1 /*
2 * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #ifndef CPU_PPC_ASSEMBLER_PPC_HPP
27 #define CPU_PPC_ASSEMBLER_PPC_HPP
28
29 #include "asm/assembler.hpp"
30 #include "asm/register.hpp"
31
32 // Address is an abstraction used to represent a memory location
33 // as used in assembler instructions.
34 // PPC instructions grok either baseReg + indexReg or baseReg + disp.
35 class Address {
36 private:
37 Register _base; // Base register.
38 Register _index; // Index register.
39 intptr_t _disp; // Displacement.
40
41 public:
42 Address(Register b, Register i, address d = 0)
43 : _base(b), _index(i), _disp((intptr_t)d) {
44 assert(i == noreg || d == 0, "can't have both");
45 }
46
47 Address(Register b, address d = 0)
48 : _base(b), _index(noreg), _disp((intptr_t)d) {}
49
50 Address(Register b, ByteSize d)
51 : _base(b), _index(noreg), _disp((intptr_t)d) {}
52
53 Address(Register b, intptr_t d)
54 : _base(b), _index(noreg), _disp(d) {}
55
56 Address(Register b, RegisterOrConstant roc)
57 : _base(b), _index(noreg), _disp(0) {
58 if (roc.is_constant()) _disp = roc.as_constant(); else _index = roc.as_register();
59 }
60
61 Address()
62 : _base(noreg), _index(noreg), _disp(0) {}
63
64 // accessors
65 Register base() const { return _base; }
66 Register index() const { return _index; }
67 int disp() const { return (int)_disp; }
68 bool is_const() const { return _base == noreg && _index == noreg; }
69 };
70
71 class AddressLiteral {
72 private:
73 address _address;
74 RelocationHolder _rspec;
75
76 RelocationHolder rspec_from_rtype(relocInfo::relocType rtype, address addr) {
77 switch (rtype) {
78 case relocInfo::external_word_type:
79 return external_word_Relocation::spec(addr);
80 case relocInfo::internal_word_type:
81 return internal_word_Relocation::spec(addr);
82 case relocInfo::opt_virtual_call_type:
83 return opt_virtual_call_Relocation::spec();
84 case relocInfo::static_call_type:
85 return static_call_Relocation::spec();
86 case relocInfo::runtime_call_type:
87 return runtime_call_Relocation::spec();
88 case relocInfo::none:
89 return RelocationHolder();
90 default:
91 ShouldNotReachHere();
92 return RelocationHolder();
93 }
94 }
95
96 protected:
97 // creation
98 AddressLiteral() : _address(nullptr), _rspec() {}
99
100 public:
101 AddressLiteral(address addr, RelocationHolder const& rspec)
102 : _address(addr),
103 _rspec(rspec) {}
104
105 AddressLiteral(address addr, relocInfo::relocType rtype = relocInfo::none)
106 : _address((address) addr),
107 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
108
109 AddressLiteral(oop* addr, relocInfo::relocType rtype = relocInfo::none)
110 : _address((address) addr),
111 _rspec(rspec_from_rtype(rtype, (address) addr)) {}
112
113 intptr_t value() const { return (intptr_t) _address; }
114
115 const RelocationHolder& rspec() const { return _rspec; }
116 };
117
118 // Argument is an abstraction used to represent an outgoing
119 // actual argument or an incoming formal parameter, whether
120 // it resides in memory or in a register, in a manner consistent
121 // with the PPC Application Binary Interface, or ABI. This is
122 // often referred to as the native or C calling convention.
123
124 class Argument {
125 private:
126 int _number; // The number of the argument.
127 public:
128 enum {
129 // Only 8 registers may contain integer parameters.
130 n_register_parameters = 8,
131 // Can have up to 8 floating registers.
132 n_float_register_parameters = 8,
133
134 // PPC C calling conventions.
135 // The first eight arguments are passed in int regs if they are int.
136 n_int_register_parameters_c = 8,
137 // The first thirteen float arguments are passed in float regs.
138 n_float_register_parameters_c = 13,
139 // Only the first 8 parameters are not placed on the stack. Aix disassembly
140 // shows that xlC places all float args after argument 8 on the stack AND
141 // in a register. This is not documented, but we follow this convention, too.
142 n_regs_not_on_stack_c = 8,
143
144 n_int_register_parameters_j = 8, // duplicates num_java_iarg_registers
145 n_float_register_parameters_j = 13, // num_java_farg_registers
146 };
147 // creation
148 Argument(int number) : _number(number) {}
149
150 int number() const { return _number; }
151
152 // Locating register-based arguments:
153 bool is_register() const { return _number < n_register_parameters; }
154
155 Register as_register() const {
156 assert(is_register(), "must be a register argument");
157 return as_Register(number() + R3_ARG1->encoding());
158 }
159 };
160
161 #if !defined(ABI_ELFv2)
162 // A ppc64 function descriptor.
163 struct FunctionDescriptor {
164 private:
165 address _entry;
166 address _toc;
167 address _env;
168
169 public:
170 inline address entry() const { return _entry; }
171 inline address toc() const { return _toc; }
172 inline address env() const { return _env; }
173
174 inline void set_entry(address entry) { _entry = entry; }
175 inline void set_toc( address toc) { _toc = toc; }
176 inline void set_env( address env) { _env = env; }
177
178 inline static ByteSize entry_offset() { return byte_offset_of(FunctionDescriptor, _entry); }
179 inline static ByteSize toc_offset() { return byte_offset_of(FunctionDescriptor, _toc); }
180 inline static ByteSize env_offset() { return byte_offset_of(FunctionDescriptor, _env); }
181
182 // Friend functions can be called without loading toc and env.
183 enum {
184 friend_toc = 0xcafe,
185 friend_env = 0xc0de
186 };
187
188 inline bool is_friend_function() const {
189 return (toc() == (address) friend_toc) && (env() == (address) friend_env);
190 }
191
192 // Constructor for stack-allocated instances.
193 FunctionDescriptor() {
194 _entry = (address) 0xbad;
195 _toc = (address) 0xbad;
196 _env = (address) 0xbad;
197 }
198 };
199 #endif
200
201
202 // The PPC Assembler: Pure assembler doing NO optimizations on the
203 // instruction level; i.e., what you write is what you get. The
204 // Assembler is generating code into a CodeBuffer.
205
206 class Assembler : public AbstractAssembler {
207 protected:
208 // Displacement routines
209 static int patched_branch(int dest_pos, int inst, int inst_pos);
210 static int branch_destination(int inst, int pos);
211
212 friend class AbstractAssembler;
213
214 // Code patchers need various routines like inv_wdisp()
215 friend class NativeInstruction;
216 friend class NativeGeneralJump;
217 friend class Relocation;
218
219 public:
220
221 enum shifts {
222 XO_21_29_SHIFT = 2,
223 XO_21_30_SHIFT = 1,
224 XO_27_29_SHIFT = 2,
225 XO_30_31_SHIFT = 0,
226 SPR_5_9_SHIFT = 11u, // SPR_5_9 field in bits 11 -- 15
227 SPR_0_4_SHIFT = 16u, // SPR_0_4 field in bits 16 -- 20
228 RS_SHIFT = 21u, // RS field in bits 21 -- 25
229 OPCODE_SHIFT = 26u, // opcode in bits 26 -- 31
230
231 // Shift counts in prefix word
232 PRE_TYPE_SHIFT = 24u, // Prefix type in bits 24 -- 25
233 PRE_ST1_SHIFT = 23u, // ST1 field in bits 23 -- 23
234 PRE_R_SHIFT = 20u, // R-bit in bits 20 -- 20
235 PRE_ST4_SHIFT = 20u, // ST4 field in bits 23 -- 20
236 };
237
238 enum opcdxos_masks {
239 XL_FORM_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
240 ANDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
241 ADDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
242 ADDIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
243 BXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
244 BCXX_OPCODE_MASK = (63u << OPCODE_SHIFT),
245 CMPLI_OPCODE_MASK = (63u << OPCODE_SHIFT),
246 // trap instructions
247 TDI_OPCODE_MASK = (63u << OPCODE_SHIFT),
248 TWI_OPCODE_MASK = (63u << OPCODE_SHIFT),
249 TD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
250 TW_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
251 LD_OPCODE_MASK = (63u << OPCODE_SHIFT) | (3u << XO_30_31_SHIFT), // DS-FORM
252 STD_OPCODE_MASK = LD_OPCODE_MASK,
253 STDU_OPCODE_MASK = STD_OPCODE_MASK,
254 STDX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
255 STDUX_OPCODE_MASK = STDX_OPCODE_MASK,
256 STW_OPCODE_MASK = (63u << OPCODE_SHIFT),
257 STWU_OPCODE_MASK = STW_OPCODE_MASK,
258 STWX_OPCODE_MASK = (63u << OPCODE_SHIFT) | (1023u << 1),
259 STWUX_OPCODE_MASK = STWX_OPCODE_MASK,
260 MTCTR_OPCODE_MASK = ~(31u << RS_SHIFT),
261 ORI_OPCODE_MASK = (63u << OPCODE_SHIFT),
262 ORIS_OPCODE_MASK = (63u << OPCODE_SHIFT),
263 RLDICR_OPCODE_MASK = (63u << OPCODE_SHIFT) | (7u << XO_27_29_SHIFT)
264 };
265
266 enum opcdxos {
267 ADD_OPCODE = (31u << OPCODE_SHIFT | 266u << 1),
268 ADDC_OPCODE = (31u << OPCODE_SHIFT | 10u << 1),
269 ADDI_OPCODE = (14u << OPCODE_SHIFT),
270 ADDIS_OPCODE = (15u << OPCODE_SHIFT),
271 ADDIC__OPCODE = (13u << OPCODE_SHIFT),
272 ADDE_OPCODE = (31u << OPCODE_SHIFT | 138u << 1),
273 ADDME_OPCODE = (31u << OPCODE_SHIFT | 234u << 1),
274 ADDZE_OPCODE = (31u << OPCODE_SHIFT | 202u << 1),
275 SUBF_OPCODE = (31u << OPCODE_SHIFT | 40u << 1),
276 SUBFC_OPCODE = (31u << OPCODE_SHIFT | 8u << 1),
277 SUBFE_OPCODE = (31u << OPCODE_SHIFT | 136u << 1),
278 SUBFIC_OPCODE = (8u << OPCODE_SHIFT),
279 SUBFME_OPCODE = (31u << OPCODE_SHIFT | 232u << 1),
280 SUBFZE_OPCODE = (31u << OPCODE_SHIFT | 200u << 1),
281 DIVW_OPCODE = (31u << OPCODE_SHIFT | 491u << 1),
282 DIVWU_OPCODE = (31u << OPCODE_SHIFT | 459u << 1),
283 MULLW_OPCODE = (31u << OPCODE_SHIFT | 235u << 1),
284 MULHW_OPCODE = (31u << OPCODE_SHIFT | 75u << 1),
285 MULHWU_OPCODE = (31u << OPCODE_SHIFT | 11u << 1),
286 MULLI_OPCODE = (7u << OPCODE_SHIFT),
287 AND_OPCODE = (31u << OPCODE_SHIFT | 28u << 1),
288 ANDI_OPCODE = (28u << OPCODE_SHIFT),
289 ANDIS_OPCODE = (29u << OPCODE_SHIFT),
290 ANDC_OPCODE = (31u << OPCODE_SHIFT | 60u << 1),
291 ORC_OPCODE = (31u << OPCODE_SHIFT | 412u << 1),
292 OR_OPCODE = (31u << OPCODE_SHIFT | 444u << 1),
293 ORI_OPCODE = (24u << OPCODE_SHIFT),
294 ORIS_OPCODE = (25u << OPCODE_SHIFT),
295 XOR_OPCODE = (31u << OPCODE_SHIFT | 316u << 1),
296 XORI_OPCODE = (26u << OPCODE_SHIFT),
297 XORIS_OPCODE = (27u << OPCODE_SHIFT),
298
299 NEG_OPCODE = (31u << OPCODE_SHIFT | 104u << 1),
300
301 RLWINM_OPCODE = (21u << OPCODE_SHIFT),
302 CLRRWI_OPCODE = RLWINM_OPCODE,
303 CLRLWI_OPCODE = RLWINM_OPCODE,
304
305 RLWIMI_OPCODE = (20u << OPCODE_SHIFT),
306
307 SLW_OPCODE = (31u << OPCODE_SHIFT | 24u << 1),
308 SLWI_OPCODE = RLWINM_OPCODE,
309 SRW_OPCODE = (31u << OPCODE_SHIFT | 536u << 1),
310 SRWI_OPCODE = RLWINM_OPCODE,
311 SRAW_OPCODE = (31u << OPCODE_SHIFT | 792u << 1),
312 SRAWI_OPCODE = (31u << OPCODE_SHIFT | 824u << 1),
313
314 CMP_OPCODE = (31u << OPCODE_SHIFT | 0u << 1),
315 CMPI_OPCODE = (11u << OPCODE_SHIFT),
316 CMPL_OPCODE = (31u << OPCODE_SHIFT | 32u << 1),
317 CMPLI_OPCODE = (10u << OPCODE_SHIFT),
318 CMPRB_OPCODE = (31u << OPCODE_SHIFT | 192u << 1),
319 CMPEQB_OPCODE = (31u << OPCODE_SHIFT | 224u << 1),
320
321 ISEL_OPCODE = (31u << OPCODE_SHIFT | 15u << 1),
322
323 // Special purpose registers
324 MTSPR_OPCODE = (31u << OPCODE_SHIFT | 467u << 1),
325 MFSPR_OPCODE = (31u << OPCODE_SHIFT | 339u << 1),
326
327 MTXER_OPCODE = (MTSPR_OPCODE | 1 << SPR_0_4_SHIFT),
328 MFXER_OPCODE = (MFSPR_OPCODE | 1 << SPR_0_4_SHIFT),
329
330 MTDSCR_OPCODE = (MTSPR_OPCODE | 3 << SPR_0_4_SHIFT),
331 MFDSCR_OPCODE = (MFSPR_OPCODE | 3 << SPR_0_4_SHIFT),
332
333 MTLR_OPCODE = (MTSPR_OPCODE | 8 << SPR_0_4_SHIFT),
334 MFLR_OPCODE = (MFSPR_OPCODE | 8 << SPR_0_4_SHIFT),
335
336 MTCTR_OPCODE = (MTSPR_OPCODE | 9 << SPR_0_4_SHIFT),
337 MFCTR_OPCODE = (MFSPR_OPCODE | 9 << SPR_0_4_SHIFT),
338
339 // Attention: Higher and lower half are inserted in reversed order.
340 MTTFHAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
341 MFTFHAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
342 MTTFIAR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
343 MFTFIAR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 1 << SPR_0_4_SHIFT),
344 MTTEXASR_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
345 MFTEXASR_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 2 << SPR_0_4_SHIFT),
346 MTTEXASRU_OPCODE = (MTSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
347 MFTEXASRU_OPCODE = (MFSPR_OPCODE | 4 << SPR_5_9_SHIFT | 3 << SPR_0_4_SHIFT),
348
349 MTVRSAVE_OPCODE = (MTSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
350 MFVRSAVE_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 0 << SPR_0_4_SHIFT),
351
352 MFTB_OPCODE = (MFSPR_OPCODE | 8 << SPR_5_9_SHIFT | 12 << SPR_0_4_SHIFT),
353
354 MTCRF_OPCODE = (31u << OPCODE_SHIFT | 144u << 1),
355 MFCR_OPCODE = (31u << OPCODE_SHIFT | 19u << 1),
356 MCRF_OPCODE = (19u << OPCODE_SHIFT | 0u << 1),
357 MCRXRX_OPCODE = (31u << OPCODE_SHIFT | 576u << 1),
358 SETB_OPCODE = (31u << OPCODE_SHIFT | 128u << 1),
359
360 SETBC_OPCODE = (31u << OPCODE_SHIFT | 384u << 1),
361 SETNBC_OPCODE = (31u << OPCODE_SHIFT | 448u << 1),
362
363 // condition register logic instructions
364 CRAND_OPCODE = (19u << OPCODE_SHIFT | 257u << 1),
365 CRNAND_OPCODE = (19u << OPCODE_SHIFT | 225u << 1),
366 CROR_OPCODE = (19u << OPCODE_SHIFT | 449u << 1),
367 CRXOR_OPCODE = (19u << OPCODE_SHIFT | 193u << 1),
368 CRNOR_OPCODE = (19u << OPCODE_SHIFT | 33u << 1),
369 CREQV_OPCODE = (19u << OPCODE_SHIFT | 289u << 1),
370 CRANDC_OPCODE = (19u << OPCODE_SHIFT | 129u << 1),
371 CRORC_OPCODE = (19u << OPCODE_SHIFT | 417u << 1),
372
373 BCLR_OPCODE = (19u << OPCODE_SHIFT | 16u << 1),
374 BXX_OPCODE = (18u << OPCODE_SHIFT),
375 BCXX_OPCODE = (16u << OPCODE_SHIFT),
376
377 // CTR-related opcodes
378 BCCTR_OPCODE = (19u << OPCODE_SHIFT | 528u << 1),
379
380 LWZ_OPCODE = (32u << OPCODE_SHIFT),
381 LWZX_OPCODE = (31u << OPCODE_SHIFT | 23u << 1),
382 LWZU_OPCODE = (33u << OPCODE_SHIFT),
383 LWBRX_OPCODE = (31u << OPCODE_SHIFT | 534 << 1),
384
385 LHA_OPCODE = (42u << OPCODE_SHIFT),
386 LHAX_OPCODE = (31u << OPCODE_SHIFT | 343u << 1),
387 LHAU_OPCODE = (43u << OPCODE_SHIFT),
388
389 LHZ_OPCODE = (40u << OPCODE_SHIFT),
390 LHZX_OPCODE = (31u << OPCODE_SHIFT | 279u << 1),
391 LHZU_OPCODE = (41u << OPCODE_SHIFT),
392 LHBRX_OPCODE = (31u << OPCODE_SHIFT | 790 << 1),
393
394 LBZ_OPCODE = (34u << OPCODE_SHIFT),
395 LBZX_OPCODE = (31u << OPCODE_SHIFT | 87u << 1),
396 LBZU_OPCODE = (35u << OPCODE_SHIFT),
397
398 STW_OPCODE = (36u << OPCODE_SHIFT),
399 STWX_OPCODE = (31u << OPCODE_SHIFT | 151u << 1),
400 STWU_OPCODE = (37u << OPCODE_SHIFT),
401 STWUX_OPCODE = (31u << OPCODE_SHIFT | 183u << 1),
402 STWBRX_OPCODE = (31u << OPCODE_SHIFT | 662u << 1),
403
404 STH_OPCODE = (44u << OPCODE_SHIFT),
405 STHX_OPCODE = (31u << OPCODE_SHIFT | 407u << 1),
406 STHU_OPCODE = (45u << OPCODE_SHIFT),
407 STHBRX_OPCODE = (31u << OPCODE_SHIFT | 918u << 1),
408
409 STB_OPCODE = (38u << OPCODE_SHIFT),
410 STBX_OPCODE = (31u << OPCODE_SHIFT | 215u << 1),
411 STBU_OPCODE = (39u << OPCODE_SHIFT),
412
413 EXTSB_OPCODE = (31u << OPCODE_SHIFT | 954u << 1),
414 EXTSH_OPCODE = (31u << OPCODE_SHIFT | 922u << 1),
415 EXTSW_OPCODE = (31u << OPCODE_SHIFT | 986u << 1), // X-FORM
416
417 // 32 bit opcode encodings
418
419 LWA_OPCODE = (58u << OPCODE_SHIFT | 2u << XO_30_31_SHIFT), // DS-FORM
420 LWAX_OPCODE = (31u << OPCODE_SHIFT | 341u << XO_21_30_SHIFT), // X-FORM
421
422 CNTLZW_OPCODE = (31u << OPCODE_SHIFT | 26u << XO_21_30_SHIFT), // X-FORM
423 CNTTZW_OPCODE = (31u << OPCODE_SHIFT | 538u << XO_21_30_SHIFT), // X-FORM
424
425 // 64 bit opcode encodings
426
427 LD_OPCODE = (58u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
428 LDU_OPCODE = (58u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
429 LDX_OPCODE = (31u << OPCODE_SHIFT | 21u << XO_21_30_SHIFT), // X-FORM
430 LDBRX_OPCODE = (31u << OPCODE_SHIFT | 532u << 1), // X-FORM
431
432 STD_OPCODE = (62u << OPCODE_SHIFT | 0u << XO_30_31_SHIFT), // DS-FORM
433 STDU_OPCODE = (62u << OPCODE_SHIFT | 1u << XO_30_31_SHIFT), // DS-FORM
434 STDUX_OPCODE = (31u << OPCODE_SHIFT | 181u << 1), // X-FORM
435 STDX_OPCODE = (31u << OPCODE_SHIFT | 149u << XO_21_30_SHIFT), // X-FORM
436 STDBRX_OPCODE = (31u << OPCODE_SHIFT | 660u << 1), // X-FORM
437
438 RLDICR_OPCODE = (30u << OPCODE_SHIFT | 1u << XO_27_29_SHIFT), // MD-FORM
439 RLDICL_OPCODE = (30u << OPCODE_SHIFT | 0u << XO_27_29_SHIFT), // MD-FORM
440 RLDIC_OPCODE = (30u << OPCODE_SHIFT | 2u << XO_27_29_SHIFT), // MD-FORM
441 RLDIMI_OPCODE = (30u << OPCODE_SHIFT | 3u << XO_27_29_SHIFT), // MD-FORM
442
443 SRADI_OPCODE = (31u << OPCODE_SHIFT | 413u << XO_21_29_SHIFT), // XS-FORM
444
445 SLD_OPCODE = (31u << OPCODE_SHIFT | 27u << 1), // X-FORM
446 SRD_OPCODE = (31u << OPCODE_SHIFT | 539u << 1), // X-FORM
447 SRAD_OPCODE = (31u << OPCODE_SHIFT | 794u << 1), // X-FORM
448
449 MULLD_OPCODE = (31u << OPCODE_SHIFT | 233u << 1), // XO-FORM
450 MULHD_OPCODE = (31u << OPCODE_SHIFT | 73u << 1), // XO-FORM
451 MULHDU_OPCODE = (31u << OPCODE_SHIFT | 9u << 1), // XO-FORM
452 DIVD_OPCODE = (31u << OPCODE_SHIFT | 489u << 1), // XO-FORM
453 DIVDU_OPCODE = (31u << OPCODE_SHIFT | 457u << 1), // XO-FORM
454
455 CNTLZD_OPCODE = (31u << OPCODE_SHIFT | 58u << XO_21_30_SHIFT), // X-FORM
456 CNTTZD_OPCODE = (31u << OPCODE_SHIFT | 570u << XO_21_30_SHIFT), // X-FORM
457 NAND_OPCODE = (31u << OPCODE_SHIFT | 476u << XO_21_30_SHIFT), // X-FORM
458 NOR_OPCODE = (31u << OPCODE_SHIFT | 124u << XO_21_30_SHIFT), // X-FORM
459
460 // Byte reverse opcodes (introduced with Power10)
461 BRH_OPCODE = (31u << OPCODE_SHIFT | 219u << 1), // X-FORM
462 BRW_OPCODE = (31u << OPCODE_SHIFT | 155u << 1), // X-FORM
463 BRD_OPCODE = (31u << OPCODE_SHIFT | 187u << 1), // X-FORM
464
465 // opcodes only used for floating arithmetic
466 FADD_OPCODE = (63u << OPCODE_SHIFT | 21u << 1),
467 FADDS_OPCODE = (59u << OPCODE_SHIFT | 21u << 1),
468 FCMPU_OPCODE = (63u << OPCODE_SHIFT | 00u << 1),
469 FDIV_OPCODE = (63u << OPCODE_SHIFT | 18u << 1),
470 FDIVS_OPCODE = (59u << OPCODE_SHIFT | 18u << 1),
471 FMR_OPCODE = (63u << OPCODE_SHIFT | 72u << 1),
472 FRIN_OPCODE = (63u << OPCODE_SHIFT | 392u << 1),
473 FRIP_OPCODE = (63u << OPCODE_SHIFT | 456u << 1),
474 FRIM_OPCODE = (63u << OPCODE_SHIFT | 488u << 1),
475 // These are special Power6 opcodes, reused for "lfdepx" and "stfdepx"
476 // on Power7. Do not use.
477 // MFFGPR_OPCODE = (31u << OPCODE_SHIFT | 607u << 1),
478 // MFTGPR_OPCODE = (31u << OPCODE_SHIFT | 735u << 1),
479 CMPB_OPCODE = (31u << OPCODE_SHIFT | 508 << 1),
480 POPCNTB_OPCODE = (31u << OPCODE_SHIFT | 122 << 1),
481 POPCNTW_OPCODE = (31u << OPCODE_SHIFT | 378 << 1),
482 POPCNTD_OPCODE = (31u << OPCODE_SHIFT | 506 << 1),
483 FABS_OPCODE = (63u << OPCODE_SHIFT | 264u << 1),
484 FNABS_OPCODE = (63u << OPCODE_SHIFT | 136u << 1),
485 FMUL_OPCODE = (63u << OPCODE_SHIFT | 25u << 1),
486 FMULS_OPCODE = (59u << OPCODE_SHIFT | 25u << 1),
487 FNEG_OPCODE = (63u << OPCODE_SHIFT | 40u << 1),
488 FSUB_OPCODE = (63u << OPCODE_SHIFT | 20u << 1),
489 FSUBS_OPCODE = (59u << OPCODE_SHIFT | 20u << 1),
490
491 // PPC64-internal FPU conversion opcodes
492 FCFID_OPCODE = (63u << OPCODE_SHIFT | 846u << 1),
493 FCFIDS_OPCODE = (59u << OPCODE_SHIFT | 846u << 1),
494 FCTID_OPCODE = (63u << OPCODE_SHIFT | 814u << 1),
495 FCTIDZ_OPCODE = (63u << OPCODE_SHIFT | 815u << 1),
496 FCTIW_OPCODE = (63u << OPCODE_SHIFT | 14u << 1),
497 FCTIWZ_OPCODE = (63u << OPCODE_SHIFT | 15u << 1),
498 FRSP_OPCODE = (63u << OPCODE_SHIFT | 12u << 1),
499
500 // Fused multiply-accumulate instructions.
501 FMADD_OPCODE = (63u << OPCODE_SHIFT | 29u << 1),
502 FMADDS_OPCODE = (59u << OPCODE_SHIFT | 29u << 1),
503 FMSUB_OPCODE = (63u << OPCODE_SHIFT | 28u << 1),
504 FMSUBS_OPCODE = (59u << OPCODE_SHIFT | 28u << 1),
505 FNMADD_OPCODE = (63u << OPCODE_SHIFT | 31u << 1),
506 FNMADDS_OPCODE = (59u << OPCODE_SHIFT | 31u << 1),
507 FNMSUB_OPCODE = (63u << OPCODE_SHIFT | 30u << 1),
508 FNMSUBS_OPCODE = (59u << OPCODE_SHIFT | 30u << 1),
509
510 LFD_OPCODE = (50u << OPCODE_SHIFT | 00u << 1),
511 LFDU_OPCODE = (51u << OPCODE_SHIFT | 00u << 1),
512 LFDX_OPCODE = (31u << OPCODE_SHIFT | 599u << 1),
513 LFS_OPCODE = (48u << OPCODE_SHIFT | 00u << 1),
514 LFSU_OPCODE = (49u << OPCODE_SHIFT | 00u << 1),
515 LFSX_OPCODE = (31u << OPCODE_SHIFT | 535u << 1),
516
517 STFD_OPCODE = (54u << OPCODE_SHIFT | 00u << 1),
518 STFDU_OPCODE = (55u << OPCODE_SHIFT | 00u << 1),
519 STFDX_OPCODE = (31u << OPCODE_SHIFT | 727u << 1),
520 STFS_OPCODE = (52u << OPCODE_SHIFT | 00u << 1),
521 STFSU_OPCODE = (53u << OPCODE_SHIFT | 00u << 1),
522 STFSX_OPCODE = (31u << OPCODE_SHIFT | 663u << 1),
523
524 FSQRT_OPCODE = (63u << OPCODE_SHIFT | 22u << 1), // A-FORM
525 FSQRTS_OPCODE = (59u << OPCODE_SHIFT | 22u << 1), // A-FORM
526
527 // Vector instruction support for >= Power6
528 // Vector Storage Access
529 LVEBX_OPCODE = (31u << OPCODE_SHIFT | 7u << 1),
530 LVEHX_OPCODE = (31u << OPCODE_SHIFT | 39u << 1),
531 LVEWX_OPCODE = (31u << OPCODE_SHIFT | 71u << 1),
532 LVX_OPCODE = (31u << OPCODE_SHIFT | 103u << 1),
533 LVXL_OPCODE = (31u << OPCODE_SHIFT | 359u << 1),
534 STVEBX_OPCODE = (31u << OPCODE_SHIFT | 135u << 1),
535 STVEHX_OPCODE = (31u << OPCODE_SHIFT | 167u << 1),
536 STVEWX_OPCODE = (31u << OPCODE_SHIFT | 199u << 1),
537 STVX_OPCODE = (31u << OPCODE_SHIFT | 231u << 1),
538 STVXL_OPCODE = (31u << OPCODE_SHIFT | 487u << 1),
539 LVSL_OPCODE = (31u << OPCODE_SHIFT | 6u << 1),
540 LVSR_OPCODE = (31u << OPCODE_SHIFT | 38u << 1),
541
542 // Vector-Scalar (VSX) instruction support.
543 LXV_OPCODE = (61u << OPCODE_SHIFT | 1u ),
544 LXVL_OPCODE = (31u << OPCODE_SHIFT | 269u << 1),
545 STXV_OPCODE = (61u << OPCODE_SHIFT | 5u ),
546 STXVL_OPCODE = (31u << OPCODE_SHIFT | 397u << 1),
547 LXVD2X_OPCODE = (31u << OPCODE_SHIFT | 844u << 1),
548 STXVD2X_OPCODE = (31u << OPCODE_SHIFT | 972u << 1),
549 MTVSRD_OPCODE = (31u << OPCODE_SHIFT | 179u << 1),
550 MTVSRDD_OPCODE = (31u << OPCODE_SHIFT | 435u << 1),
551 MTVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 243u << 1),
552 MFVSRD_OPCODE = (31u << OPCODE_SHIFT | 51u << 1),
553 MTVSRWA_OPCODE = (31u << OPCODE_SHIFT | 211u << 1),
554 MFVSRWZ_OPCODE = (31u << OPCODE_SHIFT | 115u << 1),
555 XXPERMDI_OPCODE= (60u << OPCODE_SHIFT | 10u << 3),
556 XXMRGHW_OPCODE = (60u << OPCODE_SHIFT | 18u << 3),
557 XXMRGLW_OPCODE = (60u << OPCODE_SHIFT | 50u << 3),
558 XXSPLTW_OPCODE = (60u << OPCODE_SHIFT | 164u << 2),
559 XXLAND_OPCODE = (60u << OPCODE_SHIFT | 130u << 3),
560 XXLOR_OPCODE = (60u << OPCODE_SHIFT | 146u << 3),
561 XXLXOR_OPCODE = (60u << OPCODE_SHIFT | 154u << 3),
562 XXLEQV_OPCODE = (60u << OPCODE_SHIFT | 186u << 3),
563 XVDIVSP_OPCODE = (60u << OPCODE_SHIFT | 88u << 3),
564 XXBRD_OPCODE = (60u << OPCODE_SHIFT | 475u << 2 | 23u << 16), // XX2-FORM
565 XXBRW_OPCODE = (60u << OPCODE_SHIFT | 475u << 2 | 15u << 16), // XX2-FORM
566 XXPERM_OPCODE = (60u << OPCODE_SHIFT | 26u << 3),
567 XXSEL_OPCODE = (60u << OPCODE_SHIFT | 3u << 4),
568 XXSPLTIB_OPCODE= (60u << OPCODE_SHIFT | 360u << 1),
569 XVDIVDP_OPCODE = (60u << OPCODE_SHIFT | 120u << 3),
570 XVABSSP_OPCODE = (60u << OPCODE_SHIFT | 409u << 2),
571 XVABSDP_OPCODE = (60u << OPCODE_SHIFT | 473u << 2),
572 XVNEGSP_OPCODE = (60u << OPCODE_SHIFT | 441u << 2),
573 XVNEGDP_OPCODE = (60u << OPCODE_SHIFT | 505u << 2),
574 XVSQRTSP_OPCODE= (60u << OPCODE_SHIFT | 139u << 2),
575 XVSQRTDP_OPCODE= (60u << OPCODE_SHIFT | 203u << 2),
576 XSCVDPSPN_OPCODE=(60u << OPCODE_SHIFT | 267u << 2),
577 XVADDDP_OPCODE = (60u << OPCODE_SHIFT | 96u << 3),
578 XVSUBDP_OPCODE = (60u << OPCODE_SHIFT | 104u << 3),
579 XVMULSP_OPCODE = (60u << OPCODE_SHIFT | 80u << 3),
580 XVMULDP_OPCODE = (60u << OPCODE_SHIFT | 112u << 3),
581 XVMADDASP_OPCODE=(60u << OPCODE_SHIFT | 65u << 3),
582 XVMADDADP_OPCODE=(60u << OPCODE_SHIFT | 97u << 3),
583 XVMSUBASP_OPCODE=(60u << OPCODE_SHIFT | 81u << 3),
584 XVMSUBADP_OPCODE=(60u << OPCODE_SHIFT | 113u << 3),
585 XVNMSUBASP_OPCODE=(60u<< OPCODE_SHIFT | 209u << 3),
586 XVNMSUBADP_OPCODE=(60u<< OPCODE_SHIFT | 241u << 3),
587 XVRDPI_OPCODE = (60u << OPCODE_SHIFT | 201u << 2),
588 XVRDPIC_OPCODE = (60u << OPCODE_SHIFT | 235u << 2),
589 XVRDPIM_OPCODE = (60u << OPCODE_SHIFT | 249u << 2),
590 XVRDPIP_OPCODE = (60u << OPCODE_SHIFT | 233u << 2),
591
592 // Deliver A Random Number (introduced with POWER9)
593 DARN_OPCODE = (31u << OPCODE_SHIFT | 755u << 1),
594
595 // Vector Permute and Formatting
596 VPKPX_OPCODE = (4u << OPCODE_SHIFT | 782u ),
597 VPKSHSS_OPCODE = (4u << OPCODE_SHIFT | 398u ),
598 VPKSWSS_OPCODE = (4u << OPCODE_SHIFT | 462u ),
599 VPKSHUS_OPCODE = (4u << OPCODE_SHIFT | 270u ),
600 VPKSWUS_OPCODE = (4u << OPCODE_SHIFT | 334u ),
601 VPKUHUM_OPCODE = (4u << OPCODE_SHIFT | 14u ),
602 VPKUWUM_OPCODE = (4u << OPCODE_SHIFT | 78u ),
603 VPKUHUS_OPCODE = (4u << OPCODE_SHIFT | 142u ),
604 VPKUWUS_OPCODE = (4u << OPCODE_SHIFT | 206u ),
605 VUPKHPX_OPCODE = (4u << OPCODE_SHIFT | 846u ),
606 VUPKHSB_OPCODE = (4u << OPCODE_SHIFT | 526u ),
607 VUPKHSH_OPCODE = (4u << OPCODE_SHIFT | 590u ),
608 VUPKLPX_OPCODE = (4u << OPCODE_SHIFT | 974u ),
609 VUPKLSB_OPCODE = (4u << OPCODE_SHIFT | 654u ),
610 VUPKLSH_OPCODE = (4u << OPCODE_SHIFT | 718u ),
611
612 VMRGHB_OPCODE = (4u << OPCODE_SHIFT | 12u ),
613 VMRGHW_OPCODE = (4u << OPCODE_SHIFT | 140u ),
614 VMRGHH_OPCODE = (4u << OPCODE_SHIFT | 76u ),
615 VMRGLB_OPCODE = (4u << OPCODE_SHIFT | 268u ),
616 VMRGLW_OPCODE = (4u << OPCODE_SHIFT | 396u ),
617 VMRGLH_OPCODE = (4u << OPCODE_SHIFT | 332u ),
618
619 VSPLT_OPCODE = (4u << OPCODE_SHIFT | 524u ),
620 VSPLTH_OPCODE = (4u << OPCODE_SHIFT | 588u ),
621 VSPLTW_OPCODE = (4u << OPCODE_SHIFT | 652u ),
622 VSPLTISB_OPCODE= (4u << OPCODE_SHIFT | 780u ),
623 VSPLTISH_OPCODE= (4u << OPCODE_SHIFT | 844u ),
624 VSPLTISW_OPCODE= (4u << OPCODE_SHIFT | 908u ),
625
626 VPEXTD_OPCODE = (4u << OPCODE_SHIFT | 1421u ),
627 VPERM_OPCODE = (4u << OPCODE_SHIFT | 43u ),
628 VSEL_OPCODE = (4u << OPCODE_SHIFT | 42u ),
629
630 VSL_OPCODE = (4u << OPCODE_SHIFT | 452u ),
631 VSLDOI_OPCODE = (4u << OPCODE_SHIFT | 44u ),
632 VSLO_OPCODE = (4u << OPCODE_SHIFT | 1036u ),
633 VSR_OPCODE = (4u << OPCODE_SHIFT | 708u ),
634 VSRO_OPCODE = (4u << OPCODE_SHIFT | 1100u ),
635
636 // Vector Integer
637 VADDCUW_OPCODE = (4u << OPCODE_SHIFT | 384u ),
638 VADDSHS_OPCODE = (4u << OPCODE_SHIFT | 832u ),
639 VADDSBS_OPCODE = (4u << OPCODE_SHIFT | 768u ),
640 VADDSWS_OPCODE = (4u << OPCODE_SHIFT | 896u ),
641 VADDUBM_OPCODE = (4u << OPCODE_SHIFT | 0u ),
642 VADDUWM_OPCODE = (4u << OPCODE_SHIFT | 128u ),
643 VADDUHM_OPCODE = (4u << OPCODE_SHIFT | 64u ),
644 VADDUDM_OPCODE = (4u << OPCODE_SHIFT | 192u ),
645 VADDUBS_OPCODE = (4u << OPCODE_SHIFT | 512u ),
646 VADDUWS_OPCODE = (4u << OPCODE_SHIFT | 640u ),
647 VADDUHS_OPCODE = (4u << OPCODE_SHIFT | 576u ),
648 VADDFP_OPCODE = (4u << OPCODE_SHIFT | 10u ),
649 VSUBCUW_OPCODE = (4u << OPCODE_SHIFT | 1408u ),
650 VSUBSHS_OPCODE = (4u << OPCODE_SHIFT | 1856u ),
651 VSUBSBS_OPCODE = (4u << OPCODE_SHIFT | 1792u ),
652 VSUBSWS_OPCODE = (4u << OPCODE_SHIFT | 1920u ),
653 VSUBUBM_OPCODE = (4u << OPCODE_SHIFT | 1024u ),
654 VSUBUWM_OPCODE = (4u << OPCODE_SHIFT | 1152u ),
655 VSUBUHM_OPCODE = (4u << OPCODE_SHIFT | 1088u ),
656 VSUBUDM_OPCODE = (4u << OPCODE_SHIFT | 1216u ),
657 VSUBUBS_OPCODE = (4u << OPCODE_SHIFT | 1536u ),
658 VSUBUWS_OPCODE = (4u << OPCODE_SHIFT | 1664u ),
659 VSUBUHS_OPCODE = (4u << OPCODE_SHIFT | 1600u ),
660 VSUBFP_OPCODE = (4u << OPCODE_SHIFT | 74u ),
661
662 VMULESB_OPCODE = (4u << OPCODE_SHIFT | 776u ),
663 VMULEUB_OPCODE = (4u << OPCODE_SHIFT | 520u ),
664 VMULESH_OPCODE = (4u << OPCODE_SHIFT | 840u ),
665 VMULEUH_OPCODE = (4u << OPCODE_SHIFT | 584u ),
666 VMULOSB_OPCODE = (4u << OPCODE_SHIFT | 264u ),
667 VMULOUB_OPCODE = (4u << OPCODE_SHIFT | 8u ),
668 VMULOSH_OPCODE = (4u << OPCODE_SHIFT | 328u ),
669 VMULOSW_OPCODE = (4u << OPCODE_SHIFT | 392u ),
670 VMULOUH_OPCODE = (4u << OPCODE_SHIFT | 72u ),
671 VMULUWM_OPCODE = (4u << OPCODE_SHIFT | 137u ),
672 VMHADDSHS_OPCODE=(4u << OPCODE_SHIFT | 32u ),
673 VMHRADDSHS_OPCODE=(4u << OPCODE_SHIFT | 33u ),
674 VMLADDUHM_OPCODE=(4u << OPCODE_SHIFT | 34u ),
675 VMSUBUHM_OPCODE= (4u << OPCODE_SHIFT | 36u ),
676 VMSUMMBM_OPCODE= (4u << OPCODE_SHIFT | 37u ),
677 VMSUMSHM_OPCODE= (4u << OPCODE_SHIFT | 40u ),
678 VMSUMSHS_OPCODE= (4u << OPCODE_SHIFT | 41u ),
679 VMSUMUHM_OPCODE= (4u << OPCODE_SHIFT | 38u ),
680 VMSUMUHS_OPCODE= (4u << OPCODE_SHIFT | 39u ),
681 VMADDFP_OPCODE = (4u << OPCODE_SHIFT | 46u ),
682
683 VSUMSWS_OPCODE = (4u << OPCODE_SHIFT | 1928u ),
684 VSUM2SWS_OPCODE= (4u << OPCODE_SHIFT | 1672u ),
685 VSUM4SBS_OPCODE= (4u << OPCODE_SHIFT | 1800u ),
686 VSUM4UBS_OPCODE= (4u << OPCODE_SHIFT | 1544u ),
687 VSUM4SHS_OPCODE= (4u << OPCODE_SHIFT | 1608u ),
688
689 VAVGSB_OPCODE = (4u << OPCODE_SHIFT | 1282u ),
690 VAVGSW_OPCODE = (4u << OPCODE_SHIFT | 1410u ),
691 VAVGSH_OPCODE = (4u << OPCODE_SHIFT | 1346u ),
692 VAVGUB_OPCODE = (4u << OPCODE_SHIFT | 1026u ),
693 VAVGUW_OPCODE = (4u << OPCODE_SHIFT | 1154u ),
694 VAVGUH_OPCODE = (4u << OPCODE_SHIFT | 1090u ),
695
696 VMAXSB_OPCODE = (4u << OPCODE_SHIFT | 258u ),
697 VMAXSW_OPCODE = (4u << OPCODE_SHIFT | 386u ),
698 VMAXSH_OPCODE = (4u << OPCODE_SHIFT | 322u ),
699 VMAXUB_OPCODE = (4u << OPCODE_SHIFT | 2u ),
700 VMAXUW_OPCODE = (4u << OPCODE_SHIFT | 130u ),
701 VMAXUH_OPCODE = (4u << OPCODE_SHIFT | 66u ),
702 VMINSB_OPCODE = (4u << OPCODE_SHIFT | 770u ),
703 VMINSW_OPCODE = (4u << OPCODE_SHIFT | 898u ),
704 VMINSH_OPCODE = (4u << OPCODE_SHIFT | 834u ),
705 VMINUB_OPCODE = (4u << OPCODE_SHIFT | 514u ),
706 VMINUW_OPCODE = (4u << OPCODE_SHIFT | 642u ),
707 VMINUH_OPCODE = (4u << OPCODE_SHIFT | 578u ),
708
709 VCMPEQUB_OPCODE= (4u << OPCODE_SHIFT | 6u ),
710 VCMPEQUH_OPCODE= (4u << OPCODE_SHIFT | 70u ),
711 VCMPEQUW_OPCODE= (4u << OPCODE_SHIFT | 134u ),
712 VCMPGTSH_OPCODE= (4u << OPCODE_SHIFT | 838u ),
713 VCMPGTSB_OPCODE= (4u << OPCODE_SHIFT | 774u ),
714 VCMPGTSW_OPCODE= (4u << OPCODE_SHIFT | 902u ),
715 VCMPGTUB_OPCODE= (4u << OPCODE_SHIFT | 518u ),
716 VCMPGTUH_OPCODE= (4u << OPCODE_SHIFT | 582u ),
717 VCMPGTUW_OPCODE= (4u << OPCODE_SHIFT | 646u ),
718
719 VAND_OPCODE = (4u << OPCODE_SHIFT | 1028u ),
720 VANDC_OPCODE = (4u << OPCODE_SHIFT | 1092u ),
721 VNOR_OPCODE = (4u << OPCODE_SHIFT | 1284u ),
722 VOR_OPCODE = (4u << OPCODE_SHIFT | 1156u ),
723 VXOR_OPCODE = (4u << OPCODE_SHIFT | 1220u ),
724 VRLD_OPCODE = (4u << OPCODE_SHIFT | 196u ),
725 VRLB_OPCODE = (4u << OPCODE_SHIFT | 4u ),
726 VRLW_OPCODE = (4u << OPCODE_SHIFT | 132u ),
727 VRLH_OPCODE = (4u << OPCODE_SHIFT | 68u ),
728 VSLB_OPCODE = (4u << OPCODE_SHIFT | 260u ),
729 VSKW_OPCODE = (4u << OPCODE_SHIFT | 388u ),
730 VSLH_OPCODE = (4u << OPCODE_SHIFT | 324u ),
731 VSRB_OPCODE = (4u << OPCODE_SHIFT | 516u ),
732 VSRW_OPCODE = (4u << OPCODE_SHIFT | 644u ),
733 VSRH_OPCODE = (4u << OPCODE_SHIFT | 580u ),
734 VSRAB_OPCODE = (4u << OPCODE_SHIFT | 772u ),
735 VSRAW_OPCODE = (4u << OPCODE_SHIFT | 900u ),
736 VSRAH_OPCODE = (4u << OPCODE_SHIFT | 836u ),
737 VPOPCNTB_OPCODE= (4u << OPCODE_SHIFT | 1795u ),
738 VPOPCNTH_OPCODE= (4u << OPCODE_SHIFT | 1859u ),
739 VPOPCNTW_OPCODE= (4u << OPCODE_SHIFT | 1923u ),
740 VPOPCNTD_OPCODE= (4u << OPCODE_SHIFT | 1987u ),
741
742 // Vector Floating-Point
743 // not implemented yet
744
745 // Vector Status and Control
746 MTVSCR_OPCODE = (4u << OPCODE_SHIFT | 1604u ),
747 MFVSCR_OPCODE = (4u << OPCODE_SHIFT | 1540u ),
748
749 // AES (introduced with Power 8)
750 VCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1288u),
751 VCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1289u),
752 VNCIPHER_OPCODE = (4u << OPCODE_SHIFT | 1352u),
753 VNCIPHERLAST_OPCODE = (4u << OPCODE_SHIFT | 1353u),
754 VSBOX_OPCODE = (4u << OPCODE_SHIFT | 1480u),
755
756 // SHA (introduced with Power 8)
757 VSHASIGMAD_OPCODE = (4u << OPCODE_SHIFT | 1730u),
758 VSHASIGMAW_OPCODE = (4u << OPCODE_SHIFT | 1666u),
759
760 // Vector Binary Polynomial Multiplication (introduced with Power 8)
761 VPMSUMB_OPCODE = (4u << OPCODE_SHIFT | 1032u),
762 VPMSUMD_OPCODE = (4u << OPCODE_SHIFT | 1224u),
763 VPMSUMH_OPCODE = (4u << OPCODE_SHIFT | 1096u),
764 VPMSUMW_OPCODE = (4u << OPCODE_SHIFT | 1160u),
765
766 // Vector Permute and Xor (introduced with Power 8)
767 VPERMXOR_OPCODE = (4u << OPCODE_SHIFT | 45u),
768
769 // Transactional Memory instructions (introduced with Power 8)
770 TBEGIN_OPCODE = (31u << OPCODE_SHIFT | 654u << 1),
771 TEND_OPCODE = (31u << OPCODE_SHIFT | 686u << 1),
772 TABORT_OPCODE = (31u << OPCODE_SHIFT | 910u << 1),
773 TABORTWC_OPCODE = (31u << OPCODE_SHIFT | 782u << 1),
774 TABORTWCI_OPCODE = (31u << OPCODE_SHIFT | 846u << 1),
775 TABORTDC_OPCODE = (31u << OPCODE_SHIFT | 814u << 1),
776 TABORTDCI_OPCODE = (31u << OPCODE_SHIFT | 878u << 1),
777 TSR_OPCODE = (31u << OPCODE_SHIFT | 750u << 1),
778 TCHECK_OPCODE = (31u << OPCODE_SHIFT | 718u << 1),
779
780 // Icache and dcache related instructions
781 DCBA_OPCODE = (31u << OPCODE_SHIFT | 758u << 1),
782 DCBZ_OPCODE = (31u << OPCODE_SHIFT | 1014u << 1),
783 DCBST_OPCODE = (31u << OPCODE_SHIFT | 54u << 1),
784 DCBF_OPCODE = (31u << OPCODE_SHIFT | 86u << 1),
785
786 DCBT_OPCODE = (31u << OPCODE_SHIFT | 278u << 1),
787 DCBTST_OPCODE = (31u << OPCODE_SHIFT | 246u << 1),
788 ICBI_OPCODE = (31u << OPCODE_SHIFT | 982u << 1),
789
790 // Instruction synchronization
791 ISYNC_OPCODE = (19u << OPCODE_SHIFT | 150u << 1),
792 // Memory barriers
793 SYNC_OPCODE = (31u << OPCODE_SHIFT | 598u << 1),
794 EIEIO_OPCODE = (31u << OPCODE_SHIFT | 854u << 1),
795
796 // Wait instructions for polling.
797 WAIT_OPCODE = (31u << OPCODE_SHIFT | 62u << 1),
798
799 // Trap instructions
800 TDI_OPCODE = (2u << OPCODE_SHIFT),
801 TWI_OPCODE = (3u << OPCODE_SHIFT),
802 TD_OPCODE = (31u << OPCODE_SHIFT | 68u << 1),
803 TW_OPCODE = (31u << OPCODE_SHIFT | 4u << 1),
804
805 // Atomics.
806 LBARX_OPCODE = (31u << OPCODE_SHIFT | 52u << 1),
807 LHARX_OPCODE = (31u << OPCODE_SHIFT | 116u << 1),
808 LWARX_OPCODE = (31u << OPCODE_SHIFT | 20u << 1),
809 LDARX_OPCODE = (31u << OPCODE_SHIFT | 84u << 1),
810 LQARX_OPCODE = (31u << OPCODE_SHIFT | 276u << 1),
811 STBCX_OPCODE = (31u << OPCODE_SHIFT | 694u << 1),
812 STHCX_OPCODE = (31u << OPCODE_SHIFT | 726u << 1),
813 STWCX_OPCODE = (31u << OPCODE_SHIFT | 150u << 1),
814 STDCX_OPCODE = (31u << OPCODE_SHIFT | 214u << 1),
815 STQCX_OPCODE = (31u << OPCODE_SHIFT | 182u << 1)
816
817 };
818
819 enum opcdeos_mask {
820 // Mask for prefix primary opcode field
821 PREFIX_OPCODE_MASK = (63u << OPCODE_SHIFT),
822 // Mask for prefix opcode and type fields
823 PREFIX_OPCODE_TYPE_MASK = (63u << OPCODE_SHIFT) | (3u << PRE_TYPE_SHIFT),
824 // Masks for type 00/10 and type 01/11, including opcode, type, and st fieds
825 PREFIX_OPCODE_TYPEx0_MASK = PREFIX_OPCODE_TYPE_MASK | ( 1u << PRE_ST1_SHIFT),
826 PREFIX_OPCODE_TYPEx1_MASK = PREFIX_OPCODE_TYPE_MASK | (15u << PRE_ST4_SHIFT),
827
828 // Masks for each instructions
829 PADDI_PREFIX_OPCODE_MASK = PREFIX_OPCODE_TYPEx0_MASK,
830 PADDI_SUFFIX_OPCODE_MASK = ADDI_OPCODE_MASK,
831 };
832
833 enum opcdeos {
834 PREFIX_PRIMARY_OPCODE = (1u << OPCODE_SHIFT),
835
836 // Prefixed addi/li
837 PADDI_PREFIX_OPCODE = PREFIX_PRIMARY_OPCODE | (2u << PRE_TYPE_SHIFT),
838 PADDI_SUFFIX_OPCODE = ADDI_OPCODE,
839
840 // xxpermx
841 XXPERMX_PREFIX_OPCODE = PREFIX_PRIMARY_OPCODE | (1u << PRE_TYPE_SHIFT),
842 XXPERMX_SUFFIX_OPCODE = (34u << OPCODE_SHIFT),
843 };
844
845 // Trap instructions TO bits
846 enum trap_to_bits {
847 // single bits
848 traptoLessThanSigned = 1 << 4, // 0, left end
849 traptoGreaterThanSigned = 1 << 3,
850 traptoEqual = 1 << 2,
851 traptoLessThanUnsigned = 1 << 1,
852 traptoGreaterThanUnsigned = 1 << 0, // 4, right end
853
854 // compound ones
855 traptoUnconditional = (traptoLessThanSigned |
856 traptoGreaterThanSigned |
857 traptoEqual |
858 traptoLessThanUnsigned |
859 traptoGreaterThanUnsigned)
860 };
861
862 // Branch hints BH field
863 enum branch_hint_bh {
864 // bclr cases:
865 bhintbhBCLRisReturn = 0,
866 bhintbhBCLRisNotReturnButSame = 1,
867 bhintbhBCLRisNotPredictable = 3,
868
869 // bcctr cases:
870 bhintbhBCCTRisNotReturnButSame = 0,
871 bhintbhBCCTRisNotPredictable = 3
872 };
873
874 // Branch prediction hints AT field
875 enum branch_hint_at {
876 bhintatNoHint = 0, // at=00
877 bhintatIsNotTaken = 2, // at=10
878 bhintatIsTaken = 3 // at=11
879 };
880
881 // Branch prediction hints
882 enum branch_hint_concept {
883 // Use the same encoding as branch_hint_at to simply code.
884 bhintNoHint = bhintatNoHint,
885 bhintIsNotTaken = bhintatIsNotTaken,
886 bhintIsTaken = bhintatIsTaken
887 };
888
889 // Used in BO field of branch instruction.
890 enum branch_condition {
891 bcondCRbiIs0 = 4, // bo=001at
892 bcondCRbiIs1 = 12, // bo=011at
893 bcondAlways = 20 // bo=10100
894 };
895
896 // Branch condition with combined prediction hints.
897 enum branch_condition_with_hint {
898 bcondCRbiIs0_bhintNoHint = bcondCRbiIs0 | bhintatNoHint,
899 bcondCRbiIs0_bhintIsNotTaken = bcondCRbiIs0 | bhintatIsNotTaken,
900 bcondCRbiIs0_bhintIsTaken = bcondCRbiIs0 | bhintatIsTaken,
901 bcondCRbiIs1_bhintNoHint = bcondCRbiIs1 | bhintatNoHint,
902 bcondCRbiIs1_bhintIsNotTaken = bcondCRbiIs1 | bhintatIsNotTaken,
903 bcondCRbiIs1_bhintIsTaken = bcondCRbiIs1 | bhintatIsTaken,
904 };
905
906 // Elemental Memory Barriers (>=Power 8)
907 enum Elemental_Membar_mask_bits {
908 StoreStore = 1 << 0,
909 StoreLoad = 1 << 1,
910 LoadStore = 1 << 2,
911 LoadLoad = 1 << 3
912 };
913
914 // Branch prediction hints.
915 inline static int add_bhint_to_boint(const int bhint, const int boint) {
916 switch (boint) {
917 case bcondCRbiIs0:
918 case bcondCRbiIs1:
919 // branch_hint and branch_hint_at have same encodings
920 assert( (int)bhintNoHint == (int)bhintatNoHint
921 && (int)bhintIsNotTaken == (int)bhintatIsNotTaken
922 && (int)bhintIsTaken == (int)bhintatIsTaken,
923 "wrong encodings");
924 assert((bhint & 0x03) == bhint, "wrong encodings");
925 return (boint & ~0x03) | bhint;
926 case bcondAlways:
927 // no branch_hint
928 return boint;
929 default:
930 ShouldNotReachHere();
931 return 0;
932 }
933 }
934
935 // Extract bcond from boint.
936 inline static int inv_boint_bcond(const int boint) {
937 int r_bcond = boint & ~0x03;
938 assert(r_bcond == bcondCRbiIs0 ||
939 r_bcond == bcondCRbiIs1 ||
940 r_bcond == bcondAlways,
941 "bad branch condition");
942 return r_bcond;
943 }
944
945 // Extract bhint from boint.
946 inline static int inv_boint_bhint(const int boint) {
947 int r_bhint = boint & 0x03;
948 assert(r_bhint == bhintatNoHint ||
949 r_bhint == bhintatIsNotTaken ||
950 r_bhint == bhintatIsTaken,
951 "bad branch hint");
952 return r_bhint;
953 }
954
955 // Calculate opposite of given bcond.
956 inline static int opposite_bcond(const int bcond) {
957 switch (bcond) {
958 case bcondCRbiIs0:
959 return bcondCRbiIs1;
960 case bcondCRbiIs1:
961 return bcondCRbiIs0;
962 default:
963 ShouldNotReachHere();
964 return 0;
965 }
966 }
967
968 // Calculate opposite of given bhint.
969 inline static int opposite_bhint(const int bhint) {
970 switch (bhint) {
971 case bhintatNoHint:
972 return bhintatNoHint;
973 case bhintatIsNotTaken:
974 return bhintatIsTaken;
975 case bhintatIsTaken:
976 return bhintatIsNotTaken;
977 default:
978 ShouldNotReachHere();
979 return 0;
980 }
981 }
982
983 // PPC branch instructions
984 enum ppcops {
985 b_op = 18,
986 bc_op = 16,
987 bcr_op = 19
988 };
989
990 enum Condition {
991 negative = 0,
992 less = 0,
993 positive = 1,
994 greater = 1,
995 zero = 2,
996 equal = 2,
997 summary_overflow = 3,
998 };
999
1000 public:
1001 // Helper functions for groups of instructions
1002
1003 enum Predict { pt = 1, pn = 0 }; // pt = predict taken
1004
1005 //---< calculate length of instruction >---
1006 // With PPC64 being a RISC architecture, this always is BytesPerInstWord
1007 // instruction must start at passed address
1008 static unsigned int instr_len(unsigned char *instr) { return BytesPerInstWord; }
1009
1010 //---< longest instructions >---
1011 static unsigned int instr_maxlen() { return BytesPerInstWord; }
1012
1013 // Test if x is within signed immediate range for nbits.
1014 static bool is_simm(int x, unsigned int nbits) {
1015 assert(0 < nbits && nbits < 32, "out of bounds");
1016 const int min = -(((int)1) << (nbits-1));
1017 const int maxplus1 = (((int)1) << (nbits-1));
1018 return min <= x && x < maxplus1;
1019 }
1020
1021 static bool is_simm(jlong x, unsigned int nbits) {
1022 assert(0 < nbits && nbits < 64, "out of bounds");
1023 const jlong min = -(((jlong)1) << (nbits-1));
1024 const jlong maxplus1 = (((jlong)1) << (nbits-1));
1025 return min <= x && x < maxplus1;
1026 }
1027
1028 // Test if x is within unsigned immediate range for nbits.
1029 static bool is_uimm(int x, unsigned int nbits) {
1030 assert(0 < nbits && nbits < 32, "out of bounds");
1031 const unsigned int maxplus1 = (((unsigned int)1) << nbits);
1032 return (unsigned int)x < maxplus1;
1033 }
1034
1035 static bool is_uimm(jlong x, unsigned int nbits) {
1036 assert(0 < nbits && nbits < 64, "out of bounds");
1037 const julong maxplus1 = (((julong)1) << nbits);
1038 return (julong)x < maxplus1;
1039 }
1040
1041 protected:
1042 // helpers
1043
1044 // X is supposed to fit in a field "nbits" wide
1045 // and be sign-extended. Check the range.
1046 static void assert_signed_range(intptr_t x, int nbits) {
1047 assert(nbits == 32 || (-(1 << (nbits-1)) <= x && x < (1 << (nbits-1))),
1048 "value out of range");
1049 }
1050
1051 static void assert_signed_word_disp_range(intptr_t x, int nbits) {
1052 assert((x & 3) == 0, "not word aligned");
1053 assert_signed_range(x, nbits + 2);
1054 }
1055
1056 static void assert_unsigned_const(int x, int nbits) {
1057 assert(juint(x) < juint(1 << nbits), "unsigned constant out of range");
1058 }
1059
1060 static int fmask(juint hi_bit, juint lo_bit) {
1061 assert(hi_bit >= lo_bit && hi_bit < 32, "bad bits");
1062 return (1 << ( hi_bit-lo_bit + 1 )) - 1;
1063 }
1064
1065 // inverse of u_field
1066 static int inv_u_field(int x, int hi_bit, int lo_bit) {
1067 juint r = juint(x) >> lo_bit;
1068 r &= fmask(hi_bit, lo_bit);
1069 return int(r);
1070 }
1071
1072 // signed version: extract from field and sign-extend
1073 static int inv_s_field_ppc(int x, int hi_bit, int lo_bit) {
1074 x = x << (31-hi_bit);
1075 x = x >> (31-hi_bit+lo_bit);
1076 return x;
1077 }
1078
1079 static int u_field(int x, int hi_bit, int lo_bit) {
1080 assert((x & ~fmask(hi_bit, lo_bit)) == 0, "value out of range");
1081 int r = x << lo_bit;
1082 assert(inv_u_field(r, hi_bit, lo_bit) == x, "just checking");
1083 return r;
1084 }
1085
1086 // Same as u_field for signed values
1087 static int s_field(int x, int hi_bit, int lo_bit) {
1088 int nbits = hi_bit - lo_bit + 1;
1089 assert(nbits == 32 || (-(1 << (nbits-1)) <= x && x < (1 << (nbits-1))),
1090 "value out of range");
1091 x &= fmask(hi_bit, lo_bit);
1092 int r = x << lo_bit;
1093 return r;
1094 }
1095
1096 // inv_op for ppc instructions
1097 static int inv_op_ppc(int x) { return inv_u_field(x, 31, 26); }
1098
1099 // Determine target address from li, bd field of branch instruction.
1100 static intptr_t inv_li_field(int x) {
1101 intptr_t r = inv_s_field_ppc(x, 25, 2);
1102 r = (r << 2);
1103 return r;
1104 }
1105 static intptr_t inv_bd_field(int x, intptr_t pos) {
1106 intptr_t r = inv_s_field_ppc(x, 15, 2);
1107 r = (r << 2) + pos;
1108 return r;
1109 }
1110
1111 #define inv_opp_u_field(x, hi_bit, lo_bit) inv_u_field(x, 31-(lo_bit), 31-(hi_bit))
1112 #define inv_opp_s_field(x, hi_bit, lo_bit) inv_s_field_ppc(x, 31-(lo_bit), 31-(hi_bit))
1113 // Extract instruction fields from instruction words.
1114 public:
1115 static int inv_ra_field(int x) { return inv_opp_u_field(x, 15, 11); }
1116 static int inv_rb_field(int x) { return inv_opp_u_field(x, 20, 16); }
1117 static int inv_rt_field(int x) { return inv_opp_u_field(x, 10, 6); }
1118 static int inv_rta_field(int x) { return inv_opp_u_field(x, 15, 11); }
1119 static int inv_rs_field(int x) { return inv_opp_u_field(x, 10, 6); }
1120 // Ds uses opp_s_field(x, 31, 16), but lowest 2 bits must be 0.
1121 // Inv_ds_field uses range (x, 29, 16) but shifts by 2 to ensure that lowest bits are 0.
1122 static int inv_ds_field(int x) { return inv_opp_s_field(x, 29, 16) << 2; }
1123 static int inv_d1_field(int x) { return inv_opp_s_field(x, 31, 16); }
1124 static int inv_si_field(int x) { return inv_opp_s_field(x, 31, 16); }
1125 static int inv_to_field(int x) { return inv_opp_u_field(x, 10, 6); }
1126 static int inv_lk_field(int x) { return inv_opp_u_field(x, 31, 31); }
1127 static int inv_bo_field(int x) { return inv_opp_u_field(x, 10, 6); }
1128 static int inv_bi_field(int x) { return inv_opp_u_field(x, 15, 11); }
1129
1130 // For extended opcodes (prefixed instructions) introduced with Power 10
1131 static long inv_r_eo( int x) { return inv_opp_u_field(x, 11, 11); }
1132 static long inv_type( int x) { return inv_opp_u_field(x, 7, 6); }
1133 static long inv_st_x0( int x) { return inv_opp_u_field(x, 8, 8); }
1134 static long inv_st_x1( int x) { return inv_opp_u_field(x, 11, 8); }
1135
1136 // - 8LS:D/MLS:D Formats
1137 static long inv_d0_eo( long x) { return inv_opp_u_field(x, 31, 14); }
1138
1139 // - 8RR:XX4/8RR:D Formats
1140 static long inv_imm0_eo(int x) { return inv_opp_u_field(x, 31, 16); }
1141 static long inv_uimm_eo(int x) { return inv_opp_u_field(x, 31, 29); }
1142 static long inv_imm_eo( int x) { return inv_opp_u_field(x, 31, 24); }
1143
1144 #define opp_u_field(x, hi_bit, lo_bit) u_field(x, 31-(lo_bit), 31-(hi_bit))
1145 #define opp_s_field(x, hi_bit, lo_bit) s_field(x, 31-(lo_bit), 31-(hi_bit))
1146
1147 // instruction fields
1148 static int aa( int x) { return opp_u_field(x, 30, 30); }
1149 static int ba( int x) { return opp_u_field(x, 15, 11); }
1150 static int bb( int x) { return opp_u_field(x, 20, 16); }
1151 static int bc( int x) { return opp_u_field(x, 25, 21); }
1152 static int bd( int x) { return opp_s_field(x, 29, 16); }
1153 static int bf( ConditionRegister cr) { return bf(cr->encoding()); }
1154 static int bf( int x) { return opp_u_field(x, 8, 6); }
1155 static int bfa(ConditionRegister cr) { return bfa(cr->encoding()); }
1156 static int bfa( int x) { return opp_u_field(x, 13, 11); }
1157 static int bh( int x) { return opp_u_field(x, 20, 19); }
1158 static int bi( int x) { return opp_u_field(x, 15, 11); }
1159 static int bi0(ConditionRegister cr, Condition c) { return (cr->encoding() << 2) | c; }
1160 static int bo( int x) { return opp_u_field(x, 10, 6); }
1161 static int bt( int x) { return opp_u_field(x, 10, 6); }
1162 static int d1( int x) { return opp_s_field(x, 31, 16); }
1163 static int ds( int x) { assert((x & 0x3) == 0, "unaligned offset"); return opp_s_field(x, 31, 16); }
1164 static int eh( int x) { return opp_u_field(x, 31, 31); }
1165 static int flm( int x) { return opp_u_field(x, 14, 7); }
1166 static int fra( FloatRegister r) { return fra(r->encoding());}
1167 static int frb( FloatRegister r) { return frb(r->encoding());}
1168 static int frc( FloatRegister r) { return frc(r->encoding());}
1169 static int frs( FloatRegister r) { return frs(r->encoding());}
1170 static int frt( FloatRegister r) { return frt(r->encoding());}
1171 static int fra( int x) { return opp_u_field(x, 15, 11); }
1172 static int frb( int x) { return opp_u_field(x, 20, 16); }
1173 static int frc( int x) { return opp_u_field(x, 25, 21); }
1174 static int frs( int x) { return opp_u_field(x, 10, 6); }
1175 static int frt( int x) { return opp_u_field(x, 10, 6); }
1176 static int fxm( int x) { return opp_u_field(x, 19, 12); }
1177 static int imm8( int x) { return opp_u_field(uimm(x, 8), 20, 13); }
1178 static int l10( int x) { assert(x == 0 || x == 1, "must be 0 or 1"); return opp_u_field(x, 10, 10); }
1179 static int l14( int x) { return opp_u_field(x, 15, 14); }
1180 static int l15( int x) { return opp_u_field(x, 15, 15); }
1181 static int l910( int x) { return opp_u_field(x, 10, 9); }
1182 static int e1215( int x) { return opp_u_field(x, 15, 12); }
1183 static int lev( int x) { return opp_u_field(x, 26, 20); }
1184 static int li( int x) { return opp_s_field(x, 29, 6); }
1185 static int lk( int x) { return opp_u_field(x, 31, 31); }
1186 static int mb2125( int x) { return opp_u_field(x, 25, 21); }
1187 static int me2630( int x) { return opp_u_field(x, 30, 26); }
1188 static int mb2126( int x) { return opp_u_field(((x & 0x1f) << 1) | ((x & 0x20) >> 5), 26, 21); }
1189 static int me2126( int x) { return mb2126(x); }
1190 static int nb( int x) { return opp_u_field(x, 20, 16); }
1191 //static int opcd( int x) { return opp_u_field(x, 5, 0); } // is contained in our opcodes
1192 static int oe( int x) { return opp_u_field(x, 21, 21); }
1193 static int ra( Register r) { return ra(r->encoding()); }
1194 static int ra( int x) { return opp_u_field(x, 15, 11); }
1195 static int rb( Register r) { return rb(r->encoding()); }
1196 static int rb( int x) { return opp_u_field(x, 20, 16); }
1197 static int rc( int x) { return opp_u_field(x, 31, 31); }
1198 static int rs( Register r) { return rs(r->encoding()); }
1199 static int rs( int x) { return opp_u_field(x, 10, 6); }
1200 // we don't want to use R0 in memory accesses, because it has value `0' then
1201 static int ra0mem( Register r) { assert(r != R0, "cannot use register R0 in memory access"); return ra(r); }
1202 static int ra0mem( int x) { assert(x != 0, "cannot use register 0 in memory access"); return ra(x); }
1203
1204 // register r is target
1205 static int rt( Register r) { return rs(r); }
1206 static int rt( int x) { return rs(x); }
1207 static int rta( Register r) { return ra(r); }
1208 static int rta0mem( Register r) { rta(r); return ra0mem(r); }
1209
1210 static int sh1620( int x) { return opp_u_field(x, 20, 16); }
1211 static int sh30( int x) { return opp_u_field(x, 30, 30); }
1212 static int sh162030( int x) { return sh1620(x & 0x1f) | sh30((x & 0x20) >> 5); }
1213 static int si( int x) { return opp_s_field(x, 31, 16); }
1214 static int spr( int x) { return opp_u_field(x, 20, 11); }
1215 static int sr( int x) { return opp_u_field(x, 15, 12); }
1216 static int tbr( int x) { return opp_u_field(x, 20, 11); }
1217 static int th( int x) { return opp_u_field(x, 10, 7); }
1218 static int thct( int x) { assert((x&8) == 0, "must be valid cache specification"); return th(x); }
1219 static int thds( int x) { assert((x&8) == 8, "must be valid stream specification"); return th(x); }
1220 static int to( int x) { return opp_u_field(x, 10, 6); }
1221 static int u( int x) { return opp_u_field(x, 19, 16); }
1222 static int ui( int x) { return opp_u_field(x, 31, 16); }
1223
1224 // Support vector instructions for >= Power6.
1225 static int vra( int x) { return opp_u_field(x, 15, 11); }
1226 static int vrb( int x) { return opp_u_field(x, 20, 16); }
1227 static int vrc( int x) { return opp_u_field(x, 25, 21); }
1228 static int vrs( int x) { return opp_u_field(x, 10, 6); }
1229 static int vrt( int x) { return opp_u_field(x, 10, 6); }
1230
1231 static int vra( VectorRegister r) { return vra(r->encoding());}
1232 static int vrb( VectorRegister r) { return vrb(r->encoding());}
1233 static int vrc( VectorRegister r) { return vrc(r->encoding());}
1234 static int vrs( VectorRegister r) { return vrs(r->encoding());}
1235 static int vrt( VectorRegister r) { return vrt(r->encoding());}
1236
1237 // Only used on SHA sigma instructions (VX-form)
1238 static int vst( int x) { return opp_u_field(x, 16, 16); }
1239 static int vsix( int x) { return opp_u_field(x, 20, 17); }
1240
1241 // Support Vector-Scalar (VSX) instructions.
1242 static int vsra( int x) { return opp_u_field(x & 0x1F, 15, 11) | opp_u_field((x & 0x20) >> 5, 29, 29); }
1243 static int vsrb( int x) { return opp_u_field(x & 0x1F, 20, 16) | opp_u_field((x & 0x20) >> 5, 30, 30); }
1244 static int vsrc( int x) { return opp_u_field(x & 0x1F, 25, 21) | opp_u_field((x & 0x20) >> 5, 28, 28); }
1245 static int vsrs( int x) { return opp_u_field(x & 0x1F, 10, 6) | opp_u_field((x & 0x20) >> 5, 31, 31); }
1246 static int vsrt( int x) { return vsrs(x); }
1247 static int vsdm( int x) { return opp_u_field(x, 23, 22); }
1248 static int vsrs_dq( int x) { return opp_u_field(x & 0x1F, 10, 6) | opp_u_field((x & 0x20) >> 5, 28, 28); }
1249 static int vsrt_dq( int x) { return vsrs_dq(x); }
1250
1251 static int vsra( VectorSRegister r) { return vsra(r->encoding());}
1252 static int vsrb( VectorSRegister r) { return vsrb(r->encoding());}
1253 static int vsrc( VectorSRegister r) { return vsrc(r->encoding());}
1254 static int vsrs( VectorSRegister r) { return vsrs(r->encoding());}
1255 static int vsrt( VectorSRegister r) { return vsrt(r->encoding());}
1256 static int vsrs_dq(VectorSRegister r) { return vsrs_dq(r->encoding());}
1257 static int vsrt_dq(VectorSRegister r) { return vsrt_dq(r->encoding());}
1258
1259 static int vsplt_uim( int x) { return opp_u_field(x, 15, 12); } // for vsplt* instructions
1260 static int vsplti_sim(int x) { return opp_u_field(x, 15, 11); } // for vsplti* instructions
1261 static int vsldoi_shb(int x) { return opp_u_field(x, 25, 22); } // for vsldoi instruction
1262 static int vcmp_rc( int x) { return opp_u_field(x, 21, 21); } // for vcmp* instructions
1263 static int xxsplt_uim(int x) { return opp_u_field(x, 15, 14); } // for xxsplt* instructions
1264
1265 // For extended opcodes (prefixed instructions) introduced with Power 10
1266 static long r_eo( int x) { return opp_u_field(x, 11, 11); }
1267 static long type( int x) { return opp_u_field(x, 7, 6); }
1268 static long st_x0( int x) { return opp_u_field(x, 8, 8); }
1269 static long st_x1( int x) { return opp_u_field(x, 11, 8); }
1270
1271 // - 8LS:D/MLS:D Formats
1272 static long d0_eo( long x) { return opp_u_field((x >> 16) & 0x3FFFF, 31, 14); }
1273 static long d1_eo( long x) { return opp_u_field(x & 0xFFFF, 31, 16); }
1274 static long s0_eo( long x) { return d0_eo(x); }
1275 static long s1_eo( long x) { return d1_eo(x); }
1276
1277 // - 8RR:XX4/8RR:D Formats
1278 static long imm0_eo( int x) { return opp_u_field(x >> 16, 31, 16); }
1279 static long imm1_eo( int x) { return opp_u_field(x & 0xFFFF, 31, 16); }
1280 static long uimm_eo( int x) { return opp_u_field(x, 31, 29); }
1281 static long imm_eo( int x) { return opp_u_field(x, 31, 24); }
1282
1283 //static int xo1( int x) { return opp_u_field(x, 29, 21); }// is contained in our opcodes
1284 //static int xo2( int x) { return opp_u_field(x, 30, 21); }// is contained in our opcodes
1285 //static int xo3( int x) { return opp_u_field(x, 30, 22); }// is contained in our opcodes
1286 //static int xo4( int x) { return opp_u_field(x, 30, 26); }// is contained in our opcodes
1287 //static int xo5( int x) { return opp_u_field(x, 29, 27); }// is contained in our opcodes
1288 //static int xo6( int x) { return opp_u_field(x, 30, 27); }// is contained in our opcodes
1289 //static int xo7( int x) { return opp_u_field(x, 31, 30); }// is contained in our opcodes
1290
1291 protected:
1292 // Compute relative address for branch.
1293 static intptr_t disp(intptr_t x, intptr_t off) {
1294 int xx = x - off;
1295 xx = xx >> 2;
1296 return xx;
1297 }
1298
1299 public:
1300 // signed immediate, in low bits, nbits long
1301 static int simm(int x, int nbits) {
1302 assert_signed_range(x, nbits);
1303 return x & ((1 << nbits) - 1);
1304 }
1305
1306 // unsigned immediate, in low bits, nbits long
1307 static int uimm(int x, int nbits) {
1308 assert_unsigned_const(x, nbits);
1309 return x & ((1 << nbits) - 1);
1310 }
1311
1312 static void set_imm(int* instr, short s) {
1313 // imm is always in the lower 16 bits of the instruction,
1314 // so this is endian-neutral. Same for the get_imm below.
1315 uint32_t w = *(uint32_t *)instr;
1316 *instr = (int)((w & ~0x0000FFFF) | (s & 0x0000FFFF));
1317 }
1318
1319 static int get_imm(address a, int instruction_number) {
1320 return (short)((int *)a)[instruction_number];
1321 }
1322
1323 static inline int hi16_signed( int x) { return (int)(int16_t)(x >> 16); }
1324 static inline int lo16_unsigned(int x) { return x & 0xffff; }
1325
1326 protected:
1327
1328 // Extract the top 32 bits in a 64 bit word.
1329 static int32_t hi32(int64_t x) {
1330 int32_t r = int32_t((uint64_t)x >> 32);
1331 return r;
1332 }
1333
1334 public:
1335
1336 static inline unsigned int align_addr(unsigned int addr, unsigned int a) {
1337 return ((addr + (a - 1)) & ~(a - 1));
1338 }
1339
1340 static inline bool is_aligned(unsigned int addr, unsigned int a) {
1341 return (0 == addr % a);
1342 }
1343
1344 void flush() {
1345 AbstractAssembler::flush();
1346 }
1347
1348 inline void emit_int32(int); // shadows AbstractAssembler::emit_int32
1349 inline void emit_data(int);
1350 inline void emit_data(int, RelocationHolder const&);
1351 inline void emit_data(int, relocInfo::relocType rtype);
1352
1353 // Emit an address.
1354 inline address emit_addr(const address addr = nullptr);
1355
1356 #if !defined(ABI_ELFv2)
1357 // Emit a function descriptor with the specified entry point, TOC,
1358 // and ENV. If the entry point is null, the descriptor will point
1359 // just past the descriptor.
1360 // Use values from friend functions as defaults.
1361 inline address emit_fd(address entry = nullptr,
1362 address toc = (address) FunctionDescriptor::friend_toc,
1363 address env = (address) FunctionDescriptor::friend_env);
1364 #endif
1365
1366 /////////////////////////////////////////////////////////////////////////////////////
1367 // PPC instructions
1368 /////////////////////////////////////////////////////////////////////////////////////
1369
1370 // Memory instructions use r0 as hard coded 0, e.g. to simulate loading
1371 // immediates. The normal instruction encoders enforce that r0 is not
1372 // passed to them. Use either extended mnemonics encoders or the special ra0
1373 // versions.
1374
1375 // Issue an illegal instruction.
1376 inline void illtrap();
1377 static inline bool is_illtrap(address instr_addr);
1378
1379 // PPC 1, section 3.3.8, Fixed-Point Arithmetic Instructions
1380 inline void addi( Register d, Register a, int si16);
1381 inline void addis(Register d, Register a, int si16);
1382
1383 // Prefixed add immediate, introduced by POWER10
1384 inline void paddi(Register d, Register a, long si34, bool r);
1385 inline void pli( Register d, long si34);
1386
1387 private:
1388 inline void addi_r0ok( Register d, Register a, int si16);
1389 inline void addis_r0ok(Register d, Register a, int si16);
1390 inline void paddi_r0ok(Register d, Register a, long si34, bool r);
1391 public:
1392 inline void addic_( Register d, Register a, int si16);
1393 inline void subfic( Register d, Register a, int si16);
1394 inline void add( Register d, Register a, Register b);
1395 inline void add_( Register d, Register a, Register b);
1396 inline void subf( Register d, Register a, Register b); // d = b - a "Sub_from", as in ppc spec.
1397 inline void sub( Register d, Register a, Register b); // d = a - b Swap operands of subf for readability.
1398 inline void subf_( Register d, Register a, Register b);
1399 inline void addc( Register d, Register a, Register b);
1400 inline void addc_( Register d, Register a, Register b);
1401 inline void subfc( Register d, Register a, Register b);
1402 inline void subfc_( Register d, Register a, Register b);
1403 inline void adde( Register d, Register a, Register b);
1404 inline void adde_( Register d, Register a, Register b);
1405 inline void subfe( Register d, Register a, Register b);
1406 inline void subfe_( Register d, Register a, Register b);
1407 inline void addme( Register d, Register a);
1408 inline void addme_( Register d, Register a);
1409 inline void subfme( Register d, Register a);
1410 inline void subfme_(Register d, Register a);
1411 inline void addze( Register d, Register a);
1412 inline void addze_( Register d, Register a);
1413 inline void subfze( Register d, Register a);
1414 inline void subfze_(Register d, Register a);
1415 inline void neg( Register d, Register a);
1416 inline void neg_( Register d, Register a);
1417 inline void mulli( Register d, Register a, int si16);
1418 inline void mulld( Register d, Register a, Register b);
1419 inline void mulld_( Register d, Register a, Register b);
1420 inline void mullw( Register d, Register a, Register b);
1421 inline void mullw_( Register d, Register a, Register b);
1422 inline void mulhw( Register d, Register a, Register b);
1423 inline void mulhw_( Register d, Register a, Register b);
1424 inline void mulhwu( Register d, Register a, Register b);
1425 inline void mulhwu_(Register d, Register a, Register b);
1426 inline void mulhd( Register d, Register a, Register b);
1427 inline void mulhd_( Register d, Register a, Register b);
1428 inline void mulhdu( Register d, Register a, Register b);
1429 inline void mulhdu_(Register d, Register a, Register b);
1430 inline void divd( Register d, Register a, Register b);
1431 inline void divd_( Register d, Register a, Register b);
1432 inline void divw( Register d, Register a, Register b);
1433 inline void divw_( Register d, Register a, Register b);
1434 inline void divdu( Register d, Register a, Register b);
1435 inline void divdu_( Register d, Register a, Register b);
1436 inline void divwu( Register d, Register a, Register b);
1437 inline void divwu_( Register d, Register a, Register b);
1438
1439 // Fixed-Point Arithmetic Instructions with Overflow detection
1440 inline void addo( Register d, Register a, Register b);
1441 inline void addo_( Register d, Register a, Register b);
1442 inline void subfo( Register d, Register a, Register b);
1443 inline void subfo_( Register d, Register a, Register b);
1444 inline void addco( Register d, Register a, Register b);
1445 inline void addco_( Register d, Register a, Register b);
1446 inline void subfco( Register d, Register a, Register b);
1447 inline void subfco_( Register d, Register a, Register b);
1448 inline void addeo( Register d, Register a, Register b);
1449 inline void addeo_( Register d, Register a, Register b);
1450 inline void subfeo( Register d, Register a, Register b);
1451 inline void subfeo_( Register d, Register a, Register b);
1452 inline void addmeo( Register d, Register a);
1453 inline void addmeo_( Register d, Register a);
1454 inline void subfmeo( Register d, Register a);
1455 inline void subfmeo_(Register d, Register a);
1456 inline void addzeo( Register d, Register a);
1457 inline void addzeo_( Register d, Register a);
1458 inline void subfzeo( Register d, Register a);
1459 inline void subfzeo_(Register d, Register a);
1460 inline void nego( Register d, Register a);
1461 inline void nego_( Register d, Register a);
1462 inline void mulldo( Register d, Register a, Register b);
1463 inline void mulldo_( Register d, Register a, Register b);
1464 inline void mullwo( Register d, Register a, Register b);
1465 inline void mullwo_( Register d, Register a, Register b);
1466 inline void divdo( Register d, Register a, Register b);
1467 inline void divdo_( Register d, Register a, Register b);
1468 inline void divwo( Register d, Register a, Register b);
1469 inline void divwo_( Register d, Register a, Register b);
1470
1471 // extended mnemonics
1472 inline void li( Register d, int si16);
1473 inline void lis( Register d, int si16);
1474 inline void addir(Register d, int si16, Register a);
1475 inline void subi( Register d, Register a, int si16);
1476
1477 static bool is_addi(int x) {
1478 return ADDI_OPCODE == (x & ADDI_OPCODE_MASK);
1479 }
1480 static bool is_addis(int x) {
1481 return ADDIS_OPCODE == (x & ADDIS_OPCODE_MASK);
1482 }
1483 static bool is_andi(int x) {
1484 return ANDI_OPCODE == (x & ANDI_OPCODE_MASK);
1485 }
1486 static bool is_bxx(int x) {
1487 return BXX_OPCODE == (x & BXX_OPCODE_MASK);
1488 }
1489 static bool is_b(int x) {
1490 return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 0;
1491 }
1492 static bool is_bl(int x) {
1493 return BXX_OPCODE == (x & BXX_OPCODE_MASK) && inv_lk_field(x) == 1;
1494 }
1495 static bool is_bcxx(int x) {
1496 return BCXX_OPCODE == (x & BCXX_OPCODE_MASK);
1497 }
1498 static bool is_bxx_or_bcxx(int x) {
1499 return is_bxx(x) || is_bcxx(x);
1500 }
1501 static bool is_bctrl(int x) {
1502 return x == 0x4e800421;
1503 }
1504 static bool is_bctr(int x) {
1505 return x == 0x4e800420;
1506 }
1507 static bool is_bclr(int x) {
1508 return BCLR_OPCODE == (x & XL_FORM_OPCODE_MASK);
1509 }
1510 static bool is_cmpli(int x) {
1511 return CMPLI_OPCODE == (x & CMPLI_OPCODE_MASK);
1512 }
1513 static bool is_li(int x) {
1514 return is_addi(x) && inv_ra_field(x)==0;
1515 }
1516 static bool is_lis(int x) {
1517 return is_addis(x) && inv_ra_field(x)==0;
1518 }
1519 static bool is_mtctr(int x) {
1520 return MTCTR_OPCODE == (x & MTCTR_OPCODE_MASK);
1521 }
1522 static bool is_ld(int x) {
1523 return LD_OPCODE == (x & LD_OPCODE_MASK);
1524 }
1525 static bool is_std(int x) {
1526 return STD_OPCODE == (x & STD_OPCODE_MASK);
1527 }
1528 static bool is_stdu(int x) {
1529 return STDU_OPCODE == (x & STDU_OPCODE_MASK);
1530 }
1531 static bool is_stdx(int x) {
1532 return STDX_OPCODE == (x & STDX_OPCODE_MASK);
1533 }
1534 static bool is_stdux(int x) {
1535 return STDUX_OPCODE == (x & STDUX_OPCODE_MASK);
1536 }
1537 static bool is_stwx(int x) {
1538 return STWX_OPCODE == (x & STWX_OPCODE_MASK);
1539 }
1540 static bool is_stwux(int x) {
1541 return STWUX_OPCODE == (x & STWUX_OPCODE_MASK);
1542 }
1543 static bool is_stw(int x) {
1544 return STW_OPCODE == (x & STW_OPCODE_MASK);
1545 }
1546 static bool is_stwu(int x) {
1547 return STWU_OPCODE == (x & STWU_OPCODE_MASK);
1548 }
1549 static bool is_ori(int x) {
1550 return ORI_OPCODE == (x & ORI_OPCODE_MASK);
1551 };
1552 static bool is_oris(int x) {
1553 return ORIS_OPCODE == (x & ORIS_OPCODE_MASK);
1554 };
1555 static bool is_rldicr(int x) {
1556 return (RLDICR_OPCODE == (x & RLDICR_OPCODE_MASK));
1557 };
1558 static bool is_nop(int x) {
1559 return x == 0x60000000;
1560 }
1561 // endgroup opcode for Power6
1562 static bool is_endgroup(int x) {
1563 return is_ori(x) && inv_ra_field(x) == 1 && inv_rs_field(x) == 1 && inv_d1_field(x) == 0;
1564 }
1565
1566
1567 private:
1568 // PPC 1, section 3.3.9, Fixed-Point Compare Instructions
1569 inline void cmpi( ConditionRegister bf, int l, Register a, int si16);
1570 inline void cmp( ConditionRegister bf, int l, Register a, Register b);
1571 inline void cmpli(ConditionRegister bf, int l, Register a, int ui16);
1572 inline void cmpl( ConditionRegister bf, int l, Register a, Register b);
1573
1574 public:
1575 // extended mnemonics of Compare Instructions
1576 inline void cmpwi( ConditionRegister crx, Register a, int si16);
1577 inline void cmpdi( ConditionRegister crx, Register a, int si16);
1578 inline void cmpw( ConditionRegister crx, Register a, Register b);
1579 inline void cmpd( ConditionRegister crx, Register a, Register b);
1580 inline void cmplwi(ConditionRegister crx, Register a, int ui16);
1581 inline void cmpldi(ConditionRegister crx, Register a, int ui16);
1582 inline void cmplw( ConditionRegister crx, Register a, Register b);
1583 inline void cmpld( ConditionRegister crx, Register a, Register b);
1584
1585 // >= Power9
1586 inline void cmprb( ConditionRegister bf, int l, Register a, Register b);
1587 inline void cmpeqb(ConditionRegister bf, Register a, Register b);
1588
1589 inline void isel( Register d, Register a, Register b, int bc);
1590 // Convenient version which takes: Condition register, Condition code and invert flag. Omit b to keep old value.
1591 inline void isel( Register d, ConditionRegister cr, Condition cc, bool inv, Register a, Register b = noreg);
1592 // Set d = 0 if (cr.cc) equals 1, otherwise b.
1593 inline void isel_0( Register d, ConditionRegister cr, Condition cc, Register b = noreg);
1594
1595 // PPC 1, section 3.3.11, Fixed-Point Logical Instructions
1596 void andi( Register a, Register s, long ui16); // optimized version
1597 inline void andi_( Register a, Register s, int ui16);
1598 inline void andis_( Register a, Register s, int ui16);
1599 inline void ori( Register a, Register s, int ui16);
1600 inline void oris( Register a, Register s, int ui16);
1601 inline void xori( Register a, Register s, int ui16);
1602 inline void xoris( Register a, Register s, int ui16);
1603 inline void andr( Register a, Register s, Register b); // suffixed by 'r' as 'and' is C++ keyword
1604 inline void and_( Register a, Register s, Register b);
1605 // Turn or0(rx,rx,rx) into a nop and avoid that we accidentally emit a
1606 // SMT-priority change instruction (see SMT instructions below).
1607 inline void or_unchecked(Register a, Register s, Register b);
1608 inline void orr( Register a, Register s, Register b); // suffixed by 'r' as 'or' is C++ keyword
1609 inline void or_( Register a, Register s, Register b);
1610 inline void xorr( Register a, Register s, Register b); // suffixed by 'r' as 'xor' is C++ keyword
1611 inline void xor_( Register a, Register s, Register b);
1612 inline void nand( Register a, Register s, Register b);
1613 inline void nand_( Register a, Register s, Register b);
1614 inline void nor( Register a, Register s, Register b);
1615 inline void nor_( Register a, Register s, Register b);
1616 inline void andc( Register a, Register s, Register b);
1617 inline void andc_( Register a, Register s, Register b);
1618 inline void orc( Register a, Register s, Register b);
1619 inline void orc_( Register a, Register s, Register b);
1620 inline void extsb( Register a, Register s);
1621 inline void extsb_( Register a, Register s);
1622 inline void extsh( Register a, Register s);
1623 inline void extsh_( Register a, Register s);
1624 inline void extsw( Register a, Register s);
1625 inline void extsw_( Register a, Register s);
1626
1627 // extended mnemonics
1628 inline void nop();
1629 // NOP for FP and BR units (different versions to allow them to be in one group)
1630 inline void fpnop0();
1631 inline void fpnop1();
1632 inline void brnop0();
1633 inline void brnop1();
1634 inline void brnop2();
1635
1636 inline void mr( Register d, Register s);
1637 inline void ori_opt( Register d, int ui16);
1638 inline void oris_opt(Register d, int ui16);
1639
1640 // endgroup opcode for Power6
1641 inline void endgroup();
1642
1643 // count instructions
1644 inline void cntlzw( Register a, Register s);
1645 inline void cntlzw_( Register a, Register s);
1646 inline void cntlzd( Register a, Register s);
1647 inline void cntlzd_( Register a, Register s);
1648 inline void cnttzw( Register a, Register s);
1649 inline void cnttzw_( Register a, Register s);
1650 inline void cnttzd( Register a, Register s);
1651 inline void cnttzd_( Register a, Register s);
1652
1653 // PPC 1, section 3.3.12, Fixed-Point Rotate and Shift Instructions
1654 inline void sld( Register a, Register s, Register b);
1655 inline void sld_( Register a, Register s, Register b);
1656 inline void slw( Register a, Register s, Register b);
1657 inline void slw_( Register a, Register s, Register b);
1658 inline void srd( Register a, Register s, Register b);
1659 inline void srd_( Register a, Register s, Register b);
1660 inline void srw( Register a, Register s, Register b);
1661 inline void srw_( Register a, Register s, Register b);
1662 inline void srad( Register a, Register s, Register b);
1663 inline void srad_( Register a, Register s, Register b);
1664 inline void sraw( Register a, Register s, Register b);
1665 inline void sraw_( Register a, Register s, Register b);
1666 inline void sradi( Register a, Register s, int sh6);
1667 inline void sradi_( Register a, Register s, int sh6);
1668 inline void srawi( Register a, Register s, int sh5);
1669 inline void srawi_( Register a, Register s, int sh5);
1670
1671 // extended mnemonics for Shift Instructions
1672 inline void sldi( Register a, Register s, int sh6);
1673 inline void sldi_( Register a, Register s, int sh6);
1674 inline void slwi( Register a, Register s, int sh5);
1675 inline void slwi_( Register a, Register s, int sh5);
1676 inline void srdi( Register a, Register s, int sh6);
1677 inline void srdi_( Register a, Register s, int sh6);
1678 inline void srwi( Register a, Register s, int sh5);
1679 inline void srwi_( Register a, Register s, int sh5);
1680
1681 inline void clrrdi( Register a, Register s, int ui6);
1682 inline void clrrdi_( Register a, Register s, int ui6);
1683 inline void clrldi( Register a, Register s, int ui6);
1684 inline void clrldi_( Register a, Register s, int ui6);
1685 inline void clrlsldi(Register a, Register s, int clrl6, int shl6);
1686 inline void clrlsldi_(Register a, Register s, int clrl6, int shl6);
1687 inline void extrdi( Register a, Register s, int n, int b);
1688 // testbit with condition register
1689 inline void testbitdi(ConditionRegister cr, Register a, Register s, int ui6);
1690
1691 // Byte reverse instructions (introduced with Power10)
1692 inline void brh( Register a, Register s);
1693 inline void brw( Register a, Register s);
1694 inline void brd( Register a, Register s);
1695
1696 // rotate instructions
1697 inline void rotldi( Register a, Register s, int n);
1698 inline void rotrdi( Register a, Register s, int n);
1699 inline void rotlwi( Register a, Register s, int n);
1700 inline void rotrwi( Register a, Register s, int n);
1701
1702 // Rotate Instructions
1703 inline void rldic( Register a, Register s, int sh6, int mb6);
1704 inline void rldic_( Register a, Register s, int sh6, int mb6);
1705 inline void rldicr( Register a, Register s, int sh6, int mb6);
1706 inline void rldicr_( Register a, Register s, int sh6, int mb6);
1707 inline void rldicl( Register a, Register s, int sh6, int mb6);
1708 inline void rldicl_( Register a, Register s, int sh6, int mb6);
1709 inline void rlwinm( Register a, Register s, int sh5, int mb5, int me5);
1710 inline void rlwinm_( Register a, Register s, int sh5, int mb5, int me5);
1711 inline void rldimi( Register a, Register s, int sh6, int mb6);
1712 inline void rldimi_( Register a, Register s, int sh6, int mb6);
1713 inline void rlwimi( Register a, Register s, int sh5, int mb5, int me5);
1714 inline void insrdi( Register a, Register s, int n, int b);
1715 inline void insrwi( Register a, Register s, int n, int b);
1716
1717 // PPC 1, section 3.3.2 Fixed-Point Load Instructions
1718 // 4 bytes
1719 inline void lwzx( Register d, Register s1, Register s2);
1720 inline void lwz( Register d, int si16, Register s1);
1721 inline void lwzu( Register d, int si16, Register s1);
1722
1723 // 4 bytes
1724 inline void lwax( Register d, Register s1, Register s2);
1725 inline void lwa( Register d, int si16, Register s1);
1726
1727 // 4 bytes reversed
1728 inline void lwbrx( Register d, Register s1, Register s2);
1729
1730 // 2 bytes
1731 inline void lhzx( Register d, Register s1, Register s2);
1732 inline void lhz( Register d, int si16, Register s1);
1733 inline void lhzu( Register d, int si16, Register s1);
1734
1735 // 2 bytes reversed
1736 inline void lhbrx( Register d, Register s1, Register s2);
1737
1738 // 2 bytes
1739 inline void lhax( Register d, Register s1, Register s2);
1740 inline void lha( Register d, int si16, Register s1);
1741 inline void lhau( Register d, int si16, Register s1);
1742
1743 // 1 byte
1744 inline void lbzx( Register d, Register s1, Register s2);
1745 inline void lbz( Register d, int si16, Register s1);
1746 inline void lbzu( Register d, int si16, Register s1);
1747
1748 // 8 bytes
1749 inline void ldx( Register d, Register s1, Register s2);
1750 inline void ld( Register d, int si16, Register s1);
1751 inline void ld( Register d, ByteSize si16, Register s1);
1752 inline void ldu( Register d, int si16, Register s1);
1753
1754 // 8 bytes reversed
1755 inline void ldbrx( Register d, Register s1, Register s2);
1756
1757 // For convenience. Load pointer into d from b+s1.
1758 inline void ld_ptr(Register d, int b, Register s1);
1759 inline void ld_ptr(Register d, ByteSize b, Register s1);
1760
1761 // PPC 1, section 3.3.3 Fixed-Point Store Instructions
1762 inline void stwx( Register d, Register s1, Register s2);
1763 inline void stw( Register d, int si16, Register s1);
1764 inline void stwu( Register d, int si16, Register s1);
1765 inline void stwbrx( Register d, Register s1, Register s2);
1766
1767 inline void sthx( Register d, Register s1, Register s2);
1768 inline void sth( Register d, int si16, Register s1);
1769 inline void sthu( Register d, int si16, Register s1);
1770 inline void sthbrx( Register d, Register s1, Register s2);
1771
1772 inline void stbx( Register d, Register s1, Register s2);
1773 inline void stb( Register d, int si16, Register s1);
1774 inline void stbu( Register d, int si16, Register s1);
1775
1776 inline void stdx( Register d, Register s1, Register s2);
1777 inline void std( Register d, int si16, Register s1);
1778 inline void stdu( Register d, int si16, Register s1);
1779 inline void stdux(Register s, Register a, Register b);
1780 inline void stdbrx( Register d, Register s1, Register s2);
1781
1782 inline void st_ptr(Register d, int si16, Register s1);
1783 inline void st_ptr(Register d, ByteSize b, Register s1);
1784
1785 // PPC 1, section 3.3.13 Move To/From System Register Instructions
1786 inline void mtlr( Register s1);
1787 inline void mflr( Register d);
1788 inline void mtctr(Register s1);
1789 inline void mfctr(Register d);
1790 inline void mtcrf(int fxm, Register s);
1791 inline void mfcr( Register d);
1792 inline void mcrf( ConditionRegister crd, ConditionRegister cra);
1793 inline void mtcr( Register s);
1794 // >= Power9
1795 inline void mcrxrx(ConditionRegister cra);
1796 inline void setb( Register d, ConditionRegister cra);
1797
1798 // >= Power10
1799 inline void setbc( Register d, int biint);
1800 inline void setbc( Register d, ConditionRegister cr, Condition cc);
1801 inline void setnbc(Register d, int biint);
1802 inline void setnbc(Register d, ConditionRegister cr, Condition cc);
1803
1804 // Special purpose registers
1805 // Exception Register
1806 inline void mtxer(Register s1);
1807 inline void mfxer(Register d);
1808 // Vector Register Save Register
1809 inline void mtvrsave(Register s1);
1810 inline void mfvrsave(Register d);
1811 // Timebase
1812 inline void mftb(Register d);
1813 // Introduced with Power 8:
1814 // Data Stream Control Register
1815 inline void mtdscr(Register s1);
1816 inline void mfdscr(Register d );
1817 // Transactional Memory Registers
1818 inline void mftfhar(Register d);
1819 inline void mftfiar(Register d);
1820 inline void mftexasr(Register d);
1821 inline void mftexasru(Register d);
1822
1823 // TEXASR bit description
1824 enum transaction_failure_reason {
1825 // Upper half (TEXASRU):
1826 tm_failure_code = 0, // The Failure Code is copied from tabort or treclaim operand.
1827 tm_failure_persistent = 7, // The failure is likely to recur on each execution.
1828 tm_disallowed = 8, // The instruction is not permitted.
1829 tm_nesting_of = 9, // The maximum transaction level was exceeded.
1830 tm_footprint_of = 10, // The tracking limit for transactional storage accesses was exceeded.
1831 tm_self_induced_cf = 11, // A self-induced conflict occurred in Suspended state.
1832 tm_non_trans_cf = 12, // A conflict occurred with a non-transactional access by another processor.
1833 tm_trans_cf = 13, // A conflict occurred with another transaction.
1834 tm_translation_cf = 14, // A conflict occurred with a TLB invalidation.
1835 tm_inst_fetch_cf = 16, // An instruction fetch was performed from a block that was previously written transactionally.
1836 tm_tabort = 31, // Termination was caused by the execution of an abort instruction.
1837 // Lower half:
1838 tm_suspended = 32, // Failure was recorded in Suspended state.
1839 tm_failure_summary = 36, // Failure has been detected and recorded.
1840 tm_tfiar_exact = 37, // Value in the TFIAR is exact.
1841 tm_rot = 38, // Rollback-only transaction.
1842 tm_transaction_level = 52, // Transaction level (nesting depth + 1).
1843 };
1844
1845 // PPC 1, section 2.4.1 Branch Instructions
1846 inline void b( address a, relocInfo::relocType rt = relocInfo::none);
1847 inline void b( Label& L);
1848 inline void bl( address a, relocInfo::relocType rt = relocInfo::none);
1849 inline void bl( Label& L);
1850 inline void bc( int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1851 inline void bc( int boint, int biint, Label& L);
1852 inline void bcl(int boint, int biint, address a, relocInfo::relocType rt = relocInfo::none);
1853 inline void bcl(int boint, int biint, Label& L);
1854
1855 inline void bclr( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1856 inline void bclrl( int boint, int biint, int bhint, relocInfo::relocType rt = relocInfo::none);
1857 inline void bcctr( int boint, int biint, int bhint = bhintbhBCCTRisNotReturnButSame,
1858 relocInfo::relocType rt = relocInfo::none);
1859 inline void bcctrl(int boint, int biint, int bhint = bhintbhBCLRisReturn,
1860 relocInfo::relocType rt = relocInfo::none);
1861
1862 // helper function for b, bcxx
1863 inline bool is_within_range_of_b(address a, address pc);
1864 inline bool is_within_range_of_bcxx(address a, address pc);
1865
1866 // get the destination of a bxx branch (b, bl, ba, bla)
1867 static inline address bxx_destination(address baddr);
1868 static inline address bxx_destination(int instr, address pc);
1869 static inline intptr_t bxx_destination_offset(int instr, intptr_t bxx_pos);
1870
1871 // extended mnemonics for branch instructions
1872 inline void blt(ConditionRegister crx, Label& L);
1873 inline void bgt(ConditionRegister crx, Label& L);
1874 inline void beq(ConditionRegister crx, Label& L);
1875 inline void bso(ConditionRegister crx, Label& L);
1876 inline void bge(ConditionRegister crx, Label& L);
1877 inline void ble(ConditionRegister crx, Label& L);
1878 inline void bne(ConditionRegister crx, Label& L);
1879 inline void bns(ConditionRegister crx, Label& L);
1880
1881 // Branch instructions with static prediction hints.
1882 inline void blt_predict_taken( ConditionRegister crx, Label& L);
1883 inline void bgt_predict_taken( ConditionRegister crx, Label& L);
1884 inline void beq_predict_taken( ConditionRegister crx, Label& L);
1885 inline void bso_predict_taken( ConditionRegister crx, Label& L);
1886 inline void bge_predict_taken( ConditionRegister crx, Label& L);
1887 inline void ble_predict_taken( ConditionRegister crx, Label& L);
1888 inline void bne_predict_taken( ConditionRegister crx, Label& L);
1889 inline void bns_predict_taken( ConditionRegister crx, Label& L);
1890 inline void blt_predict_not_taken(ConditionRegister crx, Label& L);
1891 inline void bgt_predict_not_taken(ConditionRegister crx, Label& L);
1892 inline void beq_predict_not_taken(ConditionRegister crx, Label& L);
1893 inline void bso_predict_not_taken(ConditionRegister crx, Label& L);
1894 inline void bge_predict_not_taken(ConditionRegister crx, Label& L);
1895 inline void ble_predict_not_taken(ConditionRegister crx, Label& L);
1896 inline void bne_predict_not_taken(ConditionRegister crx, Label& L);
1897 inline void bns_predict_not_taken(ConditionRegister crx, Label& L);
1898
1899 // for use in conjunction with testbitdi:
1900 inline void btrue( ConditionRegister crx, Label& L);
1901 inline void bfalse(ConditionRegister crx, Label& L);
1902
1903 inline void bltl(ConditionRegister crx, Label& L);
1904 inline void bgtl(ConditionRegister crx, Label& L);
1905 inline void beql(ConditionRegister crx, Label& L);
1906 inline void bsol(ConditionRegister crx, Label& L);
1907 inline void bgel(ConditionRegister crx, Label& L);
1908 inline void blel(ConditionRegister crx, Label& L);
1909 inline void bnel(ConditionRegister crx, Label& L);
1910 inline void bnsl(ConditionRegister crx, Label& L);
1911
1912 // extended mnemonics for Branch Instructions via LR
1913 // We use `blr' for returns.
1914 inline void blr(relocInfo::relocType rt = relocInfo::none);
1915
1916 // extended mnemonics for Branch Instructions with CTR
1917 // bdnz means `decrement CTR and jump to L if CTR is not zero'
1918 inline void bdnz(Label& L);
1919 // Decrement and branch if result is zero.
1920 inline void bdz(Label& L);
1921 // we use `bctr[l]' for jumps/calls in function descriptor glue
1922 // code, e.g. calls to runtime functions
1923 inline void bctr( relocInfo::relocType rt = relocInfo::none);
1924 inline void bctrl(relocInfo::relocType rt = relocInfo::none);
1925 // conditional jumps/branches via CTR
1926 inline void beqctr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1927 inline void beqctrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1928 inline void bnectr( ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1929 inline void bnectrl(ConditionRegister crx, relocInfo::relocType rt = relocInfo::none);
1930
1931 // condition register logic instructions
1932 // NOTE: There's a preferred form: d and s2 should point into the same condition register.
1933 inline void crand( int d, int s1, int s2);
1934 inline void crnand(int d, int s1, int s2);
1935 inline void cror( int d, int s1, int s2);
1936 inline void crxor( int d, int s1, int s2);
1937 inline void crnor( int d, int s1, int s2);
1938 inline void creqv( int d, int s1, int s2);
1939 inline void crandc(int d, int s1, int s2);
1940 inline void crorc( int d, int s1, int s2);
1941
1942 // More convenient version.
1943 int condition_register_bit(ConditionRegister cr, Condition c) {
1944 return 4 * cr.encoding() + c;
1945 }
1946 void crand( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1947 void crnand(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1948 void cror( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1949 void crxor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1950 void crnor( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1951 void creqv( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1952 void crandc(ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1953 void crorc( ConditionRegister crdst, Condition cdst, ConditionRegister crsrc, Condition csrc);
1954
1955 // icache and dcache related instructions
1956 inline void icbi( Register s1, Register s2);
1957 //inline void dcba(Register s1, Register s2); // Instruction for embedded processor only.
1958 inline void dcbz( Register s1, Register s2);
1959 inline void dcbst( Register s1, Register s2);
1960 inline void dcbf( Register s1, Register s2);
1961
1962 enum ct_cache_specification {
1963 ct_primary_cache = 0,
1964 ct_secondary_cache = 2
1965 };
1966 // dcache read hint
1967 inline void dcbt( Register s1, Register s2);
1968 inline void dcbtct( Register s1, Register s2, int ct);
1969 inline void dcbtds( Register s1, Register s2, int ds);
1970 // dcache write hint
1971 inline void dcbtst( Register s1, Register s2);
1972 inline void dcbtstct(Register s1, Register s2, int ct);
1973
1974 // machine barrier instructions:
1975 //
1976 // - sync two-way memory barrier, aka fence
1977 // - lwsync orders Store|Store,
1978 // Load|Store,
1979 // Load|Load,
1980 // but not Store|Load
1981 // - eieio orders memory accesses for device memory (only)
1982 // - isync invalidates speculatively executed instructions
1983 // From the Power ISA 2.06 documentation:
1984 // "[...] an isync instruction prevents the execution of
1985 // instructions following the isync until instructions
1986 // preceding the isync have completed, [...]"
1987 // From IBM's AIX assembler reference:
1988 // "The isync [...] instructions causes the processor to
1989 // refetch any instructions that might have been fetched
1990 // prior to the isync instruction. The instruction isync
1991 // causes the processor to wait for all previous instructions
1992 // to complete. Then any instructions already fetched are
1993 // discarded and instruction processing continues in the
1994 // environment established by the previous instructions."
1995 //
1996 // semantic barrier instructions:
1997 // (as defined in orderAccess.hpp)
1998 //
1999 // - release orders Store|Store, (maps to lwsync)
2000 // Load|Store
2001 // - acquire orders Load|Store, (maps to lwsync)
2002 // Load|Load
2003 // - fence orders Store|Store, (maps to sync)
2004 // Load|Store,
2005 // Load|Load,
2006 // Store|Load
2007 //
2008 private:
2009 inline void sync(int l);
2010 public:
2011 inline void sync();
2012 inline void lwsync();
2013 inline void ptesync();
2014 inline void eieio();
2015 inline void isync();
2016 inline void elemental_membar(int e); // Elemental Memory Barriers (>=Power 8)
2017
2018 // Wait instructions for polling. Attention: May result in SIGILL.
2019 inline void wait();
2020 inline void waitrsv(); // >=Power7
2021
2022 // atomics
2023 inline void lbarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
2024 inline void lharx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
2025 inline void lwarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
2026 inline void ldarx_unchecked(Register d, Register a, Register b, int eh1 = 0);
2027 inline void lqarx_unchecked(Register d, Register a, Register b, int eh1 = 0); // >=Power 8
2028 inline bool lxarx_hint_exclusive_access();
2029 inline void lbarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2030 inline void lharx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2031 inline void lwarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2032 inline void ldarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2033 inline void lqarx( Register d, Register a, Register b, bool hint_exclusive_access = false);
2034 inline void stbcx_( Register s, Register a, Register b);
2035 inline void sthcx_( Register s, Register a, Register b);
2036 inline void stwcx_( Register s, Register a, Register b);
2037 inline void stdcx_( Register s, Register a, Register b);
2038 inline void stqcx_( Register s, Register a, Register b);
2039
2040 // Instructions for adjusting thread priority for simultaneous
2041 // multithreading (SMT) on Power5.
2042 private:
2043 inline void smt_prio_very_low();
2044 inline void smt_prio_medium_high();
2045 inline void smt_prio_high();
2046
2047 public:
2048 inline void smt_prio_low();
2049 inline void smt_prio_medium_low();
2050 inline void smt_prio_medium();
2051 // >= Power7
2052 inline void smt_yield();
2053 inline void smt_mdoio();
2054 inline void smt_mdoom();
2055 // >= Power8
2056 inline void smt_miso();
2057
2058 // trap instructions
2059 inline void twi_0(Register a); // for load with acquire semantics use load+twi_0+isync (trap can't occur)
2060 // NOT FOR DIRECT USE!!
2061 protected:
2062 inline void tdi_unchecked(int tobits, Register a, int si16);
2063 inline void twi_unchecked(int tobits, Register a, int si16);
2064 inline void tdi( int tobits, Register a, int si16); // asserts UseSIGTRAP
2065 inline void twi( int tobits, Register a, int si16); // asserts UseSIGTRAP
2066 inline void td( int tobits, Register a, Register b); // asserts UseSIGTRAP
2067 inline void tw( int tobits, Register a, Register b); // asserts UseSIGTRAP
2068
2069 public:
2070 static bool is_tdi(int x, int tobits, int ra, int si16) {
2071 return (TDI_OPCODE == (x & TDI_OPCODE_MASK))
2072 && (tobits == inv_to_field(x))
2073 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2074 && (si16 == inv_si_field(x));
2075 }
2076
2077 static int tdi_get_si16(int x, int tobits, int ra) {
2078 if (TDI_OPCODE == (x & TDI_OPCODE_MASK)
2079 && (tobits == inv_to_field(x))
2080 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))) {
2081 return inv_si_field(x);
2082 }
2083 return -1; // No valid tdi instruction.
2084 }
2085
2086 static bool is_twi(int x, int tobits, int ra, int si16) {
2087 return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
2088 && (tobits == inv_to_field(x))
2089 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2090 && (si16 == inv_si_field(x));
2091 }
2092
2093 static bool is_twi(int x, int tobits, int ra) {
2094 return (TWI_OPCODE == (x & TWI_OPCODE_MASK))
2095 && (tobits == inv_to_field(x))
2096 && (ra == -1/*any reg*/ || ra == inv_ra_field(x));
2097 }
2098
2099 static bool is_td(int x, int tobits, int ra, int rb) {
2100 return (TD_OPCODE == (x & TD_OPCODE_MASK))
2101 && (tobits == inv_to_field(x))
2102 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2103 && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
2104 }
2105
2106 static bool is_tw(int x, int tobits, int ra, int rb) {
2107 return (TW_OPCODE == (x & TW_OPCODE_MASK))
2108 && (tobits == inv_to_field(x))
2109 && (ra == -1/*any reg*/ || ra == inv_ra_field(x))
2110 && (rb == -1/*any reg*/ || rb == inv_rb_field(x));
2111 }
2112
2113 // PPC floating point instructions
2114 // PPC 1, section 4.6.2 Floating-Point Load Instructions
2115 inline void lfs( FloatRegister d, int si16, Register a);
2116 inline void lfsu( FloatRegister d, int si16, Register a);
2117 inline void lfsx( FloatRegister d, Register a, Register b);
2118 inline void lfd( FloatRegister d, int si16, Register a);
2119 inline void lfdu( FloatRegister d, int si16, Register a);
2120 inline void lfdx( FloatRegister d, Register a, Register b);
2121
2122 // PPC 1, section 4.6.3 Floating-Point Store Instructions
2123 inline void stfs( FloatRegister s, int si16, Register a);
2124 inline void stfsu( FloatRegister s, int si16, Register a);
2125 inline void stfsx( FloatRegister s, Register a, Register b);
2126 inline void stfd( FloatRegister s, int si16, Register a);
2127 inline void stfdu( FloatRegister s, int si16, Register a);
2128 inline void stfdx( FloatRegister s, Register a, Register b);
2129
2130 // PPC 1, section 4.6.4 Floating-Point Move Instructions
2131 inline void fmr( FloatRegister d, FloatRegister b);
2132 inline void fmr_( FloatRegister d, FloatRegister b);
2133
2134 inline void frin( FloatRegister d, FloatRegister b);
2135 inline void frip( FloatRegister d, FloatRegister b);
2136 inline void frim( FloatRegister d, FloatRegister b);
2137
2138 // inline void mffgpr( FloatRegister d, Register b);
2139 // inline void mftgpr( Register d, FloatRegister b);
2140 inline void cmpb( Register a, Register s, Register b);
2141 inline void popcntb(Register a, Register s);
2142 inline void popcntw(Register a, Register s);
2143 inline void popcntd(Register a, Register s);
2144
2145 inline void fneg( FloatRegister d, FloatRegister b);
2146 inline void fneg_( FloatRegister d, FloatRegister b);
2147 inline void fabs( FloatRegister d, FloatRegister b);
2148 inline void fabs_( FloatRegister d, FloatRegister b);
2149 inline void fnabs( FloatRegister d, FloatRegister b);
2150 inline void fnabs_(FloatRegister d, FloatRegister b);
2151
2152 // PPC 1, section 4.6.5.1 Floating-Point Elementary Arithmetic Instructions
2153 inline void fadd( FloatRegister d, FloatRegister a, FloatRegister b);
2154 inline void fadd_( FloatRegister d, FloatRegister a, FloatRegister b);
2155 inline void fadds( FloatRegister d, FloatRegister a, FloatRegister b);
2156 inline void fadds_(FloatRegister d, FloatRegister a, FloatRegister b);
2157 inline void fsub( FloatRegister d, FloatRegister a, FloatRegister b);
2158 inline void fsub_( FloatRegister d, FloatRegister a, FloatRegister b);
2159 inline void fsubs( FloatRegister d, FloatRegister a, FloatRegister b);
2160 inline void fsubs_(FloatRegister d, FloatRegister a, FloatRegister b);
2161 inline void fmul( FloatRegister d, FloatRegister a, FloatRegister c);
2162 inline void fmul_( FloatRegister d, FloatRegister a, FloatRegister c);
2163 inline void fmuls( FloatRegister d, FloatRegister a, FloatRegister c);
2164 inline void fmuls_(FloatRegister d, FloatRegister a, FloatRegister c);
2165 inline void fdiv( FloatRegister d, FloatRegister a, FloatRegister b);
2166 inline void fdiv_( FloatRegister d, FloatRegister a, FloatRegister b);
2167 inline void fdivs( FloatRegister d, FloatRegister a, FloatRegister b);
2168 inline void fdivs_(FloatRegister d, FloatRegister a, FloatRegister b);
2169
2170 // Fused multiply-accumulate instructions.
2171 // WARNING: Use only when rounding between the 2 parts is not desired.
2172 // Some floating point tck tests will fail if used incorrectly.
2173 inline void fmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2174 inline void fmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2175 inline void fmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2176 inline void fmadds_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2177 inline void fmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2178 inline void fmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2179 inline void fmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2180 inline void fmsubs_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2181 inline void fnmadd( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2182 inline void fnmadd_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2183 inline void fnmadds( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2184 inline void fnmadds_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2185 inline void fnmsub( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2186 inline void fnmsub_( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2187 inline void fnmsubs( FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2188 inline void fnmsubs_(FloatRegister d, FloatRegister a, FloatRegister c, FloatRegister b);
2189
2190 // PPC 1, section 4.6.6 Floating-Point Rounding and Conversion Instructions
2191 inline void frsp( FloatRegister d, FloatRegister b);
2192 inline void fctid( FloatRegister d, FloatRegister b);
2193 inline void fctidz(FloatRegister d, FloatRegister b);
2194 inline void fctiw( FloatRegister d, FloatRegister b);
2195 inline void fctiwz(FloatRegister d, FloatRegister b);
2196 inline void fcfid( FloatRegister d, FloatRegister b);
2197 inline void fcfids(FloatRegister d, FloatRegister b);
2198
2199 // PPC 1, section 4.6.7 Floating-Point Compare Instructions
2200 inline void fcmpu( ConditionRegister crx, FloatRegister a, FloatRegister b);
2201
2202 inline void fsqrt( FloatRegister d, FloatRegister b);
2203 inline void fsqrts(FloatRegister d, FloatRegister b);
2204
2205 // Vector instructions for >= Power6.
2206 inline void lvebx( VectorRegister d, Register s1, Register s2);
2207 inline void lvehx( VectorRegister d, Register s1, Register s2);
2208 inline void lvewx( VectorRegister d, Register s1, Register s2);
2209 inline void lvx( VectorRegister d, Register s1, Register s2);
2210 inline void lvxl( VectorRegister d, Register s1, Register s2);
2211 inline void stvebx( VectorRegister d, Register s1, Register s2);
2212 inline void stvehx( VectorRegister d, Register s1, Register s2);
2213 inline void stvewx( VectorRegister d, Register s1, Register s2);
2214 inline void stvx( VectorRegister d, Register s1, Register s2);
2215 inline void stvxl( VectorRegister d, Register s1, Register s2);
2216 inline void lvsl( VectorRegister d, Register s1, Register s2);
2217 inline void lvsr( VectorRegister d, Register s1, Register s2);
2218 inline void vpkpx( VectorRegister d, VectorRegister a, VectorRegister b);
2219 inline void vpkshss( VectorRegister d, VectorRegister a, VectorRegister b);
2220 inline void vpkswss( VectorRegister d, VectorRegister a, VectorRegister b);
2221 inline void vpkshus( VectorRegister d, VectorRegister a, VectorRegister b);
2222 inline void vpkswus( VectorRegister d, VectorRegister a, VectorRegister b);
2223 inline void vpkuhum( VectorRegister d, VectorRegister a, VectorRegister b);
2224 inline void vpkuwum( VectorRegister d, VectorRegister a, VectorRegister b);
2225 inline void vpkuhus( VectorRegister d, VectorRegister a, VectorRegister b);
2226 inline void vpkuwus( VectorRegister d, VectorRegister a, VectorRegister b);
2227 inline void vupkhpx( VectorRegister d, VectorRegister b);
2228 inline void vupkhsb( VectorRegister d, VectorRegister b);
2229 inline void vupkhsh( VectorRegister d, VectorRegister b);
2230 inline void vupklpx( VectorRegister d, VectorRegister b);
2231 inline void vupklsb( VectorRegister d, VectorRegister b);
2232 inline void vupklsh( VectorRegister d, VectorRegister b);
2233 inline void vmrghb( VectorRegister d, VectorRegister a, VectorRegister b);
2234 inline void vmrghw( VectorRegister d, VectorRegister a, VectorRegister b);
2235 inline void vmrghh( VectorRegister d, VectorRegister a, VectorRegister b);
2236 inline void vmrglb( VectorRegister d, VectorRegister a, VectorRegister b);
2237 inline void vmrglw( VectorRegister d, VectorRegister a, VectorRegister b);
2238 inline void vmrglh( VectorRegister d, VectorRegister a, VectorRegister b);
2239 inline void vsplt( VectorRegister d, int ui4, VectorRegister b);
2240 inline void vsplth( VectorRegister d, int ui3, VectorRegister b);
2241 inline void vspltw( VectorRegister d, int ui2, VectorRegister b);
2242 inline void vspltisb( VectorRegister d, int si5);
2243 inline void vspltish( VectorRegister d, int si5);
2244 inline void vspltisw( VectorRegister d, int si5);
2245 inline void vperm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2246 inline void vpextd( VectorRegister d, VectorRegister a, VectorRegister b);
2247 inline void vsel( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2248 inline void vsl( VectorRegister d, VectorRegister a, VectorRegister b);
2249 inline void vsldoi( VectorRegister d, VectorRegister a, VectorRegister b, int ui4);
2250 inline void vslo( VectorRegister d, VectorRegister a, VectorRegister b);
2251 inline void vsr( VectorRegister d, VectorRegister a, VectorRegister b);
2252 inline void vsro( VectorRegister d, VectorRegister a, VectorRegister b);
2253 inline void vaddcuw( VectorRegister d, VectorRegister a, VectorRegister b);
2254 inline void vaddshs( VectorRegister d, VectorRegister a, VectorRegister b);
2255 inline void vaddsbs( VectorRegister d, VectorRegister a, VectorRegister b);
2256 inline void vaddsws( VectorRegister d, VectorRegister a, VectorRegister b);
2257 inline void vaddubm( VectorRegister d, VectorRegister a, VectorRegister b);
2258 inline void vadduwm( VectorRegister d, VectorRegister a, VectorRegister b);
2259 inline void vadduhm( VectorRegister d, VectorRegister a, VectorRegister b);
2260 inline void vaddudm( VectorRegister d, VectorRegister a, VectorRegister b);
2261 inline void vaddubs( VectorRegister d, VectorRegister a, VectorRegister b);
2262 inline void vadduws( VectorRegister d, VectorRegister a, VectorRegister b);
2263 inline void vadduhs( VectorRegister d, VectorRegister a, VectorRegister b);
2264 inline void vaddfp( VectorRegister d, VectorRegister a, VectorRegister b);
2265 inline void vsubcuw( VectorRegister d, VectorRegister a, VectorRegister b);
2266 inline void vsubshs( VectorRegister d, VectorRegister a, VectorRegister b);
2267 inline void vsubsbs( VectorRegister d, VectorRegister a, VectorRegister b);
2268 inline void vsubsws( VectorRegister d, VectorRegister a, VectorRegister b);
2269 inline void vsububm( VectorRegister d, VectorRegister a, VectorRegister b);
2270 inline void vsubuwm( VectorRegister d, VectorRegister a, VectorRegister b);
2271 inline void vsubuhm( VectorRegister d, VectorRegister a, VectorRegister b);
2272 inline void vsubudm( VectorRegister d, VectorRegister a, VectorRegister b);
2273 inline void vsububs( VectorRegister d, VectorRegister a, VectorRegister b);
2274 inline void vsubuws( VectorRegister d, VectorRegister a, VectorRegister b);
2275 inline void vsubuhs( VectorRegister d, VectorRegister a, VectorRegister b);
2276 inline void vsubfp( VectorRegister d, VectorRegister a, VectorRegister b);
2277 inline void vmulesb( VectorRegister d, VectorRegister a, VectorRegister b);
2278 inline void vmuleub( VectorRegister d, VectorRegister a, VectorRegister b);
2279 inline void vmulesh( VectorRegister d, VectorRegister a, VectorRegister b);
2280 inline void vmuleuh( VectorRegister d, VectorRegister a, VectorRegister b);
2281 inline void vmulosb( VectorRegister d, VectorRegister a, VectorRegister b);
2282 inline void vmuloub( VectorRegister d, VectorRegister a, VectorRegister b);
2283 inline void vmulosh( VectorRegister d, VectorRegister a, VectorRegister b);
2284 inline void vmulosw( VectorRegister d, VectorRegister a, VectorRegister b);
2285 inline void vmulouh( VectorRegister d, VectorRegister a, VectorRegister b);
2286 inline void vmuluwm( VectorRegister d, VectorRegister a, VectorRegister b);
2287 inline void vmhaddshs(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2288 inline void vmhraddshs(VectorRegister d,VectorRegister a, VectorRegister b, VectorRegister c);
2289 inline void vmladduhm(VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2290 inline void vmsubuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2291 inline void vmsummbm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2292 inline void vmsumshm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2293 inline void vmsumshs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2294 inline void vmsumuhm( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2295 inline void vmsumuhs( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2296 inline void vmaddfp( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2297 inline void vsumsws( VectorRegister d, VectorRegister a, VectorRegister b);
2298 inline void vsum2sws( VectorRegister d, VectorRegister a, VectorRegister b);
2299 inline void vsum4sbs( VectorRegister d, VectorRegister a, VectorRegister b);
2300 inline void vsum4ubs( VectorRegister d, VectorRegister a, VectorRegister b);
2301 inline void vsum4shs( VectorRegister d, VectorRegister a, VectorRegister b);
2302 inline void vavgsb( VectorRegister d, VectorRegister a, VectorRegister b);
2303 inline void vavgsw( VectorRegister d, VectorRegister a, VectorRegister b);
2304 inline void vavgsh( VectorRegister d, VectorRegister a, VectorRegister b);
2305 inline void vavgub( VectorRegister d, VectorRegister a, VectorRegister b);
2306 inline void vavguw( VectorRegister d, VectorRegister a, VectorRegister b);
2307 inline void vavguh( VectorRegister d, VectorRegister a, VectorRegister b);
2308 inline void vmaxsb( VectorRegister d, VectorRegister a, VectorRegister b);
2309 inline void vmaxsw( VectorRegister d, VectorRegister a, VectorRegister b);
2310 inline void vmaxsh( VectorRegister d, VectorRegister a, VectorRegister b);
2311 inline void vmaxub( VectorRegister d, VectorRegister a, VectorRegister b);
2312 inline void vmaxuw( VectorRegister d, VectorRegister a, VectorRegister b);
2313 inline void vmaxuh( VectorRegister d, VectorRegister a, VectorRegister b);
2314 inline void vminsb( VectorRegister d, VectorRegister a, VectorRegister b);
2315 inline void vminsw( VectorRegister d, VectorRegister a, VectorRegister b);
2316 inline void vminsh( VectorRegister d, VectorRegister a, VectorRegister b);
2317 inline void vminub( VectorRegister d, VectorRegister a, VectorRegister b);
2318 inline void vminuw( VectorRegister d, VectorRegister a, VectorRegister b);
2319 inline void vminuh( VectorRegister d, VectorRegister a, VectorRegister b);
2320 inline void vcmpequb( VectorRegister d, VectorRegister a, VectorRegister b);
2321 inline void vcmpequh( VectorRegister d, VectorRegister a, VectorRegister b);
2322 inline void vcmpequw( VectorRegister d, VectorRegister a, VectorRegister b);
2323 inline void vcmpgtsh( VectorRegister d, VectorRegister a, VectorRegister b);
2324 inline void vcmpgtsb( VectorRegister d, VectorRegister a, VectorRegister b);
2325 inline void vcmpgtsw( VectorRegister d, VectorRegister a, VectorRegister b);
2326 inline void vcmpgtub( VectorRegister d, VectorRegister a, VectorRegister b);
2327 inline void vcmpgtuh( VectorRegister d, VectorRegister a, VectorRegister b);
2328 inline void vcmpgtuw( VectorRegister d, VectorRegister a, VectorRegister b);
2329 inline void vcmpequb_(VectorRegister d, VectorRegister a, VectorRegister b);
2330 inline void vcmpequh_(VectorRegister d, VectorRegister a, VectorRegister b);
2331 inline void vcmpequw_(VectorRegister d, VectorRegister a, VectorRegister b);
2332 inline void vcmpgtsh_(VectorRegister d, VectorRegister a, VectorRegister b);
2333 inline void vcmpgtsb_(VectorRegister d, VectorRegister a, VectorRegister b);
2334 inline void vcmpgtsw_(VectorRegister d, VectorRegister a, VectorRegister b);
2335 inline void vcmpgtub_(VectorRegister d, VectorRegister a, VectorRegister b);
2336 inline void vcmpgtuh_(VectorRegister d, VectorRegister a, VectorRegister b);
2337 inline void vcmpgtuw_(VectorRegister d, VectorRegister a, VectorRegister b);
2338 inline void vand( VectorRegister d, VectorRegister a, VectorRegister b);
2339 inline void vandc( VectorRegister d, VectorRegister a, VectorRegister b);
2340 inline void vnor( VectorRegister d, VectorRegister a, VectorRegister b);
2341 inline void vor( VectorRegister d, VectorRegister a, VectorRegister b);
2342 inline void vmr( VectorRegister d, VectorRegister a);
2343 inline void vxor( VectorRegister d, VectorRegister a, VectorRegister b);
2344 inline void vrld( VectorRegister d, VectorRegister a, VectorRegister b);
2345 inline void vrlb( VectorRegister d, VectorRegister a, VectorRegister b);
2346 inline void vrlw( VectorRegister d, VectorRegister a, VectorRegister b);
2347 inline void vrlh( VectorRegister d, VectorRegister a, VectorRegister b);
2348 inline void vslb( VectorRegister d, VectorRegister a, VectorRegister b);
2349 inline void vskw( VectorRegister d, VectorRegister a, VectorRegister b);
2350 inline void vslh( VectorRegister d, VectorRegister a, VectorRegister b);
2351 inline void vsrb( VectorRegister d, VectorRegister a, VectorRegister b);
2352 inline void vsrw( VectorRegister d, VectorRegister a, VectorRegister b);
2353 inline void vsrh( VectorRegister d, VectorRegister a, VectorRegister b);
2354 inline void vsrab( VectorRegister d, VectorRegister a, VectorRegister b);
2355 inline void vsraw( VectorRegister d, VectorRegister a, VectorRegister b);
2356 inline void vsrah( VectorRegister d, VectorRegister a, VectorRegister b);
2357 inline void vpopcntb( VectorRegister d, VectorRegister b);
2358 inline void vpopcnth( VectorRegister d, VectorRegister b);
2359 inline void vpopcntw( VectorRegister d, VectorRegister b);
2360 inline void vpopcntd( VectorRegister d, VectorRegister b);
2361 // Vector Floating-Point not implemented yet
2362 inline void mtvscr( VectorRegister b);
2363 inline void mfvscr( VectorRegister d);
2364
2365 // Vector-Scalar (VSX) instructions.
2366 inline void lxv( VectorSRegister d, int si16, Register a);
2367 inline void stxv( VectorSRegister d, int si16, Register a);
2368 inline void lxvl( VectorSRegister d, Register a, Register b);
2369 inline void stxvl( VectorSRegister d, Register a, Register b);
2370 inline void lxvd2x( VectorSRegister d, Register a);
2371 inline void lxvd2x( VectorSRegister d, Register a, Register b);
2372 inline void stxvd2x( VectorSRegister d, Register a);
2373 inline void stxvd2x( VectorSRegister d, Register a, Register b);
2374 inline void mtvrwz( VectorRegister d, Register a);
2375 inline void mfvrwz( Register a, VectorRegister d);
2376 inline void mtvrd( VectorRegister d, Register a);
2377 inline void mfvrd( Register a, VectorRegister d);
2378 inline void xxperm( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2379 inline void xxpermx( VectorSRegister d, VectorSRegister a, VectorSRegister b, VectorSRegister c, int ui3);
2380 inline void xxpermdi( VectorSRegister d, VectorSRegister a, VectorSRegister b, int dm);
2381 inline void xxmrghw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2382 inline void xxmrglw( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2383 inline void mtvsrd( VectorSRegister d, Register a);
2384 inline void mfvsrd( Register d, VectorSRegister a);
2385 inline void mtvsrdd( VectorSRegister d, Register a, Register b);
2386 inline void mtvsrwz( VectorSRegister d, Register a);
2387 inline void mfvsrwz( Register d, VectorSRegister a);
2388 inline void xxspltw( VectorSRegister d, VectorSRegister b, int ui2);
2389 inline void xxlor( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2390 inline void xxlxor( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2391 inline void xxleqv( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2392 inline void xxbrd( VectorSRegister d, VectorSRegister b);
2393 inline void xxbrw( VectorSRegister d, VectorSRegister b);
2394 inline void xxland( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2395 inline void xxsel( VectorSRegister d, VectorSRegister a, VectorSRegister b, VectorSRegister c);
2396 inline void xxspltib( VectorSRegister d, int ui8);
2397 inline void xvdivsp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2398 inline void xvdivdp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2399 inline void xvabssp( VectorSRegister d, VectorSRegister b);
2400 inline void xvabsdp( VectorSRegister d, VectorSRegister b);
2401 inline void xvnegsp( VectorSRegister d, VectorSRegister b);
2402 inline void xvnegdp( VectorSRegister d, VectorSRegister b);
2403 inline void xvsqrtsp( VectorSRegister d, VectorSRegister b);
2404 inline void xvsqrtdp( VectorSRegister d, VectorSRegister b);
2405 inline void xscvdpspn(VectorSRegister d, VectorSRegister b);
2406 inline void xvadddp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2407 inline void xvsubdp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2408 inline void xvmulsp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2409 inline void xvmuldp( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2410 inline void xvmaddasp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2411 inline void xvmaddadp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2412 inline void xvmsubasp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2413 inline void xvmsubadp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2414 inline void xvnmsubasp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2415 inline void xvnmsubadp(VectorSRegister d, VectorSRegister a, VectorSRegister b);
2416 inline void xvrdpi( VectorSRegister d, VectorSRegister b);
2417 inline void xvrdpic( VectorSRegister d, VectorSRegister b);
2418 inline void xvrdpim( VectorSRegister d, VectorSRegister b);
2419 inline void xvrdpip( VectorSRegister d, VectorSRegister b);
2420
2421 // VSX Extended Mnemonics
2422 inline void xxspltd( VectorSRegister d, VectorSRegister a, int x);
2423 inline void xxmrghd( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2424 inline void xxmrgld( VectorSRegister d, VectorSRegister a, VectorSRegister b);
2425 inline void xxswapd( VectorSRegister d, VectorSRegister a);
2426
2427 // Vector-Scalar (VSX) instructions.
2428 inline void mtfprd( FloatRegister d, Register a);
2429 inline void mtfprwa( FloatRegister d, Register a);
2430 inline void mffprd( Register a, FloatRegister d);
2431
2432 // Deliver A Random Number (introduced with POWER9)
2433 inline void darn( Register d, int l = 1 /*L=CRN*/);
2434
2435 // AES (introduced with Power 8)
2436 inline void vcipher( VectorRegister d, VectorRegister a, VectorRegister b);
2437 inline void vcipherlast( VectorRegister d, VectorRegister a, VectorRegister b);
2438 inline void vncipher( VectorRegister d, VectorRegister a, VectorRegister b);
2439 inline void vncipherlast(VectorRegister d, VectorRegister a, VectorRegister b);
2440 inline void vsbox( VectorRegister d, VectorRegister a);
2441
2442 // SHA (introduced with Power 8)
2443 inline void vshasigmad(VectorRegister d, VectorRegister a, bool st, int six);
2444 inline void vshasigmaw(VectorRegister d, VectorRegister a, bool st, int six);
2445
2446 // Vector Binary Polynomial Multiplication (introduced with Power 8)
2447 inline void vpmsumb( VectorRegister d, VectorRegister a, VectorRegister b);
2448 inline void vpmsumd( VectorRegister d, VectorRegister a, VectorRegister b);
2449 inline void vpmsumh( VectorRegister d, VectorRegister a, VectorRegister b);
2450 inline void vpmsumw( VectorRegister d, VectorRegister a, VectorRegister b);
2451
2452 // Vector Permute and Xor (introduced with Power 8)
2453 inline void vpermxor( VectorRegister d, VectorRegister a, VectorRegister b, VectorRegister c);
2454
2455 // Transactional Memory instructions (introduced with Power 8)
2456 inline void tbegin_(); // R=0
2457 inline void tbeginrot_(); // R=1 Rollback-Only Transaction
2458 inline void tend_(); // A=0
2459 inline void tendall_(); // A=1
2460 inline void tabort_();
2461 inline void tabort_(Register a);
2462 inline void tabortwc_(int t, Register a, Register b);
2463 inline void tabortwci_(int t, Register a, int si);
2464 inline void tabortdc_(int t, Register a, Register b);
2465 inline void tabortdci_(int t, Register a, int si);
2466 inline void tsuspend_(); // tsr with L=0
2467 inline void tresume_(); // tsr with L=1
2468 inline void tcheck(int f);
2469
2470 static bool is_tbegin(int x) {
2471 return TBEGIN_OPCODE == (x & (0x3f << OPCODE_SHIFT | 0x3ff << 1));
2472 }
2473
2474 // The following encoders use r0 as second operand. These instructions
2475 // read r0 as '0'.
2476 inline void lwzx( Register d, Register s2);
2477 inline void lwz( Register d, int si16);
2478 inline void lwax( Register d, Register s2);
2479 inline void lwa( Register d, int si16);
2480 inline void lwbrx(Register d, Register s2);
2481 inline void lhzx( Register d, Register s2);
2482 inline void lhz( Register d, int si16);
2483 inline void lhax( Register d, Register s2);
2484 inline void lha( Register d, int si16);
2485 inline void lhbrx(Register d, Register s2);
2486 inline void lbzx( Register d, Register s2);
2487 inline void lbz( Register d, int si16);
2488 inline void ldx( Register d, Register s2);
2489 inline void ld( Register d, int si16);
2490 inline void ld( Register d, ByteSize si16);
2491 inline void ldbrx(Register d, Register s2);
2492 inline void stwx( Register d, Register s2);
2493 inline void stw( Register d, int si16);
2494 inline void stwbrx( Register d, Register s2);
2495 inline void sthx( Register d, Register s2);
2496 inline void sth( Register d, int si16);
2497 inline void sthbrx( Register d, Register s2);
2498 inline void stbx( Register d, Register s2);
2499 inline void stb( Register d, int si16);
2500 inline void stdx( Register d, Register s2);
2501 inline void std( Register d, int si16);
2502 inline void stdbrx( Register d, Register s2);
2503
2504 // PPC 2, section 3.2.1 Instruction Cache Instructions
2505 inline void icbi( Register s2);
2506 // PPC 2, section 3.2.2 Data Cache Instructions
2507 //inlinevoid dcba( Register s2); // Instruction for embedded processor only.
2508 inline void dcbz( Register s2);
2509 inline void dcbst( Register s2);
2510 inline void dcbf( Register s2);
2511 // dcache read hint
2512 inline void dcbt( Register s2);
2513 inline void dcbtct( Register s2, int ct);
2514 inline void dcbtds( Register s2, int ds);
2515 // dcache write hint
2516 inline void dcbtst( Register s2);
2517 inline void dcbtstct(Register s2, int ct);
2518
2519 // Atomics: use ra0mem to disallow R0 as base.
2520 inline void lbarx_unchecked(Register d, Register b, int eh1);
2521 inline void lharx_unchecked(Register d, Register b, int eh1);
2522 inline void lwarx_unchecked(Register d, Register b, int eh1);
2523 inline void ldarx_unchecked(Register d, Register b, int eh1);
2524 inline void lqarx_unchecked(Register d, Register b, int eh1);
2525 inline void lbarx( Register d, Register b, bool hint_exclusive_access);
2526 inline void lharx( Register d, Register b, bool hint_exclusive_access);
2527 inline void lwarx( Register d, Register b, bool hint_exclusive_access);
2528 inline void ldarx( Register d, Register b, bool hint_exclusive_access);
2529 inline void lqarx( Register d, Register b, bool hint_exclusive_access);
2530 inline void stbcx_(Register s, Register b);
2531 inline void sthcx_(Register s, Register b);
2532 inline void stwcx_(Register s, Register b);
2533 inline void stdcx_(Register s, Register b);
2534 inline void stqcx_(Register s, Register b);
2535 inline void lfs( FloatRegister d, int si16);
2536 inline void lfsx( FloatRegister d, Register b);
2537 inline void lfd( FloatRegister d, int si16);
2538 inline void lfdx( FloatRegister d, Register b);
2539 inline void stfs( FloatRegister s, int si16);
2540 inline void stfsx( FloatRegister s, Register b);
2541 inline void stfd( FloatRegister s, int si16);
2542 inline void stfdx( FloatRegister s, Register b);
2543 inline void lvebx( VectorRegister d, Register s2);
2544 inline void lvehx( VectorRegister d, Register s2);
2545 inline void lvewx( VectorRegister d, Register s2);
2546 inline void lvx( VectorRegister d, Register s2);
2547 inline void lvxl( VectorRegister d, Register s2);
2548 inline void stvebx(VectorRegister d, Register s2);
2549 inline void stvehx(VectorRegister d, Register s2);
2550 inline void stvewx(VectorRegister d, Register s2);
2551 inline void stvx( VectorRegister d, Register s2);
2552 inline void stvxl( VectorRegister d, Register s2);
2553 inline void lvsl( VectorRegister d, Register s2);
2554 inline void lvsr( VectorRegister d, Register s2);
2555
2556 // Endianness specific concatenation of 2 loaded vectors.
2557 inline void load_perm(VectorRegister perm, Register addr);
2558 inline void vec_perm(VectorRegister first_dest, VectorRegister second, VectorRegister perm);
2559 inline void vec_perm(VectorRegister dest, VectorRegister first, VectorRegister second, VectorRegister perm);
2560
2561 // RegisterOrConstant versions.
2562 // These emitters choose between the versions using two registers and
2563 // those with register and immediate, depending on the content of roc.
2564 // If the constant is not encodable as immediate, instructions to
2565 // load the constant are emitted beforehand. Store instructions need a
2566 // tmp reg if the constant is not encodable as immediate.
2567 // Size unpredictable.
2568 void ld( Register d, RegisterOrConstant roc, Register s1 = noreg);
2569 void lwa( Register d, RegisterOrConstant roc, Register s1 = noreg);
2570 void lwz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2571 void lha( Register d, RegisterOrConstant roc, Register s1 = noreg);
2572 void lhz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2573 void lbz( Register d, RegisterOrConstant roc, Register s1 = noreg);
2574 void std( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2575 void stw( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2576 void sth( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2577 void stb( Register d, RegisterOrConstant roc, Register s1 = noreg, Register tmp = noreg);
2578 void add( Register d, RegisterOrConstant roc, Register s1);
2579 void subf(Register d, RegisterOrConstant roc, Register s1);
2580 void cmpd(ConditionRegister d, RegisterOrConstant roc, Register s1);
2581 // Load pointer d from s1+roc.
2582 void ld_ptr(Register d, RegisterOrConstant roc, Register s1 = noreg) { ld(d, roc, s1); }
2583
2584 // Emit several instructions to load a 64 bit constant. This issues a fixed
2585 // instruction pattern so that the constant can be patched later on.
2586 enum {
2587 load_const_size = 5 * BytesPerInstWord
2588 };
2589 void load_const(Register d, long a, Register tmp = noreg);
2590 inline void load_const(Register d, void* a, Register tmp = noreg);
2591 inline void load_const(Register d, Label& L, Register tmp = noreg);
2592 inline void load_const(Register d, AddressLiteral& a, Register tmp = noreg);
2593 inline void load_const32(Register d, int i); // load signed int (patchable)
2594
2595 // Load a 64 bit constant, optimized, not identifiable.
2596 // Tmp can be used to increase ILP. Set return_simm16_rest = true to get a
2597 // 16 bit immediate offset. This is useful if the offset can be encoded in
2598 // a succeeding instruction.
2599 int load_const_optimized(Register d, long a, Register tmp = noreg, bool return_simm16_rest = false);
2600 inline int load_const_optimized(Register d, void* a, Register tmp = noreg, bool return_simm16_rest = false) {
2601 return load_const_optimized(d, (long)(unsigned long)a, tmp, return_simm16_rest);
2602 }
2603
2604 // If return_simm16_rest, the return value needs to get added afterwards.
2605 int add_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false);
2606 inline int add_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2607 return add_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2608 }
2609
2610 // If return_simm16_rest, the return value needs to get added afterwards.
2611 inline int sub_const_optimized(Register d, Register s, long x, Register tmp = R0, bool return_simm16_rest = false) {
2612 return add_const_optimized(d, s, -x, tmp, return_simm16_rest);
2613 }
2614 inline int sub_const_optimized(Register d, Register s, void* a, Register tmp = R0, bool return_simm16_rest = false) {
2615 return sub_const_optimized(d, s, (long)(unsigned long)a, tmp, return_simm16_rest);
2616 }
2617
2618 // Creation
2619 Assembler(CodeBuffer* code) : AbstractAssembler(code) {
2620 #ifdef CHECK_DELAY
2621 delay_state = no_delay;
2622 #endif
2623 }
2624
2625 // Testing
2626 #ifndef PRODUCT
2627 void test_asm();
2628 #endif
2629 };
2630
2631
2632 #endif // CPU_PPC_ASSEMBLER_PPC_HPP
--- EOF ---