1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "runtime/vm_version.hpp"
  34 #include "utilities/powerOfTwo.hpp"
  35 
  36 class OopMap;
  37 
  38 // MacroAssembler extends Assembler by frequently used macros.
  39 //
  40 // Instructions for which a 'better' code sequence exists depending
  41 // on arguments should also go in here.
  42 
  43 class MacroAssembler: public Assembler {
  44   friend class LIR_Assembler;
  45 
  46  public:
  47   using Assembler::mov;
  48   using Assembler::movi;
  49 
  50  protected:
  51 
  52   // Support for VM calls
  53   //
  54   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   virtual void call_VM_leaf_base(
  58     address entry_point,               // the entry point
  59     int     number_of_arguments,        // the number of arguments to pop after the call
  60     Label *retaddr = nullptr
  61   );
  62 
  63   virtual void call_VM_leaf_base(
  64     address entry_point,               // the entry point
  65     int     number_of_arguments,        // the number of arguments to pop after the call
  66     Label &retaddr) {
  67     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  68   }
  69 
  70   // This is the base routine called by the different versions of call_VM. The interpreter
  71   // may customize this version by overriding it for its purposes (e.g., to save/restore
  72   // additional registers when doing a VM call).
  73   //
  74   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  75   // returns the register which contains the thread upon return. If a thread register has been
  76   // specified, the return value will correspond to that register. If no last_java_sp is specified
  77   // (noreg) than rsp will be used instead.
  78   virtual void call_VM_base(           // returns the register containing the thread upon return
  79     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  80     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  81     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  82     address  entry_point,              // the entry point
  83     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  84     bool     check_exceptions          // whether to check for pending exceptions after return
  85   );
  86 
  87   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  88 
  89   enum KlassDecodeMode {
  90     KlassDecodeNone,
  91     KlassDecodeZero,
  92     KlassDecodeXor,
  93     KlassDecodeMovk
  94   };
  95 
  96   KlassDecodeMode klass_decode_mode();
  97 
  98  private:
  99   static KlassDecodeMode _klass_decode_mode;
 100 
 101  public:
 102   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 103 
 104  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 105  // The implementation is only non-empty for the InterpreterMacroAssembler,
 106  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 107  virtual void check_and_handle_popframe(Register java_thread);
 108  virtual void check_and_handle_earlyret(Register java_thread);
 109 
 110   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 111   void rt_call(address dest, Register tmp = rscratch1);
 112 
 113   // Load Effective Address
 114   void lea(Register r, const Address &a) {
 115     InstructionMark im(this);
 116     a.lea(this, r);
 117   }
 118 
 119   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 120      accesses, and these can exceed the offset range. */
 121   Address legitimize_address(const Address &a, int size, Register scratch) {
 122     if (a.getMode() == Address::base_plus_offset) {
 123       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 124         block_comment("legitimize_address {");
 125         lea(scratch, a);
 126         block_comment("} legitimize_address");
 127         return Address(scratch);
 128       }
 129     }
 130     return a;
 131   }
 132 
 133   void addmw(Address a, Register incr, Register scratch) {
 134     ldrw(scratch, a);
 135     addw(scratch, scratch, incr);
 136     strw(scratch, a);
 137   }
 138 
 139   // Add constant to memory word
 140   void addmw(Address a, int imm, Register scratch) {
 141     ldrw(scratch, a);
 142     if (imm > 0)
 143       addw(scratch, scratch, (unsigned)imm);
 144     else
 145       subw(scratch, scratch, (unsigned)-imm);
 146     strw(scratch, a);
 147   }
 148 
 149   void bind(Label& L) {
 150     Assembler::bind(L);
 151     code()->clear_last_insn();
 152   }
 153 
 154   void membar(Membar_mask_bits order_constraint);
 155 
 156   using Assembler::ldr;
 157   using Assembler::str;
 158   using Assembler::ldrw;
 159   using Assembler::strw;
 160 
 161   void ldr(Register Rx, const Address &adr);
 162   void ldrw(Register Rw, const Address &adr);
 163   void str(Register Rx, const Address &adr);
 164   void strw(Register Rx, const Address &adr);
 165 
 166   // Frame creation and destruction shared between JITs.
 167   void build_frame(int framesize);
 168   void remove_frame(int framesize);
 169 
 170   virtual void _call_Unimplemented(address call_site) {
 171     mov(rscratch2, call_site);
 172   }
 173 
 174 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 175 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 176 // https://reviews.llvm.org/D3311
 177 
 178 #ifdef _WIN64
 179 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 180 #else
 181 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 182 #endif
 183 
 184   // aliases defined in AARCH64 spec
 185 
 186   template<class T>
 187   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 188 
 189   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 190   inline void cmp(Register Rd, unsigned imm) = delete;
 191 
 192   template<class T>
 193   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 194 
 195   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 196   inline void cmn(Register Rd, unsigned imm) = delete;
 197 
 198   void cset(Register Rd, Assembler::Condition cond) {
 199     csinc(Rd, zr, zr, ~cond);
 200   }
 201   void csetw(Register Rd, Assembler::Condition cond) {
 202     csincw(Rd, zr, zr, ~cond);
 203   }
 204 
 205   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 206     csneg(Rd, Rn, Rn, ~cond);
 207   }
 208   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 209     csnegw(Rd, Rn, Rn, ~cond);
 210   }
 211 
 212   inline void movw(Register Rd, Register Rn) {
 213     if (Rd == sp || Rn == sp) {
 214       Assembler::addw(Rd, Rn, 0U);
 215     } else {
 216       orrw(Rd, zr, Rn);
 217     }
 218   }
 219   inline void mov(Register Rd, Register Rn) {
 220     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 221     if (Rd == Rn) {
 222     } else if (Rd == sp || Rn == sp) {
 223       Assembler::add(Rd, Rn, 0U);
 224     } else {
 225       orr(Rd, zr, Rn);
 226     }
 227   }
 228 
 229   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 230   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 231 
 232   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 233   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 234 
 235   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 236   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 237 
 238   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 239     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 240   }
 241   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 242     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 243   }
 244 
 245   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 246     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 247   }
