1 /*
   2  * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
   4  * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
   5  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   6  *
   7  * This code is free software; you can redistribute it and/or modify it
   8  * under the terms of the GNU General Public License version 2 only, as
   9  * published by the Free Software Foundation.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  *
  25  */
  26 
  27 #include "precompiled.hpp"
  28 #include "asm/macroAssembler.hpp"
  29 #include "asm/macroAssembler.inline.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/debugInfoRec.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSetAssembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "interpreter/interp_masm.hpp"
  39 #include "logging/log.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "nativeInst_aarch64.hpp"
  42 #include "oops/compiledICHolder.hpp"
  43 #include "oops/klass.inline.hpp"
  44 #include "oops/method.inline.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "runtime/continuation.hpp"
  47 #include "runtime/continuationEntry.inline.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/jniHandles.hpp"
  50 #include "runtime/safepointMechanism.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/signature.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/align.hpp"
  56 #include "utilities/formatBuffer.hpp"
  57 #include "vmreg_aarch64.inline.hpp"
  58 #ifdef COMPILER1
  59 #include "c1/c1_Runtime1.hpp"
  60 #endif
  61 #ifdef COMPILER2
  62 #include "adfiles/ad_aarch64.hpp"
  63 #include "opto/runtime.hpp"
  64 #endif
  65 #if INCLUDE_JVMCI
  66 #include "jvmci/jvmciJavaClasses.hpp"
  67 #endif
  68 
  69 #define __ masm->
  70 
  71 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  72 
  73 class SimpleRuntimeFrame {
  74 
  75   public:
  76 
  77   // Most of the runtime stubs have this simple frame layout.
  78   // This class exists to make the layout shared in one place.
  79   // Offsets are for compiler stack slots, which are jints.
  80   enum layout {
  81     // The frame sender code expects that rbp will be in the "natural" place and
  82     // will override any oopMap setting for it. We must therefore force the layout
  83     // so that it agrees with the frame sender code.
  84     // we don't expect any arg reg save area so aarch64 asserts that
  85     // frame::arg_reg_save_area_bytes == 0
  86     rfp_off = 0,
  87     rfp_off2,
  88     return_off, return_off2,
  89     framesize
  90   };
  91 };
  92 
  93 // FIXME -- this is used by C1
  94 class RegisterSaver {
  95   const bool _save_vectors;
  96  public:
  97   RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {}
  98 
  99   OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
 100   void restore_live_registers(MacroAssembler* masm);
 101 
 102   // Offsets into the register save area
 103   // Used by deoptimization when it is managing result register
 104   // values on its own
 105 
 106   int reg_offset_in_bytes(Register r);
 107   int r0_offset_in_bytes()    { return reg_offset_in_bytes(r0); }
 108   int rscratch1_offset_in_bytes()    { return reg_offset_in_bytes(rscratch1); }
 109   int v0_offset_in_bytes();
 110 
 111   // Total stack size in bytes for saving sve predicate registers.
 112   int total_sve_predicate_in_bytes();
 113 
 114   // Capture info about frame layout
 115   // Note this is only correct when not saving full vectors.
 116   enum layout {
 117                 fpu_state_off = 0,
 118                 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1,
 119                 // The frame sender code expects that rfp will be in
 120                 // the "natural" place and will override any oopMap
 121                 // setting for it. We must therefore force the layout
 122                 // so that it agrees with the frame sender code.
 123                 r0_off = fpu_state_off + FPUStateSizeInWords,
 124                 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register,
 125                 return_off = rfp_off + Register::max_slots_per_register,      // slot for return address
 126                 reg_save_size = return_off + Register::max_slots_per_register};
 127 
 128 };
 129 
 130 int RegisterSaver::reg_offset_in_bytes(Register r) {
 131   // The integer registers are located above the floating point
 132   // registers in the stack frame pushed by save_live_registers() so the
 133   // offset depends on whether we are saving full vectors, and whether
 134   // those vectors are NEON or SVE.
 135 
 136   int slots_per_vect = FloatRegister::save_slots_per_register;
 137 
 138 #if COMPILER2_OR_JVMCI
 139   if (_save_vectors) {
 140     slots_per_vect = FloatRegister::slots_per_neon_register;
 141 
 142 #ifdef COMPILER2
 143     if (Matcher::supports_scalable_vector()) {
 144       slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT);
 145     }
 146 #endif
 147   }
 148 #endif
 149 
 150   int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt;
 151   return r0_offset + r->encoding() * wordSize;
 152 }
 153 
 154 int RegisterSaver::v0_offset_in_bytes() {
 155   // The floating point registers are located above the predicate registers if
 156   // they are present in the stack frame pushed by save_live_registers(). So the
 157   // offset depends on the saved total predicate vectors in the stack frame.
 158   return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt;
 159 }
 160 
 161 int RegisterSaver::total_sve_predicate_in_bytes() {
 162 #ifdef COMPILER2
 163   if (_save_vectors && Matcher::supports_scalable_vector()) {
 164     return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) *
 165            PRegister::number_of_registers;
 166   }
 167 #endif
 168   return 0;
 169 }
 170 
 171 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
 172   bool use_sve = false;
 173   int sve_vector_size_in_bytes = 0;
 174   int sve_vector_size_in_slots = 0;
 175   int sve_predicate_size_in_slots = 0;
 176   int total_predicate_in_bytes = total_sve_predicate_in_bytes();
 177   int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size;
 178 
 179 #ifdef COMPILER2
 180   use_sve = Matcher::supports_scalable_vector();
 181   if (use_sve) {
 182     sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
 183     sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT);
 184     sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
 185   }
 186 #endif
 187 
 188 #if COMPILER2_OR_JVMCI
 189   if (_save_vectors) {
 190     int extra_save_slots_per_register = 0;
 191     // Save upper half of vector registers
 192     if (use_sve) {
 193       extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register;
 194     } else {
 195       extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register;
 196     }
 197     int extra_vector_bytes = extra_save_slots_per_register *
 198                              VMRegImpl::stack_slot_size *
 199                              FloatRegister::number_of_registers;
 200     additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize);
 201   }
 202 #else
 203   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 204 #endif
 205 
 206   int frame_size_in_bytes = align_up(additional_frame_words * wordSize +
 207                                      reg_save_size * BytesPerInt, 16);
 208   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 209   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 210   // The caller will allocate additional_frame_words
 211   int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
 212   // CodeBlob frame size is in words.
 213   int frame_size_in_words = frame_size_in_bytes / wordSize;
 214   *total_frame_words = frame_size_in_words;
 215 
 216   // Save Integer and Float registers.
 217   __ enter();
 218   __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes);
 219 
 220   // Set an oopmap for the call site.  This oopmap will map all
 221   // oop-registers and debug-info registers as callee-saved.  This
 222   // will allow deoptimization at this safepoint to find all possible
 223   // debug-info recordings, as well as let GC find all oops.
 224 
 225   OopMapSet *oop_maps = new OopMapSet();
 226   OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
 227 
 228   for (int i = 0; i < Register::number_of_registers; i++) {
 229     Register r = as_Register(i);
 230     if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) {
 231       // SP offsets are in 4-byte words.
 232       // Register slots are 8 bytes wide, 32 floating-point registers.
 233       int sp_offset = Register::max_slots_per_register * i +
 234                       FloatRegister::save_slots_per_register * FloatRegister::number_of_registers;
 235       oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg());
 236     }
 237   }
 238 
 239   for (int i = 0; i < FloatRegister::number_of_registers; i++) {
 240     FloatRegister r = as_FloatRegister(i);
 241     int sp_offset = 0;
 242     if (_save_vectors) {
 243       sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) :
 244                             (FloatRegister::slots_per_neon_register * i);
 245     } else {
 246       sp_offset = FloatRegister::save_slots_per_register * i;
 247     }
 248     oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg());
 249   }
 250 
 251   return oop_map;
 252 }
 253 
 254 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
 255 #ifdef COMPILER2
 256   __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(),
 257                    Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes());
 258 #else
 259 #if !INCLUDE_JVMCI
 260   assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
 261 #endif
 262   __ pop_CPU_state(_save_vectors);
 263 #endif
 264   __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize)));
 265   __ authenticate_return_address();
 266 }
 267 
 268 // Is vector's size (in bytes) bigger than a size saved by default?
 269 // 8 bytes vector registers are saved by default on AArch64.
 270 // The SVE supported min vector size is 8 bytes and we need to save
 271 // predicate registers when the vector size is 8 bytes as well.
 272 bool SharedRuntime::is_wide_vector(int size) {
 273   return size > 8 || (UseSVE > 0 && size >= 8);
 274 }
 275 
 276 // ---------------------------------------------------------------------------
 277 // Read the array of BasicTypes from a signature, and compute where the
 278 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 279 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 280 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 281 // as framesizes are fixed.
 282 // VMRegImpl::stack0 refers to the first slot 0(sp).
 283 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
 284 // Register up to Register::number_of_registers are the 64-bit
 285 // integer registers.
 286 
 287 // Note: the INPUTS in sig_bt are in units of Java argument words,
 288 // which are 64-bit.  The OUTPUTS are in 32-bit units.
 289 
 290 // The Java calling convention is a "shifted" version of the C ABI.
 291 // By skipping the first C ABI register we can call non-static jni
 292 // methods with small numbers of arguments without having to shuffle
 293 // the arguments at all. Since we control the java ABI we ought to at
 294 // least get some advantage out of it.
 295 
 296 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 297                                            VMRegPair *regs,
 298                                            int total_args_passed) {
 299 
 300   // Create the mapping between argument positions and
 301   // registers.
 302   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 303     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
 304   };
 305   static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 306     j_farg0, j_farg1, j_farg2, j_farg3,
 307     j_farg4, j_farg5, j_farg6, j_farg7
 308   };
 309 
 310 
 311   uint int_args = 0;
 312   uint fp_args = 0;
 313   uint stk_args = 0;
 314 
 315   for (int i = 0; i < total_args_passed; i++) {
 316     switch (sig_bt[i]) {
 317     case T_BOOLEAN:
 318     case T_CHAR:
 319     case T_BYTE:
 320     case T_SHORT:
 321     case T_INT:
 322       if (int_args < Argument::n_int_register_parameters_j) {
 323         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 324       } else {
 325         stk_args = align_up(stk_args, 2);
 326         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 327         stk_args += 1;
 328       }
 329       break;
 330     case T_VOID:
 331       // halves of T_LONG or T_DOUBLE
 332       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 333       regs[i].set_bad();
 334       break;
 335     case T_LONG:
 336       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 337       // fall through
 338     case T_OBJECT:
 339     case T_ARRAY:
 340     case T_ADDRESS:
 341       if (int_args < Argument::n_int_register_parameters_j) {
 342         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 343       } else {
 344         stk_args = align_up(stk_args, 2);
 345         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 346         stk_args += 2;
 347       }
 348       break;
 349     case T_FLOAT:
 350       if (fp_args < Argument::n_float_register_parameters_j) {
 351         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 352       } else {
 353         stk_args = align_up(stk_args, 2);
 354         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 355         stk_args += 1;
 356       }
 357       break;
 358     case T_DOUBLE:
 359       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 360       if (fp_args < Argument::n_float_register_parameters_j) {
 361         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 362       } else {
 363         stk_args = align_up(stk_args, 2);
 364         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 365         stk_args += 2;
 366       }
 367       break;
 368     default:
 369       ShouldNotReachHere();
 370       break;
 371     }
 372   }
 373 
 374   return stk_args;
 375 }
 376 
 377 // Patch the callers callsite with entry to compiled code if it exists.
 378 static void patch_callers_callsite(MacroAssembler *masm) {
 379   Label L;
 380   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 381   __ cbz(rscratch1, L);
 382 
 383   __ enter();
 384   __ push_CPU_state();
 385 
 386   // VM needs caller's callsite
 387   // VM needs target method
 388   // This needs to be a long call since we will relocate this adapter to
 389   // the codeBuffer and it may not reach
 390 
 391 #ifndef PRODUCT
 392   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
 393 #endif
 394 
 395   __ mov(c_rarg0, rmethod);
 396   __ mov(c_rarg1, lr);
 397   __ authenticate_return_address(c_rarg1);
 398   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 399   __ blr(rscratch1);
 400 
 401   // Explicit isb required because fixup_callers_callsite may change the code
 402   // stream.
 403   __ safepoint_isb();
 404 
 405   __ pop_CPU_state();
 406   // restore sp
 407   __ leave();
 408   __ bind(L);
 409 }
 410 
 411 static void gen_c2i_adapter(MacroAssembler *masm,
 412                             int total_args_passed,
 413                             int comp_args_on_stack,
 414                             const BasicType *sig_bt,
 415                             const VMRegPair *regs,
 416                             Label& skip_fixup) {
 417   // Before we get into the guts of the C2I adapter, see if we should be here
 418   // at all.  We've come from compiled code and are attempting to jump to the
 419   // interpreter, which means the caller made a static call to get here
 420   // (vcalls always get a compiled target if there is one).  Check for a
 421   // compiled target.  If there is one, we need to patch the caller's call.
 422   patch_callers_callsite(masm);
 423 
 424   __ bind(skip_fixup);
 425 
 426   int words_pushed = 0;
 427 
 428   // Since all args are passed on the stack, total_args_passed *
 429   // Interpreter::stackElementSize is the space we need.
 430 
 431   int extraspace = total_args_passed * Interpreter::stackElementSize;
 432 
 433   __ mov(r19_sender_sp, sp);
 434 
 435   // stack is aligned, keep it that way
 436   extraspace = align_up(extraspace, 2*wordSize);
 437 
 438   if (extraspace)
 439     __ sub(sp, sp, extraspace);
 440 
 441   // Now write the args into the outgoing interpreter space
 442   for (int i = 0; i < total_args_passed; i++) {
 443     if (sig_bt[i] == T_VOID) {
 444       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 445       continue;
 446     }
 447 
 448     // offset to start parameters
 449     int st_off   = (total_args_passed - i - 1) * Interpreter::stackElementSize;
 450     int next_off = st_off - Interpreter::stackElementSize;
 451 
 452     // Say 4 args:
 453     // i   st_off
 454     // 0   32 T_LONG
 455     // 1   24 T_VOID
 456     // 2   16 T_OBJECT
 457     // 3    8 T_BOOL
 458     // -    0 return address
 459     //
 460     // However to make thing extra confusing. Because we can fit a Java long/double in
 461     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 462     // leaves one slot empty and only stores to a single slot. In this case the
 463     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 464 
 465     VMReg r_1 = regs[i].first();
 466     VMReg r_2 = regs[i].second();
 467     if (!r_1->is_valid()) {
 468       assert(!r_2->is_valid(), "");
 469       continue;
 470     }
 471     if (r_1->is_stack()) {
 472       // memory to memory use rscratch1
 473       int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
 474                     + extraspace
 475                     + words_pushed * wordSize);
 476       if (!r_2->is_valid()) {
 477         // sign extend??
 478         __ ldrw(rscratch1, Address(sp, ld_off));
 479         __ str(rscratch1, Address(sp, st_off));
 480 
 481       } else {
 482 
 483         __ ldr(rscratch1, Address(sp, ld_off));
 484 
 485         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 486         // T_DOUBLE and T_LONG use two slots in the interpreter
 487         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 488           // ld_off == LSW, ld_off+wordSize == MSW
 489           // st_off == MSW, next_off == LSW
 490           __ str(rscratch1, Address(sp, next_off));
 491 #ifdef ASSERT
 492           // Overwrite the unused slot with known junk
 493           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull);
 494           __ str(rscratch1, Address(sp, st_off));
 495 #endif /* ASSERT */
 496         } else {
 497           __ str(rscratch1, Address(sp, st_off));
 498         }
 499       }
 500     } else if (r_1->is_Register()) {
 501       Register r = r_1->as_Register();
 502       if (!r_2->is_valid()) {
 503         // must be only an int (or less ) so move only 32bits to slot
 504         // why not sign extend??
 505         __ str(r, Address(sp, st_off));
 506       } else {
 507         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 508         // T_DOUBLE and T_LONG use two slots in the interpreter
 509         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 510           // jlong/double in gpr
 511 #ifdef ASSERT
 512           // Overwrite the unused slot with known junk
 513           __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull);
 514           __ str(rscratch1, Address(sp, st_off));
 515 #endif /* ASSERT */
 516           __ str(r, Address(sp, next_off));
 517         } else {
 518           __ str(r, Address(sp, st_off));
 519         }
 520       }
 521     } else {
 522       assert(r_1->is_FloatRegister(), "");
 523       if (!r_2->is_valid()) {
 524         // only a float use just part of the slot
 525         __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
 526       } else {
 527 #ifdef ASSERT
 528         // Overwrite the unused slot with known junk
 529         __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull);
 530         __ str(rscratch1, Address(sp, st_off));
 531 #endif /* ASSERT */
 532         __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
 533       }
 534     }
 535   }
 536 
 537   __ mov(esp, sp); // Interp expects args on caller's expression stack
 538 
 539   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
 540   __ br(rscratch1);
 541 }
 542 
 543 
 544 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 545                                     int total_args_passed,
 546                                     int comp_args_on_stack,
 547                                     const BasicType *sig_bt,
 548                                     const VMRegPair *regs) {
 549 
 550   // Note: r19_sender_sp contains the senderSP on entry. We must
 551   // preserve it since we may do a i2c -> c2i transition if we lose a
 552   // race where compiled code goes non-entrant while we get args
 553   // ready.
 554 
 555   // Adapters are frameless.
 556 
 557   // An i2c adapter is frameless because the *caller* frame, which is
 558   // interpreted, routinely repairs its own esp (from
 559   // interpreter_frame_last_sp), even if a callee has modified the
 560   // stack pointer.  It also recalculates and aligns sp.
 561 
 562   // A c2i adapter is frameless because the *callee* frame, which is
 563   // interpreted, routinely repairs its caller's sp (from sender_sp,
 564   // which is set up via the senderSP register).
 565 
 566   // In other words, if *either* the caller or callee is interpreted, we can
 567   // get the stack pointer repaired after a call.
 568 
 569   // This is why c2i and i2c adapters cannot be indefinitely composed.
 570   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 571   // both caller and callee would be compiled methods, and neither would
 572   // clean up the stack pointer changes performed by the two adapters.
 573   // If this happens, control eventually transfers back to the compiled
 574   // caller, but with an uncorrected stack, causing delayed havoc.
 575 
 576   if (VerifyAdapterCalls &&
 577       (Interpreter::code() != nullptr || StubRoutines::final_stubs_code() != nullptr)) {
 578 #if 0
 579     // So, let's test for cascading c2i/i2c adapters right now.
 580     //  assert(Interpreter::contains($return_addr) ||
 581     //         StubRoutines::contains($return_addr),
 582     //         "i2c adapter must return to an interpreter frame");
 583     __ block_comment("verify_i2c { ");
 584     Label L_ok;
 585     if (Interpreter::code() != nullptr) {
 586       range_check(masm, rax, r11,
 587                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 588                   L_ok);
 589     }
 590     if (StubRoutines::initial_stubs_code() != nullptr) {
 591       range_check(masm, rax, r11,
 592                   StubRoutines::initial_stubs_code()->code_begin(),
 593                   StubRoutines::initial_stubs_code()->code_end(),
 594                   L_ok);
 595     }
 596     if (StubRoutines::final_stubs_code() != nullptr) {
 597       range_check(masm, rax, r11,
 598                   StubRoutines::final_stubs_code()->code_begin(),
 599                   StubRoutines::final_stubs_code()->code_end(),
 600                   L_ok);
 601     }
 602     const char* msg = "i2c adapter must return to an interpreter frame";
 603     __ block_comment(msg);
 604     __ stop(msg);
 605     __ bind(L_ok);
 606     __ block_comment("} verify_i2ce ");
 607 #endif
 608   }
 609 
 610   // Cut-out for having no stack args.
 611   int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 612   if (comp_args_on_stack) {
 613     __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
 614     __ andr(sp, rscratch1, -16);
 615   }
 616 
 617   // Will jump to the compiled code just as if compiled code was doing it.
 618   // Pre-load the register-jump target early, to schedule it better.
 619   __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
 620 
 621 #if INCLUDE_JVMCI
 622   if (EnableJVMCI) {
 623     // check if this call should be routed towards a specific entry point
 624     __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 625     Label no_alternative_target;
 626     __ cbz(rscratch2, no_alternative_target);
 627     __ mov(rscratch1, rscratch2);
 628     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 629     __ bind(no_alternative_target);
 630   }
 631 #endif // INCLUDE_JVMCI
 632 
 633   // Now generate the shuffle code.
 634   for (int i = 0; i < total_args_passed; i++) {
 635     if (sig_bt[i] == T_VOID) {
 636       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 637       continue;
 638     }
 639 
 640     // Pick up 0, 1 or 2 words from SP+offset.
 641 
 642     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 643             "scrambled load targets?");
 644     // Load in argument order going down.
 645     int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
 646     // Point to interpreter value (vs. tag)
 647     int next_off = ld_off - Interpreter::stackElementSize;
 648     //
 649     //
 650     //
 651     VMReg r_1 = regs[i].first();
 652     VMReg r_2 = regs[i].second();
 653     if (!r_1->is_valid()) {
 654       assert(!r_2->is_valid(), "");
 655       continue;
 656     }
 657     if (r_1->is_stack()) {
 658       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 659       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
 660       if (!r_2->is_valid()) {
 661         // sign extend???
 662         __ ldrsw(rscratch2, Address(esp, ld_off));
 663         __ str(rscratch2, Address(sp, st_off));
 664       } else {
 665         //
 666         // We are using two optoregs. This can be either T_OBJECT,
 667         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 668         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 669         // So we must adjust where to pick up the data to match the
 670         // interpreter.
 671         //
 672         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 673         // are accessed as negative so LSW is at LOW address
 674 
 675         // ld_off is MSW so get LSW
 676         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 677                            next_off : ld_off;
 678         __ ldr(rscratch2, Address(esp, offset));
 679         // st_off is LSW (i.e. reg.first())
 680         __ str(rscratch2, Address(sp, st_off));
 681       }
 682     } else if (r_1->is_Register()) {  // Register argument
 683       Register r = r_1->as_Register();
 684       if (r_2->is_valid()) {
 685         //
 686         // We are using two VMRegs. This can be either T_OBJECT,
 687         // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
 688         // two slots but only uses one for thr T_LONG or T_DOUBLE case
 689         // So we must adjust where to pick up the data to match the
 690         // interpreter.
 691 
 692         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 693                            next_off : ld_off;
 694 
 695         // this can be a misaligned move
 696         __ ldr(r, Address(esp, offset));
 697       } else {
 698         // sign extend and use a full word?
 699         __ ldrw(r, Address(esp, ld_off));
 700       }
 701     } else {
 702       if (!r_2->is_valid()) {
 703         __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
 704       } else {
 705         __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
 706       }
 707     }
 708   }
 709 
 710   __ mov(rscratch2, rscratch1);
 711   __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1
 712   __ mov(rscratch1, rscratch2);
 713 
 714   // 6243940 We might end up in handle_wrong_method if
 715   // the callee is deoptimized as we race thru here. If that
 716   // happens we don't want to take a safepoint because the
 717   // caller frame will look interpreted and arguments are now
 718   // "compiled" so it is much better to make this transition
 719   // invisible to the stack walking code. Unfortunately if
 720   // we try and find the callee by normal means a safepoint
 721   // is possible. So we stash the desired callee in the thread
 722   // and the vm will find there should this case occur.
 723 
 724   __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
 725 
 726   __ br(rscratch1);
 727 }
 728 
 729 // ---------------------------------------------------------------
 730 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 731                                                             int total_args_passed,
 732                                                             int comp_args_on_stack,
 733                                                             const BasicType *sig_bt,
 734                                                             const VMRegPair *regs,
 735                                                             AdapterFingerPrint* fingerprint) {
 736   address i2c_entry = __ pc();
 737 
 738   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 739 
 740   address c2i_unverified_entry = __ pc();
 741   Label skip_fixup;
 742 
 743   Label ok;
 744 
 745   Register holder = rscratch2;
 746   Register receiver = j_rarg0;
 747   Register tmp = r10;  // A call-clobbered register not used for arg passing
 748 
 749   // -------------------------------------------------------------------------
 750   // Generate a C2I adapter.  On entry we know rmethod holds the Method* during calls
 751   // to the interpreter.  The args start out packed in the compiled layout.  They
 752   // need to be unpacked into the interpreter layout.  This will almost always
 753   // require some stack space.  We grow the current (compiled) stack, then repack
 754   // the args.  We  finally end in a jump to the generic interpreter entry point.
 755   // On exit from the interpreter, the interpreter will restore our SP (lest the
 756   // compiled code, which relies solely on SP and not FP, get sick).
 757 
 758   {
 759     __ block_comment("c2i_unverified_entry {");
 760     __ load_klass(rscratch1, receiver);
 761     __ ldr(tmp, Address(holder, CompiledICHolder::holder_klass_offset()));
 762     __ cmp(rscratch1, tmp);
 763     __ ldr(rmethod, Address(holder, CompiledICHolder::holder_metadata_offset()));
 764     __ br(Assembler::EQ, ok);
 765     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 766 
 767     __ bind(ok);
 768     // Method might have been compiled since the call site was patched to
 769     // interpreted; if that is the case treat it as a miss so we can get
 770     // the call site corrected.
 771     __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
 772     __ cbz(rscratch1, skip_fixup);
 773     __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 774     __ block_comment("} c2i_unverified_entry");
 775   }
 776 
 777   address c2i_entry = __ pc();
 778 
 779   // Class initialization barrier for static methods
 780   address c2i_no_clinit_check_entry = nullptr;
 781   if (VM_Version::supports_fast_class_init_checks()) {
 782     Label L_skip_barrier;
 783 
 784     { // Bypass the barrier for non-static methods
 785       __ ldrw(rscratch1, Address(rmethod, Method::access_flags_offset()));
 786       __ andsw(zr, rscratch1, JVM_ACC_STATIC);
 787       __ br(Assembler::EQ, L_skip_barrier); // non-static
 788     }
 789 
 790     __ load_method_holder(rscratch2, rmethod);
 791     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
 792     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 793 
 794     __ bind(L_skip_barrier);
 795     c2i_no_clinit_check_entry = __ pc();
 796   }
 797 
 798   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
 799   bs->c2i_entry_barrier(masm);
 800 
 801   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 802 
 803   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
 804 }
 805 
 806 static int c_calling_convention_priv(const BasicType *sig_bt,
 807                                          VMRegPair *regs,
 808                                          VMRegPair *regs2,
 809                                          int total_args_passed) {
 810   assert(regs2 == nullptr, "not needed on AArch64");
 811 
 812 // We return the amount of VMRegImpl stack slots we need to reserve for all
 813 // the arguments NOT counting out_preserve_stack_slots.
 814 
 815     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 816       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5,  c_rarg6,  c_rarg7
 817     };
 818     static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 819       c_farg0, c_farg1, c_farg2, c_farg3,
 820       c_farg4, c_farg5, c_farg6, c_farg7
 821     };
 822 
 823     uint int_args = 0;
 824     uint fp_args = 0;
 825     uint stk_args = 0; // inc by 2 each time
 826 
 827     for (int i = 0; i < total_args_passed; i++) {
 828       switch (sig_bt[i]) {
 829       case T_BOOLEAN:
 830       case T_CHAR:
 831       case T_BYTE:
 832       case T_SHORT:
 833       case T_INT:
 834         if (int_args < Argument::n_int_register_parameters_c) {
 835           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 836         } else {
 837 #ifdef __APPLE__
 838           // Less-than word types are stored one after another.
 839           // The code is unable to handle this so bailout.
 840           return -1;
 841 #endif
 842           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 843           stk_args += 2;
 844         }
 845         break;
 846       case T_LONG:
 847         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 848         // fall through
 849       case T_OBJECT:
 850       case T_ARRAY:
 851       case T_ADDRESS:
 852       case T_METADATA:
 853         if (int_args < Argument::n_int_register_parameters_c) {
 854           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 855         } else {
 856           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 857           stk_args += 2;
 858         }
 859         break;
 860       case T_FLOAT:
 861         if (fp_args < Argument::n_float_register_parameters_c) {
 862           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 863         } else {
 864 #ifdef __APPLE__
 865           // Less-than word types are stored one after another.
 866           // The code is unable to handle this so bailout.
 867           return -1;
 868 #endif
 869           regs[i].set1(VMRegImpl::stack2reg(stk_args));
 870           stk_args += 2;
 871         }
 872         break;
 873       case T_DOUBLE:
 874         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 875         if (fp_args < Argument::n_float_register_parameters_c) {
 876           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 877         } else {
 878           regs[i].set2(VMRegImpl::stack2reg(stk_args));
 879           stk_args += 2;
 880         }
 881         break;
 882       case T_VOID: // Halves of longs and doubles
 883         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 884         regs[i].set_bad();
 885         break;
 886       default:
 887         ShouldNotReachHere();
 888         break;
 889       }
 890     }
 891 
 892   return stk_args;
 893 }
 894 
 895 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 896                                              uint num_bits,
 897                                              uint total_args_passed) {
 898   Unimplemented();
 899   return 0;
 900 }
 901 
 902 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 903                                          VMRegPair *regs,
 904                                          VMRegPair *regs2,
 905                                          int total_args_passed)
 906 {
 907   int result = c_calling_convention_priv(sig_bt, regs, regs2, total_args_passed);
 908   guarantee(result >= 0, "Unsupported arguments configuration");
 909   return result;
 910 }
 911 
 912 
 913 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 914   // We always ignore the frame_slots arg and just use the space just below frame pointer
 915   // which by this time is free to use
 916   switch (ret_type) {
 917   case T_FLOAT:
 918     __ strs(v0, Address(rfp, -wordSize));
 919     break;
 920   case T_DOUBLE:
 921     __ strd(v0, Address(rfp, -wordSize));
 922     break;
 923   case T_VOID:  break;
 924   default: {
 925     __ str(r0, Address(rfp, -wordSize));
 926     }
 927   }
 928 }
 929 
 930 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
 931   // We always ignore the frame_slots arg and just use the space just below frame pointer
 932   // which by this time is free to use
 933   switch (ret_type) {
 934   case T_FLOAT:
 935     __ ldrs(v0, Address(rfp, -wordSize));
 936     break;
 937   case T_DOUBLE:
 938     __ ldrd(v0, Address(rfp, -wordSize));
 939     break;
 940   case T_VOID:  break;
 941   default: {
 942     __ ldr(r0, Address(rfp, -wordSize));
 943     }
 944   }
 945 }
 946 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 947   RegSet x;
 948   for ( int i = first_arg ; i < arg_count ; i++ ) {
 949     if (args[i].first()->is_Register()) {
 950       x = x + args[i].first()->as_Register();
 951     } else if (args[i].first()->is_FloatRegister()) {
 952       __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
 953     }
 954   }
 955   __ push(x, sp);
 956 }
 957 
 958 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
 959   RegSet x;
 960   for ( int i = first_arg ; i < arg_count ; i++ ) {
 961     if (args[i].first()->is_Register()) {
 962       x = x + args[i].first()->as_Register();
 963     } else {
 964       ;
 965     }
 966   }
 967   __ pop(x, sp);
 968   for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
 969     if (args[i].first()->is_Register()) {
 970       ;
 971     } else if (args[i].first()->is_FloatRegister()) {
 972       __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
 973     }
 974   }
 975 }
 976 
 977 static void verify_oop_args(MacroAssembler* masm,
 978                             const methodHandle& method,
 979                             const BasicType* sig_bt,
 980                             const VMRegPair* regs) {
 981   Register temp_reg = r19;  // not part of any compiled calling seq
 982   if (VerifyOops) {
 983     for (int i = 0; i < method->size_of_parameters(); i++) {
 984       if (sig_bt[i] == T_OBJECT ||
 985           sig_bt[i] == T_ARRAY) {
 986         VMReg r = regs[i].first();
 987         assert(r->is_valid(), "bad oop arg");
 988         if (r->is_stack()) {
 989           __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
 990           __ verify_oop(temp_reg);
 991         } else {
 992           __ verify_oop(r->as_Register());
 993         }
 994       }
 995     }
 996   }
 997 }
 998 
 999 // on exit, sp points to the ContinuationEntry
1000 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
1001   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
1002   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
1003   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
1004 
1005   stack_slots += (int)ContinuationEntry::size()/wordSize;
1006   __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
1007 
1008   OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
1009 
1010   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1011   __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset()));
1012   __ mov(rscratch1, sp); // we can't use sp as the source in str
1013   __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1014 
1015   return map;
1016 }
1017 
1018 // on entry c_rarg1 points to the continuation
1019 //          sp points to ContinuationEntry
1020 //          c_rarg3 -- isVirtualThread
1021 static void fill_continuation_entry(MacroAssembler* masm) {
1022 #ifdef ASSERT
1023   __ movw(rscratch1, ContinuationEntry::cookie_value());
1024   __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset()));
1025 #endif
1026 
1027   __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
1028   __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
1029   __ str (zr,      Address(sp, ContinuationEntry::chunk_offset()));
1030   __ strw(zr,      Address(sp, ContinuationEntry::argsize_offset()));
1031   __ strw(zr,      Address(sp, ContinuationEntry::pin_count_offset()));
1032 
1033   __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1034   __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1035   __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1036   __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1037 
1038   __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset()));
1039   __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset()));
1040 }
1041 
1042 // on entry, sp points to the ContinuationEntry
1043 // on exit, rfp points to the spilled rfp in the entry frame
1044 static void continuation_enter_cleanup(MacroAssembler* masm) {
1045 #ifndef PRODUCT
1046   Label OK;
1047   __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1048   __ cmp(sp, rscratch1);
1049   __ br(Assembler::EQ, OK);
1050   __ stop("incorrect sp1");
1051   __ bind(OK);
1052 #endif
1053 
1054   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1055   __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1056   __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1057   __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1058 
1059   __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset()));
1060   __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset()));
1061   __ add(rfp, sp, (int)ContinuationEntry::size());
1062 }
1063 
1064 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1065 // On entry: c_rarg1 -- the continuation object
1066 //           c_rarg2 -- isContinue
1067 //           c_rarg3 -- isVirtualThread
1068 static void gen_continuation_enter(MacroAssembler* masm,
1069                                  const methodHandle& method,
1070                                  const BasicType* sig_bt,
1071                                  const VMRegPair* regs,
1072                                  int& exception_offset,
1073                                  OopMapSet*oop_maps,
1074                                  int& frame_complete,
1075                                  int& stack_slots,
1076                                  int& interpreted_entry_offset,
1077                                  int& compiled_entry_offset) {
1078   //verify_oop_args(masm, method, sig_bt, regs);
1079   Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
1080 
1081   address start = __ pc();
1082 
1083   Label call_thaw, exit;
1084 
1085   // i2i entry used at interp_only_mode only
1086   interpreted_entry_offset = __ pc() - start;
1087   {
1088 
1089 #ifdef ASSERT
1090     Label is_interp_only;
1091     __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
1092     __ cbnzw(rscratch1, is_interp_only);
1093     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1094     __ bind(is_interp_only);
1095 #endif
1096 
1097     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1098     __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2));
1099     __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1));
1100     __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0));
1101     __ push_cont_fastpath(rthread);
1102 
1103     __ enter();
1104     stack_slots = 2; // will be adjusted in setup
1105     OopMap* map = continuation_enter_setup(masm, stack_slots);
1106     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1107     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1108 
1109     fill_continuation_entry(masm);
1110 
1111     __ cbnz(c_rarg2, call_thaw);
1112 
1113     const address tr_call = __ trampoline_call(resolve);
1114     if (tr_call == nullptr) {
1115       fatal("CodeCache is full at gen_continuation_enter");
1116     }
1117 
1118     oop_maps->add_gc_map(__ pc() - start, map);
1119     __ post_call_nop();
1120 
1121     __ b(exit);
1122 
1123     CodeBuffer* cbuf = masm->code_section()->outer();
1124     address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call);
1125     if (stub == nullptr) {
1126       fatal("CodeCache is full at gen_continuation_enter");
1127     }
1128   }
1129 
1130   // compiled entry
1131   __ align(CodeEntryAlignment);
1132   compiled_entry_offset = __ pc() - start;
1133 
1134   __ enter();
1135   stack_slots = 2; // will be adjusted in setup
1136   OopMap* map = continuation_enter_setup(masm, stack_slots);
1137   frame_complete = __ pc() - start;
1138 
1139   fill_continuation_entry(masm);
1140 
1141   __ cbnz(c_rarg2, call_thaw);
1142 
1143   const address tr_call = __ trampoline_call(resolve);
1144   if (tr_call == nullptr) {
1145     fatal("CodeCache is full at gen_continuation_enter");
1146   }
1147 
1148   oop_maps->add_gc_map(__ pc() - start, map);
1149   __ post_call_nop();
1150 
1151   __ b(exit);
1152 
1153   __ bind(call_thaw);
1154 
1155   __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1156   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1157   ContinuationEntry::_return_pc_offset = __ pc() - start;
1158   __ post_call_nop();
1159 
1160   __ bind(exit);
1161   continuation_enter_cleanup(masm);
1162   __ leave();
1163   __ ret(lr);
1164 
1165   /// exception handling
1166 
1167   exception_offset = __ pc() - start;
1168   {
1169       __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19
1170 
1171       continuation_enter_cleanup(masm);
1172 
1173       __ ldr(c_rarg1, Address(rfp, wordSize)); // return address
1174       __ authenticate_return_address(c_rarg1);
1175       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1);
1176 
1177       // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc
1178 
1179       __ mov(r1, r0); // the exception handler
1180       __ mov(r0, r19); // restore return value contaning the exception oop
1181       __ verify_oop(r0);
1182 
1183       __ leave();
1184       __ mov(r3, lr);
1185       __ br(r1); // the exception handler
1186   }
1187 
1188   CodeBuffer* cbuf = masm->code_section()->outer();
1189   address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call);
1190   if (stub == nullptr) {
1191     fatal("CodeCache is full at gen_continuation_enter");
1192   }
1193 }
1194 
1195 static void gen_continuation_yield(MacroAssembler* masm,
1196                                    const methodHandle& method,
1197                                    const BasicType* sig_bt,
1198                                    const VMRegPair* regs,
1199                                    OopMapSet* oop_maps,
1200                                    int& frame_complete,
1201                                    int& stack_slots,
1202                                    int& compiled_entry_offset) {
1203     enum layout {
1204       rfp_off1,
1205       rfp_off2,
1206       lr_off,
1207       lr_off2,
1208       framesize // inclusive of return address
1209     };
1210     // assert(is_even(framesize/2), "sp not 16-byte aligned");
1211     stack_slots = framesize /  VMRegImpl::slots_per_word;
1212     assert(stack_slots == 2, "recheck layout");
1213 
1214     address start = __ pc();
1215 
1216     compiled_entry_offset = __ pc() - start;
1217     __ enter();
1218 
1219     __ mov(c_rarg1, sp);
1220 
1221     frame_complete = __ pc() - start;
1222     address the_pc = __ pc();
1223 
1224     __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1225 
1226     __ mov(c_rarg0, rthread);
1227     __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
1228     __ call_VM_leaf(Continuation::freeze_entry(), 2);
1229     __ reset_last_Java_frame(true);
1230 
1231     Label pinned;
1232 
1233     __ cbnz(r0, pinned);
1234 
1235     // We've succeeded, set sp to the ContinuationEntry
1236     __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1237     __ mov(sp, rscratch1);
1238     continuation_enter_cleanup(masm);
1239 
1240     __ bind(pinned); // pinned -- return to caller
1241 
1242     // handle pending exception thrown by freeze
1243     __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1244     Label ok;
1245     __ cbz(rscratch1, ok);
1246     __ leave();
1247     __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1248     __ br(rscratch1);
1249     __ bind(ok);
1250 
1251     __ leave();
1252     __ ret(lr);
1253 
1254     OopMap* map = new OopMap(framesize, 1);
1255     oop_maps->add_gc_map(the_pc - start, map);
1256 }
1257 
1258 static void gen_special_dispatch(MacroAssembler* masm,
1259                                  const methodHandle& method,
1260                                  const BasicType* sig_bt,
1261                                  const VMRegPair* regs) {
1262   verify_oop_args(masm, method, sig_bt, regs);
1263   vmIntrinsics::ID iid = method->intrinsic_id();
1264 
1265   // Now write the args into the outgoing interpreter space
1266   bool     has_receiver   = false;
1267   Register receiver_reg   = noreg;
1268   int      member_arg_pos = -1;
1269   Register member_reg     = noreg;
1270   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1271   if (ref_kind != 0) {
1272     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1273     member_reg = r19;  // known to be free at this point
1274     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1275   } else if (iid == vmIntrinsics::_invokeBasic) {
1276     has_receiver = true;
1277   } else if (iid == vmIntrinsics::_linkToNative) {
1278     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1279     member_reg = r19;  // known to be free at this point
1280   } else {
1281     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1282   }
1283 
1284   if (member_reg != noreg) {
1285     // Load the member_arg into register, if necessary.
1286     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1287     VMReg r = regs[member_arg_pos].first();
1288     if (r->is_stack()) {
1289       __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1290     } else {
1291       // no data motion is needed
1292       member_reg = r->as_Register();
1293     }
1294   }
1295 
1296   if (has_receiver) {
1297     // Make sure the receiver is loaded into a register.
1298     assert(method->size_of_parameters() > 0, "oob");
1299     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1300     VMReg r = regs[0].first();
1301     assert(r->is_valid(), "bad receiver arg");
1302     if (r->is_stack()) {
1303       // Porting note:  This assumes that compiled calling conventions always
1304       // pass the receiver oop in a register.  If this is not true on some
1305       // platform, pick a temp and load the receiver from stack.
1306       fatal("receiver always in a register");
1307       receiver_reg = r2;  // known to be free at this point
1308       __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1309     } else {
1310       // no data motion is needed
1311       receiver_reg = r->as_Register();
1312     }
1313   }
1314 
1315   // Figure out which address we are really jumping to:
1316   MethodHandles::generate_method_handle_dispatch(masm, iid,
1317                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1318 }
1319 
1320 // ---------------------------------------------------------------------------
1321 // Generate a native wrapper for a given method.  The method takes arguments
1322 // in the Java compiled code convention, marshals them to the native
1323 // convention (handlizes oops, etc), transitions to native, makes the call,
1324 // returns to java state (possibly blocking), unhandlizes any result and
1325 // returns.
1326 //
1327 // Critical native functions are a shorthand for the use of
1328 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1329 // functions.  The wrapper is expected to unpack the arguments before
1330 // passing them to the callee. Critical native functions leave the state _in_Java,
1331 // since they block out GC.
1332 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1333 // block and the check for pending exceptions it's impossible for them
1334 // to be thrown.
1335 //
1336 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1337                                                 const methodHandle& method,
1338                                                 int compile_id,
1339                                                 BasicType* in_sig_bt,
1340                                                 VMRegPair* in_regs,
1341                                                 BasicType ret_type) {
1342   if (method->is_continuation_native_intrinsic()) {
1343     int exception_offset = -1;
1344     OopMapSet* oop_maps = new OopMapSet();
1345     int frame_complete = -1;
1346     int stack_slots = -1;
1347     int interpreted_entry_offset = -1;
1348     int vep_offset = -1;
1349     if (method->is_continuation_enter_intrinsic()) {
1350       gen_continuation_enter(masm,
1351                              method,
1352                              in_sig_bt,
1353                              in_regs,
1354                              exception_offset,
1355                              oop_maps,
1356                              frame_complete,
1357                              stack_slots,
1358                              interpreted_entry_offset,
1359                              vep_offset);
1360     } else if (method->is_continuation_yield_intrinsic()) {
1361       gen_continuation_yield(masm,
1362                              method,
1363                              in_sig_bt,
1364                              in_regs,
1365                              oop_maps,
1366                              frame_complete,
1367                              stack_slots,
1368                              vep_offset);
1369     } else {
1370       guarantee(false, "Unknown Continuation native intrinsic");
1371     }
1372 
1373 #ifdef ASSERT
1374     if (method->is_continuation_enter_intrinsic()) {
1375       assert(interpreted_entry_offset != -1, "Must be set");
1376       assert(exception_offset != -1,         "Must be set");
1377     } else {
1378       assert(interpreted_entry_offset == -1, "Must be unset");
1379       assert(exception_offset == -1,         "Must be unset");
1380     }
1381     assert(frame_complete != -1,    "Must be set");
1382     assert(stack_slots != -1,       "Must be set");
1383     assert(vep_offset != -1,        "Must be set");
1384 #endif
1385 
1386     __ flush();
1387     nmethod* nm = nmethod::new_native_nmethod(method,
1388                                               compile_id,
1389                                               masm->code(),
1390                                               vep_offset,
1391                                               frame_complete,
1392                                               stack_slots,
1393                                               in_ByteSize(-1),
1394                                               in_ByteSize(-1),
1395                                               oop_maps,
1396                                               exception_offset);
1397     if (method->is_continuation_enter_intrinsic()) {
1398       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1399     } else if (method->is_continuation_yield_intrinsic()) {
1400       _cont_doYield_stub = nm;
1401     } else {
1402       guarantee(false, "Unknown Continuation native intrinsic");
1403     }
1404     return nm;
1405   }
1406 
1407   if (method->is_method_handle_intrinsic()) {
1408     vmIntrinsics::ID iid = method->intrinsic_id();
1409     intptr_t start = (intptr_t)__ pc();
1410     int vep_offset = ((intptr_t)__ pc()) - start;
1411 
1412     // First instruction must be a nop as it may need to be patched on deoptimisation
1413     __ nop();
1414     gen_special_dispatch(masm,
1415                          method,
1416                          in_sig_bt,
1417                          in_regs);
1418     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1419     __ flush();
1420     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1421     return nmethod::new_native_nmethod(method,
1422                                        compile_id,
1423                                        masm->code(),
1424                                        vep_offset,
1425                                        frame_complete,
1426                                        stack_slots / VMRegImpl::slots_per_word,
1427                                        in_ByteSize(-1),
1428                                        in_ByteSize(-1),
1429                                        nullptr);
1430   }
1431   address native_func = method->native_function();
1432   assert(native_func != nullptr, "must have function");
1433 
1434   // An OopMap for lock (and class if static)
1435   OopMapSet *oop_maps = new OopMapSet();
1436   intptr_t start = (intptr_t)__ pc();
1437 
1438   // We have received a description of where all the java arg are located
1439   // on entry to the wrapper. We need to convert these args to where
1440   // the jni function will expect them. To figure out where they go
1441   // we convert the java signature to a C signature by inserting
1442   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1443 
1444   const int total_in_args = method->size_of_parameters();
1445   int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1446 
1447   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1448   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1449   BasicType* in_elem_bt = nullptr;
1450 
1451   int argc = 0;
1452   out_sig_bt[argc++] = T_ADDRESS;
1453   if (method->is_static()) {
1454     out_sig_bt[argc++] = T_OBJECT;
1455   }
1456 
1457   for (int i = 0; i < total_in_args ; i++ ) {
1458     out_sig_bt[argc++] = in_sig_bt[i];
1459   }
1460 
1461   // Now figure out where the args must be stored and how much stack space
1462   // they require.
1463   int out_arg_slots;
1464   out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, nullptr, total_c_args);
1465 
1466   if (out_arg_slots < 0) {
1467     return nullptr;
1468   }
1469 
1470   // Compute framesize for the wrapper.  We need to handlize all oops in
1471   // incoming registers
1472 
1473   // Calculate the total number of stack slots we will need.
1474 
1475   // First count the abi requirement plus all of the outgoing args
1476   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1477 
1478   // Now the space for the inbound oop handle area
1479   int total_save_slots = 8 * VMRegImpl::slots_per_word;  // 8 arguments passed in registers
1480 
1481   int oop_handle_offset = stack_slots;
1482   stack_slots += total_save_slots;
1483 
1484   // Now any space we need for handlizing a klass if static method
1485 
1486   int klass_slot_offset = 0;
1487   int klass_offset = -1;
1488   int lock_slot_offset = 0;
1489   bool is_static = false;
1490 
1491   if (method->is_static()) {
1492     klass_slot_offset = stack_slots;
1493     stack_slots += VMRegImpl::slots_per_word;
1494     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1495     is_static = true;
1496   }
1497 
1498   // Plus a lock if needed
1499 
1500   if (method->is_synchronized()) {
1501     lock_slot_offset = stack_slots;
1502     stack_slots += VMRegImpl::slots_per_word;
1503   }
1504 
1505   // Now a place (+2) to save return values or temp during shuffling
1506   // + 4 for return address (which we own) and saved rfp
1507   stack_slots += 6;
1508 
1509   // Ok The space we have allocated will look like:
1510   //
1511   //
1512   // FP-> |                     |
1513   //      |---------------------|
1514   //      | 2 slots for moves   |
1515   //      |---------------------|
1516   //      | lock box (if sync)  |
1517   //      |---------------------| <- lock_slot_offset
1518   //      | klass (if static)   |
1519   //      |---------------------| <- klass_slot_offset
1520   //      | oopHandle area      |
1521   //      |---------------------| <- oop_handle_offset (8 java arg registers)
1522   //      | outbound memory     |
1523   //      | based arguments     |
1524   //      |                     |
1525   //      |---------------------|
1526   //      |                     |
1527   // SP-> | out_preserved_slots |
1528   //
1529   //
1530 
1531 
1532   // Now compute actual number of stack words we need rounding to make
1533   // stack properly aligned.
1534   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1535 
1536   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1537 
1538   // First thing make an ic check to see if we should even be here
1539 
1540   // We are free to use all registers as temps without saving them and
1541   // restoring them except rfp. rfp is the only callee save register
1542   // as far as the interpreter and the compiler(s) are concerned.
1543 
1544 
1545   const Register ic_reg = rscratch2;
1546   const Register receiver = j_rarg0;
1547 
1548   Label hit;
1549   Label exception_pending;
1550 
1551   assert_different_registers(ic_reg, receiver, rscratch1);
1552   __ verify_oop(receiver);
1553   __ cmp_klass(receiver, ic_reg, rscratch1);
1554   __ br(Assembler::EQ, hit);
1555 
1556   __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
1557 
1558   // Verified entry point must be aligned
1559   __ align(8);
1560 
1561   __ bind(hit);
1562 
1563   int vep_offset = ((intptr_t)__ pc()) - start;
1564 
1565   // If we have to make this method not-entrant we'll overwrite its
1566   // first instruction with a jump.  For this action to be legal we
1567   // must ensure that this first instruction is a B, BL, NOP, BKPT,
1568   // SVC, HVC, or SMC.  Make it a NOP.
1569   __ nop();
1570 
1571   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1572     Label L_skip_barrier;
1573     __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
1574     __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
1575     __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1576 
1577     __ bind(L_skip_barrier);
1578   }
1579 
1580   // Generate stack overflow check
1581   __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1582 
1583   // Generate a new frame for the wrapper.
1584   __ enter();
1585   // -2 because return address is already present and so is saved rfp
1586   __ sub(sp, sp, stack_size - 2*wordSize);
1587 
1588   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1589   bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1590 
1591   // Frame is now completed as far as size and linkage.
1592   int frame_complete = ((intptr_t)__ pc()) - start;
1593 
1594   // We use r20 as the oop handle for the receiver/klass
1595   // It is callee save so it survives the call to native
1596 
1597   const Register oop_handle_reg = r20;
1598 
1599   //
1600   // We immediately shuffle the arguments so that any vm call we have to
1601   // make from here on out (sync slow path, jvmti, etc.) we will have
1602   // captured the oops from our caller and have a valid oopMap for
1603   // them.
1604 
1605   // -----------------
1606   // The Grand Shuffle
1607 
1608   // The Java calling convention is either equal (linux) or denser (win64) than the
1609   // c calling convention. However the because of the jni_env argument the c calling
1610   // convention always has at least one more (and two for static) arguments than Java.
1611   // Therefore if we move the args from java -> c backwards then we will never have
1612   // a register->register conflict and we don't have to build a dependency graph
1613   // and figure out how to break any cycles.
1614   //
1615 
1616   // Record esp-based slot for receiver on stack for non-static methods
1617   int receiver_offset = -1;
1618 
1619   // This is a trick. We double the stack slots so we can claim
1620   // the oops in the caller's frame. Since we are sure to have
1621   // more args than the caller doubling is enough to make
1622   // sure we can capture all the incoming oop args from the
1623   // caller.
1624   //
1625   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1626 
1627   // Mark location of rfp (someday)
1628   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1629 
1630 
1631   int float_args = 0;
1632   int int_args = 0;
1633 
1634 #ifdef ASSERT
1635   bool reg_destroyed[Register::number_of_registers];
1636   bool freg_destroyed[FloatRegister::number_of_registers];
1637   for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1638     reg_destroyed[r] = false;
1639   }
1640   for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1641     freg_destroyed[f] = false;
1642   }
1643 
1644 #endif /* ASSERT */
1645 
1646   // For JNI natives the incoming and outgoing registers are offset upwards.
1647   GrowableArray<int> arg_order(2 * total_in_args);
1648   VMRegPair tmp_vmreg;
1649   tmp_vmreg.set2(r19->as_VMReg());
1650 
1651   for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1652     arg_order.push(i);
1653     arg_order.push(c_arg);
1654   }
1655 
1656   int temploc = -1;
1657   for (int ai = 0; ai < arg_order.length(); ai += 2) {
1658     int i = arg_order.at(ai);
1659     int c_arg = arg_order.at(ai + 1);
1660     __ block_comment(err_msg("move %d -> %d", i, c_arg));
1661     assert(c_arg != -1 && i != -1, "wrong order");
1662 #ifdef ASSERT
1663     if (in_regs[i].first()->is_Register()) {
1664       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1665     } else if (in_regs[i].first()->is_FloatRegister()) {
1666       assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1667     }
1668     if (out_regs[c_arg].first()->is_Register()) {
1669       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1670     } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1671       freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1672     }
1673 #endif /* ASSERT */
1674     switch (in_sig_bt[i]) {
1675       case T_ARRAY:
1676       case T_OBJECT:
1677         __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1678                        ((i == 0) && (!is_static)),
1679                        &receiver_offset);
1680         int_args++;
1681         break;
1682       case T_VOID:
1683         break;
1684 
1685       case T_FLOAT:
1686         __ float_move(in_regs[i], out_regs[c_arg]);
1687         float_args++;
1688         break;
1689 
1690       case T_DOUBLE:
1691         assert( i + 1 < total_in_args &&
1692                 in_sig_bt[i + 1] == T_VOID &&
1693                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1694         __ double_move(in_regs[i], out_regs[c_arg]);
1695         float_args++;
1696         break;
1697 
1698       case T_LONG :
1699         __ long_move(in_regs[i], out_regs[c_arg]);
1700         int_args++;
1701         break;
1702 
1703       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1704 
1705       default:
1706         __ move32_64(in_regs[i], out_regs[c_arg]);
1707         int_args++;
1708     }
1709   }
1710 
1711   // point c_arg at the first arg that is already loaded in case we
1712   // need to spill before we call out
1713   int c_arg = total_c_args - total_in_args;
1714 
1715   // Pre-load a static method's oop into c_rarg1.
1716   if (method->is_static()) {
1717 
1718     //  load oop into a register
1719     __ movoop(c_rarg1,
1720               JNIHandles::make_local(method->method_holder()->java_mirror()));
1721 
1722     // Now handlize the static class mirror it's known not-null.
1723     __ str(c_rarg1, Address(sp, klass_offset));
1724     map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1725 
1726     // Now get the handle
1727     __ lea(c_rarg1, Address(sp, klass_offset));
1728     // and protect the arg if we must spill
1729     c_arg--;
1730   }
1731 
1732   // Change state to native (we save the return address in the thread, since it might not
1733   // be pushed on the stack when we do a stack traversal).
1734   // We use the same pc/oopMap repeatedly when we call out
1735 
1736   Label native_return;
1737   __ set_last_Java_frame(sp, noreg, native_return, rscratch1);
1738 
1739   Label dtrace_method_entry, dtrace_method_entry_done;
1740   {
1741     uint64_t offset;
1742     __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
1743     __ ldrb(rscratch1, Address(rscratch1, offset));
1744     __ cbnzw(rscratch1, dtrace_method_entry);
1745     __ bind(dtrace_method_entry_done);
1746   }
1747 
1748   // RedefineClasses() tracing support for obsolete method entry
1749   if (log_is_enabled(Trace, redefine, class, obsolete)) {
1750     // protect the args we've loaded
1751     save_args(masm, total_c_args, c_arg, out_regs);
1752     __ mov_metadata(c_rarg1, method());
1753     __ call_VM_leaf(
1754       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1755       rthread, c_rarg1);
1756     restore_args(masm, total_c_args, c_arg, out_regs);
1757   }
1758 
1759   // Lock a synchronized method
1760 
1761   // Register definitions used by locking and unlocking
1762 
1763   const Register swap_reg = r0;
1764   const Register obj_reg  = r19;  // Will contain the oop
1765   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
1766   const Register old_hdr  = r13;  // value of old header at unlock time
1767   const Register lock_tmp = r14;  // Temporary used by lightweight_lock/unlock
1768   const Register tmp = lr;
1769 
1770   Label slow_path_lock;
1771   Label lock_done;
1772 
1773   if (method->is_synchronized()) {
1774     Label count;
1775     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1776 
1777     // Get the handle (the 2nd argument)
1778     __ mov(oop_handle_reg, c_rarg1);
1779 
1780     // Get address of the box
1781 
1782     __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1783 
1784     // Load the oop from the handle
1785     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1786 
1787     if (LockingMode == LM_MONITOR) {
1788       __ b(slow_path_lock);
1789     } else if (LockingMode == LM_LEGACY) {
1790       // Load (object->mark() | 1) into swap_reg %r0
1791       __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1792       __ orr(swap_reg, rscratch1, 1);
1793 
1794       // Save (object->mark() | 1) into BasicLock's displaced header
1795       __ str(swap_reg, Address(lock_reg, mark_word_offset));
1796 
1797       // src -> dest iff dest == r0 else r0 <- dest
1798       __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
1799 
1800       // Hmm should this move to the slow path code area???
1801 
1802       // Test if the oopMark is an obvious stack pointer, i.e.,
1803       //  1) (mark & 3) == 0, and
1804       //  2) sp <= mark < mark + os::pagesize()
1805       // These 3 tests can be done by evaluating the following
1806       // expression: ((mark - sp) & (3 - os::vm_page_size())),
1807       // assuming both stack pointer and pagesize have their
1808       // least significant 2 bits clear.
1809       // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
1810 
1811       __ sub(swap_reg, sp, swap_reg);
1812       __ neg(swap_reg, swap_reg);
1813       __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size());
1814 
1815       // Save the test result, for recursive case, the result is zero
1816       __ str(swap_reg, Address(lock_reg, mark_word_offset));
1817       __ br(Assembler::NE, slow_path_lock);
1818     } else {
1819       assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1820       __ ldr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1821       __ lightweight_lock(obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
1822     }
1823     __ bind(count);
1824     __ increment(Address(rthread, JavaThread::held_monitor_count_offset()));
1825 
1826     // Slow path will re-enter here
1827     __ bind(lock_done);
1828   }
1829 
1830 
1831   // Finally just about ready to make the JNI call
1832 
1833   // get JNIEnv* which is first argument to native
1834   __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1835 
1836   // Now set thread in native
1837   __ mov(rscratch1, _thread_in_native);
1838   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1839   __ stlrw(rscratch1, rscratch2);
1840 
1841   __ rt_call(native_func);
1842 
1843   __ bind(native_return);
1844 
1845   intptr_t return_pc = (intptr_t) __ pc();
1846   oop_maps->add_gc_map(return_pc - start, map);
1847 
1848   // Unpack native results.
1849   switch (ret_type) {
1850   case T_BOOLEAN: __ c2bool(r0);                     break;
1851   case T_CHAR   : __ ubfx(r0, r0, 0, 16);            break;
1852   case T_BYTE   : __ sbfx(r0, r0, 0, 8);             break;
1853   case T_SHORT  : __ sbfx(r0, r0, 0, 16);            break;
1854   case T_INT    : __ sbfx(r0, r0, 0, 32);            break;
1855   case T_DOUBLE :
1856   case T_FLOAT  :
1857     // Result is in v0 we'll save as needed
1858     break;
1859   case T_ARRAY:                 // Really a handle
1860   case T_OBJECT:                // Really a handle
1861       break; // can't de-handlize until after safepoint check
1862   case T_VOID: break;
1863   case T_LONG: break;
1864   default       : ShouldNotReachHere();
1865   }
1866 
1867   Label safepoint_in_progress, safepoint_in_progress_done;
1868   Label after_transition;
1869 
1870   // Switch thread to "native transition" state before reading the synchronization state.
1871   // This additional state is necessary because reading and testing the synchronization
1872   // state is not atomic w.r.t. GC, as this scenario demonstrates:
1873   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1874   //     VM thread changes sync state to synchronizing and suspends threads for GC.
1875   //     Thread A is resumed to finish this native method, but doesn't block here since it
1876   //     didn't see any synchronization is progress, and escapes.
1877   __ mov(rscratch1, _thread_in_native_trans);
1878 
1879   __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1880 
1881   // Force this write out before the read below
1882   if (!UseSystemMemoryBarrier) {
1883     __ dmb(Assembler::ISH);
1884   }
1885 
1886   __ verify_sve_vector_length();
1887 
1888   // Check for safepoint operation in progress and/or pending suspend requests.
1889   {
1890     // We need an acquire here to ensure that any subsequent load of the
1891     // global SafepointSynchronize::_state flag is ordered after this load
1892     // of the thread-local polling word.  We don't want this poll to
1893     // return false (i.e. not safepointing) and a later poll of the global
1894     // SafepointSynchronize::_state spuriously to return true.
1895     //
1896     // This is to avoid a race when we're in a native->Java transition
1897     // racing the code which wakes up from a safepoint.
1898 
1899     __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */);
1900     __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1901     __ cbnzw(rscratch1, safepoint_in_progress);
1902     __ bind(safepoint_in_progress_done);
1903   }
1904 
1905   // change thread state
1906   __ mov(rscratch1, _thread_in_Java);
1907   __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1908   __ stlrw(rscratch1, rscratch2);
1909   __ bind(after_transition);
1910 
1911   Label reguard;
1912   Label reguard_done;
1913   __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1914   __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
1915   __ br(Assembler::EQ, reguard);
1916   __ bind(reguard_done);
1917 
1918   // native result if any is live
1919 
1920   // Unlock
1921   Label unlock_done;
1922   Label slow_path_unlock;
1923   if (method->is_synchronized()) {
1924 
1925     // Get locked oop from the handle we passed to jni
1926     __ ldr(obj_reg, Address(oop_handle_reg, 0));
1927 
1928     Label done, not_recursive;
1929 
1930     if (LockingMode == LM_LEGACY) {
1931       // Simple recursive lock?
1932       __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1933       __ cbnz(rscratch1, not_recursive);
1934       __ decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
1935       __ b(done);
1936     }
1937 
1938     __ bind(not_recursive);
1939 
1940     // Must save r0 if if it is live now because cmpxchg must use it
1941     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1942       save_native_result(masm, ret_type, stack_slots);
1943     }
1944 
1945     if (LockingMode == LM_MONITOR) {
1946       __ b(slow_path_unlock);
1947     } else if (LockingMode == LM_LEGACY) {
1948       // get address of the stack lock
1949       __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1950       //  get old displaced header
1951       __ ldr(old_hdr, Address(r0, 0));
1952 
1953       // Atomic swap old header if oop still contains the stack lock
1954       Label count;
1955       __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock);
1956       __ bind(count);
1957       __ decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
1958     } else {
1959       assert(LockingMode == LM_LIGHTWEIGHT, "");
1960       __ ldr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1961       __ tbnz(old_hdr, exact_log2(markWord::monitor_value), slow_path_unlock);
1962       __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
1963       __ decrement(Address(rthread, JavaThread::held_monitor_count_offset()));
1964     }
1965 
1966     // slow path re-enters here
1967     __ bind(unlock_done);
1968     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1969       restore_native_result(masm, ret_type, stack_slots);
1970     }
1971 
1972     __ bind(done);
1973   }
1974 
1975   Label dtrace_method_exit, dtrace_method_exit_done;
1976   {
1977     uint64_t offset;
1978     __ adrp(rscratch1, ExternalAddress((address)&DTraceMethodProbes), offset);
1979     __ ldrb(rscratch1, Address(rscratch1, offset));
1980     __ cbnzw(rscratch1, dtrace_method_exit);
1981     __ bind(dtrace_method_exit_done);
1982   }
1983 
1984   __ reset_last_Java_frame(false);
1985 
1986   // Unbox oop result, e.g. JNIHandles::resolve result.
1987   if (is_reference_type(ret_type)) {
1988     __ resolve_jobject(r0, r1, r2);
1989   }
1990 
1991   if (CheckJNICalls) {
1992     // clear_pending_jni_exception_check
1993     __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1994   }
1995 
1996   // reset handle block
1997   __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
1998   __ str(zr, Address(r2, JNIHandleBlock::top_offset()));
1999 
2000   __ leave();
2001 
2002   // Any exception pending?
2003   __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2004   __ cbnz(rscratch1, exception_pending);
2005 
2006   // We're done
2007   __ ret(lr);
2008 
2009   // Unexpected paths are out of line and go here
2010 
2011   // forward the exception
2012   __ bind(exception_pending);
2013 
2014   // and forward the exception
2015   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2016 
2017   // Slow path locking & unlocking
2018   if (method->is_synchronized()) {
2019 
2020     __ block_comment("Slow path lock {");
2021     __ bind(slow_path_lock);
2022 
2023     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2024     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2025 
2026     // protect the args we've loaded
2027     save_args(masm, total_c_args, c_arg, out_regs);
2028 
2029     __ mov(c_rarg0, obj_reg);
2030     __ mov(c_rarg1, lock_reg);
2031     __ mov(c_rarg2, rthread);
2032 
2033     // Not a leaf but we have last_Java_frame setup as we want
2034     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2035     restore_args(masm, total_c_args, c_arg, out_regs);
2036 
2037 #ifdef ASSERT
2038     { Label L;
2039       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2040       __ cbz(rscratch1, L);
2041       __ stop("no pending exception allowed on exit from monitorenter");
2042       __ bind(L);
2043     }
2044 #endif
2045     __ b(lock_done);
2046 
2047     __ block_comment("} Slow path lock");
2048 
2049     __ block_comment("Slow path unlock {");
2050     __ bind(slow_path_unlock);
2051 
2052     // If we haven't already saved the native result we must save it now as xmm registers
2053     // are still exposed.
2054 
2055     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2056       save_native_result(masm, ret_type, stack_slots);
2057     }
2058 
2059     __ mov(c_rarg2, rthread);
2060     __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2061     __ mov(c_rarg0, obj_reg);
2062 
2063     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2064     // NOTE that obj_reg == r19 currently
2065     __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2066     __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2067 
2068     __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
2069 
2070 #ifdef ASSERT
2071     {
2072       Label L;
2073       __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2074       __ cbz(rscratch1, L);
2075       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2076       __ bind(L);
2077     }
2078 #endif /* ASSERT */
2079 
2080     __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2081 
2082     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2083       restore_native_result(masm, ret_type, stack_slots);
2084     }
2085     __ b(unlock_done);
2086 
2087     __ block_comment("} Slow path unlock");
2088 
2089   } // synchronized
2090 
2091   // SLOW PATH Reguard the stack if needed
2092 
2093   __ bind(reguard);
2094   save_native_result(masm, ret_type, stack_slots);
2095   __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2096   restore_native_result(masm, ret_type, stack_slots);
2097   // and continue
2098   __ b(reguard_done);
2099 
2100   // SLOW PATH safepoint
2101   {
2102     __ block_comment("safepoint {");
2103     __ bind(safepoint_in_progress);
2104 
2105     // Don't use call_VM as it will see a possible pending exception and forward it
2106     // and never return here preventing us from clearing _last_native_pc down below.
2107     //
2108     save_native_result(masm, ret_type, stack_slots);
2109     __ mov(c_rarg0, rthread);
2110 #ifndef PRODUCT
2111   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2112 #endif
2113     __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2114     __ blr(rscratch1);
2115 
2116     // Restore any method result value
2117     restore_native_result(masm, ret_type, stack_slots);
2118 
2119     __ b(safepoint_in_progress_done);
2120     __ block_comment("} safepoint");
2121   }
2122 
2123   // SLOW PATH dtrace support
2124   {
2125     __ block_comment("dtrace entry {");
2126     __ bind(dtrace_method_entry);
2127 
2128     // We have all of the arguments setup at this point. We must not touch any register
2129     // argument registers at this point (what if we save/restore them there are no oop?
2130 
2131     save_args(masm, total_c_args, c_arg, out_regs);
2132     __ mov_metadata(c_rarg1, method());
2133     __ call_VM_leaf(
2134       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2135       rthread, c_rarg1);
2136     restore_args(masm, total_c_args, c_arg, out_regs);
2137     __ b(dtrace_method_entry_done);
2138     __ block_comment("} dtrace entry");
2139   }
2140 
2141   {
2142     __ block_comment("dtrace exit {");
2143     __ bind(dtrace_method_exit);
2144     save_native_result(masm, ret_type, stack_slots);
2145     __ mov_metadata(c_rarg1, method());
2146     __ call_VM_leaf(
2147          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2148          rthread, c_rarg1);
2149     restore_native_result(masm, ret_type, stack_slots);
2150     __ b(dtrace_method_exit_done);
2151     __ block_comment("} dtrace exit");
2152   }
2153 
2154 
2155   __ flush();
2156 
2157   nmethod *nm = nmethod::new_native_nmethod(method,
2158                                             compile_id,
2159                                             masm->code(),
2160                                             vep_offset,
2161                                             frame_complete,
2162                                             stack_slots / VMRegImpl::slots_per_word,
2163                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2164                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2165                                             oop_maps);
2166 
2167   return nm;
2168 }
2169 
2170 // this function returns the adjust size (in number of words) to a c2i adapter
2171 // activation for use during deoptimization
2172 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2173   assert(callee_locals >= callee_parameters,
2174           "test and remove; got more parms than locals");
2175   if (callee_locals < callee_parameters)
2176     return 0;                   // No adjustment for negative locals
2177   int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2178   // diff is counted in stack words
2179   return align_up(diff, 2);
2180 }
2181 
2182 
2183 //------------------------------generate_deopt_blob----------------------------
2184 void SharedRuntime::generate_deopt_blob() {
2185   // Allocate space for the code
2186   ResourceMark rm;
2187   // Setup code generation tools
2188   int pad = 0;
2189 #if INCLUDE_JVMCI
2190   if (EnableJVMCI) {
2191     pad += 512; // Increase the buffer size when compiling for JVMCI
2192   }
2193 #endif
2194   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2195   MacroAssembler* masm = new MacroAssembler(&buffer);
2196   int frame_size_in_words;
2197   OopMap* map = nullptr;
2198   OopMapSet *oop_maps = new OopMapSet();
2199   RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0);
2200 
2201   // -------------
2202   // This code enters when returning to a de-optimized nmethod.  A return
2203   // address has been pushed on the stack, and return values are in
2204   // registers.
2205   // If we are doing a normal deopt then we were called from the patched
2206   // nmethod from the point we returned to the nmethod. So the return
2207   // address on the stack is wrong by NativeCall::instruction_size
2208   // We will adjust the value so it looks like we have the original return
2209   // address on the stack (like when we eagerly deoptimized).
2210   // In the case of an exception pending when deoptimizing, we enter
2211   // with a return address on the stack that points after the call we patched
2212   // into the exception handler. We have the following register state from,
2213   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2214   //    r0: exception oop
2215   //    r19: exception handler
2216   //    r3: throwing pc
2217   // So in this case we simply jam r3 into the useless return address and
2218   // the stack looks just like we want.
2219   //
2220   // At this point we need to de-opt.  We save the argument return
2221   // registers.  We call the first C routine, fetch_unroll_info().  This
2222   // routine captures the return values and returns a structure which
2223   // describes the current frame size and the sizes of all replacement frames.
2224   // The current frame is compiled code and may contain many inlined
2225   // functions, each with their own JVM state.  We pop the current frame, then
2226   // push all the new frames.  Then we call the C routine unpack_frames() to
2227   // populate these frames.  Finally unpack_frames() returns us the new target
2228   // address.  Notice that callee-save registers are BLOWN here; they have
2229   // already been captured in the vframeArray at the time the return PC was
2230   // patched.
2231   address start = __ pc();
2232   Label cont;
2233 
2234   // Prolog for non exception case!
2235 
2236   // Save everything in sight.
2237   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2238 
2239   // Normal deoptimization.  Save exec mode for unpack_frames.
2240   __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2241   __ b(cont);
2242 
2243   int reexecute_offset = __ pc() - start;
2244 #if INCLUDE_JVMCI && !defined(COMPILER1)
2245   if (EnableJVMCI && UseJVMCICompiler) {
2246     // JVMCI does not use this kind of deoptimization
2247     __ should_not_reach_here();
2248   }
2249 #endif
2250 
2251   // Reexecute case
2252   // return address is the pc describes what bci to do re-execute at
2253 
2254   // No need to update map as each call to save_live_registers will produce identical oopmap
2255   (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2256 
2257   __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2258   __ b(cont);
2259 
2260 #if INCLUDE_JVMCI
2261   Label after_fetch_unroll_info_call;
2262   int implicit_exception_uncommon_trap_offset = 0;
2263   int uncommon_trap_offset = 0;
2264 
2265   if (EnableJVMCI) {
2266     implicit_exception_uncommon_trap_offset = __ pc() - start;
2267 
2268     __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2269     __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2270 
2271     uncommon_trap_offset = __ pc() - start;
2272 
2273     // Save everything in sight.
2274     reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2275     // fetch_unroll_info needs to call last_java_frame()
2276     Label retaddr;
2277     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2278 
2279     __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2280     __ movw(rscratch1, -1);
2281     __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2282 
2283     __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2284     __ mov(c_rarg0, rthread);
2285     __ movw(c_rarg2, rcpool); // exec mode
2286     __ lea(rscratch1,
2287            RuntimeAddress(CAST_FROM_FN_PTR(address,
2288                                            Deoptimization::uncommon_trap)));
2289     __ blr(rscratch1);
2290     __ bind(retaddr);
2291     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2292 
2293     __ reset_last_Java_frame(false);
2294 
2295     __ b(after_fetch_unroll_info_call);
2296   } // EnableJVMCI
2297 #endif // INCLUDE_JVMCI
2298 
2299   int exception_offset = __ pc() - start;
2300 
2301   // Prolog for exception case
2302 
2303   // all registers are dead at this entry point, except for r0, and
2304   // r3 which contain the exception oop and exception pc
2305   // respectively.  Set them in TLS and fall thru to the
2306   // unpack_with_exception_in_tls entry point.
2307 
2308   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2309   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2310 
2311   int exception_in_tls_offset = __ pc() - start;
2312 
2313   // new implementation because exception oop is now passed in JavaThread
2314 
2315   // Prolog for exception case
2316   // All registers must be preserved because they might be used by LinearScan
2317   // Exceptiop oop and throwing PC are passed in JavaThread
2318   // tos: stack at point of call to method that threw the exception (i.e. only
2319   // args are on the stack, no return address)
2320 
2321   // The return address pushed by save_live_registers will be patched
2322   // later with the throwing pc. The correct value is not available
2323   // now because loading it from memory would destroy registers.
2324 
2325   // NB: The SP at this point must be the SP of the method that is
2326   // being deoptimized.  Deoptimization assumes that the frame created
2327   // here by save_live_registers is immediately below the method's SP.
2328   // This is a somewhat fragile mechanism.
2329 
2330   // Save everything in sight.
2331   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2332 
2333   // Now it is safe to overwrite any register
2334 
2335   // Deopt during an exception.  Save exec mode for unpack_frames.
2336   __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2337 
2338   // load throwing pc from JavaThread and patch it as the return address
2339   // of the current frame. Then clear the field in JavaThread
2340   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2341   __ protect_return_address(r3);
2342   __ str(r3, Address(rfp, wordSize));
2343   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2344 
2345 #ifdef ASSERT
2346   // verify that there is really an exception oop in JavaThread
2347   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2348   __ verify_oop(r0);
2349 
2350   // verify that there is no pending exception
2351   Label no_pending_exception;
2352   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2353   __ cbz(rscratch1, no_pending_exception);
2354   __ stop("must not have pending exception here");
2355   __ bind(no_pending_exception);
2356 #endif
2357 
2358   __ bind(cont);
2359 
2360   // Call C code.  Need thread and this frame, but NOT official VM entry
2361   // crud.  We cannot block on this call, no GC can happen.
2362   //
2363   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2364 
2365   // fetch_unroll_info needs to call last_java_frame().
2366 
2367   Label retaddr;
2368   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2369 #ifdef ASSERT
2370   { Label L;
2371     __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset()));
2372     __ cbz(rscratch1, L);
2373     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2374     __ bind(L);
2375   }
2376 #endif // ASSERT
2377   __ mov(c_rarg0, rthread);
2378   __ mov(c_rarg1, rcpool);
2379   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2380   __ blr(rscratch1);
2381   __ bind(retaddr);
2382 
2383   // Need to have an oopmap that tells fetch_unroll_info where to
2384   // find any register it might need.
2385   oop_maps->add_gc_map(__ pc() - start, map);
2386 
2387   __ reset_last_Java_frame(false);
2388 
2389 #if INCLUDE_JVMCI
2390   if (EnableJVMCI) {
2391     __ bind(after_fetch_unroll_info_call);
2392   }
2393 #endif
2394 
2395   // Load UnrollBlock* into r5
2396   __ mov(r5, r0);
2397 
2398   __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset()));
2399    Label noException;
2400   __ cmpw(rcpool, Deoptimization::Unpack_exception);   // Was exception pending?
2401   __ br(Assembler::NE, noException);
2402   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2403   // QQQ this is useless it was null above
2404   __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2405   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2406   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2407 
2408   __ verify_oop(r0);
2409 
2410   // Overwrite the result registers with the exception results.
2411   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2412   // I think this is useless
2413   // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2414 
2415   __ bind(noException);
2416 
2417   // Only register save data is on the stack.
2418   // Now restore the result registers.  Everything else is either dead
2419   // or captured in the vframeArray.
2420 
2421   // Restore fp result register
2422   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2423   // Restore integer result register
2424   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2425 
2426   // Pop all of the register save area off the stack
2427   __ add(sp, sp, frame_size_in_words * wordSize);
2428 
2429   // All of the register save area has been popped of the stack. Only the
2430   // return address remains.
2431 
2432   // Pop all the frames we must move/replace.
2433   //
2434   // Frame picture (youngest to oldest)
2435   // 1: self-frame (no frame link)
2436   // 2: deopting frame  (no frame link)
2437   // 3: caller of deopting frame (could be compiled/interpreted).
2438   //
2439   // Note: by leaving the return address of self-frame on the stack
2440   // and using the size of frame 2 to adjust the stack
2441   // when we are done the return to frame 3 will still be on the stack.
2442 
2443   // Pop deoptimized frame
2444   __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2445   __ sub(r2, r2, 2 * wordSize);
2446   __ add(sp, sp, r2);
2447   __ ldp(rfp, zr, __ post(sp, 2 * wordSize));
2448 
2449 #ifdef ASSERT
2450   // Compilers generate code that bang the stack by as much as the
2451   // interpreter would need. So this stack banging should never
2452   // trigger a fault. Verify that it does not on non product builds.
2453   __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2454   __ bang_stack_size(r19, r2);
2455 #endif
2456   // Load address of array of frame pcs into r2
2457   __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset()));
2458 
2459   // Trash the old pc
2460   // __ addptr(sp, wordSize);  FIXME ????
2461 
2462   // Load address of array of frame sizes into r4
2463   __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset()));
2464 
2465   // Load counter into r3
2466   __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset()));
2467 
2468   // Now adjust the caller's stack to make up for the extra locals
2469   // but record the original sp so that we can save it in the skeletal interpreter
2470   // frame and the stack walking of interpreter_sender will get the unextended sp
2471   // value and not the "real" sp value.
2472 
2473   const Register sender_sp = r6;
2474 
2475   __ mov(sender_sp, sp);
2476   __ ldrw(r19, Address(r5,
2477                        Deoptimization::UnrollBlock::
2478                        caller_adjustment_offset()));
2479   __ sub(sp, sp, r19);
2480 
2481   // Push interpreter frames in a loop
2482   __ mov(rscratch1, (uint64_t)0xDEADDEAD);        // Make a recognizable pattern
2483   __ mov(rscratch2, rscratch1);
2484   Label loop;
2485   __ bind(loop);
2486   __ ldr(r19, Address(__ post(r4, wordSize)));          // Load frame size
2487   __ sub(r19, r19, 2*wordSize);           // We'll push pc and fp by hand
2488   __ ldr(lr, Address(__ post(r2, wordSize)));  // Load pc
2489   __ enter();                           // Save old & set new fp
2490   __ sub(sp, sp, r19);                  // Prolog
2491   // This value is corrected by layout_activation_impl
2492   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2493   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2494   __ mov(sender_sp, sp);               // Pass sender_sp to next frame
2495   __ sub(r3, r3, 1);                   // Decrement counter
2496   __ cbnz(r3, loop);
2497 
2498     // Re-push self-frame
2499   __ ldr(lr, Address(r2));
2500   __ enter();
2501 
2502   // Allocate a full sized register save area.  We subtract 2 because
2503   // enter() just pushed 2 words
2504   __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2505 
2506   // Restore frame locals after moving the frame
2507   __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2508   __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2509 
2510   // Call C code.  Need thread but NOT official VM entry
2511   // crud.  We cannot block on this call, no GC can happen.  Call should
2512   // restore return values to their stack-slots with the new SP.
2513   //
2514   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2515 
2516   // Use rfp because the frames look interpreted now
2517   // Don't need the precise return PC here, just precise enough to point into this code blob.
2518   address the_pc = __ pc();
2519   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2520 
2521   __ mov(c_rarg0, rthread);
2522   __ movw(c_rarg1, rcpool); // second arg: exec_mode
2523   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2524   __ blr(rscratch1);
2525 
2526   // Set an oopmap for the call site
2527   // Use the same PC we used for the last java frame
2528   oop_maps->add_gc_map(the_pc - start,
2529                        new OopMap( frame_size_in_words, 0 ));
2530 
2531   // Clear fp AND pc
2532   __ reset_last_Java_frame(true);
2533 
2534   // Collect return values
2535   __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2536   __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2537   // I think this is useless (throwing pc?)
2538   // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2539 
2540   // Pop self-frame.
2541   __ leave();                           // Epilog
2542 
2543   // Jump to interpreter
2544   __ ret(lr);
2545 
2546   // Make sure all code is generated
2547   masm->flush();
2548 
2549   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2550   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2551 #if INCLUDE_JVMCI
2552   if (EnableJVMCI) {
2553     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2554     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2555   }
2556 #endif
2557 }
2558 
2559 // Number of stack slots between incoming argument block and the start of
2560 // a new frame.  The PROLOG must add this many slots to the stack.  The
2561 // EPILOG must remove this many slots. aarch64 needs two slots for
2562 // return address and fp.
2563 // TODO think this is correct but check
2564 uint SharedRuntime::in_preserve_stack_slots() {
2565   return 4;
2566 }
2567 
2568 uint SharedRuntime::out_preserve_stack_slots() {
2569   return 0;
2570 }
2571 
2572 #ifdef COMPILER2
2573 //------------------------------generate_uncommon_trap_blob--------------------
2574 void SharedRuntime::generate_uncommon_trap_blob() {
2575   // Allocate space for the code
2576   ResourceMark rm;
2577   // Setup code generation tools
2578   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
2579   MacroAssembler* masm = new MacroAssembler(&buffer);
2580 
2581   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
2582 
2583   address start = __ pc();
2584 
2585   // Push self-frame.  We get here with a return address in LR
2586   // and sp should be 16 byte aligned
2587   // push rfp and retaddr by hand
2588   __ protect_return_address();
2589   __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
2590   // we don't expect an arg reg save area
2591 #ifndef PRODUCT
2592   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2593 #endif
2594   // compiler left unloaded_class_index in j_rarg0 move to where the
2595   // runtime expects it.
2596   if (c_rarg1 != j_rarg0) {
2597     __ movw(c_rarg1, j_rarg0);
2598   }
2599 
2600   // we need to set the past SP to the stack pointer of the stub frame
2601   // and the pc to the address where this runtime call will return
2602   // although actually any pc in this code blob will do).
2603   Label retaddr;
2604   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2605 
2606   // Call C code.  Need thread but NOT official VM entry
2607   // crud.  We cannot block on this call, no GC can happen.  Call should
2608   // capture callee-saved registers as well as return values.
2609   // Thread is in rdi already.
2610   //
2611   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
2612   //
2613   // n.b. 2 gp args, 0 fp args, integral return type
2614 
2615   __ mov(c_rarg0, rthread);
2616   __ movw(c_rarg2, (unsigned)Deoptimization::Unpack_uncommon_trap);
2617   __ lea(rscratch1,
2618          RuntimeAddress(CAST_FROM_FN_PTR(address,
2619                                          Deoptimization::uncommon_trap)));
2620   __ blr(rscratch1);
2621   __ bind(retaddr);
2622 
2623   // Set an oopmap for the call site
2624   OopMapSet* oop_maps = new OopMapSet();
2625   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
2626 
2627   // location of rfp is known implicitly by the frame sender code
2628 
2629   oop_maps->add_gc_map(__ pc() - start, map);
2630 
2631   __ reset_last_Java_frame(false);
2632 
2633   // move UnrollBlock* into r4
2634   __ mov(r4, r0);
2635 
2636 #ifdef ASSERT
2637   { Label L;
2638     __ ldrw(rscratch1, Address(r4, Deoptimization::UnrollBlock::unpack_kind_offset()));
2639     __ cmpw(rscratch1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2640     __ br(Assembler::EQ, L);
2641     __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap");
2642     __ bind(L);
2643   }
2644 #endif
2645 
2646   // Pop all the frames we must move/replace.
2647   //
2648   // Frame picture (youngest to oldest)
2649   // 1: self-frame (no frame link)
2650   // 2: deopting frame  (no frame link)
2651   // 3: caller of deopting frame (could be compiled/interpreted).
2652 
2653   // Pop self-frame.  We have no frame, and must rely only on r0 and sp.
2654   __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog!
2655 
2656   // Pop deoptimized frame (int)
2657   __ ldrw(r2, Address(r4,
2658                       Deoptimization::UnrollBlock::
2659                       size_of_deoptimized_frame_offset()));
2660   __ sub(r2, r2, 2 * wordSize);
2661   __ add(sp, sp, r2);
2662   __ ldp(rfp, zr, __ post(sp, 2 * wordSize));
2663 
2664 #ifdef ASSERT
2665   // Compilers generate code that bang the stack by as much as the
2666   // interpreter would need. So this stack banging should never
2667   // trigger a fault. Verify that it does not on non product builds.
2668   __ ldrw(r1, Address(r4,
2669                       Deoptimization::UnrollBlock::
2670                       total_frame_sizes_offset()));
2671   __ bang_stack_size(r1, r2);
2672 #endif
2673 
2674   // Load address of array of frame pcs into r2 (address*)
2675   __ ldr(r2, Address(r4,
2676                      Deoptimization::UnrollBlock::frame_pcs_offset()));
2677 
2678   // Load address of array of frame sizes into r5 (intptr_t*)
2679   __ ldr(r5, Address(r4,
2680                      Deoptimization::UnrollBlock::
2681                      frame_sizes_offset()));
2682 
2683   // Counter
2684   __ ldrw(r3, Address(r4,
2685                       Deoptimization::UnrollBlock::
2686                       number_of_frames_offset())); // (int)
2687 
2688   // Now adjust the caller's stack to make up for the extra locals but
2689   // record the original sp so that we can save it in the skeletal
2690   // interpreter frame and the stack walking of interpreter_sender
2691   // will get the unextended sp value and not the "real" sp value.
2692 
2693   const Register sender_sp = r8;
2694 
2695   __ mov(sender_sp, sp);
2696   __ ldrw(r1, Address(r4,
2697                       Deoptimization::UnrollBlock::
2698                       caller_adjustment_offset())); // (int)
2699   __ sub(sp, sp, r1);
2700 
2701   // Push interpreter frames in a loop
2702   Label loop;
2703   __ bind(loop);
2704   __ ldr(r1, Address(r5, 0));       // Load frame size
2705   __ sub(r1, r1, 2 * wordSize);     // We'll push pc and rfp by hand
2706   __ ldr(lr, Address(r2, 0));       // Save return address
2707   __ enter();                       // and old rfp & set new rfp
2708   __ sub(sp, sp, r1);               // Prolog
2709   __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2710   // This value is corrected by layout_activation_impl
2711   __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2712   __ mov(sender_sp, sp);          // Pass sender_sp to next frame
2713   __ add(r5, r5, wordSize);       // Bump array pointer (sizes)
2714   __ add(r2, r2, wordSize);       // Bump array pointer (pcs)
2715   __ subsw(r3, r3, 1);            // Decrement counter
2716   __ br(Assembler::GT, loop);
2717   __ ldr(lr, Address(r2, 0));     // save final return address
2718   // Re-push self-frame
2719   __ enter();                     // & old rfp & set new rfp
2720 
2721   // Use rfp because the frames look interpreted now
2722   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
2723   // Don't need the precise return PC here, just precise enough to point into this code blob.
2724   address the_pc = __ pc();
2725   __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2726 
2727   // Call C code.  Need thread but NOT official VM entry
2728   // crud.  We cannot block on this call, no GC can happen.  Call should
2729   // restore return values to their stack-slots with the new SP.
2730   // Thread is in rdi already.
2731   //
2732   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
2733   //
2734   // n.b. 2 gp args, 0 fp args, integral return type
2735 
2736   // sp should already be aligned
2737   __ mov(c_rarg0, rthread);
2738   __ movw(c_rarg1, (unsigned)Deoptimization::Unpack_uncommon_trap);
2739   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2740   __ blr(rscratch1);
2741 
2742   // Set an oopmap for the call site
2743   // Use the same PC we used for the last java frame
2744   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
2745 
2746   // Clear fp AND pc
2747   __ reset_last_Java_frame(true);
2748 
2749   // Pop self-frame.
2750   __ leave();                 // Epilog
2751 
2752   // Jump to interpreter
2753   __ ret(lr);
2754 
2755   // Make sure all code is generated
2756   masm->flush();
2757 
2758   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
2759                                                  SimpleRuntimeFrame::framesize >> 1);
2760 }
2761 #endif // COMPILER2
2762 
2763 
2764 //------------------------------generate_handler_blob------
2765 //
2766 // Generate a special Compile2Runtime blob that saves all registers,
2767 // and setup oopmap.
2768 //
2769 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
2770   ResourceMark rm;
2771   OopMapSet *oop_maps = new OopMapSet();
2772   OopMap* map;
2773 
2774   // Allocate space for the code.  Setup code generation tools.
2775   CodeBuffer buffer("handler_blob", 2048, 1024);
2776   MacroAssembler* masm = new MacroAssembler(&buffer);
2777 
2778   address start   = __ pc();
2779   address call_pc = nullptr;
2780   int frame_size_in_words;
2781   bool cause_return = (poll_type == POLL_AT_RETURN);
2782   RegisterSaver reg_save(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */);
2783 
2784   // When the signal occurred, the LR was either signed and stored on the stack (in which
2785   // case it will be restored from the stack before being used) or unsigned and not stored
2786   // on the stack. Stipping ensures we get the right value.
2787   __ strip_return_address();
2788 
2789   // Save Integer and Float registers.
2790   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2791 
2792   // The following is basically a call_VM.  However, we need the precise
2793   // address of the call in order to generate an oopmap. Hence, we do all the
2794   // work ourselves.
2795 
2796   Label retaddr;
2797   __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2798 
2799   // The return address must always be correct so that frame constructor never
2800   // sees an invalid pc.
2801 
2802   if (!cause_return) {
2803     // overwrite the return address pushed by save_live_registers
2804     // Additionally, r20 is a callee-saved register so we can look at
2805     // it later to determine if someone changed the return address for
2806     // us!
2807     __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset()));
2808     __ protect_return_address(r20);
2809     __ str(r20, Address(rfp, wordSize));
2810   }
2811 
2812   // Do the call
2813   __ mov(c_rarg0, rthread);
2814   __ lea(rscratch1, RuntimeAddress(call_ptr));
2815   __ blr(rscratch1);
2816   __ bind(retaddr);
2817 
2818   // Set an oopmap for the call site.  This oopmap will map all
2819   // oop-registers and debug-info registers as callee-saved.  This
2820   // will allow deoptimization at this safepoint to find all possible
2821   // debug-info recordings, as well as let GC find all oops.
2822 
2823   oop_maps->add_gc_map( __ pc() - start, map);
2824 
2825   Label noException;
2826 
2827   __ reset_last_Java_frame(false);
2828 
2829   __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2830 
2831   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2832   __ cbz(rscratch1, noException);
2833 
2834   // Exception pending
2835 
2836   reg_save.restore_live_registers(masm);
2837 
2838   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2839 
2840   // No exception case
2841   __ bind(noException);
2842 
2843   Label no_adjust, bail;
2844   if (!cause_return) {
2845     // If our stashed return pc was modified by the runtime we avoid touching it
2846     __ ldr(rscratch1, Address(rfp, wordSize));
2847     __ cmp(r20, rscratch1);
2848     __ br(Assembler::NE, no_adjust);
2849     __ authenticate_return_address(r20);
2850 
2851 #ifdef ASSERT
2852     // Verify the correct encoding of the poll we're about to skip.
2853     // See NativeInstruction::is_ldrw_to_zr()
2854     __ ldrw(rscratch1, Address(r20));
2855     __ ubfx(rscratch2, rscratch1, 22, 10);
2856     __ cmpw(rscratch2, 0b1011100101);
2857     __ br(Assembler::NE, bail);
2858     __ ubfx(rscratch2, rscratch1, 0, 5);
2859     __ cmpw(rscratch2, 0b11111);
2860     __ br(Assembler::NE, bail);
2861 #endif
2862     // Adjust return pc forward to step over the safepoint poll instruction
2863     __ add(r20, r20, NativeInstruction::instruction_size);
2864     __ protect_return_address(r20);
2865     __ str(r20, Address(rfp, wordSize));
2866   }
2867 
2868   __ bind(no_adjust);
2869   // Normal exit, restore registers and exit.
2870   reg_save.restore_live_registers(masm);
2871 
2872   __ ret(lr);
2873 
2874 #ifdef ASSERT
2875   __ bind(bail);
2876   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2877 #endif
2878 
2879   // Make sure all code is generated
2880   masm->flush();
2881 
2882   // Fill-out other meta info
2883   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2884 }
2885 
2886 //
2887 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2888 //
2889 // Generate a stub that calls into vm to find out the proper destination
2890 // of a java call. All the argument registers are live at this point
2891 // but since this is generic code we don't know what they are and the caller
2892 // must do any gc of the args.
2893 //
2894 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
2895   assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2896 
2897   // allocate space for the code
2898   ResourceMark rm;
2899 
2900   CodeBuffer buffer(name, 1000, 512);
2901   MacroAssembler* masm                = new MacroAssembler(&buffer);
2902 
2903   int frame_size_in_words;
2904   RegisterSaver reg_save(false /* save_vectors */);
2905 
2906   OopMapSet *oop_maps = new OopMapSet();
2907   OopMap* map = nullptr;
2908 
2909   int start = __ offset();
2910 
2911   map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2912 
2913   int frame_complete = __ offset();
2914 
2915   {
2916     Label retaddr;
2917     __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2918 
2919     __ mov(c_rarg0, rthread);
2920     __ lea(rscratch1, RuntimeAddress(destination));
2921 
2922     __ blr(rscratch1);
2923     __ bind(retaddr);
2924   }
2925 
2926   // Set an oopmap for the call site.
2927   // We need this not only for callee-saved registers, but also for volatile
2928   // registers that the compiler might be keeping live across a safepoint.
2929 
2930   oop_maps->add_gc_map( __ offset() - start, map);
2931 
2932   // r0 contains the address we are going to jump to assuming no exception got installed
2933 
2934   // clear last_Java_sp
2935   __ reset_last_Java_frame(false);
2936   // check for pending exceptions
2937   Label pending;
2938   __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2939   __ cbnz(rscratch1, pending);
2940 
2941   // get the returned Method*
2942   __ get_vm_result_2(rmethod, rthread);
2943   __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod)));
2944 
2945   // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2946   __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes()));
2947   reg_save.restore_live_registers(masm);
2948 
2949   // We are back to the original state on entry and ready to go.
2950 
2951   __ br(rscratch1);
2952 
2953   // Pending exception after the safepoint
2954 
2955   __ bind(pending);
2956 
2957   reg_save.restore_live_registers(masm);
2958 
2959   // exception pending => remove activation and forward to exception handler
2960 
2961   __ str(zr, Address(rthread, JavaThread::vm_result_offset()));
2962 
2963   __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
2964   __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2965 
2966   // -------------
2967   // make sure all code is generated
2968   masm->flush();
2969 
2970   // return the  blob
2971   // frame_size_words or bytes??
2972   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2973 }
2974 
2975 #ifdef COMPILER2
2976 // This is here instead of runtime_aarch64_64.cpp because it uses SimpleRuntimeFrame
2977 //
2978 //------------------------------generate_exception_blob---------------------------
2979 // creates exception blob at the end
2980 // Using exception blob, this code is jumped from a compiled method.
2981 // (see emit_exception_handler in x86_64.ad file)
2982 //
2983 // Given an exception pc at a call we call into the runtime for the
2984 // handler in this method. This handler might merely restore state
2985 // (i.e. callee save registers) unwind the frame and jump to the
2986 // exception handler for the nmethod if there is no Java level handler
2987 // for the nmethod.
2988 //
2989 // This code is entered with a jmp.
2990 //
2991 // Arguments:
2992 //   r0: exception oop
2993 //   r3: exception pc
2994 //
2995 // Results:
2996 //   r0: exception oop
2997 //   r3: exception pc in caller or ???
2998 //   destination: exception handler of caller
2999 //
3000 // Note: the exception pc MUST be at a call (precise debug information)
3001 //       Registers r0, r3, r2, r4, r5, r8-r11 are not callee saved.
3002 //
3003 
3004 void OptoRuntime::generate_exception_blob() {
3005   assert(!OptoRuntime::is_callee_saved_register(R3_num), "");
3006   assert(!OptoRuntime::is_callee_saved_register(R0_num), "");
3007   assert(!OptoRuntime::is_callee_saved_register(R2_num), "");
3008 
3009   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3010 
3011   // Allocate space for the code
3012   ResourceMark rm;
3013   // Setup code generation tools
3014   CodeBuffer buffer("exception_blob", 2048, 1024);
3015   MacroAssembler* masm = new MacroAssembler(&buffer);
3016 
3017   // TODO check various assumptions made here
3018   //
3019   // make sure we do so before running this
3020 
3021   address start = __ pc();
3022 
3023   // push rfp and retaddr by hand
3024   // Exception pc is 'return address' for stack walker
3025   __ protect_return_address();
3026   __ stp(rfp, lr, Address(__ pre(sp, -2 * wordSize)));
3027   // there are no callee save registers and we don't expect an
3028   // arg reg save area
3029 #ifndef PRODUCT
3030   assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
3031 #endif
3032   // Store exception in Thread object. We cannot pass any arguments to the
3033   // handle_exception call, since we do not want to make any assumption
3034   // about the size of the frame where the exception happened in.
3035   __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
3036   __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
3037 
3038   // This call does all the hard work.  It checks if an exception handler
3039   // exists in the method.
3040   // If so, it returns the handler address.
3041   // If not, it prepares for stack-unwinding, restoring the callee-save
3042   // registers of the frame being removed.
3043   //
3044   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3045   //
3046   // n.b. 1 gp arg, 0 fp args, integral return type
3047 
3048   // the stack should always be aligned
3049   address the_pc = __ pc();
3050   __ set_last_Java_frame(sp, noreg, the_pc, rscratch1);
3051   __ mov(c_rarg0, rthread);
3052   __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3053   __ blr(rscratch1);
3054   // handle_exception_C is a special VM call which does not require an explicit
3055   // instruction sync afterwards.
3056 
3057   // May jump to SVE compiled code
3058   __ reinitialize_ptrue();
3059 
3060   // Set an oopmap for the call site.  This oopmap will only be used if we
3061   // are unwinding the stack.  Hence, all locations will be dead.
3062   // Callee-saved registers will be the same as the frame above (i.e.,
3063   // handle_exception_stub), since they were restored when we got the
3064   // exception.
3065 
3066   OopMapSet* oop_maps = new OopMapSet();
3067 
3068   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3069 
3070   __ reset_last_Java_frame(false);
3071 
3072   // Restore callee-saved registers
3073 
3074   // rfp is an implicitly saved callee saved register (i.e. the calling
3075   // convention will save restore it in prolog/epilog) Other than that
3076   // there are no callee save registers now that adapter frames are gone.
3077   // and we dont' expect an arg reg save area
3078   __ ldp(rfp, r3, Address(__ post(sp, 2 * wordSize)));
3079   __ authenticate_return_address(r3);
3080 
3081   // r0: exception handler
3082 
3083   // We have a handler in r0 (could be deopt blob).
3084   __ mov(r8, r0);
3085 
3086   // Get the exception oop
3087   __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
3088   // Get the exception pc in case we are deoptimized
3089   __ ldr(r4, Address(rthread, JavaThread::exception_pc_offset()));
3090 #ifdef ASSERT
3091   __ str(zr, Address(rthread, JavaThread::exception_handler_pc_offset()));
3092   __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
3093 #endif
3094   // Clear the exception oop so GC no longer processes it as a root.
3095   __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
3096 
3097   // r0: exception oop
3098   // r8:  exception handler
3099   // r4: exception pc
3100   // Jump to handler
3101 
3102   __ br(r8);
3103 
3104   // Make sure all code is generated
3105   masm->flush();
3106 
3107   // Set exception blob
3108   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
3109 }
3110 
3111 #endif // COMPILER2