1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/icBuffer.hpp" 34 #include "code/vtableStubs.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSetAssembler.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "interpreter/interp_masm.hpp" 39 #include "logging/log.hpp" 40 #include "memory/resourceArea.hpp" 41 #include "nativeInst_aarch64.hpp" 42 #include "oops/compiledICHolder.hpp" 43 #include "oops/klass.inline.hpp" 44 #include "oops/method.inline.hpp" 45 #include "prims/methodHandles.hpp" 46 #include "runtime/continuation.hpp" 47 #include "runtime/continuationEntry.inline.hpp" 48 #include "runtime/globals.hpp" 49 #include "runtime/jniHandles.hpp" 50 #include "runtime/safepointMechanism.hpp" 51 #include "runtime/sharedRuntime.hpp" 52 #include "runtime/signature.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "runtime/vframeArray.hpp" 55 #include "utilities/align.hpp" 56 #include "utilities/formatBuffer.hpp" 57 #include "vmreg_aarch64.inline.hpp" 58 #ifdef COMPILER1 59 #include "c1/c1_Runtime1.hpp" 60 #endif 61 #ifdef COMPILER2 62 #include "adfiles/ad_aarch64.hpp" 63 #include "opto/runtime.hpp" 64 #endif 65 #if INCLUDE_JVMCI 66 #include "jvmci/jvmciJavaClasses.hpp" 67 #endif 68 69 #define __ masm-> 70 71 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 72 73 class SimpleRuntimeFrame { 74 75 public: 76 77 // Most of the runtime stubs have this simple frame layout. 78 // This class exists to make the layout shared in one place. 79 // Offsets are for compiler stack slots, which are jints. 80 enum layout { 81 // The frame sender code expects that rbp will be in the "natural" place and 82 // will override any oopMap setting for it. We must therefore force the layout 83 // so that it agrees with the frame sender code. 84 // we don't expect any arg reg save area so aarch64 asserts that 85 // frame::arg_reg_save_area_bytes == 0 86 rfp_off = 0, 87 rfp_off2, 88 return_off, return_off2, 89 framesize 90 }; 91 }; 92 93 // FIXME -- this is used by C1 94 class RegisterSaver { 95 const bool _save_vectors; 96 public: 97 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 98 99 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 100 void restore_live_registers(MacroAssembler* masm); 101 102 // Offsets into the register save area 103 // Used by deoptimization when it is managing result register 104 // values on its own 105 106 int reg_offset_in_bytes(Register r); 107 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 108 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 109 int v0_offset_in_bytes(); 110 111 // Total stack size in bytes for saving sve predicate registers. 112 int total_sve_predicate_in_bytes(); 113 114 // Capture info about frame layout 115 // Note this is only correct when not saving full vectors. 116 enum layout { 117 fpu_state_off = 0, 118 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 119 // The frame sender code expects that rfp will be in 120 // the "natural" place and will override any oopMap 121 // setting for it. We must therefore force the layout 122 // so that it agrees with the frame sender code. 123 r0_off = fpu_state_off + FPUStateSizeInWords, 124 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 125 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 126 reg_save_size = return_off + Register::max_slots_per_register}; 127 128 }; 129 130 int RegisterSaver::reg_offset_in_bytes(Register r) { 131 // The integer registers are located above the floating point 132 // registers in the stack frame pushed by save_live_registers() so the 133 // offset depends on whether we are saving full vectors, and whether 134 // those vectors are NEON or SVE. 135 136 int slots_per_vect = FloatRegister::save_slots_per_register; 137 138 #if COMPILER2_OR_JVMCI 139 if (_save_vectors) { 140 slots_per_vect = FloatRegister::slots_per_neon_register; 141 142 #ifdef COMPILER2 143 if (Matcher::supports_scalable_vector()) { 144 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 145 } 146 #endif 147 } 148 #endif 149 150 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 151 return r0_offset + r->encoding() * wordSize; 152 } 153 154 int RegisterSaver::v0_offset_in_bytes() { 155 // The floating point registers are located above the predicate registers if 156 // they are present in the stack frame pushed by save_live_registers(). So the 157 // offset depends on the saved total predicate vectors in the stack frame. 158 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 159 } 160 161 int RegisterSaver::total_sve_predicate_in_bytes() { 162 #ifdef COMPILER2 163 if (_save_vectors && Matcher::supports_scalable_vector()) { 164 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 165 PRegister::number_of_registers; 166 } 167 #endif 168 return 0; 169 } 170 171 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 172 bool use_sve = false; 173 int sve_vector_size_in_bytes = 0; 174 int sve_vector_size_in_slots = 0; 175 int sve_predicate_size_in_slots = 0; 176 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 177 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 178 179 #ifdef COMPILER2 180 use_sve = Matcher::supports_scalable_vector(); 181 if (use_sve) { 182 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 183 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 184 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 185 } 186 #endif 187 188 #if COMPILER2_OR_JVMCI 189 if (_save_vectors) { 190 int extra_save_slots_per_register = 0; 191 // Save upper half of vector registers 192 if (use_sve) { 193 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 194 } else { 195 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 196 } 197 int extra_vector_bytes = extra_save_slots_per_register * 198 VMRegImpl::stack_slot_size * 199 FloatRegister::number_of_registers; 200 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 201 } 202 #else 203 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 204 #endif 205 206 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 207 reg_save_size * BytesPerInt, 16); 208 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 209 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 210 // The caller will allocate additional_frame_words 211 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 212 // CodeBlob frame size is in words. 213 int frame_size_in_words = frame_size_in_bytes / wordSize; 214 *total_frame_words = frame_size_in_words; 215 216 // Save Integer and Float registers. 217 __ enter(); 218 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 219 220 // Set an oopmap for the call site. This oopmap will map all 221 // oop-registers and debug-info registers as callee-saved. This 222 // will allow deoptimization at this safepoint to find all possible 223 // debug-info recordings, as well as let GC find all oops. 224 225 OopMapSet *oop_maps = new OopMapSet(); 226 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 227 228 for (int i = 0; i < Register::number_of_registers; i++) { 229 Register r = as_Register(i); 230 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 231 // SP offsets are in 4-byte words. 232 // Register slots are 8 bytes wide, 32 floating-point registers. 233 int sp_offset = Register::max_slots_per_register * i + 234 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 235 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 236 } 237 } 238 239 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 240 FloatRegister r = as_FloatRegister(i); 241 int sp_offset = 0; 242 if (_save_vectors) { 243 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 244 (FloatRegister::slots_per_neon_register * i); 245 } else { 246 sp_offset = FloatRegister::save_slots_per_register * i; 247 } 248 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 249 } 250 251 return oop_map; 252 } 253 254 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 255 #ifdef COMPILER2 256 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 257 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 258 #else 259 #if !INCLUDE_JVMCI 260 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 261 #endif 262 __ pop_CPU_state(_save_vectors); 263 #endif 264 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 265 __ authenticate_return_address(); 266 } 267 268 // Is vector's size (in bytes) bigger than a size saved by default? 269 // 8 bytes vector registers are saved by default on AArch64. 270 // The SVE supported min vector size is 8 bytes and we need to save 271 // predicate registers when the vector size is 8 bytes as well. 272 bool SharedRuntime::is_wide_vector(int size) { 273 return size > 8 || (UseSVE > 0 && size >= 8); 274 } 275 276 // --------------------------------------------------------------------------- 277 // Read the array of BasicTypes from a signature, and compute where the 278 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 279 // quantities. Values less than VMRegImpl::stack0 are registers, those above 280 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 281 // as framesizes are fixed. 282 // VMRegImpl::stack0 refers to the first slot 0(sp). 283 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 284 // Register up to Register::number_of_registers are the 64-bit 285 // integer registers. 286 287 // Note: the INPUTS in sig_bt are in units of Java argument words, 288 // which are 64-bit. The OUTPUTS are in 32-bit units. 289 290 // The Java calling convention is a "shifted" version of the C ABI. 291 // By skipping the first C ABI register we can call non-static jni 292 // methods with small numbers of arguments without having to shuffle 293 // the arguments at all. Since we control the java ABI we ought to at 294 // least get some advantage out of it. 295 296 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 297 VMRegPair *regs, 298 int total_args_passed) { 299 300 // Create the mapping between argument positions and 301 // registers. 302 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 303 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 304 }; 305 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 306 j_farg0, j_farg1, j_farg2, j_farg3, 307 j_farg4, j_farg5, j_farg6, j_farg7 308 }; 309 310 311 uint int_args = 0; 312 uint fp_args = 0; 313 uint stk_args = 0; 314 315 for (int i = 0; i < total_args_passed; i++) { 316 switch (sig_bt[i]) { 317 case T_BOOLEAN: 318 case T_CHAR: 319 case T_BYTE: 320 case T_SHORT: 321 case T_INT: 322 if (int_args < Argument::n_int_register_parameters_j) { 323 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 324 } else { 325 stk_args = align_up(stk_args, 2); 326 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 327 stk_args += 1; 328 } 329 break; 330 case T_VOID: 331 // halves of T_LONG or T_DOUBLE 332 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 333 regs[i].set_bad(); 334 break; 335 case T_LONG: 336 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 337 // fall through 338 case T_OBJECT: 339 case T_ARRAY: 340 case T_ADDRESS: 341 if (int_args < Argument::n_int_register_parameters_j) { 342 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 343 } else { 344 stk_args = align_up(stk_args, 2); 345 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 346 stk_args += 2; 347 } 348 break; 349 case T_FLOAT: 350 if (fp_args < Argument::n_float_register_parameters_j) { 351 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 352 } else { 353 stk_args = align_up(stk_args, 2); 354 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 355 stk_args += 1; 356 } 357 break; 358 case T_DOUBLE: 359 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 360 if (fp_args < Argument::n_float_register_parameters_j) { 361 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 362 } else { 363 stk_args = align_up(stk_args, 2); 364 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 365 stk_args += 2; 366 } 367 break; 368 default: 369 ShouldNotReachHere(); 370 break; 371 } 372 } 373 374 return stk_args; 375 } 376 377 // Patch the callers callsite with entry to compiled code if it exists. 378 static void patch_callers_callsite(MacroAssembler *masm) { 379 Label L; 380 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 381 __ cbz(rscratch1, L); 382 383 __ enter(); 384 __ push_CPU_state(); 385 386 // VM needs caller's callsite 387 // VM needs target method 388 // This needs to be a long call since we will relocate this adapter to 389 // the codeBuffer and it may not reach 390 391 #ifndef PRODUCT 392 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 393 #endif 394 395 __ mov(c_rarg0, rmethod); 396 __ mov(c_rarg1, lr); 397 __ authenticate_return_address(c_rarg1); 398 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 399 __ blr(rscratch1); 400 401 // Explicit isb required because fixup_callers_callsite may change the code 402 // stream. 