 248   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 249     bfm(Rd, Rn, lsb , (lsb + width - 1));
 250   }
 251 
 252   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 253     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 254   }
 255   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 256     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 257   }
 258 
 259   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 260     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 261   }
 262   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 263     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 264   }
 265 
 266   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 267     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 268   }
 269   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 270     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 271   }
 272 
 273   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 274     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 275   }
 276   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 277     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 278   }
 279 
 280   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 281     sbfmw(Rd, Rn, imm, 31);
 282   }
 283 
 284   inline void asr(Register Rd, Register Rn, unsigned imm) {
 285     sbfm(Rd, Rn, imm, 63);
 286   }
 287 
 288   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 289     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 290   }
 291 
 292   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 293     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 294   }
 295 
 296   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 297     ubfmw(Rd, Rn, imm, 31);
 298   }
 299 
 300   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 301     ubfm(Rd, Rn, imm, 63);
 302   }
 303 
 304   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 305     extrw(Rd, Rn, Rn, imm);
 306   }
 307 
 308   inline void ror(Register Rd, Register Rn, unsigned imm) {
 309     extr(Rd, Rn, Rn, imm);
 310   }
 311 
 312   inline void sxtbw(Register Rd, Register Rn) {
 313     sbfmw(Rd, Rn, 0, 7);
 314   }
 315   inline void sxthw(Register Rd, Register Rn) {
 316     sbfmw(Rd, Rn, 0, 15);
 317   }
 318   inline void sxtb(Register Rd, Register Rn) {
 319     sbfm(Rd, Rn, 0, 7);
 320   }
 321   inline void sxth(Register Rd, Register Rn) {
 322     sbfm(Rd, Rn, 0, 15);
 323   }
 324   inline void sxtw(Register Rd, Register Rn) {
 325     sbfm(Rd, Rn, 0, 31);
 326   }
 327 
 328   inline void uxtbw(Register Rd, Register Rn) {
 329     ubfmw(Rd, Rn, 0, 7);
 330   }
 331   inline void uxthw(Register Rd, Register Rn) {
 332     ubfmw(Rd, Rn, 0, 15);
 333   }
 334   inline void uxtb(Register Rd, Register Rn) {
 335     ubfm(Rd, Rn, 0, 7);
 336   }
 337   inline void uxth(Register Rd, Register Rn) {
 338     ubfm(Rd, Rn, 0, 15);
 339   }
 340   inline void uxtw(Register Rd, Register Rn) {
 341     ubfm(Rd, Rn, 0, 31);
 342   }
 343 
 344   inline void cmnw(Register Rn, Register Rm) {
 345     addsw(zr, Rn, Rm);
 346   }
 347   inline void cmn(Register Rn, Register Rm) {
 348     adds(zr, Rn, Rm);
 349   }
 350 
 351   inline void cmpw(Register Rn, Register Rm) {
 352     subsw(zr, Rn, Rm);
 353   }
 354   inline void cmp(Register Rn, Register Rm) {
 355     subs(zr, Rn, Rm);
 356   }
 357 
 358   inline void negw(Register Rd, Register Rn) {
 359     subw(Rd, zr, Rn);
 360   }
 361 
 362   inline void neg(Register Rd, Register Rn) {
 363     sub(Rd, zr, Rn);
 364   }
 365 
 366   inline void negsw(Register Rd, Register Rn) {
 367     subsw(Rd, zr, Rn);
 368   }
 369 
 370   inline void negs(Register Rd, Register Rn) {
 371     subs(Rd, zr, Rn);
 372   }
 373 
 374   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 375     addsw(zr, Rn, Rm, kind, shift);
 376   }
 377   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 378     adds(zr, Rn, Rm, kind, shift);
 379   }
 380 
 381   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 382     subsw(zr, Rn, Rm, kind, shift);
 383   }
 384   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 385     subs(zr, Rn, Rm, kind, shift);
 386   }
 387 
 388   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 389     subw(Rd, zr, Rn, kind, shift);
 390   }
 391 
 392   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 393     sub(Rd, zr, Rn, kind, shift);
 394   }
 395 
 396   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 397     subsw(Rd, zr, Rn, kind, shift);
 398   }
 399 
 400   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 401     subs(Rd, zr, Rn, kind, shift);
 402   }
 403 
 404   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 405     msubw(Rd, Rn, Rm, zr);
 406   }
 407   inline void mneg(Register Rd, Register Rn, Register Rm) {
 408     msub(Rd, Rn, Rm, zr);
 409   }
 410 
 411   inline void mulw(Register Rd, Register Rn, Register Rm) {
 412     maddw(Rd, Rn, Rm, zr);
 413   }
 414   inline void mul(Register Rd, Register Rn, Register Rm) {
 415     madd(Rd, Rn, Rm, zr);
 416   }
 417 
 418   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 419     smsubl(Rd, Rn, Rm, zr);
 420   }
 421   inline void smull(Register Rd, Register Rn, Register Rm) {
 422     smaddl(Rd, Rn, Rm, zr);
 423   }
 424 
 425   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 426     umsubl(Rd, Rn, Rm, zr);
 427   }
 428   inline void umull(Register Rd, Register Rn, Register Rm) {
 429     umaddl(Rd, Rn, Rm, zr);
 430   }
 431 
 432 #define WRAP(INSN)                                                            \
 433   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 434     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 435       nop();                                                                  \
 436     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 437   }
 438 
 439   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 440   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 441 #undef WRAP
 442 
 443 
 444   // macro assembly operations needed for aarch64
 445 
 446   // first two private routines for loading 32 bit or 64 bit constants
 447 private:
 448 
 449   void mov_immediate64(Register dst, uint64_t imm64);
 450   void mov_immediate32(Register dst, uint32_t imm32);
 451 
 452   int push(unsigned int bitset, Register stack);
 453   int pop(unsigned int bitset, Register stack);
 454 
 455   int push_fp(unsigned int bitset, Register stack);
 456   int pop_fp(unsigned int bitset, Register stack);
 457 
 458   int push_p(unsigned int bitset, Register stack);
 459   int pop_p(unsigned int bitset, Register stack);
 460 
 461   void mov(Register dst, Address a);
 462 
 463 public:
 464   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 465   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 466 
 467   void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
 468   void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
 469 
 470   static RegSet call_clobbered_gp_registers();
 471 
 472   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 473   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 474 
 475   // Push and pop everything that might be clobbered by a native
 476   // runtime call except rscratch1 and rscratch2.  (They are always
 477   // scratch, so we don't have to protect them.)  Only save the lower
 478   // 64 bits of each vector register. Additional registers can be excluded
 479   // in a passed RegSet.
