1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "compiler/compilerDefinitions.inline.hpp" 29 #include "gc/shared/barrierSetAssembler.hpp" 30 #include "gc/shared/collectedHeap.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateTable.hpp" 36 #include "memory/universe.hpp" 37 #include "oops/methodData.hpp" 38 #include "oops/method.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "oops/oop.inline.hpp" 41 #include "prims/jvmtiExport.hpp" 42 #include "prims/methodHandles.hpp" 43 #include "runtime/frame.inline.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/stubRoutines.hpp" 46 #include "runtime/synchronizer.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #define __ _masm-> 50 51 // Address computation: local variables 52 53 static inline Address iaddress(int n) { 54 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 55 } 56 57 static inline Address laddress(int n) { 58 return iaddress(n + 1); 59 } 60 61 static inline Address faddress(int n) { 62 return iaddress(n); 63 } 64 65 static inline Address daddress(int n) { 66 return laddress(n); 67 } 68 69 static inline Address aaddress(int n) { 70 return iaddress(n); 71 } 72 73 static inline Address iaddress(Register r) { 74 return Address(rlocals, r, Address::lsl(3)); 75 } 76 77 static inline Address laddress(Register r, Register scratch, 78 InterpreterMacroAssembler* _masm) { 79 __ lea(scratch, Address(rlocals, r, Address::lsl(3))); 80 return Address(scratch, Interpreter::local_offset_in_bytes(1)); 81 } 82 83 static inline Address faddress(Register r) { 84 return iaddress(r); 85 } 86 87 static inline Address daddress(Register r, Register scratch, 88 InterpreterMacroAssembler* _masm) { 89 return laddress(r, scratch, _masm); 90 } 91 92 static inline Address aaddress(Register r) { 93 return iaddress(r); 94 } 95 96 static inline Address at_rsp() { 97 return Address(esp, 0); 98 } 99 100 // At top of Java expression stack which may be different than esp(). It 101 // isn't for category 1 objects. 102 static inline Address at_tos () { 103 return Address(esp, Interpreter::expr_offset_in_bytes(0)); 104 } 105 106 static inline Address at_tos_p1() { 107 return Address(esp, Interpreter::expr_offset_in_bytes(1)); 108 } 109 110 static inline Address at_tos_p2() { 111 return Address(esp, Interpreter::expr_offset_in_bytes(2)); 112 } 113 114 static inline Address at_tos_p3() { 115 return Address(esp, Interpreter::expr_offset_in_bytes(3)); 116 } 117 118 static inline Address at_tos_p4() { 119 return Address(esp, Interpreter::expr_offset_in_bytes(4)); 120 } 121 122 static inline Address at_tos_p5() { 123 return Address(esp, Interpreter::expr_offset_in_bytes(5)); 124 } 125 126 // Condition conversion 127 static Assembler::Condition j_not(TemplateTable::Condition cc) { 128 switch (cc) { 129 case TemplateTable::equal : return Assembler::NE; 130 case TemplateTable::not_equal : return Assembler::EQ; 131 case TemplateTable::less : return Assembler::GE; 132 case TemplateTable::less_equal : return Assembler::GT; 133 case TemplateTable::greater : return Assembler::LE; 134 case TemplateTable::greater_equal: return Assembler::LT; 135 } 136 ShouldNotReachHere(); 137 return Assembler::EQ; 138 } 139 140 141 // Miscellaneous helper routines 142 // Store an oop (or null) at the Address described by obj. 143 // If val == noreg this means store a null 144 static void do_oop_store(InterpreterMacroAssembler* _masm, 145 Address dst, 146 Register val, 147 DecoratorSet decorators) { 148 assert(val == noreg || val == r0, "parameter is just for looks"); 149 __ store_heap_oop(dst, val, r10, r11, r3, decorators); 150 } 151 152 static void do_oop_load(InterpreterMacroAssembler* _masm, 153 Address src, 154 Register dst, 155 DecoratorSet decorators) { 156 __ load_heap_oop(dst, src, r10, r11, decorators); 157 } 158 159 Address TemplateTable::at_bcp(int offset) { 160 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 161 return Address(rbcp, offset); 162 } 163 164 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 165 Register temp_reg, bool load_bc_into_bc_reg/*=true*/, 166 int byte_no) 167 { 168 if (!RewriteBytecodes) return; 169 Label L_patch_done; 170 171 switch (bc) { 172 case Bytecodes::_fast_aputfield: 173 case Bytecodes::_fast_bputfield: 174 case Bytecodes::_fast_zputfield: 175 case Bytecodes::_fast_cputfield: 176 case Bytecodes::_fast_dputfield: 177 case Bytecodes::_fast_fputfield: 178 case Bytecodes::_fast_iputfield: 179 case Bytecodes::_fast_lputfield: 180 case Bytecodes::_fast_sputfield: 181 { 182 // We skip bytecode quickening for putfield instructions when 183 // the put_code written to the constant pool cache is zero. 184 // This is required so that every execution of this instruction 185 // calls out to InterpreterRuntime::resolve_get_put to do 186 // additional, required work. 187 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 188 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 189 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 190 __ movw(bc_reg, bc); 191 __ cbzw(temp_reg, L_patch_done); // don't patch 192 } 193 break; 194 default: 195 assert(byte_no == -1, "sanity"); 196 // the pair bytecodes have already done the load. 197 if (load_bc_into_bc_reg) { 198 __ movw(bc_reg, bc); 199 } 200 } 201 202 if (JvmtiExport::can_post_breakpoint()) { 203 Label L_fast_patch; 204 // if a breakpoint is present we can't rewrite the stream directly 205 __ load_unsigned_byte(temp_reg, at_bcp(0)); 206 __ cmpw(temp_reg, Bytecodes::_breakpoint); 207 __ br(Assembler::NE, L_fast_patch); 208 // Let breakpoint table handling rewrite to quicker bytecode 209 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), rmethod, rbcp, bc_reg); 210 __ b(L_patch_done); 211 __ bind(L_fast_patch); 212 } 213 214 #ifdef ASSERT 215 Label L_okay; 216 __ load_unsigned_byte(temp_reg, at_bcp(0)); 217 __ cmpw(temp_reg, (int) Bytecodes::java_code(bc)); 218 __ br(Assembler::EQ, L_okay); 219 __ cmpw(temp_reg, bc_reg); 220 __ br(Assembler::EQ, L_okay); 221 __ stop("patching the wrong bytecode"); 222 __ bind(L_okay); 223 #endif 224 225 // patch bytecode 226 __ strb(bc_reg, at_bcp(0)); 227 __ bind(L_patch_done); 228 } 229 230 231 // Individual instructions 232 233 void TemplateTable::nop() { 234 transition(vtos, vtos); 235 // nothing to do 236 } 237 238 void TemplateTable::shouldnotreachhere() { 239 transition(vtos, vtos); 240 __ stop("shouldnotreachhere bytecode"); 241 } 242 243 void TemplateTable::aconst_null() 244 { 245 transition(vtos, atos); 246 __ mov(r0, 0); 247 } 248 249 void TemplateTable::iconst(int value) 250 { 251 transition(vtos, itos); 252 __ mov(r0, value); 253 } 254 255 void TemplateTable::lconst(int value) 256 { 257 __ mov(r0, value); 258 } 259 260 void TemplateTable::fconst(int value) 261 { 262 transition(vtos, ftos); 263 switch (value) { 264 case 0: 265 __ fmovs(v0, 0.0); 266 break; 267 case 1: 268 __ fmovs(v0, 1.0); 269 break; 270 case 2: 271 __ fmovs(v0, 2.0); 272 break; 273 default: 274 ShouldNotReachHere(); 275 break; 276 } 277 } 278 279 void TemplateTable::dconst(int value) 280 { 281 transition(vtos, dtos); 282 switch (value) { 283 case 0: 284 __ fmovd(v0, 0.0); 285 break; 286 case 1: 287 __ fmovd(v0, 1.0); 288 break; 289 case 2: 290 __ fmovd(v0, 2.0); 291 break; 292 default: 293 ShouldNotReachHere(); 294 break; 295 } 296 } 297 298 void TemplateTable::bipush() 299 { 300 transition(vtos, itos); 301 __ load_signed_byte32(r0, at_bcp(1)); 302 } 303 304 void TemplateTable::sipush() 305 { 306 transition(vtos, itos); 307 __ load_unsigned_short(r0, at_bcp(1)); 308 __ revw(r0, r0); 309 __ asrw(r0, r0, 16); 310 } 311 312 void TemplateTable::ldc(LdcType type) 313 { 314 transition(vtos, vtos); 315 Label call_ldc, notFloat, notClass, notInt, Done; 316 317 if (is_ldc_wide(type)) { 318 __ get_unsigned_2_byte_index_at_bcp(r1, 1); 319 } else { 320 __ load_unsigned_byte(r1, at_bcp(1)); 321 } 322 __ get_cpool_and_tags(r2, r0); 323 324 const int base_offset = ConstantPool::header_size() * wordSize; 325 const int tags_offset = Array<u1>::base_offset_in_bytes(); 326 327 // get type 328 __ add(r3, r1, tags_offset); 329 __ lea(r3, Address(r0, r3)); 330 __ ldarb(r3, r3); 331 332 // unresolved class - get the resolved class 333 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClass); 334 __ br(Assembler::EQ, call_ldc); 335 336 // unresolved class in error state - call into runtime to throw the error 337 // from the first resolution attempt 338 __ cmp(r3, (u1)JVM_CONSTANT_UnresolvedClassInError); 339 __ br(Assembler::EQ, call_ldc); 340 341 // resolved class - need to call vm to get java mirror of the class 342 __ cmp(r3, (u1)JVM_CONSTANT_Class); 343 __ br(Assembler::NE, notClass); 344 345 __ bind(call_ldc); 346 __ mov(c_rarg1, is_ldc_wide(type) ? 1 : 0); 347 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1); 348 __ push_ptr(r0); 349 __ verify_oop(r0); 350 __ b(Done); 351 352 __ bind(notClass); 353 __ cmp(r3, (u1)JVM_CONSTANT_Float); 354 __ br(Assembler::NE, notFloat); 355 // ftos 356 __ adds(r1, r2, r1, Assembler::LSL, 3); 357 __ ldrs(v0, Address(r1, base_offset)); 358 __ push_f(); 359 __ b(Done); 360 361 __ bind(notFloat); 362 363 __ cmp(r3, (u1)JVM_CONSTANT_Integer); 364 __ br(Assembler::NE, notInt); 365 366 // itos 367 __ adds(r1, r2, r1, Assembler::LSL, 3); 368 __ ldrw(r0, Address(r1, base_offset)); 369 __ push_i(r0); 370 __ b(Done); 371 372 __ bind(notInt); 373 condy_helper(Done); 374 375 __ bind(Done); 376 } 377 378 // Fast path for caching oop constants. 379 void TemplateTable::fast_aldc(LdcType type) 380 { 381 transition(vtos, atos); 382 383 Register result = r0; 384 Register tmp = r1; 385 Register rarg = r2; 386 387 int index_size = is_ldc_wide(type) ? sizeof(u2) : sizeof(u1); 388 389 Label resolved; 390 391 // We are resolved if the resolved reference cache entry contains a 392 // non-null object (String, MethodType, etc.) 393 assert_different_registers(result, tmp); 394 __ get_cache_index_at_bcp(tmp, 1, index_size); 395 __ load_resolved_reference_at_index(result, tmp); 396 __ cbnz(result, resolved); 397 398 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 399 400 // first time invocation - must resolve first 401 __ mov(rarg, (int)bytecode()); 402 __ call_VM(result, entry, rarg); 403 404 __ bind(resolved); 405 406 { // Check for the null sentinel. 407 // If we just called the VM, it already did the mapping for us, 408 // but it's harmless to retry. 409 Label notNull; 410 411 // Stash null_sentinel address to get its value later 412 __ movptr(rarg, (uintptr_t)Universe::the_null_sentinel_addr()); 413 __ ldr(tmp, Address(rarg)); 414 __ resolve_oop_handle(tmp, r5, rscratch2); 415 __ cmpoop(result, tmp); 416 __ br(Assembler::NE, notNull); 417 __ mov(result, 0); // null object reference 418 __ bind(notNull); 419 } 420 421 if (VerifyOops) { 422 // Safe to call with 0 result 423 __ verify_oop(result); 424 } 425 } 426 427 void TemplateTable::ldc2_w() 428 { 429 transition(vtos, vtos); 430 Label notDouble, notLong, Done; 431 __ get_unsigned_2_byte_index_at_bcp(r0, 1); 432 433 __ get_cpool_and_tags(r1, r2); 434 const int base_offset = ConstantPool::header_size() * wordSize; 435 const int tags_offset = Array<u1>::base_offset_in_bytes(); 436 437 // get type 438 __ lea(r2, Address(r2, r0, Address::lsl(0))); 439 __ load_unsigned_byte(r2, Address(r2, tags_offset)); 440 __ cmpw(r2, (int)JVM_CONSTANT_Double); 441 __ br(Assembler::NE, notDouble); 442 443 // dtos 444 __ lea (r2, Address(r1, r0, Address::lsl(3))); 445 __ ldrd(v0, Address(r2, base_offset)); 446 __ push_d(); 447 __ b(Done); 448 449 __ bind(notDouble); 450 __ cmpw(r2, (int)JVM_CONSTANT_Long); 451 __ br(Assembler::NE, notLong); 452 453 // ltos 454 __ lea(r0, Address(r1, r0, Address::lsl(3))); 455 __ ldr(r0, Address(r0, base_offset)); 456 __ push_l(); 457 __ b(Done); 458 459 __ bind(notLong); 460 condy_helper(Done); 461 462 __ bind(Done); 463 } 464 465 void TemplateTable::condy_helper(Label& Done) 466 { 467 Register obj = r0; 468 Register rarg = r1; 469 Register flags = r2; 470 Register off = r3; 471 472 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 473 474 __ mov(rarg, (int) bytecode()); 475 __ call_VM(obj, entry, rarg); 476 477 __ get_vm_result_2(flags, rthread); 478 479 // VMr = obj = base address to find primitive value to push 480 // VMr2 = flags = (tos, off) using format of CPCE::_flags 481 __ mov(off, flags); 482 __ andw(off, off, ConstantPoolCacheEntry::field_index_mask); 483 484 const Address field(obj, off); 485 486 // What sort of thing are we loading? 487 // x86 uses a shift and mask or wings it with a shift plus assert 488 // the mask is not needed. aarch64 just uses bitfield extract 489 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, 490 ConstantPoolCacheEntry::tos_state_bits); 491 492 switch (bytecode()) { 493 case Bytecodes::_ldc: 494 case Bytecodes::_ldc_w: 495 { 496 // tos in (itos, ftos, stos, btos, ctos, ztos) 497 Label notInt, notFloat, notShort, notByte, notChar, notBool; 498 __ cmpw(flags, itos); 499 __ br(Assembler::NE, notInt); 500 // itos 501 __ ldrw(r0, field); 502 __ push(itos); 503 __ b(Done); 504 505 __ bind(notInt); 506 __ cmpw(flags, ftos); 507 __ br(Assembler::NE, notFloat); 508 // ftos 509 __ load_float(field); 510 __ push(ftos); 511 __ b(Done); 512 513 __ bind(notFloat); 514 __ cmpw(flags, stos); 515 __ br(Assembler::NE, notShort); 516 // stos 517 __ load_signed_short(r0, field); 518 __ push(stos); 519 __ b(Done); 520 521 __ bind(notShort); 522 __ cmpw(flags, btos); 523 __ br(Assembler::NE, notByte); 524 // btos 525 __ load_signed_byte(r0, field); 526 __ push(btos); 527 __ b(Done); 528 529 __ bind(notByte); 530 __ cmpw(flags, ctos); 531 __ br(Assembler::NE, notChar); 532 // ctos 533 __ load_unsigned_short(r0, field); 534 __ push(ctos); 535 __ b(Done); 536 537 __ bind(notChar); 538 __ cmpw(flags, ztos); 539 __ br(Assembler::NE, notBool); 540 // ztos 541 __ load_signed_byte(r0, field); 542 __ push(ztos); 543 __ b(Done); 544 545 __ bind(notBool); 546 break; 547 } 548 549 case Bytecodes::_ldc2_w: 550 { 551 Label notLong, notDouble; 552 __ cmpw(flags, ltos); 553 __ br(Assembler::NE, notLong); 554 // ltos 555 __ ldr(r0, field); 556 __ push(ltos); 557 __ b(Done); 558 559 __ bind(notLong); 560 __ cmpw(flags, dtos); 561 __ br(Assembler::NE, notDouble); 562 // dtos 563 __ load_double(field); 564 __ push(dtos); 565 __ b(Done); 566 567 __ bind(notDouble); 568 break; 569 } 570 571 default: 572 ShouldNotReachHere(); 573 } 574 575 __ stop("bad ldc/condy"); 576 } 577 578 void TemplateTable::locals_index(Register reg, int offset) 579 { 580 __ ldrb(reg, at_bcp(offset)); 581 __ neg(reg, reg); 582 } 583 584 void TemplateTable::iload() { 585 iload_internal(); 586 } 587 588 void TemplateTable::nofast_iload() { 589 iload_internal(may_not_rewrite); 590 } 591 592 void TemplateTable::iload_internal(RewriteControl rc) { 593 transition(vtos, itos); 594 if (RewriteFrequentPairs && rc == may_rewrite) { 595 Label rewrite, done; 596 Register bc = r4; 597 598 // get next bytecode 599 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 600 601 // if _iload, wait to rewrite to iload2. We only want to rewrite the 602 // last two iloads in a pair. Comparing against fast_iload means that 603 // the next bytecode is neither