1 /*
2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
28
29 #include "asm/assembler.inline.hpp"
30 #include "code/vmreg.hpp"
31 #include "metaprogramming/enableIf.hpp"
32 #include "oops/compressedOops.hpp"
33 #include "runtime/vm_version.hpp"
34 #include "utilities/powerOfTwo.hpp"
35
36 class OopMap;
37
38 // MacroAssembler extends Assembler by frequently used macros.
39 //
40 // Instructions for which a 'better' code sequence exists depending
41 // on arguments should also go in here.
42
43 class MacroAssembler: public Assembler {
44 friend class LIR_Assembler;
45
46 public:
47 using Assembler::mov;
48 using Assembler::movi;
49
50 protected:
51
52 // Support for VM calls
53 //
54 // This is the base routine called by the different versions of call_VM_leaf. The interpreter
55 // may customize this version by overriding it for its purposes (e.g., to save/restore
56 // additional registers when doing a VM call).
57 virtual void call_VM_leaf_base(
58 address entry_point, // the entry point
59 int number_of_arguments, // the number of arguments to pop after the call
60 Label *retaddr = nullptr
61 );
62
63 virtual void call_VM_leaf_base(
64 address entry_point, // the entry point
65 int number_of_arguments, // the number of arguments to pop after the call
66 Label &retaddr) {
67 call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
68 }
69
70 // This is the base routine called by the different versions of call_VM. The interpreter
71 // may customize this version by overriding it for its purposes (e.g., to save/restore
72 // additional registers when doing a VM call).
73 //
74 // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
75 // returns the register which contains the thread upon return. If a thread register has been
76 // specified, the return value will correspond to that register. If no last_java_sp is specified
77 // (noreg) than rsp will be used instead.
78 virtual void call_VM_base( // returns the register containing the thread upon return
79 Register oop_result, // where an oop-result ends up if any; use noreg otherwise
80 Register java_thread, // the thread if computed before ; use noreg otherwise
81 Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
82 address entry_point, // the entry point
83 int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
84 bool check_exceptions // whether to check for pending exceptions after return
85 );
86
87 void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
88
89 enum KlassDecodeMode {
90 KlassDecodeNone,
91 KlassDecodeZero,
92 KlassDecodeXor,
93 KlassDecodeMovk
94 };
95
96 KlassDecodeMode klass_decode_mode();
97
98 private:
99 static KlassDecodeMode _klass_decode_mode;
100
101 public:
102 MacroAssembler(CodeBuffer* code) : Assembler(code) {}
103
104 // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
105 // The implementation is only non-empty for the InterpreterMacroAssembler,
106 // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
107 virtual void check_and_handle_popframe(Register java_thread);
108 virtual void check_and_handle_earlyret(Register java_thread);
109
110 void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
111 void rt_call(address dest, Register tmp = rscratch1);
112
113 // Load Effective Address
114 void lea(Register r, const Address &a) {
115 InstructionMark im(this);
116 a.lea(this, r);
117 }
118
119 /* Sometimes we get misaligned loads and stores, usually from Unsafe
120 accesses, and these can exceed the offset range. */
121 Address legitimize_address(const Address &a, int size, Register scratch) {
122 if (a.getMode() == Address::base_plus_offset) {
123 if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
124 block_comment("legitimize_address {");
125 lea(scratch, a);
126 block_comment("} legitimize_address");
127 return Address(scratch);
128 }
129 }
130 return a;
131 }
132
133 void addmw(Address a, Register incr, Register scratch) {
134 ldrw(scratch, a);
135 addw(scratch, scratch, incr);
136 strw(scratch, a);
137 }
138
139 // Add constant to memory word
140 void addmw(Address a, int imm, Register scratch) {
141 ldrw(scratch, a);
142 if (imm > 0)
143 addw(scratch, scratch, (unsigned)imm);
144 else
145 subw(scratch, scratch, (unsigned)-imm);
146 strw(scratch, a);
147 }
148
149 void bind(Label& L) {
150 Assembler::bind(L);
151 code()->clear_last_insn();
152 }
153
154 void membar(Membar_mask_bits order_constraint);
155
156 using Assembler::ldr;
157 using Assembler::str;
158 using Assembler::ldrw;
159 using Assembler::strw;
160
161 void ldr(Register Rx, const Address &adr);
162 void ldrw(Register Rw, const Address &adr);
163 void str(Register Rx, const Address &adr);
164 void strw(Register Rx, const Address &adr);
165
166 // Frame creation and destruction shared between JITs.
167 void build_frame(int framesize);
168 void remove_frame(int framesize);
169
170 virtual void _call_Unimplemented(address call_site) {
171 mov(rscratch2, call_site);
172 }
173
174 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
175 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
176 // https://reviews.llvm.org/D3311
177
178 #ifdef _WIN64
179 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
180 #else
181 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
182 #endif
183
184 // aliases defined in AARCH64 spec
185
186 template<class T>
187 inline void cmpw(Register Rd, T imm) { subsw(zr, Rd, imm); }
188
189 inline void cmp(Register Rd, unsigned char imm8) { subs(zr, Rd, imm8); }
190 inline void cmp(Register Rd, unsigned imm) = delete;
191
192 template<class T>
193 inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
194
195 inline void cmn(Register Rd, unsigned char imm8) { adds(zr, Rd, imm8); }
196 inline void cmn(Register Rd, unsigned imm) = delete;
197
198 void cset(Register Rd, Assembler::Condition cond) {
199 csinc(Rd, zr, zr, ~cond);
200 }
201 void csetw(Register Rd, Assembler::Condition cond) {
202 csincw(Rd, zr, zr, ~cond);
203 }
204
205 void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
206 csneg(Rd, Rn, Rn, ~cond);
207 }
208 void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
209 csnegw(Rd, Rn, Rn, ~cond);
210 }
211
212 inline void movw(Register Rd, Register Rn) {
213 if (Rd == sp || Rn == sp) {
214 Assembler::addw(Rd, Rn, 0U);
215 } else {
216 orrw(Rd, zr, Rn);
217 }
218 }
219 inline void mov(Register Rd, Register Rn) {
220 assert(Rd != r31_sp && Rn != r31_sp, "should be");
221 if (Rd == Rn) {
222 } else if (Rd == sp || Rn == sp) {
223 Assembler::add(Rd, Rn, 0U);
224 } else {
225 orr(Rd, zr, Rn);
226 }
227 }
228
229 inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
230 inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
231
232 inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
233 inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
234
235 inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
236 inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
237
238 inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