 480   void push_call_clobbered_registers_except(RegSet exclude);
 481   void pop_call_clobbered_registers_except(RegSet exclude);
 482 
 483   void push_call_clobbered_registers() {
 484     push_call_clobbered_registers_except(RegSet());
 485   }
 486   void pop_call_clobbered_registers() {
 487     pop_call_clobbered_registers_except(RegSet());
 488   }
 489 
 490 
 491   // now mov instructions for loading absolute addresses and 32 or
 492   // 64 bit integers
 493 
 494   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 495 
 496   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 497   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 498 
 499   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 500 
 501   void mov(Register dst, RegisterOrConstant src) {
 502     if (src.is_register())
 503       mov(dst, src.as_register());
 504     else
 505       mov(dst, src.as_constant());
 506   }
 507 
 508   void movptr(Register r, uintptr_t imm64);
 509 
 510   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 511 
 512   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 513     orr(Vd, T, Vn, Vn);
 514   }
 515 
 516   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 517     fcvtsh(tmp, src);
 518     smov(dst, tmp, H, 0);
 519   }
 520 
 521   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 522     mov(tmp, H, 0, src);
 523     fcvths(dst, tmp);
 524   }
 525 
 526   // Generalized Test Bit And Branch, including a "far" variety which
 527   // spans more than 32KiB.
 528   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 529     assert(cond == EQ || cond == NE, "must be");
 530 
 531     if (isfar)
 532       cond = ~cond;
 533 
 534     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 535     if (cond == Assembler::EQ)
 536       branch = &Assembler::tbz;
 537     else
 538       branch = &Assembler::tbnz;
 539 
 540     if (isfar) {
 541       Label L;
 542       (this->*branch)(Rt, bitpos, L);
 543       b(dest);
 544       bind(L);
 545     } else {
 546       (this->*branch)(Rt, bitpos, dest);
 547     }
 548   }
 549 
 550   // macro instructions for accessing and updating floating point
 551   // status register
 552   //
 553   // FPSR : op1 == 011
 554   //        CRn == 0100
 555   //        CRm == 0100
 556   //        op2 == 001
 557 
 558   inline void get_fpsr(Register reg)
 559   {
 560     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 561   }
 562 
 563   inline void set_fpsr(Register reg)
 564   {
 565     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 566   }
 567 
 568   inline void clear_fpsr()
 569   {
 570     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 571   }
 572 
 573   // DCZID_EL0: op1 == 011
 574   //            CRn == 0000
 575   //            CRm == 0000
 576   //            op2 == 111
 577   inline void get_dczid_el0(Register reg)
 578   {
 579     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 580   }
 581 
 582   // CTR_EL0:   op1 == 011
 583   //            CRn == 0000
 584   //            CRm == 0000
 585   //            op2 == 001
 586   inline void get_ctr_el0(Register reg)
 587   {
 588     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 589   }
 590 
 591   inline void get_nzcv(Register reg) {
 592     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 593   }
 594 
 595   inline void set_nzcv(Register reg) {
 596     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 597   }
 598 
 599   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 600   int corrected_idivl(Register result, Register ra, Register rb,
 601                       bool want_remainder, Register tmp = rscratch1);
 602   int corrected_idivq(Register result, Register ra, Register rb,
 603                       bool want_remainder, Register tmp = rscratch1);
 604 
 605   // Support for null-checks
 606   //
 607   // Generates code that causes a null OS exception if the content of reg is null.
 608   // If the accessed location is M[reg + offset] and the offset is known, provide the
 609   // offset. No explicit code generation is needed if the offset is within a certain
 610   // range (0 <= offset <= page_size).
 611 
 612   virtual void null_check(Register reg, int offset = -1);
 613   static bool needs_explicit_null_check(intptr_t offset);
 614   static bool uses_implicit_null_check(void* address);
 615 
 616   static address target_addr_for_insn(address insn_addr, unsigned insn);
 617   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 618   static address target_addr_for_insn(address insn_addr) {
 619     unsigned insn = *(unsigned*)insn_addr;
 620     return target_addr_for_insn(insn_addr, insn);
 621   }
 622   static address target_addr_for_insn_or_null(address insn_addr) {
 623     unsigned insn = *(unsigned*)insn_addr;
 624     return target_addr_for_insn_or_null(insn_addr, insn);
 625   }
 626 
 627   // Required platform-specific helpers for Label::patch_instructions.
 628   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 629   static int pd_patch_instruction_size(address branch, address target);
 630   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 631     pd_patch_instruction_size(branch, target);
 632   }
 633   static address pd_call_destination(address branch) {
 634     return target_addr_for_insn(branch);
 635   }
 636 #ifndef PRODUCT
 637   static void pd_print_patched_instruction(address branch);
 638 #endif
 639 
 640   static int patch_oop(address insn_addr, address o);
 641   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 642 
 643   // Return whether code is emitted to a scratch blob.
 644   virtual bool in_scratch_emit_size() {
 645     return false;
 646   }
 647   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 648   static int max_trampoline_stub_size();
 649   void emit_static_call_stub();
 650   static int static_call_stub_size();
 651 
 652   // The following 4 methods return the offset of the appropriate move instruction
 653 
 654   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 655   int load_unsigned_byte(Register dst, Address src);
 656   int load_unsigned_short(Register dst, Address src);
 657 
 658   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 659   int load_signed_byte(Register dst, Address src);
 660   int load_signed_short(Register dst, Address src);
 661 
 662   int load_signed_byte32(Register dst, Address src);
 663   int load_signed_short32(Register dst, Address src);
 664 
 665   // Support for sign-extension (hi:lo = extend_sign(lo))
 666   void extend_sign(Register hi, Register lo);
 667 
 668   // Load and store values by size and signed-ness
 669   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 670   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 671 
 672   // Support for inc/dec with optimal instruction selection depending on value
 673 
 674   // x86_64 aliases an unqualified register/address increment and
 675   // decrement to call incrementq and decrementq but also supports
 676   // explicitly sized calls to incrementq/decrementq or
 677   // incrementl/decrementl
 678 
 679   // for aarch64 the proper convention would be to use
 680   // increment/decrement for 64 bit operations and
 681   // incrementw/decrementw for 32 bit operations. so when porting
 682   // x86_64 code we can leave calls to increment/decrement as is,
 683   // replace incrementq/decrementq with increment/decrement and
 684   // replace incrementl/decrementl with incrementw/decrementw.