403 __ safepoint_isb(); 404 405 __ pop_CPU_state(); 406 // restore sp 407 __ leave(); 408 __ bind(L); 409 } 410 411 static void gen_c2i_adapter(MacroAssembler *masm, 412 int total_args_passed, 413 int comp_args_on_stack, 414 const BasicType *sig_bt, 415 const VMRegPair *regs, 416 Label& skip_fixup) { 417 // Before we get into the guts of the C2I adapter, see if we should be here 418 // at all. We've come from compiled code and are attempting to jump to the 419 // interpreter, which means the caller made a static call to get here 420 // (vcalls always get a compiled target if there is one). Check for a 421 // compiled target. If there is one, we need to patch the caller's call. 422 patch_callers_callsite(masm); 423 424 __ bind(skip_fixup); 425 426 int words_pushed = 0; 427 428 // Since all args are passed on the stack, total_args_passed * 429 // Interpreter::stackElementSize is the space we need. 430 431 int extraspace = total_args_passed * Interpreter::stackElementSize; 432 433 __ mov(r19_sender_sp, sp); 434 435 // stack is aligned, keep it that way 436 extraspace = align_up(extraspace, 2*wordSize); 437 438 if (extraspace) 439 __ sub(sp, sp, extraspace); 440 441 // Now write the args into the outgoing interpreter space 442 for (int i = 0; i < total_args_passed; i++) { 443 if (sig_bt[i] == T_VOID) { 444 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 445 continue; 446 } 447 448 // offset to start parameters 449 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 450 int next_off = st_off - Interpreter::stackElementSize; 451 452 // Say 4 args: 453 // i st_off 454 // 0 32 T_LONG 455 // 1 24 T_VOID 456 // 2 16 T_OBJECT 457 // 3 8 T_BOOL 458 // - 0 return address 459 // 460 // However to make thing extra confusing. Because we can fit a Java long/double in 461 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 462 // leaves one slot empty and only stores to a single slot. In this case the 463 // slot that is occupied is the T_VOID slot. See I said it was confusing. 464 465 VMReg r_1 = regs[i].first(); 466 VMReg r_2 = regs[i].second(); 467 if (!r_1->is_valid()) { 468 assert(!r_2->is_valid(), ""); 469 continue; 470 } 471 if (r_1->is_stack()) { 472 // memory to memory use rscratch1 473 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 474 + extraspace 475 + words_pushed * wordSize); 476 if (!r_2->is_valid()) { 477 // sign extend?? 478 __ ldrw(rscratch1, Address(sp, ld_off)); 479 __ str(rscratch1, Address(sp, st_off)); 480 481 } else { 482 483 __ ldr(rscratch1, Address(sp, ld_off)); 484 485 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 486 // T_DOUBLE and T_LONG use two slots in the interpreter 487 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 488 // ld_off == LSW, ld_off+wordSize == MSW 489 // st_off == MSW, next_off == LSW 490 __ str(rscratch1, Address(sp, next_off)); 491 #ifdef ASSERT 492 // Overwrite the unused slot with known junk 493 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 494 __ str(rscratch1, Address(sp, st_off)); 495 #endif /* ASSERT */ 496 } else { 497 __ str(rscratch1, Address(sp, st_off)); 498 } 499 } 500 } else if (r_1->is_Register()) { 501 Register r = r_1->as_Register(); 502 if (!r_2->is_valid()) { 503 // must be only an int (or less ) so move only 32bits to slot 504 // why not sign extend?? 505 __ str(r, Address(sp, st_off)); 506 } else { 507 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 508 // T_DOUBLE and T_LONG use two slots in the interpreter 509 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 510 // jlong/double in gpr 511 #ifdef ASSERT 512 // Overwrite the unused slot with known junk 513 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 514 __ str(rscratch1, Address(sp, st_off)); 515 #endif /* ASSERT */ 516 __ str(r, Address(sp, next_off)); 517 } else { 518 __ str(r, Address(sp, st_off)); 519 } 520 } 521 } else { 522 assert(r_1->is_FloatRegister(), ""); 523 if (!r_2->is_valid()) { 524 // only a float use just part of the slot 525 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 526 } else { 527 #ifdef ASSERT 528 // Overwrite the unused slot with known junk 529 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 530 __ str(rscratch1, Address(sp, st_off)); 531 #endif /* ASSERT */ 532 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 533 } 534 } 535 } 536 537 __ mov(esp, sp); // Interp expects args on caller's expression stack 538 539 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 540 __ br(rscratch1); 541 } 542 543 544 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 545 int total_args_passed, 546 int comp_args_on_stack, 547 const BasicType *sig_bt, 548 const VMRegPair *regs) { 549 550 // Note: r19_sender_sp contains the senderSP on entry. We must 551 // preserve it since we may do a i2c -> c2i transition if we lose a 552 // race where compiled code goes non-entrant while we get args 553 // ready. 554 555 // Adapters are frameless. 556 557 // An i2c adapter is frameless because the *caller* frame, which is 558 // interpreted, routinely repairs its own esp (from 559 // interpreter_frame_last_sp), even if a callee has modified the 560 // stack pointer. It also recalculates and aligns sp. 561 562 // A c2i adapter is frameless because the *callee* frame, which is 563 // interpreted, routinely repairs its caller's sp (from sender_sp, 564 // which is set up via the senderSP register). 565 566 // In other words, if *either* the caller or callee is interpreted, we can 567 // get the stack pointer repaired after a call. 568 569 // This is why c2i and i2c adapters cannot be indefinitely composed. 570 // In particular, if a c2i adapter were to somehow call an i2c adapter, 571 // both caller and callee would be compiled methods, and neither would 572 // clean up the stack pointer changes performed by the two adapters. 573 // If this happens, control eventually transfers back to the compiled 574 // caller, but with an uncorrected stack, causing delayed havoc. 575 576 if (VerifyAdapterCalls && 577 (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) { 578 #if 0 579 // So, let's test for cascading c2i/i2c adapters right now. 580 // assert(Interpreter::contains($return_addr) || 581 // StubRoutines::contains($return_addr), 582 // "i2c adapter must return to an interpreter frame"); 583 __ block_comment("verify_i2c { "); 584 Label L_ok; 585 if (Interpreter::code() != nullptr) { 586 range_check(masm, rax, r11, 587 Interpreter::code()->code_start(), Interpreter::code()->code_end(), 588 L_ok); 589 } 590 if (StubRoutines::initial_stubs_code() != nullptr) { 591 range_check(masm, rax, r11, 592 StubRoutines::initial_stubs_code()->code_begin(), 593 StubRoutines::initial_stubs_code()->code_end(), 594 L_ok); 595 } 596 if (StubRoutines::final_stubs_code() != nullptr) { 597 range_check(masm, rax, r11, 598 StubRoutines::final_stubs_code()->code_begin(), 599 StubRoutines::final_stubs_code()->code_end(), 600 L_ok); 601 } 602 const char* msg = "i2c adapter must return to an interpreter frame"; 603 __ block_comment(msg); 604 __ stop(msg); 605 __ bind(L_ok); 606 __ block_comment("} verify_i2ce "); 607 #endif 608 } 609 610 // Cut-out for having no stack args. 611 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 612 if (comp_args_on_stack) { 613 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 614 __ andr(sp, rscratch1, -16); 615 } 616 617 // Will jump to the compiled code just as if compiled code was doing it. 618 // Pre-load the register-jump target early, to schedule it better. 619 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 620 621 #if INCLUDE_JVMCI 622 if (EnableJVMCI) { 623 // check if this call should be routed towards a specific entry point 624 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 625 Label no_alternative_target; 626 __ cbz(rscratch2, no_alternative_target); 627 __ mov(rscratch1, rscratch2); 628 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 629 __ bind(no_alternative_target); 630 } 631 #endif // INCLUDE_JVMCI 632 633 // Now generate the shuffle code. 634 for (int i = 0; i < total_args_passed; i++) { 635 if (sig_bt[i] == T_VOID) { 636 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 637 continue; 638 } 639 640 // Pick up 0, 1 or 2 words from SP+offset. 641 642 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 643 "scrambled load targets?"); 644 // Load in argument order going down. 645 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 646 // Point to interpreter value (vs. tag) 647 int next_off = ld_off - Interpreter::stackElementSize; 648 // 649 // 650 // 651 VMReg r_1 = regs[i].first(); 652 VMReg r_2 = regs[i].second(); 653 if (!r_1->is_valid()) { 654 assert(!r_2->is_valid(), ""); 655 continue; 656 } 657 if (r_1->is_stack()) { 658 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 659 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 660 if (!r_2->is_valid()) { 661 // sign extend??? 662 __ ldrsw(rscratch2, Address(esp, ld_off)); 663 __ str(rscratch2, Address(sp, st_off)); 664 } else { 665 // 666 // We are using two optoregs. This can be either T_OBJECT, 667 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 668 // two slots but only uses one for thr T_LONG or T_DOUBLE case 669 // So we must adjust where to pick up the data to match the 670 // interpreter. 671 // 672 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 673 // are accessed as negative so LSW is at LOW address 674 675 // ld_off is MSW so get LSW 676 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 677 next_off : ld_off; 678 __ ldr(rscratch2, Address(esp, offset)); 679 // st_off is LSW (i.e. reg.first()) 680 __ str(rscratch2, Address(sp, st_off)); 681 } 682 } else if (r_1->is_Register()) { // Register argument 683 Register r = r_1->as_Register(); 684 if (r_2->is_valid()) { 685 // 686 // We are using two VMRegs. This can be either T_OBJECT, 687 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 688 // two slots but only uses one for thr T_LONG or T_DOUBLE case 689 // So we must adjust where to pick up the data to match the 690 // interpreter. 691 692 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 693 next_off : ld_off; 694 695 // this can be a misaligned move 696 __ ldr(r, Address(esp, offset)); 697 } else { 698 // sign extend and use a full word? 699 __ ldrw(r, Address(esp, ld_off)); 700 } 701 } else { 702 if (!r_2->is_valid()) { 703 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 704 } else { 705 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 706 } 707 } 708 } 709 710 __ mov(rscratch2, rscratch1); 711 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 712 __ mov(rscratch1, rscratch2); 713 714 // 6243940 We might end up in handle_wrong_method if 715 // the callee is deoptimized as we race thru here. If that 716 // happens we don't want to take a safepoint because the 717 // caller frame will look interpreted and arguments are now 718 // "compiled" so it is much better to make this transition 719 // invisible to the stack walking code. Unfortunately if 720 // we try and find the callee by normal means a safepoint 721 // is possible. So we stash the desired callee in the thread 722 // and the vm will find there should this case occur. 723 724 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 725 726 __ br(rscratch1); 727 } 728 729 // --------------------------------------------------------------- 730 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 731 int total_args_passed, 732 int comp_args_on_stack, 733 const BasicType *sig_bt, 734 const VMRegPair *regs, 735 AdapterFingerPrint* fingerprint) { 736 address i2c_entry = __ pc(); 737 738 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 739 740 address c2i_unverified_entry = __ pc(); 741 Label skip_fixup; 742 743 Label ok; 744 745 Register holder = rscratch2; 746 Register receiver = j_rarg0; 747 Register tmp = r10; // A call-clobbered register not used for arg passing 748 749 // ------------------------------------------------------------------------- 750 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 751 // to the interpreter. The args start out packed in the compiled layout. They 752 // need to be unpacked into the interpreter layout. This will almost always 753 // require some stack space. We grow the current (compiled) stack, then repack 754 // the args. We finally end in a jump to the generic interpreter entry point. 755 // On exit from the interpreter, the interpreter will restore our SP (lest the 756 // compiled code, which relies solely on SP and not FP, get sick). 757 758 { 759 __ block_comment("c2i_unverified_entry {"); 760 __ load_klass(rscratch1, receiver); 761 __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 762 __ cmp(rscratch1, tmp); 763 __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 764 __ br(Assembler::EQ, ok); 765 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 766 767 __ bind(ok); 768 // Method might have been compiled since the call site was patched to 769 // interpreted; if that is the case treat it as a miss so we can get 770 // the call site corrected. 771 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 772 __ cbz(rscratch1, skip_fixup); 773 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 774 __ block_comment("} c2i_unverified_entry"); 775 } 776 777 address c2i_entry = __ pc(); 778 779 // Class initialization barrier for static methods 780 address c2i_no_clinit_check_entry = nullptr; 781 if (VM_Version::supports_fast_class_init_checks()) { 782 Label L_skip_barrier; 783 784 { // Bypass the barrier for non-static methods 785 __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset())); 786 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 787 __ br(Assembler::EQ, L_skip_barrier); // non-static 788 } 789 790 __ load_method_holder(rscratch2, rmethod); 791 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 792 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 793 794 __ bind(L_skip_barrier); 795 c2i_no_clinit_check_entry = __ pc(); 796 } 797 798 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 799 bs->c2i_entry_barrier(masm); 800 801 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 802 803 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 804 } 805 806 static int c_calling_convention_priv(const BasicType *sig_bt, 807 VMRegPair *regs, 808 VMRegPair *regs2, 809 int total_args_passed) { 810 assert(regs2 == nullptr, "not needed on AArch64"); 811 812 // We return the amount of VMRegImpl stack slots we need to reserve for all 813 // the arguments NOT counting out_preserve_stack_slots. 814 815 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 816 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 817 }; 818 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 819 c_farg0, c_farg1, c_farg2, c_farg3, 820 c_farg4, c_farg5, c_farg6, c_farg7 821 }; 822 823 uint int_args = 0; 824 uint fp_args = 0; 825 uint stk_args = 0; // inc by 2 each time 826 827 for (int i = 0; i < total_args_passed; i++) { 828 switch (sig_bt[i]) { 829 case T_BOOLEAN: 830 case T_CHAR: 831 case T_BYTE: 832 case T_SHORT: 833 case T_INT: 834 if (int_args < Argument::n_int_register_parameters_c) { 835 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 836 } else { 837 #ifdef __APPLE__ 838 // Less-than word types are stored one after another. 839 // The code is unable to handle this so bailout. 840 return -1; 841 #endif 842 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 843 stk_args += 2; 844 } 845 break; 846 case T_LONG: 847 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 848 // fall through 849 case T_OBJECT: 850 case T_ARRAY: 851 case T_ADDRESS: 852 case T_METADATA: 853 if (int_args < Argument::n_int_register_parameters_c) { 854 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 855 } else { 856 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 857 stk_args += 2; 858 } 859 break; 860 case T_FLOAT: 861 if (fp_args < Argument::n_float_register_parameters_c) { 862 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 863 } else { 864 #ifdef __APPLE__ 865 // Less-than word types are stored one after another. 866 // The code is unable to handle this so bailout. 867 return -1; 868 #endif 869 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 870 stk_args += 2; 871 } 872 break; 873 case T_DOUBLE: 874 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 875 if (fp_args < Argument::n_float_register_parameters_c) { 876 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 877 } else { 878 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 879 stk_args += 2; 880 } 881 break; 882 case T_VOID: // Halves of longs and doubles 883 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 884 regs[i].set_bad(); 885 break; 886 default: 887 ShouldNotReachHere(); 888 break; 889 } 890 } 891 892 return stk_args; 893 } 894 895 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 896 uint num_bits, 897 uint total_args_passed) { 898 Unimplemented(); 899 return 0; 900 } 901 902 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 903 VMRegPair *regs, 904 VMRegPair *regs2, 905 int total_args_passed) 906 { 907 int result = c_calling_convention_priv(sig_bt, regs, regs2, total_args_passed); 908 guarantee(result >= 0, "Unsupported arguments configuration"); 909 return result; 910 } 911 912 913 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 914 // We always ignore the frame_slots arg and just use the space just below frame pointer 915 // which by this time is free to use 916 switch (ret_type) { 917 case T_FLOAT: 918 __ strs(v0, Address(rfp, -wordSize)); 919 break; 920 case T_DOUBLE: 921 __ strd(v0, Address(rfp, -wordSize)); 922 break; 923 case T_VOID: break; 924 default: { 925 __ str(r0, Address(rfp, -wordSize)); 926 } 927 } 928 } 929 930 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 931 // We always ignore the frame_slots arg and just use the space just below frame pointer 932 // which by this time is free to use 933 switch (ret_type) { 934 case T_FLOAT: 935 __ ldrs(v0, Address(rfp, -wordSize)); 936 break; 937 case T_DOUBLE: 938 __ ldrd(v0, Address(rfp, -wordSize)); 939 break; 940 case T_VOID: break; 941 default: { 942 __ ldr(r0, Address(rfp, -wordSize)); 943 } 944 } 945 } 946 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 947 RegSet x; 948 for ( int i = first_arg ; i < arg_count ; i++ ) { 949 if (args[i].first()->is_Register()) { 950 x = x + args[i].first()->as_Register(); 951 } else if (args[i].first()->is_FloatRegister()) { 952 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 953 } 954 } 955 __ push(x, sp); 956 } 957 958 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 959 RegSet x; 960 for ( int i = first_arg ; i < arg_count ; i++ ) { 961 if (args[i].first()->is_Register()) { 962 x = x + args[i].first()->as_Register(); 963 } else { 964 ; 965 } 966 } 967 __ pop(x, sp); 968 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 969 if (args[i].first()->is_Register()) { 970 ; 971 } else if (args[i].first()->is_FloatRegister()) { 972 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 973 } 974 } 975 } 976 977 static void verify_oop_args(MacroAssembler* masm, 978 const methodHandle& method, 979 const BasicType* sig_bt, 980 const VMRegPair* regs) { 981 Register temp_reg = r19; // not part of any compiled calling seq 982 if (VerifyOops) { 983 for (int i = 0; i < method->size_of_parameters(); i++) { 984 if (sig_bt[i] == T_OBJECT || 985 sig_bt[i] == T_ARRAY) { 986 VMReg r = regs[i].first(); 987 assert(r->is_valid(), "bad oop arg"); 988 if (r->is_stack()) { 989 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 990 __ verify_oop(temp_reg); 991 } else { 992 __ verify_oop(r->as_Register()); 993 } 994 } 995 } 996 } 997 } 998 999 // on exit, sp points to the ContinuationEntry 1000 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 1001 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 1002 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1003 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1004 1005 stack_slots += (int)ContinuationEntry::size()/wordSize; 1006 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 1007 1008 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1009 1010 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1011 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 1012 __ mov(rscratch1, sp); // we can't use sp as the source in str 1013 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1014 1015 return map; 1016 } 1017 1018 // on entry c_rarg1 points to the continuation 1019 // sp points to ContinuationEntry 1020 // c_rarg3 -- isVirtualThread 1021 static void fill_continuation_entry(MacroAssembler* masm) { 1022 #ifdef ASSERT 1023 __ movw(rscratch1, ContinuationEntry::cookie_value()); 1024 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 1025 #endif 1026 1027 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 1028 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 1029 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 1030 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 1031 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 1032 1033 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1034 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1035 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1036 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1037 1038 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 1039 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 1040 } 1041 1042 // on entry, sp points to the ContinuationEntry 1043 // on exit, rfp points to the spilled rfp in the entry frame 1044 static void continuation_enter_cleanup(MacroAssembler* masm) { 1045 #ifndef PRODUCT 1046 Label OK; 1047 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1048 __ cmp(sp, rscratch1); 1049 __ br(Assembler::EQ, OK); 1050 __ stop("incorrect sp1"); 1051 __ bind(OK); 1052 #endif 1053 1054 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1055 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1056 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1057 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1058 1059 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1060 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1061 __ add(rfp, sp, (int)ContinuationEntry::size()); 1062 } 1063 1064 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1065 // On entry: c_rarg1 -- the continuation object 1066 // c_rarg2 -- isContinue 1067 // c_rarg3 -- isVirtualThread 1068 static void gen_continuation_enter(MacroAssembler* masm, 1069 const methodHandle& method, 1070 const BasicType* sig_bt, 1071 const VMRegPair* regs, 1072 int& exception_offset, 1073 OopMapSet*oop_maps, 1074 int& frame_complete, 1075 int& stack_slots, 1076 int& interpreted_entry_offset, 1077 int& compiled_entry_offset) { 1078 //verify_oop_args(masm, method, sig_bt, regs); 1079 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1080 1081 address start = __ pc(); 1082 1083 Label call_thaw, exit; 1084 1085 // i2i entry used at interp_only_mode only 1086 interpreted_entry_offset = __ pc() - start; 1087 { 1088 1089 #ifdef ASSERT 1090 Label is_interp_only; 1091 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1092 __ cbnzw(rscratch1, is_interp_only); 1093 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1094 __ bind(is_interp_only); 1095 #endif 1096 1097 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1098 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1099 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1100 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1101 __ push_cont_fastpath(rthread); 1102 1103 __ enter(); 1104 stack_slots = 2; // will be adjusted in setup 1105 OopMap* map = continuation_enter_setup(masm, stack_slots); 1106 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1107 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1108 1109 fill_continuation_entry(masm); 1110 1111 __ cbnz(c_rarg2, call_thaw); 1112 1113 const address tr_call = __ trampoline_call(resolve); 1114 if (tr_call == nullptr) { 1115 fatal("CodeCache is full at gen_continuation_enter"); 1116 } 1117 1118 oop_maps->add_gc_map(__ pc() - start, map); 1119 __ post_call_nop(); 1120 1121 __ b(exit); 1122 1123 CodeBuffer* cbuf = masm->code_section()->outer(); 1124 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1125 if (stub == nullptr) { 1126 fatal("CodeCache is full at gen_continuation_enter"); 1127 } 1128 } 1129 1130 // compiled entry 1131 __ align(CodeEntryAlignment); 1132 compiled_entry_offset = __ pc() - start; 1133 1134 __ enter(); 1135 stack_slots = 2; // will be adjusted in setup 1136 OopMap* map = continuation_enter_setup(masm, stack_slots); 1137 frame_complete = __ pc() - start; 1138 1139 fill_continuation_entry(masm); 1140 1141 __ cbnz(c_rarg2, call_thaw); 1142 1143 const address tr_call = __ trampoline_call(resolve); 1144 if (tr_call == nullptr) { 1145 fatal("CodeCache is full at gen_continuation_enter"); 1146 } 1147 1148 oop_maps->add_gc_map(__ pc() - start, map); 1149 __ post_call_nop(); 1150 1151 __ b(exit); 1152 1153 __ bind(call_thaw); 1154 1155 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1156 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1157 ContinuationEntry::_return_pc_offset = __ pc() - start; 1158 __ post_call_nop(); 1159 1160 __ bind(exit); 1161 continuation_enter_cleanup(masm); 1162 __ leave(); 1163 __ ret(lr); 1164 1165 /// exception handling 1166 1167 exception_offset = __ pc() - start; 1168 { 1169 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1170 1171 continuation_enter_cleanup(masm); 1172 1173 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1174 __ authenticate_return_address(c_rarg1); 1175 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1176 1177 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1178 1179 __ mov(r1, r0); // the exception handler 1180 __ mov(r0, r19); // restore return value contaning the exception oop 1181 __ verify_oop(r0); 1182 1183 __ leave(); 1184 __ mov(r3, lr); 1185 __ br(r1); // the exception handler 1186 } 1187 1188 CodeBuffer* cbuf = masm->code_section()->outer(); 1189 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1190 if (stub == nullptr) { 1191 fatal("CodeCache is full at gen_continuation_enter"); 1192 } 1193 } 1194 1195 static void gen_continuation_yield(MacroAssembler* masm, 1196 const methodHandle& method, 1197 const BasicType* sig_bt, 1198 const VMRegPair* regs, 1199 OopMapSet* oop_maps, 1200 int& frame_complete, 1201 int& stack_slots, 1202 int& compiled_entry_offset) { 1203 enum layout { 1204 rfp_off1, 1205 rfp_off2, 1206 lr_off, 1207 lr_off2, 1208 framesize // inclusive of return address 1209 }; 1210 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1211 stack_slots = framesize / VMRegImpl::slots_per_word; 1212 assert(stack_slots == 2, "recheck layout"); 1213 1214 address start = __ pc(); 1215 1216 compiled_entry_offset = __ pc() - start; 1217 __ enter(); 1218 1219 __ mov(c_rarg1, sp); 1220 1221 frame_complete = __ pc() - start; 1222 address the_pc = __ pc(); 1223 1224 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1225 1226 __ mov(c_rarg0, rthread); 1227 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1228 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1229 __ reset_last_Java_frame(true); 1230 1231 Label pinned; 1232 1233 __ cbnz(r0, pinned); 1234 1235 // We've succeeded, set sp to the ContinuationEntry 1236 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1237 __ mov(sp, rscratch1); 1238 continuation_enter_cleanup(masm); 1239 1240 __ bind(pinned); // pinned -- return to caller 1241 1242 // handle pending exception thrown by freeze 1243 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1244 Label ok; 1245 __ cbz(rscratch1, ok); 1246 __ leave(); 1247 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1248 __ br(rscratch1); 1249 __ bind(ok); 1250 1251 __ leave(); 1252 __ ret(lr); 1253 1254 OopMap* map = new OopMap(framesize, 1); 1255 oop_maps->add_gc_map(the_pc - start, map); 1256 } 1257 1258 static void gen_special_dispatch(MacroAssembler* masm, 1259 const methodHandle& method, 1260 const BasicType* sig_bt, 1261 const VMRegPair* regs) { 1262 verify_oop_args(masm, method, sig_bt, regs); 1263 vmIntrinsics::ID iid = method->intrinsic_id(); 1264 1265 // Now write the args into the outgoing interpreter space 1266 bool has_receiver = false; 1267 Register receiver_reg = noreg; 1268 int member_arg_pos = -1; 1269 Register member_reg = noreg; 1270 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1271 if (ref_kind != 0) { 1272 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1273 member_reg = r19; // known to be free at this point 1274 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1275 } else if (iid == vmIntrinsics::_invokeBasic) { 1276 has_receiver = true; 1277 } else if (iid == vmIntrinsics::_linkToNative) { 1278 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1279 member_reg = r19; // known to be free at this point 1280 } else { 1281 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1282 } 1283 1284 if (member_reg != noreg) { 1285 // Load the member_arg into register, if necessary. 1286 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1287 VMReg r = regs[member_arg_pos].first(); 1288 if (r->is_stack()) { 1289 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1290 } else { 1291 // no data motion is needed 1292 member_reg = r->as_Register(); 1293 } 1294 } 1295 1296 if (has_receiver) { 1297 // Make sure the receiver is loaded into a register. 1298 assert(method->size_of_parameters() > 0, "oob"); 1299 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1300 VMReg r = regs[0].first(); 1301 assert(r->is_valid(), "bad receiver arg"); 1302 if (r->is_stack()) { 1303 // Porting note: This assumes that compiled calling conventions always 1304 // pass the receiver oop in a register. If this is not true on some 1305 // platform, pick a temp and load the receiver from stack. 1306 fatal("receiver always in a register"); 1307 receiver_reg = r2; // known to be free at this point 1308 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1309 } else { 1310 // no data motion is needed 1311 receiver_reg = r->as_Register(); 1312 } 1313 } 1314 1315 // Figure out which address we are really jumping to: 1316 MethodHandles::generate_method_handle_dispatch(masm, iid, 1317 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1318 } 1319 1320 // --------------------------------------------------------------------------- 1321 // Generate a native wrapper for a given method. The method takes arguments 1322 // in the Java compiled code convention, marshals them to the native 1323 // convention (handlizes oops, etc), transitions to native, makes the call, 1324 // returns to java state (possibly blocking), unhandlizes any result and 1325 // returns. 1326 // 1327 // Critical native functions are a shorthand for the use of 1328 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1329 // functions. The wrapper is expected to unpack the arguments before 1330 // passing them to the callee. Critical native functions leave the state _in_Java, 1331 // since they block out GC. 1332 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1333 // block and the check for pending exceptions it's impossible for them 1334 // to be thrown. 1335 // 1336 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1337 const methodHandle& method, 1338 int compile_id, 1339 BasicType* in_sig_bt, 1340 VMRegPair* in_regs, 1341 BasicType ret_type) { 1342 if (method->is_continuation_native_intrinsic()) { 1343 int exception_offset = -1; 1344 OopMapSet* oop_maps = new OopMapSet(); 1345 int frame_complete = -1; 1346 int stack_slots = -1; 1347 int interpreted_entry_offset = -1; 1348 int vep_offset = -1; 1349 if (method->is_continuation_enter_intrinsic()) { 1350 gen_continuation_enter(masm, 1351 method, 1352 in_sig_bt, 1353 in_regs, 1354 exception_offset, 1355 oop_maps, 1356 frame_complete, 1357 stack_slots, 1358 interpreted_entry_offset, 1359 vep_offset); 1360 } else if (method->is_continuation_yield_intrinsic()) { 1361 gen_continuation_yield(masm, 1362 method, 1363 in_sig_bt, 1364 in_regs, 1365 oop_maps, 1366 frame_complete, 1367 stack_slots, 1368 vep_offset); 1369 } else { 1370 guarantee(false, "Unknown Continuation native intrinsic"); 1371 } 1372 1373 #ifdef ASSERT 1374 if (method->is_continuation_enter_intrinsic()) { 1375 assert(interpreted_entry_offset != -1, "Must be set"); 1376 assert(exception_offset != -1, "Must be set"); 1377 } else { 1378 assert(interpreted_entry_offset == -1, "Must be unset"); 1379 assert(exception_offset == -1, "Must be unset"); 1380 } 1381 assert(frame_complete != -1, "Must be set"); 1382 assert(stack_slots != -1, "Must be set"); 1383 assert(vep_offset != -1, "Must be set"); 1384 #endif 1385 1386 __ flush(); 1387 nmethod* nm = nmethod::new_native_nmethod(method, 1388 compile_id, 1389 masm->code(), 1390 vep_offset, 1391 frame_complete, 1392 stack_slots, 1393 in_ByteSize(-1), 1394 in_ByteSize(-1), 1395 oop_maps, 1396 exception_offset); 1397 if (method->is_continuation_enter_intrinsic()) { 1398 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1399 } else if (method->is_continuation_yield_intrinsic()) { 1400 _cont_doYield_stub = nm; 1401 } else { 1402 guarantee(false, "Unknown Continuation native intrinsic"); 1403 } 1404 return nm; 1405 } 1406 1407 if (method->is_method_handle_intrinsic()) { 1408 vmIntrinsics::ID iid = method->intrinsic_id(); 1409 intptr_t start = (intptr_t)__ pc(); 1410 int vep_offset = ((intptr_t)__ pc()) - start; 1411 1412 // First instruction must be a nop as it may need to be patched on deoptimisation 1413 __ nop(); 1414 gen_special_dispatch(masm, 1415 method, 1416 in_sig_bt, 1417 in_regs); 1418 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1419 __ flush(); 1420 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1421 return nmethod::new_native_nmethod(method, 1422 compile_id, 1423 masm->code(), 1424 vep_offset, 1425 frame_complete, 1426 stack_slots / VMRegImpl::slots_per_word, 1427 in_ByteSize(-1), 1428 in_ByteSize(-1), 1429 nullptr); 1430 } 1431 address native_func = method->native_function(); 1432 assert(native_func != nullptr, "must have function"); 1433 1434 // An OopMap for lock (and class if static) 1435 OopMapSet *oop_maps = new OopMapSet(); 1436 intptr_t start = (intptr_t)__ pc(); 1437 1438 // We have received a description of where all the java arg are located 1439 // on entry to the wrapper. We need to convert these args to where 1440 // the jni function will expect them. To figure out where they go 1441 // we convert the java signature to a C signature by inserting 1442 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1443 1444 const int total_in_args = method->size_of_parameters(); 1445 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1446 1447 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1448 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1449 BasicType* in_elem_bt = nullptr; 1450 1451 int argc = 0; 1452 out_sig_bt[argc++] = T_ADDRESS; 1453 if (method->is_static()) { 1454 out_sig_bt[argc++] = T_OBJECT; 1455 } 1456 1457 for (int i = 0; i < total_in_args ; i++ ) { 1458 out_sig_bt[argc++] = in_sig_bt[i]; 1459 } 1460 1461 // Now figure out where the args must be stored and how much stack space 1462 // they require. 1463 int out_arg_slots; 1464 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, nullptr, total_c_args); 1465 1466 if (out_arg_slots < 0) { 1467 return nullptr; 1468 } 1469 1470 // Compute framesize for the wrapper. We need to handlize all oops in 1471 // incoming registers 1472 1473 // Calculate the total number of stack slots we will need. 1474 1475 // First count the abi requirement plus all of the outgoing args 1476 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1477 1478 // Now the space for the inbound oop handle area 1479 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1480 1481 int oop_handle_offset = stack_slots; 1482 stack_slots += total_save_slots; 1483 1484 // Now any space we need for handlizing a klass if static method 1485 1486 int klass_slot_offset = 0; 1487 int klass_offset = -1; 1488 int lock_slot_offset = 0; 1489 bool is_static = false; 1490 1491 if (method->is_static()) { 1492 klass_slot_offset = stack_slots; 1493 stack_slots += VMRegImpl::slots_per_word; 1494 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1495 is_static = true; 1496 } 1497 1498 // Plus a lock if needed 1499 1500 if (method->is_synchronized()) { 1501 lock_slot_offset = stack_slots; 1502 stack_slots += VMRegImpl::slots_per_word; 1503 } 1504 1505 // Now a place (+2) to save return values or temp during shuffling 1506 // + 4 for return address (which we own) and saved rfp 1507 stack_slots += 6; 1508 1509 // Ok The space we have allocated will look like: 1510 // 1511 // 1512 // FP-> | | 1513 // |---------------------| 1514 // | 2 slots for moves | 1515 // |---------------------| 1516 // | lock box (if sync) | 1517 // |---------------------| <- lock_slot_offset 1518 // | klass (if static) | 1519 // |---------------------| <- klass_slot_offset 1520 // | oopHandle area | 1521 // |---------------------| <- oop_handle_offset (8 java arg registers) 1522 // | outbound memory | 1523 // | based arguments | 1524 // | | 1525 // |---------------------| 1526 // | | 1527 // SP-> | out_preserved_slots | 1528 // 1529 // 1530 1531 1532 // Now compute actual number of stack words we need rounding to make 1533 // stack properly aligned. 1534 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1535 1536 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1537 1538 // First thing make an ic check to see if we should even be here 1539 1540 // We are free to use all registers as temps without saving them and 1541 // restoring them except rfp. rfp is the only callee save register 1542 // as far as the interpreter and the compiler(s) are concerned. 1543 1544 1545 const Register ic_reg = rscratch2; 1546 const Register receiver = j_rarg0; 1547 1548 Label hit; 1549 Label exception_pending; 1550 1551 assert_different_registers(ic_reg, receiver, rscratch1); 1552 __ verify_oop(receiver); 1553 __ cmp_klass(receiver, ic_reg, rscratch1); 1554 __ br(Assembler::EQ, hit); 1555 1556 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1557 1558 // Verified entry point must be aligned 1559 __ align(8); 1560 1561 __ bind(hit); 1562 1563 int vep_offset = ((intptr_t)__ pc()) - start; 1564 1565 // If we have to make this method not-entrant we'll overwrite its 1566 // first instruction with a jump. For this action to be legal we 1567 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1568 // SVC, HVC, or SMC. Make it a NOP. 1569 __ nop(); 1570 1571 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1572 Label L_skip_barrier; 1573 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1574 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1575 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1576 1577 __ bind(L_skip_barrier); 1578 } 1579 1580 // Generate stack overflow check 1581 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1582 1583 // Generate a new frame for the wrapper. 1584 __ enter(); 1585 // -2 because return address is already present and so is saved rfp 1586 __ sub(sp, sp, stack_size - 2*wordSize); 1587 1588 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1589 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1590 1591 // Frame is now completed as far as size and linkage. 1592 int frame_complete = ((intptr_t)__ pc()) - start; 1593 1594 // We use r20 as the oop handle for the receiver/klass 1595 // It is callee save so it survives the call to native 1596 1597 const Register oop_handle_reg = r20; 1598 1599 // 1600 // We immediately shuffle the arguments so that any vm call we have to 1601 // make from here on out (sync slow path, jvmti, etc.) we will have 1602 // captured the oops from our caller and have a valid oopMap for 1603 // them. 1604 1605 // ----------------- 1606 // The Grand Shuffle 1607 1608 // The Java calling convention is either equal (linux) or denser (win64) than the 1609 // c calling convention. However the because of the jni_env argument the c calling 1610 // convention always has at least one more (and two for static) arguments than Java. 1611 // Therefore if we move the args from java -> c backwards then we will never have 1612 // a register->register conflict and we don't have to build a dependency graph 1613 // and figure out how to break any cycles. 1614 // 1615 1616 // Record esp-based slot for receiver on stack for non-static methods 1617 int receiver_offset = -1; 1618 1619 // This is a trick. We double the stack slots so we can claim 1620 // the oops in the caller's frame. Since we are sure to have 1621 // more args than the caller doubling is enough to make 1622 // sure we can capture all the incoming oop args from the 1623 // caller. 1624 // 1625 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1626 1627 // Mark location of rfp (someday) 1628 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1629 1630 1631 int float_args = 0; 1632 int int_args = 0; 1633 1634 #ifdef ASSERT 1635 bool reg_destroyed[Register::number_of_registers]; 1636 bool freg_destroyed[FloatRegister::number_of_registers]; 1637 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1638 reg_destroyed[r] = false; 1639 } 1640 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1641 freg_destroyed[f] = false; 1642 } 1643 1644 #endif /* ASSERT */ 1645 1646 // For JNI natives the incoming and outgoing registers are offset upwards. 1647 GrowableArray<int> arg_order(2 * total_in_args); 1648 VMRegPair tmp_vmreg; 1649 tmp_vmreg.set2(r19->as_VMReg()); 1650 1651 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1652 arg_order.push(i); 1653 arg_order.push(c_arg); 1654 } 1655 1656 int temploc = -1; 1657 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1658 int i = arg_order.at(ai); 1659 int c_arg = arg_order.at(ai + 1); 1660 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1661 assert(c_arg != -1 && i != -1, "wrong order"); 1662 #ifdef ASSERT 1663 if (in_regs[i].first()->is_Register()) { 1664 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1665 } else if (in_regs[i].first()->is_FloatRegister()) { 1666 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1667 } 1668 if (out_regs[c_arg].first()->is_Register()) { 1669 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1670 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1671 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1672 } 1673 #endif /* ASSERT */ 1674 switch (in_sig_bt[i]) { 1675 case T_ARRAY: 1676 case T_OBJECT: 1677 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1678 ((i == 0) && (!is_static)), 1679 &receiver_offset); 1680 int_args++; 1681 break; 1682 case T_VOID: 1683 break; 1684 1685 case T_FLOAT: 1686 __ float_move(in_regs[i], out_regs[c_arg]); 1687 float_args++; 1688 break; 1689 1690 case T_DOUBLE: 1691 assert( i + 1 < total_in_args && 1692 in_sig_bt[i + 1] == T_VOID && 1693 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1694 __ double_move(in_regs[i], out_regs[c_arg]); 1695 float_args++; 1696 break; 1697 1698 case T_LONG : 1699 __ long_move(in_regs[i], out_regs[c_arg]); 1700 int_args++; 1701 break; 1702 1703 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1704 1705 default: 1706 __ move32_64(in_regs[i], out_regs[c_arg]); 1707 int_args++; 1708 } 1709 } 1710 1711 // point c_arg at the first arg that is already loaded in case we 1712 // need to spill before we call out 1713 int c_arg = total_c_args - total_in_args; 1714 1715 // Pre-load a static method's oop into c_rarg1. 1716 if (method->is_static()) { 1717 1718 // load oop into a register 1719 __ movoop(c_rarg1, 1720 JNIHandles::make_local(method->method_holder()->java_mirror())); 1721 1722 // Now handlize the static class mirror it's known not-null. 1723 __ str(c_rarg1, Address(sp, klass_offset)); 1724 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1725 1726 // Now get the handle 1727 __ lea(c_rarg1, Address(sp, klass_offset)); 1728 // and protect the arg if we must spill 1729 c_arg--; 1730 } 1731 1732 // Change state to native (we save the return address in the thread, since it might not 1733 // be pushed on the stack when we do a stack traversal). 1734 // We use the same pc/oopMap repeatedly when we call out 1735 1736 Label native_return; 1737 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1738 1739 Label dtrace_method_entry, dtrace_method_entry_done; 1740 { 1741 uint64_t offset; 1742 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1743 __ ldrb(rscratch1, Address(rscratch1, offset)); 1744 __ cbnzw(rscratch1, dtrace_method_entry); 1745 __ bind(dtrace_method_entry_done); 1746 } 1747 1748 // RedefineClasses() tracing support for obsolete method entry 1749 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1750 // protect the args we've loaded 1751 save_args(masm, total_c_args, c_arg, out_regs); 1752 __ mov_metadata(c_rarg1, method()); 1753 __ call_VM_leaf( 1754 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1755 rthread, c_rarg1); 1756 restore_args(masm, total_c_args, c_arg, out_regs); 1757 } 1758 1759 // Lock a synchronized method 1760 1761 // Register definitions used by locking and unlocking 1762 1763 const Register swap_reg = r0; 1764 const Register obj_reg = r19; // Will contain the oop 1765 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1766 const Register old_hdr = r13; // value of old header at unlock time 1767 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 1768 const Register tmp = lr; 1769 1770 Label slow_path_lock; 1771 Label lock_done; 1772 1773 if (method->is_synchronized()) { 1774 Label count; 1775 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1776 1777 // Get the handle (the 2nd argument) 1778 __ mov(oop_handle_reg, c_rarg1); 1779 1780 // Get address of the box 1781 1782 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1783 1784 // Load the oop from the handle 1785 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1786 1787 if (LockingMode == LM_MONITOR) { 1788 __ b(slow_path_lock); 1789 } else if (LockingMode == LM_LEGACY) { 1790 // Load (object->mark() | 1) into swap_reg %r0 1791 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1792 __ orr(swap_reg, rscratch1, 1); 1793 1794 // Save (object->mark() | 1) into BasicLock's displaced header 1795 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1796 1797 // src -> dest iff dest == r0 else r0 <- dest 1798 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr); 1799 1800 // Hmm should this move to the slow path code area??? 1801 1802 // Test if the oopMark is an obvious stack pointer, i.e., 1803 // 1) (mark & 3) == 0, and 1804 // 2) sp <= mark < mark + os::pagesize() 1805 // These 3 tests can be done by evaluating the following 1806 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1807 // assuming both stack pointer and pagesize have their 1808 // least significant 2 bits clear. 1809 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg 1810 1811 __ sub(swap_reg, sp, swap_reg); 1812 __ neg(swap_reg, swap_reg); 1813 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1814 1815 // Save the test result, for recursive case, the result is zero 1816 __ str(swap_reg, Address(lock_reg, mark_word_offset)); 1817 __ br(Assembler::NE, slow_path_lock); 1818 } else { 1819 assert(LockingMode == LM_LIGHTWEIGHT, "must be"); 1820 __ ldr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1821 __ lightweight_lock(obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1822 } 1823 __ bind(count); 1824 __ increment(Address(rthread, JavaThread::held_monitor_count_offset())); 1825 1826 // Slow path will re-enter here 1827 __ bind(lock_done); 1828 } 1829 1830 1831 // Finally just about ready to make the JNI call 1832 1833 // get JNIEnv* which is first argument to native 1834 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1835 1836 // Now set thread in native 1837 __ mov(rscratch1, _thread_in_native); 1838 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1839 __ stlrw(rscratch1, rscratch2); 1840 1841 __ rt_call(native_func); 1842 1843 __ bind(native_return); 1844 1845 intptr_t return_pc = (intptr_t) __ pc(); 1846 oop_maps->add_gc_map(return_pc - start, map); 1847 1848 // Unpack native results. 1849 switch (ret_type) { 1850 case T_BOOLEAN: __ c2bool(r0); break; 1851 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1852 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1853 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1854 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1855 case T_DOUBLE : 1856 case T_FLOAT : 1857 // Result is in v0 we'll save as needed 1858 break; 1859 case T_ARRAY: // Really a handle 1860 case T_OBJECT: // Really a handle 1861 break; // can't de-handlize until after safepoint check 1862 case T_VOID: break; 1863 case T_LONG: break; 1864 default : ShouldNotReachHere(); 1865 } 1866 1867 Label safepoint_in_progress, safepoint_in_progress_done; 1868 Label after_transition; 1869 1870 // Switch thread to "native transition" state before reading the synchronization state. 1871 // This additional state is necessary because reading and testing the synchronization 1872 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1873 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1874 // VM thread changes sync state to synchronizing and suspends threads for GC. 1875 // Thread A is resumed to finish this native method, but doesn't block here since it 1876 // didn't see any synchronization is progress, and escapes. 1877 __ mov(rscratch1, _thread_in_native_trans); 1878 1879 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1880 1881 // Force this write out before the read below 1882 if (!UseSystemMemoryBarrier) { 1883 __ dmb(Assembler::ISH); 1884 } 1885 1886 __ verify_sve_vector_length(); 1887 1888 // Check for safepoint operation in progress and/or pending suspend requests. 1889 { 1890 // We need an acquire here to ensure that any subsequent load of the 1891 // global SafepointSynchronize::_state flag is ordered after this load 1892 // of the thread-local polling word. We don't want this poll to 1893 // return false (i.e. not safepointing) and a later poll of the global 1894 // SafepointSynchronize::_state spuriously to return true. 1895 // 1896 // This is to avoid a race when we're in a native->Java transition 1897 // racing the code which wakes up from a safepoint. 1898 1899 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1900 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1901 __ cbnzw(rscratch1, safepoint_in_progress); 1902 __ bind(safepoint_in_progress_done); 1903 } 1904 1905 // change thread state 1906 __ mov(rscratch1, _thread_in_Java); 1907 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1908 __ stlrw(rscratch1, rscratch2); 1909 __ bind(after_transition); 1910 1911 Label reguard; 1912 Label reguard_done; 1913 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1914 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1915 __ br(Assembler::EQ, reguard); 1916 __ bind(reguard_done); 1917 1918 // native result if any is live 1919 1920 // Unlock 1921 Label unlock_done; 1922 Label slow_path_unlock; 1923 if (method->is_synchronized()) { 1924 1925 // Get locked oop from the handle we passed to jni 1926 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1927 1928 Label done, not_recursive; 1929 1930 if (LockingMode == LM_LEGACY) { 1931 // Simple recursive lock? 1932 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1933 __ cbnz(rscratch1, not_recursive); 1934 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1935 __ b(done); 1936 } 1937 1938 __ bind(not_recursive); 1939 1940 // Must save r0 if if it is live now because cmpxchg must use it 1941 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1942 save_native_result(masm, ret_type, stack_slots); 1943 } 1944 1945 if (LockingMode == LM_MONITOR) { 1946 __ b(slow_path_unlock); 1947 } else if (LockingMode == LM_LEGACY) { 1948 // get address of the stack lock 1949 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1950 // get old displaced header 1951 __ ldr(old_hdr, Address(r0, 0)); 1952 1953 // Atomic swap old header if oop still contains the stack lock 1954 Label count; 1955 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock); 1956 __ bind(count); 1957 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1958 } else { 1959 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1960 __ ldr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1961 __ tbnz(old_hdr, exact_log2(markWord::monitor_value), slow_path_unlock); 1962 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1963 __ decrement(Address(rthread, JavaThread::held_monitor_count_offset())); 1964 } 1965 1966 // slow path re-enters here 1967 __ bind(unlock_done); 1968 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1969 restore_native_result(masm, ret_type, stack_slots); 1970 } 1971 1972 __ bind(done); 1973 } 1974 1975 Label dtrace_method_exit, dtrace_method_exit_done; 1976 { 1977 uint64_t offset; 1978 __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset); 1979 __ ldrb(rscratch1, Address(rscratch1, offset)); 1980 __ cbnzw(rscratch1, dtrace_method_exit); 1981 __ bind(dtrace_method_exit_done); 1982 } 1983 1984 __ reset_last_Java_frame(false); 1985 1986 // Unbox oop result, e.g. JNIHandles::resolve result. 1987 if (is_reference_type(ret_type)) { 1988 __ resolve_jobject(r0, r1, r2); 1989 } 1990 1991 if (CheckJNICalls) { 1992 // clear_pending_jni_exception_check 1993 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1994 } 1995 1996 // reset handle block 1997 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 1998 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 1999 2000 __ leave(); 2001 2002 // Any exception pending? 2003 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2004 __ cbnz(rscratch1, exception_pending); 2005 2006 // We're done 2007 __ ret(lr); 2008 2009 // Unexpected paths are out of line and go here 2010 2011 // forward the exception 2012 __ bind(exception_pending); 2013 2014 // and forward the exception 2015 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2016 2017 // Slow path locking & unlocking 2018 if (method->is_synchronized()) { 2019 2020 __ block_comment("Slow path lock {"); 2021 __ bind(slow_path_lock); 2022 2023 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 2024 // args are (oop obj, BasicLock* lock, JavaThread* thread) 2025 2026 // protect the args we've loaded 2027 save_args(masm, total_c_args, c_arg, out_regs); 2028 2029 __ mov(c_rarg0, obj_reg); 2030 __ mov(c_rarg1, lock_reg); 2031 __ mov(c_rarg2, rthread); 2032 2033 // Not a leaf but we have last_Java_frame setup as we want 2034 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 2035 restore_args(masm, total_c_args, c_arg, out_regs); 2036 2037 #ifdef ASSERT 2038 { Label L; 2039 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2040 __ cbz(rscratch1, L); 2041 __ stop("no pending exception allowed on exit from monitorenter"); 2042 __ bind(L); 2043 } 2044 #endif 2045 __ b(lock_done); 2046 2047 __ block_comment("} Slow path lock"); 2048 2049 __ block_comment("Slow path unlock {"); 2050 __ bind(slow_path_unlock); 2051 2052 // If we haven't already saved the native result we must save it now as xmm registers 2053 // are still exposed. 2054 2055 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2056 save_native_result(masm, ret_type, stack_slots); 2057 } 2058 2059 __ mov(c_rarg2, rthread); 2060 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 2061 __ mov(c_rarg0, obj_reg); 2062 2063 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2064 // NOTE that obj_reg == r19 currently 2065 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2066 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2067 2068 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2069 2070 #ifdef ASSERT 2071 { 2072 Label L; 2073 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2074 __ cbz(rscratch1, L); 2075 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2076 __ bind(L); 2077 } 2078 #endif /* ASSERT */ 2079 2080 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2081 2082 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2083 restore_native_result(masm, ret_type, stack_slots); 2084 } 2085 __ b(unlock_done); 2086 2087 __ block_comment("} Slow path unlock"); 2088 2089 } // synchronized 2090 2091 // SLOW PATH Reguard the stack if needed 2092 2093 __ bind(reguard); 2094 save_native_result(masm, ret_type, stack_slots); 2095 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2096 restore_native_result(masm, ret_type, stack_slots); 2097 // and continue 2098 __ b(reguard_done); 2099 2100 // SLOW PATH safepoint 2101 { 2102 __ block_comment("safepoint {"); 2103 __ bind(safepoint_in_progress); 2104 2105 // Don't use call_VM as it will see a possible pending exception and forward it 2106 // and never return here preventing us from clearing _last_native_pc down below. 2107 // 2108 save_native_result(masm, ret_type, stack_slots); 2109 __ mov(c_rarg0, rthread); 2110 #ifndef PRODUCT 2111 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2112 #endif 2113 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2114 __ blr(rscratch1); 2115 2116 // Restore any method result value 2117 restore_native_result(masm, ret_type, stack_slots); 2118 2119 __ b(safepoint_in_progress_done); 2120 __ block_comment("} safepoint"); 2121 } 2122 2123 // SLOW PATH dtrace support 2124 { 2125 __ block_comment("dtrace entry {"); 2126 __ bind(dtrace_method_entry); 2127 2128 // We have all of the arguments setup at this point. We must not touch any register 2129 // argument registers at this point (what if we save/restore them there are no oop? 2130 2131 save_args(masm, total_c_args, c_arg, out_regs); 2132 __ mov_metadata(c_rarg1, method()); 2133 __ call_VM_leaf( 2134 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2135 rthread, c_rarg1); 2136 restore_args(masm, total_c_args, c_arg, out_regs); 2137 __ b(dtrace_method_entry_done); 2138 __ block_comment("} dtrace entry"); 2139 } 2140 2141 { 2142 __ block_comment("dtrace exit {"); 2143 __ bind(dtrace_method_exit); 2144 save_native_result(masm, ret_type, stack_slots); 2145 __ mov_metadata(c_rarg1, method()); 2146 __ call_VM_leaf( 2147 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2148 rthread, c_rarg1); 2149 restore_native_result(masm, ret_type, stack_slots); 2150 __ b(dtrace_method_exit_done); 2151 __ block_comment("} dtrace exit"); 2152 } 2153 2154 2155 __ flush(); 2156 2157 nmethod *nm = nmethod::new_native_nmethod(method, 2158 compile_id, 2159 masm->code(), 2160 vep_offset, 2161 frame_complete, 2162 stack_slots / VMRegImpl::slots_per_word, 2163 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2164 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2165 oop_maps); 2166 2167 return nm; 2168 } 2169 2170 // this function returns the adjust size (in number of words) to a c2i adapter 2171 // activation for use during deoptimization 2172 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2173 assert(callee_locals >= callee_parameters, 2174 "test and remove; got more parms than locals"); 2175 if (callee_locals < callee_parameters) 2176 return 0; // No adjustment for negative locals 2177 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2178 // diff is counted in stack words 2179 return align_up(diff, 2); 2180 } 2181 2182 2183 //------------------------------generate_deopt_blob---------------------------- 2184 void SharedRuntime::generate_deopt_blob() { 2185 // Allocate space for the code 2186 ResourceMark rm; 2187 // Setup code generation tools 2188 int pad = 0; 2189 #if INCLUDE_JVMCI 2190 if (EnableJVMCI) { 2191 pad += 512; // Increase the buffer size when compiling for JVMCI 2192 } 2193 #endif 2194 CodeBuffer buffer("deopt_blob", 2048+pad, 1024); 2195 MacroAssembler* masm = new MacroAssembler(&buffer); 2196 int frame_size_in_words; 2197 OopMap* map = nullptr; 2198 OopMapSet *oop_maps = new OopMapSet(); 2199 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2200 2201 // ------------- 2202 // This code enters when returning to a de-optimized nmethod. A return 2203 // address has been pushed on the stack, and return values are in 2204 // registers. 2205 // If we are doing a normal deopt then we were called from the patched 2206 // nmethod from the point we returned to the nmethod. So the return 2207 // address on the stack is wrong by NativeCall::instruction_size 2208 // We will adjust the value so it looks like we have the original return 2209 // address on the stack (like when we eagerly deoptimized). 2210 // In the case of an exception pending when deoptimizing, we enter 2211 // with a return address on the stack that points after the call we patched 2212 // into the exception handler. We have the following register state from, 2213 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2214 // r0: exception oop 2215 // r19: exception handler 2216 // r3: throwing pc 2217 // So in this case we simply jam r3 into the useless return address and 2218 // the stack looks just like we want. 2219 // 2220 // At this point we need to de-opt. We save the argument return 2221 // registers. We call the first C routine, fetch_unroll_info(). This 2222 // routine captures the return values and returns a structure which 2223 // describes the current frame size and the sizes of all replacement frames. 2224 // The current frame is compiled code and may contain many inlined 2225 // functions, each with their own JVM state. We pop the current frame, then 2226 // push all the new frames. Then we call the C routine unpack_frames() to 2227 // populate these frames. Finally unpack_frames() returns us the new target 2228 // address. Notice that callee-save registers are BLOWN here; they have 2229 // already been captured in the vframeArray at the time the return PC was 2230 // patched. 2231 address start = __ pc(); 2232 Label cont; 2233 2234 // Prolog for non exception case! 2235 2236 // Save everything in sight. 2237 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2238 2239 // Normal deoptimization. Save exec mode for unpack_frames. 2240 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2241 __ b(cont); 2242 2243 int reexecute_offset = __ pc() - start; 2244 #if INCLUDE_JVMCI && !defined(COMPILER1) 2245 if (EnableJVMCI && UseJVMCICompiler) { 2246 // JVMCI does not use this kind of deoptimization 2247 __ should_not_reach_here(); 2248 } 2249 #endif 2250 2251 // Reexecute case 2252 // return address is the pc describes what bci to do re-execute at 2253 2254 // No need to update map as each call to save_live_registers will produce identical oopmap 2255 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2256 2257 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2258 __ b(cont); 2259 2260 #if INCLUDE_JVMCI 2261 Label after_fetch_unroll_info_call; 2262 int implicit_exception_uncommon_trap_offset = 0; 2263 int uncommon_trap_offset = 0; 2264 2265 if (EnableJVMCI) { 2266 implicit_exception_uncommon_trap_offset = __ pc() - start; 2267 2268 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2269 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2270 2271 uncommon_trap_offset = __ pc() - start; 2272 2273 // Save everything in sight. 2274 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2275 // fetch_unroll_info needs to call last_java_frame() 2276 Label retaddr; 2277 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2278 2279 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2280 __ movw(rscratch1, -1); 2281 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2282 2283 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2284 __ mov(c_rarg0, rthread); 2285 __ movw(c_rarg2, rcpool); // exec mode 2286 __ lea(rscratch1, 2287 RuntimeAddress(CAST_FROM_FN_PTR(address, 2288 Deoptimization::uncommon_trap))); 2289 __ blr(rscratch1); 2290 __ bind(retaddr); 2291 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2292 2293 __ reset_last_Java_frame(false); 2294 2295 __ b(after_fetch_unroll_info_call); 2296 } // EnableJVMCI 2297 #endif // INCLUDE_JVMCI 2298 2299 int exception_offset = __ pc() - start; 2300 2301 // Prolog for exception case 2302 2303 // all registers are dead at this entry point, except for r0, and 2304 // r3 which contain the exception oop and exception pc 2305 // respectively. Set them in TLS and fall thru to the 2306 // unpack_with_exception_in_tls entry point. 2307 2308 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2309 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2310 2311 int exception_in_tls_offset = __ pc() - start; 2312 2313 // new implementation because exception oop is now passed in JavaThread 2314 2315 // Prolog for exception case 2316 // All registers must be preserved because they might be used by LinearScan 2317 // Exceptiop oop and throwing PC are passed in JavaThread 2318 // tos: stack at point of call to method that threw the exception (i.e. only 2319 // args are on the stack, no return address) 2320 2321 // The return address pushed by save_live_registers will be patched 2322 // later with the throwing pc. The correct value is not available 2323 // now because loading it from memory would destroy registers. 2324 2325 // NB: The SP at this point must be the SP of the method that is 2326 // being deoptimized. Deoptimization assumes that the frame created 2327 // here by save_live_registers is immediately below the method's SP. 2328 // This is a somewhat fragile mechanism. 2329 2330 // Save everything in sight. 2331 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2332 2333 // Now it is safe to overwrite any register 2334 2335 // Deopt during an exception. Save exec mode for unpack_frames. 2336 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2337 2338 // load throwing pc from JavaThread and patch it as the return address 2339 // of the current frame. Then clear the field in JavaThread 2340 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2341 __ protect_return_address(r3); 2342 __ str(r3, Address(rfp, wordSize)); 2343 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2344 2345 #ifdef ASSERT 2346 // verify that there is really an exception oop in JavaThread 2347 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2348 __ verify_oop(r0); 2349 2350 // verify that there is no pending exception 2351 Label no_pending_exception; 2352 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2353 __ cbz(rscratch1, no_pending_exception); 2354 __ stop("must not have pending exception here"); 2355 __ bind(no_pending_exception); 2356 #endif 2357 2358 __ bind(cont); 2359 2360 // Call C code. Need thread and this frame, but NOT official VM entry 2361 // crud. We cannot block on this call, no GC can happen. 2362 // 2363 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2364 2365 // fetch_unroll_info needs to call last_java_frame(). 2366 2367 Label retaddr; 2368 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2369 #ifdef ASSERT 2370 { Label L; 2371 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2372 __ cbz(rscratch1, L); 2373 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2374 __ bind(L); 2375 } 2376 #endif // ASSERT 2377 __ mov(c_rarg0, rthread); 2378 __ mov(c_rarg1, rcpool); 2379 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2380 __ blr(rscratch1); 2381 __ bind(retaddr); 2382 2383 // Need to have an oopmap that tells fetch_unroll_info where to 2384 // find any register it might need. 2385 oop_maps->add_gc_map(__ pc() - start, map); 2386 2387 __ reset_last_Java_frame(false); 2388 2389 #if INCLUDE_JVMCI 2390 if (EnableJVMCI) { 2391 __ bind(after_fetch_unroll_info_call); 2392 } 2393 #endif 2394 2395 // Load UnrollBlock* into r5 2396 __ mov(r5, r0); 2397 2398 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2399 Label noException; 2400 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2401 __ br(Assembler::NE, noException); 2402 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2403 // QQQ this is useless it was null above 2404 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2405 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2406 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2407 2408 __ verify_oop(r0); 2409 2410 // Overwrite the result registers with the exception results. 2411 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2412 // I think this is useless 2413 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2414 2415 __ bind(noException); 2416 2417 // Only register save data is on the stack. 2418 // Now restore the result registers. Everything else is either dead 2419 // or captured in the vframeArray. 2420 2421 // Restore fp result register 2422 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2423 // Restore integer result register 2424 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2425 2426 // Pop all of the register save area off the stack 2427 __ add(sp, sp, frame_size_in_words * wordSize); 2428 2429 // All of the register save area has been popped of the stack. Only the 2430 // return address remains. 2431 2432 // Pop all the frames we must move/replace. 2433 // 2434 // Frame picture (youngest to oldest) 2435 // 1: self-frame (no frame link) 2436 // 2: deopting frame (no frame link) 2437 // 3: caller of deopting frame (could be compiled/interpreted). 2438 // 2439 // Note: by leaving the return address of self-frame on the stack 2440 // and using the size of frame 2 to adjust the stack 2441 // when we are done the return to frame 3 will still be on the stack. 2442 2443 // Pop deoptimized frame 2444 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2445 __ sub(r2, r2, 2 * wordSize); 2446 __ add(sp, sp, r2); 2447 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2448 2449 #ifdef ASSERT 2450 // Compilers generate code that bang the stack by as much as the 2451 // interpreter would need. So this stack banging should never 2452 // trigger a fault. Verify that it does not on non product builds. 2453 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2454 __ bang_stack_size(r19, r2); 2455 #endif 2456 // Load address of array of frame pcs into r2 2457 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2458 2459 // Trash the old pc 2460 // __ addptr(sp, wordSize); FIXME ???? 2461 2462 // Load address of array of frame sizes into r4 2463 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2464 2465 // Load counter into r3 2466 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2467 2468 // Now adjust the caller's stack to make up for the extra locals 2469 // but record the original sp so that we can save it in the skeletal interpreter 2470 // frame and the stack walking of interpreter_sender will get the unextended sp 2471 // value and not the "real" sp value. 2472 2473 const Register sender_sp = r6; 2474 2475 __ mov(sender_sp, sp); 2476 __ ldrw(r19, Address(r5, 2477 Deoptimization::UnrollBlock:: 2478 caller_adjustment_offset())); 2479 __ sub(sp, sp, r19); 2480 2481 // Push interpreter frames in a loop 2482 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2483 __ mov(rscratch2, rscratch1); 2484 Label loop; 2485 __ bind(loop); 2486 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2487 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2488 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2489 __ enter(); // Save old & set new fp 2490 __ sub(sp, sp, r19); // Prolog 2491 // This value is corrected by layout_activation_impl 2492 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2493 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2494 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2495 __ sub(r3, r3, 1); // Decrement counter 2496 __ cbnz(r3, loop); 2497 2498 // Re-push self-frame 2499 __ ldr(lr, Address(r2)); 2500 __ enter(); 2501 2502 // Allocate a full sized register save area. We subtract 2 because 2503 // enter() just pushed 2 words 2504 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2505 2506 // Restore frame locals after moving the frame 2507 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2508 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2509 2510 // Call C code. Need thread but NOT official VM entry 2511 // crud. We cannot block on this call, no GC can happen. Call should 2512 // restore return values to their stack-slots with the new SP. 2513 // 2514 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2515 2516 // Use rfp because the frames look interpreted now 2517 // Don't need the precise return PC here, just precise enough to point into this code blob. 2518 address the_pc = __ pc(); 2519 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2520 2521 __ mov(c_rarg0, rthread); 2522 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2523 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2524 __ blr(rscratch1); 2525 2526 // Set an oopmap for the call site 2527 // Use the same PC we used for the last java frame 2528 oop_maps->add_gc_map(the_pc - start, 2529 new OopMap( frame_size_in_words, 0 )); 2530 2531 // Clear fp AND pc 2532 __ reset_last_Java_frame(true); 2533 2534 // Collect return values 2535 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2536 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2537 // I think this is useless (throwing pc?) 2538 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2539 2540 // Pop self-frame. 2541 __ leave(); // Epilog 2542 2543 // Jump to interpreter 2544 __ ret(lr); 2545 2546 // Make sure all code is generated 2547 masm->flush(); 2548 2549 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2550 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2551 #if INCLUDE_JVMCI 2552 if (EnableJVMCI) { 2553 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2554 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2555 } 2556 #endif 2557 } 2558 2559 // Number of stack slots between incoming argument block and the start of 2560 // a new frame. The PROLOG must add this many slots to the stack. The 2561 // EPILOG must remove this many slots. aarch64 needs two slots for 2562 // return address and fp. 2563 // TODO think this is correct but check 2564 uint SharedRuntime::in_preserve_stack_slots() { 2565 return 4; 2566 } 2567 2568 uint SharedRuntime::out_preserve_stack_slots() { 2569 return 0; 2570 } 2571 2572 #ifdef COMPILER2 2573 //------------------------------generate_uncommon_trap_blob-------------------- 2574 void SharedRuntime::generate_uncommon_trap_blob() { 2575 // Allocate space for the code 2576 ResourceMark rm; 2577 // Setup code generation tools 2578 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2579 MacroAssembler* masm = new MacroAssembler(&buffer); 2580 2581 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2582 2583 address start = __ pc(); 2584 2585 // Push self-frame. We get here with a return address in LR 2586 // and sp should be 16 byte aligned 2587 // push rfp and retaddr by hand 2588 __ protect_return_address(); 2589 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 2590 // we don't expect an arg reg save area 2591 #ifndef PRODUCT 2592 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2593 #endif 2594 // compiler left unloaded_class_index in j_rarg0 move to where the 2595 // runtime expects it. 2596 if (c_rarg1 != j_rarg0) { 2597 __ movw(c_rarg1, j_rarg0); 2598 } 2599 2600 // we need to set the past SP to the stack pointer of the stub frame 2601 // and the pc to the address where this runtime call will return 2602 // although actually any pc in this code blob will do). 2603 Label retaddr; 2604 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2605 2606 // Call C code. Need thread but NOT official VM entry 2607 // crud. We cannot block on this call, no GC can happen. Call should 2608 // capture callee-saved registers as well as return values. 2609 // Thread is in rdi already. 2610 // 2611 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index); 2612 // 2613 // n.b. 2 gp args, 0 fp args, integral return type 2614 2615 __ mov(c_rarg0, rthread); 2616 __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap); 2617 __ lea(rscratch1, 2618 RuntimeAddress(CAST_FROM_FN_PTR(address, 2619 Deoptimization::uncommon_trap))); 2620 __ blr(rscratch1); 2621 __ bind(retaddr); 2622 2623 // Set an oopmap for the call site 2624 OopMapSet* oop_maps = new OopMapSet(); 2625 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2626 2627 // location of rfp is known implicitly by the frame sender code 2628 2629 oop_maps->add_gc_map(__ pc() - start, map); 2630 2631 __ reset_last_Java_frame(false); 2632 2633 // move UnrollBlock* into r4 2634 __ mov(r4, r0); 2635 2636 #ifdef ASSERT 2637 { Label L; 2638 __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset())); 2639 __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2640 __ br(Assembler::EQ, L); 2641 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2642 __ bind(L); 2643 } 2644 #endif 2645 2646 // Pop all the frames we must move/replace. 2647 // 2648 // Frame picture (youngest to oldest) 2649 // 1: self-frame (no frame link) 2650 // 2: deopting frame (no frame link) 2651 // 3: caller of deopting frame (could be compiled/interpreted). 2652 2653 // Pop self-frame. We have no frame, and must rely only on r0 and sp. 2654 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2655 2656 // Pop deoptimized frame (int) 2657 __ ldrw(r2, Address(r4, 2658 Deoptimization::UnrollBlock:: 2659 size_of_deoptimized_frame_offset())); 2660 __ sub(r2, r2, 2 * wordSize); 2661 __ add(sp, sp, r2); 2662 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2663 2664 #ifdef ASSERT 2665 // Compilers generate code that bang the stack by as much as the 2666 // interpreter would need. So this stack banging should never 2667 // trigger a fault. Verify that it does not on non product builds. 2668 __ ldrw(r1, Address(r4, 2669 Deoptimization::UnrollBlock:: 2670 total_frame_sizes_offset())); 2671 __ bang_stack_size(r1, r2); 2672 #endif 2673 2674 // Load address of array of frame pcs into r2 (address*) 2675 __ ldr(r2, Address(r4, 2676 Deoptimization::UnrollBlock::frame_pcs_offset())); 2677 2678 // Load address of array of frame sizes into r5 (intptr_t*) 2679 __ ldr(r5, Address(r4, 2680 Deoptimization::UnrollBlock:: 2681 frame_sizes_offset())); 2682 2683 // Counter 2684 __ ldrw(r3, Address(r4, 2685 Deoptimization::UnrollBlock:: 2686 number_of_frames_offset())); // (int) 2687 2688 // Now adjust the caller's stack to make up for the extra locals but 2689 // record the original sp so that we can save it in the skeletal 2690 // interpreter frame and the stack walking of interpreter_sender 2691 // will get the unextended sp value and not the "real" sp value. 2692 2693 const Register sender_sp = r8; 2694 2695 __ mov(sender_sp, sp); 2696 __ ldrw(r1, Address(r4, 2697 Deoptimization::UnrollBlock:: 2698 caller_adjustment_offset())); // (int) 2699 __ sub(sp, sp, r1); 2700 2701 // Push interpreter frames in a loop 2702 Label loop; 2703 __ bind(loop); 2704 __ ldr(r1, Address(r5, 0)); // Load frame size 2705 __ sub(r1, r1, 2 * wordSize); // We'll push pc and rfp by hand 2706 __ ldr(lr, Address(r2, 0)); // Save return address 2707 __ enter(); // and old rfp & set new rfp 2708 __ sub(sp, sp, r1); // Prolog 2709 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2710 // This value is corrected by layout_activation_impl 2711 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2712 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2713 __ add(r5, r5, wordSize); // Bump array pointer (sizes) 2714 __ add(r2, r2, wordSize); // Bump array pointer (pcs) 2715 __ subsw(r3, r3, 1); // Decrement counter 2716 __ br(Assembler::GT, loop); 2717 __ ldr(lr, Address(r2, 0)); // save final return address 2718 // Re-push self-frame 2719 __ enter(); // & old rfp & set new rfp 2720 2721 // Use rfp because the frames look interpreted now 2722 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2723 // Don't need the precise return PC here, just precise enough to point into this code blob. 2724 address the_pc = __ pc(); 2725 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2726 2727 // Call C code. Need thread but NOT official VM entry 2728 // crud. We cannot block on this call, no GC can happen. Call should 2729 // restore return values to their stack-slots with the new SP. 2730 // Thread is in rdi already. 2731 // 2732 // BasicType unpack_frames(JavaThread* thread, int exec_mode); 2733 // 2734 // n.b. 2 gp args, 0 fp args, integral return type 2735 2736 // sp should already be aligned 2737 __ mov(c_rarg0, rthread); 2738 __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap); 2739 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2740 __ blr(rscratch1); 2741 2742 // Set an oopmap for the call site 2743 // Use the same PC we used for the last java frame 2744 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2745 2746 // Clear fp AND pc 2747 __ reset_last_Java_frame(true); 2748 2749 // Pop self-frame. 2750 __ leave(); // Epilog 2751 2752 // Jump to interpreter 2753 __ ret(lr); 2754 2755 // Make sure all code is generated 2756 masm->flush(); 2757 2758 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2759 SimpleRuntimeFrame::framesize >> 1); 2760 } 2761 #endif // COMPILER2 2762 2763 2764 //------------------------------generate_handler_blob------ 2765 // 2766 // Generate a special Compile2Runtime blob that saves all registers, 2767 // and setup oopmap. 2768 // 2769 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2770 ResourceMark rm; 2771 OopMapSet *oop_maps = new OopMapSet(); 2772 OopMap* map; 2773 2774 // Allocate space for the code. Setup code generation tools. 2775 CodeBuffer buffer("handler_blob", 2048, 1024); 2776 MacroAssembler* masm = new MacroAssembler(&buffer); 2777 2778 address start = __ pc(); 2779 address call_pc = nullptr; 2780 int frame_size_in_words; 2781 bool cause_return = (poll_type == POLL_AT_RETURN); 2782 RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2783 2784 // When the signal occurred, the LR was either signed and stored on the stack (in which 2785 // case it will be restored from the stack before being used) or unsigned and not stored 2786 // on the stack. Stipping ensures we get the right value. 2787 __ strip_return_address(); 2788 2789 // Save Integer and Float registers. 2790 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2791 2792 // The following is basically a call_VM. However, we need the precise 2793 // address of the call in order to generate an oopmap. Hence, we do all the 2794 // work ourselves. 2795 2796 Label retaddr; 2797 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2798 2799 // The return address must always be correct so that frame constructor never 2800 // sees an invalid pc. 2801 2802 if (!cause_return) { 2803 // overwrite the return address pushed by save_live_registers 2804 // Additionally, r20 is a callee-saved register so we can look at 2805 // it later to determine if someone changed the return address for 2806 // us! 2807 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2808 __ protect_return_address(r20); 2809 __ str(r20, Address(rfp, wordSize)); 2810 } 2811 2812 // Do the call 2813 __ mov(c_rarg0, rthread); 2814 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2815 __ blr(rscratch1); 2816 __ bind(retaddr); 2817 2818 // Set an oopmap for the call site. This oopmap will map all 2819 // oop-registers and debug-info registers as callee-saved. This 2820 // will allow deoptimization at this safepoint to find all possible 2821 // debug-info recordings, as well as let GC find all oops. 2822 2823 oop_maps->add_gc_map( __ pc() - start, map); 2824 2825 Label noException; 2826 2827 __ reset_last_Java_frame(false); 2828 2829 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2830 2831 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2832 __ cbz(rscratch1, noException); 2833 2834 // Exception pending 2835 2836 reg_save.restore_live_registers(masm); 2837 2838 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2839 2840 // No exception case 2841 __ bind(noException); 2842 2843 Label no_adjust, bail; 2844 if (!cause_return) { 2845 // If our stashed return pc was modified by the runtime we avoid touching it 2846 __ ldr(rscratch1, Address(rfp, wordSize)); 2847 __ cmp(r20, rscratch1); 2848 __ br(Assembler::NE, no_adjust); 2849 __ authenticate_return_address(r20); 2850 2851 #ifdef ASSERT 2852 // Verify the correct encoding of the poll we're about to skip. 2853 // See NativeInstruction::is_ldrw_to_zr() 2854 __ ldrw(rscratch1, Address(r20)); 2855 __ ubfx(rscratch2, rscratch1, 22, 10); 2856 __ cmpw(rscratch2, 0b1011100101); 2857 __ br(Assembler::NE, bail); 2858 __ ubfx(rscratch2, rscratch1, 0, 5); 2859 __ cmpw(rscratch2, 0b11111); 2860 __ br(Assembler::NE, bail); 2861 #endif 2862 // Adjust return pc forward to step over the safepoint poll instruction 2863 __ add(r20, r20, NativeInstruction::instruction_size); 2864 __ protect_return_address(r20); 2865 __ str(r20, Address(rfp, wordSize)); 2866 } 2867 2868 __ bind(no_adjust); 2869 // Normal exit, restore registers and exit. 2870 reg_save.restore_live_registers(masm); 2871 2872 __ ret(lr); 2873 2874 #ifdef ASSERT 2875 __ bind(bail); 2876 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2877 #endif 2878 2879 // Make sure all code is generated 2880 masm->flush(); 2881 2882 // Fill-out other meta info 2883 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2884 } 2885 2886 // 2887 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2888 // 2889 // Generate a stub that calls into vm to find out the proper destination 2890 // of a java call. All the argument registers are live at this point 2891 // but since this is generic code we don't know what they are and the caller 2892 // must do any gc of the args. 2893 // 2894 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2895 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2896 2897 // allocate space for the code 2898 ResourceMark rm; 2899 2900 CodeBuffer buffer(name, 1000, 512); 2901 MacroAssembler* masm = new MacroAssembler(&buffer); 2902 2903 int frame_size_in_words; 2904 RegisterSaver reg_save(false /* save_vectors */); 2905 2906 OopMapSet *oop_maps = new OopMapSet(); 2907 OopMap* map = nullptr; 2908 2909 int start = __ offset(); 2910 2911 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2912 2913 int frame_complete = __ offset(); 2914 2915 { 2916 Label retaddr; 2917 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2918 2919 __ mov(c_rarg0, rthread); 2920 __ lea(rscratch1, RuntimeAddress(destination)); 2921 2922 __ blr(rscratch1); 2923 __ bind(retaddr); 2924 } 2925 2926 // Set an oopmap for the call site. 2927 // We need this not only for callee-saved registers, but also for volatile 2928 // registers that the compiler might be keeping live across a safepoint. 2929 2930 oop_maps->add_gc_map( __ offset() - start, map); 2931 2932 // r0 contains the address we are going to jump to assuming no exception got installed 2933 2934 // clear last_Java_sp 2935 __ reset_last_Java_frame(false); 2936 // check for pending exceptions 2937 Label pending; 2938 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2939 __ cbnz(rscratch1, pending); 2940 2941 // get the returned Method* 2942 __ get_vm_result_2(rmethod, rthread); 2943 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2944 2945 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2946 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2947 reg_save.restore_live_registers(masm); 2948 2949 // We are back to the original state on entry and ready to go. 2950 2951 __ br(rscratch1); 2952 2953 // Pending exception after the safepoint 2954 2955 __ bind(pending); 2956 2957 reg_save.restore_live_registers(masm); 2958 2959 // exception pending => remove activation and forward to exception handler 2960 2961 __ str(zr, Address(rthread, JavaThread::vm_result_offset())); 2962 2963 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2964 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2965 2966 // ------------- 2967 // make sure all code is generated 2968 masm->flush(); 2969 2970 // return the blob 2971 // frame_size_words or bytes?? 2972 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2973 } 2974 2975 #ifdef COMPILER2 2976 // This is here instead of runtime_aarch64_64.cpp because it uses SimpleRuntimeFrame 2977 // 2978 //------------------------------generate_exception_blob--------------------------- 2979 // creates exception blob at the end 2980 // Using exception blob, this code is jumped from a compiled method. 2981 // (see emit_exception_handler in x86_64.ad file) 2982 // 2983 // Given an exception pc at a call we call into the runtime for the 2984 // handler in this method. This handler might merely restore state 2985 // (i.e. callee save registers) unwind the frame and jump to the 2986 // exception handler for the nmethod if there is no Java level handler 2987 // for the nmethod. 2988 // 2989 // This code is entered with a jmp. 2990 // 2991 // Arguments: 2992 // r0: exception oop 2993 // r3: exception pc 2994 // 2995 // Results: 2996 // r0: exception oop 2997 // r3: exception pc in caller or ??? 2998 // destination: exception handler of caller 2999 // 3000 // Note: the exception pc MUST be at a call (precise debug information) 3001 // Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved. 3002 // 3003 3004 void OptoRuntime::generate_exception_blob() { 3005 assert(!OptoRuntime::is_callee_saved_register(R3_num), ""); 3006 assert(!OptoRuntime::is_callee_saved_register(R0_num), ""); 3007 assert(!OptoRuntime::is_callee_saved_register(R2_num), ""); 3008 3009 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 3010 3011 // Allocate space for the code 3012 ResourceMark rm; 3013 // Setup code generation tools 3014 CodeBuffer buffer("exception_blob", 2048, 1024); 3015 MacroAssembler* masm = new MacroAssembler(&buffer); 3016 3017 // TODO check various assumptions made here 3018 // 3019 // make sure we do so before running this 3020 3021 address start = __ pc(); 3022 3023 // push rfp and retaddr by hand 3024 // Exception pc is 'return address' for stack walker 3025 __ protect_return_address(); 3026 __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize))); 3027 // there are no callee save registers and we don't expect an 3028 // arg reg save area 3029 #ifndef PRODUCT 3030 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 3031 #endif 3032 // Store exception in Thread object. We cannot pass any arguments to the 3033 // handle_exception call, since we do not want to make any assumption 3034 // about the size of the frame where the exception happened in. 3035 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 3036 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 3037 3038 // This call does all the hard work. It checks if an exception handler 3039 // exists in the method. 3040 // If so, it returns the handler address. 3041 // If not, it prepares for stack-unwinding, restoring the callee-save 3042 // registers of the frame being removed. 3043 // 3044 // address OptoRuntime::handle_exception_C(JavaThread* thread) 3045 // 3046 // n.b. 1 gp arg, 0 fp args, integral return type 3047 3048 // the stack should always be aligned 3049 address the_pc = __ pc(); 3050 __ set_last_Java_frame(sp, noreg, the_pc, rscratch1); 3051 __ mov(c_rarg0, rthread); 3052 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C))); 3053 __ blr(rscratch1); 3054 // handle_exception_C is a special VM call which does not require an explicit 3055 // instruction sync afterwards. 3056 3057 // May jump to SVE compiled code 3058 __ reinitialize_ptrue(); 3059 3060 // Set an oopmap for the call site. This oopmap will only be used if we 3061 // are unwinding the stack. Hence, all locations will be dead. 3062 // Callee-saved registers will be the same as the frame above (i.e., 3063 // handle_exception_stub), since they were restored when we got the 3064 // exception. 3065 3066 OopMapSet* oop_maps = new OopMapSet(); 3067 3068 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 3069 3070 __ reset_last_Java_frame(false); 3071 3072 // Restore callee-saved registers 3073 3074 // rfp is an implicitly saved callee saved register (i.e. the calling 3075 // convention will save restore it in prolog/epilog) Other than that 3076 // there are no callee save registers now that adapter frames are gone. 3077 // and we dont' expect an arg reg save area 3078 __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize))); 3079 __ authenticate_return_address(r3); 3080 3081 // r0: exception handler 3082 3083 // We have a handler in r0 (could be deopt blob). 3084 __ mov(r8, r0); 3085 3086 // Get the exception oop 3087 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 3088 // Get the exception pc in case we are deoptimized 3089 __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset())); 3090 #ifdef ASSERT 3091 __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset())); 3092 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 3093 #endif 3094 // Clear the exception oop so GC no longer processes it as a root. 3095 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 3096 3097 // r0: exception oop 3098 // r8: exception handler 3099 // r4: exception pc 3100 // Jump to handler 3101 3102 __ br(r8); 3103 3104 // Make sure all code is generated 3105 masm->flush(); 3106 3107 // Set exception blob 3108 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3109 } 3110 3111 #endif // COMPILER2