an iload or a caload, and therefore 604 // an iload pair. 605 __ cmpw(r1, Bytecodes::_iload); 606 __ br(Assembler::EQ, done); 607 608 // if _fast_iload rewrite to _fast_iload2 609 __ cmpw(r1, Bytecodes::_fast_iload); 610 __ movw(bc, Bytecodes::_fast_iload2); 611 __ br(Assembler::EQ, rewrite); 612 613 // if _caload rewrite to _fast_icaload 614 __ cmpw(r1, Bytecodes::_caload); 615 __ movw(bc, Bytecodes::_fast_icaload); 616 __ br(Assembler::EQ, rewrite); 617 618 // else rewrite to _fast_iload 619 __ movw(bc, Bytecodes::_fast_iload); 620 621 // rewrite 622 // bc: new bytecode 623 __ bind(rewrite); 624 patch_bytecode(Bytecodes::_iload, bc, r1, false); 625 __ bind(done); 626 627 } 628 629 // do iload, get the local value into tos 630 locals_index(r1); 631 __ ldr(r0, iaddress(r1)); 632 633 } 634 635 void TemplateTable::fast_iload2() 636 { 637 transition(vtos, itos); 638 locals_index(r1); 639 __ ldr(r0, iaddress(r1)); 640 __ push(itos); 641 locals_index(r1, 3); 642 __ ldr(r0, iaddress(r1)); 643 } 644 645 void TemplateTable::fast_iload() 646 { 647 transition(vtos, itos); 648 locals_index(r1); 649 __ ldr(r0, iaddress(r1)); 650 } 651 652 void TemplateTable::lload() 653 { 654 transition(vtos, ltos); 655 __ ldrb(r1, at_bcp(1)); 656 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 657 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 658 } 659 660 void TemplateTable::fload() 661 { 662 transition(vtos, ftos); 663 locals_index(r1); 664 // n.b. we use ldrd here because this is a 64 bit slot 665 // this is comparable to the iload case 666 __ ldrd(v0, faddress(r1)); 667 } 668 669 void TemplateTable::dload() 670 { 671 transition(vtos, dtos); 672 __ ldrb(r1, at_bcp(1)); 673 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 674 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 675 } 676 677 void TemplateTable::aload() 678 { 679 transition(vtos, atos); 680 locals_index(r1); 681 __ ldr(r0, iaddress(r1)); 682 } 683 684 void TemplateTable::locals_index_wide(Register reg) { 685 __ ldrh(reg, at_bcp(2)); 686 __ rev16w(reg, reg); 687 __ neg(reg, reg); 688 } 689 690 void TemplateTable::wide_iload() { 691 transition(vtos, itos); 692 locals_index_wide(r1); 693 __ ldr(r0, iaddress(r1)); 694 } 695 696 void TemplateTable::wide_lload() 697 { 698 transition(vtos, ltos); 699 __ ldrh(r1, at_bcp(2)); 700 __ rev16w(r1, r1); 701 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 702 __ ldr(r0, Address(r1, Interpreter::local_offset_in_bytes(1))); 703 } 704 705 void TemplateTable::wide_fload() 706 { 707 transition(vtos, ftos); 708 locals_index_wide(r1); 709 // n.b. we use ldrd here because this is a 64 bit slot 710 // this is comparable to the iload case 711 __ ldrd(v0, faddress(r1)); 712 } 713 714 void TemplateTable::wide_dload() 715 { 716 transition(vtos, dtos); 717 __ ldrh(r1, at_bcp(2)); 718 __ rev16w(r1, r1); 719 __ sub(r1, rlocals, r1, ext::uxtw, LogBytesPerWord); 720 __ ldrd(v0, Address(r1, Interpreter::local_offset_in_bytes(1))); 721 } 722 723 void TemplateTable::wide_aload() 724 { 725 transition(vtos, atos); 726 locals_index_wide(r1); 727 __ ldr(r0, aaddress(r1)); 728 } 729 730 void TemplateTable::index_check(Register array, Register index) 731 { 732 // destroys r1, rscratch1 733 // sign extend index for use by indexed load 734 // __ movl2ptr(index, index); 735 // check index 736 Register length = rscratch1; 737 __ ldrw(length, Address(array, arrayOopDesc::length_offset_in_bytes())); 738 __ cmpw(index, length); 739 if (index != r1) { 740 // ??? convention: move aberrant index into r1 for exception message 741 assert(r1 != array, "different registers"); 742 __ mov(r1, index); 743 } 744 Label ok; 745 __ br(Assembler::LO, ok); 746 // ??? convention: move array into r3 for exception message 747 __ mov(r3, array); 748 __ mov(rscratch1, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 749 __ br(rscratch1); 750 __ bind(ok); 751 } 752 753 void TemplateTable::iaload() 754 { 755 transition(itos, itos); 756 __ mov(r1, r0); 757 __ pop_ptr(r0); 758 // r0: array 759 // r1: index 760 index_check(r0, r1); // leaves index in r1, kills rscratch1 761 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 762 __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 763 } 764 765 void TemplateTable::laload() 766 { 767 transition(itos, ltos); 768 __ mov(r1, r0); 769 __ pop_ptr(r0); 770 // r0: array 771 // r1: index 772 index_check(r0, r1); // leaves index in r1, kills rscratch1 773 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 774 __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 775 } 776 777 void TemplateTable::faload() 778 { 779 transition(itos, ftos); 780 __ mov(r1, r0); 781 __ pop_ptr(r0); 782 // r0: array 783 // r1: index 784 index_check(r0, r1); // leaves index in r1, kills rscratch1 785 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 786 __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(2)), noreg, noreg); 787 } 788 789 void TemplateTable::daload() 790 { 791 transition(itos, dtos); 792 __ mov(r1, r0); 793 __ pop_ptr(r0); 794 // r0: array 795 // r1: index 796 index_check(r0, r1); // leaves index in r1, kills rscratch1 797 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 798 __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(3)), noreg, noreg); 799 } 800 801 void TemplateTable::aaload() 802 { 803 transition(itos, atos); 804 __ mov(r1, r0); 805 __ pop_ptr(r0); 806 // r0: array 807 // r1: index 808 index_check(r0, r1); // leaves index in r1, kills rscratch1 809 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 810 do_oop_load(_masm, 811 Address(r0, r1, Address::uxtw(LogBytesPerHeapOop)), 812 r0, 813 IS_ARRAY); 814 } 815 816 void TemplateTable::baload() 817 { 818 transition(itos, itos); 819 __ mov(r1, r0); 820 __ pop_ptr(r0); 821 // r0: array 822 // r1: index 823 index_check(r0, r1); // leaves index in r1, kills rscratch1 824 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 825 __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(0)), noreg, noreg); 826 } 827 828 void TemplateTable::caload() 829 { 830 transition(itos, itos); 831 __ mov(r1, r0); 832 __ pop_ptr(r0); 833 // r0: array 834 // r1: index 835 index_check(r0, r1); // leaves index in r1, kills rscratch1 836 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 837 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 838 } 839 840 // iload followed by caload frequent pair 841 void TemplateTable::fast_icaload() 842 { 843 transition(vtos, itos); 844 // load index out of locals 845 locals_index(r2); 846 __ ldr(r1, iaddress(r2)); 847 848 __ pop_ptr(r0); 849 850 // r0: array 851 // r1: index 852 index_check(r0, r1); // leaves index in r1, kills rscratch1 853 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 854 __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 855 } 856 857 void TemplateTable::saload() 858 { 859 transition(itos, itos); 860 __ mov(r1, r0); 861 __ pop_ptr(r0); 862 // r0: array 863 // r1: index 864 index_check(r0, r1); // leaves index in r1, kills rscratch1 865 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1); 866 __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, r0, Address(r0, r1, Address::uxtw(1)), noreg, noreg); 867 } 868 869 void TemplateTable::iload(int n) 870 { 871 transition(vtos, itos); 872 __ ldr(r0, iaddress(n)); 873 } 874 875 void TemplateTable::lload(int n) 876 { 877 transition(vtos, ltos); 878 __ ldr(r0, laddress(n)); 879 } 880 881 void TemplateTable::fload(int n) 882 { 883 transition(vtos, ftos); 884 __ ldrs(v0, faddress(n)); 885 } 886 887 void TemplateTable::dload(int n) 888 { 889 transition(vtos, dtos); 890 __ ldrd(v0, daddress(n)); 891 } 892 893 void TemplateTable::aload(int n) 894 { 895 transition(vtos, atos); 896 __ ldr(r0, iaddress(n)); 897 } 898 899 void TemplateTable::aload_0() { 900 aload_0_internal(); 901 } 902 903 void TemplateTable::nofast_aload_0() { 904 aload_0_internal(may_not_rewrite); 905 } 906 907 void TemplateTable::aload_0_internal(RewriteControl rc) { 908 // According to bytecode histograms, the pairs: 909 // 910 // _aload_0, _fast_igetfield 911 // _aload_0, _fast_agetfield 912 // _aload_0, _fast_fgetfield 913 // 914 // occur frequently. If RewriteFrequentPairs is set, the (slow) 915 // _aload_0 bytecode checks if the next bytecode is either 916 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 917 // rewrites the current bytecode into a pair bytecode; otherwise it 918 // rewrites the current bytecode into _fast_aload_0 that doesn't do 919 // the pair check anymore. 920 // 921 // Note: If the next bytecode is _getfield, the rewrite must be 922 // delayed, otherwise we may miss an opportunity for a pair. 923 // 924 // Also rewrite frequent pairs 925 // aload_0, aload_1 926 // aload_0, iload_1 927 // These bytecodes with a small amount of code are most profitable 928 // to rewrite 929 if (RewriteFrequentPairs && rc == may_rewrite) { 930 Label rewrite, done; 931 const Register bc = r4; 932 933 // get next bytecode 934 __ load_unsigned_byte(r1, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 935 936 // if _getfield then wait with rewrite 937 __ cmpw(r1, Bytecodes::Bytecodes::_getfield); 938 __ br(Assembler::EQ, done); 939 940 // if _igetfield then rewrite to _fast_iaccess_0 941 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 942 __ cmpw(r1, Bytecodes::_fast_igetfield); 943 __ movw(bc, Bytecodes::_fast_iaccess_0); 944 __ br(Assembler::EQ, rewrite); 945 946 // if _agetfield then rewrite to _fast_aaccess_0 947 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 948 __ cmpw(r1, Bytecodes::_fast_agetfield); 949 __ movw(bc, Bytecodes::_fast_aaccess_0); 950 __ br(Assembler::EQ, rewrite); 951 952 // if _fgetfield then rewrite to _fast_faccess_0 953 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 954 __ cmpw(r1, Bytecodes::_fast_fgetfield); 955 __ movw(bc, Bytecodes::_fast_faccess_0); 956 __ br(Assembler::EQ, rewrite); 957 958 // else rewrite to _fast_aload0 959 assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition"); 960 __ movw(bc, Bytecodes::Bytecodes::_fast_aload_0); 961 962 // rewrite 963 // bc: new bytecode 964 __ bind(rewrite); 965 patch_bytecode(Bytecodes::_aload_0, bc, r1, false); 966 967 __ bind(done); 968 } 969 970 // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop). 971 aload(0); 972 } 973 974 void TemplateTable::istore() 975 { 976 transition(itos, vtos); 977 locals_index(r1); 978 // FIXME: We're being very pernickerty here storing a jint in a 979 // local with strw, which costs an extra instruction over what we'd 980 // be able to do with a simple str. We should just store the whole 981 // word. 982 __ lea(rscratch1, iaddress(r1)); 983 __ strw(r0, Address(rscratch1)); 984 } 985 986 void TemplateTable::lstore() 987 { 988 transition(ltos, vtos); 989 locals_index(r1); 990 __ str(r0, laddress(r1, rscratch1, _masm)); 991 } 992 993 void TemplateTable::fstore() { 994 transition(ftos, vtos); 995 locals_index(r1); 996 __ lea(rscratch1, iaddress(r1)); 997 __ strs(v0, Address(rscratch1)); 998 } 999 1000 void TemplateTable::dstore() { 1001 transition(dtos, vtos); 1002 locals_index(r1); 1003 __ strd(v0, daddress(r1, rscratch1, _masm)); 1004 } 1005 1006 void TemplateTable::astore() 1007 { 1008 transition(vtos, vtos); 1009 __ pop_ptr(r0); 1010 locals_index(r1); 1011 __ str(r0, aaddress(r1)); 1012 } 1013 1014 void TemplateTable::wide_istore() { 1015 transition(vtos, vtos); 1016 __ pop_i(); 1017 locals_index_wide(r1); 1018 __ lea(rscratch1, iaddress(r1)); 1019 __ strw(r0, Address(rscratch1)); 1020 } 1021 1022 void TemplateTable::wide_lstore() { 1023 transition(vtos, vtos); 1024 __ pop_l(); 1025 locals_index_wide(r1); 1026 __ str(r0, laddress(r1, rscratch1, _masm)); 1027 } 1028 1029 void TemplateTable::wide_fstore() { 1030 transition(vtos, vtos); 1031 __ pop_f(); 1032 locals_index_wide(r1); 1033 __ lea(rscratch1, faddress(r1)); 1034 __ strs(v0, rscratch1); 1035 } 1036 1037 void TemplateTable::wide_dstore() { 1038 transition(vtos, vtos); 1039 __ pop_d(); 1040 locals_index_wide(r1); 1041 __ strd(v0, daddress(r1, rscratch1, _masm)); 1042 } 1043 1044 void TemplateTable::wide_astore() { 1045 transition(vtos, vtos); 1046 __ pop_ptr(r0); 1047 locals_index_wide(r1); 1048 __ str(r0, aaddress(r1)); 1049 } 1050 1051 void TemplateTable::iastore() { 1052 transition(itos, vtos); 1053 __ pop_i(r1); 1054 __ pop_ptr(r3); 1055 // r0: value 1056 // r1: index 1057 // r3: array 1058 index_check(r3, r1); // prefer index in r1 1059 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2); 1060 __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), r0, noreg, noreg, noreg); 1061 } 1062 1063 void TemplateTable::lastore() { 1064 transition(ltos, vtos); 1065 __ pop_i(r1); 1066 __ pop_ptr(r3); 1067 // r0: value 1068 // r1: index 1069 // r3: array 1070 index_check(r3, r1); // prefer index in r1 1071 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3); 1072 __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), r0, noreg, noreg, noreg); 1073 } 1074 1075 void TemplateTable::fastore() { 1076 transition(ftos, vtos); 1077 __ pop_i(r1); 1078 __ pop_ptr(r3); 1079 // v0: value 1080 // r1: index 1081 // r3: array 1082 index_check(r3, r1); // prefer index in r1 1083 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2); 1084 __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(2)), noreg /* ftos */, noreg, noreg, noreg); 1085 } 1086 1087 void TemplateTable::dastore() { 1088 transition(dtos, vtos); 1089 __ pop_i(r1); 1090 __ pop_ptr(r3); 1091 // v0: value 1092 // r1: index 1093 // r3: array 1094 index_check(r3, r1); // prefer index in r1 1095 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3); 1096 __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(3)), noreg /* dtos */, noreg, noreg, noreg); 1097 } 1098 1099 void TemplateTable::aastore() { 1100 Label is_null, ok_is_subtype, done; 1101 transition(vtos, vtos); 1102 // stack: ..., array, index, value 1103 __ ldr(r0, at_tos()); // value 1104 __ ldr(r2, at_tos_p1()); // index 1105 __ ldr(r3, at_tos_p2()); // array 1106 1107 Address element_address(r3, r4, Address::uxtw(LogBytesPerHeapOop)); 1108 1109 index_check(r3, r2); // kills r1 1110 __ add(r4, r2, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 1111 1112 // do array store check - check for null value first 1113 __ cbz(r0, is_null); 1114 1115 // Move subklass into r1 1116 __ load_klass(r1, r0); 1117 // Move superklass into r0 1118 __ load_klass(r0, r3); 1119 __ ldr(r0, Address(r0, 1120 ObjArrayKlass::element_klass_offset())); 1121 // Compress array + index*oopSize + 12 into a single register. Frees r2. 1122 1123 // Generate subtype check. Blows r2, r5 1124 // Superklass in r0. Subklass in r1. 1125 __ gen_subtype_check(r1, ok_is_subtype); 1126 1127 // Come here on failure 1128 // object is at TOS 1129 __ b(Interpreter::_throw_ArrayStoreException_entry); 1130 1131 // Come here on success 1132 __ bind(ok_is_subtype); 1133 1134 // Get the value we will store 1135 __ ldr(r0, at_tos()); 1136 // Now store using the appropriate barrier 1137 do_oop_store(_masm, element_address, r0, IS_ARRAY); 1138 __ b(done); 1139 1140 // Have a null in r0, r3=array, r2=index. Store null at ary[idx] 1141 __ bind(is_null); 1142 __ profile_null_seen(r2); 1143 1144 // Store a null 1145 do_oop_store(_masm, element_address, noreg, IS_ARRAY); 1146 1147 // Pop stack arguments 1148 __ bind(done); 1149 __ add(esp, esp, 3 * Interpreter::stackElementSize); 1150 } 1151 1152 void TemplateTable::bastore() 1153 { 1154 transition(itos, vtos); 1155 __ pop_i(r1); 1156 __ pop_ptr(r3); 1157 // r0: value 1158 // r1: index 1159 // r3: array 1160 index_check(r3, r1); // prefer index in r1 1161 1162 // Need to check whether array is boolean or byte 1163 // since both types share the bastore bytecode. 1164 __ load_klass(r2, r3); 1165 __ ldrw(r2, Address(r2, Klass::layout_helper_offset())); 1166 int diffbit_index = exact_log2(Klass::layout_helper_boolean_diffbit()); 1167 Label L_skip; 1168 __ tbz(r2, diffbit_index, L_skip); 1169 __ andw(r0, r0, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1 1170 __ bind(L_skip); 1171 1172 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0); 1173 __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(0)), r0, noreg, noreg, noreg); 1174 } 1175 1176 void TemplateTable::castore() 1177 { 1178 transition(itos, vtos); 1179 __ pop_i(r1); 1180 __ pop_ptr(r3); 1181 // r0: value 1182 // r1: index 1183 // r3: array 1184 index_check(r3, r1); // prefer index in r1 1185 __ add(r1, r1, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); 1186 __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(r3, r1, Address::uxtw(1)), r0, noreg, noreg, noreg); 1187 } 1188 1189 void TemplateTable::sastore() 1190 { 1191 castore(); 1192 } 1193 1194 void TemplateTable::istore(int n) 1195 { 1196 transition(itos, vtos); 1197 __ str(r0, iaddress(n)); 1198 } 1199 1200 void TemplateTable::lstore(int n) 1201 { 1202 transition(ltos, vtos); 1203 __ str(r0, laddress(n)); 1204 } 1205 1206 void TemplateTable::fstore(int n) 1207 { 1208 transition(ftos, vtos); 1209 __ strs(v0, faddress(n)); 1210 } 1211 1212 void TemplateTable::dstore(int n) 1213 { 1214 transition(dtos, vtos); 1215 __ strd(v0, daddress(n)); 1216 } 1217 1218 void TemplateTable::astore(int n) 1219 { 1220 transition(vtos, vtos); 1221 __ pop_ptr(r0); 1222 __ str(r0, iaddress(n)); 1223 } 1224 1225 void TemplateTable::pop() 1226 { 1227 transition(vtos, vtos); 1228 __ add(esp, esp, Interpreter::stackElementSize); 1229 } 1230 1231 void TemplateTable::pop2() 1232 { 1233 transition(vtos, vtos); 1234 __ add(esp, esp, 2 * Interpreter::stackElementSize); 1235 } 1236 1237 void TemplateTable::dup() 1238 { 1239 transition(vtos, vtos); 1240 __ ldr(r0, Address(esp, 0)); 1241 __ push(r0); 1242 // stack: ..., a, a 1243 } 1244 1245 void TemplateTable::dup_x1() 1246 { 1247 transition(vtos, vtos); 1248 // stack: ..., a, b 1249 __ ldr(r0, at_tos()); // load b 1250 __ ldr(r2, at_tos_p1()); // load a 1251 __ str(r0, at_tos_p1()); // store b 1252 __ str(r2, at_tos()); // store a 1253 __ push(r0); // push b 1254 // stack: ..., b, a, b 1255 } 1256 1257 void TemplateTable::dup_x2() 1258 { 1259 transition(vtos, vtos); 1260 // stack: ..., a, b, c 1261 __ ldr(r0, at_tos()); // load c 1262 __ ldr(r2, at_tos_p2()); // load a 1263 __ str(r0, at_tos_p2()); // store c in a 1264 __ push(r0); // push c 1265 // stack: ..., c, b, c, c 1266 __ ldr(r0, at_tos_p2()); // load b 1267 __ str(r2, at_tos_p2()); // store a in b 1268 // stack: ..., c, a, c, c 1269 __ str(r0, at_tos_p1()); // store b in c 1270 // stack: ..., c, a, b, c 1271 } 1272 1273 void TemplateTable::dup2() 1274 { 1275 transition(vtos, vtos); 1276 // stack: ..., a, b 1277 __ ldr(r0, at_tos_p1()); // load a 1278 __ push(r0); // push a 1279 __ ldr(r0, at_tos_p1()); // load b 1280 __ push(r0); // push b 1281 // stack: ..., a, b, a, b 1282 } 1283 1284 void TemplateTable::dup2_x1() 1285 { 1286 transition(vtos, vtos); 1287 // stack: ..., a, b, c 1288 __ ldr(r2, at_tos()); // load c 1289 __ ldr(r0, at_tos_p1()); // load b 1290 __ push(r0); // push b 1291 __ push(r2); // push c 1292 // stack: ..., a, b, c, b, c 1293 __ str(r2, at_tos_p3()); // store c in b 1294 // stack: ..., a, c, c, b, c 1295 __ ldr(r2, at_tos_p4()); // load a 1296 __ str(r2, at_tos_p2()); // store a in 2nd c 1297 // stack: ..., a, c, a, b, c 1298 __ str(r0, at_tos_p4()); // store b in a 1299 // stack: ..., b, c, a, b, c 1300 } 1301 1302 void TemplateTable::dup2_x2() 1303 { 1304 transition(vtos, vtos); 1305 // stack: ..., a, b, c, d 1306 __ ldr(r2, at_tos()); // load d 1307 __ ldr(r0, at_tos_p1()); // load c 1308 __ push(r0) ; // push c 1309 __ push(r2); // push d 1310 // stack: ..., a, b, c, d, c, d 1311 __ ldr(r0, at_tos_p4()); // load b 1312 __ str(r0, at_tos_p2()); // store b in d 1313 __ str(r2, at_tos_p4()); // store d in b 1314 // stack: ..., a, d, c, b, c, d 1315 __ ldr(r2, at_tos_p5()); // load a 1316 __ ldr(r0, at_tos_p3()); // load c 1317 __ str(r2, at_tos_p3()); // store a in c 1318 __ str(r0, at_tos_p5()); // store c in a 1319 // stack: ..., c, d, a, b, c, d 1320 } 1321 1322 void TemplateTable::swap() 1323 { 1324 transition(vtos, vtos); 1325 // stack: ..., a, b 1326 __ ldr(r2, at_tos_p1()); // load a 1327 __ ldr(r0, at_tos()); // load b 1328 __ str(r2, at_tos()); // store a in b 1329 __ str(r0, at_tos_p1()); // store b in a 1330 // stack: ..., b, a 1331 } 1332 1333 void TemplateTable::iop2(Operation op) 1334 { 1335 transition(itos, itos); 1336 // r0 <== r1 op r0 1337 __ pop_i(r1); 1338 switch (op) { 1339 case add : __ addw(r0, r1, r0); break; 1340 case sub : __ subw(r0, r1, r0); break; 1341 case mul : __ mulw(r0, r1, r0); break; 1342 case _and : __ andw(r0, r1, r0); break; 1343 case _or : __ orrw(r0, r1, r0); break; 1344 case _xor : __ eorw(r0, r1, r0); break; 1345 case shl : __ lslvw(r0, r1, r0); break; 1346 case shr : __ asrvw(r0, r1, r0); break; 1347 case ushr : __ lsrvw(r0, r1, r0);break; 1348 default : ShouldNotReachHere(); 1349 } 1350 } 1351 1352 void TemplateTable::lop2(Operation op) 1353 { 1354 transition(ltos, ltos); 1355 // r0 <== r1 op r0 1356 __ pop_l(r1); 1357 switch (op) { 1358 case add : __ add(r0, r1, r0); break; 1359 case sub : __ sub(r0, r1, r0); break; 1360 case mul : __ mul(r0, r1, r0); break; 1361 case _and : __ andr(r0, r1, r0); break; 1362 case _or : __ orr(r0, r1, r0); break; 1363 case _xor : __ eor(r0, r1, r0); break; 1364 default : ShouldNotReachHere(); 1365 } 1366 } 1367 1368 void TemplateTable::idiv() 1369 { 1370 transition(itos, itos); 1371 // explicitly check for div0 1372 Label no_div0; 1373 __ cbnzw(r0, no_div0); 1374 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1375 __ br(rscratch1); 1376 __ bind(no_div0); 1377 __ pop_i(r1); 1378 // r0 <== r1 idiv r0 1379 __ corrected_idivl(r0, r1, r0, /* want_remainder */ false); 1380 } 1381 1382 void TemplateTable::irem() 1383 { 1384 transition(itos, itos); 1385 // explicitly check for div0 1386 Label no_div0; 1387 __ cbnzw(r0, no_div0); 1388 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1389 __ br(rscratch1); 1390 __ bind(no_div0); 1391 __ pop_i(r1); 1392 // r0 <== r1 irem r0 1393 __ corrected_idivl(r0, r1, r0, /* want_remainder */ true); 1394 } 1395 1396 void TemplateTable::lmul() 1397 { 1398 transition(ltos, ltos); 1399 __ pop_l(r1); 1400 __ mul(r0, r0, r1); 1401 } 1402 1403 void TemplateTable::ldiv() 1404 { 1405 transition(ltos, ltos); 1406 // explicitly check for div0 1407 Label no_div0; 1408 __ cbnz(r0, no_div0); 1409 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1410 __ br(rscratch1); 1411 __ bind(no_div0); 1412 __ pop_l(r1); 1413 // r0 <== r1 ldiv r0 1414 __ corrected_idivq(r0, r1, r0, /* want_remainder */ false); 1415 } 1416 1417 void TemplateTable::lrem() 1418 { 1419 transition(ltos, ltos); 1420 // explicitly check for div0 1421 Label no_div0; 1422 __ cbnz(r0, no_div0); 1423 __ mov(rscratch1, Interpreter::_throw_ArithmeticException_entry); 1424 __ br(rscratch1); 1425 __ bind(no_div0); 1426 __ pop_l(r1); 1427 // r0 <== r1 lrem r0 1428 __ corrected_idivq(r0, r1, r0, /* want_remainder */ true); 1429 } 1430 1431 void TemplateTable::lshl() 1432 { 1433 transition(itos, ltos); 1434 // shift count is in r0 1435 __ pop_l(r1); 1436 __ lslv(r0, r1, r0); 1437 } 1438 1439 void TemplateTable::lshr() 1440 { 1441 transition(itos, ltos); 1442 // shift count is in r0 1443 __ pop_l(r1); 1444 __ asrv(r0, r1, r0); 1445 } 1446 1447 void TemplateTable::lushr() 1448 { 1449 transition(itos, ltos); 1450 // shift count is in r0 1451 __ pop_l(r1); 1452 __ lsrv(r0, r1, r0); 1453 } 1454 1455 void TemplateTable::fop2(Operation op) 1456 { 1457 transition(ftos, ftos); 1458 switch (op) { 1459 case add: 1460 // n.b. use ldrd because this is a 64 bit slot 1461 __ pop_f(v1); 1462 __ fadds(v0, v1, v0); 1463 break; 1464 case sub: 1465 __ pop_f(v1); 1466 __ fsubs(v0, v1, v0); 1467 break; 1468 case mul: 1469 __ pop_f(v1); 1470 __ fmuls(v0, v1, v0); 1471 break; 1472 case div: 1473 __ pop_f(v1); 1474 __ fdivs(v0, v1, v0); 1475 break; 1476 case rem: 1477 __ fmovs(v1, v0); 1478 __ pop_f(v0); 1479 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem)); 1480 break; 1481 default: 1482 ShouldNotReachHere(); 1483 break; 1484 } 1485 } 1486 1487 void TemplateTable::dop2(Operation op) 1488 { 1489 transition(dtos, dtos); 1490 switch (op) { 1491 case add: 1492 // n.b. use ldrd because this is a 64 bit slot 1493 __ pop_d(v1); 1494 __ faddd(v0, v1, v0); 1495 break; 1496 case sub: 1497 __ pop_d(v1); 1498 __ fsubd(v0, v1, v0); 1499 break; 1500 case mul: 1501 __ pop_d(v1); 1502 __ fmuld(v0, v1, v0); 1503 break; 1504 case div: 1505 __ pop_d(v1); 1506 __ fdivd(v0, v1, v0); 1507 break; 1508 case rem: 1509 __ fmovd(v1, v0); 1510 __ pop_d(v0); 1511 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem)); 1512 break; 1513 default: 1514 ShouldNotReachHere(); 1515 break; 1516 } 1517 } 1518 1519 void TemplateTable::ineg() 1520 { 1521 transition(itos, itos); 1522 __ negw(r0, r0); 1523 1524 } 1525 1526 void TemplateTable::lneg() 1527 { 1528 transition(ltos, ltos); 1529 __ neg(r0, r0); 1530 } 1531 1532 void TemplateTable::fneg() 1533 { 1534 transition(ftos, ftos); 1535 __ fnegs(v0, v0); 1536 } 1537 1538 void TemplateTable::dneg() 1539 { 1540 transition(dtos, dtos); 1541 __ fnegd(v0, v0); 1542 } 1543 1544 void TemplateTable::iinc() 1545 { 1546 transition(vtos, vtos); 1547 __ load_signed_byte(r1, at_bcp(2)); // get constant 1548 locals_index(r2); 1549 __ ldr(r0, iaddress(r2)); 1550 __ addw(r0, r0, r1); 1551 __ str(r0, iaddress(r2)); 1552 } 1553 1554 void TemplateTable::wide_iinc() 1555 { 1556 transition(vtos, vtos); 1557 // __ mov(r1, zr); 1558 __ ldrw(r1, at_bcp(2)); // get constant and index 1559 __ rev16(r1, r1); 1560 __ ubfx(r2, r1, 0, 16); 1561 __ neg(r2, r2); 1562 __ sbfx(r1, r1, 16, 16); 1563 __ ldr(r0, iaddress(r2)); 1564 __ addw(r0, r0, r1); 1565 __ str(r0, iaddress(r2)); 1566 } 1567 1568 void TemplateTable::convert() 1569 { 1570 // Checking 1571 #ifdef ASSERT 1572 { 1573 TosState tos_in = ilgl; 1574 TosState tos_out = ilgl; 1575 switch (bytecode()) { 1576 case Bytecodes::_i2l: // fall through 1577 case Bytecodes::_i2f: // fall through 1578 case Bytecodes::_i2d: // fall through 1579 case Bytecodes::_i2b: // fall through 1580 case Bytecodes::_i2c: // fall through 1581 case Bytecodes::_i2s: tos_in = itos; break; 1582 case Bytecodes::_l2i: // fall through 1583 case Bytecodes::_l2f: // fall through 1584 case Bytecodes::_l2d: tos_in = ltos; break; 1585 case Bytecodes::_f2i: // fall through 1586 case Bytecodes::_f2l: // fall through 1587 case Bytecodes::_f2d: tos_in = ftos; break; 1588 case Bytecodes::_d2i: // fall through 1589 case Bytecodes::_d2l: // fall through 1590 case Bytecodes::_d2f: tos_in = dtos; break; 1591 default : ShouldNotReachHere(); 1592 } 1593 switch (bytecode()) { 1594 case Bytecodes::_l2i: // fall through 1595 case Bytecodes::_f2i: // fall through 1596 case Bytecodes::_d2i: // fall through 1597 case Bytecodes::_i2b: // fall through 1598 case Bytecodes::_i2c: // fall through 1599 case Bytecodes::_i2s: tos_out = itos; break; 1600 case Bytecodes::_i2l: // fall through 1601 case Bytecodes::_f2l: // fall through 1602 case Bytecodes::_d2l: tos_out = ltos; break; 1603 case Bytecodes::_i2f: // fall through 1604 case Bytecodes::_l2f: // fall through 1605 case Bytecodes::_d2f: tos_out = ftos; break; 1606 case Bytecodes::_i2d: // fall through 1607 case Bytecodes::_l2d: // fall through 1608 case Bytecodes::_f2d: tos_out = dtos; break; 1609 default : ShouldNotReachHere(); 1610 } 1611 transition(tos_in, tos_out); 1612 } 1613 #endif // ASSERT 1614 // static const int64_t is_nan = 0x8000000000000000L; 1615 1616 // Conversion 1617 switch (bytecode()) { 1618 case Bytecodes::_i2l: 1619 __ sxtw(r0, r0); 1620 break; 1621 case Bytecodes::_i2f: 1622 __ scvtfws(v0, r0); 1623 break; 1624 case Bytecodes::_i2d: 1625 __ scvtfwd(v0, r0); 1626 break; 1627 case Bytecodes::_i2b: 1628 __ sxtbw(r0, r0); 1629 break; 1630 case Bytecodes::_i2c: 1631 __ uxthw(r0, r0); 1632 break; 1633 case Bytecodes::_i2s: 1634 __ sxthw(r0, r0); 1635 break; 1636 case Bytecodes::_l2i: 1637 __ uxtw(r0, r0); 1638 break; 1639 case Bytecodes::_l2f: 1640 __ scvtfs(v0, r0); 1641 break; 1642 case Bytecodes::_l2d: 1643 __ scvtfd(v0, r0); 1644 break; 1645 case Bytecodes::_f2i: 1646 { 1647 Label L_Okay; 1648 __ clear_fpsr(); 1649 __ fcvtzsw(r0, v0); 1650 __ get_fpsr(r1); 1651 __ cbzw(r1, L_Okay); 1652 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i)); 1653 __ bind(L_Okay); 1654 } 1655 break; 1656 case Bytecodes::_f2l: 1657 { 1658 Label L_Okay; 1659 __ clear_fpsr(); 1660 __ fcvtzs(r0, v0); 1661 __ get_fpsr(r1); 1662 __ cbzw(r1, L_Okay); 1663 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l)); 1664 __ bind(L_Okay); 1665 } 1666 break; 1667 case Bytecodes::_f2d: 1668 __ fcvts(v0, v0); 1669 break; 1670 case Bytecodes::_d2i: 1671 { 1672 Label L_Okay; 1673 __ clear_fpsr(); 1674 __ fcvtzdw(r0, v0); 1675 __ get_fpsr(r1); 1676 __ cbzw(r1, L_Okay); 1677 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i)); 1678 __ bind(L_Okay); 1679 } 1680 break; 1681 case Bytecodes::_d2l: 1682 { 1683 Label L_Okay; 1684 __ clear_fpsr(); 1685 __ fcvtzd(r0, v0); 1686 __ get_fpsr(r1); 1687 __ cbzw(r1, L_Okay); 1688 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l)); 1689 __ bind(L_Okay); 1690 } 1691 break; 1692 case Bytecodes::_d2f: 1693 __ fcvtd(v0, v0); 1694 break; 1695 default: 1696 ShouldNotReachHere(); 1697 } 1698 } 1699 1700 void TemplateTable::lcmp() 1701 { 1702 transition(ltos, itos); 1703 Label done; 1704 __ pop_l(r1); 1705 __ cmp(r1, r0); 1706 __ mov(r0, (uint64_t)-1L); 1707 __ br(Assembler::LT, done); 1708 // __ mov(r0, 1UL); 1709 // __ csel(r0, r0, zr, Assembler::NE); 1710 // and here is a faster way 1711 __ csinc(r0, zr, zr, Assembler::EQ); 1712 __ bind(done); 1713 } 1714 1715 void TemplateTable::float_cmp(bool is_float, int unordered_result) 1716 { 1717 Label done; 1718 if (is_float) { 1719 // XXX get rid of pop here, use ... reg, mem32 1720 __ pop_f(v1); 1721 __ fcmps(v1, v0); 1722 } else { 1723 // XXX get rid of pop here, use ... reg, mem64 1724 __ pop_d(v1); 1725 __ fcmpd(v1, v0); 1726 } 1727 if (unordered_result < 0) { 1728 // we want -1 for unordered or less than, 0 for equal and 1 for 1729 // greater than. 1730 __ mov(r0, (uint64_t)-1L); 1731 // for FP LT tests less than or unordered 1732 __ br(Assembler::LT, done); 1733 // install 0 for EQ otherwise 1 1734 __ csinc(r0, zr, zr, Assembler::EQ); 1735 } else { 1736 // we want -1 for less than, 0 for equal and 1 for unordered or 1737 // greater than. 1738 __ mov(r0, 1L); 1739 // for FP HI tests greater than or unordered 1740 __ br(Assembler::HI, done); 1741 // install 0 for EQ otherwise ~0 1742 __ csinv(r0, zr, zr, Assembler::EQ); 1743 1744 } 1745 __ bind(done); 1746 } 1747 1748 void TemplateTable::branch(bool is_jsr, bool is_wide) 1749 { 1750 __ profile_taken_branch(r0, r1); 1751 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 1752 InvocationCounter::counter_offset(); 1753 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 1754 InvocationCounter::counter_offset(); 1755 1756 // load branch displacement 1757 if (!is_wide) { 1758 __ ldrh(r2, at_bcp(1)); 1759 __ rev16(r2, r2); 1760 // sign extend the 16 bit value in r2 1761 __ sbfm(r2, r2, 0, 15); 1762 } else { 1763 __ ldrw(r2, at_bcp(1)); 1764 __ revw(r2, r2); 1765 // sign extend the 32 bit value in r2 1766 __ sbfm(r2, r2, 0, 31); 1767 } 1768 1769 // Handle all the JSR stuff here, then exit. 1770 // It's much shorter and cleaner than intermingling with the non-JSR 1771 // normal-branch stuff occurring below. 1772 1773 if (is_jsr) { 1774 // Pre-load the next target bytecode into rscratch1 1775 __ load_unsigned_byte(rscratch1, Address(rbcp, r2)); 1776 // compute return address as bci 1777 __ ldr(rscratch2, Address(rmethod, Method::const_offset())); 1778 __ add(rscratch2, rscratch2, 1779 in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3)); 1780 __ sub(r1, rbcp, rscratch2); 1781 __ push_i(r1); 1782 // Adjust the bcp by the 16-bit displacement in r2 1783 __ add(rbcp, rbcp, r2); 1784 __ dispatch_only(vtos, /*generate_poll*/true); 1785 return; 1786 } 1787 1788 // Normal (non-jsr) branch handling 1789 1790 // Adjust the bcp by the displacement in r2 1791 __ add(rbcp, rbcp, r2); 1792 1793 assert(UseLoopCounter || !UseOnStackReplacement, 1794 "on-stack-replacement requires loop counters"); 1795 Label backedge_counter_overflow; 1796 Label dispatch; 1797 if (UseLoopCounter) { 1798 // increment backedge counter for backward branches 1799 // r0: MDO 1800 // w1: MDO bumped taken-count 1801 // r2: target offset 1802 __ cmp(r2, zr); 1803 __ br(Assembler::GT, dispatch); // count only if backward branch 1804 1805 // ECN: FIXME: This code smells 1806 // check if MethodCounters exists 1807 Label has_counters; 1808 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1809 __ cbnz(rscratch1, has_counters); 1810 __ push(r0); 1811 __ push(r1); 1812 __ push(r2); 1813 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 1814 InterpreterRuntime::build_method_counters), rmethod); 1815 __ pop(r2); 1816 __ pop(r1); 1817 __ pop(r0); 1818 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1819 __ cbz(rscratch1, dispatch); // No MethodCounters allocated, OutOfMemory 1820 __ bind(has_counters); 1821 1822 Label no_mdo; 1823 int increment = InvocationCounter::count_increment; 1824 if (ProfileInterpreter) { 1825 // Are we profiling? 1826 __ ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset()))); 1827 __ cbz(r1, no_mdo); 1828 // Increment the MDO backedge counter 1829 const Address mdo_backedge_counter(r1, in_bytes(MethodData::backedge_counter_offset()) + 1830 in_bytes(InvocationCounter::counter_offset())); 1831 const Address mask(r1, in_bytes(MethodData::backedge_mask_offset())); 1832 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 1833 r0, rscratch1, false, Assembler::EQ, 1834 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1835 __ b(dispatch); 1836 } 1837 __ bind(no_mdo); 1838 // Increment backedge counter in MethodCounters* 1839 __ ldr(rscratch1, Address(rmethod, Method::method_counters_offset())); 1840 const Address mask(rscratch1, in_bytes(MethodCounters::backedge_mask_offset())); 1841 __ increment_mask_and_jump(Address(rscratch1, be_offset), increment, mask, 1842 r0, rscratch2, false, Assembler::EQ, 1843 UseOnStackReplacement ? &backedge_counter_overflow : &dispatch); 1844 __ bind(dispatch); 1845 } 1846 1847 // Pre-load the next target bytecode into rscratch1 1848 __ load_unsigned_byte(rscratch1, Address(rbcp, 0)); 1849 1850 // continue with the bytecode @ target 1851 // rscratch1: target bytecode 1852 // rbcp: target bcp 1853 __ dispatch_only(vtos, /*generate_poll*/true); 1854 1855 if (UseLoopCounter && UseOnStackReplacement) { 1856 // invocation counter overflow 1857 __ bind(backedge_counter_overflow); 1858 __ neg(r2, r2); 1859 __ add(r2, r2, rbcp); // branch bcp 1860 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 1861 __ call_VM(noreg, 1862 CAST_FROM_FN_PTR(address, 1863 InterpreterRuntime::frequency_counter_overflow), 1864 r2); 1865 __ load_unsigned_byte(r1, Address(rbcp, 0)); // restore target bytecode 1866 1867 // r0: osr nmethod (osr ok) or null (osr not possible) 1868 // w1: target bytecode 1869 // r2: scratch 1870 __ cbz(r0, dispatch); // test result -- no osr if null 1871 // nmethod may have been invalidated (VM may block upon call_VM return) 1872 __ ldrb(r2, Address(r0, nmethod::state_offset())); 1873 if (nmethod::in_use != 0) 1874 __ sub(r2, r2, nmethod::in_use); 1875 __ cbnz(r2, dispatch); 1876 1877 // We have the address of an on stack replacement routine in r0 1878 // We need to prepare to execute the OSR method. First we must 1879 // migrate the locals and monitors off of the stack. 1880 1881 __ mov(r19, r0); // save the nmethod 1882 1883 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 1884 1885 // r0 is OSR buffer, move it to expected parameter location 1886 __ mov(j_rarg0, r0); 1887 1888 // remove activation 1889 // get sender esp 1890 __ ldr(esp, 1891 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1892 // remove frame anchor 1893 __ leave(); 1894 // Ensure compiled code always sees stack at proper alignment 1895 __ andr(sp, esp, -16); 1896 1897 // and begin the OSR nmethod 1898 __ ldr(rscratch1, Address(r19, nmethod::osr_entry_point_offset())); 1899 __ br(rscratch1); 1900 } 1901 } 1902 1903 1904 void TemplateTable::if_0cmp(Condition cc) 1905 { 1906 transition(itos, vtos); 1907 // assume branch is more often taken than not (loops use backward branches) 1908 Label not_taken; 1909 if (cc == equal) 1910 __ cbnzw(r0, not_taken); 1911 else if (cc == not_equal) 1912 __ cbzw(r0, not_taken); 1913 else { 1914 __ andsw(zr, r0, r0); 1915 __ br(j_not(cc), not_taken); 1916 } 1917 1918 branch(false, false); 1919 __ bind(not_taken); 1920 __ profile_not_taken_branch(r0); 1921 } 1922 1923 void TemplateTable::if_icmp(Condition cc) 1924 { 1925 transition(itos, vtos); 1926 // assume branch is more often taken than not (loops use backward branches) 1927 Label not_taken; 1928 __ pop_i(r1); 1929 __ cmpw(r1, r0, Assembler::LSL); 1930 __ br(j_not(cc), not_taken); 1931 branch(false, false); 1932 __ bind(not_taken); 1933 __ profile_not_taken_branch(r0); 1934 } 1935 1936 void TemplateTable::if_nullcmp(Condition cc) 1937 { 1938 transition(atos, vtos); 1939 // assume branch is more often taken than not (loops use backward branches) 1940 Label not_taken; 1941 if (cc == equal) 1942 __ cbnz(r0, not_taken); 1943 else 1944 __ cbz(r0, not_taken); 1945 branch(false, false); 1946 __ bind(not_taken); 1947 __ profile_not_taken_branch(r0); 1948 } 1949 1950 void TemplateTable::if_acmp(Condition cc) 1951 { 1952 transition(atos, vtos); 1953 // assume branch is more often taken than not (loops use backward branches) 1954 Label not_taken; 1955 __ pop_ptr(r1); 1956 __ cmpoop(r1, r0); 1957 __ br(j_not(cc), not_taken); 1958 branch(false, false); 1959 __ bind(not_taken); 1960 __ profile_not_taken_branch(r0); 1961 } 1962 1963 void TemplateTable::ret() { 1964 transition(vtos, vtos); 1965 locals_index(r1); 1966 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1967 __ profile_ret(r1, r2); 1968 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1969 __ lea(rbcp, Address(rbcp, r1)); 1970 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1971 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1972 } 1973 1974 void TemplateTable::wide_ret() { 1975 transition(vtos, vtos); 1976 locals_index_wide(r1); 1977 __ ldr(r1, aaddress(r1)); // get return bci, compute return bcp 1978 __ profile_ret(r1, r2); 1979 __ ldr(rbcp, Address(rmethod, Method::const_offset())); 1980 __ lea(rbcp, Address(rbcp, r1)); 1981 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); 1982 __ dispatch_next(vtos, 0, /*generate_poll*/true); 1983 } 1984 1985 1986 void TemplateTable::tableswitch() { 1987 Label default_case, continue_execution; 1988 transition(itos, vtos); 1989 // align rbcp 1990 __ lea(r1, at_bcp(BytesPerInt)); 1991 __ andr(r1, r1, -BytesPerInt); 1992 // load lo & hi 1993 __ ldrw(r2, Address(r1, BytesPerInt)); 1994 __ ldrw(r3, Address(r1, 2 * BytesPerInt)); 1995 __ rev32(r2, r2); 1996 __ rev32(r3, r3); 1997 // check against lo & hi 1998 __ cmpw(r0, r2); 1999 __ br(Assembler::LT, default_case); 2000 __ cmpw(r0, r3); 2001 __ br(Assembler::GT, default_case); 2002 // lookup dispatch offset 2003 __ subw(r0, r0, r2); 2004 __ lea(r3, Address(r1, r0, Address::uxtw(2))); 2005 __ ldrw(r3, Address(r3, 3 * BytesPerInt)); 2006 __ profile_switch_case(r0, r1, r2); 2007 // continue execution 2008 __ bind(continue_execution); 2009 __ rev32(r3, r3); 2010 __ load_unsigned_byte(rscratch1, Address(rbcp, r3, Address::sxtw(0))); 2011 __ add(rbcp, rbcp, r3, ext::sxtw); 2012 __ dispatch_only(vtos, /*generate_poll*/true); 2013 // handle default 2014 __ bind(default_case); 2015 __ profile_switch_default(r0); 2016 __ ldrw(r3, Address(r1, 0)); 2017 __ b(continue_execution); 2018 } 2019 2020 void TemplateTable::lookupswitch() { 2021 transition(itos, itos); 2022 __ stop("lookupswitch bytecode should have been rewritten"); 2023 } 2024 2025 void TemplateTable::fast_linearswitch() { 2026 transition(itos, vtos); 2027 Label loop_entry, loop, found, continue_execution; 2028 // bswap r0 so we can avoid bswapping the table entries 2029 __ rev32(r0, r0); 2030 // align rbcp 2031 __ lea(r19, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2032 // this instruction (change offsets 2033 // below) 2034 __ andr(r19, r19, -BytesPerInt); 2035 // set counter 2036 __ ldrw(r1, Address(r19, BytesPerInt)); 2037 __ rev32(r1, r1); 2038 __ b(loop_entry); 2039 // table search 2040 __ bind(loop); 2041 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2042 __ ldrw(rscratch1, Address(rscratch1, 2 * BytesPerInt)); 2043 __ cmpw(r0, rscratch1); 2044 __ br(Assembler::EQ, found); 2045 __ bind(loop_entry); 2046 __ subs(r1, r1, 1); 2047 __ br(Assembler::PL, loop); 2048 // default case 2049 __ profile_switch_default(r0); 2050 __ ldrw(r3, Address(r19, 0)); 2051 __ b(continue_execution); 2052 // entry found -> get offset 2053 __ bind(found); 2054 __ lea(rscratch1, Address(r19, r1, Address::lsl(3))); 2055 __ ldrw(r3, Address(rscratch1, 3 * BytesPerInt)); 2056 __ profile_switch_case(r1, r0, r19); 2057 // continue execution 2058 __ bind(continue_execution); 2059 __ rev32(r3, r3); 2060 __ add(rbcp, rbcp, r3, ext::sxtw); 2061 __ ldrb(rscratch1, Address(rbcp, 0)); 2062 __ dispatch_only(vtos, /*generate_poll*/true); 2063 } 2064 2065 void TemplateTable::fast_binaryswitch() { 2066 transition(itos, vtos); 2067 // Implementation using the following core algorithm: 2068 // 2069 // int binary_search(int key, LookupswitchPair* array, int n) { 2070 // // Binary search according to "Methodik des Programmierens" by 2071 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2072 // int i = 0; 2073 // int j = n; 2074 // while (i+1 < j) { 2075 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2076 // // with Q: for all i: 0 <= i < n: key < a[i] 2077 // // where a stands for the array and assuming that the (inexisting) 2078 // // element a[n] is infinitely big. 2079 // int h = (i + j) >> 1; 2080 // // i < h < j 2081 // if (key < array[h].fast_match()) { 2082 // j = h; 2083 // } else { 2084 // i = h; 2085 // } 2086 // } 2087 // // R: a[i] <= key < a[i+1] or Q 2088 // // (i.e., if key is within array, i is the correct index) 2089 // return i; 2090 // } 2091 2092 // Register allocation 2093 const Register key = r0; // already set (tosca) 2094 const Register array = r1; 2095 const Register i = r2; 2096 const Register j = r3; 2097 const Register h = rscratch1; 2098 const Register temp = rscratch2; 2099 2100 // Find array start 2101 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2102 // get rid of this 2103 // instruction (change 2104 // offsets below) 2105 __ andr(array, array, -BytesPerInt); 2106 2107 // Initialize i & j 2108 __ mov(i, 0); // i = 0; 2109 __ ldrw(j, Address(array, -BytesPerInt)); // j = length(array); 2110 2111 // Convert j into native byteordering 2112 __ rev32(j, j); 2113 2114 // And start 2115 Label entry; 2116 __ b(entry); 2117 2118 // binary search loop 2119 { 2120 Label loop; 2121 __ bind(loop); 2122 // int h = (i + j) >> 1; 2123 __ addw(h, i, j); // h = i + j; 2124 __ lsrw(h, h, 1); // h = (i + j) >> 1; 2125 // if (key < array[h].fast_match()) { 2126 // j = h; 2127 // } else { 2128 // i = h; 2129 // } 2130 // Convert array[h].match to native byte-ordering before compare 2131 __ ldr(temp, Address(array, h, Address::lsl(3))); 2132 __ rev32(temp, temp); 2133 __ cmpw(key, temp); 2134 // j = h if (key < array[h].fast_match()) 2135 __ csel(j, h, j, Assembler::LT); 2136 // i = h if (key >= array[h].fast_match()) 2137 __ csel(i, h, i, Assembler::GE); 2138 // while (i+1 < j) 2139 __ bind(entry); 2140 __ addw(h, i, 1); // i+1 2141 __ cmpw(h, j); // i+1 < j 2142 __ br(Assembler::LT, loop); 2143 } 2144 2145 // end of binary search, result index is i (must check again!) 2146 Label default_case; 2147 // Convert array[i].match to native byte-ordering before compare 2148 __ ldr(temp, Address(array, i, Address::lsl(3))); 2149 __ rev32(temp, temp); 2150 __ cmpw(key, temp); 2151 __ br(Assembler::NE, default_case); 2152 2153 // entry found -> j = offset 2154 __ add(j, array, i, ext::uxtx, 3); 2155 __ ldrw(j, Address(j, BytesPerInt)); 2156 __ profile_switch_case(i, key, array); 2157 __ rev32(j, j); 2158 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2159 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2160 __ dispatch_only(vtos, /*generate_poll*/true); 2161 2162 // default case -> j = default offset 2163 __ bind(default_case); 2164 __ profile_switch_default(i); 2165 __ ldrw(j, Address(array, -2 * BytesPerInt)); 2166 __ rev32(j, j); 2167 __ load_unsigned_byte(rscratch1, Address(rbcp, j, Address::sxtw(0))); 2168 __ lea(rbcp, Address(rbcp, j, Address::sxtw(0))); 2169 __ dispatch_only(vtos, /*generate_poll*/true); 2170 } 2171 2172 2173 void TemplateTable::_return(TosState state) 2174 { 2175 transition(state, state); 2176 assert(_desc->calls_vm(), 2177 "inconsistent calls_vm information"); // call in remove_activation 2178 2179 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2180 assert(state == vtos, "only valid state"); 2181 2182 __ ldr(c_rarg1, aaddress(0)); 2183 __ load_klass(r3, c_rarg1); 2184 __ ldrw(r3, Address(r3, Klass::access_flags_offset())); 2185 Label skip_register_finalizer; 2186 __ tbz(r3, exact_log2(JVM_ACC_HAS_FINALIZER), skip_register_finalizer); 2187 2188 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1); 2189 2190 __ bind(skip_register_finalizer); 2191 } 2192 2193 // Issue a StoreStore barrier after all stores but before return 2194 // from any constructor for any class with a final field. We don't 2195 // know if this is a finalizer, so we always do so. 2196 if (_desc->bytecode() == Bytecodes::_return) 2197 __ membar(MacroAssembler::StoreStore); 2198 2199 // Narrow result if state is itos but result type is smaller. 2200 // Need to narrow in the return bytecode rather than in generate_return_entry 2201 // since compiled code callers expect the result to already be narrowed. 2202 if (state == itos) { 2203 __ narrow(r0); 2204 } 2205 2206 __ remove_activation(state); 2207 __ ret(lr); 2208 } 2209 2210 // ---------------------------------------------------------------------------- 2211 // Volatile variables demand their effects be made known to all CPU's 2212 // in order. Store buffers on most chips allow reads & writes to 2213 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2214 // without some kind of memory barrier (i.e., it's not sufficient that 2215 // the interpreter does not reorder volatile references, the hardware 2216 // also must not reorder them). 2217 // 2218 // According to the new Java Memory Model (JMM): 2219 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2220 // writes act as acquire & release, so: 2221 // (2) A read cannot let unrelated NON-volatile memory refs that 2222 // happen after the read float up to before the read. It's OK for 2223 // non-volatile memory refs that happen before the volatile read to 2224 // float down below it. 2225 // (3) Similar a volatile write cannot let unrelated NON-volatile 2226 // memory refs that happen BEFORE the write float down to after the 2227 // write. It's OK for non-volatile memory refs that happen after the 2228 // volatile write to float up before it. 2229 // 2230 // We only put in barriers around volatile refs (they are expensive), 2231 // not _between_ memory refs (that would require us to track the 2232 // flavor of the previous memory refs). Requirements (2) and (3) 2233 // require some barriers before volatile stores and after volatile 2234 // loads. These nearly cover requirement (1) but miss the 2235 // volatile-store-volatile-load case. This final case is placed after 2236 // volatile-stores although it could just as well go before 2237 // volatile-loads. 2238 2239 void TemplateTable::resolve_cache_and_index(int byte_no, 2240 Register Rcache, 2241 Register index, 2242 size_t index_size) { 2243 const Register temp = r19; 2244 assert_different_registers(Rcache, index, temp); 2245 2246 Label resolved, clinit_barrier_slow; 2247 2248 Bytecodes::Code code = bytecode(); 2249 switch (code) { 2250 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2251 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2252 default: break; 2253 } 2254 2255 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2256 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2257 __ subs(zr, temp, (int) code); // have we resolved this bytecode? 2258 __ br(Assembler::EQ, resolved); 2259 2260 // resolve first time through 2261 // Class initialization barrier slow path lands here as well. 2262 __ bind(clinit_barrier_slow); 2263 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2264 __ mov(temp, (int) code); 2265 __ call_VM(noreg, entry, temp); 2266 2267 // Update registers with resolved info 2268 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2269 // n.b. unlike x86 Rcache is now rcpool plus the indexed offset 2270 // so all clients ofthis method must be modified accordingly 2271 __ bind(resolved); 2272 2273 // Class initialization barrier for static methods 2274 if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) { 2275 __ load_resolved_method_at_index(byte_no, temp, Rcache); 2276 __ load_method_holder(temp, temp); 2277 __ clinit_barrier(temp, rscratch1, nullptr, &clinit_barrier_slow); 2278 } 2279 } 2280 2281 // The Rcache and index registers must be set before call 2282 // n.b unlike x86 cache already includes the index offset 2283 void TemplateTable::load_field_cp_cache_entry(Register obj, 2284 Register cache, 2285 Register index, 2286 Register off, 2287 Register flags, 2288 bool is_static = false) { 2289 assert_different_registers(cache, index, flags, off); 2290 2291 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2292 // Field offset 2293 __ ldr(off, Address(cache, in_bytes(cp_base_offset + 2294 ConstantPoolCacheEntry::f2_offset()))); 2295 // Flags 2296 __ ldrw(flags, Address(cache, in_bytes(cp_base_offset + 2297 ConstantPoolCacheEntry::flags_offset()))); 2298 2299 // klass overwrite register 2300 if (is_static) { 2301 __ ldr(obj, Address(cache, in_bytes(cp_base_offset + 2302 ConstantPoolCacheEntry::f1_offset()))); 2303 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2304 __ ldr(obj, Address(obj, mirror_offset)); 2305 __ resolve_oop_handle(obj, r5, rscratch2); 2306 } 2307 } 2308 2309 // The rmethod register is input and overwritten to be the adapter method for the 2310 // indy call. Link Register (lr) is set to the return address for the adapter and 2311 // an appendix may be pushed to the stack. Registers r0-r3 are clobbered 2312 void TemplateTable::load_invokedynamic_entry(Register method) { 2313 // setup registers 2314 const Register appendix = r0; 2315 const Register cache = r2; 2316 const Register index = r3; 2317 assert_different_registers(method, appendix, cache, index, rcpool); 2318 2319 __ save_bcp(); 2320 2321 Label resolved; 2322 2323 __ load_resolved_indy_entry(cache, index); 2324 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2325 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2326 __ ldar(method, method); 2327 2328 // Compare the method to zero 2329 __ cbnz(method, resolved); 2330 2331 Bytecodes::Code code = bytecode(); 2332 2333 // Call to the interpreter runtime to resolve invokedynamic 2334 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2335 __ mov(method, code); // this is essentially Bytecodes::_invokedynamic 2336 __ call_VM(noreg, entry, method); 2337 // Update registers with resolved info 2338 __ load_resolved_indy_entry(cache, index); 2339 // Load-acquire the adapter method to match store-release in ResolvedIndyEntry::fill_in() 2340 __ lea(method, Address(cache, in_bytes(ResolvedIndyEntry::method_offset()))); 2341 __ ldar(method, method); 2342 2343 #ifdef ASSERT 2344 __ cbnz(method, resolved); 2345 __ stop("Should be resolved by now"); 2346 #endif // ASSERT 2347 __ bind(resolved); 2348 2349 Label L_no_push; 2350 // Check if there is an appendix 2351 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::flags_offset()))); 2352 __ tbz(index, ResolvedIndyEntry::has_appendix_shift, L_no_push); 2353 2354 // Get appendix 2355 __ load_unsigned_short(index, Address(cache, in_bytes(ResolvedIndyEntry::resolved_references_index_offset()))); 2356 // Push the appendix as a trailing parameter 2357 // since the parameter_size includes it. 2358 __ push(method); 2359 __ mov(method, index); 2360 __ load_resolved_reference_at_index(appendix, method); 2361 __ verify_oop(appendix); 2362 __ pop(method); 2363 __ push(appendix); // push appendix (MethodType, CallSite, etc.) 2364 __ bind(L_no_push); 2365 2366 // compute return type 2367 __ load_unsigned_byte(index, Address(cache, in_bytes(ResolvedIndyEntry::result_type_offset()))); 2368 // load return address 2369 // Return address is loaded into link register(lr) and not pushed to the stack 2370 // like x86 2371 { 2372 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 2373 __ mov(rscratch1, table_addr); 2374 __ ldr(lr, Address(rscratch1, index, Address::lsl(3))); 2375 } 2376 } 2377 2378 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2379 Register method, 2380 Register itable_index, 2381 Register flags, 2382 bool is_invokevirtual, 2383 bool is_invokevfinal, /*unused*/ 2384 bool is_invokedynamic /*unused*/) { 2385 // setup registers 2386 const Register cache = rscratch2; 2387 const Register index = r4; 2388 assert_different_registers(method, flags); 2389 assert_different_registers(method, cache, index); 2390 assert_different_registers(itable_index, flags); 2391 assert_different_registers(itable_index, cache, index); 2392 // determine constant pool cache field offsets 2393 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2394 const int method_offset = in_bytes( 2395 ConstantPoolCache::base_offset() + 2396 (is_invokevirtual 2397 ? ConstantPoolCacheEntry::f2_offset() 2398 : ConstantPoolCacheEntry::f1_offset())); 2399 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2400 ConstantPoolCacheEntry::flags_offset()); 2401 // access constant pool cache fields 2402 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2403 ConstantPoolCacheEntry::f2_offset()); 2404 2405 size_t index_size = sizeof(u2); 2406 resolve_cache_and_index(byte_no, cache, index, index_size); 2407 __ ldr(method, Address(cache, method_offset)); 2408 2409 if (itable_index != noreg) { 2410 __ ldr(itable_index, Address(cache, index_offset)); 2411 } 2412 __ ldrw(flags, Address(cache, flags_offset)); 2413 } 2414 2415 2416 // The registers cache and index expected to be set before call. 2417 // Correct values of the cache and index registers are preserved. 2418 void TemplateTable::jvmti_post_field_access(Register cache, Register index, 2419 bool is_static, bool has_tos) { 2420 // do the JVMTI work here to avoid disturbing the register state below 2421 // We use c_rarg registers here because we want to use the register used in 2422 // the call to the VM 2423 if (JvmtiExport::can_post_field_access()) { 2424 // Check to see if a field access watch has been set before we 2425 // take the time to call into the VM. 2426 Label L1; 2427 assert_different_registers(cache, index, r0); 2428 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2429 __ ldrw(r0, Address(rscratch1)); 2430 __ cbzw(r0, L1); 2431 2432 __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1); 2433 __ lea(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset()))); 2434 2435 if (is_static) { 2436 __ mov(c_rarg1, zr); // null object reference 2437 } else { 2438 __ ldr(c_rarg1, at_tos()); // get object pointer without popping it 2439 __ verify_oop(c_rarg1); 2440 } 2441 // c_rarg1: object pointer or null 2442 // c_rarg2: cache entry pointer 2443 // c_rarg3: jvalue object on the stack 2444 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 2445 InterpreterRuntime::post_field_access), 2446 c_rarg1, c_rarg2, c_rarg3); 2447 __ get_cache_and_index_at_bcp(cache, index, 1); 2448 __ bind(L1); 2449 } 2450 } 2451 2452 void TemplateTable::pop_and_check_object(Register r) 2453 { 2454 __ pop_ptr(r); 2455 __ null_check(r); // for field access must check obj. 2456 __ verify_oop(r); 2457 } 2458 2459 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) 2460 { 2461 const Register cache = r2; 2462 const Register index = r3; 2463 const Register obj = r4; 2464 const Register off = r19; 2465 const Register flags = r0; 2466 const Register raw_flags = r6; 2467 const Register bc = r4; // uses same reg as obj, so don't mix them 2468 2469 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2470 jvmti_post_field_access(cache, index, is_static, false); 2471 load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static); 2472 2473 if (!is_static) { 2474 // obj is on the stack 2475 pop_and_check_object(obj); 2476 } 2477 2478 // 8179954: We need to make sure that the code generated for 2479 // volatile accesses forms a sequentially-consistent set of 2480 // operations when combined with STLR and LDAR. Without a leading 2481 // membar it's possible for a simple Dekker test to fail if loads 2482 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 2483 // the stores in one method and we interpret the loads in another. 2484 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()){ 2485 Label notVolatile; 2486 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2487 __ membar(MacroAssembler::AnyAny); 2488 __ bind(notVolatile); 2489 } 2490 2491 const Address field(obj, off); 2492 2493 Label Done, notByte, notBool, notInt, notShort, notChar, 2494 notLong, notFloat, notObj, notDouble; 2495 2496 // x86 uses a shift and mask or wings it with a shift plus assert 2497 // the mask is not needed. aarch64 just uses bitfield extract 2498 __ ubfxw(flags, raw_flags, ConstantPoolCacheEntry::tos_state_shift, 2499 ConstantPoolCacheEntry::tos_state_bits); 2500 2501 assert(btos == 0, "change code, btos != 0"); 2502 __ cbnz(flags, notByte); 2503 2504 // Don't rewrite getstatic, only getfield 2505 if (is_static) rc = may_not_rewrite; 2506 2507 // btos 2508 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 2509 __ push(btos); 2510 // Rewrite bytecode to be faster 2511 if (rc == may_rewrite) { 2512 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2513 } 2514 __ b(Done); 2515 2516 __ bind(notByte); 2517 __ cmp(flags, (u1)ztos); 2518 __ br(Assembler::NE, notBool); 2519 2520 // ztos (same code as btos) 2521 __ access_load_at(T_BOOLEAN, IN_HEAP, r0, field, noreg, noreg); 2522 __ push(ztos); 2523 // Rewrite bytecode to be faster 2524 if (rc == may_rewrite) { 2525 // use btos rewriting, no truncating to t/f bit is needed for getfield. 2526 patch_bytecode(Bytecodes::_fast_bgetfield, bc, r1); 2527 } 2528 __ b(Done); 2529 2530 __ bind(notBool); 2531 __ cmp(flags, (u1)atos); 2532 __ br(Assembler::NE, notObj); 2533 // atos 2534 do_oop_load(_masm, field, r0, IN_HEAP); 2535 __ push(atos); 2536 if (rc == may_rewrite) { 2537 patch_bytecode(Bytecodes::_fast_agetfield, bc, r1); 2538 } 2539 __ b(Done); 2540 2541 __ bind(notObj); 2542 __ cmp(flags, (u1)itos); 2543 __ br(Assembler::NE, notInt); 2544 // itos 2545 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 2546 __ push(itos); 2547 // Rewrite bytecode to be faster 2548 if (rc == may_rewrite) { 2549 patch_bytecode(Bytecodes::_fast_igetfield, bc, r1); 2550 } 2551 __ b(Done); 2552 2553 __ bind(notInt); 2554 __ cmp(flags, (u1)ctos); 2555 __ br(Assembler::NE, notChar); 2556 // ctos 2557 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 2558 __ push(ctos); 2559 // Rewrite bytecode to be faster 2560 if (rc == may_rewrite) { 2561 patch_bytecode(Bytecodes::_fast_cgetfield, bc, r1); 2562 } 2563 __ b(Done); 2564 2565 __ bind(notChar); 2566 __ cmp(flags, (u1)stos); 2567 __ br(Assembler::NE, notShort); 2568 // stos 2569 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 2570 __ push(stos); 2571 // Rewrite bytecode to be faster 2572 if (rc == may_rewrite) { 2573 patch_bytecode(Bytecodes::_fast_sgetfield, bc, r1); 2574 } 2575 __ b(Done); 2576 2577 __ bind(notShort); 2578 __ cmp(flags, (u1)ltos); 2579 __ br(Assembler::NE, notLong); 2580 // ltos 2581 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 2582 __ push(ltos); 2583 // Rewrite bytecode to be faster 2584 if (rc == may_rewrite) { 2585 patch_bytecode(Bytecodes::_fast_lgetfield, bc, r1); 2586 } 2587 __ b(Done); 2588 2589 __ bind(notLong); 2590 __ cmp(flags, (u1)ftos); 2591 __ br(Assembler::NE, notFloat); 2592 // ftos 2593 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2594 __ push(ftos); 2595 // Rewrite bytecode to be faster 2596 if (rc == may_rewrite) { 2597 patch_bytecode(Bytecodes::_fast_fgetfield, bc, r1); 2598 } 2599 __ b(Done); 2600 2601 __ bind(notFloat); 2602 #ifdef ASSERT 2603 __ cmp(flags, (u1)dtos); 2604 __ br(Assembler::NE, notDouble); 2605 #endif 2606 // dtos 2607 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 2608 __ push(dtos); 2609 // Rewrite bytecode to be faster 2610 if (rc == may_rewrite) { 2611 patch_bytecode(Bytecodes::_fast_dgetfield, bc, r1); 2612 } 2613 #ifdef ASSERT 2614 __ b(Done); 2615 2616 __ bind(notDouble); 2617 __ stop("Bad state"); 2618 #endif 2619 2620 __ bind(Done); 2621 2622 Label notVolatile; 2623 __ tbz(raw_flags, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2624 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2625 __ bind(notVolatile); 2626 } 2627 2628 2629 void TemplateTable::getfield(int byte_no) 2630 { 2631 getfield_or_static(byte_no, false); 2632 } 2633 2634 void TemplateTable::nofast_getfield(int byte_no) { 2635 getfield_or_static(byte_no, false, may_not_rewrite); 2636 } 2637 2638 void TemplateTable::getstatic(int byte_no) 2639 { 2640 getfield_or_static(byte_no, true); 2641 } 2642 2643 // The registers cache and index expected to be set before call. 2644 // The function may destroy various registers, just not the cache and index registers. 2645 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2646 transition(vtos, vtos); 2647 2648 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2649 2650 if (JvmtiExport::can_post_field_modification()) { 2651 // Check to see if a field modification watch has been set before 2652 // we take the time to call into the VM. 2653 Label L1; 2654 assert_different_registers(cache, index, r0); 2655 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2656 __ ldrw(r0, Address(rscratch1)); 2657 __ cbz(r0, L1); 2658 2659 __ get_cache_and_index_at_bcp(c_rarg2, rscratch1, 1); 2660 2661 if (is_static) { 2662 // Life is simple. Null out the object pointer. 2663 __ mov(c_rarg1, zr); 2664 } else { 2665 // Life is harder. The stack holds the value on top, followed by 2666 // the object. We don't know the size of the value, though; it 2667 // could be one or two words depending on its type. As a result, 2668 // we must find the type to determine where the object is. 2669 __ ldrw(c_rarg3, Address(c_rarg2, 2670 in_bytes(cp_base_offset + 2671 ConstantPoolCacheEntry::flags_offset()))); 2672 __ lsr(c_rarg3, c_rarg3, 2673 ConstantPoolCacheEntry::tos_state_shift); 2674 ConstantPoolCacheEntry::verify_tos_state_shift(); 2675 Label nope2, done, ok; 2676 __ ldr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2677 __ cmpw(c_rarg3, ltos); 2678 __ br(Assembler::EQ, ok); 2679 __ cmpw(c_rarg3, dtos); 2680 __ br(Assembler::NE, nope2); 2681 __ bind(ok); 2682 __ ldr(c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2683 __ bind(nope2); 2684 } 2685 // cache entry pointer 2686 __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset)); 2687 // object (tos) 2688 __ mov(c_rarg3, esp); 2689 // c_rarg1: object pointer set up above (null if static) 2690 // c_rarg2: cache entry pointer 2691 // c_rarg3: jvalue object on the stack 2692 __ call_VM(noreg, 2693 CAST_FROM_FN_PTR(address, 2694 InterpreterRuntime::post_field_modification), 2695 c_rarg1, c_rarg2, c_rarg3); 2696 __ get_cache_and_index_at_bcp(cache, index, 1); 2697 __ bind(L1); 2698 } 2699 } 2700 2701 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2702 transition(vtos, vtos); 2703 2704 const Register cache = r2; 2705 const Register index = r3; 2706 const Register obj = r2; 2707 const Register off = r19; 2708 const Register flags = r0; 2709 const Register bc = r4; 2710 2711 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2712 jvmti_post_field_mod(cache, index, is_static); 2713 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2714 2715 Label Done; 2716 __ mov(r5, flags); 2717 2718 { 2719 Label notVolatile; 2720 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2721 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2722 __ bind(notVolatile); 2723 } 2724 2725 // field address 2726 const Address field(obj, off); 2727 2728 Label notByte, notBool, notInt, notShort, notChar, 2729 notLong, notFloat, notObj, notDouble; 2730 2731 // x86 uses a shift and mask or wings it with a shift plus assert 2732 // the mask is not needed. aarch64 just uses bitfield extract 2733 __ ubfxw(flags, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 2734 2735 assert(btos == 0, "change code, btos != 0"); 2736 __ cbnz(flags, notByte); 2737 2738 // Don't rewrite putstatic, only putfield 2739 if (is_static) rc = may_not_rewrite; 2740 2741 // btos 2742 { 2743 __ pop(btos); 2744 if (!is_static) pop_and_check_object(obj); 2745 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 2746 if (rc == may_rewrite) { 2747 patch_bytecode(Bytecodes::_fast_bputfield, bc, r1, true, byte_no); 2748 } 2749 __ b(Done); 2750 } 2751 2752 __ bind(notByte); 2753 __ cmp(flags, (u1)ztos); 2754 __ br(Assembler::NE, notBool); 2755 2756 // ztos 2757 { 2758 __ pop(ztos); 2759 if (!is_static) pop_and_check_object(obj); 2760 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 2761 if (rc == may_rewrite) { 2762 patch_bytecode(Bytecodes::_fast_zputfield, bc, r1, true, byte_no); 2763 } 2764 __ b(Done); 2765 } 2766 2767 __ bind(notBool); 2768 __ cmp(flags, (u1)atos); 2769 __ br(Assembler::NE, notObj); 2770 2771 // atos 2772 { 2773 __ pop(atos); 2774 if (!is_static) pop_and_check_object(obj); 2775 // Store into the field 2776 do_oop_store(_masm, field, r0, IN_HEAP); 2777 if (rc == may_rewrite) { 2778 patch_bytecode(Bytecodes::_fast_aputfield, bc, r1, true, byte_no); 2779 } 2780 __ b(Done); 2781 } 2782 2783 __ bind(notObj); 2784 __ cmp(flags, (u1)itos); 2785 __ br(Assembler::NE, notInt); 2786 2787 // itos 2788 { 2789 __ pop(itos); 2790 if (!is_static) pop_and_check_object(obj); 2791 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 2792 if (rc == may_rewrite) { 2793 patch_bytecode(Bytecodes::_fast_iputfield, bc, r1, true, byte_no); 2794 } 2795 __ b(Done); 2796 } 2797 2798 __ bind(notInt); 2799 __ cmp(flags, (u1)ctos); 2800 __ br(Assembler::NE, notChar); 2801 2802 // ctos 2803 { 2804 __ pop(ctos); 2805 if (!is_static) pop_and_check_object(obj); 2806 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 2807 if (rc == may_rewrite) { 2808 patch_bytecode(Bytecodes::_fast_cputfield, bc, r1, true, byte_no); 2809 } 2810 __ b(Done); 2811 } 2812 2813 __ bind(notChar); 2814 __ cmp(flags, (u1)stos); 2815 __ br(Assembler::NE, notShort); 2816 2817 // stos 2818 { 2819 __ pop(stos); 2820 if (!is_static) pop_and_check_object(obj); 2821 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 2822 if (rc == may_rewrite) { 2823 patch_bytecode(Bytecodes::_fast_sputfield, bc, r1, true, byte_no); 2824 } 2825 __ b(Done); 2826 } 2827 2828 __ bind(notShort); 2829 __ cmp(flags, (u1)ltos); 2830 __ br(Assembler::NE, notLong); 2831 2832 // ltos 2833 { 2834 __ pop(ltos); 2835 if (!is_static) pop_and_check_object(obj); 2836 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 2837 if (rc == may_rewrite) { 2838 patch_bytecode(Bytecodes::_fast_lputfield, bc, r1, true, byte_no); 2839 } 2840 __ b(Done); 2841 } 2842 2843 __ bind(notLong); 2844 __ cmp(flags, (u1)ftos); 2845 __ br(Assembler::NE, notFloat); 2846 2847 // ftos 2848 { 2849 __ pop(ftos); 2850 if (!is_static) pop_and_check_object(obj); 2851 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 2852 if (rc == may_rewrite) { 2853 patch_bytecode(Bytecodes::_fast_fputfield, bc, r1, true, byte_no); 2854 } 2855 __ b(Done); 2856 } 2857 2858 __ bind(notFloat); 2859 #ifdef ASSERT 2860 __ cmp(flags, (u1)dtos); 2861 __ br(Assembler::NE, notDouble); 2862 #endif 2863 2864 // dtos 2865 { 2866 __ pop(dtos); 2867 if (!is_static) pop_and_check_object(obj); 2868 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 2869 if (rc == may_rewrite) { 2870 patch_bytecode(Bytecodes::_fast_dputfield, bc, r1, true, byte_no); 2871 } 2872 } 2873 2874 #ifdef ASSERT 2875 __ b(Done); 2876 2877 __ bind(notDouble); 2878 __ stop("Bad state"); 2879 #endif 2880 2881 __ bind(Done); 2882 2883 { 2884 Label notVolatile; 2885 __ tbz(r5, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2886 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 2887 __ bind(notVolatile); 2888 } 2889 } 2890 2891 void TemplateTable::putfield(int byte_no) 2892 { 2893 putfield_or_static(byte_no, false); 2894 } 2895 2896 void TemplateTable::nofast_putfield(int byte_no) { 2897 putfield_or_static(byte_no, false, may_not_rewrite); 2898 } 2899 2900 void TemplateTable::putstatic(int byte_no) { 2901 putfield_or_static(byte_no, true); 2902 } 2903 2904 void TemplateTable::jvmti_post_fast_field_mod() 2905 { 2906 if (JvmtiExport::can_post_field_modification()) { 2907 // Check to see if a field modification watch has been set before 2908 // we take the time to call into the VM. 2909 Label L2; 2910 __ lea(rscratch1, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2911 __ ldrw(c_rarg3, Address(rscratch1)); 2912 __ cbzw(c_rarg3, L2); 2913 __ pop_ptr(r19); // copy the object pointer from tos 2914 __ verify_oop(r19); 2915 __ push_ptr(r19); // put the object pointer back on tos 2916 // Save tos values before call_VM() clobbers them. Since we have 2917 // to do it for every data type, we use the saved values as the 2918 // jvalue object. 2919 switch (bytecode()) { // load values into the jvalue object 2920 case Bytecodes::_fast_aputfield: __ push_ptr(r0); break; 2921 case Bytecodes::_fast_bputfield: // fall through 2922 case Bytecodes::_fast_zputfield: // fall through 2923 case Bytecodes::_fast_sputfield: // fall through 2924 case Bytecodes::_fast_cputfield: // fall through 2925 case Bytecodes::_fast_iputfield: __ push_i(r0); break; 2926 case Bytecodes::_fast_dputfield: __ push_d(); break; 2927 case Bytecodes::_fast_fputfield: __ push_f(); break; 2928 case Bytecodes::_fast_lputfield: __ push_l(r0); break; 2929 2930 default: 2931 ShouldNotReachHere(); 2932 } 2933 __ mov(c_rarg3, esp); // points to jvalue on the stack 2934 // access constant pool cache entry 2935 __ get_cache_entry_pointer_at_bcp(c_rarg2, r0, 1); 2936 __ verify_oop(r19); 2937 // r19: object pointer copied above 2938 // c_rarg2: cache entry pointer 2939 // c_rarg3: jvalue object on the stack 2940 __ call_VM(noreg, 2941 CAST_FROM_FN_PTR(address, 2942 InterpreterRuntime::post_field_modification), 2943 r19, c_rarg2, c_rarg3); 2944 2945 switch (bytecode()) { // restore tos values 2946 case Bytecodes::_fast_aputfield: __ pop_ptr(r0); break; 2947 case Bytecodes::_fast_bputfield: // fall through 2948 case Bytecodes::_fast_zputfield: // fall through 2949 case Bytecodes::_fast_sputfield: // fall through 2950 case Bytecodes::_fast_cputfield: // fall through 2951 case Bytecodes::_fast_iputfield: __ pop_i(r0); break; 2952 case Bytecodes::_fast_dputfield: __ pop_d(); break; 2953 case Bytecodes::_fast_fputfield: __ pop_f(); break; 2954 case Bytecodes::_fast_lputfield: __ pop_l(r0); break; 2955 default: break; 2956 } 2957 __ bind(L2); 2958 } 2959 } 2960 2961 void TemplateTable::fast_storefield(TosState state) 2962 { 2963 transition(state, vtos); 2964 2965 ByteSize base = ConstantPoolCache::base_offset(); 2966 2967 jvmti_post_fast_field_mod(); 2968 2969 // access constant pool cache 2970 __ get_cache_and_index_at_bcp(r2, r1, 1); 2971 2972 // Must prevent reordering of the following cp cache loads with bytecode load 2973 __ membar(MacroAssembler::LoadLoad); 2974 2975 // test for volatile with r3 2976 __ ldrw(r3, Address(r2, in_bytes(base + 2977 ConstantPoolCacheEntry::flags_offset()))); 2978 2979 // replace index with field offset from cache entry 2980 __ ldr(r1, Address(r2, in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 2981 2982 { 2983 Label notVolatile; 2984 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 2985 __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore); 2986 __ bind(notVolatile); 2987 } 2988 2989 Label notVolatile; 2990 2991 // Get object from stack 2992 pop_and_check_object(r2); 2993 2994 // field address 2995 const Address field(r2, r1); 2996 2997 // access field 2998 switch (bytecode()) { 2999 case Bytecodes::_fast_aputfield: 3000 do_oop_store(_masm, field, r0, IN_HEAP); 3001 break; 3002 case Bytecodes::_fast_lputfield: 3003 __ access_store_at(T_LONG, IN_HEAP, field, r0, noreg, noreg, noreg); 3004 break; 3005 case Bytecodes::_fast_iputfield: 3006 __ access_store_at(T_INT, IN_HEAP, field, r0, noreg, noreg, noreg); 3007 break; 3008 case Bytecodes::_fast_zputfield: 3009 __ access_store_at(T_BOOLEAN, IN_HEAP, field, r0, noreg, noreg, noreg); 3010 break; 3011 case Bytecodes::_fast_bputfield: 3012 __ access_store_at(T_BYTE, IN_HEAP, field, r0, noreg, noreg, noreg); 3013 break; 3014 case Bytecodes::_fast_sputfield: 3015 __ access_store_at(T_SHORT, IN_HEAP, field, r0, noreg, noreg, noreg); 3016 break; 3017 case Bytecodes::_fast_cputfield: 3018 __ access_store_at(T_CHAR, IN_HEAP, field, r0, noreg, noreg, noreg); 3019 break; 3020 case Bytecodes::_fast_fputfield: 3021 __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg, noreg); 3022 break; 3023 case Bytecodes::_fast_dputfield: 3024 __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg, noreg); 3025 break; 3026 default: 3027 ShouldNotReachHere(); 3028 } 3029 3030 { 3031 Label notVolatile; 3032 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3033 __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore); 3034 __ bind(notVolatile); 3035 } 3036 } 3037 3038 3039 void TemplateTable::fast_accessfield(TosState state) 3040 { 3041 transition(atos, state); 3042 // Do the JVMTI work here to avoid disturbing the register state below 3043 if (JvmtiExport::can_post_field_access()) { 3044 // Check to see if a field access watch has been set before we 3045 // take the time to call into the VM. 3046 Label L1; 3047 __ lea(rscratch1, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3048 __ ldrw(r2, Address(rscratch1)); 3049 __ cbzw(r2, L1); 3050 // access constant pool cache entry 3051 __ get_cache_entry_pointer_at_bcp(c_rarg2, rscratch2, 1); 3052 __ verify_oop(r0); 3053 __ push_ptr(r0); // save object pointer before call_VM() clobbers it 3054 __ mov(c_rarg1, r0); 3055 // c_rarg1: object pointer copied above 3056 // c_rarg2: cache entry pointer 3057 __ call_VM(noreg, 3058 CAST_FROM_FN_PTR(address, 3059 InterpreterRuntime::post_field_access), 3060 c_rarg1, c_rarg2); 3061 __ pop_ptr(r0); // restore object pointer 3062 __ bind(L1); 3063 } 3064 3065 // access constant pool cache 3066 __ get_cache_and_index_at_bcp(r2, r1, 1); 3067 3068 // Must prevent reordering of the following cp cache loads with bytecode load 3069 __ membar(MacroAssembler::LoadLoad); 3070 3071 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3072 ConstantPoolCacheEntry::f2_offset()))); 3073 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3074 ConstantPoolCacheEntry::flags_offset()))); 3075 3076 // r0: object 3077 __ verify_oop(r0); 3078 __ null_check(r0); 3079 const Address field(r0, r1); 3080 3081 // 8179954: We need to make sure that the code generated for 3082 // volatile accesses forms a sequentially-consistent set of 3083 // operations when combined with STLR and LDAR. Without a leading 3084 // membar it's possible for a simple Dekker test to fail if loads 3085 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3086 // the stores in one method and we interpret the loads in another. 3087 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3088 Label notVolatile; 3089 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3090 __ membar(MacroAssembler::AnyAny); 3091 __ bind(notVolatile); 3092 } 3093 3094 // access field 3095 switch (bytecode()) { 3096 case Bytecodes::_fast_agetfield: 3097 do_oop_load(_masm, field, r0, IN_HEAP); 3098 __ verify_oop(r0); 3099 break; 3100 case Bytecodes::_fast_lgetfield: 3101 __ access_load_at(T_LONG, IN_HEAP, r0, field, noreg, noreg); 3102 break; 3103 case Bytecodes::_fast_igetfield: 3104 __ access_load_at(T_INT, IN_HEAP, r0, field, noreg, noreg); 3105 break; 3106 case Bytecodes::_fast_bgetfield: 3107 __ access_load_at(T_BYTE, IN_HEAP, r0, field, noreg, noreg); 3108 break; 3109 case Bytecodes::_fast_sgetfield: 3110 __ access_load_at(T_SHORT, IN_HEAP, r0, field, noreg, noreg); 3111 break; 3112 case Bytecodes::_fast_cgetfield: 3113 __ access_load_at(T_CHAR, IN_HEAP, r0, field, noreg, noreg); 3114 break; 3115 case Bytecodes::_fast_fgetfield: 3116 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg); 3117 break; 3118 case Bytecodes::_fast_dgetfield: 3119 __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg); 3120 break; 3121 default: 3122 ShouldNotReachHere(); 3123 } 3124 { 3125 Label notVolatile; 3126 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3127 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3128 __ bind(notVolatile); 3129 } 3130 } 3131 3132 void TemplateTable::fast_xaccess(TosState state) 3133 { 3134 transition(vtos, state); 3135 3136 // get receiver 3137 __ ldr(r0, aaddress(0)); 3138 // access constant pool cache 3139 __ get_cache_and_index_at_bcp(r2, r3, 2); 3140 __ ldr(r1, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3141 ConstantPoolCacheEntry::f2_offset()))); 3142 3143 // 8179954: We need to make sure that the code generated for 3144 // volatile accesses forms a sequentially-consistent set of 3145 // operations when combined with STLR and LDAR. Without a leading 3146 // membar it's possible for a simple Dekker test to fail if loads 3147 // use LDR;DMB but stores use STLR. This can happen if C2 compiles 3148 // the stores in one method and we interpret the loads in another. 3149 if (!CompilerConfig::is_c1_or_interpreter_only_no_jvmci()) { 3150 Label notVolatile; 3151 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3152 ConstantPoolCacheEntry::flags_offset()))); 3153 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3154 __ membar(MacroAssembler::AnyAny); 3155 __ bind(notVolatile); 3156 } 3157 3158 // make sure exception is reported in correct bcp range (getfield is 3159 // next instruction) 3160 __ increment(rbcp); 3161 __ null_check(r0); 3162 switch (state) { 3163 case itos: 3164 __ access_load_at(T_INT, IN_HEAP, r0, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3165 break; 3166 case atos: 3167 do_oop_load(_masm, Address(r0, r1, Address::lsl(0)), r0, IN_HEAP); 3168 __ verify_oop(r0); 3169 break; 3170 case ftos: 3171 __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(r0, r1, Address::lsl(0)), noreg, noreg); 3172 break; 3173 default: 3174 ShouldNotReachHere(); 3175 } 3176 3177 { 3178 Label notVolatile; 3179 __ ldrw(r3, Address(r2, in_bytes(ConstantPoolCache::base_offset() + 3180 ConstantPoolCacheEntry::flags_offset()))); 3181 __ tbz(r3, ConstantPoolCacheEntry::is_volatile_shift, notVolatile); 3182 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 3183 __ bind(notVolatile); 3184 } 3185 3186 __ decrement(rbcp); 3187 } 3188 3189 3190 3191 //----------------------------------------------------------------------------- 3192 // Calls 3193 3194 void TemplateTable::prepare_invoke(int byte_no, 3195 Register method, // linked method (or i-klass) 3196 Register index, // itable index, MethodType, etc. 3197 Register recv, // if caller wants to see it 3198 Register flags // if caller wants to test it 3199 ) { 3200 // determine flags 3201 Bytecodes::Code code = bytecode(); 3202 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3203 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3204 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3205 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3206 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3207 const bool load_receiver = (recv != noreg); 3208 const bool save_flags = (flags != noreg); 3209 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3210 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3211 assert(flags == noreg || flags == r3, ""); 3212 assert(recv == noreg || recv == r2, ""); 3213 3214 // setup registers & access constant pool cache 3215 if (recv == noreg) recv = r2; 3216 if (flags == noreg) flags = r3; 3217 assert_different_registers(method, index, recv, flags); 3218 3219 // save 'interpreter return address' 3220 __ save_bcp(); 3221 3222 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3223 3224 // maybe push appendix to arguments (just before return address) 3225 if (is_invokehandle) { 3226 Label L_no_push; 3227 __ tbz(flags, ConstantPoolCacheEntry::has_appendix_shift, L_no_push); 3228 // Push the appendix as a trailing parameter. 3229 // This must be done before we get the receiver, 3230 // since the parameter_size includes it. 3231 __ push(r19); 3232 __ mov(r19, index); 3233 __ load_resolved_reference_at_index(index, r19); 3234 __ pop(r19); 3235 __ push(index); // push appendix (MethodType, CallSite, etc.) 3236 __ bind(L_no_push); 3237 } 3238 3239 // load receiver if needed (note: no return address pushed yet) 3240 if (load_receiver) { 3241 __ andw(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); 3242 // FIXME -- is this actually correct? looks like it should be 2 3243 // const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3244 // const int receiver_is_at_end = -1; // back off one slot to get receiver 3245 // Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3246 // __ movptr(recv, recv_addr); 3247 __ add(rscratch1, esp, recv, ext::uxtx, 3); // FIXME: uxtb here? 3248 __ ldr(recv, Address(rscratch1, -Interpreter::expr_offset_in_bytes(1))); 3249 __ verify_oop(recv); 3250 } 3251 3252 // compute return type 3253 // x86 uses a shift and mask or wings it with a shift plus assert 3254 // the mask is not needed. aarch64 just uses bitfield extract 3255 __ ubfxw(rscratch2, flags, ConstantPoolCacheEntry::tos_state_shift, ConstantPoolCacheEntry::tos_state_bits); 3256 // load return address 3257 { 3258 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3259 __ mov(rscratch1, table_addr); 3260 __ ldr(lr, Address(rscratch1, rscratch2, Address::lsl(3))); 3261 } 3262 } 3263 3264 3265 void TemplateTable::invokevirtual_helper(Register index, 3266 Register recv, 3267 Register flags) 3268 { 3269 // Uses temporary registers r0, r3 3270 assert_different_registers(index, recv, r0, r3); 3271 // Test for an invoke of a final method 3272 Label notFinal; 3273 __ tbz(flags, ConstantPoolCacheEntry::is_vfinal_shift, notFinal); 3274 3275 const Register method = index; // method must be rmethod 3276 assert(method == rmethod, 3277 "Method must be rmethod for interpreter calling convention"); 3278 3279 // do the call - the index is actually the method to call 3280 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3281 3282 // It's final, need a null check here! 3283 __ null_check(recv); 3284 3285 // profile this call 3286 __ profile_final_call(r0); 3287 __ profile_arguments_type(r0, method, r4, true); 3288 3289 __ jump_from_interpreted(method, r0); 3290 3291 __ bind(notFinal); 3292 3293 // get receiver klass 3294 __ load_klass(r0, recv); 3295 3296 // profile this call 3297 __ profile_virtual_call(r0, rlocals, r3); 3298 3299 // get target Method & entry point 3300 __ lookup_virtual_method(r0, index, method); 3301 __ profile_arguments_type(r3, method, r4, true); 3302 // FIXME -- this looks completely redundant. is it? 3303 // __ ldr(r3, Address(method, Method::interpreter_entry_offset())); 3304 __ jump_from_interpreted(method, r3); 3305 } 3306 3307 void TemplateTable::invokevirtual(int byte_no) 3308 { 3309 transition(vtos, vtos); 3310 assert(byte_no == f2_byte, "use this argument"); 3311 3312 prepare_invoke(byte_no, rmethod, noreg, r2, r3); 3313 3314 // rmethod: index (actually a Method*) 3315 // r2: receiver 3316 // r3: flags 3317 3318 invokevirtual_helper(rmethod, r2, r3); 3319 } 3320 3321 void TemplateTable::invokespecial(int byte_no) 3322 { 3323 transition(vtos, vtos); 3324 assert(byte_no == f1_byte, "use this argument"); 3325 3326 prepare_invoke(byte_no, rmethod, noreg, // get f1 Method* 3327 r2); // get receiver also for null check 3328 __ verify_oop(r2); 3329 __ null_check(r2); 3330 // do the call 3331 __ profile_call(r0); 3332 __ profile_arguments_type(r0, rmethod, rbcp, false); 3333 __ jump_from_interpreted(rmethod, r0); 3334 } 3335 3336 void TemplateTable::invokestatic(int byte_no) 3337 { 3338 transition(vtos, vtos); 3339 assert(byte_no == f1_byte, "use this argument"); 3340 3341 prepare_invoke(byte_no, rmethod); // get f1 Method* 3342 // do the call 3343 __ profile_call(r0); 3344 __ profile_arguments_type(r0, rmethod, r4, false); 3345 __ jump_from_interpreted(rmethod, r0); 3346 } 3347 3348 void TemplateTable::fast_invokevfinal(int byte_no) 3349 { 3350 __ call_Unimplemented(); 3351 } 3352 3353 void TemplateTable::invokeinterface(int byte_no) { 3354 transition(vtos, vtos); 3355 assert(byte_no == f1_byte, "use this argument"); 3356 3357 prepare_invoke(byte_no, r0, rmethod, // get f1 Klass*, f2 Method* 3358 r2, r3); // recv, flags 3359 3360 // r0: interface klass (from f1) 3361 // rmethod: method (from f2) 3362 // r2: receiver 3363 // r3: flags 3364 3365 // First check for Object case, then private interface method, 3366 // then regular interface method. 3367 3368 // Special case of invokeinterface called for virtual method of 3369 // java.lang.Object. See cpCache.cpp for details. 3370 Label notObjectMethod; 3371 __ tbz(r3, ConstantPoolCacheEntry::is_forced_virtual_shift, notObjectMethod); 3372 3373 invokevirtual_helper(rmethod, r2, r3); 3374 __ bind(notObjectMethod); 3375 3376 Label no_such_interface; 3377 3378 // Check for private method invocation - indicated by vfinal 3379 Label notVFinal; 3380 __ tbz(r3, ConstantPoolCacheEntry::is_vfinal_shift, notVFinal); 3381 3382 // Get receiver klass into r3 3383 __ load_klass(r3, r2); 3384 3385 Label subtype; 3386 __ check_klass_subtype(r3, r0, r4, subtype); 3387 // If we get here the typecheck failed 3388 __ b(no_such_interface); 3389 __ bind(subtype); 3390 3391 __ profile_final_call(r0); 3392 __ profile_arguments_type(r0, rmethod, r4, true); 3393 __ jump_from_interpreted(rmethod, r0); 3394 3395 __ bind(notVFinal); 3396 3397 // Get receiver klass into r3 3398 __ restore_locals(); 3399 __ load_klass(r3, r2); 3400 3401 Label no_such_method; 3402 3403 // Preserve method for throw_AbstractMethodErrorVerbose. 3404 __ mov(r16, rmethod); 3405 // Receiver subtype check against REFC. 3406 // Superklass in r0. Subklass in r3. Blows rscratch2, r13 3407 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3408 r3, r0, noreg, 3409 // outputs: scan temp. reg, scan temp. reg 3410 rscratch2, r13, 3411 no_such_interface, 3412 /*return_method=*/false); 3413 3414 // profile this call 3415 __ profile_virtual_call(r3, r13, r19); 3416 3417 // Get declaring interface class from method, and itable index 3418 3419 __ load_method_holder(r0, rmethod); 3420 __ ldrw(rmethod, Address(rmethod, Method::itable_index_offset())); 3421 __ subw(rmethod, rmethod, Method::itable_index_max); 3422 __ negw(rmethod, rmethod); 3423 3424 // Preserve recvKlass for throw_AbstractMethodErrorVerbose. 3425 __ mov(rlocals, r3); 3426 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3427 rlocals, r0, rmethod, 3428 // outputs: method, scan temp. reg 3429 rmethod, r13, 3430 no_such_interface); 3431 3432 // rmethod,: Method to call 3433 // r2: receiver 3434 // Check for abstract method error 3435 // Note: This should be done more efficiently via a throw_abstract_method_error 3436 // interpreter entry point and a conditional jump to it in case of a null 3437 // method. 3438 __ cbz(rmethod, no_such_method); 3439 3440 __ profile_arguments_type(r3, rmethod, r13, true); 3441 3442 // do the call 3443 // r2: receiver 3444 // rmethod,: Method 3445 __ jump_from_interpreted(rmethod, r3); 3446 __ should_not_reach_here(); 3447 3448 // exception handling code follows... 3449 // note: must restore interpreter registers to canonical 3450 // state for exception handling to work correctly! 3451 3452 __ bind(no_such_method); 3453 // throw exception 3454 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3455 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3456 // Pass arguments for generating a verbose error message. 3457 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), r3, r16); 3458 // the call_VM checks for exception, so we should never return here. 3459 __ should_not_reach_here(); 3460 3461 __ bind(no_such_interface); 3462 // throw exception 3463 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 3464 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3465 // Pass arguments for generating a verbose error message. 3466 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3467 InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), r3, r0); 3468 // the call_VM checks for exception, so we should never return here. 3469 __ should_not_reach_here(); 3470 return; 3471 } 3472 3473 void TemplateTable::invokehandle(int byte_no) { 3474 transition(vtos, vtos); 3475 assert(byte_no == f1_byte, "use this argument"); 3476 3477 prepare_invoke(byte_no, rmethod, r0, r2); 3478 __ verify_method_ptr(r2); 3479 __ verify_oop(r2); 3480 __ null_check(r2); 3481 3482 // FIXME: profile the LambdaForm also 3483 3484 // r13 is safe to use here as a scratch reg because it is about to 3485 // be clobbered by jump_from_interpreted(). 3486 __ profile_final_call(r13); 3487 __ profile_arguments_type(r13, rmethod, r4, true); 3488 3489 __ jump_from_interpreted(rmethod, r0); 3490 } 3491 3492 void TemplateTable::invokedynamic(int byte_no) { 3493 transition(vtos, vtos); 3494 assert(byte_no == f1_byte, "use this argument"); 3495 3496 load_invokedynamic_entry(rmethod); 3497 3498 // r0: CallSite object (from cpool->resolved_references[]) 3499 // rmethod: MH.linkToCallSite method (from f2) 3500 3501 // Note: r0_callsite is already pushed by prepare_invoke 3502 3503 // %%% should make a type profile for any invokedynamic that takes a ref argument 3504 // profile this call 3505 __ profile_call(rbcp); 3506 __ profile_arguments_type(r3, rmethod, r13, false); 3507 3508 __ verify_oop(r0); 3509 3510 __ jump_from_interpreted(rmethod, r0); 3511 } 3512 3513 3514 //----------------------------------------------------------------------------- 3515 // Allocation 3516 3517 void TemplateTable::_new() { 3518 transition(vtos, atos); 3519 3520 __ get_unsigned_2_byte_index_at_bcp(r3, 1); 3521 Label slow_case; 3522 Label done; 3523 Label initialize_header; 3524 3525 __ get_cpool_and_tags(r4, r0); 3526 // Make sure the class we're about to instantiate has been resolved. 3527 // This is done before loading InstanceKlass to be consistent with the order 3528 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3529 const int tags_offset = Array<u1>::base_offset_in_bytes(); 3530 __ lea(rscratch1, Address(r0, r3, Address::lsl(0))); 3531 __ lea(rscratch1, Address(rscratch1, tags_offset)); 3532 __ ldarb(rscratch1, rscratch1); 3533 __ cmp(rscratch1, (u1)JVM_CONSTANT_Class); 3534 __ br(Assembler::NE, slow_case); 3535 3536 // get InstanceKlass 3537 __ load_resolved_klass_at_offset(r4, r3, r4, rscratch1); 3538 3539 // make sure klass is initialized & doesn't have finalizer 3540 // make sure klass is fully initialized 3541 __ ldrb(rscratch1, Address(r4, InstanceKlass::init_state_offset())); 3542 __ cmp(rscratch1, (u1)InstanceKlass::fully_initialized); 3543 __ br(Assembler::NE, slow_case); 3544 3545 // get instance_size in InstanceKlass (scaled to a count of bytes) 3546 __ ldrw(r3, 3547 Address(r4, 3548 Klass::layout_helper_offset())); 3549 // test to see if it has a finalizer or is malformed in some way 3550 __ tbnz(r3, exact_log2(Klass::_lh_instance_slow_path_bit), slow_case); 3551 3552 // Allocate the instance: 3553 // If TLAB is enabled: 3554 // Try to allocate in the TLAB. 3555 // If fails, go to the slow path. 3556 // Initialize the allocation. 3557 // Exit. 3558 // 3559 // Go to slow path. 3560 3561 if (UseTLAB) { 3562 __ tlab_allocate(r0, r3, 0, noreg, r1, slow_case); 3563 3564 if (ZeroTLAB) { 3565 // the fields have been already cleared 3566 __ b(initialize_header); 3567 } 3568 3569 // The object is initialized before the header. If the object size is 3570 // zero, go directly to the header initialization. 3571 __ sub(r3, r3, sizeof(oopDesc)); 3572 __ cbz(r3, initialize_header); 3573 3574 // Initialize object fields 3575 { 3576 __ add(r2, r0, sizeof(oopDesc)); 3577 Label loop; 3578 __ bind(loop); 3579 __ str(zr, Address(__ post(r2, BytesPerLong))); 3580 __ sub(r3, r3, BytesPerLong); 3581 __ cbnz(r3, loop); 3582 } 3583 3584 // initialize object header only. 3585 __ bind(initialize_header); 3586 __ mov(rscratch1, (intptr_t)markWord::prototype().value()); 3587 __ str(rscratch1, Address(r0, oopDesc::mark_offset_in_bytes())); 3588 __ store_klass_gap(r0, zr); // zero klass gap for compressed oops 3589 __ store_klass(r0, r4); // store klass last 3590 3591 { 3592 SkipIfEqual skip(_masm, &DTraceAllocProbes, false); 3593 // Trigger dtrace event for fastpath 3594 __ push(atos); // save the return value 3595 __ call_VM_leaf( 3596 CAST_FROM_FN_PTR(address, static_cast<int (*)(oopDesc*)>(SharedRuntime::dtrace_object_alloc)), r0); 3597 __ pop(atos); // restore the return value 3598 3599 } 3600 __ b(done); 3601 } 3602 3603 // slow case 3604 __ bind(slow_case); 3605 __ get_constant_pool(c_rarg1); 3606 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3607 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2); 3608 __ verify_oop(r0); 3609 3610 // continue 3611 __ bind(done); 3612 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3613 __ membar(Assembler::StoreStore); 3614 } 3615 3616 void TemplateTable::newarray() { 3617 transition(itos, atos); 3618 __ load_unsigned_byte(c_rarg1, at_bcp(1)); 3619 __ mov(c_rarg2, r0); 3620 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3621 c_rarg1, c_rarg2); 3622 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3623 __ membar(Assembler::StoreStore); 3624 } 3625 3626 void TemplateTable::anewarray() { 3627 transition(itos, atos); 3628 __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1); 3629 __ get_constant_pool(c_rarg1); 3630 __ mov(c_rarg3, r0); 3631 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3632 c_rarg1, c_rarg2, c_rarg3); 3633 // Must prevent reordering of stores for object initialization with stores that publish the new object. 3634 __ membar(Assembler::StoreStore); 3635 } 3636 3637 void TemplateTable::arraylength() { 3638 transition(atos, itos); 3639 __ ldrw(r0, Address(r0, arrayOopDesc::length_offset_in_bytes())); 3640 } 3641 3642 void TemplateTable::checkcast() 3643 { 3644 transition(atos, atos); 3645 Label done, is_null, ok_is_subtype, quicked, resolved; 3646 __ cbz(r0, is_null); 3647 3648 // Get cpool & tags index 3649 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3650 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3651 // See if bytecode has already been quicked 3652 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3653 __ lea(r1, Address(rscratch1, r19)); 3654 __ ldarb(r1, r1); 3655 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3656 __ br(Assembler::EQ, quicked); 3657 3658 __ push(atos); // save receiver for result, and for GC 3659 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3660 // vm_result_2 has metadata result 3661 __ get_vm_result_2(r0, rthread); 3662 __ pop(r3); // restore receiver 3663 __ b(resolved); 3664 3665 // Get superklass in r0 and subklass in r3 3666 __ bind(quicked); 3667 __ mov(r3, r0); // Save object in r3; r0 needed for subtype check 3668 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); // r0 = klass 3669 3670 __ bind(resolved); 3671 __ load_klass(r19, r3); 3672 3673 // Generate subtype check. Blows r2, r5. Object in r3. 3674 // Superklass in r0. Subklass in r19. 3675 __ gen_subtype_check(r19, ok_is_subtype); 3676 3677 // Come here on failure 3678 __ push(r3); 3679 // object is at TOS 3680 __ b(Interpreter::_throw_ClassCastException_entry); 3681 3682 // Come here on success 3683 __ bind(ok_is_subtype); 3684 __ mov(r0, r3); // Restore object in r3 3685 3686 // Collect counts on whether this test sees nulls a lot or not. 3687 if (ProfileInterpreter) { 3688 __ b(done); 3689 __ bind(is_null); 3690 __ profile_null_seen(r2); 3691 } else { 3692 __ bind(is_null); // same as 'done' 3693 } 3694 __ bind(done); 3695 } 3696 3697 void TemplateTable::instanceof() { 3698 transition(atos, itos); 3699 Label done, is_null, ok_is_subtype, quicked, resolved; 3700 __ cbz(r0, is_null); 3701 3702 // Get cpool & tags index 3703 __ get_cpool_and_tags(r2, r3); // r2=cpool, r3=tags array 3704 __ get_unsigned_2_byte_index_at_bcp(r19, 1); // r19=index 3705 // See if bytecode has already been quicked 3706 __ add(rscratch1, r3, Array<u1>::base_offset_in_bytes()); 3707 __ lea(r1, Address(rscratch1, r19)); 3708 __ ldarb(r1, r1); 3709 __ cmp(r1, (u1)JVM_CONSTANT_Class); 3710 __ br(Assembler::EQ, quicked); 3711 3712 __ push(atos); // save receiver for result, and for GC 3713 call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 3714 // vm_result_2 has metadata result 3715 __ get_vm_result_2(r0, rthread); 3716 __ pop(r3); // restore receiver 3717 __ verify_oop(r3); 3718 __ load_klass(r3, r3); 3719 __ b(resolved); 3720 3721 // Get superklass in r0 and subklass in r3 3722 __ bind(quicked); 3723 __ load_klass(r3, r0); 3724 __ load_resolved_klass_at_offset(r2, r19, r0, rscratch1); 3725 3726 __ bind(resolved); 3727 3728 // Generate subtype check. Blows r2, r5 3729 // Superklass in r0. Subklass in r3. 3730 __ gen_subtype_check(r3, ok_is_subtype); 3731 3732 // Come here on failure 3733 __ mov(r0, 0); 3734 __ b(done); 3735 // Come here on success 3736 __ bind(ok_is_subtype); 3737 __ mov(r0, 1); 3738 3739 // Collect counts on whether this test sees nulls a lot or not. 3740 if (ProfileInterpreter) { 3741 __ b(done); 3742 __ bind(is_null); 3743 __ profile_null_seen(r2); 3744 } else { 3745 __ bind(is_null); // same as 'done' 3746 } 3747 __ bind(done); 3748 // r0 = 0: obj == nullptr or obj is not an instanceof the specified klass 3749 // r0 = 1: obj != nullptr and obj is an instanceof the specified klass 3750 } 3751 3752 //----------------------------------------------------------------------------- 3753 // Breakpoints 3754 void TemplateTable::_breakpoint() { 3755 // Note: We get here even if we are single stepping.. 3756 // jbug inists on setting breakpoints at every bytecode 3757 // even if we are in single step mode. 3758 3759 transition(vtos, vtos); 3760 3761 // get the unpatched byte code 3762 __ get_method(c_rarg1); 3763 __ call_VM(noreg, 3764 CAST_FROM_FN_PTR(address, 3765 InterpreterRuntime::get_original_bytecode_at), 3766 c_rarg1, rbcp); 3767 __ mov(r19, r0); 3768 3769 // post the breakpoint event 3770 __ call_VM(noreg, 3771 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 3772 rmethod, rbcp); 3773 3774 // complete the execution of original bytecode 3775 __ mov(rscratch1, r19); 3776 __ dispatch_only_normal(vtos); 3777 } 3778 3779 //----------------------------------------------------------------------------- 3780 // Exceptions 3781 3782 void TemplateTable::athrow() { 3783 transition(atos, vtos); 3784 __ null_check(r0); 3785 __ b(Interpreter::throw_exception_entry()); 3786 } 3787 3788 //----------------------------------------------------------------------------- 3789 // Synchronization 3790 // 3791 // Note: monitorenter & exit are symmetric routines; which is reflected 3792 // in the assembly code structure as well 3793 // 3794 // Stack layout: 3795 // 3796 // [expressions ] <--- esp = expression stack top 3797 // .. 3798 // [expressions ] 3799 // [monitor entry] <--- monitor block top = expression stack bot 3800 // .. 3801 // [monitor entry] 3802 // [frame data ] <--- monitor block bot 3803 // ... 3804 // [saved rfp ] <--- rfp 3805 void TemplateTable::monitorenter() 3806 { 3807 transition(atos, vtos); 3808 3809 // check for null object 3810 __ null_check(r0); 3811 3812 const Address monitor_block_top( 3813 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3814 const Address monitor_block_bot( 3815 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3816 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3817 3818 Label allocated; 3819 3820 // initialize entry pointer 3821 __ mov(c_rarg1, zr); // points to free slot or null 3822 3823 // find a free slot in the monitor block (result in c_rarg1) 3824 { 3825 Label entry, loop, exit; 3826 __ ldr(c_rarg3, monitor_block_top); // points to current entry, 3827 // starting with top-most entry 3828 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3829 3830 __ b(entry); 3831 3832 __ bind(loop); 3833 // check if current entry is used 3834 // if not used then remember entry in c_rarg1 3835 __ ldr(rscratch1, Address(c_rarg3, BasicObjectLock::obj_offset())); 3836 __ cmp(zr, rscratch1); 3837 __ csel(c_rarg1, c_rarg3, c_rarg1, Assembler::EQ); 3838 // check if current entry is for same object 3839 __ cmp(r0, rscratch1); 3840 // if same object then stop searching 3841 __ br(Assembler::EQ, exit); 3842 // otherwise advance to next entry 3843 __ add(c_rarg3, c_rarg3, entry_size); 3844 __ bind(entry); 3845 // check if bottom reached 3846 __ cmp(c_rarg3, c_rarg2); 3847 // if not at bottom then check this entry 3848 __ br(Assembler::NE, loop); 3849 __ bind(exit); 3850 } 3851 3852 __ cbnz(c_rarg1, allocated); // check if a slot has been found and 3853 // if found, continue with that on 3854 3855 // allocate one if there's no free slot 3856 { 3857 Label entry, loop; 3858 // 1. compute new pointers // rsp: old expression stack top 3859 3860 __ check_extended_sp(); 3861 __ sub(sp, sp, entry_size); // make room for the monitor 3862 __ mov(rscratch1, sp); 3863 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 3864 3865 __ ldr(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom 3866 __ sub(esp, esp, entry_size); // move expression stack top 3867 __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom 3868 __ mov(c_rarg3, esp); // set start value for copy loop 3869 __ str(c_rarg1, monitor_block_bot); // set new monitor block bottom 3870 3871 __ b(entry); 3872 // 2. move expression stack contents 3873 __ bind(loop); 3874 __ ldr(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack 3875 // word from old location 3876 __ str(c_rarg2, Address(c_rarg3, 0)); // and store it at new location 3877 __ add(c_rarg3, c_rarg3, wordSize); // advance to next word 3878 __ bind(entry); 3879 __ cmp(c_rarg3, c_rarg1); // check if bottom reached 3880 __ br(Assembler::NE, loop); // if not at bottom then 3881 // copy next word 3882 } 3883 3884 // call run-time routine 3885 // c_rarg1: points to monitor entry 3886 __ bind(allocated); 3887 3888 // Increment bcp to point to the next bytecode, so exception 3889 // handling for async. exceptions work correctly. 3890 // The object has already been popped from the stack, so the 3891 // expression stack looks correct. 3892 __ increment(rbcp); 3893 3894 // store object 3895 __ str(r0, Address(c_rarg1, BasicObjectLock::obj_offset())); 3896 __ lock_object(c_rarg1); 3897 3898 // check to make sure this monitor doesn't cause stack overflow after locking 3899 __ save_bcp(); // in case of exception 3900 __ generate_stack_overflow_check(0); 3901 3902 // The bcp has already been incremented. Just need to dispatch to 3903 // next instruction. 3904 __ dispatch_next(vtos); 3905 } 3906 3907 3908 void TemplateTable::monitorexit() 3909 { 3910 transition(atos, vtos); 3911 3912 // check for null object 3913 __ null_check(r0); 3914 3915 const Address monitor_block_top( 3916 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 3917 const Address monitor_block_bot( 3918 rfp, frame::interpreter_frame_initial_sp_offset * wordSize); 3919 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 3920 3921 Label found; 3922 3923 // find matching slot 3924 { 3925 Label entry, loop; 3926 __ ldr(c_rarg1, monitor_block_top); // points to current entry, 3927 // starting with top-most entry 3928 __ lea(c_rarg2, monitor_block_bot); // points to word before bottom 3929 // of monitor block 3930 __ b(entry); 3931 3932 __ bind(loop); 3933 // check if current entry is for same object 3934 __ ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset())); 3935 __ cmp(r0, rscratch1); 3936 // if same object then stop searching 3937 __ br(Assembler::EQ, found); 3938 // otherwise advance to next entry 3939 __ add(c_rarg1, c_rarg1, entry_size); 3940 __ bind(entry); 3941 // check if bottom reached 3942 __ cmp(c_rarg1, c_rarg2); 3943 // if not at bottom then check this entry 3944 __ br(Assembler::NE, loop); 3945 } 3946 3947 // error handling. Unlocking was not block-structured 3948 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3949 InterpreterRuntime::throw_illegal_monitor_state_exception)); 3950 __ should_not_reach_here(); 3951 3952 // call run-time routine 3953 __ bind(found); 3954 __ push_ptr(r0); // make sure object is on stack (contract with oopMaps) 3955 __ unlock_object(c_rarg1); 3956 __ pop_ptr(r0); // discard object 3957 } 3958 3959 3960 // Wide instructions 3961 void TemplateTable::wide() 3962 { 3963 __ load_unsigned_byte(r19, at_bcp(1)); 3964 __ mov(rscratch1, (address)Interpreter::_wentry_point); 3965 __ ldr(rscratch1, Address(rscratch1, r19, Address::uxtw(3))); 3966 __ br(rscratch1); 3967 } 3968 3969 3970 // Multi arrays 3971 void TemplateTable::multianewarray() { 3972 transition(vtos, atos); 3973 __ load_unsigned_byte(r0, at_bcp(3)); // get number of dimensions 3974 // last dim is on top of stack; we want address of first one: 3975 // first_addr = last_addr + (ndims - 1) * wordSize 3976 __ lea(c_rarg1, Address(esp, r0, Address::uxtw(3))); 3977 __ sub(c_rarg1, c_rarg1, wordSize); 3978 call_VM(r0, 3979 CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), 3980 c_rarg1); 3981 __ load_unsigned_byte(r1, at_bcp(3)); 3982 __ lea(esp, Address(esp, r1, Address::uxtw(3))); 3983 }