crc, crc, tmp3);
4225 
4226     sub(len, len, 64);
4227     add(buf, buf, 8);
4228     cmn(len, (u1)128);
4229     br(Assembler::NE, CRC_less64);
4230   BIND(L_exit);
4231 }
4232 
4233 /**
4234  * @param crc   register containing existing CRC (32-bit)
4235  * @param buf   register pointing to input byte buffer (byte*)
4236  * @param len   register containing number of bytes
4237  * @param table register that will contain address of CRC table
4238  * @param tmp   scratch register
4239  */
4240 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len,
4241         Register table0, Register table1, Register table2, Register table3,
4242         Register tmp, Register tmp2, Register tmp3) {
4243   if (UseCryptoPmullForCRC32) {
4244     kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3);
4245   } else {
4246     kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3);
4247   }
4248 }
4249 
4250 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
4251         Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) {
4252     Label CRC_by128_loop;
4253     assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2);
4254 
4255     sub(len, len, 256);
4256     Register table = tmp0;
4257     {
4258       uint64_t offset;
4259       adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset);
4260       add(table, table, offset);
4261     }
4262     add(table, table, table_offset);
4263 
4264     // Registers v0..v7 are used as data registers.
4265     // Registers v16..v31 are used as tmp registers.
4266     sub(buf, buf, 0x10);
4267     ldrq(v0, Address(buf, 0x10));
4268     ldrq(v1, Address(buf, 0x20));
4269     ldrq(v2, Address(buf, 0x30));
4270     ldrq(v3, Address(buf, 0x40));
4271     ldrq(v4, Address(buf, 0x50));
4272     ldrq(v5, Address(buf, 0x60));
4273     ldrq(v6, Address(buf, 0x70));
4274     ldrq(v7, Address(pre(buf, 0x80)));
4275 
4276     movi(v31, T4S, 0);
4277     mov(v31, S, 0, crc);
4278     eor(v0, T16B, v0, v31);
4279 
4280     // Register v16 contains constants from the crc table.
4281     ldrq(v16, Address(table));
4282     b(CRC_by128_loop);
4283 
4284     align(OptoLoopAlignment);
4285   BIND(CRC_by128_loop);
4286     pmull (v17,  T1Q, v0, v16, T1D);
4287     pmull2(v18, T1Q, v0, v16, T2D);
4288     ldrq(v0, Address(buf, 0x10));
4289     eor3(v0, T16B, v17,  v18, v0);
4290 
4291     pmull (v19, T1Q, v1, v16, T1D);
4292     pmull2(v20, T1Q, v1, v16, T2D);
4293     ldrq(v1, Address(buf, 0x20));
4294     eor3(v1, T16B, v19, v20, v1);
4295 
4296     pmull (v21, T1Q, v2, v16, T1D);
4297     pmull2(v22, T1Q, v2, v16, T2D);
4298     ldrq(v2, Address(buf, 0x30));
4299     eor3(v2, T16B, v21, v22, v2);
4300 
4301     pmull (v23, T1Q, v3, v16, T1D);
4302     pmull2(v24, T1Q, v3, v16, T2D);
4303     ldrq(v3, Address(buf, 0x40));
4304     eor3(v3, T16B, v23, v24, v3);
4305 
4306     pmull (v25, T1Q, v4, v16, T1D);
4307     pmull2(v26, T1Q, v4, v16, T2D);
4308     ldrq(v4, Address(buf, 0x50));
4309     eor3(v4, T16B, v25, v26, v4);
4310 
4311     pmull (v27, T1Q, v5, v16, T1D);
4312     pmull2(v28, T1Q, v5, v16, T2D);
4313     ldrq(v5, Address(buf, 0x60));
4314     eor3(v5, T16B, v27, v28, v5);
4315 
4316     pmull (v29, T1Q, v6, v16, T1D);
4317     pmull2(v30, T1Q, v6, v16, T2D);
4318     ldrq(v6, Address(buf, 0x70));
4319     eor3(v6, T16B, v29, v30, v6);
4320 
4321     // Reuse registers v23, v24.
4322     // Using them won't block the first instruction of the next iteration.
4323     pmull (v23, T1Q, v7, v16, T1D);
4324     pmull2(v24, T1Q, v7, v16, T2D);
4325     ldrq(v7, Address(pre(buf, 0x80)));
4326     eor3(v7, T16B, v23, v24, v7);
4327 
4328     subs(len, len, 0x80);
4329     br(Assembler::GE, CRC_by128_loop);
4330 
4331     // fold into 512 bits
4332     // Use v31 for constants because v16 can be still in use.
4333     ldrq(v31, Address(table, 0x10));
4334 
4335     pmull (v17,  T1Q, v0, v31, T1D);
4336     pmull2(v18, T1Q, v0, v31, T2D);
4337     eor3(v0, T16B, v17, v18, v4);
4338 
4339     pmull (v19, T1Q, v1, v31, T1D);
4340     pmull2(v20, T1Q, v1, v31, T2D);
4341     eor3(v1, T16B, v19, v20, v5);
4342 
4343     pmull (v21, T1Q, v2, v31, T1D);
4344     pmull2(v22, T1Q, v2, v31, T2D);
4345     eor3(v2, T16B, v21, v22, v6);
4346 
4347     pmull (v23, T1Q, v3, v31, T1D);
4348     pmull2(v24, T1Q, v3, v31, T2D);
4349     eor3(v3, T16B, v23, v24, v7);
4350 
4351     // fold into 128 bits
4352     // Use v17 for constants because v31 can be still in use.
4353     ldrq(v17, Address(table, 0x20));
4354     pmull (v25, T1Q, v0, v17, T1D);
4355     pmull2(v26, T1Q, v0, v17, T2D);
4356     eor3(v3, T16B, v3, v25, v26);
4357 
4358     // Use v18 for constants because v17 can be still in use.
4359     ldrq(v18, Address(table, 0x30));
4360     pmull (v27, T1Q, v1, v18, T1D);
4361     pmull2(v28, T1Q, v1, v18, T2D);
4362     eor3(v3, T16B, v3, v27, v28);
4363 
4364     // Use v19 for constants because v18 can be still in use.
4365     ldrq(v19, Address(table, 0x40));
4366     pmull (v29, T1Q, v2, v19, T1D);
4367     pmull2(v30, T1Q, v2, v19, T2D);
4368     eor3(v0, T16B, v3, v29, v30);
4369 
4370     add(len, len, 0x80);
4371     add(buf, buf, 0x10);
4372 
4373     mov(tmp0, v0, D, 0);
4374     mov(tmp1, v0, D, 1);
4375 }
4376 
4377 SkipIfEqual::SkipIfEqual(
4378     MacroAssembler* masm, const bool* flag_addr, bool value) {
4379   _masm = masm;
4380   uint64_t offset;
4381   _masm->adrp(rscratch1, ExternalAddress((address)flag_addr), offset);
4382   _masm->ldrb(rscratch1, Address(rscratch1, offset));
4383   if (value) {
4384     _masm->cbnzw(rscratch1, _label);
4385   } else {
4386     _masm->cbzw(rscratch1, _label);
4387   }
4388 }
4389 
4390 SkipIfEqual::~SkipIfEqual() {
4391   _masm->bind(_label);
4392 }
4393 
4394 void MacroAssembler::addptr(const Address &dst, int32_t src) {
4395   Address adr;
4396   switch(dst.getMode()) {
4397   case Address::base_plus_offset:
4398     // This is the expected mode, although we allow all the other
4399     // forms below.
4400     adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord);
4401     break;
4402   default:
4403     lea(rscratch2, dst);
4404     adr = Address(rscratch2);
4405     break;
4406   }
4407   ldr(rscratch1, adr);
4408   add(rscratch1, rscratch1, src);
4409   str(rscratch1, adr);
4410 }
4411 
4412 void MacroAssembler::cmpptr(Register src1, Address src2) {
4413   uint64_t offset;
4414   adrp(rscratch1, src2, offset);
4415   ldr(rscratch1, Address(rscratch1, offset));
4416   cmp(src1, rscratch1);
4417 }
4418 
4419 void MacroAssembler::cmpoop(Register obj1, Register obj2) {
4420   cmp(obj1, obj2);
4421 }
4422 
4423 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) {
4424   load_method_holder(rresult, rmethod);
4425   ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset()));
4426 }
4427 
4428 void MacroAssembler::load_method_holder(Register holder, Register method) {
4429   ldr(holder, Address(method, Method::const_offset()));                      // ConstMethod*
4430   ldr(holder, Address(holder, ConstMethod::constants_offset()));             // ConstantPool*
4431   ldr(holder, Address(holder, ConstantPool::pool_holder_offset()));          // InstanceKlass*
4432 }
4433 
4434 // Loads the obj's Klass* into dst.
4435 // Preserves all registers (incl src, rscratch1 and rscratch2).
4436 void MacroAssembler::load_nklass_compact(Register dst, Register src) {
4437   assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders");
4438 
4439   Label fast;
4440 
4441   // Check if we can take the (common) fast path, if obj is unlocked.
4442   ldr(dst, Address(src, oopDesc::mark_offset_in_bytes()));
4443   tbz(dst, exact_log2(markWord::monitor_value), fast);
4444 
4445   // Fetch displaced header
4446   ldr(dst, Address(dst, OM_OFFSET_NO_MONITOR_VALUE_TAG(header)));
4447 
4448   // Fast-path: shift to get narrowKlass.
4449   bind(fast);
4450   lsr(dst, dst, markWord::klass_shift);
4451 }
4452 
4453 void MacroAssembler::load_klass(Register dst, Register src) {
4454   if (UseCompactObjectHeaders) {
4455     load_nklass_compact(dst, src);
4456     decode_klass_not_null(dst);
4457   } else if (UseCompressedClassPointers) {
4458     ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4459     decode_klass_not_null(dst);
4460   } else {
4461     ldr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
4462   }
4463 }
4464 
4465 // ((OopHandle)result).resolve();
4466 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) {
4467   // OopHandle::resolve is an indirection.
4468   access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2);
4469 }
4470 
4471 // ((WeakHandle)result).resolve();
4472 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) {
4473   assert_different_registers(result, tmp1, tmp2);
4474   Label resolved;
4475 
4476   // A null weak handle resolves to null.
4477   cbz(result, resolved);
4478 
4479   // Only 64 bit platforms support GCs that require a tmp register
4480   // WeakHandle::resolve is an indirection like jweak.