 685 
 686   // n.b. increment/decrement calls with an Address destination will
 687   // need to use a scratch register to load the value to be
 688   // incremented. increment/decrement calls which add or subtract a
 689   // constant value greater than 2^12 will need to use a 2nd scratch
 690   // register to hold the constant. so, a register increment/decrement
 691   // may trash rscratch2 and an address increment/decrement trash
 692   // rscratch and rscratch2
 693 
 694   void decrementw(Address dst, int value = 1);
 695   void decrementw(Register reg, int value = 1);
 696 
 697   void decrement(Register reg, int value = 1);
 698   void decrement(Address dst, int value = 1);
 699 
 700   void incrementw(Address dst, int value = 1);
 701   void incrementw(Register reg, int value = 1);
 702 
 703   void increment(Register reg, int value = 1);
 704   void increment(Address dst, int value = 1);
 705 
 706 
 707   // Alignment
 708   void align(int modulus);
 709 
 710   // nop
 711   void post_call_nop();
 712 
 713   // Stack frame creation/removal
 714   void enter(bool strip_ret_addr = false);
 715   void leave();
 716 
 717   // ROP Protection
 718   void protect_return_address();
 719   void protect_return_address(Register return_reg);
 720   void authenticate_return_address();
 721   void authenticate_return_address(Register return_reg);
 722   void strip_return_address();
 723   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 724 
 725   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 726   // The pointer will be loaded into the thread register.
 727   void get_thread(Register thread);
 728 
 729   // support for argument shuffling
 730   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 731   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 732   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 733   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 734   void object_move(
 735                    OopMap* map,
 736                    int oop_handle_offset,
 737                    int framesize_in_slots,
 738                    VMRegPair src,
 739                    VMRegPair dst,
 740                    bool is_receiver,
 741                    int* receiver_offset);
 742 
 743 
 744   // Support for VM calls
 745   //
 746   // It is imperative that all calls into the VM are handled via the call_VM macros.
 747   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 748   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 749 
 750 
 751   void call_VM(Register oop_result,
 752                address entry_point,
 753                bool check_exceptions = true);
 754   void call_VM(Register oop_result,
 755                address entry_point,
 756                Register arg_1,
 757                bool check_exceptions = true);
 758   void call_VM(Register oop_result,
 759                address entry_point,
 760                Register arg_1, Register arg_2,
 761                bool check_exceptions = true);
 762   void call_VM(Register oop_result,
 763                address entry_point,
 764                Register arg_1, Register arg_2, Register arg_3,
 765                bool check_exceptions = true);
 766 
 767   // Overloadings with last_Java_sp
 768   void call_VM(Register oop_result,
 769                Register last_java_sp,
 770                address entry_point,
 771                int number_of_arguments = 0,
 772                bool check_exceptions = true);
 773   void call_VM(Register oop_result,
 774                Register last_java_sp,
 775                address entry_point,
 776                Register arg_1, bool
 777                check_exceptions = true);
 778   void call_VM(Register oop_result,
 779                Register last_java_sp,
 780                address entry_point,
 781                Register arg_1, Register arg_2,
 782                bool check_exceptions = true);
 783   void call_VM(Register oop_result,
 784                Register last_java_sp,
 785                address entry_point,
 786                Register arg_1, Register arg_2, Register arg_3,
 787                bool check_exceptions = true);
 788 
 789   void get_vm_result  (Register oop_result, Register thread);
 790   void get_vm_result_2(Register metadata_result, Register thread);
 791 
 792   // These always tightly bind to MacroAssembler::call_VM_base
 793   // bypassing the virtual implementation
 794   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 795   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 796   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 797   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 798   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 799 
 800   void call_VM_leaf(address entry_point,
 801                     int number_of_arguments = 0);
 802   void call_VM_leaf(address entry_point,
 803                     Register arg_1);
 804   void call_VM_leaf(address entry_point,
 805                     Register arg_1, Register arg_2);
 806   void call_VM_leaf(address entry_point,
 807                     Register arg_1, Register arg_2, Register arg_3);
 808 
 809   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 810   // bypassing the virtual implementation
 811   void super_call_VM_leaf(address entry_point);
 812   void super_call_VM_leaf(address entry_point, Register arg_1);
 813   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 814   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 815   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 816 
 817   // last Java Frame (fills frame anchor)
 818   void set_last_Java_frame(Register last_java_sp,
 819                            Register last_java_fp,
 820                            address last_java_pc,
 821                            Register scratch);
 822 
 823   void set_last_Java_frame(Register last_java_sp,
 824                            Register last_java_fp,
 825                            Label &last_java_pc,
 826                            Register scratch);
 827 
 828   void set_last_Java_frame(Register last_java_sp,
 829                            Register last_java_fp,
 830                            Register last_java_pc,
 831                            Register scratch);
 832 
 833   void reset_last_Java_frame(Register thread);
 834 
 835   // thread in the default location (rthread)
 836   void reset_last_Java_frame(bool clear_fp);
 837 
 838   // Stores
 839   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 840   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 841 
 842   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 843   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 844 
 845   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 846   void c2bool(Register x);
 847 
 848   void load_method_holder_cld(Register rresult, Register rmethod);
 849   void load_method_holder(Register holder, Register method);
 850 
 851   // oop manipulations
 852   void load_nklass_compact(Register dst, Register src);
 853   void load_klass(Register dst, Register src);
 854   void store_klass(Register dst, Register src);
 855   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 856   void cmp_klass(Register src, Register dst, Register tmp1, Register tmp2);
 857 
 858   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 859   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 860   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 861 
 862   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 863                       Register tmp1, Register tmp2);
 864 
 865   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 866                        Register tmp1, Register tmp2, Register tmp3);
 867 
 868   void load_heap_oop(Register dst, Address src, Register tmp1,
 869                      Register tmp2, DecoratorSet decorators = 0);
 870 
 871   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 872                               Register tmp2, DecoratorSet decorators = 0);
 873   void store_heap_oop(Address dst, Register val, Register tmp1,
 874                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 875 
 876   // currently unimplemented
 877   // Used for storing null. All other oop constants should be
 878   // stored using routines that take a jobject.