239 bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
240 }
241 inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
242 bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
243 }
244
245 inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
246 bfmw(Rd, Rn, lsb, (lsb + width - 1));
247 }
248 inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
249 bfm(Rd, Rn, lsb , (lsb + width - 1));
250 }
251
252 inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
253 sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
254 }
255 inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
256 sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
257 }
258
259 inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
260 sbfmw(Rd, Rn, lsb, (lsb + width - 1));
261 }
262 inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
263 sbfm(Rd, Rn, lsb , (lsb + width - 1));
264 }
265
266 inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
267 ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
268 }
269 inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
270 ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
271 }
272
273 inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
274 ubfmw(Rd, Rn, lsb, (lsb + width - 1));
275 }
276 inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
277 ubfm(Rd, Rn, lsb , (lsb + width - 1));
278 }
279
280 inline void asrw(Register Rd, Register Rn, unsigned imm) {
281 sbfmw(Rd, Rn, imm, 31);
282 }
283
284 inline void asr(Register Rd, Register Rn, unsigned imm) {
285 sbfm(Rd, Rn, imm, 63);
286 }
287
288 inline void lslw(Register Rd, Register Rn, unsigned imm) {
289 ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
290 }
291
292 inline void lsl(Register Rd, Register Rn, unsigned imm) {
293 ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
294 }
295
296 inline void lsrw(Register Rd, Register Rn, unsigned imm) {
297 ubfmw(Rd, Rn, imm, 31);
298 }
299
300 inline void lsr(Register Rd, Register Rn, unsigned imm) {
301 ubfm(Rd, Rn, imm, 63);
302 }
303
304 inline void rorw(Register Rd, Register Rn, unsigned imm) {
305 extrw(Rd, Rn, Rn, imm);
306 }
307
308 inline void ror(Register Rd, Register Rn, unsigned imm) {
309 extr(Rd, Rn, Rn, imm);
310 }
311
312 inline void sxtbw(Register Rd, Register Rn) {
313 sbfmw(Rd, Rn, 0, 7);
314 }
315 inline void sxthw(Register Rd, Register Rn) {
316 sbfmw(Rd, Rn, 0, 15);
317 }
318 inline void sxtb(Register Rd, Register Rn) {
319 sbfm(Rd, Rn, 0, 7);
320 }
321 inline void sxth(Register Rd, Register Rn) {
322 sbfm(Rd, Rn, 0, 15);
323 }
324 inline void sxtw(Register Rd, Register Rn) {
325 sbfm(Rd, Rn, 0, 31);
326 }
327
328 inline void uxtbw(Register Rd, Register Rn) {
329 ubfmw(Rd, Rn, 0, 7);
330 }
331 inline void uxthw(Register Rd, Register Rn) {
332 ubfmw(Rd, Rn, 0, 15);
333 }
334 inline void uxtb(Register Rd, Register Rn) {
335 ubfm(Rd, Rn, 0, 7);
336 }
337 inline void uxth(Register Rd, Register Rn) {
338 ubfm(Rd, Rn, 0, 15);
339 }
340 inline void uxtw(Register Rd, Register Rn) {
341 ubfm(Rd, Rn, 0, 31);
342 }
343
344 inline void cmnw(Register Rn, Register Rm) {
345 addsw(zr, Rn, Rm);
346 }
347 inline void cmn(Register Rn, Register Rm) {
348 adds(zr, Rn, Rm);
349 }
350
351 inline void cmpw(Register Rn, Register Rm) {
352 subsw(zr, Rn, Rm);
353 }
354 inline void cmp(Register Rn, Register Rm) {
355 subs(zr, Rn, Rm);
356 }
357
358 inline void negw(Register Rd, Register Rn) {
359 subw(Rd, zr, Rn);
360 }
361
362 inline void neg(Register Rd, Register Rn) {
363 sub(Rd, zr, Rn);
364 }
365
366 inline void negsw(Register Rd, Register Rn) {
367 subsw(Rd, zr, Rn);
368 }
369
370 inline void negs(Register Rd, Register Rn) {
371 subs(Rd, zr, Rn);
372 }
373
374 inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
375 addsw(zr, Rn, Rm, kind, shift);
376 }
377 inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
378 adds(zr, Rn, Rm, kind, shift);
379 }
380
381 inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
382 subsw(zr, Rn, Rm, kind, shift);
383 }
384 inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
385 subs(zr, Rn, Rm, kind, shift);
386 }
387
388 inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
389 subw(Rd, zr, Rn, kind, shift);
390 }
391
392 inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
393 sub(Rd, zr, Rn, kind, shift);
394 }
395
396 inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
397 subsw(Rd, zr, Rn, kind, shift);
398 }
399
400 inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
401 subs(Rd, zr, Rn, kind, shift);
402 }
403
404 inline void mnegw(Register Rd, Register Rn, Register Rm) {
405 msubw(Rd, Rn, Rm, zr);
406 }
407 inline void mneg(Register Rd, Register Rn, Register Rm) {
408 msub(Rd, Rn, Rm, zr);
409 }
410
411 inline void mulw(Register Rd, Register Rn, Register Rm) {
412 maddw(Rd, Rn, Rm, zr);
413 }
414 inline void mul(Register Rd, Register Rn, Register Rm) {
415 madd(Rd, Rn, Rm, zr);
416 }
417
418 inline void smnegl(Register Rd, Register Rn, Register Rm) {
419 smsubl(Rd, Rn, Rm, zr);
420 }
421 inline void smull(Register Rd, Register Rn, Register Rm) {
422 smaddl(Rd, Rn, Rm, zr);
423 }
424
425 inline void umnegl(Register Rd, Register Rn, Register Rm) {
426 umsubl(Rd, Rn, Rm, zr);
427 }
428 inline void umull(Register Rd, Register Rn, Register Rm) {
429 umaddl(Rd, Rn, Rm, zr);
430 }
431
432 #define WRAP(INSN) \
433 void INSN(Register Rd, Register Rn, Register Rm, Register Ra) { \
434 if (VM_Version::supports_a53mac() && Ra != zr) \
435 nop(); \
436 Assembler::INSN(Rd, Rn, Rm, Ra); \
437 }
438
439 WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
440 WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
441 #undef WRAP
442
443
444 // macro assembly operations needed for aarch64
445
446 // first two private routines for loading 32 bit or 64 bit constants
447 private:
448
449 void mov_immediate64(Register dst, uint64_t imm64);
450 void mov_immediate32(Register dst, uint32_t imm32);
451
452 int push(unsigned int bitset, Register stack);
453 int pop(unsigned int bitset, Register stack);
454
455 int push_fp(unsigned int bitset, Register stack);
456 int pop_fp(unsigned int bitset, Register stack);
457
458 int push_p(unsigned int bitset, Register stack);
459 int pop_p(unsigned int bitset, Register stack);
460
461 void mov(Register dst, Address a);
462
463 public:
464 void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
465 void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
466
467 void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
468 void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
469
470 static RegSet call_clobbered_gp_registers();
471
472 void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
473 void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
474
475 // Push and pop everything that might be clobbered by a native
476 // runtime call except rscratch1 and rscratch2. (They are always
477 // scratch, so we don't have to protect them.) Only save the lower
478 // 64 bits of each vector register. Additional registers can be excluded
479 // in a passed RegSet.