4481   access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
4482                  result, Address(result), tmp1, tmp2);
4483   bind(resolved);
4484 }
4485 
4486 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) {
4487   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
4488   ldr(dst, Address(rmethod, Method::const_offset()));
4489   ldr(dst, Address(dst, ConstMethod::constants_offset()));
4490   ldr(dst, Address(dst, ConstantPool::pool_holder_offset()));
4491   ldr(dst, Address(dst, mirror_offset));
4492   resolve_oop_handle(dst, tmp1, tmp2);
4493 }
4494 
4495 void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp) {
4496   assert_different_registers(oop, trial_klass, tmp);
4497   if (UseCompressedClassPointers) {
4498     if (UseCompactObjectHeaders) {
4499       load_nklass_compact(tmp, oop);
4500     } else {
4501       ldrw(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4502     }
4503     if (CompressedKlassPointers::base() == nullptr) {
4504       cmp(trial_klass, tmp, LSL, CompressedKlassPointers::shift());
4505       return;
4506     } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0
4507                && CompressedKlassPointers::shift() == 0) {
4508       // Only the bottom 32 bits matter
4509       cmpw(trial_klass, tmp);
4510       return;
4511     }
4512     decode_klass_not_null(tmp);
4513   } else {
4514     ldr(tmp, Address(oop, oopDesc::klass_offset_in_bytes()));
4515   }
4516   cmp(trial_klass, tmp);
4517 }
4518 
4519 void MacroAssembler::cmp_klass(Register src, Register dst, Register tmp1, Register tmp2) {
4520   if (UseCompactObjectHeaders) {
4521     load_nklass_compact(tmp1, src);
4522     load_nklass_compact(tmp2, dst);
4523     cmpw(tmp1, tmp2);
4524   } else if (UseCompressedClassPointers) {
4525     ldrw(tmp1, Address(src, oopDesc::klass_offset_in_bytes()));
4526     ldrw(tmp2, Address(dst, oopDesc::klass_offset_in_bytes()));
4527     cmpw(tmp1, tmp2);
4528   } else {
4529     ldr(tmp1, Address(src, oopDesc::klass_offset_in_bytes()));
4530     ldr(tmp2, Address(dst, oopDesc::klass_offset_in_bytes()));
4531     cmp(tmp1, tmp2);
4532   }
4533 }
4534 
4535 void MacroAssembler::store_klass(Register dst, Register src) {
4536   // FIXME: Should this be a store release?  concurrent gcs assumes
4537   // klass length is valid if klass field is not null.
4538   assert(!UseCompactObjectHeaders, "not with compact headers");
4539   if (UseCompressedClassPointers) {
4540     encode_klass_not_null(src);
4541     strw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4542   } else {
4543     str(src, Address(dst, oopDesc::klass_offset_in_bytes()));
4544   }
4545 }
4546 
4547 void MacroAssembler::store_klass_gap(Register dst, Register src) {
4548   assert(!UseCompactObjectHeaders, "not with compact headers");
4549   if (UseCompressedClassPointers) {
4550     // Store to klass gap in destination
4551     strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
4552   }
4553 }
4554 
4555 // Algorithm must match CompressedOops::encode.
4556 void MacroAssembler::encode_heap_oop(Register d, Register s) {
4557 #ifdef ASSERT
4558   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
4559 #endif
4560   verify_oop_msg(s, "broken oop in encode_heap_oop");
4561   if (CompressedOops::base() == nullptr) {
4562     if (CompressedOops::shift() != 0) {
4563       assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4564       lsr(d, s, LogMinObjAlignmentInBytes);
4565     } else {
4566       mov(d, s);
4567     }
4568   } else {
4569     subs(d, s, rheapbase);
4570     csel(d, d, zr, Assembler::HS);
4571     lsr(d, d, LogMinObjAlignmentInBytes);
4572 
4573     /*  Old algorithm: is this any worse?
4574     Label nonnull;
4575     cbnz(r, nonnull);
4576     sub(r, r, rheapbase);
4577     bind(nonnull);
4578     lsr(r, r, LogMinObjAlignmentInBytes);
4579     */
4580   }
4581 }
4582 
4583 void MacroAssembler::encode_heap_oop_not_null(Register r) {
4584 #ifdef ASSERT
4585   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
4586   if (CheckCompressedOops) {
4587     Label ok;
4588     cbnz(r, ok);
4589     stop("null oop passed to encode_heap_oop_not_null");
4590     bind(ok);
4591   }
4592 #endif
4593   verify_oop_msg(r, "broken oop in encode_heap_oop_not_null");
4594   if (CompressedOops::base() != nullptr) {
4595     sub(r, r, rheapbase);
4596   }
4597   if (CompressedOops::shift() != 0) {
4598     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4599     lsr(r, r, LogMinObjAlignmentInBytes);
4600   }
4601 }
4602 
4603 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
4604 #ifdef ASSERT
4605   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
4606   if (CheckCompressedOops) {
4607     Label ok;
4608     cbnz(src, ok);
4609     stop("null oop passed to encode_heap_oop_not_null2");
4610     bind(ok);
4611   }
4612 #endif
4613   verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2");
4614 
4615   Register data = src;
4616   if (CompressedOops::base() != nullptr) {
4617     sub(dst, src, rheapbase);
4618     data = dst;
4619   }
4620   if (CompressedOops::shift() != 0) {
4621     assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4622     lsr(dst, data, LogMinObjAlignmentInBytes);
4623     data = dst;
4624   }
4625   if (data == src)
4626     mov(dst, src);
4627 }
4628 
4629 void  MacroAssembler::decode_heap_oop(Register d, Register s) {
4630 #ifdef ASSERT
4631   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
4632 #endif
4633   if (CompressedOops::base() == nullptr) {
4634     if (CompressedOops::shift() != 0 || d != s) {
4635       lsl(d, s, CompressedOops::shift());
4636     }
4637   } else {
4638     Label done;
4639     if (d != s)
4640       mov(d, s);
4641     cbz(s, done);
4642     add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes);
4643     bind(done);
4644   }
4645   verify_oop_msg(d, "broken oop in decode_heap_oop");
4646 }
4647 
4648 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
4649   assert (UseCompressedOops, "should only be used for compressed headers");
4650   assert (Universe::heap() != nullptr, "java heap should be initialized");
4651   // Cannot assert, unverified entry point counts instructions (see .ad file)
4652   // vtableStubs also counts instructions in pd_code_size_limit.
4653   // Also do not verify_oop as this is called by verify_oop.
4654   if (CompressedOops::shift() != 0) {
4655     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4656     if (CompressedOops::base() != nullptr) {
4657       add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes);
4658     } else {
4659       add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes);
4660     }
4661   } else {
4662     assert (CompressedOops::base() == nullptr, "sanity");
4663   }
4664 }
4665 
4666 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
4667   assert (UseCompressedOops, "should only be used for compressed headers");
4668   assert (Universe::heap() != nullptr, "java heap should be initialized");
4669   // Cannot assert, unverified entry point counts instructions (see .ad file)
4670   // vtableStubs also counts instructions in pd_code_size_limit.
4671   // Also do not verify_oop as this is called by verify_oop.
4672   if (CompressedOops::shift() != 0) {
4673     assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
4674     if (CompressedOops::base() != nullptr) {
4675       add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes);
4676     } else {
4677       add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes);
4678     }
4679   } else {
4680     assert (CompressedOops::base() == nullptr, "sanity");
4681     if (dst != src) {
4682       mov(dst, src);
4683     }
4684   }
4685 }
4686 
4687 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone);
4688 
4689 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() {
4690   assert(UseCompressedClassPointers, "not using compressed class pointers");
4691   assert(Metaspace::initialized(), "metaspace not initialized yet");
4692 
4693   if (_klass_decode_mode != KlassDecodeNone) {
4694     return _klass_decode_mode;
4695   }
4696 
4697   assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift()
4698          || 0 == CompressedKlassPointers::shift(), "decode alg wrong");
4699 
4700   if (CompressedKlassPointers::base() == nullptr) {
4701     return (_klass_decode_mode = KlassDecodeZero);
4702   }
4703 
4704   if (operand_valid_for_logical_immediate(
4705         /*is32*/false, (uint64_t)CompressedKlassPointers::base())) {
4706     const uint64_t range_mask =
4707       (1ULL << log2i(CompressedKlassPointers::range())) - 1;
4708     if (((uint64_t)CompressedKlassPointers::base() & range_mask) == 0) {
4709       return (_klass_decode_mode = KlassDecodeXor);
4710     }
4711   }
4712 
4713   const uint64_t shifted_base =
4714     (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
4715   guarantee((shifted_base & 0xffff0000ffffffff) == 0,
4716             "compressed class base bad alignment");
4717 
4718   return (_klass_decode_mode = KlassDecodeMovk);
4719 }
4720 
4721 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
4722   switch (klass_decode_mode()) {
4723   case KlassDecodeZero:
4724     if (CompressedKlassPointers::shift() != 0) {
4725       lsr(dst, src, LogKlassAlignmentInBytes);
4726     } else {
4727       if (dst != src) mov(dst, src);
4728     }
4729     break;
4730 
4731   case KlassDecodeXor:
4732     if (CompressedKlassPointers::shift() != 0) {
4733       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
4734       lsr(dst, dst, LogKlassAlignmentInBytes);
4735     } else {
4736       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
4737     }
4738     break;
4739 
4740   case KlassDecodeMovk:
4741     if (CompressedKlassPointers::shift() != 0) {
4742       ubfx(dst, src, LogKlassAlignmentInBytes, 32);
4743     } else {
4744       movw(dst, src);
4745     }
4746     break;
4747 
4748   case KlassDecodeNone:
4749     ShouldNotReachHere();
4750     break;
4751   }
4752 }
4753 
4754 void MacroAssembler::encode_klass_not_null(Register r) {
4755   encode_klass_not_null(r, r);
4756 }
4757 
4758 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
4759   assert (UseCompressedClassPointers, "should only be used for compressed headers");
4760 
4761   switch (klass_decode_mode()) {
4762   case KlassDecodeZero:
4763     if (CompressedKlassPointers::shift() != 0) {
4764       lsl(dst, src, LogKlassAlignmentInBytes);
4765     } else {
4766       if (dst != src) mov(dst, src);
4767     }
4768     break;
4769 
4770   case KlassDecodeXor:
4771     if (CompressedKlassPointers::shift() != 0) {
4772       lsl(dst, src, LogKlassAlignmentInBytes);
4773       eor(dst, dst, (uint64_t)CompressedKlassPointers::base());
4774     } else {
4775       eor(dst, src, (uint64_t)CompressedKlassPointers::base());
4776     }
4777     break;
4778 
4779   case KlassDecodeMovk: {
4780     const uint64_t shifted_base =
4781       (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift();
4782 
4783     if (dst != src) movw(dst, src);
4784     movk(dst, shifted_base >> 32, 32);
4785 
4786     if (CompressedKlassPointers::shift() != 0) {
4787       lsl(dst, dst, LogKlassAlignmentInBytes);
4788     }
4789 
4790     break;
4791   }
4792 
4793   case KlassDecodeNone:
4794     ShouldNotReachHere();
4795     break;
4796   }
4797 }
4798 
4799 void  MacroAssembler::decode_klass_not_null(Register r) {
4800   decode_klass_not_null(r, r);
4801 }
4802 
4803 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
4804 #ifdef ASSERT
4805   {
4806     ThreadInVMfromUnknown tiv;
4807     assert (UseCompressedOops, "should only be used for compressed oops");
4808     assert (Universe::heap() != nullptr, "java heap should be initialized");
4809     assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
4810     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
4811   }
4812 #endif
4813   int oop_index = oop_recorder()->find_index(obj);
4814   InstructionMark im(this);
4815   RelocationHolder rspec = oop_Relocation::spec(oop_index);
4816   code_section()->relocate(inst_mark(), rspec);
4817   movz(dst, 0xDEAD, 16);
4818   movk(dst, 0xBEEF);
4819 }
4820 
4821 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
4822   assert (UseCompressedClassPointers, "should only be used for compressed headers");
4823   assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder");
4824   int index = oop_recorder()->find_index(k);
4825   assert(! Universe::heap()->is_in(k), "should not be an oop");
4826 
4827   InstructionMark im(this);
4828   RelocationHolder rspec = metadata_Relocation::spec(index);
4829   code_section()->relocate(inst_mark(), rspec);
4830   narrowKlass nk = CompressedKlassPointers::encode(k);
4831   movz(dst, (nk >> 16), 16);
4832   movk(dst, nk & 0xffff);
4833 }
4834 
4835 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
4836                                     Register dst, Address src,
4837                                     Register tmp1, Register tmp2) {
4838   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4839   decorators = AccessInternal::decorator_fixup(decorators, type);
4840   bool as_raw = (decorators & AS_RAW) != 0;
4841   if (as_raw) {
4842     bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2);
4843   } else {
4844     bs->load_at(this, decorators, type, dst, src, tmp1, tmp2);
4845   }
4846 }
4847 
4848 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
4849                                      Address dst, Register val,
4850                                      Register tmp1, Register tmp2, Register tmp3) {
4851   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4852   decorators = AccessInternal::decorator_fixup(decorators, type);
4853   bool as_raw = (decorators & AS_RAW) != 0;
4854   if (as_raw) {
4855     bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4856   } else {
4857     bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3);
4858   }
4859 }
4860 
4861 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
4862                                    Register tmp2, DecoratorSet decorators) {
4863   access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2);
4864 }
4865 
4866 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
4867                                             Register tmp2, DecoratorSet decorators) {
4868   access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2);
4869 }
4870 
4871 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1,
4872                                     Register tmp2, Register tmp3, DecoratorSet decorators) {
4873   access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3);
4874 }
4875 
4876 // Used for storing nulls.
4877 void MacroAssembler::store_heap_oop_null(Address dst) {
4878   access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg);
4879 }
4880 
4881 Address MacroAssembler::allocate_metadata_address(Metadata* obj) {
4882   assert(oop_recorder() != nullptr, "this assembler needs a Recorder");
4883   int index = oop_recorder()->allocate_metadata_index(obj);
4884   RelocationHolder rspec = metadata_Relocation::spec(index);
4885   return Address((address)obj, rspec);
4886 }
4887 
4888 // Move an oop into a register.
4889 void MacroAssembler::movoop(Register dst, jobject obj) {
4890   int oop_index;
4891   if (obj == nullptr) {
4892     oop_index = oop_recorder()->allocate_oop_index(obj);
4893   } else {
4894 #ifdef ASSERT
4895     {
4896       ThreadInVMfromUnknown tiv;
4897       assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
4898     }
4899 #endif
4900     oop_index = oop_recorder()->find_index(obj);
4901   }
4902   RelocationHolder rspec = oop_Relocation::spec(oop_index);
4903 
4904   if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) {
4905     mov(dst, Address((address)obj, rspec));
4906   } else {
4907     address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
4908     ldr_constant(dst, Address(dummy, rspec));
4909   }
4910 
4911 }
4912 
4913 // Move a metadata address into a register.
4914 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
4915   int oop_index;
4916   if (obj == nullptr) {
4917     oop_index = oop_recorder()->allocate_metadata_index(obj);
4918   } else {
4919     oop_index = oop_recorder()->find_index(obj);
4920   }
4921   RelocationHolder rspec = metadata_Relocation::spec(oop_index);
4922   mov(dst, Address((address)obj, rspec));
4923 }
4924 
4925 Address MacroAssembler::constant_oop_address(jobject obj) {
4926 #ifdef ASSERT
4927   {
4928     ThreadInVMfromUnknown tiv;
4929     assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder");
4930     assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop");
4931   }
4932 #endif
4933   int oop_index = oop_recorder()->find_index(obj);
4934   return Address((address)obj, oop_Relocation::spec(oop_index));
4935 }
4936 
4937 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4938 void MacroAssembler::tlab_allocate(Register obj,
4939                                    Register var_size_in_bytes,
4940                                    int con_size_in_bytes,
4941                                    Register t1,
4942                                    Register t2,
4943                                    Label& slow_case) {
4944   BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
4945   bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
4946 }
4947 
4948 void MacroAssembler::verify_tlab() {
4949 #ifdef ASSERT
4950   if (UseTLAB && VerifyOops) {
4951     Label next, ok;
4952 
4953     stp(rscratch2, rscratch1, Address(pre(sp, -16)));
4954 
4955     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4956     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset())));
4957     cmp(rscratch2, rscratch1);
4958     br(Assembler::HS, next);
4959     STOP("assert(top >= start)");
4960     should_not_reach_here();
4961 
4962     bind(next);
4963     ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset())));
4964     ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset())));
4965     cmp(rscratch2, rscratch1);
4966     br(Assembler::HS, ok);
4967     STOP("assert(top <= end)");
4968     should_not_reach_here();
4969 
4970     bind(ok);
4971     ldp(rscratch2, rscratch1, Address(post(sp, 16)));
4972   }
4973 #endif
4974 }
4975 
4976 // Writes to stack successive pages until offset reached to check for
4977 // stack overflow + shadow pages.  This clobbers tmp.
4978 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
4979   assert_different_registers(tmp, size, rscratch1);
4980   mov(tmp, sp);
4981   // Bang stack for total size given plus shadow page size.
4982   // Bang one page at a time because large size can bang beyond yellow and
4983   // red zones.
4984   Label loop;
4985   mov(rscratch1, (int)os::vm_page_size());
4986   bind(loop);
4987   lea(tmp, Address(tmp, -(int)os::vm_page_size()));
4988   subsw(size, size, rscratch1);
4989   str(size, Address(tmp));
4990   br(Assembler::GT, loop);
4991 
4992   // Bang down shadow pages too.
4993   // At this point, (tmp-0) is the last address touched, so don't
4994   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
4995   // was post-decremented.)  Skip this address by starting at i=1, and
4996   // touch a few more pages below.  N.B.  It is important to touch all
4997   // the way down to and including i=StackShadowPages.
4998   for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) {
4999     // this could be any sized move but this is can be a debugging crumb
5000     // so the bigger the better.
5001     lea(tmp, Address(tmp, -(int)os::vm_page_size()));
5002     str(size, Address(tmp));
5003   }
5004 }
5005 
5006 // Move the address of the polling page into dest.
5007 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
5008   ldr(dest, Address(rthread, JavaThread::polling_page_offset()));
5009 }
5010 
5011 // Read the polling page.  The address of the polling page must
5012 // already be in r.
5013 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) {
5014   address mark;
5015   {
5016     InstructionMark im(this);
5017     code_section()->relocate(inst_mark(), rtype);
5018     ldrw(zr, Address(r, 0));
5019     mark = inst_mark();
5020   }
5021   verify_cross_modify_fence_not_required();
5022   return mark;
5023 }
5024 
5025 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) {
5026   relocInfo::relocType rtype = dest.rspec().reloc()->type();
5027   uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12;
5028   uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12;
5029   uint64_t dest_page = (uint64_t)dest.target() >> 12;
5030   int64_t offset_low = dest_page - low_page;
5031   int64_t offset_high = dest_page - high_page;
5032 
5033   assert(is_valid_AArch64_address(dest.target()), "bad address");
5034   assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address");
5035 
5036   InstructionMark im(this);
5037   code_section()->relocate(inst_mark(), dest.rspec());
5038   // 8143067: Ensure that the adrp can reach the dest from anywhere within
5039   // the code cache so that if it is relocated we know it will still reach
5040   if (offset_high >= -(1<<20) && offset_low < (1<<20)) {
5041     _adrp(reg1, dest.target());
5042   } else {
5043     uint64_t target = (uint64_t)dest.target();
5044     uint64_t adrp_target
5045       = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL);
5046 
5047     _adrp(reg1, (address)adrp_target);
5048     movk(reg1, target >> 32, 32);
5049   }
5050   byte_offset = (uint64_t)dest.target() & 0xfff;
5051 }
5052 
5053 void MacroAssembler::load_byte_map_base(Register reg) {
5054   CardTable::CardValue* byte_map_base =
5055     ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
5056 
5057   // Strictly speaking the byte_map_base isn't an address at all, and it might
5058   // even be negative. It is thus materialised as a constant.
5059   mov(reg, (uint64_t)byte_map_base);
5060 }
5061 
5062 void MacroAssembler::build_frame(int framesize) {
5063   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5064   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5065   protect_return_address();
5066   if (framesize < ((1 << 9) + 2 * wordSize)) {
5067     sub(sp, sp, framesize);
5068     stp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5069     if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize);
5070   } else {
5071     stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
5072     if (PreserveFramePointer) mov(rfp, sp);
5073     if (framesize < ((1 << 12) + 2 * wordSize))
5074       sub(sp, sp, framesize - 2 * wordSize);
5075     else {
5076       mov(rscratch1, framesize - 2 * wordSize);
5077       sub(sp, sp, rscratch1);
5078     }
5079   }
5080   verify_cross_modify_fence_not_required();
5081 }
5082 
5083 void MacroAssembler::remove_frame(int framesize) {
5084   assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR");
5085   assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
5086   if (framesize < ((1 << 9) + 2 * wordSize)) {
5087     ldp(rfp, lr, Address(sp, framesize - 2 * wordSize));
5088     add(sp, sp, framesize);
5089   } else {
5090     if (framesize < ((1 << 12) + 2 * wordSize))
5091       add(sp, sp, framesize - 2 * wordSize);
5092     else {
5093       mov(rscratch1, framesize - 2 * wordSize);
5094       add(sp, sp, rscratch1);
5095     }
5096     ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
5097   }
5098   authenticate_return_address();
5099 }
5100 
5101 
5102 // This method counts leading positive bytes (highest bit not set) in provided byte array
5103 address MacroAssembler::count_positives(Register ary1, Register len, Register result) {
5104     // Simple and most common case of aligned small array which is not at the
5105     // end of memory page is placed here. All other cases are in stub.
5106     Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE;
5107     const uint64_t UPPER_BIT_MASK=0x8080808080808080;
5108     assert_different_registers(ary1, len, result);
5109 
5110     mov(result, len);
5111     cmpw(len, 0);
5112     br(LE, DONE);
5113     cmpw(len, 4 * wordSize);
5114     br(GE, STUB_LONG); // size > 32 then go to stub
5115 
5116     int shift = 64 - exact_log2(os::vm_page_size());
5117     lsl(rscratch1, ary1, shift);
5118     mov(rscratch2, (size_t)(4 * wordSize) << shift);
5119     adds(rscratch2, rscratch1, rscratch2);  // At end of page?
5120     br(CS, STUB); // at the end of page then go to stub
5121     subs(len, len, wordSize);
5122     br(LT, END);
5123 
5124   BIND(LOOP);
5125     ldr(rscratch1, Address(post(ary1, wordSize)));
5126     tst(rscratch1, UPPER_BIT_MASK);
5127     br(NE, SET_RESULT);
5128     subs(len, len, wordSize);
5129     br(GE, LOOP);
5130     cmpw(len, -wordSize);
5131     br(EQ, DONE);
5132 
5133   BIND(END);
5134     ldr(rscratch1, Address(ary1));
5135     sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes
5136     lslv(rscratch1, rscratch1, rscratch2);
5137     tst(rscratch1, UPPER_BIT_MASK);
5138     br(NE, SET_RESULT);
5139     b(DONE);
5140 
5141   BIND(STUB);
5142     RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives());
5143     assert(count_pos.target() != nullptr, "count_positives stub has not been generated");
5144     address tpc1 = trampoline_call(count_pos);
5145     if (tpc1 == nullptr) {
5146       DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE));
5147       postcond(pc() == badAddress);
5148       return nullptr;
5149     }
5150     b(DONE);
5151 
5152   BIND(STUB_LONG);
5153     RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long());
5154     assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated");
5155     address tpc2 = trampoline_call(count_pos_long);
5156     if (tpc2 == nullptr) {
5157       DEBUG_ONLY(reset_labels(SET_RESULT, DONE));
5158       postcond(pc() == badAddress);
5159       return nullptr;
5160     }
5161     b(DONE);
5162 
5163   BIND(SET_RESULT);
5164 
5165     add(len, len, wordSize);
5166     sub(result, result, len);
5167 
5168   BIND(DONE);
5169   postcond(pc() != badAddress);
5170   return pc();
5171 }
5172 
5173 // Clobbers: rscratch1, rscratch2, rflags
5174 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals)
5175 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
5176                                       Register tmp4, Register tmp5, Register result,
5177                                       Register cnt1, int elem_size) {
5178   Label DONE, SAME;
5179   Register tmp1 = rscratch1;
5180   Register tmp2 = rscratch2;
5181   Register cnt2 = tmp2;  // cnt2 only used in array length compare
5182   int elem_per_word = wordSize/elem_size;
5183   int log_elem_size = exact_log2(elem_size);
5184   int length_offset = arrayOopDesc::length_offset_in_bytes();
5185   int base_offset
5186     = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
5187   int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16);
5188 
5189   assert(elem_size == 1 || elem_size == 2, "must be char or byte");
5190   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5191 
5192 #ifndef PRODUCT
5193   {
5194     const char kind = (elem_size == 2) ? 'U' : 'L';
5195     char comment[64];
5196     snprintf(comment, sizeof comment, "array_equals%c{", kind);
5197     BLOCK_COMMENT(comment);
5198   }
5199 #endif
5200 
5201   // if (a1 == a2)
5202   //     return true;
5203   cmpoop(a1, a2); // May have read barriers for a1 and a2.
5204   br(EQ, SAME);
5205 
5206   if (UseSimpleArrayEquals) {
5207     Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL;
5208     // if (a1 == nullptr || a2 == nullptr)
5209     //     return false;
5210     // a1 & a2 == 0 means (some-pointer is null) or
5211     // (very-rare-or-even-probably-impossible-pointer-values)
5212     // so, we can save one branch in most cases
5213     tst(a1, a2);
5214     mov(result, false);
5215     br(EQ, A_MIGHT_BE_NULL);
5216     // if (a1.length != a2.length)
5217     //      return false;
5218     bind(A_IS_NOT_NULL);
5219     ldrw(cnt1, Address(a1, length_offset));
5220     ldrw(cnt2, Address(a2, length_offset));
5221     eorw(tmp5, cnt1, cnt2);
5222     cbnzw(tmp5, DONE);
5223     lea(a1, Address(a1, base_offset));
5224     lea(a2, Address(a2, base_offset));
5225     // Check for short strings, i.e. smaller than wordSize.
5226     subs(cnt1, cnt1, elem_per_word);
5227     br(Assembler::LT, SHORT);
5228     // Main 8 byte comparison loop.
5229     bind(NEXT_WORD); {
5230       ldr(tmp1, Address(post(a1, wordSize)));
5231       ldr(tmp2, Address(post(a2, wordSize)));
5232       subs(cnt1, cnt1, elem_per_word);
5233       eor(tmp5, tmp1, tmp2);
5234       cbnz(tmp5, DONE);
5235     } br(GT, NEXT_WORD);
5236     // Last longword.  In the case where length == 4 we compare the
5237     // same longword twice, but that's still faster than another
5238     // conditional branch.
5239     // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5240     // length == 4.
5241     if (log_elem_size > 0)
5242       lsl(cnt1, cnt1, log_elem_size);
5243     ldr(tmp3, Address(a1, cnt1));
5244     ldr(tmp4, Address(a2, cnt1));
5245     eor(tmp5, tmp3, tmp4);
5246     cbnz(tmp5, DONE);
5247     b(SAME);
5248     bind(A_MIGHT_BE_NULL);
5249     // in case both a1 and a2 are not-null, proceed with loads
5250     cbz(a1, DONE);
5251     cbz(a2, DONE);
5252     b(A_IS_NOT_NULL);
5253     bind(SHORT);
5254 
5255     tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left.
5256     {
5257       ldrw(tmp1, Address(post(a1, 4)));
5258       ldrw(tmp2, Address(post(a2, 4)));
5259       eorw(tmp5, tmp1, tmp2);
5260       cbnzw(tmp5, DONE);
5261     }
5262     bind(TAIL03);
5263     tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left.
5264     {
5265       ldrh(tmp3, Address(post(a1, 2)));
5266       ldrh(tmp4, Address(post(a2, 2)));
5267       eorw(tmp5, tmp3, tmp4);
5268       cbnzw(tmp5, DONE);
5269     }
5270     bind(TAIL01);
5271     if (elem_size == 1) { // Only needed when comparing byte arrays.
5272       tbz(cnt1, 0, SAME); // 0-1 bytes left.
5273       {
5274         ldrb(tmp1, a1);
5275         ldrb(tmp2, a2);
5276         eorw(tmp5, tmp1, tmp2);
5277         cbnzw(tmp5, DONE);
5278       }
5279     }
5280   } else {
5281     Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB,
5282         CSET_EQ, LAST_CHECK;
5283     mov(result, false);
5284     cbz(a1, DONE);
5285     ldrw(cnt1, Address(a1, length_offset));
5286     cbz(a2, DONE);
5287     ldrw(cnt2, Address(a2, length_offset));
5288     // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's
5289     // faster to perform another branch before comparing a1 and a2
5290     cmp(cnt1, (u1)elem_per_word);
5291     br(LE, SHORT); // short or same
5292     ldr(tmp3, Address(pre(a1, base_offset)));
5293     subs(zr, cnt1, stubBytesThreshold);
5294     br(GE, STUB);
5295     ldr(tmp4, Address(pre(a2, base_offset)));
5296     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5297     cmp(cnt2, cnt1);
5298     br(NE, DONE);
5299 
5300     // Main 16 byte comparison loop with 2 exits
5301     bind(NEXT_DWORD); {
5302       ldr(tmp1, Address(pre(a1, wordSize)));
5303       ldr(tmp2, Address(pre(a2, wordSize)));
5304       subs(cnt1, cnt1, 2 * elem_per_word);
5305       br(LE, TAIL);
5306       eor(tmp4, tmp3, tmp4);
5307       cbnz(tmp4, DONE);
5308       ldr(tmp3, Address(pre(a1, wordSize)));
5309       ldr(tmp4, Address(pre(a2, wordSize)));
5310       cmp(cnt1, (u1)elem_per_word);
5311       br(LE, TAIL2);
5312       cmp(tmp1, tmp2);
5313     } br(EQ, NEXT_DWORD);
5314     b(DONE);
5315 
5316     bind(TAIL);
5317     eor(tmp4, tmp3, tmp4);
5318     eor(tmp2, tmp1, tmp2);
5319     lslv(tmp2, tmp2, tmp5);
5320     orr(tmp5, tmp4, tmp2);
5321     cmp(tmp5, zr);
5322     b(CSET_EQ);
5323 
5324     bind(TAIL2);
5325     eor(tmp2, tmp1, tmp2);
5326     cbnz(tmp2, DONE);
5327     b(LAST_CHECK);
5328 
5329     bind(STUB);
5330     ldr(tmp4, Address(pre(a2, base_offset)));
5331     cmp(cnt2, cnt1);
5332     br(NE, DONE);
5333     if (elem_size == 2) { // convert to byte counter
5334       lsl(cnt1, cnt1, 1);
5335     }
5336     eor(tmp5, tmp3, tmp4);
5337     cbnz(tmp5, DONE);
5338     RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals());
5339     assert(stub.target() != nullptr, "array_equals_long stub has not been generated");
5340     address tpc = trampoline_call(stub);
5341     if (tpc == nullptr) {
5342       DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE));
5343       postcond(pc() == badAddress);
5344       return nullptr;
5345     }
5346     b(DONE);
5347 
5348     // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2)
5349     // so, if a2 == null => return false(0), else return true, so we can return a2
5350     mov(result, a2);
5351     b(DONE);
5352     bind(SHORT);
5353     cmp(cnt2, cnt1);
5354     br(NE, DONE);
5355     cbz(cnt1, SAME);
5356     sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size);
5357     ldr(tmp3, Address(a1, base_offset));
5358     ldr(tmp4, Address(a2, base_offset));
5359     bind(LAST_CHECK);
5360     eor(tmp4, tmp3, tmp4);
5361     lslv(tmp5, tmp4, tmp5);
5362     cmp(tmp5, zr);
5363     bind(CSET_EQ);
5364     cset(result, EQ);
5365     b(DONE);
5366   }
5367 
5368   bind(SAME);
5369   mov(result, true);
5370   // That's it.
5371   bind(DONE);
5372 
5373   BLOCK_COMMENT("} array_equals");
5374   postcond(pc() != badAddress);
5375   return pc();
5376 }
5377 
5378 // Compare Strings
5379 
5380 // For Strings we're passed the address of the first characters in a1
5381 // and a2 and the length in cnt1.
5382 // elem_size is the element size in bytes: either 1 or 2.
5383 // There are two implementations.  For arrays >= 8 bytes, all
5384 // comparisons (including the final one, which may overlap) are
5385 // performed 8 bytes at a time.  For strings < 8 bytes, we compare a
5386 // halfword, then a short, and then a byte.
5387 
5388 void MacroAssembler::string_equals(Register a1, Register a2,
5389                                    Register result, Register cnt1, int elem_size)
5390 {
5391   Label SAME, DONE, SHORT, NEXT_WORD;
5392   Register tmp1 = rscratch1;
5393   Register tmp2 = rscratch2;
5394   Register cnt2 = tmp2;  // cnt2 only used in array length compare
5395 
5396   assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte");
5397   assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2);
5398 
5399 #ifndef PRODUCT
5400   {
5401     const char kind = (elem_size == 2) ? 'U' : 'L';
5402     char comment[64];
5403     snprintf(comment, sizeof comment, "{string_equals%c", kind);
5404     BLOCK_COMMENT(comment);
5405   }
5406 #endif
5407 
5408   mov(result, false);
5409 
5410   // Check for short strings, i.e. smaller than wordSize.
5411   subs(cnt1, cnt1, wordSize);
5412   br(Assembler::LT, SHORT);
5413   // Main 8 byte comparison loop.
5414   bind(NEXT_WORD); {
5415     ldr(tmp1, Address(post(a1, wordSize)));
5416     ldr(tmp2, Address(post(a2, wordSize)));
5417     subs(cnt1, cnt1, wordSize);
5418     eor(tmp1, tmp1, tmp2);
5419     cbnz(tmp1, DONE);
5420   } br(GT, NEXT_WORD);
5421   // Last longword.  In the case where length == 4 we compare the
5422   // same longword twice, but that's still faster than another
5423   // conditional branch.
5424   // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
5425   // length == 4.
5426   ldr(tmp1, Address(a1, cnt1));
5427   ldr(tmp2, Address(a2, cnt1));
5428   eor(tmp2, tmp1, tmp2);
5429   cbnz(tmp2, DONE);
5430   b(SAME);
5431 
5432   bind(SHORT);
5433   Label TAIL03, TAIL01;
5434 
5435   tbz(cnt1, 2, TAIL03); // 0-7 bytes left.
5436   {
5437     ldrw(tmp1, Address(post(a1, 4)));
5438     ldrw(tmp2, Address(post(a2, 4)));
5439     eorw(tmp1, tmp1, tmp2);
5440     cbnzw(tmp1, DONE);
5441   }
5442   bind(TAIL03);
5443   tbz(cnt1, 1, TAIL01); // 0-3 bytes left.
5444   {
5445     ldrh(tmp1, Address(post(a1, 2)));
5446     ldrh(tmp2, Address(post(a2, 2)));
5447     eorw(tmp1, tmp1, tmp2);
5448     cbnzw(tmp1, DONE);
5449   }
5450   bind(TAIL01);
5451   if (elem_size == 1) { // Only needed when comparing 1-byte elements
5452     tbz(cnt1, 0, SAME); // 0-1 bytes left.
5453     {
5454       ldrb(tmp1, a1);
5455       ldrb(tmp2, a2);
5456       eorw(tmp1, tmp1, tmp2);
5457       cbnzw(tmp1, DONE);
5458     }
5459   }
5460   // Arrays are equal.
5461   bind(SAME);
5462   mov(result, true);
5463 
5464   // That's it.
5465   bind(DONE);
5466   BLOCK_COMMENT("} string_equals");
5467 }
5468 
5469 
5470 // The size of the blocks erased by the zero_blocks stub.  We must
5471 // handle anything smaller than this ourselves in zero_words().
5472 const int MacroAssembler::zero_words_block_size = 8;
5473 
5474 // zero_words() is used by C2 ClearArray patterns and by
5475 // C1_MacroAssembler.  It is as small as possible, handling small word
5476 // counts locally and delegating anything larger to the zero_blocks
5477 // stub.  It is expanded many times in compiled code, so it is
5478 // important to keep it short.
5479 
5480 // ptr:   Address of a buffer to be zeroed.
5481 // cnt:   Count in HeapWords.
5482 //
5483 // ptr, cnt, rscratch1, and rscratch2 are clobbered.
5484 address MacroAssembler::zero_words(Register ptr, Register cnt)
5485 {
5486   assert(is_power_of_2(zero_words_block_size), "adjust this");
5487 
5488   BLOCK_COMMENT("zero_words {");
5489   assert(ptr == r10 && cnt == r11, "mismatch in register usage");
5490   RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5491   assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5492 
5493   subs(rscratch1, cnt, zero_words_block_size);
5494   Label around;
5495   br(LO, around);
5496   {
5497     RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks());
5498     assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated");
5499     // Make sure this is a C2 compilation. C1 allocates space only for
5500     // trampoline stubs generated by Call LIR ops, and in any case it
5501     // makes sense for a C1 compilation task to proceed as quickly as
5502     // possible.
5503     CompileTask* task;
5504     if (StubRoutines::aarch64::complete()
5505         && Thread::current()->is_Compiler_thread()
5506         && (task = ciEnv::current()->task())
5507         && is_c2_compile(task->comp_level())) {
5508       address tpc = trampoline_call(zero_blocks);
5509       if (tpc == nullptr) {
5510         DEBUG_ONLY(reset_labels(around));
5511         return nullptr;
5512       }
5513     } else {
5514       far_call(zero_blocks);
5515     }
5516   }
5517   bind(around);
5518 
5519   // We have a few words left to do. zero_blocks has adjusted r10 and r11
5520   // for us.
5521   for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
5522     Label l;
5523     tbz(cnt, exact_log2(i), l);
5524     for (int j = 0; j < i; j += 2) {
5525       stp(zr, zr, post(ptr, 2 * BytesPerWord));
5526     }
5527     bind(l);
5528   }
5529   {
5530     Label l;
5531     tbz(cnt, 0, l);
5532     str(zr, Address(ptr));
5533     bind(l);
5534   }
5535 
5536   BLOCK_COMMENT("} zero_words");
5537   return pc();
5538 }
5539 
5540 // base:         Address of a buffer to be zeroed, 8 bytes aligned.
5541 // cnt:          Immediate count in HeapWords.
5542 //
5543 // r10, r11, rscratch1, and rscratch2 are clobbered.
5544 address MacroAssembler::zero_words(Register base, uint64_t cnt)
5545 {
5546   assert(wordSize <= BlockZeroingLowLimit,
5547             "increase BlockZeroingLowLimit");
5548   address result = nullptr;
5549   if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) {
5550 #ifndef PRODUCT
5551     {
5552       char buf[64];
5553       snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt);
5554       BLOCK_COMMENT(buf);
5555     }
5556 #endif
5557     if (cnt >= 16) {
5558       uint64_t loops = cnt/16;
5559       if (loops > 1) {
5560         mov(rscratch2, loops - 1);
5561       }
5562       {
5563         Label loop;
5564         bind(loop);
5565         for (int i = 0; i < 16; i += 2) {
5566           stp(zr, zr, Address(base, i * BytesPerWord));
5567         }
5568         add(base, base, 16 * BytesPerWord);
5569         if (loops > 1) {
5570           subs(rscratch2, rscratch2, 1);
5571           br(GE, loop);
5572         }
5573       }
5574     }
5575     cnt %= 16;
5576     int i = cnt & 1;  // store any odd word to start
5577     if (i) str(zr, Address(base));
5578     for (; i < (int)cnt; i += 2) {
5579       stp(zr, zr, Address(base, i * wordSize));
5580     }
5581     BLOCK_COMMENT("} zero_words");
5582     result = pc();
5583   } else {
5584     mov(r10, base); mov(r11, cnt);
5585     result = zero_words(r10, r11);
5586   }
5587   return result;
5588 }
5589 
5590 // Zero blocks of memory by using DC ZVA.
5591 //
5592 // Aligns the base address first sufficiently for DC ZVA, then uses
5593 // DC ZVA repeatedly for every full block.  cnt is the size to be
5594 // zeroed in HeapWords.  Returns the count of words left to be zeroed
5595 // in cnt.
5596 //
5597 // NOTE: This is intended to be used in the zero_blocks() stub.  If
5598 // you want to use it elsewhere, note that cnt must be >= 2*zva_length.
5599 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) {
5600   Register tmp = rscratch1;
5601   Register tmp2 = rscratch2;
5602   int zva_length = VM_Version::zva_length();
5603   Label initial_table_end, loop_zva;
5604   Label fini;
5605 
5606   // Base must be 16 byte aligned. If not just return and let caller handle it
5607   tst(base, 0x0f);
5608   br(Assembler::NE, fini);
5609   // Align base with ZVA length.
5610   neg(tmp, base);
5611   andr(tmp, tmp, zva_length - 1);
5612 
5613   // tmp: the number of bytes to be filled to align the base with ZVA length.
5614   add(base, base, tmp);
5615   sub(cnt, cnt, tmp, Assembler::ASR, 3);
5616   adr(tmp2, initial_table_end);
5617   sub(tmp2, tmp2, tmp, Assembler::LSR, 2);
5618   br(tmp2);
5619 
5620   for (int i = -zva_length + 16; i < 0; i += 16)
5621     stp(zr, zr, Address(base, i));
5622   bind(initial_table_end);
5623 
5624   sub(cnt, cnt, zva_length >> 3);
5625   bind(loop_zva);
5626   dc(Assembler::ZVA, base);
5627   subs(cnt, cnt, zva_length >> 3);
5628   add(base, base, zva_length);
5629   br(Assembler::GE, loop_zva);
5630   add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA
5631   bind(fini);
5632 }
5633 
5634 // base:   Address of a buffer to be filled, 8 bytes aligned.
5635 // cnt:    Count in 8-byte unit.
5636 // value:  Value to be filled with.
5637 // base will point to the end of the buffer after filling.
5638 void MacroAssembler::fill_words(Register base, Register cnt, Register value)
5639 {
5640 //  Algorithm:
5641 //
5642 //    if (cnt == 0) {
5643 //      return;
5644 //    }
5645 //    if ((p & 8) != 0) {
5646 //      *p++ = v;
5647 //    }
5648 //
5649 //    scratch1 = cnt & 14;
5650 //    cnt -= scratch1;
5651 //    p += scratch1;
5652 //    switch (scratch1 / 2) {
5653 //      do {
5654 //        cnt -= 16;
5655 //          p[-16] = v;
5656 //          p[-15] = v;
5657 //        case 7:
5658 //          p[-14] = v;
5659 //          p[-13] = v;
5660 //        case 6:
5661 //          p[-12] = v;
5662 //          p[-11] = v;
5663 //          // ...
5664 //        case 1:
5665 //          p[-2] = v;
5666 //          p[-1] = v;
5667 //        case 0:
5668 //          p += 16;
5669 //      } while (cnt);
5670 //    }
5671 //    if ((cnt & 1) == 1) {
5672 //      *p++ = v;
5673 //    }
5674 
5675   assert_different_registers(base, cnt, value, rscratch1, rscratch2);
5676 
5677   Label fini, skip, entry, loop;
5678   const int unroll = 8; // Number of stp instructions we'll unroll
5679 
5680   cbz(cnt, fini);
5681   tbz(base, 3, skip);
5682   str(value, Address(post(base, 8)));
5683   sub(cnt, cnt, 1);
5684   bind(skip);
5685 
5686   andr(rscratch1, cnt, (unroll-1) * 2);
5687   sub(cnt, cnt, rscratch1);
5688   add(base, base, rscratch1, Assembler::LSL, 3);
5689   adr(rscratch2, entry);
5690   sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1);
5691   br(rscratch2);
5692 
5693   bind(loop);
5694   add(base, base, unroll * 16);
5695   for (int i = -unroll; i < 0; i++)
5696     stp(value, value, Address(base, i * 16));
5697   bind(entry);
5698   subs(cnt, cnt, unroll * 2);
5699   br(Assembler::GE, loop);
5700 
5701   tbz(cnt, 0, fini);
5702   str(value, Address(post(base, 8)));
5703   bind(fini);
5704 }
5705 
5706 // Intrinsic for
5707 //
5708 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray
5709 //     return the number of characters copied.
5710 // - java/lang/StringUTF16.compress
5711 //     return zero (0) if copy fails, otherwise 'len'.
5712 //
5713 // This version always returns the number of characters copied, and does not
5714 // clobber the 'len' register. A successful copy will complete with the post-
5715 // condition: 'res' == 'len', while an unsuccessful copy will exit with the
5716 // post-condition: 0 <= 'res' < 'len'.
5717 //
5718 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to
5719 //       degrade performance (on Ampere Altra - Neoverse N1), to an extent
5720 //       beyond the acceptable, even though the footprint would be smaller.
5721 //       Using 'umaxv' in the ASCII-case comes with a small penalty but does
5722 //       avoid additional bloat.
5723 //
5724 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags
5725 void MacroAssembler::encode_iso_array(Register src, Register dst,
5726                                       Register len, Register res, bool ascii,
5727                                       FloatRegister vtmp0, FloatRegister vtmp1,
5728                                       FloatRegister vtmp2, FloatRegister vtmp3,
5729                                       FloatRegister vtmp4, FloatRegister vtmp5)
5730 {
5731   Register cnt = res;
5732   Register max = rscratch1;
5733   Register chk = rscratch2;
5734 
5735   prfm(Address(src), PLDL1STRM);
5736   movw(cnt, len);
5737 
5738 #define ASCII(insn) do { if (ascii) { insn; } } while (0)
5739 
5740   Label LOOP_32, DONE_32, FAIL_32;
5741 
5742   BIND(LOOP_32);
5743   {
5744     cmpw(cnt, 32);
5745     br(LT, DONE_32);
5746     ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64)));
5747     // Extract lower bytes.
5748     FloatRegister vlo0 = vtmp4;
5749     FloatRegister vlo1 = vtmp5;
5750     uzp1(vlo0, T16B, vtmp0, vtmp1);
5751     uzp1(vlo1, T16B, vtmp2, vtmp3);
5752     // Merge bits...
5753     orr(vtmp0, T16B, vtmp0, vtmp1);
5754     orr(vtmp2, T16B, vtmp2, vtmp3);
5755     // Extract merged upper bytes.
5756     FloatRegister vhix = vtmp0;
5757     uzp2(vhix, T16B, vtmp0, vtmp2);
5758     // ISO-check on hi-parts (all zero).
5759     //                          ASCII-check on lo-parts (no sign).
5760     FloatRegister vlox = vtmp1; // Merge lower bytes.
5761                                 ASCII(orr(vlox, T16B, vlo0, vlo1));
5762     umov(chk, vhix, D, 1);      ASCII(cm(LT, vlox, T16B, vlox));
5763     fmovd(max, vhix);           ASCII(umaxv(vlox, T16B, vlox));
5764     orr(chk, chk, max);         ASCII(umov(max, vlox, B, 0));
5765                                 ASCII(orr(chk, chk, max));
5766     cbnz(chk, FAIL_32);
5767     subw(cnt, cnt, 32);
5768     st1(vlo0, vlo1, T16B, Address(post(dst, 32)));
5769     b(LOOP_32);
5770   }
5771   BIND(FAIL_32);
5772   sub(src, src, 64);
5773   BIND(DONE_32);
5774 
5775   Label LOOP_8, SKIP_8;
5776 
5777   BIND(LOOP_8);
5778   {
5779     cmpw(cnt, 8);
5780     br(LT, SKIP_8);
5781     FloatRegister vhi = vtmp0;
5782     FloatRegister vlo = vtmp1;
5783     ld1(vtmp3, T8H, src);
5784     uzp1(vlo, T16B, vtmp3, vtmp3);
5785     uzp2(vhi, T16B, vtmp3, vtmp3);
5786     // ISO-check on hi-parts (all zero).
5787     //                          ASCII-check on lo-parts (no sign).
5788                                 ASCII(cm(LT, vtmp2, T16B, vlo));
5789     fmovd(chk, vhi);            ASCII(umaxv(vtmp2, T16B, vtmp2));
5790                                 ASCII(umov(max, vtmp2, B, 0));
5791                                 ASCII(orr(chk, chk, max));
5792     cbnz(chk, SKIP_8);
5793 
5794     strd(vlo, Address(post(dst, 8)));
5795     subw(cnt, cnt, 8);
5796     add(src, src, 16);
5797     b(LOOP_8);
5798   }
5799   BIND(SKIP_8);
5800 
5801 #undef ASCII
5802 
5803   Label LOOP, DONE;
5804 
5805   cbz(cnt, DONE);
5806   BIND(LOOP);
5807   {
5808     Register chr = rscratch1;
5809     ldrh(chr, Address(post(src, 2)));
5810     tst(chr, ascii ? 0xff80 : 0xff00);
5811     br(NE, DONE);
5812     strb(chr, Address(post(dst, 1)));
5813     subs(cnt, cnt, 1);
5814     br(GT, LOOP);
5815   }
5816   BIND(DONE);
5817   // Return index where we stopped.
5818   subw(res, len, cnt);
5819 }
5820 
5821 // Inflate byte[] array to char[].
5822 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6
5823 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
5824                                            FloatRegister vtmp1, FloatRegister vtmp2,
5825                                            FloatRegister vtmp3, Register tmp4) {
5826   Label big, done, after_init, to_stub;
5827 
5828   assert_different_registers(src, dst, len, tmp4, rscratch1);
5829 
5830   fmovd(vtmp1, 0.0);
5831   lsrw(tmp4, len, 3);
5832   bind(after_init);
5833   cbnzw(tmp4, big);
5834   // Short string: less than 8 bytes.
5835   {
5836     Label loop, tiny;
5837 
5838     cmpw(len, 4);
5839     br(LT, tiny);
5840     // Use SIMD to do 4 bytes.
5841     ldrs(vtmp2, post(src, 4));
5842     zip1(vtmp3, T8B, vtmp2, vtmp1);
5843     subw(len, len, 4);
5844     strd(vtmp3, post(dst, 8));
5845 
5846     cbzw(len, done);
5847 
5848     // Do the remaining bytes by steam.
5849     bind(loop);
5850     ldrb(tmp4, post(src, 1));
5851     strh(tmp4, post(dst, 2));
5852     subw(len, len, 1);
5853 
5854     bind(tiny);
5855     cbnz(len, loop);
5856 
5857     b(done);
5858   }
5859 
5860   if (SoftwarePrefetchHintDistance >= 0) {
5861     bind(to_stub);
5862       RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate());
5863       assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated");
5864       address tpc = trampoline_call(stub);
5865       if (tpc == nullptr) {
5866         DEBUG_ONLY(reset_labels(big, done));
5867         postcond(pc() == badAddress);
5868         return nullptr;
5869       }
5870       b(after_init);
5871   }
5872 
5873   // Unpack the bytes 8 at a time.
5874   bind(big);
5875   {
5876     Label loop, around, loop_last, loop_start;
5877 
5878     if (SoftwarePrefetchHintDistance >= 0) {
5879       const int large_loop_threshold = (64 + 16)/8;
5880       ldrd(vtmp2, post(src, 8));
5881       andw(len, len, 7);
5882       cmp(tmp4, (u1)large_loop_threshold);
5883       br(GE, to_stub);
5884       b(loop_start);
5885 
5886       bind(loop);
5887       ldrd(vtmp2, post(src, 8));
5888       bind(loop_start);
5889       subs(tmp4, tmp4, 1);
5890       br(EQ, loop_last);
5891       zip1(vtmp2, T16B, vtmp2, vtmp1);
5892       ldrd(vtmp3, post(src, 8));
5893       st1(vtmp2, T8H, post(dst, 16));
5894       subs(tmp4, tmp4, 1);
5895       zip1(vtmp3, T16B, vtmp3, vtmp1);
5896       st1(vtmp3, T8H, post(dst, 16));
5897       br(NE, loop);
5898       b(around);
5899       bind(loop_last);
5900       zip1(vtmp2, T16B, vtmp2, vtmp1);
5901       st1(vtmp2, T8H, post(dst, 16));
5902       bind(around);
5903       cbz(len, done);
5904     } else {
5905       andw(len, len, 7);
5906       bind(loop);
5907       ldrd(vtmp2, post(src, 8));
5908       sub(tmp4, tmp4, 1);
5909       zip1(vtmp3, T16B, vtmp2, vtmp1);
5910       st1(vtmp3, T8H, post(dst, 16));
5911       cbnz(tmp4, loop);
5912     }
5913   }
5914 
5915   // Do the tail of up to 8 bytes.
5916   add(src, src, len);
5917   ldrd(vtmp3, Address(src, -8));
5918   add(dst, dst, len, ext::uxtw, 1);
5919   zip1(vtmp3, T16B, vtmp3, vtmp1);
5920   strq(vtmp3, Address(dst, -16));
5921 
5922   bind(done);
5923   postcond(pc() != badAddress);
5924   return pc();
5925 }
5926 
5927 // Compress char[] array to byte[].
5928 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
5929                                          Register res,
5930                                          FloatRegister tmp0, FloatRegister tmp1,
5931                                          FloatRegister tmp2, FloatRegister tmp3,
5932                                          FloatRegister tmp4, FloatRegister tmp5) {
5933   encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5);
5934   // Adjust result: res == len ? len : 0
5935   cmp(len, res);
5936   csel(res, res, zr, EQ);
5937 }
5938 
5939 // java.math.round(double a)
5940 // Returns the closest long to the argument, with ties rounding to
5941 // positive infinity.  This requires some fiddling for corner
5942 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5).
5943 void MacroAssembler::java_round_double(Register dst, FloatRegister src,
5944                                        FloatRegister ftmp) {
5945   Label DONE;
5946   BLOCK_COMMENT("java_round_double: { ");
5947   fmovd(rscratch1, src);
5948   // Use RoundToNearestTiesAway unless src small and -ve.
5949   fcvtasd(dst, src);
5950   // Test if src >= 0 || abs(src) >= 0x1.0p52
5951   eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit
5952   mov(rscratch2, julong_cast(0x1.0p52));
5953   cmp(rscratch1, rscratch2);
5954   br(HS, DONE); {
5955     // src < 0 && abs(src) < 0x1.0p52
5956     // src may have a fractional part, so add 0.5
5957     fmovd(ftmp, 0.5);
5958     faddd(ftmp, src, ftmp);
5959     // Convert double to jlong, use RoundTowardsNegative
5960     fcvtmsd(dst, ftmp);
5961   }
5962   bind(DONE);
5963   BLOCK_COMMENT("} java_round_double");
5964 }
5965 
5966 void MacroAssembler::java_round_float(Register dst, FloatRegister src,
5967                                       FloatRegister ftmp) {
5968   Label DONE;
5969   BLOCK_COMMENT("java_round_float: { ");
5970   fmovs(rscratch1, src);
5971   // Use RoundToNearestTiesAway unless src small and -ve.
5972   fcvtassw(dst, src);
5973   // Test if src >= 0 || abs(src) >= 0x1.0p23
5974   eor(rscratch1, rscratch1, 0x80000000); // flip sign bit
5975   mov(rscratch2, jint_cast(0x1.0p23f));
5976   cmp(rscratch1, rscratch2);
5977   br(HS, DONE); {
5978     // src < 0 && |src| < 0x1.0p23
5979     // src may have a fractional part, so add 0.5
5980     fmovs(ftmp, 0.5f);
5981     fadds(ftmp, src, ftmp);
5982     // Convert float to jint, use RoundTowardsNegative
5983     fcvtmssw(dst, ftmp);
5984   }
5985   bind(DONE);
5986   BLOCK_COMMENT("} java_round_float");
5987 }
5988 
5989 // get_thread() can be called anywhere inside generated code so we
5990 // need to save whatever non-callee save context might get clobbered
5991 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed,
5992 // the call setup code.
5993 //
5994 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags.
5995 // On other systems, the helper is a usual C function.
5996 //
5997 void MacroAssembler::get_thread(Register dst) {
5998   RegSet saved_regs =
5999     LINUX_ONLY(RegSet::range(r0, r1)  + lr - dst)
6000     NOT_LINUX (RegSet::range(r0, r17) + lr - dst);
6001 
6002   protect_return_address();
6003   push(saved_regs, sp);
6004 
6005   mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper));
6006   blr(lr);
6007   if (dst != c_rarg0) {
6008     mov(dst, c_rarg0);
6009   }
6010 
6011   pop(saved_regs, sp);
6012   authenticate_return_address();
6013 }
6014 
6015 void MacroAssembler::cache_wb(Address line) {
6016   assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset");
6017   assert(line.index() == noreg, "index should be noreg");
6018   assert(line.offset() == 0, "offset should be 0");
6019   // would like to assert this
6020   // assert(line._ext.shift == 0, "shift should be zero");
6021   if (VM_Version::supports_dcpop()) {
6022     // writeback using clear virtual address to point of persistence
6023     dc(Assembler::CVAP, line.base());
6024   } else {
6025     // no need to generate anything as Unsafe.writebackMemory should
6026     // never invoke this stub
6027   }
6028 }
6029 
6030 void MacroAssembler::cache_wbsync(bool is_pre) {
6031   // we only need a barrier post sync
6032   if (!is_pre) {
6033     membar(Assembler::AnyAny);
6034   }
6035 }
6036 
6037 void MacroAssembler::verify_sve_vector_length(Register tmp) {
6038   // Make sure that native code does not change SVE vector length.
6039   if (!UseSVE) return;
6040   Label verify_ok;
6041   movw(tmp, zr);
6042   sve_inc(tmp, B);
6043   subsw(zr, tmp, VM_Version::get_initial_sve_vector_length());
6044   br(EQ, verify_ok);
6045   stop("Error: SVE vector length has changed since jvm startup");
6046   bind(verify_ok);
6047 }
6048 
6049 void MacroAssembler::verify_ptrue() {
6050   Label verify_ok;
6051   if (!UseSVE) {
6052     return;
6053   }
6054   sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count.
6055   sve_dec(rscratch1, B);
6056   cbz(rscratch1, verify_ok);
6057   stop("Error: the preserved predicate register (p7) elements are not all true");
6058   bind(verify_ok);
6059 }
6060 
6061 void MacroAssembler::safepoint_isb() {
6062   isb();
6063 #ifndef PRODUCT
6064   if (VerifyCrossModifyFence) {
6065     // Clear the thread state.
6066     strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6067   }
6068 #endif
6069 }
6070 
6071 #ifndef PRODUCT
6072 void MacroAssembler::verify_cross_modify_fence_not_required() {
6073   if (VerifyCrossModifyFence) {
6074     // Check if thread needs a cross modify fence.
6075     ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset())));
6076     Label fence_not_required;
6077     cbz(rscratch1, fence_not_required);
6078     // If it does then fail.
6079     lea(rscratch1, CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure));
6080     mov(c_rarg0, rthread);
6081     blr(rscratch1);
6082     bind(fence_not_required);
6083   }
6084 }
6085 #endif
6086 
6087 void MacroAssembler::spin_wait() {
6088   for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) {
6089     switch (VM_Version::spin_wait_desc().inst()) {
6090       case SpinWait::NOP:
6091         nop();
6092         break;
6093       case SpinWait::ISB:
6094         isb();
6095         break;
6096       case SpinWait::YIELD:
6097         yield();
6098         break;
6099       default:
6100         ShouldNotReachHere();
6101     }
6102   }
6103 }
6104 
6105 // Stack frame creation/removal
6106 
6107 void MacroAssembler::enter(bool strip_ret_addr) {
6108   if (strip_ret_addr) {
6109     // Addresses can only be signed once. If there are multiple nested frames being created
6110     // in the same function, then the return address needs stripping first.
6111     strip_return_address();
6112   }
6113   protect_return_address();
6114   stp(rfp, lr, Address(pre(sp, -2 * wordSize)));
6115   mov(rfp, sp);
6116 }
6117 
6118 void MacroAssembler::leave() {
6119   mov(sp, rfp);
6120   ldp(rfp, lr, Address(post(sp, 2 * wordSize)));
6121   authenticate_return_address();
6122 }
6123 
6124 // ROP Protection
6125 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/
6126 // destroying stack frames or whenever directly loading/storing the LR to memory.
6127 // If ROP protection is not set then these functions are no-ops.
6128 // For more details on PAC see pauth_aarch64.hpp.
6129 
6130 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory.
6131 // Uses value zero as the modifier.
6132 //
6133 void MacroAssembler::protect_return_address() {
6134   if (VM_Version::use_rop_protection()) {
6135     check_return_address();
6136     paciaz();
6137   }
6138 }
6139 
6140 // Sign the return value in the given register. Use before updating the LR in the existing stack
6141 // frame for the current function.
6142 // Uses value zero as the modifier.
6143 //
6144 void MacroAssembler::protect_return_address(Register return_reg) {
6145   if (VM_Version::use_rop_protection()) {
6146     check_return_address(return_reg);
6147     paciza(return_reg);
6148   }
6149 }
6150 
6151 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory.
6152 // Uses value zero as the modifier.
6153 //
6154 void MacroAssembler::authenticate_return_address() {
6155   if (VM_Version::use_rop_protection()) {
6156     autiaz();
6157     check_return_address();
6158   }
6159 }
6160 
6161 // Authenticate the return value in the given register. Use before updating the LR in the existing
6162 // stack frame for the current function.
6163 // Uses value zero as the modifier.
6164 //
6165 void MacroAssembler::authenticate_return_address(Register return_reg) {
6166   if (VM_Version::use_rop_protection()) {
6167     autiza(return_reg);
6168     check_return_address(return_reg);
6169   }
6170 }
6171 
6172 // Strip any PAC data from LR without performing any authentication. Use with caution - only if
6173 // there is no guaranteed way of authenticating the LR.
6174 //
6175 void MacroAssembler::strip_return_address() {
6176   if (VM_Version::use_rop_protection()) {
6177     xpaclri();
6178   }
6179 }
6180 
6181 #ifndef PRODUCT
6182 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only
6183 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point
6184 // it is difficult to debug back to the callee function.
6185 // This function simply loads from the address in the given register.
6186 // Use directly after authentication to catch authentication failures.
6187 // Also use before signing to check that the pointer is valid and hasn't already been signed.
6188 //
6189 void MacroAssembler::check_return_address(Register return_reg) {
6190   if (VM_Version::use_rop_protection()) {
6191     ldr(zr, Address(return_reg));
6192   }
6193 }
6194 #endif
6195 
6196 // The java_calling_convention describes stack locations as ideal slots on
6197 // a frame with no abi restrictions. Since we must observe abi restrictions
6198 // (like the placement of the register window) the slots must be biased by
6199 // the following value.
6200 static int reg2offset_in(VMReg r) {
6201   // Account for saved rfp and lr
6202   // This should really be in_preserve_stack_slots
6203   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
6204 }
6205 
6206 static int reg2offset_out(VMReg r) {
6207   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
6208 }
6209 
6210 // On 64bit we will store integer like items to the stack as
6211 // 64bits items (AArch64 ABI) even though java would only store
6212 // 32bits for a parameter. On 32bit it will simply be 32bits
6213 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
6214 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) {
6215   if (src.first()->is_stack()) {
6216     if (dst.first()->is_stack()) {
6217       // stack to stack
6218       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6219       str(tmp, Address(sp, reg2offset_out(dst.first())));
6220     } else {
6221       // stack to reg
6222       ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6223     }
6224   } else if (dst.first()->is_stack()) {
6225     // reg to stack
6226     str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6227   } else {
6228     if (dst.first() != src.first()) {
6229       sxtw(dst.first()->as_Register(), src.first()->as_Register());
6230     }
6231   }
6232 }
6233 
6234 // An oop arg. Must pass a handle not the oop itself
6235 void MacroAssembler::object_move(
6236                         OopMap* map,
6237                         int oop_handle_offset,
6238                         int framesize_in_slots,
6239                         VMRegPair src,
6240                         VMRegPair dst,
6241                         bool is_receiver,
6242                         int* receiver_offset) {
6243 
6244   // must pass a handle. First figure out the location we use as a handle
6245 
6246   Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register();
6247 
6248   // See if oop is null if it is we need no handle
6249 
6250   if (src.first()->is_stack()) {
6251 
6252     // Oop is already on the stack as an argument
6253     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
6254     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
6255     if (is_receiver) {
6256       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
6257     }
6258 
6259     ldr(rscratch1, Address(rfp, reg2offset_in(src.first())));
6260     lea(rHandle, Address(rfp, reg2offset_in(src.first())));
6261     // conditionally move a null
6262     cmp(rscratch1, zr);
6263     csel(rHandle, zr, rHandle, Assembler::EQ);
6264   } else {
6265 
6266     // Oop is in an a register we must store it to the space we reserve
6267     // on the stack for oop_handles and pass a handle if oop is non-null
6268 
6269     const Register rOop = src.first()->as_Register();
6270     int oop_slot;
6271     if (rOop == j_rarg0)
6272       oop_slot = 0;
6273     else if (rOop == j_rarg1)
6274       oop_slot = 1;
6275     else if (rOop == j_rarg2)
6276       oop_slot = 2;
6277     else if (rOop == j_rarg3)
6278       oop_slot = 3;
6279     else if (rOop == j_rarg4)
6280       oop_slot = 4;
6281     else if (rOop == j_rarg5)
6282       oop_slot = 5;
6283     else if (rOop == j_rarg6)
6284       oop_slot = 6;
6285     else {
6286       assert(rOop == j_rarg7, "wrong register");
6287       oop_slot = 7;
6288     }
6289 
6290     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
6291     int offset = oop_slot*VMRegImpl::stack_slot_size;
6292 
6293     map->set_oop(VMRegImpl::stack2reg(oop_slot));
6294     // Store oop in handle area, may be null
6295     str(rOop, Address(sp, offset));
6296     if (is_receiver) {
6297       *receiver_offset = offset;
6298     }
6299 
6300     cmp(rOop, zr);
6301     lea(rHandle, Address(sp, offset));
6302     // conditionally move a null
6303     csel(rHandle, zr, rHandle, Assembler::EQ);
6304   }
6305 
6306   // If arg is on the stack then place it otherwise it is already in correct reg.
6307   if (dst.first()->is_stack()) {
6308     str(rHandle, Address(sp, reg2offset_out(dst.first())));
6309   }
6310 }
6311 
6312 // A float arg may have to do float reg int reg conversion
6313 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) {
6314  if (src.first()->is_stack()) {
6315     if (dst.first()->is_stack()) {
6316       ldrw(tmp, Address(rfp, reg2offset_in(src.first())));
6317       strw(tmp, Address(sp, reg2offset_out(dst.first())));
6318     } else {
6319       ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6320     }
6321   } else if (src.first() != dst.first()) {
6322     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6323       fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6324     else
6325       strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6326   }
6327 }
6328 
6329 // A long move
6330 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) {
6331   if (src.first()->is_stack()) {
6332     if (dst.first()->is_stack()) {
6333       // stack to stack
6334       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6335       str(tmp, Address(sp, reg2offset_out(dst.first())));
6336     } else {
6337       // stack to reg
6338       ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first())));
6339     }
6340   } else if (dst.first()->is_stack()) {
6341     // reg to stack
6342     // Do we really have to sign extend???
6343     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
6344     str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
6345   } else {
6346     if (dst.first() != src.first()) {
6347       mov(dst.first()->as_Register(), src.first()->as_Register());
6348     }
6349   }
6350 }
6351 
6352 
6353 // A double move
6354 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) {
6355  if (src.first()->is_stack()) {
6356     if (dst.first()->is_stack()) {
6357       ldr(tmp, Address(rfp, reg2offset_in(src.first())));
6358       str(tmp, Address(sp, reg2offset_out(dst.first())));
6359     } else {
6360       ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first())));
6361     }
6362   } else if (src.first() != dst.first()) {
6363     if (src.is_single_phys_reg() && dst.is_single_phys_reg())
6364       fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
6365     else
6366       strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first())));
6367   }
6368 }
6369 
6370 // Implements lightweight-locking.
6371 //
6372 //  - obj: the object to be locked
6373 //  - t1, t2, t3: temporary registers, will be destroyed
6374 //  - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding).
6375 void MacroAssembler::lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6376   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6377   assert_different_registers(obj, t1, t2, t3, rscratch1);
6378 
6379   Label push;
6380   const Register top = t1;
6381   const Register mark = t2;
6382   const Register t = t3;
6383 
6384   // Preload the markWord. It is important that this is the first
6385   // instruction emitted as it is part of C1's null check semantics.
6386   ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6387 
6388   // Check if the lock-stack is full.
6389   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6390   cmpw(top, (unsigned)LockStack::end_offset());
6391   br(Assembler::GE, slow);
6392 
6393   // Check for recursion.
6394   subw(t, top, oopSize);
6395   ldr(t, Address(rthread, t));
6396   cmp(obj, t);
6397   br(Assembler::EQ, push);
6398 
6399   // Check header for monitor (0b10).
6400   tst(mark, markWord::monitor_value);
6401   br(Assembler::NE, slow);
6402 
6403   // Try to lock. Transition lock bits 0b01 => 0b00
6404   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6405   orr(mark, mark, markWord::unlocked_value);
6406   eor(t, mark, markWord::unlocked_value);
6407   cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword,
6408           /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg);
6409   br(Assembler::NE, slow);
6410 
6411   bind(push);
6412   // After successful lock, push object on lock-stack.
6413   str(obj, Address(rthread, top));
6414   addw(top, top, oopSize);
6415   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6416 }
6417 
6418 // Implements lightweight-unlocking.
6419 //
6420 // - obj: the object to be unlocked
6421 // - t1, t2, t3: temporary registers
6422 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding).
6423 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) {
6424   assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking");
6425   // cmpxchg clobbers rscratch1.
6426   assert_different_registers(obj, t1, t2, t3, rscratch1);
6427 
6428 #ifdef ASSERT
6429   {
6430     // Check for lock-stack underflow.
6431     Label stack_ok;
6432     ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset()));
6433     cmpw(t1, (unsigned)LockStack::start_offset());
6434     br(Assembler::GE, stack_ok);
6435     STOP("Lock-stack underflow");
6436     bind(stack_ok);
6437   }
6438 #endif
6439 
6440   Label unlocked, push_and_slow;
6441   const Register top = t1;
6442   const Register mark = t2;
6443   const Register t = t3;
6444 
6445   // Check if obj is top of lock-stack.
6446   ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6447   subw(top, top, oopSize);
6448   ldr(t, Address(rthread, top));
6449   cmp(obj, t);
6450   br(Assembler::NE, slow);
6451 
6452   // Pop lock-stack.
6453   DEBUG_ONLY(str(zr, Address(rthread, top));)
6454   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6455 
6456   // Check if recursive.
6457   subw(t, top, oopSize);
6458   ldr(t, Address(rthread, t));
6459   cmp(obj, t);
6460   br(Assembler::EQ, unlocked);
6461 
6462   // Not recursive. Check header for monitor (0b10).
6463   ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes()));
6464   tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow);
6465 
6466 #ifdef ASSERT
6467   // Check header not unlocked (0b01).
6468   Label not_unlocked;
6469   tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked);
6470   stop("lightweight_unlock already unlocked");
6471   bind(not_unlocked);
6472 #endif
6473 
6474   // Try to unlock. Transition lock bits 0b00 => 0b01
6475   assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea");
6476   orr(t, mark, markWord::unlocked_value);
6477   cmpxchg(obj, mark, t, Assembler::xword,
6478           /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg);
6479   br(Assembler::EQ, unlocked);
6480 
6481   bind(push_and_slow);
6482   // Restore lock-stack and handle the unlock in runtime.
6483   DEBUG_ONLY(str(obj, Address(rthread, top));)
6484   addw(top, top, oopSize);
6485   strw(top, Address(rthread, JavaThread::lock_stack_top_offset()));
6486   b(slow);
6487 
6488   bind(unlocked);
6489 }