 879   void store_heap_oop_null(Address dst);
 880 
 881   void store_klass_gap(Register dst, Register src);
 882 
 883   // This dummy is to prevent a call to store_heap_oop from
 884   // converting a zero (like null) into a Register by giving
 885   // the compiler two choices it can't resolve
 886 
 887   void store_heap_oop(Address dst, void* dummy);
 888 
 889   void encode_heap_oop(Register d, Register s);
 890   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 891   void decode_heap_oop(Register d, Register s);
 892   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 893   void encode_heap_oop_not_null(Register r);
 894   void decode_heap_oop_not_null(Register r);
 895   void encode_heap_oop_not_null(Register dst, Register src);
 896   void decode_heap_oop_not_null(Register dst, Register src);
 897 
 898   void set_narrow_oop(Register dst, jobject obj);
 899 
 900   void encode_klass_not_null(Register r);
 901   void decode_klass_not_null(Register r);
 902   void encode_klass_not_null(Register dst, Register src);
 903   void decode_klass_not_null(Register dst, Register src);
 904 
 905   void set_narrow_klass(Register dst, Klass* k);
 906 
 907   // if heap base register is used - reinit it with the correct value
 908   void reinit_heapbase();
 909 
 910   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 911 
 912   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 913                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 914   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 915                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 916 
 917   void push_cont_fastpath(Register java_thread);
 918   void pop_cont_fastpath(Register java_thread);
 919 
 920   // Round up to a power of two
 921   void round_to(Register reg, int modulus);
 922 
 923   // java.lang.Math::round intrinsics
 924   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 925   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 926 
 927   // allocation
 928   void tlab_allocate(
 929     Register obj,                      // result: pointer to object after successful allocation
 930     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 931     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 932     Register t1,                       // temp register
 933     Register t2,                       // temp register
 934     Label&   slow_case                 // continuation point if fast allocation fails
 935   );
 936   void verify_tlab();
 937 
 938   // interface method calling
 939   void lookup_interface_method(Register recv_klass,
 940                                Register intf_klass,
 941                                RegisterOrConstant itable_index,
 942                                Register method_result,
 943                                Register scan_temp,
 944                                Label& no_such_interface,
 945                    bool return_method = true);
 946 
 947   void lookup_interface_method_stub(Register recv_klass,
 948                                     Register holder_klass,
 949                                     Register resolved_klass,
 950                                     Register method_result,
 951                                     Register temp_reg,
 952                                     Register temp_reg2,
 953                                     int itable_index,
 954                                     Label& L_no_such_interface);
 955 
 956   // virtual method calling
 957   // n.b. x86 allows RegisterOrConstant for vtable_index
 958   void lookup_virtual_method(Register recv_klass,
 959                              RegisterOrConstant vtable_index,
 960                              Register method_result);
 961 
 962   // Test sub_klass against super_klass, with fast and slow paths.
 963 
 964   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 965   // One of the three labels can be null, meaning take the fall-through.
 966   // If super_check_offset is -1, the value is loaded up from super_klass.
 967   // No registers are killed, except temp_reg.
 968   void check_klass_subtype_fast_path(Register sub_klass,
 969                                      Register super_klass,
 970                                      Register temp_reg,
 971                                      Label* L_success,
 972                                      Label* L_failure,
 973                                      Label* L_slow_path,
 974                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 975 
 976   // The rest of the type check; must be wired to a corresponding fast path.
 977   // It does not repeat the fast path logic, so don't use it standalone.
 978   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 979   // Updates the sub's secondary super cache as necessary.
 980   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 981   void check_klass_subtype_slow_path(Register sub_klass,
 982                                      Register super_klass,
 983                                      Register temp_reg,
 984                                      Register temp2_reg,
 985                                      Label* L_success,
 986                                      Label* L_failure,
 987                                      bool set_cond_codes = false);
 988 
 989   // Simplified, combined version, good for typical uses.
 990   // Falls through on failure.
 991   void check_klass_subtype(Register sub_klass,
 992                            Register super_klass,
 993                            Register temp_reg,
 994                            Label& L_success);
 995 
 996   void clinit_barrier(Register klass,
 997                       Register thread,
 998                       Label* L_fast_path = nullptr,
 999                       Label* L_slow_path = nullptr);
1000 
1001   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1002 
1003   void verify_sve_vector_length(Register tmp = rscratch1);
1004   void reinitialize_ptrue() {
1005     if (UseSVE > 0) {
1006       sve_ptrue(ptrue, B);
1007     }
1008   }
1009   void verify_ptrue();
1010 
1011   // Debugging
1012 
1013   // only if +VerifyOops
1014   void _verify_oop(Register reg, const char* s, const char* file, int line);
1015   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1016 
1017   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1018     if (VerifyOops) {
1019       _verify_oop(reg, s, file, line);
1020     }
1021   }
1022   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1023     if (VerifyOops) {
1024       _verify_oop_addr(reg, s, file, line);
1025     }
1026   }
1027 
1028 // TODO: verify method and klass metadata (compare against vptr?)
1029   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1030   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1031 
1032 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1033 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1034 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1035 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1036 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1037 
1038   // only if +VerifyFPU
1039   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
1040 
1041   // prints msg, dumps registers and stops execution
1042   void stop(const char* msg);
1043 
1044   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1045 
1046   void untested()                                { stop("untested"); }
1047 
1048   void unimplemented(const char* what = "");
1049 
1050   void should_not_reach_here()                   { stop("should not reach here"); }
1051 
1052   void _assert_asm(Condition cc, const char* msg);
1053 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1054 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1055 
1056   // Stack overflow checking
1057   void bang_stack_with_offset(int offset) {
1058     // stack grows down, caller passes positive offset
1059     assert(offset > 0, "must bang with negative offset");
1060     sub(rscratch2, sp, offset);
1061     str(zr, Address(rscratch2));
1062   }
1063 
1064   // Writes to stack successive pages until offset reached to check for
1065   // stack overflow + shadow pages.  Also, clobbers tmp
1066   void bang_stack_size(Register size, Register tmp);
1067 
1068   // Check for reserved stack access in method being exited (for JIT)
1069   void reserved_stack_check();
1070 
1071   // Arithmetics
1072 
1073   void addptr(const Address &dst, int32_t src);
1074   void cmpptr(Register src1, Address src2);
1075 
1076   void cmpoop(Register obj1, Register obj2);
1077 
1078   // Various forms of CAS
1079 
1080   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1081                           Label &succeed, Label *fail);
1082   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1083                   Label &succeed, Label *fail);
1084 
1085   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1086                   Label &succeed, Label *fail);
1087 
1088   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1089   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1090   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1091   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1092 
1093   void atomic_xchg(Register prev, Register newv, Register addr);
1094   void atomic_xchgw(Register prev, Register newv, Register addr);
1095   void atomic_xchgl(Register prev, Register newv, Register addr);
1096   void atomic_xchglw(Register prev, Register newv, Register addr);
1097   void atomic_xchgal(Register prev, Register newv, Register addr);
1098   void atomic_xchgalw(Register prev, Register newv, Register addr);
1099 
1100   void orptr(Address adr, RegisterOrConstant src) {
1101     ldr(rscratch1, adr);
1102     if (src.is_register())
1103       orr(rscratch1, rscratch1, src.as_register());
1104     else
1105       orr(rscratch1, rscratch1, src.as_constant());
1106     str(rscratch1, adr);
1107   }
1108 
1109   // A generic CAS; success or failure is in the EQ flag.
1110   // Clobbers rscratch1
1111   void cmpxchg(Register addr, Register expected, Register new_val,
1112                enum operand_size size,
1113                bool acquire, bool release, bool weak,
1114                Register result);
1115 
1116 #ifdef ASSERT
1117   // Template short-hand support to clean-up after a failed call to trampoline
1118   // call generation (see trampoline_call() below),  when a set of Labels must
1119   // be reset (before returning).
1120   template<typename Label, typename... More>
1121   void reset_labels(Label &lbl, More&... more) {
1122     lbl.reset(); reset_labels(more...);
1123   }
1124   template<typename Label>
1125   void reset_labels(Label &lbl) {
1126     lbl.reset();
1127   }
1128 #endif
1129 
1130 private:
1131   void compare_eq(Register rn, Register rm, enum operand_size size);
1132 
1133 public:
1134   // AArch64 OpenJDK uses four different types of calls:
1135   //   - direct call: bl pc_relative_offset
1136   //     This is the shortest and the fastest, but the offset has the range:
1137   //     +/-128MB for the release build, +/-2MB for the debug build.
1138   //
1139   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1140   //     This is longer than a direct call. The offset has
1141   //     the range +/-4GB. As the code cache size is limited to 4GB,
1142   //     far calls can reach anywhere in the code cache. If a jump is
1143   //     needed rather than a call, a far jump 'b reg' can be used instead.
1144   //     All instructions are embedded at a call site.
1145   //
1146   //   - trampoline call:
1147   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1148   //     of a direct call, which is used if the destination of a call is in range,
1149   //     and a register-indirect call. It has the advantages of reaching anywhere in
1150   //     the AArch64 address space and being patchable at runtime when the generated
1151   //     code is being executed by other threads.
1152   //
1153   //     [Main code section]
1154   //       bl trampoline
1155   //     [Stub code section]
1156   //     trampoline:
1157   //       ldr reg, pc + 8
1158   //       br reg
1159   //       <64-bit destination address>
1160   //
1161   //     If the destination is in range when the generated code is moved to the code
1162   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1163   //     is not used.
1164   //     The optimization does not remove the trampoline from the stub section.
1165   //     This is necessary because the trampoline may well be redirected later when
1166   //     code is patched, and the new destination may not be reachable by a simple BR
1167   //     instruction.
1168   //
1169   //   - indirect call: move reg, address; blr reg
1170   //     This too can reach anywhere in the address space, but it cannot be
1171   //     patched while code is running, so it must only be modified at a safepoint.
1172   //     This form of call is most suitable for targets at fixed addresses, which
1173   //     will never be patched.
1174   //
1175   // The patching we do conforms to the "Concurrent modification and
1176   // execution of instructions" section of the Arm Architectural
1177   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1178   // or SVC instructions to be modified while another thread is
1179   // executing them.
1180   //
1181   // To patch a trampoline call when the BL can't reach, we first modify
1182   // the 64-bit destination address in the trampoline, then modify the
1183   // BL to point to the trampoline, then flush the instruction cache to
1184   // broadcast the change to all executing threads. See
1185   // NativeCall::set_destination_mt_safe for the details.
1186   //
1187   // There is a benign race in that the other thread might observe the
1188   // modified BL before it observes the modified 64-bit destination
1189   // address. That does not matter because the destination method has been
1190   // invalidated, so there will be a trap at its start.
1191   // For this to work, the destination address in the trampoline is
1192   // always updated, even if we're not using the trampoline.
1193 
1194   // Emit a direct call if the entry address will always be in range,
1195   // otherwise a trampoline call.
1196   // Supported entry.rspec():
1197   // - relocInfo::runtime_call_type
1198   // - relocInfo::opt_virtual_call_type
1199   // - relocInfo::static_call_type
1200   // - relocInfo::virtual_call_type
1201   //
1202   // Return: the call PC or null if CodeCache is full.
1203   address trampoline_call(Address entry);
1204 
1205   static bool far_branches() {
1206     return ReservedCodeCacheSize > branch_range;
1207   }
1208 
1209   // Check if branches to the non nmethod section require a far jump
1210   static bool codestub_branch_needs_far_jump() {
1211     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1212   }
1213 
1214   // Emit a direct call/jump if the entry address will always be in range,
1215   // otherwise a far call/jump.
1216   // The address must be inside the code cache.
1217   // Supported entry.rspec():
1218   // - relocInfo::external_word_type
1219   // - relocInfo::runtime_call_type
1220   // - relocInfo::none
1221   // In the case of a far call/jump, the entry address is put in the tmp register.
1222   // The tmp register is invalidated.
1223   //
1224   // Far_jump returns the amount of the emitted code.
1225   void far_call(Address entry, Register tmp = rscratch1);
1226   int far_jump(Address entry, Register tmp = rscratch1);
1227 
1228   static int far_codestub_branch_size() {
1229     if (codestub_branch_needs_far_jump()) {
1230       return 3 * 4;  // adrp, add, br
1231     } else {
1232       return 4;
1233     }
1234   }
1235 
1236   // Emit the CompiledIC call idiom
1237   address ic_call(address entry, jint method_index = 0);
1238 
1239 public:
1240 
1241   // Data
1242 
1243   void mov_metadata(Register dst, Metadata* obj);
1244   Address allocate_metadata_address(Metadata* obj);
1245   Address constant_oop_address(jobject obj);
1246 
1247   void movoop(Register dst, jobject obj);
1248 
1249   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1250   void kernel_crc32(Register crc, Register buf, Register len,
1251         Register table0, Register table1, Register table2, Register table3,
1252         Register tmp, Register tmp2, Register tmp3);
1253   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1254   void kernel_crc32c(Register crc, Register buf, Register len,
1255         Register table0, Register table1, Register table2, Register table3,
1256         Register tmp, Register tmp2, Register tmp3);
1257 
1258   // Stack push and pop individual 64 bit registers
1259   void push(Register src);
1260   void pop(Register dst);
1261 
1262   void repne_scan(Register addr, Register value, Register count,
1263                   Register scratch);
1264   void repne_scanw(Register addr, Register value, Register count,
1265                    Register scratch);
1266 
1267   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1268   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1269 
1270   // If a constant does not fit in an immediate field, generate some
1271   // number of MOV instructions and then perform the operation
1272   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1273                              add_sub_imm_insn insn1,
1274                              add_sub_reg_insn insn2, bool is32);
1275   // Separate vsn which sets the flags
1276   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1277                                add_sub_imm_insn insn1,
1278                                add_sub_reg_insn insn2, bool is32);
1279 
1280 #define WRAP(INSN, is32)                                                \
1281   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1282     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1283   }                                                                     \
1284                                                                         \
1285   void INSN(Register Rd, Register Rn, Register Rm,                      \
1286              enum shift_kind kind, unsigned shift = 0) {                \
1287     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1288   }                                                                     \
1289                                                                         \
1290   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1291     Assembler::INSN(Rd, Rn, Rm);                                        \
1292   }                                                                     \
1293                                                                         \
1294   void INSN(Register Rd, Register Rn, Register Rm,                      \
1295            ext::operation option, int amount = 0) {                     \
1296     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1297   }
1298 
1299   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1300 
1301 #undef WRAP
1302 #define WRAP(INSN, is32)                                                \
1303   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1304     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1305   }                                                                     \
1306                                                                         \
1307   void INSN(Register Rd, Register Rn, Register Rm,                      \
1308              enum shift_kind kind, unsigned shift = 0) {                \
1309     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1310   }                                                                     \
1311                                                                         \
1312   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1313     Assembler::INSN(Rd, Rn, Rm);                                        \
1314   }                                                                     \
1315                                                                         \
1316   void INSN(Register Rd, Register Rn, Register Rm,                      \
1317            ext::operation option, int amount = 0) {                     \
1318     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1319   }
1320 
1321   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1322 
1323   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1324   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1325   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1326   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1327 
1328   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1329 
1330   void tableswitch(Register index, jint lowbound, jint highbound,
1331                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1332     adr(rscratch1, jumptable);
1333     subsw(rscratch2, index, lowbound);
1334     subsw(zr, rscratch2, highbound - lowbound);
1335     br(Assembler::HS, jumptable_end);
1336     add(rscratch1, rscratch1, rscratch2,
1337         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1338     br(rscratch1);
1339   }
1340 
1341   // Form an address from base + offset in Rd.  Rd may or may not
1342   // actually be used: you must use the Address that is returned.  It
1343   // is up to you to ensure that the shift provided matches the size
1344   // of your data.
1345   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1346 
1347   // Return true iff an address is within the 48-bit AArch64 address
1348   // space.
1349   bool is_valid_AArch64_address(address a) {
1350     return ((uint64_t)a >> 48) == 0;
1351   }
1352 
1353   // Load the base of the cardtable byte map into reg.
1354   void load_byte_map_base(Register reg);
1355 
1356   // Prolog generator routines to support switch between x86 code and
1357   // generated ARM code
1358 
1359   // routine to generate an x86 prolog for a stub function which
1360   // bootstraps into the generated ARM code which directly follows the
1361   // stub
1362   //
1363 
1364   public:
1365 
1366   void ldr_constant(Register dest, const Address &const_addr) {
1367     if (NearCpool) {
1368       ldr(dest, const_addr);
1369     } else {
1370       uint64_t offset;
1371       adrp(dest, InternalAddress(const_addr.target()), offset);
1372       ldr(dest, Address(dest, offset));
1373     }
1374   }
1375 
1376   address read_polling_page(Register r, relocInfo::relocType rtype);
1377   void get_polling_page(Register dest, relocInfo::relocType rtype);
1378 
1379   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1380   void update_byte_crc32(Register crc, Register val, Register table);
1381   void update_word_crc32(Register crc, Register v, Register tmp,
1382         Register table0, Register table1, Register table2, Register table3,
1383         bool upper = false);
1384 
1385   address count_positives(Register ary1, Register len, Register result);
1386 
1387   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1388                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1389 
1390   void string_equals(Register a1, Register a2, Register result, Register cnt1,
1391                      int elem_size);
1392 
1393   void fill_words(Register base, Register cnt, Register value);
1394   address zero_words(Register base, uint64_t cnt);
1395   address zero_words(Register ptr, Register cnt);
1396   void zero_dcache_blocks(Register base, Register cnt);
1397 
1398   static const int zero_words_block_size;
1399 
1400   address byte_array_inflate(Register src, Register dst, Register len,
1401                              FloatRegister vtmp1, FloatRegister vtmp2,
1402                              FloatRegister vtmp3, Register tmp4);
1403 
1404   void char_array_compress(Register src, Register dst, Register len,
1405                            Register res,
1406                            FloatRegister vtmp0, FloatRegister vtmp1,
1407                            FloatRegister vtmp2, FloatRegister vtmp3,
1408                            FloatRegister vtmp4, FloatRegister vtmp5);
1409 
1410   void encode_iso_array(Register src, Register dst,
1411                         Register len, Register res, bool ascii,
1412                         FloatRegister vtmp0, FloatRegister vtmp1,
1413                         FloatRegister vtmp2, FloatRegister vtmp3,
1414                         FloatRegister vtmp4, FloatRegister vtmp5);
1415 
1416   void fast_log(FloatRegister vtmp0, FloatRegister vtmp1, FloatRegister vtmp2,
1417                 FloatRegister vtmp3, FloatRegister vtmp4, FloatRegister vtmp5,
1418                 FloatRegister tmpC1, FloatRegister tmpC2, FloatRegister tmpC3,
1419                 FloatRegister tmpC4, Register tmp1, Register tmp2,
1420                 Register tmp3, Register tmp4, Register tmp5);
1421   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1422       address pio2, address dsin_coef, address dcos_coef);
1423  private:
1424   // begin trigonometric functions support block
1425   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1426   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1427   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1428   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1429   // end trigonometric functions support block
1430   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1431                        Register src1, Register src2);
1432   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1433     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1434   }
1435   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1436                              Register y, Register y_idx, Register z,
1437                              Register carry, Register product,
1438                              Register idx, Register kdx);
1439   void multiply_128_x_128_loop(Register y, Register z,
1440                                Register carry, Register carry2,
1441                                Register idx, Register jdx,
1442                                Register yz_idx1, Register yz_idx2,
1443                                Register tmp, Register tmp3, Register tmp4,
1444                                Register tmp7, Register product_hi);
1445   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1446         Register len, Register tmp0, Register tmp1, Register tmp2,
1447         Register tmp3);
1448   void kernel_crc32_using_crc32(Register crc, Register buf,
1449         Register len, Register tmp0, Register tmp1, Register tmp2,
1450         Register tmp3);
1451   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1452         Register len, Register tmp0, Register tmp1, Register tmp2,
1453         Register tmp3);
1454   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1455         Register len, Register tmp0, Register tmp1, Register tmp2,
1456         Register tmp3);
1457   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1458         Register len, Register tmp0, Register tmp1, Register tmp2,
1459         size_t table_offset);
1460 
1461   void ghash_modmul (FloatRegister result,
1462                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1463                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1464                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1465   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1466 public:
1467   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1468                        Register zlen, Register tmp1, Register tmp2, Register tmp3,
1469                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1470   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1471   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1472                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1473                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1474   void ghash_multiply_wide(int index,
1475                            FloatRegister result_lo, FloatRegister result_hi,
1476                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1477                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1478   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1479                     FloatRegister p, FloatRegister z, FloatRegister t1);
1480   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1481                     FloatRegister p, FloatRegister z, FloatRegister t1);
1482   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1483                                 Register data, Register blocks, int unrolls);
1484 
1485 
1486   void aesenc_loadkeys(Register key, Register keylen);
1487   void aesecb_encrypt(Register from, Register to, Register keylen,
1488                       FloatRegister data = v0, int unrolls = 1);
1489   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1490   void aes_round(FloatRegister input, FloatRegister subkey);
1491 
1492   // ChaCha20 functions support block
1493   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1494           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1495           FloatRegister tbl);
1496   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1497           FloatRegister dVec, bool colToDiag);
1498 
1499   // Place an ISB after code may have been modified due to a safepoint.
1500   void safepoint_isb();
1501 
1502 private:
1503   // Return the effective address r + (r1 << ext) + offset.
1504   // Uses rscratch2.
1505   Address offsetted_address(Register r, Register r1, Address::extend ext,
1506                             int offset, int size);
1507 
1508 private:
1509   // Returns an address on the stack which is reachable with a ldr/str of size
1510   // Uses rscratch2 if the address is not directly reachable
1511   Address spill_address(int size, int offset, Register tmp=rscratch2);
1512   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1513 
1514   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1515 
1516   // Check whether two loads/stores can be merged into ldp/stp.
1517   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1518 
1519   // Merge current load/store with previous load/store into ldp/stp.
1520   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1521 
1522   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1523   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1524 
1525 public:
1526   void spill(Register Rx, bool is64, int offset) {
1527     if (is64) {
1528       str(Rx, spill_address(8, offset));
1529     } else {
1530       strw(Rx, spill_address(4, offset));
1531     }
1532   }
1533   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1534     str(Vx, T, spill_address(1 << (int)T, offset));
1535   }
1536 
1537   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1538     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1539   }
1540   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1541     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1542   }
1543 
1544   void unspill(Register Rx, bool is64, int offset) {
1545     if (is64) {
1546       ldr(Rx, spill_address(8, offset));
1547     } else {
1548       ldrw(Rx, spill_address(4, offset));
1549     }
1550   }
1551   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1552     ldr(Vx, T, spill_address(1 << (int)T, offset));
1553   }
1554 
1555   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1556     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1557   }
1558   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1559     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1560   }
1561 
1562   void spill_copy128(int src_offset, int dst_offset,
1563                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1564     if (src_offset < 512 && (src_offset & 7) == 0 &&
1565         dst_offset < 512 && (dst_offset & 7) == 0) {
1566       ldp(tmp1, tmp2, Address(sp, src_offset));
1567       stp(tmp1, tmp2, Address(sp, dst_offset));
1568     } else {
1569       unspill(tmp1, true, src_offset);
1570       spill(tmp1, true, dst_offset);
1571       unspill(tmp1, true, src_offset+8);
1572       spill(tmp1, true, dst_offset+8);
1573     }
1574   }
1575   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1576                                             int sve_vec_reg_size_in_bytes) {
1577     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1578     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1579       spill_copy128(src_offset, dst_offset);
1580       src_offset += 16;
1581       dst_offset += 16;
1582     }
1583   }
1584   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1585                                                int sve_predicate_reg_size_in_bytes) {
1586     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1587     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1588     reinitialize_ptrue();
1589   }
1590   void cache_wb(Address line);
1591   void cache_wbsync(bool is_pre);
1592 
1593   // Code for java.lang.Thread::onSpinWait() intrinsic.
1594   void spin_wait();
1595 
1596   void lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1597   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1598 
1599 private:
1600   // Check the current thread doesn't need a cross modify fence.
1601   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1602 
1603 };
1604 
1605 #ifdef ASSERT
1606 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1607 #endif
1608 
1609 /**
1610  * class SkipIfEqual:
1611  *
1612  * Instantiating this class will result in assembly code being output that will
1613  * jump around any code emitted between the creation of the instance and it's
1614  * automatic destruction at the end of a scope block, depending on the value of
1615  * the flag passed to the constructor, which will be checked at run-time.
1616  */
1617 class SkipIfEqual {
1618  private:
1619   MacroAssembler* _masm;
1620   Label _label;
1621 
1622  public:
1623    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1624    ~SkipIfEqual();
1625 };
1626 
1627 struct tableswitch {
1628   Register _reg;
1629   int _insn_index; jint _first_key; jint _last_key;
1630   Label _after;
1631   Label _branches;
1632 };
1633 
1634 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP