1 /*
2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "compiler/compilerDefinitions.inline.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "gc/shared/collectedHeap.hpp"
31 #include "gc/shared/tlab_globals.hpp"
32 #include "interpreter/interpreter.hpp"
33 #include "interpreter/interpreterRuntime.hpp"
34 #include "interpreter/interp_masm.hpp"
35 #include "interpreter/templateTable.hpp"
36 #include "memory/universe.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/method.hpp"
39 #include "oops/objArrayKlass.hpp"
40 #include "oops/oop.inline.hpp"
41 #include "prims/jvmtiExport.hpp"
42 #include "prims/methodHandles.hpp"
43 #include "runtime/frame.inline.hpp"
44 #include "runtime/sharedRuntime.hpp"
45 #include "runtime/stubRoutines.hpp"
46 #include "runtime/synchronizer.hpp"
47 #include "utilities/powerOfTwo.hpp"
48
49 #define __ _masm->
50
51 // Address computation: local variables
52
53 static inline Address iaddress(int n) {
54 return Address(rlocals, Interpreter::local_offset_in_bytes(n));
55 }
56
57 static inline Address laddress(int n) {
58 return iaddress(n + 1);
59 }
60
61 static inline Address faddress(int n) {
62 return iaddress(n);
63 }
64
65 static inline Address daddress(int n) {
66 return laddress(n);
67 }
68
69 static inline Address aaddress(int n) {
70 return iaddress(n);
71 }
72
73 static inline Address iaddress(Register r) {
74 return Address(rlocals, r, Address::lsl(3));
75 }
76
77 static inline Address laddress(Register r, Register scratch,
78 InterpreterMacroAssembler* _masm) {
79 __ lea(scratch, Address(rlocals, r, Address::lsl(3)));
80 return Address(scratch, Interpreter::local_offset_in_bytes(1));
81 }
82
83 static inline Address faddress(Register r) {
84 return iaddress(r);
85 }
86
87 static inline Address daddress(Register r, Register scratch,
88 InterpreterMacroAssembler* _masm) {
89 return laddress(r, scratch, _masm);
90 }
91
92 static inline Address aaddress(Register r) {
93 return iaddress(r);
94 }
95
96 static inline Address at_rsp() {
97 return Address(esp, 0);
98 }
99
100 // At top of Java expression stack which may be different than esp(). It
101 // isn't for category 1 objects.
102 static inline Address at_tos () {
103 return Address(esp, Interpreter::expr_offset_in_bytes(0));
104 }
105
106 static inline Address at_tos_p1() {
107 return Address(esp, Interpreter::expr_offset_in_bytes(1));
108 }
109
110 static inline Address at_tos_p2() {
111 return Address(esp, Interpreter::expr_offset_in_bytes(2));
112 }
113
114 static inline Address at_tos_p3() {
115 return Address(esp, Interpreter::expr_offset_in_bytes(3));
116 }
117
118 static inline Address at_tos_p4() {
119 return Address(esp, Interpreter::expr_offset_in_bytes(4));
120 }
121
122 static inline Address at_tos_p5() {
123 return Address(esp, Interpreter::expr_offset_in_bytes(5));
124 }
125
126 // Condition conversion
127 static Assembler::Condition j_not(TemplateTable::Condition cc) {
128 switch (cc) {
129 case TemplateTable::equal : return Assembler::NE;
130 case TemplateTable::not_equal : return Assembler::EQ;
131 case TemplateTable::less : return Assembler::GE;
132 case TemplateTable::less_equal : return Assembler::GT;
133 case TemplateTable::greater : return Assembler::LE;
134 case TemplateTable::greater_equal: return Assembler::LT;
135 }
136 ShouldNotReachHere();
137 return Assembler::EQ;
138 }
139
140
141 // Miscellaneous helper routines
142 // Store an oop (or null) at the Address described by obj.
143 // If val == noreg this means store a null
144 static void do_oop_store(InterpreterMacroAssembler* _masm,
145 Address dst,
146 Register val,
147 DecoratorSet decorators) {
148 assert(val == noreg || val == r0, "parameter is just for looks");
149 __ store_heap_oop(dst, val, r10, r11, r3, decorators);
150 }
151
152 static void do_oop_load(InterpreterMacroAssembler* _masm,
153 Address src,
154 Register dst,
155 DecoratorSet decorators) {
156 __ load_heap_oop(dst, src, r10, r11, decorators);
157 }
158
159 Address TemplateTable::at_bcp(int offset) {
160 assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
161 return Address(rbcp, offset);
162 }
163
164 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
165 Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
166 int byte_no)
167 {
168 if (!RewriteBytecodes) return;
169 Label L_patch_done;
170
171 switch (bc) {
172 case Bytecodes::_fast_aputfield:
173 case Bytecodes::_fast_bputfield:
174 case Bytecodes::_fast_zputfield:
175 case Bytecodes::_fast_cputfield:
176 case Bytecodes::_fast_dputfield:
177 case Bytecodes::_fast_fputfield:
178 case Bytecodes::_fast_iputfield:
179 case Bytecodes::_fast_lputfield:
180 case Bytecodes::_fast_sputfield:
181 {
182 // We skip bytecode quickening for putfield instructions when
183 // the put_code written to the constant pool cache is zero.
184 // This is required so that every execution of this instruction
185 // calls out to InterpreterRuntime::resolve_get_put to do
186 // additional, required work.
187 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
188 assert(load_bc_into_bc_reg, "we use bc_reg as temp");
189 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
190 __ movw(bc_reg, bc);
191 __ cbzw(temp_reg, L_patch_done); // don't patch
192 }
193 break;
194 default:
195 assert(byte_no == -1, "sanity");
196 // the pair bytecodes have already done the load.
197 if (load_bc_into_bc_reg) {
198 __ movw(bc_reg, bc);
199 }
200 }
201
202 if (JvmtiExport::can_post_breakpoint()) {
203 Label L_fast_patch;
204 // if a breakpoint is present we can't rewrite the stream directly
205 __ load_unsigned_byte(temp_reg, at_bcp(0));
206 __ cmpw(temp_reg, Bytecodes::_breakpoint);
207 __ br(Assembler::NE, L_fast_patch);
208 // Let breakpoint table handling rewrite to quicker bytecode
209 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg);
210 __ b(L_patch_done);
211 __ bind(L_fast_patch);
212 }
213
214 #ifdef ASSERT
215 Label L_okay;
216 __ load_unsigned_byte(temp_reg, at_bcp(0));
217 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc));
218 __ br(Assembler::EQ, L_okay);
219 __ cmpw(temp_reg, bc_reg);
220 __ br(Assembler::EQ, L_okay);
221 __ stop("patching the wrong bytecode");
222 __ bind(L_okay);
223 #endif
224
225 // patch bytecode
226 __ strb(bc_reg, at_bcp(0));
227 __ bind(L_patch_done);
228 }
229
230
231 // Individual instructions
232
233 void TemplateTable::nop() {
234 transition(vtos, vtos);
235 // nothing to do
236 }
237
238 void TemplateTable::shouldnotreachhere() {
239 transition(vtos, vtos);
240 __ stop("shouldnotreachhere bytecode");
241 }
242
243 void TemplateTable::aconst_null()
244 {
245 transition(vtos, atos);
246 __ mov(r0, 0);
247 }
248
249 void TemplateTable::iconst(int value)
250 {
251 transition(vtos, itos);
252 __ mov(r0, value);
253 }
254
255 void TemplateTable::lconst(int value)
256 {
257 __ mov(r0, value);
258 }
259
260 void TemplateTable::fconst(int value)
261 {
262 transition(vtos, ftos);
263 switch (value) {
264 case 0:
265 __ fmovs(v0, 0.0);
266 break;
267 case 1:
268 __ fmovs(v0, 1.0);
269 break;
270 case 2:
271 __ fmovs(v0, 2.0);
272 break;
273 default:
274 ShouldNotReachHere();
275 break;
276 }
277 }
278
279 void TemplateTable::dconst(int value)
280 {
281 transition(vtos, dtos);
282 switch (value) {
283 case 0:
284 __ fmovd(v0, 0.0);
285 break;
286 case 1:
287 __ fmovd(v0, 1.0);
288 break;
289 case 2:
290 __ fmovd(v0, 2.0);
291 break;
292 default:
293 ShouldNotReachHere();
294 break;
295 }
296 }
297
298 void TemplateTable::bipush()
299 {
300 transition(vtos, itos);
301 __ load_signed_byte32(r0, at_bcp(1));
302 }
303
304 void TemplateTable::sipush()
305 {
306 transition(vtos, itos);
307 __ load_unsigned_short(r0, at_bcp(1));
308 __ revw(r0, r0);
309 __ asrw(r0, r0, 16);
310 }
311
312 void TemplateTable::ldc(LdcType type)
313 {
314 transition(vtos, vtos);
315 Label call_ldc, notFloat, notClass, notInt, Done;
316
317 if (is_ldc_wide(type)) {
318 __ get_unsigned_2_byte_index_at_bcp(r1, 1);
319 } else {
320 __ load_unsigned_byte(r1, at_bcp(1));
321 }
322 __ get_cpool_and_tags(r2, r0);
323
324 const int base_offset = ConstantPool::header_size() * wordSize;
325 const int tags_offset = Array<u1>::base_offset_in_bytes();
326
327 // get type
328 __ add(r3, r1, tags_offset);
329 __ lea(r3, Address(r0, r3));
330 __ ldarb(r3, r3);
331
332 // unresolved class - get the resolved class
333 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass);
334 __ br(Assembler::EQ, call_ldc);
335
336 // unresolved class in error state - call into runtime to throw the error
337 // from the first resolution attempt
338 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError);
339 __ br(Assembler::EQ, call_ldc);
340
341 // resolved class - need to call vm to get java mirror of the class
342 __ cmp(r3, (u1)JVM_CONSTANT_Class);
343 __ br(Assembler::NE, notClass);
344
345 __ bind(call_ldc);
346 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0);
347 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
348 __ push_ptr(r0);
349 __ verify_oop(r0);
350 __ b(Done);
351
352 __ bind(notClass);
353 __ cmp(r3, (u1)JVM_CONSTANT_Float);
354 __ br(Assembler::NE, notFloat);
355 // ftos
356 __ adds(r1, r2, r1, Assembler::LSL, 3);
357 __ ldrs(v0, Address(r1, base_offset));
358 __ push_f();
359 __ b(Done);
360
361 __ bind(notFloat);
362
363 __ cmp(r3, (u1)JVM_CONSTANT_Integer);
364 __ br(Assembler::NE, notInt);
365
366 // itos
367 __ adds(r1, r2, r1, Assembler::LSL, 3);
368 __ ldrw(r0, Address(r1, base_offset));
369 __ push_i(r0);
370 __ b(Done);
371
372 __ bind(notInt);
373 condy_helper(Done);
374
375 __ bind(Done);
376 }
377
378 // Fast path for caching oop constants.
379 void TemplateTable::fast_aldc(LdcType type)
380 {
381 transition(vtos, atos);
382
383 Register result = r0;
384 Register tmp = r1;
385 Register rarg = r2;
386
387 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1);
388
389 Label resolved;
390
391 // We are resolved if the resolved reference cache entry contains a
392 // non-null object (String, MethodType, etc.)
393 assert_different_registers(result, tmp);
394 __ get_cache_index_at_bcp(tmp, 1, index_size);
395 __ load_resolved_reference_at_index(result, tmp);
396 __ cbnz(result, resolved);
397
398 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
399
400 // first time invocation - must resolve first
401 __ mov(rarg, (int)bytecode());
402 __ call_VM(result, entry, rarg);
403
404 __ bind(resolved);
405
406 { // Check for the null sentinel.
407 // If we just called the VM, it already did the mapping for us,
408 // but it's harmless to retry.
409 Label notNull;
410
411 // Stash null_sentinel address to get its value later
412 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr());
413 __ ldr(tmp, Address(rarg));
414 __ resolve_oop_handle(tmp, r5, rscratch2);
415 __ cmpoop(result, tmp);
416 __ br(Assembler::NE, notNull);
417 __ mov(result, 0); // null object reference
418 __ bind(notNull);
419 }
420
421 if (VerifyOops) {
422 // Safe to call with 0 result
423 __ verify_oop(result);
424 }
425 }
426
427 void TemplateTable::ldc2_w()
428 {
429 transition(vtos, vtos);
430 Label notDouble, notLong, Done;
431 __ get_unsigned_2_byte_index_at_bcp(r0, 1);
432
433 __ get_cpool_and_tags(r1, r2);
434 const int base_offset = ConstantPool::header_size() * wordSize;
435 const int tags_offset = Array<u1>::base_offset_in_bytes();
436
437 // get type
438 __ lea(r2, Address(r2, r0, Address::lsl(0)));
439 __ load_unsigned_byte(r2, Address(r2, tags_offset));
440 __ cmpw(r2, (int)JVM_CONSTANT_Double);
441 __ br(Assembler::NE, notDouble);
442
443 // dtos
444 __ lea (r2, Address(r1, r0, Address::lsl(3)));
445 __ ldrd(v0, Address(r2, base_offset));
446 __ push_d();
447 __ b(Done);
448
449 __ bind(notDouble);
450 __ cmpw(r2, (int)JVM_CONSTANT_Long);
451 __ br(Assembler::NE, notLong);
452
453 // ltos
454 __ lea(r0, Address(r1, r0, Address::lsl(3)));
455 __ ldr(r0, Address(r0, base_offset));
456 __ push_l();
457 __ b(Done);
458
459 __ bind(notLong);
460 condy_helper(Done);
461
462 __ bind(Done);
463 }
464
465 void TemplateTable::condy_helper(Label& Done)
466 {
467 Register obj = r0;
468 Register rarg = r1;
469 Register flags = r2;
470 Register off = r3;
471
472 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
473
474 __ mov(rarg, (int) bytecode());
475 __ call_VM(obj, entry, rarg);
476
477 __ get_vm_result_2(flags, rthread);
478
479 // VMr = obj = base address to find primitive value to push
480 // VMr2 = flags = (tos, off) using format of CPCE::_flags
481 __ mov(off, flags);
482 __ andw(off, off, ConstantPoolCacheEntry::field_index_mask);
483
484 const Address field(obj, off);
485
486 // What sort of thing are we loading?
487 // x86 uses a shift and mask or wings it with a shift plus assert
488 // the mask is not needed. aarch64 just uses bitfield extract
489 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift,
490 ConstantPoolCacheEntry::tos_state_bits);
491
492 switch (bytecode()) {
493 case Bytecodes::_ldc:
494 case Bytecodes::_ldc_w:
495 {
496 // tos in (itos, ftos, stos, btos, ctos, ztos)
497 Label notInt, notFloat, notShort, notByte, notChar, notBool;
498 __ cmpw(flags, itos);
499 __ br(Assembler::NE, notInt);
500 // itos
501 __ ldrw(r0, field);
502 __ push(itos);
503 __ b(Done);
504
505 __ bind(notInt);
506 __ cmpw(flags, ftos);
507 __ br(Assembler::NE, notFloat);
508 // ftos
509 __ load_float(field);
510 __ push(ftos);
511 __ b(Done);
512
513 __ bind(notFloat);
514 __ cmpw(flags, stos);
515 __ br(Assembler::NE, notShort);
516 // stos
517 __ load_signed_short(r0, field);
518 __ push(stos);
519 __ b(Done);
520
521 __ bind(notShort);
522 __ cmpw(flags, btos);
523 __ br(Assembler::NE, notByte);
524 // btos
525 __ load_signed_byte(r0, field);
526 __ push(btos);
527 __ b(Done);
528
529 __ bind(notByte);
530 __ cmpw(flags, ctos);
531 __ br(Assembler::NE, notChar);
532 // ctos
533 __ load_unsigned_short(r0, field);
534 __ push(ctos);
535 __ b(Done);
536
537 __ bind(notChar);
538 __ cmpw(flags, ztos);
539 __ br(Assembler::NE, notBool);
540 // ztos
541 __ load_signed_byte(r0, field);
542 __ push(ztos);
543 __ b(Done);
544
545 __ bind(notBool);
546 break;
547 }
548
549 case Bytecodes::_ldc2_w:
550 {
551 Label notLong, notDouble;
552 __ cmpw(flags, ltos);
553 __ br(Assembler::NE, notLong);
554 // ltos
555 __ ldr(r0, field);
556 __ push(ltos);
557 __ b(Done);
558
559 __ bind(notLong);
560 __ cmpw(flags, dtos);
561 __ br(Assembler::NE, notDouble);
562 // dtos
563 __ load_double(field);
564 __ push(dtos);
565 __ b(Done);
566
567 __ bind(notDouble);
568 break;
569 }
570
571 default:
572 ShouldNotReachHere();
573 }
574
575 __ stop("bad ldc/condy");
576 }
577
578 void TemplateTable::locals_index(Register reg, int offset)
579 {
580 __ ldrb(reg, at_bcp(offset));
581 __ neg(reg, reg);
582 }
583
584 void TemplateTable::iload() {
585 iload_internal();
586 }
587
588 void TemplateTable::nofast_iload() {
589 iload_internal(may_not_rewrite);
590 }
591
592 void TemplateTable::iload_internal(RewriteControl rc) {
593 transition(vtos, itos);
594 if (RewriteFrequentPairs && rc == may_rewrite) {
595 Label rewrite, done;
596 Register bc = r4;
597
598 // get next bytecode
599 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
600
601 // if _iload, wait to rewrite to iload2. We only want to rewrite the
602 // last two iloads in a pair. Comparing against fast_iload means that
603 // the next bytecode is neither an iload or a caload, and therefore
604 // an iload pair.
605 __ cmpw(r1, Bytecodes::_iload);
606 __ br(Assembler::EQ, done);
607
608 // if _fast_iload rewrite to _fast_iload2
609 __ cmpw(r1, Bytecodes::_fast_iload);
610 __ movw(bc, Bytecodes::_fast_iload2);
611 __ br(Assembler::EQ, rewrite);
612
613 // if _caload rewrite to _fast_icaload
614 __ cmpw(r1, Bytecodes::_caload);
615 __ movw(bc, Bytecodes::_fast_icaload);
616 __ br(Assembler::EQ, rewrite);
617
618 // else rewrite to _fast_iload
619 __ movw(bc, Bytecodes::_fast_iload);
620
621 // rewrite
622 // bc: new bytecode
623 __ bind(rewrite);
624 patch_bytecode(Bytecodes::_iload, bc, r1, false);
625 __ bind(done);
626
627 }
628
629 // do iload, get the local value into tos
630 locals_index(r1);
631 __ ldr(r0, iaddress(r1));
632
633 }
634
635 void TemplateTable::fast_iload2()
636 {
637 transition(vtos, itos);
638 locals_index(r1);
639 __ ldr(r0, iaddress(r1));
640 __ push(itos);
641 locals_index(r1, 3);
642 __ ldr(r0, iaddress(r1));
643 }
644
645 void TemplateTable::fast_iload()
646 {
647 transition(vtos, itos);
648 locals_index(r1);
649 __ ldr(r0, iaddress(r1));
650 }
651
652 void TemplateTable::lload()
653 {
654 transition(vtos, ltos);
655 __ ldrb(r1, at_bcp(1));
656 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
657 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
658 }
659
660 void TemplateTable::fload()
661 {
662 transition(vtos, ftos);
663 locals_index(r1);
664 // n.b. we use ldrd here because this is a 64 bit slot
665 // this is comparable to the iload case
666 __ ldrd(v0, faddress(r1));
667 }
668
669 void TemplateTable::dload()
670 {
671 transition(vtos, dtos);
672 __ ldrb(r1, at_bcp(1));
673 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
674 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
675 }
676
677 void TemplateTable::aload()
678 {
679 transition(vtos, atos);
680 locals_index(r1);
681 __ ldr(r0, iaddress(r1));
682 }
683
684 void TemplateTable::locals_index_wide(Register reg) {
685 __ ldrh(reg, at_bcp(2));
686 __ rev16w(reg, reg);
687 __ neg(reg, reg);
688 }
689
690 void TemplateTable::wide_iload() {
691 transition(vtos, itos);
692 locals_index_wide(r1);
693 __ ldr(r0, iaddress(r1));
694 }
695
696 void TemplateTable::wide_lload()
697 {
698 transition(vtos, ltos);
699 __ ldrh(r1, at_bcp(2));
700 __ rev16w(r1, r1);
701 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
702 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1)));
703 }
704
705 void TemplateTable::wide_fload()
706 {
707 transition(vtos, ftos);
708 locals_index_wide(r1);
709 // n.b. we use ldrd here because this is a 64 bit slot
710 // this is comparable to the iload case
711 __ ldrd(v0, faddress(r1));
712 }
713
714 void TemplateTable::wide_dload()
715 {
716 transition(vtos, dtos);
717 __ ldrh(r1, at_bcp(2));
718 __ rev16w(r1, r1);
719 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord);
720 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1)));
721 }
722
723 void TemplateTable::wide_aload()
724 {
725 transition(vtos, atos);
726 locals_index_wide(r1);
727 __ ldr(r0, aaddress(r1));
728 }
729
730 void TemplateTable::index_check(Register array, Register index)
731 {
732 // destroys r1, rscratch1
733 // sign extend index for use by indexed load
734 // __ movl2ptr(index, index);
735 // check index
736 Register length = rscratch1;
737 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
738 __ cmpw(index, length);
739 if (index != r1) {
740 // ??? convention: move aberrant index into r1 for exception message
741 assert(r1 != array, "different registers");
742 __ mov(r1, index);
743 }
744 Label ok;
745 __ br(Assembler::LO, ok);
746 // ??? convention: move array into r3 for exception message
747 __ mov(r3, array);
748 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
749 __ br(rscratch1);
750 __ bind(ok);
751 }
752
753 void TemplateTable::iaload()
754 {
755 transition(itos, itos);
756 __ mov(r1, r0);
757 __ pop_ptr(r0);
758 // r0: array
759 // r1: index
760 index_check(r0, r1); // leaves index in r1, kills rscratch1
761 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
762 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
763 }
764
765 void TemplateTable::laload()
766 {
767 transition(itos, ltos);
768 __ mov(r1, r0);
769 __ pop_ptr(r0);
770 // r0: array
771 // r1: index
772 index_check(r0, r1); // leaves index in r1, kills rscratch1
773 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
774 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
775 }
776
777 void TemplateTable::faload()
778 {
779 transition(itos, ftos);
780 __ mov(r1, r0);
781 __ pop_ptr(r0);
782 // r0: array
783 // r1: index
784 index_check(r0, r1); // leaves index in r1, kills rscratch1
785 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
786 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg);
787 }
788
789 void TemplateTable::daload()
790 {
791 transition(itos, dtos);
792 __ mov(r1, r0);
793 __ pop_ptr(r0);
794 // r0: array
795 // r1: index
796 index_check(r0, r1); // leaves index in r1, kills rscratch1
797 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
798 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg);
799 }
800
801 void TemplateTable::aaload()
802 {
803 transition(itos, atos);
804 __ mov(r1, r0);
805 __ pop_ptr(r0);
806 // r0: array
807 // r1: index
808 index_check(r0, r1); // leaves index in r1, kills rscratch1
809 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
810 do_oop_load(_masm,
811 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)),
812 r0,
813 IS_ARRAY);
814 }
815
816 void TemplateTable::baload()
817 {
818 transition(itos, itos);
819 __ mov(r1, r0);
820 __ pop_ptr(r0);
821 // r0: array
822 // r1: index
823 index_check(r0, r1); // leaves index in r1, kills rscratch1
824 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
825 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg);
826 }
827
828 void TemplateTable::caload()
829 {
830 transition(itos, itos);
831 __ mov(r1, r0);
832 __ pop_ptr(r0);
833 // r0: array
834 // r1: index
835 index_check(r0, r1); // leaves index in r1, kills rscratch1
836 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
837 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
838 }
839
840 // iload followed by caload frequent pair
841 void TemplateTable::fast_icaload()
842 {
843 transition(vtos, itos);
844 // load index out of locals
845 locals_index(r2);
846 __ ldr(r1, iaddress(r2));
847
848 __ pop_ptr(r0);
849
850 // r0: array
851 // r1: index
852 index_check(r0, r1); // leaves index in r1, kills rscratch1
853 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
854 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
855 }
856
857 void TemplateTable::saload()
858 {
859 transition(itos, itos);
860 __ mov(r1, r0);
861 __ pop_ptr(r0);
862 // r0: array
863 // r1: index
864 index_check(r0, r1); // leaves index in r1, kills rscratch1
865 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
866 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg);
867 }
868
869 void TemplateTable::iload(int n)
870 {
871 transition(vtos, itos);
872 __ ldr(r0, iaddress(n));
873 }
874
875 void TemplateTable::lload(int n)
876 {
877 transition(vtos, ltos);
878 __ ldr(r0, laddress(n));
879 }
880
881 void TemplateTable::fload(int n)
882 {
883 transition(vtos, ftos);
884 __ ldrs(v0, faddress(n));
885 }
886
887 void TemplateTable::dload(int n)
888 {
889 transition(vtos, dtos);
890 __ ldrd(v0, daddress(n));
891 }
892
893 void TemplateTable::aload(int n)
894 {
895 transition(vtos, atos);
896 __ ldr(r0, iaddress(n));
897 }
898
899 void TemplateTable::aload_0() {
900 aload_0_internal();
901 }
902
903 void TemplateTable::nofast_aload_0() {
904 aload_0_internal(may_not_rewrite);
905 }
906
907 void TemplateTable::aload_0_internal(RewriteControl rc) {
908 // According to bytecode histograms, the pairs:
909 //
910 // _aload_0, _fast_igetfield
911 // _aload_0, _fast_agetfield
912 // _aload_0, _fast_fgetfield
913 //
914 // occur frequently. If RewriteFrequentPairs is set, the (slow)
915 // _aload_0 bytecode checks if the next bytecode is either
916 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
917 // rewrites the current bytecode into a pair bytecode; otherwise it
918 // rewrites the current bytecode into _fast_aload_0 that doesn't do
919 // the pair check anymore.
920 //
921 // Note: If the next bytecode is _getfield, the rewrite must be
922 // delayed, otherwise we may miss an opportunity for a pair.
923 //
924 // Also rewrite frequent pairs
925 // aload_0, aload_1
926 // aload_0, iload_1
927 // These bytecodes with a small amount of code are most profitable
928 // to rewrite
929 if (RewriteFrequentPairs && rc == may_rewrite) {
930 Label rewrite, done;
931 const Register bc = r4;
932
933 // get next bytecode
934 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
935
936 // if _getfield then wait with rewrite
937 __ cmpw(r1, Bytecodes::Bytecodes::_getfield);
938 __ br(Assembler::EQ, done);
939
940 // if _igetfield then rewrite to _fast_iaccess_0
941 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
942 __ cmpw(r1, Bytecodes::_fast_igetfield);
943 __ movw(bc, Bytecodes::_fast_iaccess_0);
944 __ br(Assembler::EQ, rewrite);
945
946 // if _agetfield then rewrite to _fast_aaccess_0
947 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
948 __ cmpw(r1, Bytecodes::_fast_agetfield);
949 __ movw(bc, Bytecodes::_fast_aaccess_0);
950 __ br(Assembler::EQ, rewrite);
951
952 // if _fgetfield then rewrite to _fast_faccess_0
953 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
954 __ cmpw(r1, Bytecodes::_fast_fgetfield);
955 __ movw(bc, Bytecodes::_fast_faccess_0);
956 __ br(Assembler::EQ, rewrite);
957
958 // else rewrite to _fast_aload0
959 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
960 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0);
961
962 // rewrite
963 // bc: new bytecode
964 __ bind(rewrite);
965 patch_bytecode(Bytecodes::_aload_0, bc, r1, false);
966
967 __ bind(done);
968 }
969
970 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
971 aload(0);
972 }
973
974 void TemplateTable::istore()
975 {
976 transition(itos, vtos);
977 locals_index(r1);
978 // FIXME: We're being very pernickerty here storing a jint in a
979 // local with strw, which costs an extra instruction over what we'd
980 // be able to do with a simple str. We should just store the whole
981 // word.
982 __ lea(rscratch1, iaddress(r1));
983 __ strw(r0, Address(rscratch1));
984 }
985
986 void TemplateTable::lstore()
987 {
988 transition(ltos, vtos);
989 locals_index(r1);
990 __ str(r0, laddress(r1, rscratch1, _masm));
991 }
992
993 void TemplateTable::fstore() {
994 transition(ftos, vtos);
995 locals_index(r1);
996 __ lea(rscratch1, iaddress(r1));
997 __ strs(v0, Address(rscratch1));
998 }
999
1000 void TemplateTable::dstore() {
1001 transition(dtos, vtos);
1002 locals_index(r1);
1003 __ strd(v0, daddress(r1, rscratch1, _masm));
1004 }
1005
1006 void TemplateTable::astore()
1007 {
1008 transition(vtos, vtos);
1009 __ pop_ptr(r0);
1010 locals_index(r1);
1011 __ str(r0, aaddress(r1));
1012 }
1013
1014 void TemplateTable::wide_istore() {
1015 transition(vtos, vtos);
1016 __ pop_i();
1017 locals_index_wide(r1);
1018 __ lea(rscratch1, iaddress(r1));
1019 __ strw(r0, Address(rscratch1));
1020 }
1021
1022 void TemplateTable::wide_lstore() {
1023 transition(vtos, vtos);
1024 __ pop_l();
1025 locals_index_wide(r1);
1026 __ str(r0, laddress(r1, rscratch1, _masm));
1027 }
1028
1029 void TemplateTable::wide_fstore() {
1030 transition(vtos, vtos);
1031 __ pop_f();
1032 locals_index_wide(r1);
1033 __ lea(rscratch1, faddress(r1));
1034 __ strs(v0, rscratch1);
1035 }
1036
1037 void TemplateTable::wide_dstore() {
1038 transition(vtos, vtos);
1039 __ pop_d();
1040 locals_index_wide(r1);
1041 __ strd(v0, daddress(r1, rscratch1, _masm));
1042 }
1043
1044 void TemplateTable::wide_astore() {
1045 transition(vtos, vtos);
1046 __ pop_ptr(r0);
1047 locals_index_wide(r1);
1048 __ str(r0, aaddress(r1));
1049 }
1050
1051 void TemplateTable::iastore() {
1052 transition(itos, vtos);
1053 __ pop_i(r1);
1054 __ pop_ptr(r3);
1055 // r0: value
1056 // r1: index
1057 // r3: array
1058 index_check(r3, r1); // prefer index in r1
1059 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
1060 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg);
1061 }
1062
1063 void TemplateTable::lastore() {
1064 transition(ltos, vtos);
1065 __ pop_i(r1);
1066 __ pop_ptr(r3);
1067 // r0: value
1068 // r1: index
1069 // r3: array
1070 index_check(r3, r1); // prefer index in r1
1071 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
1072 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg);
1073 }
1074
1075 void TemplateTable::fastore() {
1076 transition(ftos, vtos);
1077 __ pop_i(r1);
1078 __ pop_ptr(r3);
1079 // v0: value
1080 // r1: index
1081 // r3: array
1082 index_check(r3, r1); // prefer index in r1
1083 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
1084 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg);
1085 }
1086
1087 void TemplateTable::dastore() {
1088 transition(dtos, vtos);
1089 __ pop_i(r1);
1090 __ pop_ptr(r3);
1091 // v0: value
1092 // r1: index
1093 // r3: array
1094 index_check(r3, r1); // prefer index in r1
1095 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
1096 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg);
1097 }
1098
1099 void TemplateTable::aastore() {
1100 Label is_null, ok_is_subtype, done;
1101 transition(vtos, vtos);
1102 // stack: ..., array, index, value
1103 __ ldr(r0, at_tos()); // value
1104 __ ldr(r2, at_tos_p1()); // index
1105 __ ldr(r3, at_tos_p2()); // array
1106
1107 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop));
1108
1109 index_check(r3, r2); // kills r1
1110 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
1111
1112 // do array store check - check for null value first
1113 __ cbz(r0, is_null);
1114
1115 // Move subklass into r1
1116 __ load_klass(r1, r0);
1117 // Move superklass into r0
1118 __ load_klass(r0, r3);
1119 __ ldr(r0, Address(r0,
1120 ObjArrayKlass::element_klass_offset()));
1121 // Compress array + index*oopSize + 12 into a single register. Frees r2.
1122
1123 // Generate subtype check. Blows r2, r5
1124 // Superklass in r0. Subklass in r1.
1125 __ gen_subtype_check(r1, ok_is_subtype);
1126
1127 // Come here on failure
1128 // object is at TOS
1129 __ b(Interpreter::_throw_ArrayStoreException_entry);
1130
1131 // Come here on success
1132 __ bind(ok_is_subtype);
1133
1134 // Get the value we will store
1135 __ ldr(r0, at_tos());
1136 // Now store using the appropriate barrier
1137 do_oop_store(_masm, element_address, r0, IS_ARRAY);
1138 __ b(done);
1139
1140 // Have a null in r0, r3=array, r2=index. Store null at ary[idx]
1141 __ bind(is_null);
1142 __ profile_null_seen(r2);
1143
1144 // Store a null
1145 do_oop_store(_masm, element_address, noreg, IS_ARRAY);
1146
1147 // Pop stack arguments
1148 __ bind(done);
1149 __ add(esp, esp, 3 * Interpreter::stackElementSize);
1150 }
1151
1152 void TemplateTable::bastore()
1153 {
1154 transition(itos, vtos);
1155 __ pop_i(r1);
1156 __ pop_ptr(r3);
1157 // r0: value
1158 // r1: index
1159 // r3: array
1160 index_check(r3, r1); // prefer index in r1
1161
1162 // Need to check whether array is boolean or byte
1163 // since both types share the bastore bytecode.
1164 __ load_klass(r2, r3);
1165 __ ldrw(r2, Address(r2, Klass::layout_helper_offset()));
1166 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit());
1167 Label L_skip;
1168 __ tbz(r2, diffbit_index, L_skip);
1169 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
1170 __ bind(L_skip);
1171
1172 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
1173 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg);
1174 }
1175
1176 void TemplateTable::castore()
1177 {
1178 transition(itos, vtos);
1179 __ pop_i(r1);
1180 __ pop_ptr(r3);
1181 // r0: value
1182 // r1: index
1183 // r3: array
1184 index_check(r3, r1); // prefer index in r1
1185 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
1186 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg);
1187 }
1188
1189 void TemplateTable::sastore()
1190 {
1191 castore();
1192 }
1193
1194 void TemplateTable::istore(int n)
1195 {
1196 transition(itos, vtos);
1197 __ str(r0, iaddress(n));
1198 }
1199
1200 void TemplateTable::lstore(int n)
1201 {
1202 transition(ltos, vtos);
1203 __ str(r0, laddress(n));
1204 }
1205
1206 void TemplateTable::fstore(int n)
1207 {
1208 transition(ftos, vtos);
1209 __ strs(v0, faddress(n));
1210 }
1211
1212 void TemplateTable::dstore(int n)
1213 {
1214 transition(dtos, vtos);
1215 __ strd(v0, daddress(n));
1216 }
1217
1218 void TemplateTable::astore(int n)
1219 {
1220 transition(vtos, vtos);
1221 __ pop_ptr(r0);
1222 __ str(r0, iaddress(n));
1223 }
1224
1225 void TemplateTable::pop()
1226 {
1227 transition(vtos, vtos);
1228 __ add(esp, esp, Interpreter::stackElementSize);
1229 }
1230
1231 void TemplateTable::pop2()
1232 {
1233 transition(vtos, vtos);
1234 __ add(esp, esp, 2 * Interpreter::stackElementSize);
1235 }
1236
1237 void TemplateTable::dup()
1238 {
1239 transition(vtos, vtos);
1240 __ ldr(r0, Address(esp, 0));
1241 __ push(r0);
1242 // stack: ..., a, a
1243 }
1244
1245 void TemplateTable::dup_x1()
1246 {
1247 transition(vtos, vtos);
1248 // stack: ..., a, b
1249 __ ldr(r0, at_tos()); // load b
1250 __ ldr(r2, at_tos_p1()); // load a
1251 __ str(r0, at_tos_p1()); // store b
1252 __ str(r2, at_tos()); // store a
1253 __ push(r0); // push b
1254 // stack: ..., b, a, b
1255 }
1256
1257 void TemplateTable::dup_x2()
1258 {
1259 transition(vtos, vtos);
1260 // stack: ..., a, b, c
1261 __ ldr(r0, at_tos()); // load c
1262 __ ldr(r2, at_tos_p2()); // load a
1263 __ str(r0, at_tos_p2()); // store c in a
1264 __ push(r0); // push c
1265 // stack: ..., c, b, c, c
1266 __ ldr(r0, at_tos_p2()); // load b
1267 __ str(r2, at_tos_p2()); // store a in b
1268 // stack: ..., c, a, c, c
1269 __ str(r0, at_tos_p1()); // store b in c
1270 // stack: ..., c, a, b, c
1271 }
1272
1273 void TemplateTable::dup2()
1274 {
1275 transition(vtos, vtos);
1276 // stack: ..., a, b
1277 __ ldr(r0, at_tos_p1()); // load a
1278 __ push(r0); // push a
1279 __ ldr(r0, at_tos_p1()); // load b
1280 __ push(r0); // push b
1281 // stack: ..., a, b, a, b
1282 }
1283
1284 void TemplateTable::dup2_x1()
1285 {
1286 transition(vtos, vtos);
1287 // stack: ..., a, b, c
1288 __ ldr(r2, at_tos()); // load c
1289 __ ldr(r0, at_tos_p1()); // load b
1290 __ push(r0); // push b
1291 __ push(r2); // push c
1292 // stack: ..., a, b, c, b, c
1293 __ str(r2, at_tos_p3()); // store c in b
1294 // stack: ..., a, c, c, b, c
1295 __ ldr(r2, at_tos_p4()); // load a
1296 __ str(r2, at_tos_p2()); // store a in 2nd c
1297 // stack: ..., a, c, a, b, c
1298 __ str(r0, at_tos_p4()); // store b in a
1299 // stack: ..., b, c, a, b, c
1300 }
1301
1302 void TemplateTable::dup2_x2()
1303 {
1304 transition(vtos, vtos);
1305 // stack: ..., a, b, c, d
1306 __ ldr(r2, at_tos()); // load d
1307 __ ldr(r0, at_tos_p1()); // load c
1308 __ push(r0) ; // push c
1309 __ push(r2); // push d
1310 // stack: ..., a, b, c, d, c, d
1311 __ ldr(r0, at_tos_p4()); // load b
1312 __ str(r0, at_tos_p2()); // store b in d
1313 __ str(r2, at_tos_p4()); // store d in b
1314 // stack: ..., a, d, c, b, c, d
1315 __ ldr(r2, at_tos_p5()); // load a
1316 __ ldr(r0, at_tos_p3()); // load c
1317 __ str(r2, at_tos_p3()); // store a in c
1318 __ str(r0, at_tos_p5()); // store c in a
1319 // stack: ..., c, d, a, b, c, d
1320 }
1321
1322 void TemplateTable::swap()
1323 {
1324 transition(vtos, vtos);
1325 // stack: ..., a, b
1326 __ ldr(r2, at_tos_p1()); // load a
1327 __ ldr(r0, at_tos()); // load b
1328 __ str(r2, at_tos()); // store a in b
1329 __ str(r0, at_tos_p1()); // store b in a
1330 // stack: ..., b, a
1331 }
1332
1333 void TemplateTable::iop2(Operation op)
1334 {
1335 transition(itos, itos);
1336 // r0 <== r1 op r0
1337 __ pop_i(r1);
1338 switch (op) {
1339 case add : __ addw(r0, r1, r0); break;
1340 case sub : __ subw(r0, r1, r0); break;
1341 case mul : __ mulw(r0, r1, r0); break;
1342 case _and : __ andw(r0, r1, r0); break;
1343 case _or : __ orrw(r0, r1, r0); break;
1344 case _xor : __ eorw(r0, r1, r0); break;
1345 case shl : __ lslvw(r0, r1, r0); break;
1346 case shr : __ asrvw(r0, r1, r0); break;
1347 case ushr : __ lsrvw(r0, r1, r0);break;
1348 default : ShouldNotReachHere();
1349 }
1350 }
1351
1352 void TemplateTable::lop2(Operation op)
1353 {
1354 transition(ltos, ltos);
1355 // r0 <== r1 op r0
1356 __ pop_l(r1);
1357 switch (op) {
1358 case add : __ add(r0, r1, r0); break;
1359 case sub : __ sub(r0, r1, r0); break;
1360 case mul : __ mul(r0, r1, r0); break;
1361 case _and : __ andr(r0, r1, r0); break;
1362 case _or : __ orr(r0, r1, r0); break;
1363 case _xor : __ eor(r0, r1, r0); break;
1364 default : ShouldNotReachHere();
1365 }
1366 }
1367
1368 void TemplateTable::idiv()
1369 {
1370 transition(itos, itos);
1371 // explicitly check for div0
1372 Label no_div0;
1373 __ cbnzw(r0, no_div0);
1374 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1375 __ br(rscratch1);
1376 __ bind(no_div0);
1377 __ pop_i(r1);
1378 // r0 <== r1 idiv r0
1379 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false);
1380 }
1381
1382 void TemplateTable::irem()
1383 {
1384 transition(itos, itos);
1385 // explicitly check for div0
1386 Label no_div0;
1387 __ cbnzw(r0, no_div0);
1388 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1389 __ br(rscratch1);
1390 __ bind(no_div0);
1391 __ pop_i(r1);
1392 // r0 <== r1 irem r0
1393 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true);
1394 }
1395
1396 void TemplateTable::lmul()
1397 {
1398 transition(ltos, ltos);
1399 __ pop_l(r1);
1400 __ mul(r0, r0, r1);
1401 }
1402
1403 void TemplateTable::ldiv()
1404 {
1405 transition(ltos, ltos);
1406 // explicitly check for div0
1407 Label no_div0;
1408 __ cbnz(r0, no_div0);
1409 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1410 __ br(rscratch1);
1411 __ bind(no_div0);
1412 __ pop_l(r1);
1413 // r0 <== r1 ldiv r0
1414 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false);
1415 }
1416
1417 void TemplateTable::lrem()
1418 {
1419 transition(ltos, ltos);
1420 // explicitly check for div0
1421 Label no_div0;
1422 __ cbnz(r0, no_div0);
1423 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry);
1424 __ br(rscratch1);
1425 __ bind(no_div0);
1426 __ pop_l(r1);
1427 // r0 <== r1 lrem r0
1428 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true);
1429 }
1430
1431 void TemplateTable::lshl()
1432 {
1433 transition(itos, ltos);
1434 // shift count is in r0
1435 __ pop_l(r1);
1436 __ lslv(r0, r1, r0);
1437 }
1438
1439 void TemplateTable::lshr()
1440 {
1441 transition(itos, ltos);
1442 // shift count is in r0
1443 __ pop_l(r1);
1444 __ asrv(r0, r1, r0);
1445 }
1446
1447 void TemplateTable::lushr()
1448 {
1449 transition(itos, ltos);
1450 // shift count is in r0
1451 __ pop_l(r1);
1452 __ lsrv(r0, r1, r0);
1453 }
1454
1455 void TemplateTable::fop2(Operation op)
1456 {
1457 transition(ftos, ftos);
1458 switch (op) {
1459 case add:
1460 // n.b. use ldrd because this is a 64 bit slot
1461 __ pop_f(v1);
1462 __ fadds(v0, v1, v0);
1463 break;
1464 case sub:
1465 __ pop_f(v1);
1466 __ fsubs(v0, v1, v0);
1467 break;
1468 case mul:
1469 __ pop_f(v1);
1470 __ fmuls(v0, v1, v0);
1471 break;
1472 case div:
1473 __ pop_f(v1);
1474 __ fdivs(v0, v1, v0);
1475 break;
1476 case rem:
1477 __ fmovs(v1, v0);
1478 __ pop_f(v0);
1479 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
1480 break;
1481 default:
1482 ShouldNotReachHere();
1483 break;
1484 }
1485 }
1486
1487 void TemplateTable::dop2(Operation op)
1488 {
1489 transition(dtos, dtos);
1490 switch (op) {
1491 case add:
1492 // n.b. use ldrd because this is a 64 bit slot
1493 __ pop_d(v1);
1494 __ faddd(v0, v1, v0);
1495 break;
1496 case sub:
1497 __ pop_d(v1);
1498 __ fsubd(v0, v1, v0);
1499 break;
1500 case mul:
1501 __ pop_d(v1);
1502 __ fmuld(v0, v1, v0);
1503 break;
1504 case div:
1505 __ pop_d(v1);
1506 __ fdivd(v0, v1, v0);
1507 break;
1508 case rem:
1509 __ fmovd(v1, v0);
1510 __ pop_d(v0);
1511 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
1512 break;
1513 default:
1514 ShouldNotReachHere();
1515 break;
1516 }
1517 }
1518
1519 void TemplateTable::ineg()
1520 {
1521 transition(itos, itos);
1522 __ negw(r0, r0);
1523
1524 }
1525
1526 void TemplateTable::lneg()
1527 {
1528 transition(ltos, ltos);
1529 __ neg(r0, r0);
1530 }
1531
1532 void TemplateTable::fneg()
1533 {
1534 transition(ftos, ftos);
1535 __ fnegs(v0, v0);
1536 }
1537
1538 void TemplateTable::dneg()
1539 {
1540 transition(dtos, dtos);
1541 __ fnegd(v0, v0);
1542 }
1543
1544 void TemplateTable::iinc()
1545 {
1546 transition(vtos, vtos);
1547 __ load_signed_byte(r1, at_bcp(2)); // get constant
1548 locals_index(r2);
1549 __ ldr(r0, iaddress(r2));
1550 __ addw(r0, r0, r1);
1551 __ str(r0, iaddress(r2));
1552 }
1553
1554 void TemplateTable::wide_iinc()
1555 {
1556 transition(vtos, vtos);
1557 // __ mov(r1, zr);
1558 __ ldrw(r1, at_bcp(2)); // get constant and index
1559 __ rev16(r1, r1);
1560 __ ubfx(r2, r1, 0, 16);
1561 __ neg(r2, r2);
1562 __ sbfx(r1, r1, 16, 16);
1563 __ ldr(r0, iaddress(r2));
1564 __ addw(r0, r0, r1);
1565 __ str(r0, iaddress(r2));
1566 }
1567
1568 void TemplateTable::convert()
1569 {
1570 // Checking
1571 #ifdef ASSERT
1572 {
1573 TosState tos_in = ilgl;
1574 TosState tos_out = ilgl;
1575 switch (bytecode()) {
1576 case Bytecodes::_i2l: // fall through
1577 case Bytecodes::_i2f: // fall through
1578 case Bytecodes::_i2d: // fall through
1579 case Bytecodes::_i2b: // fall through
1580 case Bytecodes::_i2c: // fall through
1581 case Bytecodes::_i2s: tos_in = itos; break;
1582 case Bytecodes::_l2i: // fall through
1583 case Bytecodes::_l2f: // fall through
1584 case Bytecodes::_l2d: tos_in = ltos; break;
1585 case Bytecodes::_f2i: // fall through
1586 case Bytecodes::_f2l: // fall through
1587 case Bytecodes::_f2d: tos_in = ftos; break;
1588 case Bytecodes::_d2i: // fall through
1589 case Bytecodes::_d2l: // fall through
1590 case Bytecodes::_d2f: tos_in = dtos; break;
1591 default : ShouldNotReachHere();
1592 }
1593 switch (bytecode()) {
1594 case Bytecodes::_l2i: // fall through
1595 case Bytecodes::_f2i: // fall through
1596 case Bytecodes::_d2i: // fall through
1597 case Bytecodes::_i2b: // fall through
1598 case Bytecodes::_i2c: // fall through
1599 case Bytecodes::_i2s: tos_out = itos; break;
1600 case Bytecodes::_i2l: // fall through
1601 case Bytecodes::_f2l: // fall through
1602 case Bytecodes::_d2l: tos_out = ltos; break;
1603 case Bytecodes::_i2f: // fall through
1604 case Bytecodes::_l2f: // fall through
1605 case Bytecodes::_d2f: tos_out = ftos; break;
1606 case Bytecodes::_i2d: // fall through
1607 case Bytecodes::_l2d: // fall through
1608 case Bytecodes::_f2d: tos_out = dtos; break;
1609 default : ShouldNotReachHere();
1610 }
1611 transition(tos_in, tos_out);
1612 }
1613 #endif // ASSERT
1614 // static const int64_t is_nan = 0x8000000000000000L;
1615
1616 // Conversion
1617 switch (bytecode()) {
1618 case Bytecodes::_i2l:
1619 __ sxtw(r0, r0);
1620 break;
1621 case Bytecodes::_i2f:
1622 __ scvtfws(v0, r0);
1623 break;
1624 case Bytecodes::_i2d:
1625 __ scvtfwd(v0, r0);
1626 break;
1627 case Bytecodes::_i2b:
1628 __ sxtbw(r0, r0);
1629 break;
1630 case Bytecodes::_i2c:
1631 __ uxthw(r0, r0);
1632 break;
1633 case Bytecodes::_i2s:
1634 __ sxthw(r0, r0);
1635 break;
1636 case Bytecodes::_l2i:
1637 __ uxtw(r0, r0);
1638 break;
1639 case Bytecodes::_l2f:
1640 __ scvtfs(v0, r0);
1641 break;
1642 case Bytecodes::_l2d:
1643 __ scvtfd(v0, r0);
1644 break;
1645 case Bytecodes::_f2i:
1646 {
1647 Label L_Okay;
1648 __ clear_fpsr();
1649 __ fcvtzsw(r0, v0);
1650 __ get_fpsr(r1);
1651 __ cbzw(r1, L_Okay);
1652 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i));
1653 __ bind(L_Okay);
1654 }
1655 break;
1656 case Bytecodes::_f2l:
1657 {
1658 Label L_Okay;
1659 __ clear_fpsr();
1660 __ fcvtzs(r0, v0);
1661 __ get_fpsr(r1);
1662 __ cbzw(r1, L_Okay);
1663 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l));
1664 __ bind(L_Okay);
1665 }
1666 break;
1667 case Bytecodes::_f2d:
1668 __ fcvts(v0, v0);
1669 break;
1670 case Bytecodes::_d2i:
1671 {
1672 Label L_Okay;
1673 __ clear_fpsr();
1674 __ fcvtzdw(r0, v0);
1675 __ get_fpsr(r1);
1676 __ cbzw(r1, L_Okay);
1677 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i));
1678 __ bind(L_Okay);
1679 }
1680 break;
1681 case Bytecodes::_d2l:
1682 {
1683 Label L_Okay;
1684 __ clear_fpsr();
1685 __ fcvtzd(r0, v0);
1686 __ get_fpsr(r1);
1687 __ cbzw(r1, L_Okay);
1688 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l));
1689 __ bind(L_Okay);
1690 }
1691 break;
1692 case Bytecodes::_d2f:
1693 __ fcvtd(v0, v0);
1694 break;
1695 default:
1696 ShouldNotReachHere();
1697 }
1698 }
1699
1700 void TemplateTable::lcmp()
1701 {
1702 transition(ltos, itos);
1703 Label done;
1704 __ pop_l(r1);
1705 __ cmp(r1, r0);
1706 __ mov(r0, (uint64_t)-1L);
1707 __ br(Assembler::LT, done);
1708 // __ mov(r0, 1UL);
1709 // __ csel(r0, r0, zr, Assembler::NE);
1710 // and here is a faster way
1711 __ csinc(r0, zr, zr, Assembler::EQ);
1712 __ bind(done);
1713 }
1714
1715 void TemplateTable::float_cmp(bool is_float, int unordered_result)
1716 {
1717 Label done;
1718 if (is_float) {
1719 // XXX get rid of pop here, use ... reg, mem32
1720 __ pop_f(v1);
1721 __ fcmps(v1, v0);
1722 } else {
1723 // XXX get rid of pop here, use ... reg, mem64
1724 __ pop_d(v1);
1725 __ fcmpd(v1, v0);
1726 }
1727 if (unordered_result < 0) {
1728 // we want -1 for unordered or less than, 0 for equal and 1 for
1729 // greater than.
1730 __ mov(r0, (uint64_t)-1L);
1731 // for FP LT tests less than or unordered
1732 __ br(Assembler::LT, done);
1733 // install 0 for EQ otherwise 1
1734 __ csinc(r0, zr, zr, Assembler::EQ);
1735 } else {
1736 // we want -1 for less than, 0 for equal and 1 for unordered or
1737 // greater than.
1738 __ mov(r0, 1L);
1739 // for FP HI tests greater than or unordered
1740 __ br(Assembler::HI, done);
1741 // install 0 for EQ otherwise ~0
1742 __ csinv(r0, zr, zr, Assembler::EQ);
1743
1744 }
1745 __ bind(done);
1746 }
1747
1748 void TemplateTable::branch(bool is_jsr, bool is_wide)
1749 {
1750 __ profile_taken_branch(r0, r1);
1751 const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1752 InvocationCounter::counter_offset();
1753 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1754 InvocationCounter::counter_offset();
1755
1756 // load branch displacement
1757 if (!is_wide) {
1758 __ ldrh(r2, at_bcp(1));
1759 __ rev16(r2, r2);
1760 // sign extend the 16 bit value in r2
1761 __ sbfm(r2, r2, 0, 15);
1762 } else {
1763 __ ldrw(r2, at_bcp(1));
1764 __ revw(r2, r2);
1765 // sign extend the 32 bit value in r2
1766 __ sbfm(r2, r2, 0, 31);
1767 }
1768
1769 // Handle all the JSR stuff here, then exit.
1770 // It's much shorter and cleaner than intermingling with the non-JSR
1771 // normal-branch stuff occurring below.
1772
1773 if (is_jsr) {
1774 // Pre-load the next target bytecode into rscratch1
1775 __ load_unsigned_byte(rscratch1, Address(rbcp, r2));
1776 // compute return address as bci
1777 __ ldr(rscratch2, Address(rmethod, Method::const_offset()));
1778 __ add(rscratch2, rscratch2,
1779 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
1780 __ sub(r1, rbcp, rscratch2);
1781 __ push_i(r1);
1782 // Adjust the bcp by the 16-bit displacement in r2
1783 __ add(rbcp, rbcp, r2);
1784 __ dispatch_only(vtos, /*generate_poll*/true);
1785 return;
1786 }
1787
1788 // Normal (non-jsr) branch handling
1789
1790 // Adjust the bcp by the displacement in r2
1791 __ add(rbcp, rbcp, r2);
1792
1793 assert(UseLoopCounter || !UseOnStackReplacement,
1794 "on-stack-replacement requires loop counters");
1795 Label backedge_counter_overflow;
1796 Label dispatch;
1797 if (UseLoopCounter) {
1798 // increment backedge counter for backward branches
1799 // r0: MDO
1800 // w1: MDO bumped taken-count
1801 // r2: target offset
1802 __ cmp(r2, zr);
1803 __ br(Assembler::GT, dispatch); // count only if backward branch
1804
1805 // ECN: FIXME: This code smells
1806 // check if MethodCounters exists
1807 Label has_counters;
1808 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1809 __ cbnz(rscratch1, has_counters);
1810 __ push(r0);
1811 __ push(r1);
1812 __ push(r2);
1813 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
1814 InterpreterRuntime::build_method_counters), rmethod);
1815 __ pop(r2);
1816 __ pop(r1);
1817 __ pop(r0);
1818 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1819 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory
1820 __ bind(has_counters);
1821
1822 Label no_mdo;
1823 int increment = InvocationCounter::count_increment;
1824 if (ProfileInterpreter) {
1825 // Are we profiling?
1826 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
1827 __ cbz(r1, no_mdo);
1828 // Increment the MDO backedge counter
1829 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) +
1830 in_bytes(InvocationCounter::counter_offset()));
1831 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset()));
1832 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1833 r0, rscratch1, false, Assembler::EQ,
1834 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1835 __ b(dispatch);
1836 }
1837 __ bind(no_mdo);
1838 // Increment backedge counter in MethodCounters*
1839 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset()));
1840 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset()));
1841 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask,
1842 r0, rscratch2, false, Assembler::EQ,
1843 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
1844 __ bind(dispatch);
1845 }
1846
1847 // Pre-load the next target bytecode into rscratch1
1848 __ load_unsigned_byte(rscratch1, Address(rbcp, 0));
1849
1850 // continue with the bytecode @ target
1851 // rscratch1: target bytecode
1852 // rbcp: target bcp
1853 __ dispatch_only(vtos, /*generate_poll*/true);
1854
1855 if (UseLoopCounter && UseOnStackReplacement) {
1856 // invocation counter overflow
1857 __ bind(backedge_counter_overflow);
1858 __ neg(r2, r2);
1859 __ add(r2, r2, rbcp); // branch bcp
1860 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
1861 __ call_VM(noreg,
1862 CAST_FROM_FN_PTR(address,
1863 InterpreterRuntime::frequency_counter_overflow),
1864 r2);
1865 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode
1866
1867 // r0: osr nmethod (osr ok) or null (osr not possible)
1868 // w1: target bytecode
1869 // r2: scratch
1870 __ cbz(r0, dispatch); // test result -- no osr if null
1871 // nmethod may have been invalidated (VM may block upon call_VM return)
1872 __ ldrb(r2, Address(r0, nmethod::state_offset()));
1873 if (nmethod::in_use != 0)
1874 __ sub(r2, r2, nmethod::in_use);
1875 __ cbnz(r2, dispatch);
1876
1877 // We have the address of an on stack replacement routine in r0
1878 // We need to prepare to execute the OSR method. First we must
1879 // migrate the locals and monitors off of the stack.
1880
1881 __ mov(r19, r0); // save the nmethod
1882
1883 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1884
1885 // r0 is OSR buffer, move it to expected parameter location
1886 __ mov(j_rarg0, r0);
1887
1888 // remove activation
1889 // get sender esp
1890 __ ldr(esp,
1891 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
1892 // remove frame anchor
1893 __ leave();
1894 // Ensure compiled code always sees stack at proper alignment
1895 __ andr(sp, esp, -16);
1896
1897 // and begin the OSR nmethod
1898 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset()));
1899 __ br(rscratch1);
1900 }
1901 }
1902
1903
1904 void TemplateTable::if_0cmp(Condition cc)
1905 {
1906 transition(itos, vtos);
1907 // assume branch is more often taken than not (loops use backward branches)
1908 Label not_taken;
1909 if (cc == equal)
1910 __ cbnzw(r0, not_taken);
1911 else if (cc == not_equal)
1912 __ cbzw(r0, not_taken);
1913 else {
1914 __ andsw(zr, r0, r0);
1915 __ br(j_not(cc), not_taken);
1916 }
1917
1918 branch(false, false);
1919 __ bind(not_taken);
1920 __ profile_not_taken_branch(r0);
1921 }
1922
1923 void TemplateTable::if_icmp(Condition cc)
1924 {
1925 transition(itos, vtos);
1926 // assume branch is more often taken than not (loops use backward branches)
1927 Label not_taken;
1928 __ pop_i(r1);
1929 __ cmpw(r1, r0, Assembler::LSL);
1930 __ br(j_not(cc), not_taken);
1931 branch(false, false);
1932 __ bind(not_taken);
1933 __ profile_not_taken_branch(r0);
1934 }
1935
1936 void TemplateTable::if_nullcmp(Condition cc)
1937 {
1938 transition(atos, vtos);
1939 // assume branch is more often taken than not (loops use backward branches)
1940 Label not_taken;
1941 if (cc == equal)
1942 __ cbnz(r0, not_taken);
1943 else
1944 __ cbz(r0, not_taken);
1945 branch(false, false);
1946 __ bind(not_taken);
1947 __ profile_not_taken_branch(r0);
1948 }
1949
1950 void TemplateTable::if_acmp(Condition cc)
1951 {
1952 transition(atos, vtos);
1953 // assume branch is more often taken than not (loops use backward branches)
1954 Label not_taken;
1955 __ pop_ptr(r1);
1956 __ cmpoop(r1, r0);
1957 __ br(j_not(cc), not_taken);
1958 branch(false, false);
1959 __ bind(not_taken);
1960 __ profile_not_taken_branch(r0);
1961 }
1962
1963 void TemplateTable::ret() {
1964 transition(vtos, vtos);
1965 locals_index(r1);
1966 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1967 __ profile_ret(r1, r2);
1968 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1969 __ lea(rbcp, Address(rbcp, r1));
1970 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1971 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1972 }
1973
1974 void TemplateTable::wide_ret() {
1975 transition(vtos, vtos);
1976 locals_index_wide(r1);
1977 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp
1978 __ profile_ret(r1, r2);
1979 __ ldr(rbcp, Address(rmethod, Method::const_offset()));
1980 __ lea(rbcp, Address(rbcp, r1));
1981 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset()));
1982 __ dispatch_next(vtos, 0, /*generate_poll*/true);
1983 }
1984
1985
1986 void TemplateTable::tableswitch() {
1987 Label default_case, continue_execution;
1988 transition(itos, vtos);
1989 // align rbcp
1990 __ lea(r1, at_bcp(BytesPerInt));
1991 __ andr(r1, r1, -BytesPerInt);
1992 // load lo & hi
1993 __ ldrw(r2, Address(r1, BytesPerInt));
1994 __ ldrw(r3, Address(r1, 2 * BytesPerInt));
1995 __ rev32(r2, r2);
1996 __ rev32(r3, r3);
1997 // check against lo & hi
1998 __ cmpw(r0, r2);
1999 __ br(Assembler::LT, default_case);
2000 __ cmpw(r0, r3);
2001 __ br(Assembler::GT, default_case);
2002 // lookup dispatch offset
2003 __ subw(r0, r0, r2);
2004 __ lea(r3, Address(r1, r0, Address::uxtw(2)));
2005 __ ldrw(r3, Address(r3, 3 * BytesPerInt));
2006 __ profile_switch_case(r0, r1, r2);
2007 // continue execution
2008 __ bind(continue_execution);
2009 __ rev32(r3, r3);
2010 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0)));
2011 __ add(rbcp, rbcp, r3, ext::sxtw);
2012 __ dispatch_only(vtos, /*generate_poll*/true);
2013 // handle default
2014 __ bind(default_case);
2015 __ profile_switch_default(r0);
2016 __ ldrw(r3, Address(r1, 0));
2017 __ b(continue_execution);
2018 }
2019
2020 void TemplateTable::lookupswitch() {
2021 transition(itos, itos);
2022 __ stop("lookupswitch bytecode should have been rewritten");
2023 }
2024
2025 void TemplateTable::fast_linearswitch() {
2026 transition(itos, vtos);
2027 Label loop_entry, loop, found, continue_execution;
2028 // bswap r0 so we can avoid bswapping the table entries
2029 __ rev32(r0, r0);
2030 // align rbcp
2031 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of
2032 // this instruction (change offsets
2033 // below)
2034 __ andr(r19, r19, -BytesPerInt);
2035 // set counter
2036 __ ldrw(r1, Address(r19, BytesPerInt));
2037 __ rev32(r1, r1);
2038 __ b(loop_entry);
2039 // table search
2040 __ bind(loop);
2041 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2042 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt));
2043 __ cmpw(r0, rscratch1);
2044 __ br(Assembler::EQ, found);
2045 __ bind(loop_entry);
2046 __ subs(r1, r1, 1);
2047 __ br(Assembler::PL, loop);
2048 // default case
2049 __ profile_switch_default(r0);
2050 __ ldrw(r3, Address(r19, 0));
2051 __ b(continue_execution);
2052 // entry found -> get offset
2053 __ bind(found);
2054 __ lea(rscratch1, Address(r19, r1, Address::lsl(3)));
2055 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt));
2056 __ profile_switch_case(r1, r0, r19);
2057 // continue execution
2058 __ bind(continue_execution);
2059 __ rev32(r3, r3);
2060 __ add(rbcp, rbcp, r3, ext::sxtw);
2061 __ ldrb(rscratch1, Address(rbcp, 0));
2062 __ dispatch_only(vtos, /*generate_poll*/true);
2063 }
2064
2065 void TemplateTable::fast_binaryswitch() {
2066 transition(itos, vtos);
2067 // Implementation using the following core algorithm:
2068 //
2069 // int binary_search(int key, LookupswitchPair* array, int n) {
2070 // // Binary search according to "Methodik des Programmierens" by
2071 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
2072 // int i = 0;
2073 // int j = n;
2074 // while (i+1 < j) {
2075 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
2076 // // with Q: for all i: 0 <= i < n: key < a[i]
2077 // // where a stands for the array and assuming that the (inexisting)
2078 // // element a[n] is infinitely big.
2079 // int h = (i + j) >> 1;
2080 // // i < h < j
2081 // if (key < array[h].fast_match()) {
2082 // j = h;
2083 // } else {
2084 // i = h;
2085 // }
2086 // }
2087 // // R: a[i] <= key < a[i+1] or Q
2088 // // (i.e., if key is within array, i is the correct index)
2089 // return i;
2090 // }
2091
2092 // Register allocation
2093 const Register key = r0; // already set (tosca)
2094 const Register array = r1;
2095 const Register i = r2;
2096 const Register j = r3;
2097 const Register h = rscratch1;
2098 const Register temp = rscratch2;
2099
2100 // Find array start
2101 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
2102 // get rid of this
2103 // instruction (change
2104 // offsets below)
2105 __ andr(array, array, -BytesPerInt);
2106
2107 // Initialize i & j
2108 __ mov(i, 0); // i = 0;
2109 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array);
2110
2111 // Convert j into native byteordering
2112 __ rev32(j, j);
2113
2114 // And start
2115 Label entry;
2116 __ b(entry);
2117
2118 // binary search loop
2119 {
2120 Label loop;
2121 __ bind(loop);
2122 // int h = (i + j) >> 1;
2123 __ addw(h, i, j); // h = i + j;
2124 __ lsrw(h, h, 1); // h = (i + j) >> 1;
2125 // if (key < array[h].fast_match()) {
2126 // j = h;
2127 // } else {
2128 // i = h;
2129 // }
2130 // Convert array[h].match to native byte-ordering before compare
2131 __ ldr(temp, Address(array, h, Address::lsl(3)));
2132 __ rev32(temp, temp);
2133 __ cmpw(key, temp);
2134 // j = h if (key < array[h].fast_match())
2135 __ csel(j, h, j, Assembler::LT);
2136 // i = h if (key >= array[h].fast_match())
2137 __ csel(i, h, i, Assembler::GE);
2138 // while (i+1 < j)
2139 __ bind(entry);
2140 __ addw(h, i, 1); // i+1
2141 __ cmpw(h, j); // i+1 < j
2142 __ br(Assembler::LT, loop);
2143 }
2144
2145 // end of binary search, result index is i (must check again!)
2146 Label default_case;
2147 // Convert array[i].match to native byte-ordering before compare
2148 __ ldr(temp, Address(array, i, Address::lsl(3)));
2149 __ rev32(temp, temp);
2150 __ cmpw(key, temp);
2151 __ br(Assembler::NE, default_case);
2152
2153 // entry found -> j = offset
2154 __ add(j, array, i, ext::uxtx, 3);
2155 __ ldrw(j, Address(j, BytesPerInt));
2156 __ profile_switch_case(i, key, array);
2157 __ rev32(j, j);
2158 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2159 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2160 __ dispatch_only(vtos, /*generate_poll*/true);
2161
2162 // default case -> j = default offset
2163 __ bind(default_case);
2164 __ profile_switch_default(i);
2165 __ ldrw(j, Address(array, -2 * BytesPerInt));
2166 __ rev32(j, j);
2167 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0)));
2168 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0)));
2169 __ dispatch_only(vtos, /*generate_poll*/true);
2170 }
2171
2172
2173 void TemplateTable::_return(TosState state)
2174 {
2175 transition(state, state);
2176 assert(_desc->calls_vm(),
2177 "inconsistent calls_vm information"); // call in remove_activation
2178
2179 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2180 assert(state == vtos, "only valid state");
2181
2182 __ ldr(c_rarg1, aaddress(0));
2183 __ load_klass(r3, c_rarg1);
2184 __ ldrw(r3, Address(r3, Klass::access_flags_offset()));
2185 Label skip_register_finalizer;
2186 __ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer);
2187
2188 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
2189
2190 __ bind(skip_register_finalizer);
2191 }
2192
2193 // Issue a StoreStore barrier after all stores but before return
2194 // from any constructor for any class with a final field. We don't
2195 // know if this is a finalizer, so we always do so.
2196 if (_desc->bytecode() == Bytecodes::_return)
2197 __ membar(MacroAssembler::StoreStore);
2198
2199 // Narrow result if state is itos but result type is smaller.
2200 // Need to narrow in the return bytecode rather than in generate_return_entry
2201 // since compiled code callers expect the result to already be narrowed.
2202 if (state == itos) {
2203 __ narrow(r0);
2204 }
2205
2206 __ remove_activation(state);
2207 __ ret(lr);
2208 }
2209
2210 // ----------------------------------------------------------------------------
2211 // Volatile variables demand their effects be made known to all CPU's
2212 // in order. Store buffers on most chips allow reads & writes to
2213 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
2214 // without some kind of memory barrier (i.e., it's not sufficient that
2215 // the interpreter does not reorder volatile references, the hardware
2216 // also must not reorder them).
2217 //
2218 // According to the new Java Memory Model (JMM):
2219 // (1) All volatiles are serialized wrt to each other. ALSO reads &
2220 // writes act as acquire & release, so:
2221 // (2) A read cannot let unrelated NON-volatile memory refs that
2222 // happen after the read float up to before the read. It's OK for
2223 // non-volatile memory refs that happen before the volatile read to
2224 // float down below it.
2225 // (3) Similar a volatile write cannot let unrelated NON-volatile
2226 // memory refs that happen BEFORE the write float down to after the
2227 // write. It's OK for non-volatile memory refs that happen after the
2228 // volatile write to float up before it.
2229 //
2230 // We only put in barriers around volatile refs (they are expensive),
2231 // not _between_ memory refs (that would require us to track the
2232 // flavor of the previous memory refs). Requirements (2) and (3)
2233 // require some barriers before volatile stores and after volatile
2234 // loads. These nearly cover requirement (1) but miss the
2235 // volatile-store-volatile-load case. This final case is placed after
2236 // volatile-stores although it could just as well go before
2237 // volatile-loads.
2238
2239 void TemplateTable::resolve_cache_and_index(int byte_no,
2240 Register Rcache,
2241 Register index,
2242 size_t index_size) {
2243 const Register temp = r19;
2244 assert_different_registers(Rcache, index, temp);
2245
2246 Label resolved, clinit_barrier_slow;
2247
2248 Bytecodes::Code code = bytecode();
2249 switch (code) {
2250 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
2251 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
2252 default: break;
2253 }
2254
2255 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2256 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2257 __ subs(zr, temp, (int) code); // have we resolved this bytecode?
2258 __ br(Assembler::EQ, resolved);
2259
2260 // resolve first time through
2261 // Class initialization barrier slow path lands here as well.
2262 __ bind(clinit_barrier_slow);
2263 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2264 __ mov(temp, (int) code);
2265 __ call_VM(noreg, entry, temp);
2266
2267 // Update registers with resolved info
2268 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2269 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
2270 // so all clients ofthis method must be modified accordingly
2271 __ bind(resolved);
2272
2273 // Class initialization barrier for static methods
2274 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
2275 __ load_resolved_method_at_index(byte_no, temp, Rcache);
2276 __ load_method_holder(temp, temp);
2277 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow);
2278 }
2279 }
2280
2281 // The Rcache and index registers must be set before call
2282 // n.b unlike x86 cache already includes the index offset
2283 void TemplateTable::load_field_cp_cache_entry(Register obj,
2284 Register cache,
2285 Register index,
2286 Register off,
2287 Register flags,
2288 bool is_static = false) {
2289 assert_different_registers(cache, index, flags, off);
2290
2291 ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2292 // Field offset
2293 __ ldr(off, Address(cache, in_bytes(cp_base_offset +
2294 ConstantPoolCacheEntry::f2_offset())));
2295 // Flags
2296 __ ldrw(flags, Address(cache, in_bytes(cp_base_offset +
2297 ConstantPoolCacheEntry::flags_offset())));
2298
2299 // klass overwrite register
2300 if (is_static) {
2301 __ ldr(obj, Address(cache, in_bytes(cp_base_offset +
2302 ConstantPoolCacheEntry::f1_offset())));
2303 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2304 __ ldr(obj, Address(obj, mirror_offset));
2305 __ resolve_oop_handle(obj, r5, rscratch2);
2306 }
2307 }
2308
2309 // The rmethod register is input and overwritten to be the adapter method for the
2310 // indy call. Link Register (lr) is set to the return address for the adapter and
2311 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered
2312 void TemplateTable::load_invokedynamic_entry(Register method) {
2313 // setup registers
2314 const Register appendix = r0;
2315 const Register cache = r2;
2316 const Register index = r3;
2317 assert_different_registers(method, appendix, cache, index, rcpool);
2318
2319 __ save_bcp();
2320
2321 Label resolved;
2322
2323 __ load_resolved_indy_entry(cache, index);
2324 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2325 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2326 __ ldar(method, method);
2327
2328 // Compare the method to zero
2329 __ cbnz(method, resolved);
2330
2331 Bytecodes::Code code = bytecode();
2332
2333 // Call to the interpreter runtime to resolve invokedynamic
2334 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
2335 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic
2336 __ call_VM(noreg, entry, method);
2337 // Update registers with resolved info
2338 __ load_resolved_indy_entry(cache, index);
2339 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in()
2340 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset())));
2341 __ ldar(method, method);
2342
2343 #ifdef ASSERT
2344 __ cbnz(method, resolved);
2345 __ stop("Should be resolved by now");
2346 #endif // ASSERT
2347 __ bind(resolved);
2348
2349 Label L_no_push;
2350 // Check if there is an appendix
2351 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset())));
2352 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push);
2353
2354 // Get appendix
2355 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset())));
2356 // Push the appendix as a trailing parameter
2357 // since the parameter_size includes it.
2358 __ push(method);
2359 __ mov(method, index);
2360 __ load_resolved_reference_at_index(appendix, method);
2361 __ verify_oop(appendix);
2362 __ pop(method);
2363 __ push(appendix); // push appendix (MethodType, CallSite, etc.)
2364 __ bind(L_no_push);
2365
2366 // compute return type
2367 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset())));
2368 // load return address
2369 // Return address is loaded into link register(lr) and not pushed to the stack
2370 // like x86
2371 {
2372 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2373 __ mov(rscratch1, table_addr);
2374 __ ldr(lr, Address(rscratch1, index, Address::lsl(3)));
2375 }
2376 }
2377
2378 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2379 Register method,
2380 Register itable_index,
2381 Register flags,
2382 bool is_invokevirtual,
2383 bool is_invokevfinal, /*unused*/
2384 bool is_invokedynamic /*unused*/) {
2385 // setup registers
2386 const Register cache = rscratch2;
2387 const Register index = r4;
2388 assert_different_registers(method, flags);
2389 assert_different_registers(method, cache, index);
2390 assert_different_registers(itable_index, flags);
2391 assert_different_registers(itable_index, cache, index);
2392 // determine constant pool cache field offsets
2393 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2394 const int method_offset = in_bytes(
2395 ConstantPoolCache::base_offset() +
2396 (is_invokevirtual
2397 ? ConstantPoolCacheEntry::f2_offset()
2398 : ConstantPoolCacheEntry::f1_offset()));
2399 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2400 ConstantPoolCacheEntry::flags_offset());
2401 // access constant pool cache fields
2402 const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2403 ConstantPoolCacheEntry::f2_offset());
2404
2405 size_t index_size = sizeof(u2);
2406 resolve_cache_and_index(byte_no, cache, index, index_size);
2407 __ ldr(method, Address(cache, method_offset));
2408
2409 if (itable_index != noreg) {
2410 __ ldr(itable_index, Address(cache, index_offset));
2411 }
2412 __ ldrw(flags, Address(cache, flags_offset));
2413 }
2414
2415
2416 // The registers cache and index expected to be set before call.
2417 // Correct values of the cache and index registers are preserved.
2418 void TemplateTable::jvmti_post_field_access(Register cache, Register index,
2419 bool is_static, bool has_tos) {
2420 // do the JVMTI work here to avoid disturbing the register state below
2421 // We use c_rarg registers here because we want to use the register used in
2422 // the call to the VM
2423 if (JvmtiExport::can_post_field_access()) {
2424 // Check to see if a field access watch has been set before we
2425 // take the time to call into the VM.
2426 Label L1;
2427 assert_different_registers(cache, index, r0);
2428 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2429 __ ldrw(r0, Address(rscratch1));
2430 __ cbzw(r0, L1);
2431
2432 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
2433 __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset())));
2434
2435 if (is_static) {
2436 __ mov(c_rarg1, zr); // null object reference
2437 } else {
2438 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it
2439 __ verify_oop(c_rarg1);
2440 }
2441 // c_rarg1: object pointer or null
2442 // c_rarg2: cache entry pointer
2443 // c_rarg3: jvalue object on the stack
2444 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
2445 InterpreterRuntime::post_field_access),
2446 c_rarg1, c_rarg2, c_rarg3);
2447 __ get_cache_and_index_at_bcp(cache, index, 1);
2448 __ bind(L1);
2449 }
2450 }
2451
2452 void TemplateTable::pop_and_check_object(Register r)
2453 {
2454 __ pop_ptr(r);
2455 __ null_check(r); // for field access must check obj.
2456 __ verify_oop(r);
2457 }
2458
2459 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
2460 {
2461 const Register cache = r2;
2462 const Register index = r3;
2463 const Register obj = r4;
2464 const Register off = r19;
2465 const Register flags = r0;
2466 const Register raw_flags = r6;
2467 const Register bc = r4; // uses same reg as obj, so don't mix them
2468
2469 resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2470 jvmti_post_field_access(cache, index, is_static, false);
2471 load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static);
2472
2473 if (!is_static) {
2474 // obj is on the stack
2475 pop_and_check_object(obj);
2476 }
2477
2478 // 8179954: We need to make sure that the code generated for
2479 // volatile accesses forms a sequentially-consistent set of
2480 // operations when combined with STLR and LDAR. Without a leading
2481 // membar it's possible for a simple Dekker test to fail if loads
2482 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
2483 // the stores in one method and we interpret the loads in another.
2484 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){
2485 Label notVolatile;
2486 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2487 __ membar(MacroAssembler::AnyAny);
2488 __ bind(notVolatile);
2489 }
2490
2491 const Address field(obj, off);
2492
2493 Label Done, notByte, notBool, notInt, notShort, notChar,
2494 notLong, notFloat, notObj, notDouble;
2495
2496 // x86 uses a shift and mask or wings it with a shift plus assert
2497 // the mask is not needed. aarch64 just uses bitfield extract
2498 __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift,
2499 ConstantPoolCacheEntry::tos_state_bits);
2500
2501 assert(btos == 0, "change code, btos != 0");
2502 __ cbnz(flags, notByte);
2503
2504 // Don't rewrite getstatic, only getfield
2505 if (is_static) rc = may_not_rewrite;
2506
2507 // btos
2508 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
2509 __ push(btos);
2510 // Rewrite bytecode to be faster
2511 if (rc == may_rewrite) {
2512 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2513 }
2514 __ b(Done);
2515
2516 __ bind(notByte);
2517 __ cmp(flags, (u1)ztos);
2518 __ br(Assembler::NE, notBool);
2519
2520 // ztos (same code as btos)
2521 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg);
2522 __ push(ztos);
2523 // Rewrite bytecode to be faster
2524 if (rc == may_rewrite) {
2525 // use btos rewriting, no truncating to t/f bit is needed for getfield.
2526 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1);
2527 }
2528 __ b(Done);
2529
2530 __ bind(notBool);
2531 __ cmp(flags, (u1)atos);
2532 __ br(Assembler::NE, notObj);
2533 // atos
2534 do_oop_load(_masm, field, r0, IN_HEAP);
2535 __ push(atos);
2536 if (rc == may_rewrite) {
2537 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1);
2538 }
2539 __ b(Done);
2540
2541 __ bind(notObj);
2542 __ cmp(flags, (u1)itos);
2543 __ br(Assembler::NE, notInt);
2544 // itos
2545 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
2546 __ push(itos);
2547 // Rewrite bytecode to be faster
2548 if (rc == may_rewrite) {
2549 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1);
2550 }
2551 __ b(Done);
2552
2553 __ bind(notInt);
2554 __ cmp(flags, (u1)ctos);
2555 __ br(Assembler::NE, notChar);
2556 // ctos
2557 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
2558 __ push(ctos);
2559 // Rewrite bytecode to be faster
2560 if (rc == may_rewrite) {
2561 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1);
2562 }
2563 __ b(Done);
2564
2565 __ bind(notChar);
2566 __ cmp(flags, (u1)stos);
2567 __ br(Assembler::NE, notShort);
2568 // stos
2569 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
2570 __ push(stos);
2571 // Rewrite bytecode to be faster
2572 if (rc == may_rewrite) {
2573 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1);
2574 }
2575 __ b(Done);
2576
2577 __ bind(notShort);
2578 __ cmp(flags, (u1)ltos);
2579 __ br(Assembler::NE, notLong);
2580 // ltos
2581 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
2582 __ push(ltos);
2583 // Rewrite bytecode to be faster
2584 if (rc == may_rewrite) {
2585 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1);
2586 }
2587 __ b(Done);
2588
2589 __ bind(notLong);
2590 __ cmp(flags, (u1)ftos);
2591 __ br(Assembler::NE, notFloat);
2592 // ftos
2593 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2594 __ push(ftos);
2595 // Rewrite bytecode to be faster
2596 if (rc == may_rewrite) {
2597 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1);
2598 }
2599 __ b(Done);
2600
2601 __ bind(notFloat);
2602 #ifdef ASSERT
2603 __ cmp(flags, (u1)dtos);
2604 __ br(Assembler::NE, notDouble);
2605 #endif
2606 // dtos
2607 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
2608 __ push(dtos);
2609 // Rewrite bytecode to be faster
2610 if (rc == may_rewrite) {
2611 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1);
2612 }
2613 #ifdef ASSERT
2614 __ b(Done);
2615
2616 __ bind(notDouble);
2617 __ stop("Bad state");
2618 #endif
2619
2620 __ bind(Done);
2621
2622 Label notVolatile;
2623 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2624 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
2625 __ bind(notVolatile);
2626 }
2627
2628
2629 void TemplateTable::getfield(int byte_no)
2630 {
2631 getfield_or_static(byte_no, false);
2632 }
2633
2634 void TemplateTable::nofast_getfield(int byte_no) {
2635 getfield_or_static(byte_no, false, may_not_rewrite);
2636 }
2637
2638 void TemplateTable::getstatic(int byte_no)
2639 {
2640 getfield_or_static(byte_no, true);
2641 }
2642
2643 // The registers cache and index expected to be set before call.
2644 // The function may destroy various registers, just not the cache and index registers.
2645 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2646 transition(vtos, vtos);
2647
2648 ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2649
2650 if (JvmtiExport::can_post_field_modification()) {
2651 // Check to see if a field modification watch has been set before
2652 // we take the time to call into the VM.
2653 Label L1;
2654 assert_different_registers(cache, index, r0);
2655 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2656 __ ldrw(r0, Address(rscratch1));
2657 __ cbz(r0, L1);
2658
2659 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1);
2660
2661 if (is_static) {
2662 // Life is simple. Null out the object pointer.
2663 __ mov(c_rarg1, zr);
2664 } else {
2665 // Life is harder. The stack holds the value on top, followed by
2666 // the object. We don't know the size of the value, though; it
2667 // could be one or two words depending on its type. As a result,
2668 // we must find the type to determine where the object is.
2669 __ ldrw(c_rarg3, Address(c_rarg2,
2670 in_bytes(cp_base_offset +
2671 ConstantPoolCacheEntry::flags_offset())));
2672 __ lsr(c_rarg3, c_rarg3,
2673 ConstantPoolCacheEntry::tos_state_shift);
2674 ConstantPoolCacheEntry::verify_tos_state_shift();
2675 Label nope2, done, ok;
2676 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
2677 __ cmpw(c_rarg3, ltos);
2678 __ br(Assembler::EQ, ok);
2679 __ cmpw(c_rarg3, dtos);
2680 __ br(Assembler::NE, nope2);
2681 __ bind(ok);
2682 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue)
2683 __ bind(nope2);
2684 }
2685 // cache entry pointer
2686 __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset));
2687 // object (tos)
2688 __ mov(c_rarg3, esp);
2689 // c_rarg1: object pointer set up above (null if static)
2690 // c_rarg2: cache entry pointer
2691 // c_rarg3: jvalue object on the stack
2692 __ call_VM(noreg,
2693 CAST_FROM_FN_PTR(address,
2694 InterpreterRuntime::post_field_modification),
2695 c_rarg1, c_rarg2, c_rarg3);
2696 __ get_cache_and_index_at_bcp(cache, index, 1);
2697 __ bind(L1);
2698 }
2699 }
2700
2701 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
2702 transition(vtos, vtos);
2703
2704 const Register cache = r2;
2705 const Register index = r3;
2706 const Register obj = r2;
2707 const Register off = r19;
2708 const Register flags = r0;
2709 const Register bc = r4;
2710
2711 resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2712 jvmti_post_field_mod(cache, index, is_static);
2713 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2714
2715 Label Done;
2716 __ mov(r5, flags);
2717
2718 {
2719 Label notVolatile;
2720 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2721 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2722 __ bind(notVolatile);
2723 }
2724
2725 // field address
2726 const Address field(obj, off);
2727
2728 Label notByte, notBool, notInt, notShort, notChar,
2729 notLong, notFloat, notObj, notDouble;
2730
2731 // x86 uses a shift and mask or wings it with a shift plus assert
2732 // the mask is not needed. aarch64 just uses bitfield extract
2733 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits);
2734
2735 assert(btos == 0, "change code, btos != 0");
2736 __ cbnz(flags, notByte);
2737
2738 // Don't rewrite putstatic, only putfield
2739 if (is_static) rc = may_not_rewrite;
2740
2741 // btos
2742 {
2743 __ pop(btos);
2744 if (!is_static) pop_and_check_object(obj);
2745 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
2746 if (rc == may_rewrite) {
2747 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no);
2748 }
2749 __ b(Done);
2750 }
2751
2752 __ bind(notByte);
2753 __ cmp(flags, (u1)ztos);
2754 __ br(Assembler::NE, notBool);
2755
2756 // ztos
2757 {
2758 __ pop(ztos);
2759 if (!is_static) pop_and_check_object(obj);
2760 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
2761 if (rc == may_rewrite) {
2762 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no);
2763 }
2764 __ b(Done);
2765 }
2766
2767 __ bind(notBool);
2768 __ cmp(flags, (u1)atos);
2769 __ br(Assembler::NE, notObj);
2770
2771 // atos
2772 {
2773 __ pop(atos);
2774 if (!is_static) pop_and_check_object(obj);
2775 // Store into the field
2776 do_oop_store(_masm, field, r0, IN_HEAP);
2777 if (rc == may_rewrite) {
2778 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no);
2779 }
2780 __ b(Done);
2781 }
2782
2783 __ bind(notObj);
2784 __ cmp(flags, (u1)itos);
2785 __ br(Assembler::NE, notInt);
2786
2787 // itos
2788 {
2789 __ pop(itos);
2790 if (!is_static) pop_and_check_object(obj);
2791 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
2792 if (rc == may_rewrite) {
2793 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no);
2794 }
2795 __ b(Done);
2796 }
2797
2798 __ bind(notInt);
2799 __ cmp(flags, (u1)ctos);
2800 __ br(Assembler::NE, notChar);
2801
2802 // ctos
2803 {
2804 __ pop(ctos);
2805 if (!is_static) pop_and_check_object(obj);
2806 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
2807 if (rc == may_rewrite) {
2808 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no);
2809 }
2810 __ b(Done);
2811 }
2812
2813 __ bind(notChar);
2814 __ cmp(flags, (u1)stos);
2815 __ br(Assembler::NE, notShort);
2816
2817 // stos
2818 {
2819 __ pop(stos);
2820 if (!is_static) pop_and_check_object(obj);
2821 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
2822 if (rc == may_rewrite) {
2823 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no);
2824 }
2825 __ b(Done);
2826 }
2827
2828 __ bind(notShort);
2829 __ cmp(flags, (u1)ltos);
2830 __ br(Assembler::NE, notLong);
2831
2832 // ltos
2833 {
2834 __ pop(ltos);
2835 if (!is_static) pop_and_check_object(obj);
2836 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
2837 if (rc == may_rewrite) {
2838 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no);
2839 }
2840 __ b(Done);
2841 }
2842
2843 __ bind(notLong);
2844 __ cmp(flags, (u1)ftos);
2845 __ br(Assembler::NE, notFloat);
2846
2847 // ftos
2848 {
2849 __ pop(ftos);
2850 if (!is_static) pop_and_check_object(obj);
2851 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
2852 if (rc == may_rewrite) {
2853 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no);
2854 }
2855 __ b(Done);
2856 }
2857
2858 __ bind(notFloat);
2859 #ifdef ASSERT
2860 __ cmp(flags, (u1)dtos);
2861 __ br(Assembler::NE, notDouble);
2862 #endif
2863
2864 // dtos
2865 {
2866 __ pop(dtos);
2867 if (!is_static) pop_and_check_object(obj);
2868 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
2869 if (rc == may_rewrite) {
2870 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no);
2871 }
2872 }
2873
2874 #ifdef ASSERT
2875 __ b(Done);
2876
2877 __ bind(notDouble);
2878 __ stop("Bad state");
2879 #endif
2880
2881 __ bind(Done);
2882
2883 {
2884 Label notVolatile;
2885 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2886 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
2887 __ bind(notVolatile);
2888 }
2889 }
2890
2891 void TemplateTable::putfield(int byte_no)
2892 {
2893 putfield_or_static(byte_no, false);
2894 }
2895
2896 void TemplateTable::nofast_putfield(int byte_no) {
2897 putfield_or_static(byte_no, false, may_not_rewrite);
2898 }
2899
2900 void TemplateTable::putstatic(int byte_no) {
2901 putfield_or_static(byte_no, true);
2902 }
2903
2904 void TemplateTable::jvmti_post_fast_field_mod()
2905 {
2906 if (JvmtiExport::can_post_field_modification()) {
2907 // Check to see if a field modification watch has been set before
2908 // we take the time to call into the VM.
2909 Label L2;
2910 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2911 __ ldrw(c_rarg3, Address(rscratch1));
2912 __ cbzw(c_rarg3, L2);
2913 __ pop_ptr(r19); // copy the object pointer from tos
2914 __ verify_oop(r19);
2915 __ push_ptr(r19); // put the object pointer back on tos
2916 // Save tos values before call_VM() clobbers them. Since we have
2917 // to do it for every data type, we use the saved values as the
2918 // jvalue object.
2919 switch (bytecode()) { // load values into the jvalue object
2920 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break;
2921 case Bytecodes::_fast_bputfield: // fall through
2922 case Bytecodes::_fast_zputfield: // fall through
2923 case Bytecodes::_fast_sputfield: // fall through
2924 case Bytecodes::_fast_cputfield: // fall through
2925 case Bytecodes::_fast_iputfield: __ push_i(r0); break;
2926 case Bytecodes::_fast_dputfield: __ push_d(); break;
2927 case Bytecodes::_fast_fputfield: __ push_f(); break;
2928 case Bytecodes::_fast_lputfield: __ push_l(r0); break;
2929
2930 default:
2931 ShouldNotReachHere();
2932 }
2933 __ mov(c_rarg3, esp); // points to jvalue on the stack
2934 // access constant pool cache entry
2935 __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1);
2936 __ verify_oop(r19);
2937 // r19: object pointer copied above
2938 // c_rarg2: cache entry pointer
2939 // c_rarg3: jvalue object on the stack
2940 __ call_VM(noreg,
2941 CAST_FROM_FN_PTR(address,
2942 InterpreterRuntime::post_field_modification),
2943 r19, c_rarg2, c_rarg3);
2944
2945 switch (bytecode()) { // restore tos values
2946 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break;
2947 case Bytecodes::_fast_bputfield: // fall through
2948 case Bytecodes::_fast_zputfield: // fall through
2949 case Bytecodes::_fast_sputfield: // fall through
2950 case Bytecodes::_fast_cputfield: // fall through
2951 case Bytecodes::_fast_iputfield: __ pop_i(r0); break;
2952 case Bytecodes::_fast_dputfield: __ pop_d(); break;
2953 case Bytecodes::_fast_fputfield: __ pop_f(); break;
2954 case Bytecodes::_fast_lputfield: __ pop_l(r0); break;
2955 default: break;
2956 }
2957 __ bind(L2);
2958 }
2959 }
2960
2961 void TemplateTable::fast_storefield(TosState state)
2962 {
2963 transition(state, vtos);
2964
2965 ByteSize base = ConstantPoolCache::base_offset();
2966
2967 jvmti_post_fast_field_mod();
2968
2969 // access constant pool cache
2970 __ get_cache_and_index_at_bcp(r2, r1, 1);
2971
2972 // Must prevent reordering of the following cp cache loads with bytecode load
2973 __ membar(MacroAssembler::LoadLoad);
2974
2975 // test for volatile with r3
2976 __ ldrw(r3, Address(r2, in_bytes(base +
2977 ConstantPoolCacheEntry::flags_offset())));
2978
2979 // replace index with field offset from cache entry
2980 __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2981
2982 {
2983 Label notVolatile;
2984 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
2985 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
2986 __ bind(notVolatile);
2987 }
2988
2989 Label notVolatile;
2990
2991 // Get object from stack
2992 pop_and_check_object(r2);
2993
2994 // field address
2995 const Address field(r2, r1);
2996
2997 // access field
2998 switch (bytecode()) {
2999 case Bytecodes::_fast_aputfield:
3000 do_oop_store(_masm, field, r0, IN_HEAP);
3001 break;
3002 case Bytecodes::_fast_lputfield:
3003 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg);
3004 break;
3005 case Bytecodes::_fast_iputfield:
3006 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg);
3007 break;
3008 case Bytecodes::_fast_zputfield:
3009 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg);
3010 break;
3011 case Bytecodes::_fast_bputfield:
3012 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg);
3013 break;
3014 case Bytecodes::_fast_sputfield:
3015 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg);
3016 break;
3017 case Bytecodes::_fast_cputfield:
3018 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg);
3019 break;
3020 case Bytecodes::_fast_fputfield:
3021 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg);
3022 break;
3023 case Bytecodes::_fast_dputfield:
3024 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg);
3025 break;
3026 default:
3027 ShouldNotReachHere();
3028 }
3029
3030 {
3031 Label notVolatile;
3032 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3033 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
3034 __ bind(notVolatile);
3035 }
3036 }
3037
3038
3039 void TemplateTable::fast_accessfield(TosState state)
3040 {
3041 transition(atos, state);
3042 // Do the JVMTI work here to avoid disturbing the register state below
3043 if (JvmtiExport::can_post_field_access()) {
3044 // Check to see if a field access watch has been set before we
3045 // take the time to call into the VM.
3046 Label L1;
3047 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
3048 __ ldrw(r2, Address(rscratch1));
3049 __ cbzw(r2, L1);
3050 // access constant pool cache entry
3051 __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1);
3052 __ verify_oop(r0);
3053 __ push_ptr(r0); // save object pointer before call_VM() clobbers it
3054 __ mov(c_rarg1, r0);
3055 // c_rarg1: object pointer copied above
3056 // c_rarg2: cache entry pointer
3057 __ call_VM(noreg,
3058 CAST_FROM_FN_PTR(address,
3059 InterpreterRuntime::post_field_access),
3060 c_rarg1, c_rarg2);
3061 __ pop_ptr(r0); // restore object pointer
3062 __ bind(L1);
3063 }
3064
3065 // access constant pool cache
3066 __ get_cache_and_index_at_bcp(r2, r1, 1);
3067
3068 // Must prevent reordering of the following cp cache loads with bytecode load
3069 __ membar(MacroAssembler::LoadLoad);
3070
3071 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3072 ConstantPoolCacheEntry::f2_offset())));
3073 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3074 ConstantPoolCacheEntry::flags_offset())));
3075
3076 // r0: object
3077 __ verify_oop(r0);
3078 __ null_check(r0);
3079 const Address field(r0, r1);
3080
3081 // 8179954: We need to make sure that the code generated for
3082 // volatile accesses forms a sequentially-consistent set of
3083 // operations when combined with STLR and LDAR. Without a leading
3084 // membar it's possible for a simple Dekker test to fail if loads
3085 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3086 // the stores in one method and we interpret the loads in another.
3087 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3088 Label notVolatile;
3089 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3090 __ membar(MacroAssembler::AnyAny);
3091 __ bind(notVolatile);
3092 }
3093
3094 // access field
3095 switch (bytecode()) {
3096 case Bytecodes::_fast_agetfield:
3097 do_oop_load(_masm, field, r0, IN_HEAP);
3098 __ verify_oop(r0);
3099 break;
3100 case Bytecodes::_fast_lgetfield:
3101 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg);
3102 break;
3103 case Bytecodes::_fast_igetfield:
3104 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg);
3105 break;
3106 case Bytecodes::_fast_bgetfield:
3107 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg);
3108 break;
3109 case Bytecodes::_fast_sgetfield:
3110 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg);
3111 break;
3112 case Bytecodes::_fast_cgetfield:
3113 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg);
3114 break;
3115 case Bytecodes::_fast_fgetfield:
3116 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
3117 break;
3118 case Bytecodes::_fast_dgetfield:
3119 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
3120 break;
3121 default:
3122 ShouldNotReachHere();
3123 }
3124 {
3125 Label notVolatile;
3126 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3127 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3128 __ bind(notVolatile);
3129 }
3130 }
3131
3132 void TemplateTable::fast_xaccess(TosState state)
3133 {
3134 transition(vtos, state);
3135
3136 // get receiver
3137 __ ldr(r0, aaddress(0));
3138 // access constant pool cache
3139 __ get_cache_and_index_at_bcp(r2, r3, 2);
3140 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3141 ConstantPoolCacheEntry::f2_offset())));
3142
3143 // 8179954: We need to make sure that the code generated for
3144 // volatile accesses forms a sequentially-consistent set of
3145 // operations when combined with STLR and LDAR. Without a leading
3146 // membar it's possible for a simple Dekker test to fail if loads
3147 // use LDR;DMB but stores use STLR. This can happen if C2 compiles
3148 // the stores in one method and we interpret the loads in another.
3149 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) {
3150 Label notVolatile;
3151 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3152 ConstantPoolCacheEntry::flags_offset())));
3153 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3154 __ membar(MacroAssembler::AnyAny);
3155 __ bind(notVolatile);
3156 }
3157
3158 // make sure exception is reported in correct bcp range (getfield is
3159 // next instruction)
3160 __ increment(rbcp);
3161 __ null_check(r0);
3162 switch (state) {
3163 case itos:
3164 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3165 break;
3166 case atos:
3167 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP);
3168 __ verify_oop(r0);
3169 break;
3170 case ftos:
3171 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg);
3172 break;
3173 default:
3174 ShouldNotReachHere();
3175 }
3176
3177 {
3178 Label notVolatile;
3179 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() +
3180 ConstantPoolCacheEntry::flags_offset())));
3181 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile);
3182 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
3183 __ bind(notVolatile);
3184 }
3185
3186 __ decrement(rbcp);
3187 }
3188
3189
3190
3191 //-----------------------------------------------------------------------------
3192 // Calls
3193
3194 void TemplateTable::prepare_invoke(int byte_no,
3195 Register method, // linked method (or i-klass)
3196 Register index, // itable index, MethodType, etc.
3197 Register recv, // if caller wants to see it
3198 Register flags // if caller wants to test it
3199 ) {
3200 // determine flags
3201 Bytecodes::Code code = bytecode();
3202 const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
3203 const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
3204 const bool is_invokehandle = code == Bytecodes::_invokehandle;
3205 const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
3206 const bool is_invokespecial = code == Bytecodes::_invokespecial;
3207 const bool load_receiver = (recv != noreg);
3208 const bool save_flags = (flags != noreg);
3209 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
3210 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
3211 assert(flags == noreg || flags == r3, "");
3212 assert(recv == noreg || recv == r2, "");
3213
3214 // setup registers & access constant pool cache
3215 if (recv == noreg) recv = r2;
3216 if (flags == noreg) flags = r3;
3217 assert_different_registers(method, index, recv, flags);
3218
3219 // save 'interpreter return address'
3220 __ save_bcp();
3221
3222 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
3223
3224 // maybe push appendix to arguments (just before return address)
3225 if (is_invokehandle) {
3226 Label L_no_push;
3227 __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push);
3228 // Push the appendix as a trailing parameter.
3229 // This must be done before we get the receiver,
3230 // since the parameter_size includes it.
3231 __ push(r19);
3232 __ mov(r19, index);
3233 __ load_resolved_reference_at_index(index, r19);
3234 __ pop(r19);
3235 __ push(index); // push appendix (MethodType, CallSite, etc.)
3236 __ bind(L_no_push);
3237 }
3238
3239 // load receiver if needed (note: no return address pushed yet)
3240 if (load_receiver) {
3241 __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask);
3242 // FIXME -- is this actually correct? looks like it should be 2
3243 // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address
3244 // const int receiver_is_at_end = -1; // back off one slot to get receiver
3245 // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
3246 // __ movptr(recv, recv_addr);
3247 __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here?
3248 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1)));
3249 __ verify_oop(recv);
3250 }
3251
3252 // compute return type
3253 // x86 uses a shift and mask or wings it with a shift plus assert
3254 // the mask is not needed. aarch64 just uses bitfield extract
3255 __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits);
3256 // load return address
3257 {
3258 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
3259 __ mov(rscratch1, table_addr);
3260 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3)));
3261 }
3262 }
3263
3264
3265 void TemplateTable::invokevirtual_helper(Register index,
3266 Register recv,
3267 Register flags)
3268 {
3269 // Uses temporary registers r0, r3
3270 assert_different_registers(index, recv, r0, r3);
3271 // Test for an invoke of a final method
3272 Label notFinal;
3273 __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal);
3274
3275 const Register method = index; // method must be rmethod
3276 assert(method == rmethod,
3277 "Method must be rmethod for interpreter calling convention");
3278
3279 // do the call - the index is actually the method to call
3280 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3281
3282 // It's final, need a null check here!
3283 __ null_check(recv);
3284
3285 // profile this call
3286 __ profile_final_call(r0);
3287 __ profile_arguments_type(r0, method, r4, true);
3288
3289 __ jump_from_interpreted(method, r0);
3290
3291 __ bind(notFinal);
3292
3293 // get receiver klass
3294 __ load_klass(r0, recv);
3295
3296 // profile this call
3297 __ profile_virtual_call(r0, rlocals, r3);
3298
3299 // get target Method & entry point
3300 __ lookup_virtual_method(r0, index, method);
3301 __ profile_arguments_type(r3, method, r4, true);
3302 // FIXME -- this looks completely redundant. is it?
3303 // __ ldr(r3, Address(method, Method::interpreter_entry_offset()));
3304 __ jump_from_interpreted(method, r3);
3305 }
3306
3307 void TemplateTable::invokevirtual(int byte_no)
3308 {
3309 transition(vtos, vtos);
3310 assert(byte_no == f2_byte, "use this argument");
3311
3312 prepare_invoke(byte_no, rmethod, noreg, r2, r3);
3313
3314 // rmethod: index (actually a Method*)
3315 // r2: receiver
3316 // r3: flags
3317
3318 invokevirtual_helper(rmethod, r2, r3);
3319 }
3320
3321 void TemplateTable::invokespecial(int byte_no)
3322 {
3323 transition(vtos, vtos);
3324 assert(byte_no == f1_byte, "use this argument");
3325
3326 prepare_invoke(byte_no, rmethod, noreg, // get f1 Method*
3327 r2); // get receiver also for null check
3328 __ verify_oop(r2);
3329 __ null_check(r2);
3330 // do the call
3331 __ profile_call(r0);
3332 __ profile_arguments_type(r0, rmethod, rbcp, false);
3333 __ jump_from_interpreted(rmethod, r0);
3334 }
3335
3336 void TemplateTable::invokestatic(int byte_no)
3337 {
3338 transition(vtos, vtos);
3339 assert(byte_no == f1_byte, "use this argument");
3340
3341 prepare_invoke(byte_no, rmethod); // get f1 Method*
3342 // do the call
3343 __ profile_call(r0);
3344 __ profile_arguments_type(r0, rmethod, r4, false);
3345 __ jump_from_interpreted(rmethod, r0);
3346 }
3347
3348 void TemplateTable::fast_invokevfinal(int byte_no)
3349 {
3350 __ call_Unimplemented();
3351 }
3352
3353 void TemplateTable::invokeinterface(int byte_no) {
3354 transition(vtos, vtos);
3355 assert(byte_no == f1_byte, "use this argument");
3356
3357 prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method*
3358 r2, r3); // recv, flags
3359
3360 // r0: interface klass (from f1)
3361 // rmethod: method (from f2)
3362 // r2: receiver
3363 // r3: flags
3364
3365 // First check for Object case, then private interface method,
3366 // then regular interface method.
3367
3368 // Special case of invokeinterface called for virtual method of
3369 // java.lang.Object. See cpCache.cpp for details.
3370 Label notObjectMethod;
3371 __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notObjectMethod);
3372
3373 invokevirtual_helper(rmethod, r2, r3);
3374 __ bind(notObjectMethod);
3375
3376 Label no_such_interface;
3377
3378 // Check for private method invocation - indicated by vfinal
3379 Label notVFinal;
3380 __ tbz(r3, ConstantPoolCacheEntry::is_vfinal_shift, notVFinal);
3381
3382 // Get receiver klass into r3
3383 __ load_klass(r3, r2);
3384
3385 Label subtype;
3386 __ check_klass_subtype(r3, r0, r4, subtype);
3387 // If we get here the typecheck failed
3388 __ b(no_such_interface);
3389 __ bind(subtype);
3390
3391 __ profile_final_call(r0);
3392 __ profile_arguments_type(r0, rmethod, r4, true);
3393 __ jump_from_interpreted(rmethod, r0);
3394
3395 __ bind(notVFinal);
3396
3397 // Get receiver klass into r3
3398 __ restore_locals();
3399 __ load_klass(r3, r2);
3400
3401 Label no_such_method;
3402
3403 // Preserve method for throw_AbstractMethodErrorVerbose.
3404 __ mov(r16, rmethod);
3405 // Receiver subtype check against REFC.
3406 // Superklass in r0. Subklass in r3. Blows rscratch2, r13
3407 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3408 r3, r0, noreg,
3409 // outputs: scan temp. reg, scan temp. reg
3410 rscratch2, r13,
3411 no_such_interface,
3412 /*return_method=*/false);
3413
3414 // profile this call
3415 __ profile_virtual_call(r3, r13, r19);
3416
3417 // Get declaring interface class from method, and itable index
3418
3419 __ load_method_holder(r0, rmethod);
3420 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset()));
3421 __ subw(rmethod, rmethod, Method::itable_index_max);
3422 __ negw(rmethod, rmethod);
3423
3424 // Preserve recvKlass for throw_AbstractMethodErrorVerbose.
3425 __ mov(rlocals, r3);
3426 __ lookup_interface_method(// inputs: rec. class, interface, itable index
3427 rlocals, r0, rmethod,
3428 // outputs: method, scan temp. reg
3429 rmethod, r13,
3430 no_such_interface);
3431
3432 // rmethod,: Method to call
3433 // r2: receiver
3434 // Check for abstract method error
3435 // Note: This should be done more efficiently via a throw_abstract_method_error
3436 // interpreter entry point and a conditional jump to it in case of a null
3437 // method.
3438 __ cbz(rmethod, no_such_method);
3439
3440 __ profile_arguments_type(r3, rmethod, r13, true);
3441
3442 // do the call
3443 // r2: receiver
3444 // rmethod,: Method
3445 __ jump_from_interpreted(rmethod, r3);
3446 __ should_not_reach_here();
3447
3448 // exception handling code follows...
3449 // note: must restore interpreter registers to canonical
3450 // state for exception handling to work correctly!
3451
3452 __ bind(no_such_method);
3453 // throw exception
3454 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3455 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3456 // Pass arguments for generating a verbose error message.
3457 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16);
3458 // the call_VM checks for exception, so we should never return here.
3459 __ should_not_reach_here();
3460
3461 __ bind(no_such_interface);
3462 // throw exception
3463 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
3464 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
3465 // Pass arguments for generating a verbose error message.
3466 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3467 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0);
3468 // the call_VM checks for exception, so we should never return here.
3469 __ should_not_reach_here();
3470 return;
3471 }
3472
3473 void TemplateTable::invokehandle(int byte_no) {
3474 transition(vtos, vtos);
3475 assert(byte_no == f1_byte, "use this argument");
3476
3477 prepare_invoke(byte_no, rmethod, r0, r2);
3478 __ verify_method_ptr(r2);
3479 __ verify_oop(r2);
3480 __ null_check(r2);
3481
3482 // FIXME: profile the LambdaForm also
3483
3484 // r13 is safe to use here as a scratch reg because it is about to
3485 // be clobbered by jump_from_interpreted().
3486 __ profile_final_call(r13);
3487 __ profile_arguments_type(r13, rmethod, r4, true);
3488
3489 __ jump_from_interpreted(rmethod, r0);
3490 }
3491
3492 void TemplateTable::invokedynamic(int byte_no) {
3493 transition(vtos, vtos);
3494 assert(byte_no == f1_byte, "use this argument");
3495
3496 load_invokedynamic_entry(rmethod);
3497
3498 // r0: CallSite object (from cpool->resolved_references[])
3499 // rmethod: MH.linkToCallSite method (from f2)
3500
3501 // Note: r0_callsite is already pushed by prepare_invoke
3502
3503 // %%% should make a type profile for any invokedynamic that takes a ref argument
3504 // profile this call
3505 __ profile_call(rbcp);
3506 __ profile_arguments_type(r3, rmethod, r13, false);
3507
3508 __ verify_oop(r0);
3509
3510 __ jump_from_interpreted(rmethod, r0);
3511 }
3512
3513
3514 //-----------------------------------------------------------------------------
3515 // Allocation
3516
3517 void TemplateTable::_new() {
3518 transition(vtos, atos);
3519
3520 __ get_unsigned_2_byte_index_at_bcp(r3, 1);
3521 Label slow_case;
3522 Label done;
3523 Label initialize_header;
3524
3525 __ get_cpool_and_tags(r4, r0);
3526 // Make sure the class we're about to instantiate has been resolved.
3527 // This is done before loading InstanceKlass to be consistent with the order
3528 // how Constant Pool is updated (see ConstantPool::klass_at_put)
3529 const int tags_offset = Array<u1>::base_offset_in_bytes();
3530 __ lea(rscratch1, Address(r0, r3, Address::lsl(0)));
3531 __ lea(rscratch1, Address(rscratch1, tags_offset));
3532 __ ldarb(rscratch1, rscratch1);
3533 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class);
3534 __ br(Assembler::NE, slow_case);
3535
3536 // get InstanceKlass
3537 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1);
3538
3539 // make sure klass is initialized & doesn't have finalizer
3540 // make sure klass is fully initialized
3541 __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset()));
3542 __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized);
3543 __ br(Assembler::NE, slow_case);
3544
3545 // get instance_size in InstanceKlass (scaled to a count of bytes)
3546 __ ldrw(r3,
3547 Address(r4,
3548 Klass::layout_helper_offset()));
3549 // test to see if it has a finalizer or is malformed in some way
3550 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case);
3551
3552 // Allocate the instance:
3553 // If TLAB is enabled:
3554 // Try to allocate in the TLAB.
3555 // If fails, go to the slow path.
3556 // Initialize the allocation.
3557 // Exit.
3558 //
3559 // Go to slow path.
3560
3561 if (UseTLAB) {
3562 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case);
3563
3564 if (ZeroTLAB) {
3565 // the fields have been already cleared
3566 __ b(initialize_header);
3567 }
3568
3569 // The object is initialized before the header. If the object size is
3570 // zero, go directly to the header initialization.
3571 __ sub(r3, r3, sizeof(oopDesc));
3572 __ cbz(r3, initialize_header);
3573
3574 // Initialize object fields
3575 {
3576 __ add(r2, r0, sizeof(oopDesc));
3577 Label loop;
3578 __ bind(loop);
3579 __ str(zr, Address(__ post(r2, BytesPerLong)));
3580 __ sub(r3, r3, BytesPerLong);
3581 __ cbnz(r3, loop);
3582 }
3583
3584 // initialize object header only.
3585 __ bind(initialize_header);
3586 __ mov(rscratch1, (intptr_t)markWord::prototype().value());
3587 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes()));
3588 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops
3589 __ store_klass(r0, r4); // store klass last
3590
3591 {
3592 SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
3593 // Trigger dtrace event for fastpath
3594 __ push(atos); // save the return value
3595 __ call_VM_leaf(
3596 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0);
3597 __ pop(atos); // restore the return value
3598
3599 }
3600 __ b(done);
3601 }
3602
3603 // slow case
3604 __ bind(slow_case);
3605 __ get_constant_pool(c_rarg1);
3606 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3607 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
3608 __ verify_oop(r0);
3609
3610 // continue
3611 __ bind(done);
3612 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3613 __ membar(Assembler::StoreStore);
3614 }
3615
3616 void TemplateTable::newarray() {
3617 transition(itos, atos);
3618 __ load_unsigned_byte(c_rarg1, at_bcp(1));
3619 __ mov(c_rarg2, r0);
3620 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
3621 c_rarg1, c_rarg2);
3622 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3623 __ membar(Assembler::StoreStore);
3624 }
3625
3626 void TemplateTable::anewarray() {
3627 transition(itos, atos);
3628 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
3629 __ get_constant_pool(c_rarg1);
3630 __ mov(c_rarg3, r0);
3631 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
3632 c_rarg1, c_rarg2, c_rarg3);
3633 // Must prevent reordering of stores for object initialization with stores that publish the new object.
3634 __ membar(Assembler::StoreStore);
3635 }
3636
3637 void TemplateTable::arraylength() {
3638 transition(atos, itos);
3639 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes()));
3640 }
3641
3642 void TemplateTable::checkcast()
3643 {
3644 transition(atos, atos);
3645 Label done, is_null, ok_is_subtype, quicked, resolved;
3646 __ cbz(r0, is_null);
3647
3648 // Get cpool & tags index
3649 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3650 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3651 // See if bytecode has already been quicked
3652 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3653 __ lea(r1, Address(rscratch1, r19));
3654 __ ldarb(r1, r1);
3655 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3656 __ br(Assembler::EQ, quicked);
3657
3658 __ push(atos); // save receiver for result, and for GC
3659 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3660 // vm_result_2 has metadata result
3661 __ get_vm_result_2(r0, rthread);
3662 __ pop(r3); // restore receiver
3663 __ b(resolved);
3664
3665 // Get superklass in r0 and subklass in r3
3666 __ bind(quicked);
3667 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check
3668 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass
3669
3670 __ bind(resolved);
3671 __ load_klass(r19, r3);
3672
3673 // Generate subtype check. Blows r2, r5. Object in r3.
3674 // Superklass in r0. Subklass in r19.
3675 __ gen_subtype_check(r19, ok_is_subtype);
3676
3677 // Come here on failure
3678 __ push(r3);
3679 // object is at TOS
3680 __ b(Interpreter::_throw_ClassCastException_entry);
3681
3682 // Come here on success
3683 __ bind(ok_is_subtype);
3684 __ mov(r0, r3); // Restore object in r3
3685
3686 // Collect counts on whether this test sees nulls a lot or not.
3687 if (ProfileInterpreter) {
3688 __ b(done);
3689 __ bind(is_null);
3690 __ profile_null_seen(r2);
3691 } else {
3692 __ bind(is_null); // same as 'done'
3693 }
3694 __ bind(done);
3695 }
3696
3697 void TemplateTable::instanceof() {
3698 transition(atos, itos);
3699 Label done, is_null, ok_is_subtype, quicked, resolved;
3700 __ cbz(r0, is_null);
3701
3702 // Get cpool & tags index
3703 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array
3704 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index
3705 // See if bytecode has already been quicked
3706 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes());
3707 __ lea(r1, Address(rscratch1, r19));
3708 __ ldarb(r1, r1);
3709 __ cmp(r1, (u1)JVM_CONSTANT_Class);
3710 __ br(Assembler::EQ, quicked);
3711
3712 __ push(atos); // save receiver for result, and for GC
3713 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
3714 // vm_result_2 has metadata result
3715 __ get_vm_result_2(r0, rthread);
3716 __ pop(r3); // restore receiver
3717 __ verify_oop(r3);
3718 __ load_klass(r3, r3);
3719 __ b(resolved);
3720
3721 // Get superklass in r0 and subklass in r3
3722 __ bind(quicked);
3723 __ load_klass(r3, r0);
3724 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1);
3725
3726 __ bind(resolved);
3727
3728 // Generate subtype check. Blows r2, r5
3729 // Superklass in r0. Subklass in r3.
3730 __ gen_subtype_check(r3, ok_is_subtype);
3731
3732 // Come here on failure
3733 __ mov(r0, 0);
3734 __ b(done);
3735 // Come here on success
3736 __ bind(ok_is_subtype);
3737 __ mov(r0, 1);
3738
3739 // Collect counts on whether this test sees nulls a lot or not.
3740 if (ProfileInterpreter) {
3741 __ b(done);
3742 __ bind(is_null);
3743 __ profile_null_seen(r2);
3744 } else {
3745 __ bind(is_null); // same as 'done'
3746 }
3747 __ bind(done);
3748 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass
3749 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass
3750 }
3751
3752 //-----------------------------------------------------------------------------
3753 // Breakpoints
3754 void TemplateTable::_breakpoint() {
3755 // Note: We get here even if we are single stepping..
3756 // jbug inists on setting breakpoints at every bytecode
3757 // even if we are in single step mode.
3758
3759 transition(vtos, vtos);
3760
3761 // get the unpatched byte code
3762 __ get_method(c_rarg1);
3763 __ call_VM(noreg,
3764 CAST_FROM_FN_PTR(address,
3765 InterpreterRuntime::get_original_bytecode_at),
3766 c_rarg1, rbcp);
3767 __ mov(r19, r0);
3768
3769 // post the breakpoint event
3770 __ call_VM(noreg,
3771 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
3772 rmethod, rbcp);
3773
3774 // complete the execution of original bytecode
3775 __ mov(rscratch1, r19);
3776 __ dispatch_only_normal(vtos);
3777 }
3778
3779 //-----------------------------------------------------------------------------
3780 // Exceptions
3781
3782 void TemplateTable::athrow() {
3783 transition(atos, vtos);
3784 __ null_check(r0);
3785 __ b(Interpreter::throw_exception_entry());
3786 }
3787
3788 //-----------------------------------------------------------------------------
3789 // Synchronization
3790 //
3791 // Note: monitorenter & exit are symmetric routines; which is reflected
3792 // in the assembly code structure as well
3793 //
3794 // Stack layout:
3795 //
3796 // [expressions ] <--- esp = expression stack top
3797 // ..
3798 // [expressions ]
3799 // [monitor entry] <--- monitor block top = expression stack bot
3800 // ..
3801 // [monitor entry]
3802 // [frame data ] <--- monitor block bot
3803 // ...
3804 // [saved rfp ] <--- rfp
3805 void TemplateTable::monitorenter()
3806 {
3807 transition(atos, vtos);
3808
3809 // check for null object
3810 __ null_check(r0);
3811
3812 const Address monitor_block_top(
3813 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3814 const Address monitor_block_bot(
3815 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3816 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3817
3818 Label allocated;
3819
3820 // initialize entry pointer
3821 __ mov(c_rarg1, zr); // points to free slot or null
3822
3823 // find a free slot in the monitor block (result in c_rarg1)
3824 {
3825 Label entry, loop, exit;
3826 __ ldr(c_rarg3, monitor_block_top); // points to current entry,
3827 // starting with top-most entry
3828 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3829
3830 __ b(entry);
3831
3832 __ bind(loop);
3833 // check if current entry is used
3834 // if not used then remember entry in c_rarg1
3835 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset()));
3836 __ cmp(zr, rscratch1);
3837 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ);
3838 // check if current entry is for same object
3839 __ cmp(r0, rscratch1);
3840 // if same object then stop searching
3841 __ br(Assembler::EQ, exit);
3842 // otherwise advance to next entry
3843 __ add(c_rarg3, c_rarg3, entry_size);
3844 __ bind(entry);
3845 // check if bottom reached
3846 __ cmp(c_rarg3, c_rarg2);
3847 // if not at bottom then check this entry
3848 __ br(Assembler::NE, loop);
3849 __ bind(exit);
3850 }
3851
3852 __ cbnz(c_rarg1, allocated); // check if a slot has been found and
3853 // if found, continue with that on
3854
3855 // allocate one if there's no free slot
3856 {
3857 Label entry, loop;
3858 // 1. compute new pointers // rsp: old expression stack top
3859
3860 __ check_extended_sp();
3861 __ sub(sp, sp, entry_size); // make room for the monitor
3862 __ mov(rscratch1, sp);
3863 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize));
3864
3865 __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
3866 __ sub(esp, esp, entry_size); // move expression stack top
3867 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
3868 __ mov(c_rarg3, esp); // set start value for copy loop
3869 __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom
3870
3871 __ b(entry);
3872 // 2. move expression stack contents
3873 __ bind(loop);
3874 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
3875 // word from old location
3876 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
3877 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word
3878 __ bind(entry);
3879 __ cmp(c_rarg3, c_rarg1); // check if bottom reached
3880 __ br(Assembler::NE, loop); // if not at bottom then
3881 // copy next word
3882 }
3883
3884 // call run-time routine
3885 // c_rarg1: points to monitor entry
3886 __ bind(allocated);
3887
3888 // Increment bcp to point to the next bytecode, so exception
3889 // handling for async. exceptions work correctly.
3890 // The object has already been popped from the stack, so the
3891 // expression stack looks correct.
3892 __ increment(rbcp);
3893
3894 // store object
3895 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
3896 __ lock_object(c_rarg1);
3897
3898 // check to make sure this monitor doesn't cause stack overflow after locking
3899 __ save_bcp(); // in case of exception
3900 __ generate_stack_overflow_check(0);
3901
3902 // The bcp has already been incremented. Just need to dispatch to
3903 // next instruction.
3904 __ dispatch_next(vtos);
3905 }
3906
3907
3908 void TemplateTable::monitorexit()
3909 {
3910 transition(atos, vtos);
3911
3912 // check for null object
3913 __ null_check(r0);
3914
3915 const Address monitor_block_top(
3916 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3917 const Address monitor_block_bot(
3918 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
3919 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
3920
3921 Label found;
3922
3923 // find matching slot
3924 {
3925 Label entry, loop;
3926 __ ldr(c_rarg1, monitor_block_top); // points to current entry,
3927 // starting with top-most entry
3928 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom
3929 // of monitor block
3930 __ b(entry);
3931
3932 __ bind(loop);
3933 // check if current entry is for same object
3934 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
3935 __ cmp(r0, rscratch1);
3936 // if same object then stop searching
3937 __ br(Assembler::EQ, found);
3938 // otherwise advance to next entry
3939 __ add(c_rarg1, c_rarg1, entry_size);
3940 __ bind(entry);
3941 // check if bottom reached
3942 __ cmp(c_rarg1, c_rarg2);
3943 // if not at bottom then check this entry
3944 __ br(Assembler::NE, loop);
3945 }
3946
3947 // error handling. Unlocking was not block-structured
3948 __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3949 InterpreterRuntime::throw_illegal_monitor_state_exception));
3950 __ should_not_reach_here();
3951
3952 // call run-time routine
3953 __ bind(found);
3954 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps)
3955 __ unlock_object(c_rarg1);
3956 __ pop_ptr(r0); // discard object
3957 }
3958
3959
3960 // Wide instructions
3961 void TemplateTable::wide()
3962 {
3963 __ load_unsigned_byte(r19, at_bcp(1));
3964 __ mov(rscratch1, (address)Interpreter::_wentry_point);
3965 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3)));
3966 __ br(rscratch1);
3967 }
3968
3969
3970 // Multi arrays
3971 void TemplateTable::multianewarray() {
3972 transition(vtos, atos);
3973 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions
3974 // last dim is on top of stack; we want address of first one:
3975 // first_addr = last_addr + (ndims - 1) * wordSize
3976 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3)));
3977 __ sub(c_rarg1, c_rarg1, wordSize);
3978 call_VM(r0,
3979 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
3980 c_rarg1);
3981 __ load_unsigned_byte(r1, at_bcp(3));
3982 __ lea(esp, Address(esp, r1, Address::uxtw(3)));
3983 }