480 void push_call_clobbered_registers_except(RegSet exclude);
481 void pop_call_clobbered_registers_except(RegSet exclude);
482
483 void push_call_clobbered_registers() {
484 push_call_clobbered_registers_except(RegSet());
485 }
486 void pop_call_clobbered_registers() {
487 pop_call_clobbered_registers_except(RegSet());
488 }
489
490
491 // now mov instructions for loading absolute addresses and 32 or
492 // 64 bit integers
493
494 inline void mov(Register dst, address addr) { mov_immediate64(dst, (uint64_t)addr); }
495
496 template<typename T, ENABLE_IF(std::is_integral<T>::value)>
497 inline void mov(Register dst, T o) { mov_immediate64(dst, (uint64_t)o); }
498
499 inline void movw(Register dst, uint32_t imm32) { mov_immediate32(dst, imm32); }
500
501 void mov(Register dst, RegisterOrConstant src) {
502 if (src.is_register())
503 mov(dst, src.as_register());
504 else
505 mov(dst, src.as_constant());
506 }
507
508 void movptr(Register r, uintptr_t imm64);
509
510 void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
511
512 void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
513 orr(Vd, T, Vn, Vn);
514 }
515
516 void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
517 fcvtsh(tmp, src);
518 smov(dst, tmp, H, 0);
519 }
520
521 void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
522 mov(tmp, H, 0, src);
523 fcvths(dst, tmp);
524 }
525
526 // Generalized Test Bit And Branch, including a "far" variety which
527 // spans more than 32KiB.
528 void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
529 assert(cond == EQ || cond == NE, "must be");
530
531 if (isfar)
532 cond = ~cond;
533
534 void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
535 if (cond == Assembler::EQ)
536 branch = &Assembler::tbz;
537 else
538 branch = &Assembler::tbnz;
539
540 if (isfar) {
541 Label L;
542 (this->*branch)(Rt, bitpos, L);
543 b(dest);
544 bind(L);
545 } else {
546 (this->*branch)(Rt, bitpos, dest);
547 }
548 }
549
550 // macro instructions for accessing and updating floating point
551 // status register
552 //
553 // FPSR : op1 == 011
554 // CRn == 0100
555 // CRm == 0100
556 // op2 == 001
557
558 inline void get_fpsr(Register reg)
559 {
560 mrs(0b11, 0b0100, 0b0100, 0b001, reg);
561 }
562
563 inline void set_fpsr(Register reg)
564 {
565 msr(0b011, 0b0100, 0b0100, 0b001, reg);
566 }
567
568 inline void clear_fpsr()
569 {
570 msr(0b011, 0b0100, 0b0100, 0b001, zr);
571 }
572
573 // DCZID_EL0: op1 == 011
574 // CRn == 0000
575 // CRm == 0000
576 // op2 == 111
577 inline void get_dczid_el0(Register reg)
578 {
579 mrs(0b011, 0b0000, 0b0000, 0b111, reg);
580 }
581
582 // CTR_EL0: op1 == 011
583 // CRn == 0000
584 // CRm == 0000
585 // op2 == 001
586 inline void get_ctr_el0(Register reg)
587 {
588 mrs(0b011, 0b0000, 0b0000, 0b001, reg);
589 }
590
591 inline void get_nzcv(Register reg) {
592 mrs(0b011, 0b0100, 0b0010, 0b000, reg);
593 }
594
595 inline void set_nzcv(Register reg) {
596 msr(0b011, 0b0100, 0b0010, 0b000, reg);
597 }
598
599 // idiv variant which deals with MINLONG as dividend and -1 as divisor
600 int corrected_idivl(Register result, Register ra, Register rb,
601 bool want_remainder, Register tmp = rscratch1);
602 int corrected_idivq(Register result, Register ra, Register rb,
603 bool want_remainder, Register tmp = rscratch1);
604
605 // Support for null-checks
606 //
607 // Generates code that causes a null OS exception if the content of reg is null.
608 // If the accessed location is M[reg + offset] and the offset is known, provide the
609 // offset. No explicit code generation is needed if the offset is within a certain
610 // range (0 <= offset <= page_size).
611
612 virtual void null_check(Register reg, int offset = -1);
613 static bool needs_explicit_null_check(intptr_t offset);
614 static bool uses_implicit_null_check(void* address);
615
616 static address target_addr_for_insn(address insn_addr, unsigned insn);
617 static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
618 static address target_addr_for_insn(address insn_addr) {
619 unsigned insn = *(unsigned*)insn_addr;
620 return target_addr_for_insn(insn_addr, insn);
621 }
622 static address target_addr_for_insn_or_null(address insn_addr) {
623 unsigned insn = *(unsigned*)insn_addr;
624 return target_addr_for_insn_or_null(insn_addr, insn);
625 }
626
627 // Required platform-specific helpers for Label::patch_instructions.
628 // They _shadow_ the declarations in AbstractAssembler, which are undefined.
629 static int pd_patch_instruction_size(address branch, address target);
630 static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
631 pd_patch_instruction_size(branch, target);
632 }
633 static address pd_call_destination(address branch) {
634 return target_addr_for_insn(branch);
635 }
636 #ifndef PRODUCT
637 static void pd_print_patched_instruction(address branch);
638 #endif
639
640 static int patch_oop(address insn_addr, address o);
641 static int patch_narrow_klass(address insn_addr, narrowKlass n);
642
643 // Return whether code is emitted to a scratch blob.
644 virtual bool in_scratch_emit_size() {
645 return false;
646 }
647 address emit_trampoline_stub(int insts_call_instruction_offset, address target);
648 static int max_trampoline_stub_size();
649 void emit_static_call_stub();
650 static int static_call_stub_size();
651
652 // The following 4 methods return the offset of the appropriate move instruction
653
654 // Support for fast byte/short loading with zero extension (depending on particular CPU)
655 int load_unsigned_byte(Register dst, Address src);
656 int load_unsigned_short(Register dst, Address src);
657
658 // Support for fast byte/short loading with sign extension (depending on particular CPU)
659 int load_signed_byte(Register dst, Address src);
660 int load_signed_short(Register dst, Address src);
661
662 int load_signed_byte32(Register dst, Address src);
663 int load_signed_short32(Register dst, Address src);
664
665 // Support for sign-extension (hi:lo = extend_sign(lo))
666 void extend_sign(Register hi, Register lo);
667
668 // Load and store values by size and signed-ness
669 void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
670 void store_sized_value(Address dst, Register src, size_t size_in_bytes);
671
672 // Support for inc/dec with optimal instruction selection depending on value
673
674 // x86_64 aliases an unqualified register/address increment and
675 // decrement to call incrementq and decrementq but also supports
676 // explicitly sized calls to incrementq/decrementq or
677 // incrementl/decrementl
678
679 // for aarch64 the proper convention would be to use
680 // increment/decrement for 64 bit operations and
681 // incrementw/decrementw for 32 bit operations. so when porting
682 // x86_64 code we can leave calls to increment/decrement as is,
683 // replace incrementq/decrementq with increment/decrement and
684 // replace incrementl/decrementl with incrementw/decrementw.
685
686 // n.b. increment/decrement calls with an Address destination will
687 // need to use a scratch register to load the value to be
688 // incremented. increment/decrement calls which add or subtract a
689 // constant value greater than 2^12 will need to use a 2nd scratch
690 // register to hold the constant. so, a register increment/decrement
691 // may trash rscratch2 and an address increment/decrement trash
692 // rscratch and rscratch2
693
694 void decrementw(Address dst, int value = 1);
695 void decrementw(Register reg, int value = 1);
696
697 void decrement(Register reg, int value = 1);
698 void decrement(Address dst, int value = 1);
699
700 void incrementw(Address dst, int value = 1);
701 void incrementw(Register reg, int value = 1);
702
703 void increment(Register reg, int value = 1);
704 void increment(Address dst, int value = 1);
705
706
707 // Alignment
708 void align(int modulus);
709
710 // nop
711 void post_call_nop();
712
713 // Stack frame creation/removal
714 void enter(bool strip_ret_addr = false);
715 void leave();
716
717 // ROP Protection
718 void protect_return_address();
719 void protect_return_address(Register return_reg);
720 void authenticate_return_address();
721 void authenticate_return_address(Register return_reg);
722 void strip_return_address();
723 void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
724
725 // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
726 // The pointer will be loaded into the thread register.
727 void get_thread(Register thread);
728
729 // support for argument shuffling
730 void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
731 void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
732 void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
733 void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
734 void object_move(
735 OopMap* map,
736 int oop_handle_offset,
737 int framesize_in_slots,
738 VMRegPair src,
739 VMRegPair dst,
740 bool is_receiver,
741 int* receiver_offset);
742
743
744 // Support for VM calls
745 //
746 // It is imperative that all calls into the VM are handled via the call_VM macros.
747 // They make sure that the stack linkage is setup correctly. call_VM's correspond
748 // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
749
750
751 void call_VM(Register oop_result,
752 address entry_point,
753 bool check_exceptions = true);
754 void call_VM(Register oop_result,
755 address entry_point,
756 Register arg_1,
757 bool check_exceptions = true);
758 void call_VM(Register oop_result,
759 address entry_point,
760 Register arg_1, Register arg_2,
761 bool check_exceptions = true);
762 void call_VM(Register oop_result,
763 address entry_point,
764 Register arg_1, Register arg_2, Register arg_3,
765 bool check_exceptions = true);
766
767 // Overloadings with last_Java_sp
768 void call_VM(Register oop_result,
769 Register last_java_sp,
770 address entry_point,
771 int number_of_arguments = 0,
772 bool check_exceptions = true);
773 void call_VM(Register oop_result,
774 Register last_java_sp,
775 address entry_point,
776 Register arg_1, bool
777 check_exceptions = true);
778 void call_VM(Register oop_result,
779 Register last_java_sp,
780 address entry_point,
781 Register arg_1, Register arg_2,
782 bool check_exceptions = true);
783 void call_VM(Register oop_result,
784 Register last_java_sp,
785 address entry_point,
786 Register arg_1, Register arg_2, Register arg_3,
787 bool check_exceptions = true);
788
789 void get_vm_result (Register oop_result, Register thread);
790 void get_vm_result_2(Register metadata_result, Register thread);
791
792 // These always tightly bind to MacroAssembler::call_VM_base
793 // bypassing the virtual implementation
794 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
795 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
796 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
797 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
798 void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
799
800 void call_VM_leaf(address entry_point,
801 int number_of_arguments = 0);
802 void call_VM_leaf(address entry_point,
803 Register arg_1);
804 void call_VM_leaf(address entry_point,
805 Register arg_1, Register arg_2);
806 void call_VM_leaf(address entry_point,
807 Register arg_1, Register arg_2, Register arg_3);
808
809 // These always tightly bind to MacroAssembler::call_VM_leaf_base
810 // bypassing the virtual implementation
811 void super_call_VM_leaf(address entry_point);
812 void super_call_VM_leaf(address entry_point, Register arg_1);
813 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
814 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
815 void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
816
817 // last Java Frame (fills frame anchor)
818 void set_last_Java_frame(Register last_java_sp,
819 Register last_java_fp,
820 address last_java_pc,
821 Register scratch);
822
823 void set_last_Java_frame(Register last_java_sp,
824 Register last_java_fp,
825 Label &last_java_pc,
826 Register scratch);
827
828 void set_last_Java_frame(Register last_java_sp,
829 Register last_java_fp,
830 Register last_java_pc,
831 Register scratch);
832
833 void reset_last_Java_frame(Register thread);
834
835 // thread in the default location (rthread)
836 void reset_last_Java_frame(bool clear_fp);
837
838 // Stores
839 void store_check(Register obj); // store check for obj - register is destroyed afterwards
840 void store_check(Register obj, Address dst); // same as above, dst is exact store location (reg. is destroyed)
841
842 void resolve_jobject(Register value, Register tmp1, Register tmp2);
843 void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
844
845 // C 'boolean' to Java boolean: x == 0 ? 0 : 1
846 void c2bool(Register x);
847
848 void load_method_holder_cld(Register rresult, Register rmethod);
849 void load_method_holder(Register holder, Register method);
850
851 // oop manipulations
852 void load_nklass_compact(Register dst, Register src);
853 void load_klass(Register dst, Register src);
854 void store_klass(Register dst, Register src);
855 void cmp_klass(Register oop, Register trial_klass, Register tmp);
856 void cmp_klass(Register src, Register dst, Register tmp1, Register tmp2);
857
858 void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
859 void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
860 void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
861
862 void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
863 Register tmp1, Register tmp2);
864
865 void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
866 Register tmp1, Register tmp2, Register tmp3);
867
868 void load_heap_oop(Register dst, Address src, Register tmp1,
869 Register tmp2, DecoratorSet decorators = 0);
870
871 void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
872 Register tmp2, DecoratorSet decorators = 0);
873 void store_heap_oop(Address dst, Register val, Register tmp1,
874 Register tmp2, Register tmp3, DecoratorSet decorators = 0);
875
876 // currently unimplemented
877 // Used for storing null. All other oop constants should be
878 // stored using routines that take a jobject.
879 void store_heap_oop_null(Address dst);
880
881 void store_klass_gap(Register dst, Register src);
882
883 // This dummy is to prevent a call to store_heap_oop from
884 // converting a zero (like null) into a Register by giving
885 // the compiler two choices it can't resolve
886
887 void store_heap_oop(Address dst, void* dummy);
888
889 void encode_heap_oop(Register d, Register s);
890 void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
891 void decode_heap_oop(Register d, Register s);
892 void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
893 void encode_heap_oop_not_null(Register r);
894 void decode_heap_oop_not_null(Register r);
895 void encode_heap_oop_not_null(Register dst, Register src);
896 void decode_heap_oop_not_null(Register dst, Register src);
897
898 void set_narrow_oop(Register dst, jobject obj);
899
900 void encode_klass_not_null(Register r);
901 void decode_klass_not_null(Register r);
902 void encode_klass_not_null(Register dst, Register src);
903 void decode_klass_not_null(Register dst, Register src);
904
905 void set_narrow_klass(Register dst, Klass* k);
906
907 // if heap base register is used - reinit it with the correct value
908 void reinit_heapbase();
909
910 DEBUG_ONLY(void verify_heapbase(const char* msg);)
911
912 void push_CPU_state(bool save_vectors = false, bool use_sve = false,
913 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
914 void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
915 int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
916
917 void push_cont_fastpath(Register java_thread);
918 void pop_cont_fastpath(Register java_thread);
919
920 // Round up to a power of two
921 void round_to(Register reg, int modulus);
922
923 // java.lang.Math::round intrinsics
924 void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
925 void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
926
927 // allocation
928 void tlab_allocate(
929 Register obj, // result: pointer to object after successful allocation
930 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
931 int con_size_in_bytes, // object size in bytes if known at compile time
932 Register t1, // temp register
933 Register t2, // temp register
934 Label& slow_case // continuation point if fast allocation fails
935 );
936 void verify_tlab();
937
938 // interface method calling
939 void lookup_interface_method(Register recv_klass,
940 Register intf_klass,
941 RegisterOrConstant itable_index,
942 Register method_result,
943 Register scan_temp,
944 Label& no_such_interface,
945 bool return_method = true);
946
947 void lookup_interface_method_stub(Register recv_klass,
948 Register holder_klass,
949 Register resolved_klass,
950 Register method_result,
951 Register temp_reg,
952 Register temp_reg2,
953 int itable_index,
954 Label& L_no_such_interface);
955
956 // virtual method calling
957 // n.b. x86 allows RegisterOrConstant for vtable_index
958 void lookup_virtual_method(Register recv_klass,
959 RegisterOrConstant vtable_index,
960 Register method_result);
961
962 // Test sub_klass against super_klass, with fast and slow paths.
963
964 // The fast path produces a tri-state answer: yes / no / maybe-slow.
965 // One of the three labels can be null, meaning take the fall-through.
966 // If super_check_offset is -1, the value is loaded up from super_klass.
967 // No registers are killed, except temp_reg.
968 void check_klass_subtype_fast_path(Register sub_klass,
969 Register super_klass,
970 Register temp_reg,
971 Label* L_success,
972 Label* L_failure,
973 Label* L_slow_path,
974 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
975
976 // The rest of the type check; must be wired to a corresponding fast path.
977 // It does not repeat the fast path logic, so don't use it standalone.
978 // The temp_reg and temp2_reg can be noreg, if no temps are available.
979 // Updates the sub's secondary super cache as necessary.
980 // If set_cond_codes, condition codes will be Z on success, NZ on failure.
981 void check_klass_subtype_slow_path(Register sub_klass,
982 Register super_klass,
983 Register temp_reg,
984 Register temp2_reg,
985 Label* L_success,
986 Label* L_failure,
987 bool set_cond_codes = false);
988
989 // Simplified, combined version, good for typical uses.
990 // Falls through on failure.
991 void check_klass_subtype(Register sub_klass,
992 Register super_klass,
993 Register temp_reg,
994 Label& L_success);
995
996 void clinit_barrier(Register klass,
997 Register thread,
998 Label* L_fast_path = nullptr,
999 Label* L_slow_path = nullptr);
1000
1001 Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1002
1003 void verify_sve_vector_length(Register tmp = rscratch1);
1004 void reinitialize_ptrue() {
1005 if (UseSVE > 0) {
1006 sve_ptrue(ptrue, B);
1007 }
1008 }
1009 void verify_ptrue();
1010
1011 // Debugging
1012
1013 // only if +VerifyOops
1014 void _verify_oop(Register reg, const char* s, const char* file, int line);
1015 void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1016
1017 void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1018 if (VerifyOops) {
1019 _verify_oop(reg, s, file, line);
1020 }
1021 }
1022 void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1023 if (VerifyOops) {
1024 _verify_oop_addr(reg, s, file, line);
1025 }
1026 }
1027
1028 // TODO: verify method and klass metadata (compare against vptr?)
1029 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1030 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1031
1032 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1033 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1034 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1035 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1036 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1037
1038 // only if +VerifyFPU
1039 void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1040
1041 // prints msg, dumps registers and stops execution
1042 void stop(const char* msg);
1043
1044 static void debug64(char* msg, int64_t pc, int64_t regs[]);
1045
1046 void untested() { stop("untested"); }
1047
1048 void unimplemented(const char* what = "");
1049
1050 void should_not_reach_here() { stop("should not reach here"); }
1051
1052 void _assert_asm(Condition cc, const char* msg);
1053 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1054 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1055
1056 // Stack overflow checking
1057 void bang_stack_with_offset(int offset) {
1058 // stack grows down, caller passes positive offset
1059 assert(offset > 0, "must bang with negative offset");
1060 sub(rscratch2, sp, offset);
1061 str(zr, Address(rscratch2));
1062 }
1063
1064 // Writes to stack successive pages until offset reached to check for
1065 // stack overflow + shadow pages. Also, clobbers tmp
1066 void bang_stack_size(Register size, Register tmp);
1067
1068 // Check for reserved stack access in method being exited (for JIT)
1069 void reserved_stack_check();
1070
1071 // Arithmetics
1072
1073 void addptr(const Address &dst, int32_t src);
1074 void cmpptr(Register src1, Address src2);
1075
1076 void cmpoop(Register obj1, Register obj2);
1077
1078 // Various forms of CAS
1079
1080 void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1081 Label &succeed, Label *fail);
1082 void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1083 Label &succeed, Label *fail);
1084
1085 void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1086 Label &succeed, Label *fail);
1087
1088 void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1089 void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1090 void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1091 void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1092
1093 void atomic_xchg(Register prev, Register newv, Register addr);
1094 void atomic_xchgw(Register prev, Register newv, Register addr);
1095 void atomic_xchgl(Register prev, Register newv, Register addr);
1096 void atomic_xchglw(Register prev, Register newv, Register addr);
1097 void atomic_xchgal(Register prev, Register newv, Register addr);
1098 void atomic_xchgalw(Register prev, Register newv, Register addr);
1099
1100 void orptr(Address adr, RegisterOrConstant src) {
1101 ldr(rscratch1, adr);
1102 if (src.is_register())
1103 orr(rscratch1, rscratch1, src.as_register());
1104 else
1105 orr(rscratch1, rscratch1, src.as_constant());
1106 str(rscratch1, adr);
1107 }
1108
1109 // A generic CAS; success or failure is in the EQ flag.
1110 // Clobbers rscratch1
1111 void cmpxchg(Register addr, Register expected, Register new_val,
1112 enum operand_size size,
1113 bool acquire, bool release, bool weak,
1114 Register result);
1115
1116 #ifdef ASSERT
1117 // Template short-hand support to clean-up after a failed call to trampoline
1118 // call generation (see trampoline_call() below), when a set of Labels must
1119 // be reset (before returning).
1120 template<typename Label, typename... More>
1121 void reset_labels(Label &lbl, More&... more) {
1122 lbl.reset(); reset_labels(more...);
1123 }
1124 template<typename Label>
1125 void reset_labels(Label &lbl) {
1126 lbl.reset();
1127 }
1128 #endif
1129
1130 private:
1131 void compare_eq(Register rn, Register rm, enum operand_size size);
1132
1133 public:
1134 // AArch64 OpenJDK uses four different types of calls:
1135 // - direct call: bl pc_relative_offset
1136 // This is the shortest and the fastest, but the offset has the range:
1137 // +/-128MB for the release build, +/-2MB for the debug build.
1138 //
1139 // - far call: adrp reg, pc_relative_offset; add; bl reg
1140 // This is longer than a direct call. The offset has
1141 // the range +/-4GB. As the code cache size is limited to 4GB,
1142 // far calls can reach anywhere in the code cache. If a jump is
1143 // needed rather than a call, a far jump 'b reg' can be used instead.
1144 // All instructions are embedded at a call site.
1145 //
1146 // - trampoline call:
1147 // This is only available in C1/C2-generated code (nmethod). It is a combination
1148 // of a direct call, which is used if the destination of a call is in range,
1149 // and a register-indirect call. It has the advantages of reaching anywhere in
1150 // the AArch64 address space and being patchable at runtime when the generated
1151 // code is being executed by other threads.
1152 //
1153 // [Main code section]
1154 // bl trampoline
1155 // [Stub code section]
1156 // trampoline:
1157 // ldr reg, pc + 8
1158 // br reg
1159 // <64-bit destination address>
1160 //
1161 // If the destination is in range when the generated code is moved to the code
1162 // cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1163 // is not used.
1164 // The optimization does not remove the trampoline from the stub section.
1165 // This is necessary because the trampoline may well be redirected later when
1166 // code is patched, and the new destination may not be reachable by a simple BR
1167 // instruction.
1168 //
1169 // - indirect call: move reg, address; blr reg
1170 // This too can reach anywhere in the address space, but it cannot be
1171 // patched while code is running, so it must only be modified at a safepoint.
1172 // This form of call is most suitable for targets at fixed addresses, which
1173 // will never be patched.
1174 //
1175 // The patching we do conforms to the "Concurrent modification and
1176 // execution of instructions" section of the Arm Architectural
1177 // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1178 // or SVC instructions to be modified while another thread is
1179 // executing them.
1180 //
1181 // To patch a trampoline call when the BL can't reach, we first modify
1182 // the 64-bit destination address in the trampoline, then modify the
1183 // BL to point to the trampoline, then flush the instruction cache to
1184 // broadcast the change to all executing threads. See
1185 // NativeCall::set_destination_mt_safe for the details.
1186 //
1187 // There is a benign race in that the other thread might observe the
1188 // modified BL before it observes the modified 64-bit destination
1189 // address. That does not matter because the destination method has been
1190 // invalidated, so there will be a trap at its start.
1191 // For this to work, the destination address in the trampoline is
1192 // always updated, even if we're not using the trampoline.
1193
1194 // Emit a direct call if the entry address will always be in range,
1195 // otherwise a trampoline call.
1196 // Supported entry.rspec():
1197 // - relocInfo::runtime_call_type
1198 // - relocInfo::opt_virtual_call_type
1199 // - relocInfo::static_call_type
1200 // - relocInfo::virtual_call_type
1201 //
1202 // Return: the call PC or null if CodeCache is full.
1203 address trampoline_call(Address entry);
1204
1205 static bool far_branches() {
1206 return ReservedCodeCacheSize > branch_range;
1207 }
1208
1209 // Check if branches to the non nmethod section require a far jump
1210 static bool codestub_branch_needs_far_jump() {
1211 return CodeCache::max_distance_to_non_nmethod() > branch_range;
1212 }
1213
1214 // Emit a direct call/jump if the entry address will always be in range,
1215 // otherwise a far call/jump.
1216 // The address must be inside the code cache.
1217 // Supported entry.rspec():
1218 // - relocInfo::external_word_type
1219 // - relocInfo::runtime_call_type
1220 // - relocInfo::none
1221 // In the case of a far call/jump, the entry address is put in the tmp register.
1222 // The tmp register is invalidated.
1223 //
1224 // Far_jump returns the amount of the emitted code.
1225 void far_call(Address entry, Register tmp = rscratch1);
1226 int far_jump(Address entry, Register tmp = rscratch1);
1227
1228 static int far_codestub_branch_size() {
1229 if (codestub_branch_needs_far_jump()) {
1230 return 3 * 4; // adrp, add, br
1231 } else {
1232 return 4;
1233 }
1234 }
1235
1236 // Emit the CompiledIC call idiom
1237 address ic_call(address entry, jint method_index = 0);
1238
1239 public:
1240
1241 // Data
1242
1243 void mov_metadata(Register dst, Metadata* obj);
1244 Address allocate_metadata_address(Metadata* obj);
1245 Address constant_oop_address(jobject obj);
1246
1247 void movoop(Register dst, jobject obj);
1248
1249 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1250 void kernel_crc32(Register crc, Register buf, Register len,
1251 Register table0, Register table1, Register table2, Register table3,
1252 Register tmp, Register tmp2, Register tmp3);
1253 // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1254 void kernel_crc32c(Register crc, Register buf, Register len,
1255 Register table0, Register table1, Register table2, Register table3,
1256 Register tmp, Register tmp2, Register tmp3);
1257
1258 // Stack push and pop individual 64 bit registers
1259 void push(Register src);
1260 void pop(Register dst);
1261
1262 void repne_scan(Register addr, Register value, Register count,
1263 Register scratch);
1264 void repne_scanw(Register addr, Register value, Register count,
1265 Register scratch);
1266
1267 typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1268 typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1269
1270 // If a constant does not fit in an immediate field, generate some
1271 // number of MOV instructions and then perform the operation
1272 void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1273 add_sub_imm_insn insn1,
1274 add_sub_reg_insn insn2, bool is32);
1275 // Separate vsn which sets the flags
1276 void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1277 add_sub_imm_insn insn1,
1278 add_sub_reg_insn insn2, bool is32);
1279
1280 #define WRAP(INSN, is32) \
1281 void INSN(Register Rd, Register Rn, uint64_t imm) { \
1282 wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1283 } \
1284 \
1285 void INSN(Register Rd, Register Rn, Register Rm, \
1286 enum shift_kind kind, unsigned shift = 0) { \
1287 Assembler::INSN(Rd, Rn, Rm, kind, shift); \
1288 } \
1289 \
1290 void INSN(Register Rd, Register Rn, Register Rm) { \
1291 Assembler::INSN(Rd, Rn, Rm); \
1292 } \
1293 \
1294 void INSN(Register Rd, Register Rn, Register Rm, \
1295 ext::operation option, int amount = 0) { \
1296 Assembler::INSN(Rd, Rn, Rm, option, amount); \
1297 }
1298
1299 WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1300
1301 #undef WRAP
1302 #define WRAP(INSN, is32) \
1303 void INSN(Register Rd, Register Rn, uint64_t imm) { \
1304 wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1305 } \
1306 \
1307 void INSN(Register Rd, Register Rn, Register Rm, \
1308 enum shift_kind kind, unsigned shift = 0) { \
1309 Assembler::INSN(Rd, Rn, Rm, kind, shift); \
1310 } \
1311 \
1312 void INSN(Register Rd, Register Rn, Register Rm) { \
1313 Assembler::INSN(Rd, Rn, Rm); \
1314 } \
1315 \
1316 void INSN(Register Rd, Register Rn, Register Rm, \
1317 ext::operation option, int amount = 0) { \
1318 Assembler::INSN(Rd, Rn, Rm, option, amount); \
1319 }
1320
1321 WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1322
1323 void add(Register Rd, Register Rn, RegisterOrConstant increment);
1324 void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1325 void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1326 void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1327
1328 void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1329
1330 void tableswitch(Register index, jint lowbound, jint highbound,
1331 Label &jumptable, Label &jumptable_end, int stride = 1) {
1332 adr(rscratch1, jumptable);
1333 subsw(rscratch2, index, lowbound);
1334 subsw(zr, rscratch2, highbound - lowbound);
1335 br(Assembler::HS, jumptable_end);
1336 add(rscratch1, rscratch1, rscratch2,
1337 ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1338 br(rscratch1);
1339 }
1340
1341 // Form an address from base + offset in Rd. Rd may or may not
1342 // actually be used: you must use the Address that is returned. It
1343 // is up to you to ensure that the shift provided matches the size
1344 // of your data.
1345 Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1346
1347 // Return true iff an address is within the 48-bit AArch64 address
1348 // space.
1349 bool is_valid_AArch64_address(address a) {
1350 return ((uint64_t)a >> 48) == 0;
1351 }
1352
1353 // Load the base of the cardtable byte map into reg.
1354 void load_byte_map_base(Register reg);
1355
1356 // Prolog generator routines to support switch between x86 code and
1357 // generated ARM code
1358
1359 // routine to generate an x86 prolog for a stub function which
1360 // bootstraps into the generated ARM code which directly follows the
1361 // stub
1362 //
1363
1364 public:
1365
1366 void ldr_constant(Register dest, const Address &const_addr) {
1367 if (NearCpool) {
1368 ldr(dest, const_addr);
1369 } else {
1370 uint64_t offset;
1371 adrp(dest, InternalAddress(const_addr.target()), offset);
1372 ldr(dest, Address(dest, offset));
1373 }
1374 }
1375
1376 address read_polling_page(Register r, relocInfo::relocType rtype);
1377 void get_polling_page(Register dest, relocInfo::relocType rtype);
1378
1379 // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1380 void update_byte_crc32(Register crc, Register val, Register table);
1381 void update_word_crc32(Register crc, Register v, Register tmp,
1382 Register table0, Register table1, Register table2, Register table3,
1383 bool upper = false);
1384
1385 address count_positives(Register ary1, Register len, Register result);
1386
1387 address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1388 Register tmp1, Register tmp2, Register tmp3, int elem_size);
1389
1390 void string_equals(Register a1, Register a2, Register result, Register cnt1,
1391 int elem_size);
1392
1393 void fill_words(Register base, Register cnt, Register value);
1394 address zero_words(Register base, uint64_t cnt);
1395 address zero_words(Register ptr, Register cnt);
1396 void zero_dcache_blocks(Register base, Register cnt);
1397
1398 static const int zero_words_block_size;
1399
1400 address byte_array_inflate(Register src, Register dst, Register len,
1401 FloatRegister vtmp1, FloatRegister vtmp2,
1402 FloatRegister vtmp3, Register tmp4);
1403
1404 void char_array_compress(Register src, Register dst, Register len,
1405 Register res,
1406 FloatRegister vtmp0, FloatRegister vtmp1,
1407 FloatRegister vtmp2, FloatRegister vtmp3,
1408 FloatRegister vtmp4, FloatRegister vtmp5);
1409
1410 void encode_iso_array(Register src, Register dst,
1411 Register len, Register res, bool ascii,
1412 FloatRegister vtmp0, FloatRegister vtmp1,
1413 FloatRegister vtmp2, FloatRegister vtmp3,
1414 FloatRegister vtmp4, FloatRegister vtmp5);
1415
1416 void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1417 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1418 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1419 FloatRegister tmpC4, Register tmp1, Register tmp2,
1420 Register tmp3, Register tmp4, Register tmp5);
1421 void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1422 address pio2, address dsin_coef, address dcos_coef);
1423 private:
1424 // begin trigonometric functions support block
1425 void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1426 void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1427 void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1428 void generate_kernel_cos(FloatRegister x, address dcos_coef);
1429 // end trigonometric functions support block
1430 void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1431 Register src1, Register src2);
1432 void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1433 add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1434 }
1435 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1436 Register y, Register y_idx, Register z,
1437 Register carry, Register product,
1438 Register idx, Register kdx);
1439 void multiply_128_x_128_loop(Register y, Register z,
1440 Register carry, Register carry2,
1441 Register idx, Register jdx,
1442 Register yz_idx1, Register yz_idx2,
1443 Register tmp, Register tmp3, Register tmp4,
1444 Register tmp7, Register product_hi);
1445 void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1446 Register len, Register tmp0, Register tmp1, Register tmp2,
1447 Register tmp3);
1448 void kernel_crc32_using_crc32(Register crc, Register buf,
1449 Register len, Register tmp0, Register tmp1, Register tmp2,
1450 Register tmp3);
1451 void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1452 Register len, Register tmp0, Register tmp1, Register tmp2,
1453 Register tmp3);
1454 void kernel_crc32c_using_crc32c(Register crc, Register buf,
1455 Register len, Register tmp0, Register tmp1, Register tmp2,
1456 Register tmp3);
1457 void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1458 Register len, Register tmp0, Register tmp1, Register tmp2,
1459 size_t table_offset);
1460
1461 void ghash_modmul (FloatRegister result,
1462 FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1463 FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1464 FloatRegister t1, FloatRegister t2, FloatRegister t3);
1465 void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1466 public:
1467 void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1468 Register zlen, Register tmp1, Register tmp2, Register tmp3,
1469 Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1470 void mul_add(Register out, Register in, Register offs, Register len, Register k);
1471 void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1472 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1473 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1474 void ghash_multiply_wide(int index,
1475 FloatRegister result_lo, FloatRegister result_hi,
1476 FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1477 FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1478 void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1479 FloatRegister p, FloatRegister z, FloatRegister t1);
1480 void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1481 FloatRegister p, FloatRegister z, FloatRegister t1);
1482 void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1483 Register data, Register blocks, int unrolls);
1484
1485
1486 void aesenc_loadkeys(Register key, Register keylen);
1487 void aesecb_encrypt(Register from, Register to, Register keylen,
1488 FloatRegister data = v0, int unrolls = 1);
1489 void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1490 void aes_round(FloatRegister input, FloatRegister subkey);
1491
1492 // ChaCha20 functions support block
1493 void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1494 FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1495 FloatRegister tbl);
1496 void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1497 FloatRegister dVec, bool colToDiag);
1498
1499 // Place an ISB after code may have been modified due to a safepoint.
1500 void safepoint_isb();
1501
1502 private:
1503 // Return the effective address r + (r1 << ext) + offset.
1504 // Uses rscratch2.
1505 Address offsetted_address(Register r, Register r1, Address::extend ext,
1506 int offset, int size);
1507
1508 private:
1509 // Returns an address on the stack which is reachable with a ldr/str of size
1510 // Uses rscratch2 if the address is not directly reachable
1511 Address spill_address(int size, int offset, Register tmp=rscratch2);
1512 Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1513
1514 bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1515
1516 // Check whether two loads/stores can be merged into ldp/stp.
1517 bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1518
1519 // Merge current load/store with previous load/store into ldp/stp.
1520 void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1521
1522 // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1523 bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1524
1525 public:
1526 void spill(Register Rx, bool is64, int offset) {
1527 if (is64) {
1528 str(Rx, spill_address(8, offset));
1529 } else {
1530 strw(Rx, spill_address(4, offset));
1531 }
1532 }
1533 void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1534 str(Vx, T, spill_address(1 << (int)T, offset));
1535 }
1536
1537 void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1538 sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1539 }
1540 void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1541 sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1542 }
1543
1544 void unspill(Register Rx, bool is64, int offset) {
1545 if (is64) {
1546 ldr(Rx, spill_address(8, offset));
1547 } else {
1548 ldrw(Rx, spill_address(4, offset));
1549 }
1550 }
1551 void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1552 ldr(Vx, T, spill_address(1 << (int)T, offset));
1553 }
1554
1555 void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1556 sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1557 }
1558 void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1559 sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1560 }
1561
1562 void spill_copy128(int src_offset, int dst_offset,
1563 Register tmp1=rscratch1, Register tmp2=rscratch2) {
1564 if (src_offset < 512 && (src_offset & 7) == 0 &&
1565 dst_offset < 512 && (dst_offset & 7) == 0) {
1566 ldp(tmp1, tmp2, Address(sp, src_offset));
1567 stp(tmp1, tmp2, Address(sp, dst_offset));
1568 } else {
1569 unspill(tmp1, true, src_offset);
1570 spill(tmp1, true, dst_offset);
1571 unspill(tmp1, true, src_offset+8);
1572 spill(tmp1, true, dst_offset+8);
1573 }
1574 }
1575 void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1576 int sve_vec_reg_size_in_bytes) {
1577 assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1578 for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1579 spill_copy128(src_offset, dst_offset);
1580 src_offset += 16;
1581 dst_offset += 16;
1582 }
1583 }
1584 void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1585 int sve_predicate_reg_size_in_bytes) {
1586 sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1587 sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1588 reinitialize_ptrue();
1589 }
1590 void cache_wb(Address line);
1591 void cache_wbsync(bool is_pre);
1592
1593 // Code for java.lang.Thread::onSpinWait() intrinsic.
1594 void spin_wait();
1595
1596 void lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1597 void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1598
1599 private:
1600 // Check the current thread doesn't need a cross modify fence.
1601 void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1602
1603 };
1604
1605 #ifdef ASSERT
1606 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1607 #endif
1608
1609 /**
1610 * class SkipIfEqual:
1611 *
1612 * Instantiating this class will result in assembly code being output that will
1613 * jump around any code emitted between the creation of the instance and it's
1614 * automatic destruction at the end of a scope block, depending on the value of
1615 * the flag passed to the constructor, which will be checked at run-time.
1616 */
1617 class SkipIfEqual {
1618 private:
1619 MacroAssembler* _masm;
1620 Label _label;
1621
1622 public:
1623 SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1624 ~SkipIfEqual();
1625 };
1626
1627 struct tableswitch {
1628 Register _reg;
1629 int _insn_index; jint _first_key; jint _last_key;
1630 Label _after;
1631 Label _branches;
1632 };
1633
1634 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP