1 /* 2 * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_ppc.hpp" 38 #include "oops/compressedOops.hpp" 39 #include "oops/objArrayKlass.hpp" 40 #include "runtime/frame.inline.hpp" 41 #include "runtime/os.inline.hpp" 42 #include "runtime/safepointMechanism.inline.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "runtime/stubRoutines.hpp" 45 #include "runtime/vm_version.hpp" 46 #include "utilities/macros.hpp" 47 #include "utilities/powerOfTwo.hpp" 48 49 #define __ _masm-> 50 51 52 const ConditionRegister LIR_Assembler::BOOL_RESULT = CCR5; 53 54 55 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 56 Unimplemented(); return false; // Currently not used on this platform. 57 } 58 59 60 LIR_Opr LIR_Assembler::receiverOpr() { 61 return FrameMap::R3_oop_opr; 62 } 63 64 65 LIR_Opr LIR_Assembler::osrBufferPointer() { 66 return FrameMap::R3_opr; 67 } 68 69 70 // This specifies the stack pointer decrement needed to build the frame. 71 int LIR_Assembler::initial_frame_size_in_bytes() const { 72 return in_bytes(frame_map()->framesize_in_bytes()); 73 } 74 75 76 // Inline cache check: the inline cached class is in inline_cache_reg; 77 // we fetch the class of the receiver and compare it with the cached class. 78 // If they do not match we jump to slow case. 79 int LIR_Assembler::check_icache() { 80 int offset = __ offset(); 81 __ inline_cache_check(R3_ARG1, R19_inline_cache_reg); 82 return offset; 83 } 84 85 void LIR_Assembler::clinit_barrier(ciMethod* method) { 86 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 87 88 Label L_skip_barrier; 89 Register klass = R20; 90 91 metadata2reg(method->holder()->constant_encoding(), klass); 92 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 93 94 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 95 __ mtctr(klass); 96 __ bctr(); 97 98 __ bind(L_skip_barrier); 99 } 100 101 void LIR_Assembler::osr_entry() { 102 // On-stack-replacement entry sequence: 103 // 104 // 1. Create a new compiled activation. 105 // 2. Initialize local variables in the compiled activation. The expression 106 // stack must be empty at the osr_bci; it is not initialized. 107 // 3. Jump to the continuation address in compiled code to resume execution. 108 109 // OSR entry point 110 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 111 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 112 ValueStack* entry_state = osr_entry->end()->state(); 113 int number_of_locks = entry_state->locks_size(); 114 115 // Create a frame for the compiled activation. 116 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 117 118 // OSR buffer is 119 // 120 // locals[nlocals-1..0] 121 // monitors[number_of_locks-1..0] 122 // 123 // Locals is a direct copy of the interpreter frame so in the osr buffer 124 // the first slot in the local array is the last local from the interpreter 125 // and the last slot is local[0] (receiver) from the interpreter. 126 // 127 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 128 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 129 // in the interpreter frame (the method lock if a sync method). 130 131 // Initialize monitors in the compiled activation. 132 // R3: pointer to osr buffer 133 // 134 // All other registers are dead at this point and the locals will be 135 // copied into place by code emitted in the IR. 136 137 Register OSR_buf = osrBufferPointer()->as_register(); 138 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 139 int monitor_offset = BytesPerWord * method()->max_locals() + 140 (2 * BytesPerWord) * (number_of_locks - 1); 141 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 142 // the OSR buffer using 2 word entries: first the lock and then 143 // the oop. 144 for (int i = 0; i < number_of_locks; i++) { 145 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 146 #ifdef ASSERT 147 // Verify the interpreter's monitor has a non-null object. 148 { 149 Label L; 150 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 151 __ cmpdi(CCR0, R0, 0); 152 __ bne(CCR0, L); 153 __ stop("locked object is null"); 154 __ bind(L); 155 } 156 #endif // ASSERT 157 // Copy the lock field into the compiled activation. 158 Address ml = frame_map()->address_for_monitor_lock(i), 159 mo = frame_map()->address_for_monitor_object(i); 160 assert(ml.index() == noreg && mo.index() == noreg, "sanity"); 161 __ ld(R0, slot_offset + 0, OSR_buf); 162 __ std(R0, ml.disp(), ml.base()); 163 __ ld(R0, slot_offset + 1*BytesPerWord, OSR_buf); 164 __ std(R0, mo.disp(), mo.base()); 165 } 166 } 167 } 168 169 170 int LIR_Assembler::emit_exception_handler() { 171 // Generate code for the exception handler. 172 address handler_base = __ start_a_stub(exception_handler_size()); 173 174 if (handler_base == nullptr) { 175 // Not enough space left for the handler. 176 bailout("exception handler overflow"); 177 return -1; 178 } 179 180 int offset = code_offset(); 181 address entry_point = CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)); 182 //__ load_const_optimized(R0, entry_point); 183 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(entry_point)); 184 __ mtctr(R0); 185 __ bctr(); 186 187 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 188 __ end_a_stub(); 189 190 return offset; 191 } 192 193 194 // Emit the code to remove the frame from the stack in the exception 195 // unwind path. 196 int LIR_Assembler::emit_unwind_handler() { 197 _masm->block_comment("Unwind handler"); 198 199 int offset = code_offset(); 200 bool preserve_exception = method()->is_synchronized() || compilation()->env()->dtrace_method_probes(); 201 const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_save = R31; 202 203 // Fetch the exception from TLS and clear out exception related thread state. 204 __ ld(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 205 __ li(R0, 0); 206 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 207 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 208 209 __ bind(_unwind_handler_entry); 210 __ verify_not_null_oop(Rexception); 211 if (preserve_exception) { __ mr(Rexception_save, Rexception); } 212 213 // Perform needed unlocking 214 MonitorExitStub* stub = nullptr; 215 if (method()->is_synchronized()) { 216 monitor_address(0, FrameMap::R4_opr); 217 stub = new MonitorExitStub(FrameMap::R4_opr, true, 0); 218 __ unlock_object(R5, R6, R4, *stub->entry()); 219 __ bind(*stub->continuation()); 220 } 221 222 if (compilation()->env()->dtrace_method_probes()) { 223 Unimplemented(); 224 } 225 226 // Dispatch to the unwind logic. 227 address unwind_stub = Runtime1::entry_for(Runtime1::unwind_exception_id); 228 //__ load_const_optimized(R0, unwind_stub); 229 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(unwind_stub)); 230 if (preserve_exception) { __ mr(Rexception, Rexception_save); } 231 __ mtctr(R0); 232 __ bctr(); 233 234 // Emit the slow path assembly. 235 if (stub != nullptr) { 236 stub->emit_code(this); 237 } 238 239 return offset; 240 } 241 242 243 int LIR_Assembler::emit_deopt_handler() { 244 // Generate code for deopt handler. 245 address handler_base = __ start_a_stub(deopt_handler_size()); 246 247 if (handler_base == nullptr) { 248 // Not enough space left for the handler. 249 bailout("deopt handler overflow"); 250 return -1; 251 } 252 253 int offset = code_offset(); 254 __ bl64_patchable(SharedRuntime::deopt_blob()->unpack(), relocInfo::runtime_call_type); 255 256 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 257 __ end_a_stub(); 258 259 return offset; 260 } 261 262 263 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 264 if (o == nullptr) { 265 __ li(reg, 0); 266 } else { 267 AddressLiteral addrlit = __ constant_oop_address(o); 268 __ load_const(reg, addrlit, (reg != R0) ? R0 : noreg); 269 } 270 } 271 272 273 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 274 // Allocate a new index in table to hold the object once it's been patched. 275 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr); 276 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 277 278 AddressLiteral addrlit((address)nullptr, oop_Relocation::spec(oop_index)); 279 __ load_const(reg, addrlit, R0); 280 281 patching_epilog(patch, lir_patch_normal, reg, info); 282 } 283 284 285 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) { 286 AddressLiteral md = __ constant_metadata_address(o); // Notify OOP recorder (don't need the relocation) 287 __ load_const_optimized(reg, md.value(), (reg != R0) ? R0 : noreg); 288 } 289 290 291 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 292 // Allocate a new index in table to hold the klass once it's been patched. 293 int index = __ oop_recorder()->allocate_metadata_index(nullptr); 294 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 295 296 AddressLiteral addrlit((address)nullptr, metadata_Relocation::spec(index)); 297 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 298 __ load_const(reg, addrlit, R0); 299 300 patching_epilog(patch, lir_patch_normal, reg, info); 301 } 302 303 304 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 305 const bool is_int = result->is_single_cpu(); 306 Register Rdividend = is_int ? left->as_register() : left->as_register_lo(); 307 Register Rdivisor = noreg; 308 Register Rscratch = temp->as_register(); 309 Register Rresult = is_int ? result->as_register() : result->as_register_lo(); 310 long divisor = -1; 311 312 if (right->is_register()) { 313 Rdivisor = is_int ? right->as_register() : right->as_register_lo(); 314 } else { 315 divisor = is_int ? right->as_constant_ptr()->as_jint() 316 : right->as_constant_ptr()->as_jlong(); 317 } 318 319 assert(Rdividend != Rscratch, ""); 320 assert(Rdivisor != Rscratch, ""); 321 assert(code == lir_idiv || code == lir_irem, "Must be irem or idiv"); 322 323 if (Rdivisor == noreg) { 324 if (divisor == 1) { // stupid, but can happen 325 if (code == lir_idiv) { 326 __ mr_if_needed(Rresult, Rdividend); 327 } else { 328 __ li(Rresult, 0); 329 } 330 331 } else if (is_power_of_2(divisor)) { 332 // Convert division by a power of two into some shifts and logical operations. 333 int log2 = log2i_exact(divisor); 334 335 // Round towards 0. 336 if (divisor == 2) { 337 if (is_int) { 338 __ srwi(Rscratch, Rdividend, 31); 339 } else { 340 __ srdi(Rscratch, Rdividend, 63); 341 } 342 } else { 343 if (is_int) { 344 __ srawi(Rscratch, Rdividend, 31); 345 } else { 346 __ sradi(Rscratch, Rdividend, 63); 347 } 348 __ clrldi(Rscratch, Rscratch, 64-log2); 349 } 350 __ add(Rscratch, Rdividend, Rscratch); 351 352 if (code == lir_idiv) { 353 if (is_int) { 354 __ srawi(Rresult, Rscratch, log2); 355 } else { 356 __ sradi(Rresult, Rscratch, log2); 357 } 358 } else { // lir_irem 359 __ clrrdi(Rscratch, Rscratch, log2); 360 __ sub(Rresult, Rdividend, Rscratch); 361 } 362 363 } else if (divisor == -1) { 364 if (code == lir_idiv) { 365 __ neg(Rresult, Rdividend); 366 } else { 367 __ li(Rresult, 0); 368 } 369 370 } else { 371 __ load_const_optimized(Rscratch, divisor); 372 if (code == lir_idiv) { 373 if (is_int) { 374 __ divw(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 375 } else { 376 __ divd(Rresult, Rdividend, Rscratch); // Can't divide minint/-1. 377 } 378 } else { 379 assert(Rscratch != R0, "need both"); 380 if (is_int) { 381 __ divw(R0, Rdividend, Rscratch); // Can't divide minint/-1. 382 __ mullw(Rscratch, R0, Rscratch); 383 } else { 384 __ divd(R0, Rdividend, Rscratch); // Can't divide minint/-1. 385 __ mulld(Rscratch, R0, Rscratch); 386 } 387 __ sub(Rresult, Rdividend, Rscratch); 388 } 389 390 } 391 return; 392 } 393 394 Label regular, done; 395 if (is_int) { 396 __ cmpwi(CCR0, Rdivisor, -1); 397 } else { 398 __ cmpdi(CCR0, Rdivisor, -1); 399 } 400 __ bne(CCR0, regular); 401 if (code == lir_idiv) { 402 __ neg(Rresult, Rdividend); 403 __ b(done); 404 __ bind(regular); 405 if (is_int) { 406 __ divw(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 407 } else { 408 __ divd(Rresult, Rdividend, Rdivisor); // Can't divide minint/-1. 409 } 410 } else { // lir_irem 411 __ li(Rresult, 0); 412 __ b(done); 413 __ bind(regular); 414 if (is_int) { 415 __ divw(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 416 __ mullw(Rscratch, Rscratch, Rdivisor); 417 } else { 418 __ divd(Rscratch, Rdividend, Rdivisor); // Can't divide minint/-1. 419 __ mulld(Rscratch, Rscratch, Rdivisor); 420 } 421 __ sub(Rresult, Rdividend, Rscratch); 422 } 423 __ bind(done); 424 } 425 426 427 void LIR_Assembler::emit_op3(LIR_Op3* op) { 428 switch (op->code()) { 429 case lir_idiv: 430 case lir_irem: 431 arithmetic_idiv(op->code(), op->in_opr1(), op->in_opr2(), op->in_opr3(), 432 op->result_opr(), op->info()); 433 break; 434 case lir_fmad: 435 __ fmadd(op->result_opr()->as_double_reg(), op->in_opr1()->as_double_reg(), 436 op->in_opr2()->as_double_reg(), op->in_opr3()->as_double_reg()); 437 break; 438 case lir_fmaf: 439 __ fmadds(op->result_opr()->as_float_reg(), op->in_opr1()->as_float_reg(), 440 op->in_opr2()->as_float_reg(), op->in_opr3()->as_float_reg()); 441 break; 442 default: ShouldNotReachHere(); break; 443 } 444 } 445 446 447 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 448 #ifdef ASSERT 449 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 450 if (op->block() != nullptr) _branch_target_blocks.append(op->block()); 451 if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock()); 452 assert(op->info() == nullptr, "shouldn't have CodeEmitInfo"); 453 #endif 454 455 Label *L = op->label(); 456 if (op->cond() == lir_cond_always) { 457 __ b(*L); 458 } else { 459 Label done; 460 bool is_unordered = false; 461 if (op->code() == lir_cond_float_branch) { 462 assert(op->ublock() != nullptr, "must have unordered successor"); 463 is_unordered = true; 464 } else { 465 assert(op->code() == lir_branch, "just checking"); 466 } 467 468 bool positive = false; 469 Assembler::Condition cond = Assembler::equal; 470 switch (op->cond()) { 471 case lir_cond_equal: positive = true ; cond = Assembler::equal ; is_unordered = false; break; 472 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; is_unordered = false; break; 473 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 474 case lir_cond_belowEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 475 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 476 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 477 case lir_cond_aboveEqual: assert(op->code() != lir_cond_float_branch, ""); // fallthru 478 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 479 default: ShouldNotReachHere(); 480 } 481 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 482 int bi = Assembler::bi0(BOOL_RESULT, cond); 483 if (is_unordered) { 484 if (positive) { 485 if (op->ublock() == op->block()) { 486 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(BOOL_RESULT, Assembler::summary_overflow), *L); 487 } 488 } else { 489 if (op->ublock() != op->block()) { __ bso(BOOL_RESULT, done); } 490 } 491 } 492 __ bc_far_optimized(bo, bi, *L); 493 __ bind(done); 494 } 495 } 496 497 498 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 499 Bytecodes::Code code = op->bytecode(); 500 LIR_Opr src = op->in_opr(), 501 dst = op->result_opr(); 502 503 switch(code) { 504 case Bytecodes::_i2l: { 505 __ extsw(dst->as_register_lo(), src->as_register()); 506 break; 507 } 508 case Bytecodes::_l2i: { 509 __ mr_if_needed(dst->as_register(), src->as_register_lo()); // high bits are garbage 510 break; 511 } 512 case Bytecodes::_i2b: { 513 __ extsb(dst->as_register(), src->as_register()); 514 break; 515 } 516 case Bytecodes::_i2c: { 517 __ clrldi(dst->as_register(), src->as_register(), 64-16); 518 break; 519 } 520 case Bytecodes::_i2s: { 521 __ extsh(dst->as_register(), src->as_register()); 522 break; 523 } 524 case Bytecodes::_i2d: 525 case Bytecodes::_l2d: { 526 bool src_in_memory = !VM_Version::has_mtfprd(); 527 FloatRegister rdst = dst->as_double_reg(); 528 FloatRegister rsrc; 529 if (src_in_memory) { 530 rsrc = src->as_double_reg(); // via mem 531 } else { 532 // move src to dst register 533 if (code == Bytecodes::_i2d) { 534 __ mtfprwa(rdst, src->as_register()); 535 } else { 536 __ mtfprd(rdst, src->as_register_lo()); 537 } 538 rsrc = rdst; 539 } 540 __ fcfid(rdst, rsrc); 541 break; 542 } 543 case Bytecodes::_i2f: 544 case Bytecodes::_l2f: { 545 bool src_in_memory = !VM_Version::has_mtfprd(); 546 FloatRegister rdst = dst->as_float_reg(); 547 FloatRegister rsrc; 548 if (src_in_memory) { 549 rsrc = src->as_double_reg(); // via mem 550 } else { 551 // move src to dst register 552 if (code == Bytecodes::_i2f) { 553 __ mtfprwa(rdst, src->as_register()); 554 } else { 555 __ mtfprd(rdst, src->as_register_lo()); 556 } 557 rsrc = rdst; 558 } 559 if (VM_Version::has_fcfids()) { 560 __ fcfids(rdst, rsrc); 561 } else { 562 assert(code == Bytecodes::_i2f, "fcfid+frsp needs fixup code to avoid rounding incompatibility"); 563 __ fcfid(rdst, rsrc); 564 __ frsp(rdst, rdst); 565 } 566 break; 567 } 568 case Bytecodes::_f2d: { 569 __ fmr_if_needed(dst->as_double_reg(), src->as_float_reg()); 570 break; 571 } 572 case Bytecodes::_d2f: { 573 __ frsp(dst->as_float_reg(), src->as_double_reg()); 574 break; 575 } 576 case Bytecodes::_d2i: 577 case Bytecodes::_f2i: { 578 bool dst_in_memory = !VM_Version::has_mtfprd(); 579 FloatRegister rsrc = (code == Bytecodes::_d2i) ? src->as_double_reg() : src->as_float_reg(); 580 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : Address(); 581 Label L; 582 // Result must be 0 if value is NaN; test by comparing value to itself. 583 __ fcmpu(CCR0, rsrc, rsrc); 584 if (dst_in_memory) { 585 __ li(R0, 0); // 0 in case of NAN 586 __ std(R0, addr.disp(), addr.base()); 587 } else { 588 __ li(dst->as_register(), 0); 589 } 590 __ bso(CCR0, L); 591 __ fctiwz(rsrc, rsrc); // USE_KILL 592 if (dst_in_memory) { 593 __ stfd(rsrc, addr.disp(), addr.base()); 594 } else { 595 __ mffprd(dst->as_register(), rsrc); 596 } 597 __ bind(L); 598 break; 599 } 600 case Bytecodes::_d2l: 601 case Bytecodes::_f2l: { 602 bool dst_in_memory = !VM_Version::has_mtfprd(); 603 FloatRegister rsrc = (code == Bytecodes::_d2l) ? src->as_double_reg() : src->as_float_reg(); 604 Address addr = dst_in_memory ? frame_map()->address_for_slot(dst->double_stack_ix()) : Address(); 605 Label L; 606 // Result must be 0 if value is NaN; test by comparing value to itself. 607 __ fcmpu(CCR0, rsrc, rsrc); 608 if (dst_in_memory) { 609 __ li(R0, 0); // 0 in case of NAN 610 __ std(R0, addr.disp(), addr.base()); 611 } else { 612 __ li(dst->as_register_lo(), 0); 613 } 614 __ bso(CCR0, L); 615 __ fctidz(rsrc, rsrc); // USE_KILL 616 if (dst_in_memory) { 617 __ stfd(rsrc, addr.disp(), addr.base()); 618 } else { 619 __ mffprd(dst->as_register_lo(), rsrc); 620 } 621 __ bind(L); 622 break; 623 } 624 625 default: ShouldNotReachHere(); 626 } 627 } 628 629 630 void LIR_Assembler::align_call(LIR_Code) { 631 // do nothing since all instructions are word aligned on ppc 632 } 633 634 635 bool LIR_Assembler::emit_trampoline_stub_for_call(address target, Register Rtoc) { 636 int start_offset = __ offset(); 637 // Put the entry point as a constant into the constant pool. 638 const address entry_point_toc_addr = __ address_constant(target, RelocationHolder::none); 639 if (entry_point_toc_addr == nullptr) { 640 bailout("const section overflow"); 641 return false; 642 } 643 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 644 645 // Emit the trampoline stub which will be related to the branch-and-link below. 646 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset, Rtoc); 647 if (!stub) { 648 bailout("no space for trampoline stub"); 649 return false; 650 } 651 return true; 652 } 653 654 655 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 656 assert(rtype==relocInfo::opt_virtual_call_type || rtype==relocInfo::static_call_type, "unexpected rtype"); 657 658 bool success = emit_trampoline_stub_for_call(op->addr()); 659 if (!success) { return; } 660 661 __ relocate(rtype); 662 // Note: At this point we do not have the address of the trampoline 663 // stub, and the entry point might be too far away for bl, so __ pc() 664 // serves as dummy and the bl will be patched later. 665 __ code()->set_insts_mark(); 666 __ bl(__ pc()); 667 add_call_info(code_offset(), op->info()); 668 __ post_call_nop(); 669 } 670 671 672 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 673 __ calculate_address_from_global_toc(R2_TOC, __ method_toc()); 674 675 // Virtual call relocation will point to ic load. 676 address virtual_call_meta_addr = __ pc(); 677 // Load a clear inline cache. 678 AddressLiteral empty_ic((address) Universe::non_oop_word()); 679 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, empty_ic, R2_TOC); 680 if (!success) { 681 bailout("const section overflow"); 682 return; 683 } 684 // Call to fixup routine. Fixup routine uses ScopeDesc info 685 // to determine who we intended to call. 686 __ relocate(virtual_call_Relocation::spec(virtual_call_meta_addr)); 687 688 success = emit_trampoline_stub_for_call(op->addr(), R2_TOC); 689 if (!success) { return; } 690 691 // Note: At this point we do not have the address of the trampoline 692 // stub, and the entry point might be too far away for bl, so __ pc() 693 // serves as dummy and the bl will be patched later. 694 __ bl(__ pc()); 695 add_call_info(code_offset(), op->info()); 696 __ post_call_nop(); 697 } 698 699 void LIR_Assembler::explicit_null_check(Register addr, CodeEmitInfo* info) { 700 ImplicitNullCheckStub* stub = new ImplicitNullCheckStub(code_offset(), info); 701 __ null_check(addr, stub->entry()); 702 append_code_stub(stub); 703 } 704 705 706 // Attention: caller must encode oop if needed 707 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide) { 708 int store_offset; 709 if (!Assembler::is_simm16(offset)) { 710 // For offsets larger than a simm16 we setup the offset. 711 assert(wide && !from_reg->is_same_register(FrameMap::R0_opr), "large offset only supported in special case"); 712 __ load_const_optimized(R0, offset); 713 store_offset = store(from_reg, base, R0, type, wide); 714 } else { 715 store_offset = code_offset(); 716 switch (type) { 717 case T_BOOLEAN: // fall through 718 case T_BYTE : __ stb(from_reg->as_register(), offset, base); break; 719 case T_CHAR : 720 case T_SHORT : __ sth(from_reg->as_register(), offset, base); break; 721 case T_INT : __ stw(from_reg->as_register(), offset, base); break; 722 case T_LONG : __ std(from_reg->as_register_lo(), offset, base); break; 723 case T_ADDRESS: 724 case T_METADATA: __ std(from_reg->as_register(), offset, base); break; 725 case T_ARRAY : // fall through 726 case T_OBJECT: 727 { 728 if (UseCompressedOops && !wide) { 729 // Encoding done in caller 730 __ stw(from_reg->as_register(), offset, base); 731 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); 732 } else { 733 __ std(from_reg->as_register(), offset, base); 734 if (VerifyOops) { 735 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 736 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 737 } 738 } 739 break; 740 } 741 case T_FLOAT : __ stfs(from_reg->as_float_reg(), offset, base); break; 742 case T_DOUBLE: __ stfd(from_reg->as_double_reg(), offset, base); break; 743 default : ShouldNotReachHere(); 744 } 745 } 746 return store_offset; 747 } 748 749 750 // Attention: caller must encode oop if needed 751 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) { 752 int store_offset = code_offset(); 753 switch (type) { 754 case T_BOOLEAN: // fall through 755 case T_BYTE : __ stbx(from_reg->as_register(), base, disp); break; 756 case T_CHAR : 757 case T_SHORT : __ sthx(from_reg->as_register(), base, disp); break; 758 case T_INT : __ stwx(from_reg->as_register(), base, disp); break; 759 case T_LONG : 760 #ifdef _LP64 761 __ stdx(from_reg->as_register_lo(), base, disp); 762 #else 763 Unimplemented(); 764 #endif 765 break; 766 case T_ADDRESS: 767 __ stdx(from_reg->as_register(), base, disp); 768 break; 769 case T_ARRAY : // fall through 770 case T_OBJECT: 771 { 772 if (UseCompressedOops && !wide) { 773 // Encoding done in caller. 774 __ stwx(from_reg->as_register(), base, disp); 775 __ verify_coop(from_reg->as_register(), FILE_AND_LINE); // kills R0 776 } else { 777 __ stdx(from_reg->as_register(), base, disp); 778 if (VerifyOops) { 779 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 780 bs->check_oop(_masm, from_reg->as_register(), FILE_AND_LINE); // kills R0 781 } 782 } 783 break; 784 } 785 case T_FLOAT : __ stfsx(from_reg->as_float_reg(), base, disp); break; 786 case T_DOUBLE: __ stfdx(from_reg->as_double_reg(), base, disp); break; 787 default : ShouldNotReachHere(); 788 } 789 return store_offset; 790 } 791 792 793 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide) { 794 int load_offset; 795 if (!Assembler::is_simm16(offset)) { 796 // For offsets larger than a simm16 we setup the offset. 797 __ load_const_optimized(R0, offset); 798 load_offset = load(base, R0, to_reg, type, wide); 799 } else { 800 load_offset = code_offset(); 801 switch(type) { 802 case T_BOOLEAN: // fall through 803 case T_BYTE : __ lbz(to_reg->as_register(), offset, base); 804 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 805 case T_CHAR : __ lhz(to_reg->as_register(), offset, base); break; 806 case T_SHORT : __ lha(to_reg->as_register(), offset, base); break; 807 case T_INT : __ lwa(to_reg->as_register(), offset, base); break; 808 case T_LONG : __ ld(to_reg->as_register_lo(), offset, base); break; 809 case T_METADATA: __ ld(to_reg->as_register(), offset, base); break; 810 case T_ADDRESS: 811 __ ld(to_reg->as_register(), offset, base); 812 break; 813 case T_ARRAY : // fall through 814 case T_OBJECT: 815 { 816 if (UseCompressedOops && !wide) { 817 __ lwz(to_reg->as_register(), offset, base); 818 __ decode_heap_oop(to_reg->as_register()); 819 } else { 820 __ ld(to_reg->as_register(), offset, base); 821 } 822 break; 823 } 824 case T_FLOAT: __ lfs(to_reg->as_float_reg(), offset, base); break; 825 case T_DOUBLE: __ lfd(to_reg->as_double_reg(), offset, base); break; 826 default : ShouldNotReachHere(); 827 } 828 } 829 return load_offset; 830 } 831 832 833 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) { 834 int load_offset = code_offset(); 835 switch(type) { 836 case T_BOOLEAN: // fall through 837 case T_BYTE : __ lbzx(to_reg->as_register(), base, disp); 838 __ extsb(to_reg->as_register(), to_reg->as_register()); break; 839 case T_CHAR : __ lhzx(to_reg->as_register(), base, disp); break; 840 case T_SHORT : __ lhax(to_reg->as_register(), base, disp); break; 841 case T_INT : __ lwax(to_reg->as_register(), base, disp); break; 842 case T_ADDRESS: __ ldx(to_reg->as_register(), base, disp); break; 843 case T_ARRAY : // fall through 844 case T_OBJECT: 845 { 846 if (UseCompressedOops && !wide) { 847 __ lwzx(to_reg->as_register(), base, disp); 848 __ decode_heap_oop(to_reg->as_register()); 849 } else { 850 __ ldx(to_reg->as_register(), base, disp); 851 } 852 break; 853 } 854 case T_FLOAT: __ lfsx(to_reg->as_float_reg() , base, disp); break; 855 case T_DOUBLE: __ lfdx(to_reg->as_double_reg(), base, disp); break; 856 case T_LONG : 857 #ifdef _LP64 858 __ ldx(to_reg->as_register_lo(), base, disp); 859 #else 860 Unimplemented(); 861 #endif 862 break; 863 default : ShouldNotReachHere(); 864 } 865 return load_offset; 866 } 867 868 869 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 870 LIR_Const* c = src->as_constant_ptr(); 871 Register src_reg = R0; 872 switch (c->type()) { 873 case T_INT: 874 case T_FLOAT: { 875 int value = c->as_jint_bits(); 876 __ load_const_optimized(src_reg, value); 877 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 878 __ stw(src_reg, addr.disp(), addr.base()); 879 break; 880 } 881 case T_ADDRESS: { 882 int value = c->as_jint_bits(); 883 __ load_const_optimized(src_reg, value); 884 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 885 __ std(src_reg, addr.disp(), addr.base()); 886 break; 887 } 888 case T_OBJECT: { 889 jobject2reg(c->as_jobject(), src_reg); 890 Address addr = frame_map()->address_for_slot(dest->single_stack_ix()); 891 __ std(src_reg, addr.disp(), addr.base()); 892 break; 893 } 894 case T_LONG: 895 case T_DOUBLE: { 896 int value = c->as_jlong_bits(); 897 __ load_const_optimized(src_reg, value); 898 Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix()); 899 __ std(src_reg, addr.disp(), addr.base()); 900 break; 901 } 902 default: 903 Unimplemented(); 904 } 905 } 906 907 908 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 909 LIR_Const* c = src->as_constant_ptr(); 910 LIR_Address* addr = dest->as_address_ptr(); 911 Register base = addr->base()->as_pointer_register(); 912 LIR_Opr tmp = LIR_OprFact::illegalOpr; 913 int offset = -1; 914 // Null check for large offsets in LIRGenerator::do_StoreField. 915 bool needs_explicit_null_check = !ImplicitNullChecks; 916 917 if (info != nullptr && needs_explicit_null_check) { 918 explicit_null_check(base, info); 919 } 920 921 switch (c->type()) { 922 case T_FLOAT: type = T_INT; 923 case T_INT: 924 case T_ADDRESS: { 925 tmp = FrameMap::R0_opr; 926 __ load_const_optimized(tmp->as_register(), c->as_jint_bits()); 927 break; 928 } 929 case T_DOUBLE: type = T_LONG; 930 case T_LONG: { 931 tmp = FrameMap::R0_long_opr; 932 __ load_const_optimized(tmp->as_register_lo(), c->as_jlong_bits()); 933 break; 934 } 935 case T_OBJECT: { 936 tmp = FrameMap::R0_opr; 937 if (UseCompressedOops && !wide && c->as_jobject() != nullptr) { 938 AddressLiteral oop_addr = __ constant_oop_address(c->as_jobject()); 939 // Don't care about sign extend (will use stw). 940 __ lis(R0, 0); // Will get patched. 941 __ relocate(oop_addr.rspec(), /*compressed format*/ 1); 942 __ ori(R0, R0, 0); // Will get patched. 943 } else { 944 jobject2reg(c->as_jobject(), R0); 945 } 946 break; 947 } 948 default: 949 Unimplemented(); 950 } 951 952 // Handle either reg+reg or reg+disp address. 953 if (addr->index()->is_valid()) { 954 assert(addr->disp() == 0, "must be zero"); 955 offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide); 956 } else { 957 assert(Assembler::is_simm16(addr->disp()), "can't handle larger addresses"); 958 offset = store(tmp, base, addr->disp(), type, wide); 959 } 960 961 if (info != nullptr) { 962 assert(offset != -1, "offset should've been set"); 963 if (!needs_explicit_null_check) { 964 add_debug_info_for_null_check(offset, info); 965 } 966 } 967 } 968 969 970 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 971 LIR_Const* c = src->as_constant_ptr(); 972 LIR_Opr to_reg = dest; 973 974 switch (c->type()) { 975 case T_INT: { 976 assert(patch_code == lir_patch_none, "no patching handled here"); 977 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); 978 break; 979 } 980 case T_ADDRESS: { 981 assert(patch_code == lir_patch_none, "no patching handled here"); 982 __ load_const_optimized(dest->as_register(), c->as_jint(), R0); // Yes, as_jint ... 983 break; 984 } 985 case T_LONG: { 986 assert(patch_code == lir_patch_none, "no patching handled here"); 987 __ load_const_optimized(dest->as_register_lo(), c->as_jlong(), R0); 988 break; 989 } 990 991 case T_OBJECT: { 992 if (patch_code == lir_patch_none) { 993 jobject2reg(c->as_jobject(), to_reg->as_register()); 994 } else { 995 jobject2reg_with_patching(to_reg->as_register(), info); 996 } 997 break; 998 } 999 1000 case T_METADATA: 1001 { 1002 if (patch_code == lir_patch_none) { 1003 metadata2reg(c->as_metadata(), to_reg->as_register()); 1004 } else { 1005 klass2reg_with_patching(to_reg->as_register(), info); 1006 } 1007 } 1008 break; 1009 1010 case T_FLOAT: 1011 { 1012 if (to_reg->is_single_fpu()) { 1013 address const_addr = __ float_constant(c->as_jfloat()); 1014 if (const_addr == nullptr) { 1015 bailout("const section overflow"); 1016 break; 1017 } 1018 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1019 __ relocate(rspec); 1020 __ load_const(R0, const_addr); 1021 __ lfsx(to_reg->as_float_reg(), R0); 1022 } else { 1023 assert(to_reg->is_single_cpu(), "Must be a cpu register."); 1024 __ load_const_optimized(to_reg->as_register(), jint_cast(c->as_jfloat()), R0); 1025 } 1026 } 1027 break; 1028 1029 case T_DOUBLE: 1030 { 1031 if (to_reg->is_double_fpu()) { 1032 address const_addr = __ double_constant(c->as_jdouble()); 1033 if (const_addr == nullptr) { 1034 bailout("const section overflow"); 1035 break; 1036 } 1037 RelocationHolder rspec = internal_word_Relocation::spec(const_addr); 1038 __ relocate(rspec); 1039 __ load_const(R0, const_addr); 1040 __ lfdx(to_reg->as_double_reg(), R0); 1041 } else { 1042 assert(to_reg->is_double_cpu(), "Must be a long register."); 1043 __ load_const_optimized(to_reg->as_register_lo(), jlong_cast(c->as_jdouble()), R0); 1044 } 1045 } 1046 break; 1047 1048 default: 1049 ShouldNotReachHere(); 1050 } 1051 } 1052 1053 1054 Address LIR_Assembler::as_Address(LIR_Address* addr) { 1055 Unimplemented(); return Address(); 1056 } 1057 1058 1059 inline RegisterOrConstant index_or_disp(LIR_Address* addr) { 1060 if (addr->index()->is_illegal()) { 1061 return (RegisterOrConstant)(addr->disp()); 1062 } else { 1063 return (RegisterOrConstant)(addr->index()->as_pointer_register()); 1064 } 1065 } 1066 1067 1068 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 1069 const Register tmp = R0; 1070 switch (type) { 1071 case T_INT: 1072 case T_FLOAT: { 1073 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1074 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1075 __ lwz(tmp, from.disp(), from.base()); 1076 __ stw(tmp, to.disp(), to.base()); 1077 break; 1078 } 1079 case T_ADDRESS: 1080 case T_OBJECT: { 1081 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 1082 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 1083 __ ld(tmp, from.disp(), from.base()); 1084 __ std(tmp, to.disp(), to.base()); 1085 break; 1086 } 1087 case T_LONG: 1088 case T_DOUBLE: { 1089 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 1090 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 1091 __ ld(tmp, from.disp(), from.base()); 1092 __ std(tmp, to.disp(), to.base()); 1093 break; 1094 } 1095 1096 default: 1097 ShouldNotReachHere(); 1098 } 1099 } 1100 1101 1102 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 1103 Unimplemented(); return Address(); 1104 } 1105 1106 1107 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 1108 Unimplemented(); return Address(); 1109 } 1110 1111 1112 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, 1113 LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) { 1114 1115 assert(type != T_METADATA, "load of metadata ptr not supported"); 1116 LIR_Address* addr = src_opr->as_address_ptr(); 1117 LIR_Opr to_reg = dest; 1118 1119 Register src = addr->base()->as_pointer_register(); 1120 Register disp_reg = noreg; 1121 int disp_value = addr->disp(); 1122 bool needs_patching = (patch_code != lir_patch_none); 1123 // null check for large offsets in LIRGenerator::do_LoadField 1124 bool needs_explicit_null_check = !os::zero_page_read_protected() || !ImplicitNullChecks; 1125 1126 if (info != nullptr && needs_explicit_null_check) { 1127 explicit_null_check(src, info); 1128 } 1129 1130 if (addr->base()->type() == T_OBJECT) { 1131 __ verify_oop(src, FILE_AND_LINE); 1132 } 1133 1134 PatchingStub* patch = nullptr; 1135 if (needs_patching) { 1136 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1137 assert(!to_reg->is_double_cpu() || 1138 patch_code == lir_patch_none || 1139 patch_code == lir_patch_normal, "patching doesn't match register"); 1140 } 1141 1142 if (addr->index()->is_illegal()) { 1143 if (!Assembler::is_simm16(disp_value)) { 1144 if (needs_patching) { 1145 __ load_const32(R0, 0); // patchable int 1146 } else { 1147 __ load_const_optimized(R0, disp_value); 1148 } 1149 disp_reg = R0; 1150 } 1151 } else { 1152 disp_reg = addr->index()->as_pointer_register(); 1153 assert(disp_value == 0, "can't handle 3 operand addresses"); 1154 } 1155 1156 // Remember the offset of the load. The patching_epilog must be done 1157 // before the call to add_debug_info, otherwise the PcDescs don't get 1158 // entered in increasing order. 1159 int offset; 1160 1161 if (disp_reg == noreg) { 1162 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1163 offset = load(src, disp_value, to_reg, type, wide); 1164 } else { 1165 offset = load(src, disp_reg, to_reg, type, wide); 1166 } 1167 1168 if (patch != nullptr) { 1169 patching_epilog(patch, patch_code, src, info); 1170 } 1171 if (info != nullptr && !needs_explicit_null_check) { 1172 add_debug_info_for_null_check(offset, info); 1173 } 1174 } 1175 1176 1177 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 1178 Address addr; 1179 if (src->is_single_word()) { 1180 addr = frame_map()->address_for_slot(src->single_stack_ix()); 1181 } else if (src->is_double_word()) { 1182 addr = frame_map()->address_for_double_slot(src->double_stack_ix()); 1183 } 1184 1185 load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/); 1186 } 1187 1188 1189 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1190 Address addr; 1191 if (dest->is_single_word()) { 1192 addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1193 } else if (dest->is_double_word()) { 1194 addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1195 } 1196 1197 store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/); 1198 } 1199 1200 1201 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1202 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1203 if (from_reg->is_double_fpu()) { 1204 // double to double moves 1205 assert(to_reg->is_double_fpu(), "should match"); 1206 __ fmr_if_needed(to_reg->as_double_reg(), from_reg->as_double_reg()); 1207 } else { 1208 // float to float moves 1209 assert(to_reg->is_single_fpu(), "should match"); 1210 __ fmr_if_needed(to_reg->as_float_reg(), from_reg->as_float_reg()); 1211 } 1212 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1213 if (from_reg->is_double_cpu()) { 1214 __ mr_if_needed(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1215 } else if (to_reg->is_double_cpu()) { 1216 // int to int moves 1217 __ mr_if_needed(to_reg->as_register_lo(), from_reg->as_register()); 1218 } else { 1219 // int to int moves 1220 __ mr_if_needed(to_reg->as_register(), from_reg->as_register()); 1221 } 1222 } else { 1223 ShouldNotReachHere(); 1224 } 1225 if (is_reference_type(to_reg->type())) { 1226 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1227 } 1228 } 1229 1230 1231 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type, 1232 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1233 bool wide) { 1234 assert(type != T_METADATA, "store of metadata ptr not supported"); 1235 LIR_Address* addr = dest->as_address_ptr(); 1236 1237 Register src = addr->base()->as_pointer_register(); 1238 Register disp_reg = noreg; 1239 int disp_value = addr->disp(); 1240 bool needs_patching = (patch_code != lir_patch_none); 1241 bool compress_oop = (is_reference_type(type)) && UseCompressedOops && !wide && 1242 CompressedOops::mode() != CompressedOops::UnscaledNarrowOop; 1243 bool load_disp = addr->index()->is_illegal() && !Assembler::is_simm16(disp_value); 1244 bool use_R29 = compress_oop && load_disp; // Avoid register conflict, also do null check before killing R29. 1245 // Null check for large offsets in LIRGenerator::do_StoreField. 1246 bool needs_explicit_null_check = !ImplicitNullChecks || use_R29; 1247 1248 if (info != nullptr && needs_explicit_null_check) { 1249 explicit_null_check(src, info); 1250 } 1251 1252 if (addr->base()->is_oop_register()) { 1253 __ verify_oop(src, FILE_AND_LINE); 1254 } 1255 1256 PatchingStub* patch = nullptr; 1257 if (needs_patching) { 1258 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1259 assert(!from_reg->is_double_cpu() || 1260 patch_code == lir_patch_none || 1261 patch_code == lir_patch_normal, "patching doesn't match register"); 1262 } 1263 1264 if (addr->index()->is_illegal()) { 1265 if (load_disp) { 1266 disp_reg = use_R29 ? R29_TOC : R0; 1267 if (needs_patching) { 1268 __ load_const32(disp_reg, 0); // patchable int 1269 } else { 1270 __ load_const_optimized(disp_reg, disp_value); 1271 } 1272 } 1273 } else { 1274 disp_reg = addr->index()->as_pointer_register(); 1275 assert(disp_value == 0, "can't handle 3 operand addresses"); 1276 } 1277 1278 // remember the offset of the store. The patching_epilog must be done 1279 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1280 // entered in increasing order. 1281 int offset; 1282 1283 if (compress_oop) { 1284 Register co = __ encode_heap_oop(R0, from_reg->as_register()); 1285 from_reg = FrameMap::as_opr(co); 1286 } 1287 1288 if (disp_reg == noreg) { 1289 assert(Assembler::is_simm16(disp_value), "should have set this up"); 1290 offset = store(from_reg, src, disp_value, type, wide); 1291 } else { 1292 offset = store(from_reg, src, disp_reg, type, wide); 1293 } 1294 1295 if (use_R29) { 1296 __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); // reinit 1297 } 1298 1299 if (patch != nullptr) { 1300 patching_epilog(patch, patch_code, src, info); 1301 } 1302 1303 if (info != nullptr && !needs_explicit_null_check) { 1304 add_debug_info_for_null_check(offset, info); 1305 } 1306 } 1307 1308 1309 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1310 const Register return_pc = R31; // Must survive C-call to enable_stack_reserved_zone(). 1311 const Register temp = R12; 1312 1313 // Pop the stack before the safepoint code. 1314 int frame_size = initial_frame_size_in_bytes(); 1315 if (Assembler::is_simm(frame_size, 16)) { 1316 __ addi(R1_SP, R1_SP, frame_size); 1317 } else { 1318 __ pop_frame(); 1319 } 1320 1321 // Restore return pc relative to callers' sp. 1322 __ ld(return_pc, _abi0(lr), R1_SP); 1323 // Move return pc to LR. 1324 __ mtlr(return_pc); 1325 1326 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1327 __ reserved_stack_check(return_pc); 1328 } 1329 1330 // We need to mark the code position where the load from the safepoint 1331 // polling page was emitted as relocInfo::poll_return_type here. 1332 if (!UseSIGTRAP) { 1333 code_stub->set_safepoint_offset(__ offset()); 1334 __ relocate(relocInfo::poll_return_type); 1335 } 1336 __ safepoint_poll(*code_stub->entry(), temp, true /* at_return */, true /* in_nmethod */); 1337 1338 // Return. 1339 __ blr(); 1340 } 1341 1342 1343 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1344 const Register poll_addr = tmp->as_register(); 1345 __ ld(poll_addr, in_bytes(JavaThread::polling_page_offset()), R16_thread); 1346 if (info != nullptr) { 1347 add_debug_info_for_branch(info); 1348 } 1349 int offset = __ offset(); 1350 __ relocate(relocInfo::poll_type); 1351 __ load_from_polling_page(poll_addr); 1352 1353 return offset; 1354 } 1355 1356 1357 void LIR_Assembler::emit_static_call_stub() { 1358 address call_pc = __ pc(); 1359 address stub = __ start_a_stub(static_call_stub_size()); 1360 if (stub == nullptr) { 1361 bailout("static call stub overflow"); 1362 return; 1363 } 1364 1365 // For java_to_interp stubs we use R11_scratch1 as scratch register 1366 // and in call trampoline stubs we use R12_scratch2. This way we 1367 // can distinguish them (see is_NativeCallTrampolineStub_at()). 1368 const Register reg_scratch = R11_scratch1; 1369 1370 // Create a static stub relocation which relates this stub 1371 // with the call instruction at insts_call_instruction_offset in the 1372 // instructions code-section. 1373 int start = __ offset(); 1374 __ relocate(static_stub_Relocation::spec(call_pc)); 1375 1376 // Now, create the stub's code: 1377 // - load the TOC 1378 // - load the inline cache oop from the constant pool 1379 // - load the call target from the constant pool 1380 // - call 1381 __ calculate_address_from_global_toc(reg_scratch, __ method_toc()); 1382 AddressLiteral ic = __ allocate_metadata_address((Metadata *)nullptr); 1383 bool success = __ load_const_from_method_toc(R19_inline_cache_reg, ic, reg_scratch, /*fixed_size*/ true); 1384 1385 if (ReoptimizeCallSequences) { 1386 __ b64_patchable((address)-1, relocInfo::none); 1387 } else { 1388 AddressLiteral a((address)-1); 1389 success = success && __ load_const_from_method_toc(reg_scratch, a, reg_scratch, /*fixed_size*/ true); 1390 __ mtctr(reg_scratch); 1391 __ bctr(); 1392 } 1393 if (!success) { 1394 bailout("const section overflow"); 1395 return; 1396 } 1397 1398 assert(__ offset() - start <= static_call_stub_size(), "stub too big"); 1399 __ end_a_stub(); 1400 } 1401 1402 1403 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1404 bool unsigned_comp = (condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual); 1405 if (opr1->is_single_fpu()) { 1406 __ fcmpu(BOOL_RESULT, opr1->as_float_reg(), opr2->as_float_reg()); 1407 } else if (opr1->is_double_fpu()) { 1408 __ fcmpu(BOOL_RESULT, opr1->as_double_reg(), opr2->as_double_reg()); 1409 } else if (opr1->is_single_cpu()) { 1410 if (opr2->is_constant()) { 1411 switch (opr2->as_constant_ptr()->type()) { 1412 case T_INT: 1413 { 1414 jint con = opr2->as_constant_ptr()->as_jint(); 1415 if (unsigned_comp) { 1416 if (Assembler::is_uimm(con, 16)) { 1417 __ cmplwi(BOOL_RESULT, opr1->as_register(), con); 1418 } else { 1419 __ load_const_optimized(R0, con); 1420 __ cmplw(BOOL_RESULT, opr1->as_register(), R0); 1421 } 1422 } else { 1423 if (Assembler::is_simm(con, 16)) { 1424 __ cmpwi(BOOL_RESULT, opr1->as_register(), con); 1425 } else { 1426 __ load_const_optimized(R0, con); 1427 __ cmpw(BOOL_RESULT, opr1->as_register(), R0); 1428 } 1429 } 1430 } 1431 break; 1432 1433 case T_OBJECT: 1434 // There are only equal/notequal comparisons on objects. 1435 { 1436 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1437 jobject con = opr2->as_constant_ptr()->as_jobject(); 1438 if (con == nullptr) { 1439 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1440 } else { 1441 jobject2reg(con, R0); 1442 __ cmpd(BOOL_RESULT, opr1->as_register(), R0); 1443 } 1444 } 1445 break; 1446 1447 case T_METADATA: 1448 // We only need, for now, comparison with null for metadata. 1449 { 1450 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1451 Metadata* p = opr2->as_constant_ptr()->as_metadata(); 1452 if (p == nullptr) { 1453 __ cmpdi(BOOL_RESULT, opr1->as_register(), 0); 1454 } else { 1455 ShouldNotReachHere(); 1456 } 1457 } 1458 break; 1459 1460 default: 1461 ShouldNotReachHere(); 1462 break; 1463 } 1464 } else { 1465 assert(opr1->type() != T_ADDRESS && opr2->type() != T_ADDRESS, "currently unsupported"); 1466 if (is_reference_type(opr1->type())) { 1467 // There are only equal/notequal comparisons on objects. 1468 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1469 __ cmpd(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1470 } else { 1471 if (unsigned_comp) { 1472 __ cmplw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1473 } else { 1474 __ cmpw(BOOL_RESULT, opr1->as_register(), opr2->as_register()); 1475 } 1476 } 1477 } 1478 } else if (opr1->is_double_cpu()) { 1479 if (opr2->is_constant()) { 1480 jlong con = opr2->as_constant_ptr()->as_jlong(); 1481 if (unsigned_comp) { 1482 if (Assembler::is_uimm(con, 16)) { 1483 __ cmpldi(BOOL_RESULT, opr1->as_register_lo(), con); 1484 } else { 1485 __ load_const_optimized(R0, con); 1486 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), R0); 1487 } 1488 } else { 1489 if (Assembler::is_simm(con, 16)) { 1490 __ cmpdi(BOOL_RESULT, opr1->as_register_lo(), con); 1491 } else { 1492 __ load_const_optimized(R0, con); 1493 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), R0); 1494 } 1495 } 1496 } else if (opr2->is_register()) { 1497 if (unsigned_comp) { 1498 __ cmpld(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1499 } else { 1500 __ cmpd(BOOL_RESULT, opr1->as_register_lo(), opr2->as_register_lo()); 1501 } 1502 } else { 1503 ShouldNotReachHere(); 1504 } 1505 } else { 1506 ShouldNotReachHere(); 1507 } 1508 } 1509 1510 1511 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){ 1512 const Register Rdst = dst->as_register(); 1513 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1514 bool is_unordered_less = (code == lir_ucmp_fd2i); 1515 if (left->is_single_fpu()) { 1516 __ fcmpu(CCR0, left->as_float_reg(), right->as_float_reg()); 1517 } else if (left->is_double_fpu()) { 1518 __ fcmpu(CCR0, left->as_double_reg(), right->as_double_reg()); 1519 } else { 1520 ShouldNotReachHere(); 1521 } 1522 __ set_cmpu3(Rdst, is_unordered_less); // is_unordered_less ? -1 : 1 1523 } else if (code == lir_cmp_l2i) { 1524 __ cmpd(CCR0, left->as_register_lo(), right->as_register_lo()); 1525 __ set_cmp3(Rdst); // set result as follows: <: -1, =: 0, >: 1 1526 } else { 1527 ShouldNotReachHere(); 1528 } 1529 } 1530 1531 1532 inline void load_to_reg(LIR_Assembler *lasm, LIR_Opr src, LIR_Opr dst) { 1533 if (src->is_constant()) { 1534 lasm->const2reg(src, dst, lir_patch_none, nullptr); 1535 } else if (src->is_register()) { 1536 lasm->reg2reg(src, dst); 1537 } else if (src->is_stack()) { 1538 lasm->stack2reg(src, dst, dst->type()); 1539 } else { 1540 ShouldNotReachHere(); 1541 } 1542 } 1543 1544 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1545 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1546 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on ppc"); 1547 1548 if (opr1->is_equal(opr2) || opr1->is_same_register(opr2)) { 1549 load_to_reg(this, opr1, result); // Condition doesn't matter. 1550 return; 1551 } 1552 1553 bool positive = false; 1554 Assembler::Condition cond = Assembler::equal; 1555 switch (condition) { 1556 case lir_cond_equal: positive = true ; cond = Assembler::equal ; break; 1557 case lir_cond_notEqual: positive = false; cond = Assembler::equal ; break; 1558 case lir_cond_less: positive = true ; cond = Assembler::less ; break; 1559 case lir_cond_belowEqual: 1560 case lir_cond_lessEqual: positive = false; cond = Assembler::greater; break; 1561 case lir_cond_greater: positive = true ; cond = Assembler::greater; break; 1562 case lir_cond_aboveEqual: 1563 case lir_cond_greaterEqual: positive = false; cond = Assembler::less ; break; 1564 default: ShouldNotReachHere(); 1565 } 1566 1567 // Try to use isel on >=Power7. 1568 if (VM_Version::has_isel() && result->is_cpu_register()) { 1569 bool o1_is_reg = opr1->is_cpu_register(), o2_is_reg = opr2->is_cpu_register(); 1570 const Register result_reg = result->is_single_cpu() ? result->as_register() : result->as_register_lo(); 1571 1572 // We can use result_reg to load one operand if not already in register. 1573 Register first = o1_is_reg ? (opr1->is_single_cpu() ? opr1->as_register() : opr1->as_register_lo()) : result_reg, 1574 second = o2_is_reg ? (opr2->is_single_cpu() ? opr2->as_register() : opr2->as_register_lo()) : result_reg; 1575 1576 if (first != second) { 1577 if (!o1_is_reg) { 1578 load_to_reg(this, opr1, result); 1579 } 1580 1581 if (!o2_is_reg) { 1582 load_to_reg(this, opr2, result); 1583 } 1584 1585 __ isel(result_reg, BOOL_RESULT, cond, !positive, first, second); 1586 return; 1587 } 1588 } // isel 1589 1590 load_to_reg(this, opr1, result); 1591 1592 Label skip; 1593 int bo = positive ? Assembler::bcondCRbiIs1 : Assembler::bcondCRbiIs0; 1594 int bi = Assembler::bi0(BOOL_RESULT, cond); 1595 __ bc(bo, bi, skip); 1596 1597 load_to_reg(this, opr2, result); 1598 __ bind(skip); 1599 } 1600 1601 1602 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1603 CodeEmitInfo* info, bool pop_fpu_stack) { 1604 assert(info == nullptr, "unused on this code path"); 1605 assert(left->is_register(), "wrong items state"); 1606 assert(dest->is_register(), "wrong items state"); 1607 1608 if (right->is_register()) { 1609 if (dest->is_float_kind()) { 1610 1611 FloatRegister lreg, rreg, res; 1612 if (right->is_single_fpu()) { 1613 lreg = left->as_float_reg(); 1614 rreg = right->as_float_reg(); 1615 res = dest->as_float_reg(); 1616 switch (code) { 1617 case lir_add: __ fadds(res, lreg, rreg); break; 1618 case lir_sub: __ fsubs(res, lreg, rreg); break; 1619 case lir_mul: __ fmuls(res, lreg, rreg); break; 1620 case lir_div: __ fdivs(res, lreg, rreg); break; 1621 default: ShouldNotReachHere(); 1622 } 1623 } else { 1624 lreg = left->as_double_reg(); 1625 rreg = right->as_double_reg(); 1626 res = dest->as_double_reg(); 1627 switch (code) { 1628 case lir_add: __ fadd(res, lreg, rreg); break; 1629 case lir_sub: __ fsub(res, lreg, rreg); break; 1630 case lir_mul: __ fmul(res, lreg, rreg); break; 1631 case lir_div: __ fdiv(res, lreg, rreg); break; 1632 default: ShouldNotReachHere(); 1633 } 1634 } 1635 1636 } else if (dest->is_double_cpu()) { 1637 1638 Register dst_lo = dest->as_register_lo(); 1639 Register op1_lo = left->as_pointer_register(); 1640 Register op2_lo = right->as_pointer_register(); 1641 1642 switch (code) { 1643 case lir_add: __ add(dst_lo, op1_lo, op2_lo); break; 1644 case lir_sub: __ sub(dst_lo, op1_lo, op2_lo); break; 1645 case lir_mul: __ mulld(dst_lo, op1_lo, op2_lo); break; 1646 default: ShouldNotReachHere(); 1647 } 1648 } else { 1649 assert (right->is_single_cpu(), "Just Checking"); 1650 1651 Register lreg = left->as_register(); 1652 Register res = dest->as_register(); 1653 Register rreg = right->as_register(); 1654 switch (code) { 1655 case lir_add: __ add (res, lreg, rreg); break; 1656 case lir_sub: __ sub (res, lreg, rreg); break; 1657 case lir_mul: __ mullw(res, lreg, rreg); break; 1658 default: ShouldNotReachHere(); 1659 } 1660 } 1661 } else { 1662 assert (right->is_constant(), "must be constant"); 1663 1664 if (dest->is_single_cpu()) { 1665 Register lreg = left->as_register(); 1666 Register res = dest->as_register(); 1667 int simm16 = right->as_constant_ptr()->as_jint(); 1668 1669 switch (code) { 1670 case lir_sub: assert(Assembler::is_simm16(-simm16), "cannot encode"); // see do_ArithmeticOp_Int 1671 simm16 = -simm16; 1672 case lir_add: if (res == lreg && simm16 == 0) break; 1673 __ addi(res, lreg, simm16); break; 1674 case lir_mul: if (res == lreg && simm16 == 1) break; 1675 __ mulli(res, lreg, simm16); break; 1676 default: ShouldNotReachHere(); 1677 } 1678 } else { 1679 Register lreg = left->as_pointer_register(); 1680 Register res = dest->as_register_lo(); 1681 long con = right->as_constant_ptr()->as_jlong(); 1682 assert(Assembler::is_simm16(con), "must be simm16"); 1683 1684 switch (code) { 1685 case lir_sub: assert(Assembler::is_simm16(-con), "cannot encode"); // see do_ArithmeticOp_Long 1686 con = -con; 1687 case lir_add: if (res == lreg && con == 0) break; 1688 __ addi(res, lreg, (int)con); break; 1689 case lir_mul: if (res == lreg && con == 1) break; 1690 __ mulli(res, lreg, (int)con); break; 1691 default: ShouldNotReachHere(); 1692 } 1693 } 1694 } 1695 } 1696 1697 1698 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1699 switch (code) { 1700 case lir_sqrt: { 1701 __ fsqrt(dest->as_double_reg(), value->as_double_reg()); 1702 break; 1703 } 1704 case lir_abs: { 1705 __ fabs(dest->as_double_reg(), value->as_double_reg()); 1706 break; 1707 } 1708 default: { 1709 ShouldNotReachHere(); 1710 break; 1711 } 1712 } 1713 } 1714 1715 1716 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) { 1717 if (right->is_constant()) { // see do_LogicOp 1718 long uimm; 1719 Register d, l; 1720 if (dest->is_single_cpu()) { 1721 uimm = right->as_constant_ptr()->as_jint(); 1722 d = dest->as_register(); 1723 l = left->as_register(); 1724 } else { 1725 uimm = right->as_constant_ptr()->as_jlong(); 1726 d = dest->as_register_lo(); 1727 l = left->as_register_lo(); 1728 } 1729 long uimms = (unsigned long)uimm >> 16, 1730 uimmss = (unsigned long)uimm >> 32; 1731 1732 switch (code) { 1733 case lir_logic_and: 1734 if (uimmss != 0 || (uimms != 0 && (uimm & 0xFFFF) != 0) || is_power_of_2(uimm)) { 1735 __ andi(d, l, uimm); // special cases 1736 } else if (uimms != 0) { __ andis_(d, l, uimms); } 1737 else { __ andi_(d, l, uimm); } 1738 break; 1739 1740 case lir_logic_or: 1741 if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ oris(d, l, uimms); } 1742 else { __ ori(d, l, uimm); } 1743 break; 1744 1745 case lir_logic_xor: 1746 if (uimm == -1) { __ nand(d, l, l); } // special case 1747 else if (uimms != 0) { assert((uimm & 0xFFFF) == 0, "sanity"); __ xoris(d, l, uimms); } 1748 else { __ xori(d, l, uimm); } 1749 break; 1750 1751 default: ShouldNotReachHere(); 1752 } 1753 } else { 1754 assert(right->is_register(), "right should be in register"); 1755 1756 if (dest->is_single_cpu()) { 1757 switch (code) { 1758 case lir_logic_and: __ andr(dest->as_register(), left->as_register(), right->as_register()); break; 1759 case lir_logic_or: __ orr (dest->as_register(), left->as_register(), right->as_register()); break; 1760 case lir_logic_xor: __ xorr(dest->as_register(), left->as_register(), right->as_register()); break; 1761 default: ShouldNotReachHere(); 1762 } 1763 } else { 1764 Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() : 1765 left->as_register_lo(); 1766 Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() : 1767 right->as_register_lo(); 1768 1769 switch (code) { 1770 case lir_logic_and: __ andr(dest->as_register_lo(), l, r); break; 1771 case lir_logic_or: __ orr (dest->as_register_lo(), l, r); break; 1772 case lir_logic_xor: __ xorr(dest->as_register_lo(), l, r); break; 1773 default: ShouldNotReachHere(); 1774 } 1775 } 1776 } 1777 } 1778 1779 1780 int LIR_Assembler::shift_amount(BasicType t) { 1781 int elem_size = type2aelembytes(t); 1782 switch (elem_size) { 1783 case 1 : return 0; 1784 case 2 : return 1; 1785 case 4 : return 2; 1786 case 8 : return 3; 1787 } 1788 ShouldNotReachHere(); 1789 return -1; 1790 } 1791 1792 1793 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1794 info->add_register_oop(exceptionOop); 1795 1796 // Reuse the debug info from the safepoint poll for the throw op itself. 1797 address pc_for_athrow = __ pc(); 1798 int pc_for_athrow_offset = __ offset(); 1799 //RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow); 1800 //__ relocate(rspec); 1801 //__ load_const(exceptionPC->as_register(), pc_for_athrow, R0); 1802 __ calculate_address_from_global_toc(exceptionPC->as_register(), pc_for_athrow, true, true, /*add_relocation*/ true); 1803 add_call_info(pc_for_athrow_offset, info); // for exception handler 1804 1805 address stub = Runtime1::entry_for(compilation()->has_fpu_code() ? Runtime1::handle_exception_id 1806 : Runtime1::handle_exception_nofpu_id); 1807 //__ load_const_optimized(R0, stub); 1808 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); 1809 __ mtctr(R0); 1810 __ bctr(); 1811 } 1812 1813 1814 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1815 // Note: Not used with EnableDebuggingOnDemand. 1816 assert(exceptionOop->as_register() == R3, "should match"); 1817 __ b(_unwind_handler_entry); 1818 } 1819 1820 1821 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1822 Register src = op->src()->as_register(); 1823 Register dst = op->dst()->as_register(); 1824 Register src_pos = op->src_pos()->as_register(); 1825 Register dst_pos = op->dst_pos()->as_register(); 1826 Register length = op->length()->as_register(); 1827 Register tmp = op->tmp()->as_register(); 1828 Register tmp2 = R0; 1829 1830 int flags = op->flags(); 1831 ciArrayKlass* default_type = op->expected_type(); 1832 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 1833 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1834 1835 // Set up the arraycopy stub information. 1836 ArrayCopyStub* stub = op->stub(); 1837 const int frame_resize = frame::native_abi_reg_args_size - sizeof(frame::java_abi); // C calls need larger frame. 1838 1839 // Always do stub if no type information is available. It's ok if 1840 // the known type isn't loaded since the code sanity checks 1841 // in debug mode and the type isn't required when we know the exact type 1842 // also check that the type is an array type. 1843 if (op->expected_type() == nullptr) { 1844 assert(src->is_nonvolatile() && src_pos->is_nonvolatile() && dst->is_nonvolatile() && dst_pos->is_nonvolatile() && 1845 length->is_nonvolatile(), "must preserve"); 1846 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1847 assert(copyfunc_addr != nullptr, "generic arraycopy stub required"); 1848 1849 // 3 parms are int. Convert to long. 1850 __ mr(R3_ARG1, src); 1851 __ extsw(R4_ARG2, src_pos); 1852 __ mr(R5_ARG3, dst); 1853 __ extsw(R6_ARG4, dst_pos); 1854 __ extsw(R7_ARG5, length); 1855 1856 #ifndef PRODUCT 1857 if (PrintC1Statistics) { 1858 address counter = (address)&Runtime1::_generic_arraycopystub_cnt; 1859 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 1860 __ lwz(R11_scratch1, simm16_offs, tmp); 1861 __ addi(R11_scratch1, R11_scratch1, 1); 1862 __ stw(R11_scratch1, simm16_offs, tmp); 1863 } 1864 #endif 1865 __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); 1866 1867 __ nand(tmp, R3_RET, R3_RET); 1868 __ subf(length, tmp, length); 1869 __ add(src_pos, tmp, src_pos); 1870 __ add(dst_pos, tmp, dst_pos); 1871 1872 __ cmpwi(CCR0, R3_RET, 0); 1873 __ bc_far_optimized(Assembler::bcondCRbiIs1, __ bi0(CCR0, Assembler::less), *stub->entry()); 1874 __ bind(*stub->continuation()); 1875 return; 1876 } 1877 1878 assert(default_type != nullptr && default_type->is_array_klass(), "must be true at this point"); 1879 Label cont, slow, copyfunc; 1880 1881 bool simple_check_flag_set = flags & (LIR_OpArrayCopy::src_null_check | 1882 LIR_OpArrayCopy::dst_null_check | 1883 LIR_OpArrayCopy::src_pos_positive_check | 1884 LIR_OpArrayCopy::dst_pos_positive_check | 1885 LIR_OpArrayCopy::length_positive_check); 1886 1887 // Use only one conditional branch for simple checks. 1888 if (simple_check_flag_set) { 1889 ConditionRegister combined_check = CCR1, tmp_check = CCR1; 1890 1891 // Make sure src and dst are non-null. 1892 if (flags & LIR_OpArrayCopy::src_null_check) { 1893 __ cmpdi(combined_check, src, 0); 1894 tmp_check = CCR0; 1895 } 1896 1897 if (flags & LIR_OpArrayCopy::dst_null_check) { 1898 __ cmpdi(tmp_check, dst, 0); 1899 if (tmp_check != combined_check) { 1900 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::equal); 1901 } 1902 tmp_check = CCR0; 1903 } 1904 1905 // Clear combined_check.eq if not already used. 1906 if (tmp_check == combined_check) { 1907 __ crandc(combined_check, Assembler::equal, combined_check, Assembler::equal); 1908 tmp_check = CCR0; 1909 } 1910 1911 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 1912 // Test src_pos register. 1913 __ cmpwi(tmp_check, src_pos, 0); 1914 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1915 } 1916 1917 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 1918 // Test dst_pos register. 1919 __ cmpwi(tmp_check, dst_pos, 0); 1920 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1921 } 1922 1923 if (flags & LIR_OpArrayCopy::length_positive_check) { 1924 // Make sure length isn't negative. 1925 __ cmpwi(tmp_check, length, 0); 1926 __ cror(combined_check, Assembler::equal, tmp_check, Assembler::less); 1927 } 1928 1929 __ beq(combined_check, slow); 1930 } 1931 1932 // If the compiler was not able to prove that exact type of the source or the destination 1933 // of the arraycopy is an array type, check at runtime if the source or the destination is 1934 // an instance type. 1935 if (flags & LIR_OpArrayCopy::type_check) { 1936 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 1937 __ load_klass(tmp, dst); 1938 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1939 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1940 __ bge(CCR0, slow); 1941 } 1942 1943 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 1944 __ load_klass(tmp, src); 1945 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 1946 __ cmpwi(CCR0, tmp2, Klass::_lh_neutral_value); 1947 __ bge(CCR0, slow); 1948 } 1949 } 1950 1951 // Higher 32bits must be null. 1952 __ extsw(length, length); 1953 1954 __ extsw(src_pos, src_pos); 1955 if (flags & LIR_OpArrayCopy::src_range_check) { 1956 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), src); 1957 __ add(tmp, length, src_pos); 1958 __ cmpld(CCR0, tmp2, tmp); 1959 __ ble(CCR0, slow); 1960 } 1961 1962 __ extsw(dst_pos, dst_pos); 1963 if (flags & LIR_OpArrayCopy::dst_range_check) { 1964 __ lwz(tmp2, arrayOopDesc::length_offset_in_bytes(), dst); 1965 __ add(tmp, length, dst_pos); 1966 __ cmpld(CCR0, tmp2, tmp); 1967 __ ble(CCR0, slow); 1968 } 1969 1970 int shift = shift_amount(basic_type); 1971 1972 if (!(flags & LIR_OpArrayCopy::type_check)) { 1973 __ b(cont); 1974 } else { 1975 // We don't know the array types are compatible. 1976 if (basic_type != T_OBJECT) { 1977 // Simple test for basic type arrays. 1978 if (UseCompressedClassPointers) { 1979 // We don't need decode because we just need to compare. 1980 __ lwz(tmp, oopDesc::klass_offset_in_bytes(), src); 1981 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1982 __ cmpw(CCR0, tmp, tmp2); 1983 } else { 1984 __ ld(tmp, oopDesc::klass_offset_in_bytes(), src); 1985 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 1986 __ cmpd(CCR0, tmp, tmp2); 1987 } 1988 __ beq(CCR0, cont); 1989 } else { 1990 // For object arrays, if src is a sub class of dst then we can 1991 // safely do the copy. 1992 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 1993 1994 const Register sub_klass = R5, super_klass = R4; // like CheckCast/InstanceOf 1995 assert_different_registers(tmp, tmp2, sub_klass, super_klass); 1996 1997 __ load_klass(sub_klass, src); 1998 __ load_klass(super_klass, dst); 1999 2000 __ check_klass_subtype_fast_path(sub_klass, super_klass, tmp, tmp2, 2001 &cont, copyfunc_addr != nullptr ? ©func : &slow, nullptr); 2002 2003 address slow_stc = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2004 //__ load_const_optimized(tmp, slow_stc, tmp2); 2005 __ calculate_address_from_global_toc(tmp, slow_stc, true, true, false); 2006 __ mtctr(tmp); 2007 __ bctrl(); // sets CR0 2008 __ beq(CCR0, cont); 2009 2010 if (copyfunc_addr != nullptr) { // Use stub if available. 2011 __ bind(copyfunc); 2012 // Src is not a sub class of dst so we have to do a 2013 // per-element check. 2014 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2015 if ((flags & mask) != mask) { 2016 assert(flags & mask, "one of the two should be known to be an object array"); 2017 2018 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2019 __ load_klass(tmp, src); 2020 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2021 __ load_klass(tmp, dst); 2022 } 2023 2024 __ lwz(tmp2, in_bytes(Klass::layout_helper_offset()), tmp); 2025 2026 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2027 __ load_const_optimized(tmp, objArray_lh); 2028 __ cmpw(CCR0, tmp, tmp2); 2029 __ bne(CCR0, slow); 2030 } 2031 2032 Register src_ptr = R3_ARG1; 2033 Register dst_ptr = R4_ARG2; 2034 Register len = R5_ARG3; 2035 Register chk_off = R6_ARG4; 2036 Register super_k = R7_ARG5; 2037 2038 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2039 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2040 if (shift == 0) { 2041 __ add(src_ptr, src_pos, src_ptr); 2042 __ add(dst_ptr, dst_pos, dst_ptr); 2043 } else { 2044 __ sldi(tmp, src_pos, shift); 2045 __ sldi(tmp2, dst_pos, shift); 2046 __ add(src_ptr, tmp, src_ptr); 2047 __ add(dst_ptr, tmp2, dst_ptr); 2048 } 2049 2050 __ load_klass(tmp, dst); 2051 __ mr(len, length); 2052 2053 int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset()); 2054 __ ld(super_k, ek_offset, tmp); 2055 2056 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 2057 __ lwz(chk_off, sco_offset, super_k); 2058 2059 __ call_c_with_frame_resize(copyfunc_addr, /*stub does not need resized frame*/ 0); 2060 2061 #ifndef PRODUCT 2062 if (PrintC1Statistics) { 2063 Label failed; 2064 __ cmpwi(CCR0, R3_RET, 0); 2065 __ bne(CCR0, failed); 2066 address counter = (address)&Runtime1::_arraycopy_checkcast_cnt; 2067 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2068 __ lwz(R11_scratch1, simm16_offs, tmp); 2069 __ addi(R11_scratch1, R11_scratch1, 1); 2070 __ stw(R11_scratch1, simm16_offs, tmp); 2071 __ bind(failed); 2072 } 2073 #endif 2074 2075 __ nand(tmp, R3_RET, R3_RET); 2076 __ cmpwi(CCR0, R3_RET, 0); 2077 __ beq(CCR0, *stub->continuation()); 2078 2079 #ifndef PRODUCT 2080 if (PrintC1Statistics) { 2081 address counter = (address)&Runtime1::_arraycopy_checkcast_attempt_cnt; 2082 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2083 __ lwz(R11_scratch1, simm16_offs, tmp); 2084 __ addi(R11_scratch1, R11_scratch1, 1); 2085 __ stw(R11_scratch1, simm16_offs, tmp); 2086 } 2087 #endif 2088 2089 __ subf(length, tmp, length); 2090 __ add(src_pos, tmp, src_pos); 2091 __ add(dst_pos, tmp, dst_pos); 2092 } 2093 } 2094 } 2095 __ bind(slow); 2096 __ b(*stub->entry()); 2097 __ bind(cont); 2098 2099 #ifdef ASSERT 2100 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2101 // Sanity check the known type with the incoming class. For the 2102 // primitive case the types must match exactly with src.klass and 2103 // dst.klass each exactly matching the default type. For the 2104 // object array case, if no type check is needed then either the 2105 // dst type is exactly the expected type and the src type is a 2106 // subtype which we can't check or src is the same array as dst 2107 // but not necessarily exactly of type default_type. 2108 Label known_ok, halt; 2109 metadata2reg(op->expected_type()->constant_encoding(), tmp); 2110 if (UseCompressedClassPointers) { 2111 // Tmp holds the default type. It currently comes uncompressed after the 2112 // load of a constant, so encode it. 2113 __ encode_klass_not_null(tmp); 2114 // Load the raw value of the dst klass, since we will be comparing 2115 // uncompressed values directly. 2116 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2117 __ cmpw(CCR0, tmp, tmp2); 2118 if (basic_type != T_OBJECT) { 2119 __ bne(CCR0, halt); 2120 // Load the raw value of the src klass. 2121 __ lwz(tmp2, oopDesc::klass_offset_in_bytes(), src); 2122 __ cmpw(CCR0, tmp, tmp2); 2123 __ beq(CCR0, known_ok); 2124 } else { 2125 __ beq(CCR0, known_ok); 2126 __ cmpw(CCR0, src, dst); 2127 __ beq(CCR0, known_ok); 2128 } 2129 } else { 2130 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), dst); 2131 __ cmpd(CCR0, tmp, tmp2); 2132 if (basic_type != T_OBJECT) { 2133 __ bne(CCR0, halt); 2134 // Load the raw value of the src klass. 2135 __ ld(tmp2, oopDesc::klass_offset_in_bytes(), src); 2136 __ cmpd(CCR0, tmp, tmp2); 2137 __ beq(CCR0, known_ok); 2138 } else { 2139 __ beq(CCR0, known_ok); 2140 __ cmpd(CCR0, src, dst); 2141 __ beq(CCR0, known_ok); 2142 } 2143 } 2144 __ bind(halt); 2145 __ stop("incorrect type information in arraycopy"); 2146 __ bind(known_ok); 2147 } 2148 #endif 2149 2150 #ifndef PRODUCT 2151 if (PrintC1Statistics) { 2152 address counter = Runtime1::arraycopy_count_address(basic_type); 2153 int simm16_offs = __ load_const_optimized(tmp, counter, tmp2, true); 2154 __ lwz(R11_scratch1, simm16_offs, tmp); 2155 __ addi(R11_scratch1, R11_scratch1, 1); 2156 __ stw(R11_scratch1, simm16_offs, tmp); 2157 } 2158 #endif 2159 2160 Register src_ptr = R3_ARG1; 2161 Register dst_ptr = R4_ARG2; 2162 Register len = R5_ARG3; 2163 2164 __ addi(src_ptr, src, arrayOopDesc::base_offset_in_bytes(basic_type)); 2165 __ addi(dst_ptr, dst, arrayOopDesc::base_offset_in_bytes(basic_type)); 2166 if (shift == 0) { 2167 __ add(src_ptr, src_pos, src_ptr); 2168 __ add(dst_ptr, dst_pos, dst_ptr); 2169 } else { 2170 __ sldi(tmp, src_pos, shift); 2171 __ sldi(tmp2, dst_pos, shift); 2172 __ add(src_ptr, tmp, src_ptr); 2173 __ add(dst_ptr, tmp2, dst_ptr); 2174 } 2175 2176 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2177 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2178 const char *name; 2179 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2180 2181 // Arraycopy stubs takes a length in number of elements, so don't scale it. 2182 __ mr(len, length); 2183 __ call_c_with_frame_resize(entry, /*stub does not need resized frame*/ 0); 2184 2185 __ bind(*stub->continuation()); 2186 } 2187 2188 2189 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2190 if (dest->is_single_cpu()) { 2191 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-5); 2192 #ifdef _LP64 2193 if (left->type() == T_OBJECT) { 2194 switch (code) { 2195 case lir_shl: __ sld(dest->as_register(), left->as_register(), tmp->as_register()); break; 2196 case lir_shr: __ srad(dest->as_register(), left->as_register(), tmp->as_register()); break; 2197 case lir_ushr: __ srd(dest->as_register(), left->as_register(), tmp->as_register()); break; 2198 default: ShouldNotReachHere(); 2199 } 2200 } else 2201 #endif 2202 switch (code) { 2203 case lir_shl: __ slw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2204 case lir_shr: __ sraw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2205 case lir_ushr: __ srw(dest->as_register(), left->as_register(), tmp->as_register()); break; 2206 default: ShouldNotReachHere(); 2207 } 2208 } else { 2209 __ rldicl(tmp->as_register(), count->as_register(), 0, 64-6); 2210 switch (code) { 2211 case lir_shl: __ sld(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2212 case lir_shr: __ srad(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2213 case lir_ushr: __ srd(dest->as_register_lo(), left->as_register_lo(), tmp->as_register()); break; 2214 default: ShouldNotReachHere(); 2215 } 2216 } 2217 } 2218 2219 2220 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2221 #ifdef _LP64 2222 if (left->type() == T_OBJECT) { 2223 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2224 if (count == 0) { __ mr_if_needed(dest->as_register_lo(), left->as_register()); } 2225 else { 2226 switch (code) { 2227 case lir_shl: __ sldi(dest->as_register_lo(), left->as_register(), count); break; 2228 case lir_shr: __ sradi(dest->as_register_lo(), left->as_register(), count); break; 2229 case lir_ushr: __ srdi(dest->as_register_lo(), left->as_register(), count); break; 2230 default: ShouldNotReachHere(); 2231 } 2232 } 2233 return; 2234 } 2235 #endif 2236 2237 if (dest->is_single_cpu()) { 2238 count = count & 0x1F; // Java spec 2239 if (count == 0) { __ mr_if_needed(dest->as_register(), left->as_register()); } 2240 else { 2241 switch (code) { 2242 case lir_shl: __ slwi(dest->as_register(), left->as_register(), count); break; 2243 case lir_shr: __ srawi(dest->as_register(), left->as_register(), count); break; 2244 case lir_ushr: __ srwi(dest->as_register(), left->as_register(), count); break; 2245 default: ShouldNotReachHere(); 2246 } 2247 } 2248 } else if (dest->is_double_cpu()) { 2249 count = count & 63; // Java spec 2250 if (count == 0) { __ mr_if_needed(dest->as_pointer_register(), left->as_pointer_register()); } 2251 else { 2252 switch (code) { 2253 case lir_shl: __ sldi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2254 case lir_shr: __ sradi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2255 case lir_ushr: __ srdi(dest->as_pointer_register(), left->as_pointer_register(), count); break; 2256 default: ShouldNotReachHere(); 2257 } 2258 } 2259 } else { 2260 ShouldNotReachHere(); 2261 } 2262 } 2263 2264 2265 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2266 if (op->init_check()) { 2267 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2268 explicit_null_check(op->klass()->as_register(), op->stub()->info()); 2269 } else { 2270 add_debug_info_for_null_check_here(op->stub()->info()); 2271 } 2272 __ lbz(op->tmp1()->as_register(), 2273 in_bytes(InstanceKlass::init_state_offset()), op->klass()->as_register()); 2274 __ cmpwi(CCR0, op->tmp1()->as_register(), InstanceKlass::fully_initialized); 2275 __ bc_far_optimized(Assembler::bcondCRbiIs0, __ bi0(CCR0, Assembler::equal), *op->stub()->entry()); 2276 } 2277 __ allocate_object(op->obj()->as_register(), 2278 op->tmp1()->as_register(), 2279 op->tmp2()->as_register(), 2280 op->tmp3()->as_register(), 2281 op->header_size(), 2282 op->object_size(), 2283 op->klass()->as_register(), 2284 *op->stub()->entry()); 2285 2286 __ bind(*op->stub()->continuation()); 2287 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2288 } 2289 2290 2291 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2292 LP64_ONLY( __ extsw(op->len()->as_register(), op->len()->as_register()); ) 2293 if (UseSlowPath || 2294 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2295 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2296 __ b(*op->stub()->entry()); 2297 } else { 2298 __ allocate_array(op->obj()->as_register(), 2299 op->len()->as_register(), 2300 op->tmp1()->as_register(), 2301 op->tmp2()->as_register(), 2302 op->tmp3()->as_register(), 2303 arrayOopDesc::base_offset_in_bytes(op->type()), 2304 type2aelembytes(op->type()), 2305 op->klass()->as_register(), 2306 *op->stub()->entry()); 2307 } 2308 __ bind(*op->stub()->continuation()); 2309 } 2310 2311 2312 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias, 2313 ciMethodData *md, ciProfileData *data, 2314 Register recv, Register tmp1, Label* update_done) { 2315 uint i; 2316 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2317 Label next_test; 2318 // See if the receiver is receiver[n]. 2319 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2320 __ verify_klass_ptr(tmp1); 2321 __ cmpd(CCR0, recv, tmp1); 2322 __ bne(CCR0, next_test); 2323 2324 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2325 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2326 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2327 __ b(*update_done); 2328 2329 __ bind(next_test); 2330 } 2331 2332 // Didn't find receiver; find next empty slot and fill it in. 2333 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2334 Label next_test; 2335 __ ld(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2336 __ cmpdi(CCR0, tmp1, 0); 2337 __ bne(CCR0, next_test); 2338 __ li(tmp1, DataLayout::counter_increment); 2339 __ std(recv, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) - mdo_offset_bias, mdo); 2340 __ std(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2341 __ b(*update_done); 2342 2343 __ bind(next_test); 2344 } 2345 } 2346 2347 2348 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2349 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2350 md = method->method_data_or_null(); 2351 assert(md != nullptr, "Sanity"); 2352 data = md->bci_to_data(bci); 2353 assert(data != nullptr, "need data for checkcast"); 2354 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2355 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) { 2356 // The offset is large so bias the mdo by the base of the slot so 2357 // that the ld can use simm16s to reference the slots of the data. 2358 mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset()); 2359 } 2360 } 2361 2362 2363 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2364 const Register obj = op->object()->as_register(); // Needs to live in this register at safepoint (patching stub). 2365 Register k_RInfo = op->tmp1()->as_register(); 2366 Register klass_RInfo = op->tmp2()->as_register(); 2367 Register Rtmp1 = op->tmp3()->as_register(); 2368 Register dst = op->result_opr()->as_register(); 2369 ciKlass* k = op->klass(); 2370 bool should_profile = op->should_profile(); 2371 // Attention: do_temp(opTypeCheck->_object) is not used, i.e. obj may be same as one of the temps. 2372 bool reg_conflict = false; 2373 if (obj == k_RInfo) { 2374 k_RInfo = dst; 2375 reg_conflict = true; 2376 } else if (obj == klass_RInfo) { 2377 klass_RInfo = dst; 2378 reg_conflict = true; 2379 } else if (obj == Rtmp1) { 2380 Rtmp1 = dst; 2381 reg_conflict = true; 2382 } 2383 assert_different_registers(obj, k_RInfo, klass_RInfo, Rtmp1); 2384 2385 __ cmpdi(CCR0, obj, 0); 2386 2387 ciMethodData* md = nullptr; 2388 ciProfileData* data = nullptr; 2389 int mdo_offset_bias = 0; 2390 if (should_profile) { 2391 ciMethod* method = op->profiled_method(); 2392 assert(method != nullptr, "Should have method"); 2393 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2394 2395 Register mdo = k_RInfo; 2396 Register data_val = Rtmp1; 2397 Label not_null; 2398 __ bne(CCR0, not_null); 2399 metadata2reg(md->constant_encoding(), mdo); 2400 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2401 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2402 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2403 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2404 __ b(*obj_is_null); 2405 __ bind(not_null); 2406 } else { 2407 __ beq(CCR0, *obj_is_null); 2408 } 2409 2410 // get object class 2411 __ load_klass(klass_RInfo, obj); 2412 2413 if (k->is_loaded()) { 2414 metadata2reg(k->constant_encoding(), k_RInfo); 2415 } else { 2416 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2417 } 2418 2419 Label profile_cast_failure, failure_restore_obj, profile_cast_success; 2420 Label *failure_target = should_profile ? &profile_cast_failure : failure; 2421 Label *success_target = should_profile ? &profile_cast_success : success; 2422 2423 if (op->fast_check()) { 2424 assert_different_registers(klass_RInfo, k_RInfo); 2425 __ cmpd(CCR0, k_RInfo, klass_RInfo); 2426 if (should_profile) { 2427 __ bne(CCR0, *failure_target); 2428 // Fall through to success case. 2429 } else { 2430 __ beq(CCR0, *success); 2431 // Fall through to failure case. 2432 } 2433 } else { 2434 bool need_slow_path = true; 2435 if (k->is_loaded()) { 2436 if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset())) { 2437 need_slow_path = false; 2438 } 2439 // Perform the fast part of the checking logic. 2440 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, (need_slow_path ? success_target : nullptr), 2441 failure_target, nullptr, RegisterOrConstant(k->super_check_offset())); 2442 } else { 2443 // Perform the fast part of the checking logic. 2444 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, failure_target); 2445 } 2446 if (!need_slow_path) { 2447 if (!should_profile) { __ b(*success); } 2448 } else { 2449 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2450 address entry = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2451 // Stub needs fixed registers (tmp1-3). 2452 Register original_k_RInfo = op->tmp1()->as_register(); 2453 Register original_klass_RInfo = op->tmp2()->as_register(); 2454 Register original_Rtmp1 = op->tmp3()->as_register(); 2455 bool keep_obj_alive = reg_conflict && (op->code() == lir_checkcast); 2456 bool keep_klass_RInfo_alive = (obj == original_klass_RInfo) && should_profile; 2457 if (keep_obj_alive && (obj != original_Rtmp1)) { __ mr(R0, obj); } 2458 __ mr_if_needed(original_k_RInfo, k_RInfo); 2459 __ mr_if_needed(original_klass_RInfo, klass_RInfo); 2460 if (keep_obj_alive) { __ mr(dst, (obj == original_Rtmp1) ? obj : R0); } 2461 //__ load_const_optimized(original_Rtmp1, entry, R0); 2462 __ calculate_address_from_global_toc(original_Rtmp1, entry, true, true, false); 2463 __ mtctr(original_Rtmp1); 2464 __ bctrl(); // sets CR0 2465 if (keep_obj_alive) { 2466 if (keep_klass_RInfo_alive) { __ mr(R0, obj); } 2467 __ mr(obj, dst); 2468 } 2469 if (should_profile) { 2470 __ bne(CCR0, *failure_target); 2471 if (keep_klass_RInfo_alive) { __ mr(klass_RInfo, keep_obj_alive ? R0 : obj); } 2472 // Fall through to success case. 2473 } else { 2474 __ beq(CCR0, *success); 2475 // Fall through to failure case. 2476 } 2477 } 2478 } 2479 2480 if (should_profile) { 2481 Register mdo = k_RInfo, recv = klass_RInfo; 2482 assert_different_registers(mdo, recv, Rtmp1); 2483 __ bind(profile_cast_success); 2484 metadata2reg(md->constant_encoding(), mdo); 2485 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2486 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, Rtmp1, success); 2487 __ b(*success); 2488 2489 // Cast failure case. 2490 __ bind(profile_cast_failure); 2491 metadata2reg(md->constant_encoding(), mdo); 2492 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2493 __ ld(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2494 __ addi(Rtmp1, Rtmp1, -DataLayout::counter_increment); 2495 __ std(Rtmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2496 } 2497 2498 __ bind(*failure); 2499 } 2500 2501 2502 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2503 LIR_Code code = op->code(); 2504 if (code == lir_store_check) { 2505 Register value = op->object()->as_register(); 2506 Register array = op->array()->as_register(); 2507 Register k_RInfo = op->tmp1()->as_register(); 2508 Register klass_RInfo = op->tmp2()->as_register(); 2509 Register Rtmp1 = op->tmp3()->as_register(); 2510 bool should_profile = op->should_profile(); 2511 2512 __ verify_oop(value, FILE_AND_LINE); 2513 CodeStub* stub = op->stub(); 2514 // Check if it needs to be profiled. 2515 ciMethodData* md = nullptr; 2516 ciProfileData* data = nullptr; 2517 int mdo_offset_bias = 0; 2518 if (should_profile) { 2519 ciMethod* method = op->profiled_method(); 2520 assert(method != nullptr, "Should have method"); 2521 setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias); 2522 } 2523 Label profile_cast_success, failure, done; 2524 Label *success_target = should_profile ? &profile_cast_success : &done; 2525 2526 __ cmpdi(CCR0, value, 0); 2527 if (should_profile) { 2528 Label not_null; 2529 __ bne(CCR0, not_null); 2530 Register mdo = k_RInfo; 2531 Register data_val = Rtmp1; 2532 metadata2reg(md->constant_encoding(), mdo); 2533 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2534 __ lbz(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2535 __ ori(data_val, data_val, BitData::null_seen_byte_constant()); 2536 __ stb(data_val, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias, mdo); 2537 __ b(done); 2538 __ bind(not_null); 2539 } else { 2540 __ beq(CCR0, done); 2541 } 2542 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2543 explicit_null_check(array, op->info_for_exception()); 2544 } else { 2545 add_debug_info_for_null_check_here(op->info_for_exception()); 2546 } 2547 __ load_klass(k_RInfo, array); 2548 __ load_klass(klass_RInfo, value); 2549 2550 // Get instance klass. 2551 __ ld(k_RInfo, in_bytes(ObjArrayKlass::element_klass_offset()), k_RInfo); 2552 // Perform the fast part of the checking logic. 2553 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, R0, success_target, &failure, nullptr); 2554 2555 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2556 const address slow_path = Runtime1::entry_for(Runtime1::slow_subtype_check_id); 2557 //__ load_const_optimized(R0, slow_path); 2558 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(slow_path)); 2559 __ mtctr(R0); 2560 __ bctrl(); // sets CR0 2561 if (!should_profile) { 2562 __ beq(CCR0, done); 2563 __ bind(failure); 2564 } else { 2565 __ bne(CCR0, failure); 2566 // Fall through to the success case. 2567 2568 Register mdo = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1; 2569 assert_different_registers(value, mdo, recv, tmp1); 2570 __ bind(profile_cast_success); 2571 metadata2reg(md->constant_encoding(), mdo); 2572 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2573 __ load_klass(recv, value); 2574 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done); 2575 __ b(done); 2576 2577 // Cast failure case. 2578 __ bind(failure); 2579 metadata2reg(md->constant_encoding(), mdo); 2580 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2581 Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias); 2582 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2583 __ addi(tmp1, tmp1, -DataLayout::counter_increment); 2584 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2585 } 2586 __ b(*stub->entry()); 2587 __ bind(done); 2588 2589 } else if (code == lir_checkcast) { 2590 Label success, failure; 2591 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &success); 2592 __ b(*op->stub()->entry()); 2593 __ align(32, 12); 2594 __ bind(success); 2595 __ mr_if_needed(op->result_opr()->as_register(), op->object()->as_register()); 2596 } else if (code == lir_instanceof) { 2597 Register dst = op->result_opr()->as_register(); 2598 Label success, failure, done; 2599 emit_typecheck_helper(op, &success, /*fallthru*/&failure, &failure); 2600 __ li(dst, 0); 2601 __ b(done); 2602 __ align(32, 12); 2603 __ bind(success); 2604 __ li(dst, 1); 2605 __ bind(done); 2606 } else { 2607 ShouldNotReachHere(); 2608 } 2609 } 2610 2611 2612 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2613 Register addr = op->addr()->as_pointer_register(); 2614 Register cmp_value = noreg, new_value = noreg; 2615 bool is_64bit = false; 2616 2617 if (op->code() == lir_cas_long) { 2618 cmp_value = op->cmp_value()->as_register_lo(); 2619 new_value = op->new_value()->as_register_lo(); 2620 is_64bit = true; 2621 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2622 cmp_value = op->cmp_value()->as_register(); 2623 new_value = op->new_value()->as_register(); 2624 if (op->code() == lir_cas_obj) { 2625 if (UseCompressedOops) { 2626 Register t1 = op->tmp1()->as_register(); 2627 Register t2 = op->tmp2()->as_register(); 2628 cmp_value = __ encode_heap_oop(t1, cmp_value); 2629 new_value = __ encode_heap_oop(t2, new_value); 2630 } else { 2631 is_64bit = true; 2632 } 2633 } 2634 } else { 2635 Unimplemented(); 2636 } 2637 2638 // There might be a volatile load before this Unsafe CAS. 2639 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2640 __ sync(); 2641 } else { 2642 __ lwsync(); 2643 } 2644 2645 if (is_64bit) { 2646 __ cmpxchgd(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2647 MacroAssembler::MemBarNone, 2648 MacroAssembler::cmpxchgx_hint_atomic_update(), 2649 noreg, nullptr, /*check without ldarx first*/true); 2650 } else { 2651 __ cmpxchgw(BOOL_RESULT, /*current_value=*/R0, cmp_value, new_value, addr, 2652 MacroAssembler::MemBarNone, 2653 MacroAssembler::cmpxchgx_hint_atomic_update(), 2654 noreg, /*check without ldarx first*/true); 2655 } 2656 2657 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 2658 __ isync(); 2659 } else { 2660 __ sync(); 2661 } 2662 } 2663 2664 void LIR_Assembler::breakpoint() { 2665 __ illtrap(); 2666 } 2667 2668 2669 void LIR_Assembler::push(LIR_Opr opr) { 2670 Unimplemented(); 2671 } 2672 2673 void LIR_Assembler::pop(LIR_Opr opr) { 2674 Unimplemented(); 2675 } 2676 2677 2678 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2679 Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no); 2680 Register dst = dst_opr->as_register(); 2681 Register reg = mon_addr.base(); 2682 int offset = mon_addr.disp(); 2683 // Compute pointer to BasicLock. 2684 __ add_const_optimized(dst, reg, offset); 2685 } 2686 2687 2688 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2689 Register obj = op->obj_opr()->as_register(); 2690 Register hdr = op->hdr_opr()->as_register(); 2691 Register lock = op->lock_opr()->as_register(); 2692 2693 // Obj may not be an oop. 2694 if (op->code() == lir_lock) { 2695 MonitorEnterStub* stub = (MonitorEnterStub*)op->stub(); 2696 if (LockingMode != LM_MONITOR) { 2697 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2698 // Add debug info for NullPointerException only if one is possible. 2699 if (op->info() != nullptr) { 2700 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2701 explicit_null_check(obj, op->info()); 2702 } else { 2703 add_debug_info_for_null_check_here(op->info()); 2704 } 2705 } 2706 __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry()); 2707 } else { 2708 // always do slow locking 2709 // note: The slow locking code could be inlined here, however if we use 2710 // slow locking, speed doesn't matter anyway and this solution is 2711 // simpler and requires less duplicated code - additionally, the 2712 // slow locking code is the same in either case which simplifies 2713 // debugging. 2714 if (op->info() != nullptr) { 2715 add_debug_info_for_null_check_here(op->info()); 2716 __ null_check(obj); 2717 } 2718 __ b(*op->stub()->entry()); 2719 } 2720 } else { 2721 assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock"); 2722 if (LockingMode != LM_MONITOR) { 2723 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2724 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2725 } else { 2726 // always do slow unlocking 2727 // note: The slow unlocking code could be inlined here, however if we use 2728 // slow unlocking, speed doesn't matter anyway and this solution is 2729 // simpler and requires less duplicated code - additionally, the 2730 // slow unlocking code is the same in either case which simplifies 2731 // debugging. 2732 __ b(*op->stub()->entry()); 2733 } 2734 } 2735 __ bind(*op->stub()->continuation()); 2736 } 2737 2738 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2739 Register obj = op->obj()->as_pointer_register(); 2740 Register result = op->result_opr()->as_pointer_register(); 2741 2742 CodeEmitInfo* info = op->info(); 2743 if (info != nullptr) { 2744 if (!os::zero_page_read_protected() || !ImplicitNullChecks) { 2745 explicit_null_check(obj, info); 2746 } else { 2747 add_debug_info_for_null_check_here(info); 2748 } 2749 } 2750 2751 if (UseCompressedClassPointers) { 2752 __ lwz(result, oopDesc::klass_offset_in_bytes(), obj); 2753 __ decode_klass_not_null(result); 2754 } else { 2755 __ ld(result, oopDesc::klass_offset_in_bytes(), obj); 2756 } 2757 } 2758 2759 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2760 ciMethod* method = op->profiled_method(); 2761 int bci = op->profiled_bci(); 2762 ciMethod* callee = op->profiled_callee(); 2763 2764 // Update counter for all call types. 2765 ciMethodData* md = method->method_data_or_null(); 2766 assert(md != nullptr, "Sanity"); 2767 ciProfileData* data = md->bci_to_data(bci); 2768 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2769 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2770 Register mdo = op->mdo()->as_register(); 2771 #ifdef _LP64 2772 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2773 Register tmp1 = op->tmp1()->as_register_lo(); 2774 #else 2775 assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated"); 2776 Register tmp1 = op->tmp1()->as_register(); 2777 #endif 2778 metadata2reg(md->constant_encoding(), mdo); 2779 int mdo_offset_bias = 0; 2780 if (!Assembler::is_simm16(md->byte_offset_of_slot(data, CounterData::count_offset()) + 2781 data->size_in_bytes())) { 2782 // The offset is large so bias the mdo by the base of the slot so 2783 // that the ld can use simm16s to reference the slots of the data. 2784 mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset()); 2785 __ add_const_optimized(mdo, mdo, mdo_offset_bias, R0); 2786 } 2787 2788 // Perform additional virtual call profiling for invokevirtual and 2789 // invokeinterface bytecodes 2790 if (op->should_profile_receiver_type()) { 2791 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2792 Register recv = op->recv()->as_register(); 2793 assert_different_registers(mdo, tmp1, recv); 2794 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2795 ciKlass* known_klass = op->known_holder(); 2796 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2797 // We know the type that will be seen at this call site; we can 2798 // statically update the MethodData* rather than needing to do 2799 // dynamic tests on the receiver type. 2800 2801 // NOTE: we should probably put a lock around this search to 2802 // avoid collisions by concurrent compilations. 2803 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2804 uint i; 2805 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2806 ciKlass* receiver = vc_data->receiver(i); 2807 if (known_klass->equals(receiver)) { 2808 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2809 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2810 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2811 return; 2812 } 2813 } 2814 2815 // Receiver type not found in profile data; select an empty slot. 2816 2817 // Note that this is less efficient than it should be because it 2818 // always does a write to the receiver part of the 2819 // VirtualCallData rather than just the first time. 2820 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2821 ciKlass* receiver = vc_data->receiver(i); 2822 if (receiver == nullptr) { 2823 metadata2reg(known_klass->constant_encoding(), tmp1); 2824 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) - mdo_offset_bias, mdo); 2825 2826 __ ld(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2827 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2828 __ std(tmp1, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) - mdo_offset_bias, mdo); 2829 return; 2830 } 2831 } 2832 } else { 2833 __ load_klass(recv, recv); 2834 Label update_done; 2835 type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done); 2836 // Receiver did not match any saved receiver and there is no empty row for it. 2837 // Increment total counter to indicate polymorphic case. 2838 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2839 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2840 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2841 2842 __ bind(update_done); 2843 } 2844 } else { 2845 // Static call 2846 __ ld(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2847 __ addi(tmp1, tmp1, DataLayout::counter_increment); 2848 __ std(tmp1, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias, mdo); 2849 } 2850 } 2851 2852 2853 void LIR_Assembler::align_backward_branch_target() { 2854 __ align(32, 12); // Insert up to 3 nops to align with 32 byte boundary. 2855 } 2856 2857 2858 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2859 Unimplemented(); 2860 } 2861 2862 2863 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2864 // tmp must be unused 2865 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2866 assert(left->is_register(), "can only handle registers"); 2867 2868 if (left->is_single_cpu()) { 2869 __ neg(dest->as_register(), left->as_register()); 2870 } else if (left->is_single_fpu()) { 2871 __ fneg(dest->as_float_reg(), left->as_float_reg()); 2872 } else if (left->is_double_fpu()) { 2873 __ fneg(dest->as_double_reg(), left->as_double_reg()); 2874 } else { 2875 assert (left->is_double_cpu(), "Must be a long"); 2876 __ neg(dest->as_register_lo(), left->as_register_lo()); 2877 } 2878 } 2879 2880 2881 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2882 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2883 // Stubs: Called via rt_call, but dest is a stub address (no function descriptor). 2884 if (dest == Runtime1::entry_for(Runtime1::register_finalizer_id) || 2885 dest == Runtime1::entry_for(Runtime1::new_multi_array_id )) { 2886 //__ load_const_optimized(R0, dest); 2887 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(dest)); 2888 __ mtctr(R0); 2889 __ bctrl(); 2890 assert(info != nullptr, "sanity"); 2891 add_call_info_here(info); 2892 __ post_call_nop(); 2893 return; 2894 } 2895 2896 __ call_c_with_frame_resize(dest, /*no resizing*/ 0); 2897 if (info != nullptr) { 2898 add_call_info_here(info); 2899 } 2900 __ post_call_nop(); 2901 } 2902 2903 2904 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2905 ShouldNotReachHere(); // Not needed on _LP64. 2906 } 2907 2908 void LIR_Assembler::membar() { 2909 __ fence(); 2910 } 2911 2912 void LIR_Assembler::membar_acquire() { 2913 __ acquire(); 2914 } 2915 2916 void LIR_Assembler::membar_release() { 2917 __ release(); 2918 } 2919 2920 void LIR_Assembler::membar_loadload() { 2921 __ membar(Assembler::LoadLoad); 2922 } 2923 2924 void LIR_Assembler::membar_storestore() { 2925 __ membar(Assembler::StoreStore); 2926 } 2927 2928 void LIR_Assembler::membar_loadstore() { 2929 __ membar(Assembler::LoadStore); 2930 } 2931 2932 void LIR_Assembler::membar_storeload() { 2933 __ membar(Assembler::StoreLoad); 2934 } 2935 2936 void LIR_Assembler::on_spin_wait() { 2937 Unimplemented(); 2938 } 2939 2940 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2941 LIR_Address* addr = addr_opr->as_address_ptr(); 2942 assert(addr->scale() == LIR_Address::times_1, "no scaling on this platform"); 2943 2944 if (addr->index()->is_illegal()) { 2945 if (patch_code != lir_patch_none) { 2946 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id); 2947 __ load_const32(R0, 0); // patchable int 2948 __ add(dest->as_pointer_register(), addr->base()->as_pointer_register(), R0); 2949 patching_epilog(patch, patch_code, addr->base()->as_register(), info); 2950 } else { 2951 __ add_const_optimized(dest->as_pointer_register(), addr->base()->as_pointer_register(), addr->disp()); 2952 } 2953 } else { 2954 assert(patch_code == lir_patch_none, "Patch code not supported"); 2955 assert(addr->disp() == 0, "can't have both: index and disp"); 2956 __ add(dest->as_pointer_register(), addr->index()->as_pointer_register(), addr->base()->as_pointer_register()); 2957 } 2958 } 2959 2960 2961 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2962 ShouldNotReachHere(); 2963 } 2964 2965 2966 #ifdef ASSERT 2967 // Emit run-time assertion. 2968 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2969 Unimplemented(); 2970 } 2971 #endif 2972 2973 2974 void LIR_Assembler::peephole(LIR_List* lir) { 2975 // Optimize instruction pairs before emitting. 2976 LIR_OpList* inst = lir->instructions_list(); 2977 for (int i = 1; i < inst->length(); i++) { 2978 LIR_Op* op = inst->at(i); 2979 2980 // 2 register-register-moves 2981 if (op->code() == lir_move) { 2982 LIR_Opr in2 = ((LIR_Op1*)op)->in_opr(), 2983 res2 = ((LIR_Op1*)op)->result_opr(); 2984 if (in2->is_register() && res2->is_register()) { 2985 LIR_Op* prev = inst->at(i - 1); 2986 if (prev && prev->code() == lir_move) { 2987 LIR_Opr in1 = ((LIR_Op1*)prev)->in_opr(), 2988 res1 = ((LIR_Op1*)prev)->result_opr(); 2989 if (in1->is_same_register(res2) && in2->is_same_register(res1)) { 2990 inst->remove_at(i); 2991 } 2992 } 2993 } 2994 } 2995 2996 } 2997 return; 2998 } 2999 3000 3001 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 3002 const LIR_Address *addr = src->as_address_ptr(); 3003 assert(addr->disp() == 0 && addr->index()->is_illegal(), "use leal!"); 3004 const Register Rptr = addr->base()->as_pointer_register(), 3005 Rtmp = tmp->as_register(); 3006 Register Robj = noreg; 3007 if (data->is_oop()) { 3008 if (UseCompressedOops) { 3009 Robj = __ encode_heap_oop(Rtmp, data->as_register()); 3010 } else { 3011 Robj = data->as_register(); 3012 if (Robj == dest->as_register()) { // May happen with ZGC. 3013 __ mr(Rtmp, Robj); 3014 Robj = Rtmp; 3015 } 3016 } 3017 } 3018 3019 // There might be a volatile load before this Unsafe OP. 3020 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 3021 __ sync(); 3022 } else { 3023 __ lwsync(); 3024 } 3025 3026 Label Lretry; 3027 __ bind(Lretry); 3028 3029 if (data->type() == T_INT) { 3030 const Register Rold = dest->as_register(), 3031 Rsrc = data->as_register(); 3032 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3033 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3034 if (code == lir_xadd) { 3035 __ add(Rtmp, Rsrc, Rold); 3036 __ stwcx_(Rtmp, Rptr); 3037 } else { 3038 __ stwcx_(Rsrc, Rptr); 3039 } 3040 } else if (data->is_oop()) { 3041 assert(code == lir_xchg, "xadd for oops"); 3042 const Register Rold = dest->as_register(); 3043 assert_different_registers(Rptr, Rold, Robj); 3044 if (UseCompressedOops) { 3045 __ lwarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3046 __ stwcx_(Robj, Rptr); 3047 } else { 3048 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3049 __ stdcx_(Robj, Rptr); 3050 } 3051 } else if (data->type() == T_LONG) { 3052 const Register Rold = dest->as_register_lo(), 3053 Rsrc = data->as_register_lo(); 3054 assert_different_registers(Rptr, Rtmp, Rold, Rsrc); 3055 __ ldarx(Rold, Rptr, MacroAssembler::cmpxchgx_hint_atomic_update()); 3056 if (code == lir_xadd) { 3057 __ add(Rtmp, Rsrc, Rold); 3058 __ stdcx_(Rtmp, Rptr); 3059 } else { 3060 __ stdcx_(Rsrc, Rptr); 3061 } 3062 } else { 3063 ShouldNotReachHere(); 3064 } 3065 3066 if (UseStaticBranchPredictionInCompareAndSwapPPC64) { 3067 __ bne_predict_not_taken(CCR0, Lretry); 3068 } else { 3069 __ bne( CCR0, Lretry); 3070 } 3071 3072 if (UseCompressedOops && data->is_oop()) { 3073 __ decode_heap_oop(dest->as_register()); 3074 } 3075 3076 if (support_IRIW_for_not_multiple_copy_atomic_cpu) { 3077 __ isync(); 3078 } else { 3079 __ sync(); 3080 } 3081 } 3082 3083 3084 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 3085 Register obj = op->obj()->as_register(); 3086 Register tmp = op->tmp()->as_pointer_register(); 3087 LIR_Address* mdo_addr = op->mdp()->as_address_ptr(); 3088 ciKlass* exact_klass = op->exact_klass(); 3089 intptr_t current_klass = op->current_klass(); 3090 bool not_null = op->not_null(); 3091 bool no_conflict = op->no_conflict(); 3092 3093 Label Lupdate, Ldo_update, Ldone; 3094 3095 bool do_null = !not_null; 3096 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 3097 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 3098 3099 assert(do_null || do_update, "why are we here?"); 3100 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 3101 3102 __ verify_oop(obj, FILE_AND_LINE); 3103 3104 if (do_null) { 3105 if (!TypeEntries::was_null_seen(current_klass)) { 3106 __ cmpdi(CCR0, obj, 0); 3107 __ bne(CCR0, Lupdate); 3108 __ ld(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3109 __ ori(R0, R0, TypeEntries::null_seen); 3110 if (do_update) { 3111 __ b(Ldo_update); 3112 } else { 3113 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3114 } 3115 } else { 3116 if (do_update) { 3117 __ cmpdi(CCR0, obj, 0); 3118 __ beq(CCR0, Ldone); 3119 } 3120 } 3121 #ifdef ASSERT 3122 } else { 3123 __ cmpdi(CCR0, obj, 0); 3124 __ bne(CCR0, Lupdate); 3125 __ stop("unexpected null obj"); 3126 #endif 3127 } 3128 3129 __ bind(Lupdate); 3130 if (do_update) { 3131 Label Lnext; 3132 const Register klass = R29_TOC; // kill and reload 3133 bool klass_reg_used = false; 3134 #ifdef ASSERT 3135 if (exact_klass != nullptr) { 3136 Label ok; 3137 klass_reg_used = true; 3138 __ load_klass(klass, obj); 3139 metadata2reg(exact_klass->constant_encoding(), R0); 3140 __ cmpd(CCR0, klass, R0); 3141 __ beq(CCR0, ok); 3142 __ stop("exact klass and actual klass differ"); 3143 __ bind(ok); 3144 } 3145 #endif 3146 3147 if (!no_conflict) { 3148 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3149 klass_reg_used = true; 3150 if (exact_klass != nullptr) { 3151 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3152 metadata2reg(exact_klass->constant_encoding(), klass); 3153 } else { 3154 __ load_klass(klass, obj); 3155 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); // may kill obj 3156 } 3157 3158 // Like InterpreterMacroAssembler::profile_obj_type 3159 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3160 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3161 __ cmpd(CCR1, R0, klass); 3162 // Klass seen before, nothing to do (regardless of unknown bit). 3163 //beq(CCR1, do_nothing); 3164 3165 __ andi_(R0, tmp, TypeEntries::type_unknown); 3166 // Already unknown. Nothing to do anymore. 3167 //bne(CCR0, do_nothing); 3168 __ crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 3169 __ beq(CCR0, Lnext); 3170 3171 if (TypeEntries::is_type_none(current_klass)) { 3172 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3173 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3174 __ beq(CCR0, Ldo_update); // First time here. Set profile type. 3175 } 3176 3177 } else { 3178 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3179 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3180 3181 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3182 __ andi_(R0, tmp, TypeEntries::type_unknown); 3183 // Already unknown. Nothing to do anymore. 3184 __ bne(CCR0, Lnext); 3185 } 3186 3187 // Different than before. Cannot keep accurate profile. 3188 __ ori(R0, tmp, TypeEntries::type_unknown); 3189 } else { 3190 // There's a single possible klass at this profile point 3191 assert(exact_klass != nullptr, "should be"); 3192 __ ld(tmp, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3193 3194 if (TypeEntries::is_type_none(current_klass)) { 3195 klass_reg_used = true; 3196 metadata2reg(exact_klass->constant_encoding(), klass); 3197 3198 __ clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 3199 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 3200 __ cmpd(CCR1, R0, klass); 3201 // Klass seen before, nothing to do (regardless of unknown bit). 3202 __ beq(CCR1, Lnext); 3203 #ifdef ASSERT 3204 { 3205 Label ok; 3206 __ clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 3207 __ beq(CCR0, ok); // First time here. 3208 3209 __ stop("unexpected profiling mismatch"); 3210 __ bind(ok); 3211 } 3212 #endif 3213 // First time here. Set profile type. 3214 __ orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3215 } else { 3216 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3217 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3218 3219 // Already unknown. Nothing to do anymore. 3220 __ andi_(R0, tmp, TypeEntries::type_unknown); 3221 __ bne(CCR0, Lnext); 3222 3223 // Different than before. Cannot keep accurate profile. 3224 __ ori(R0, tmp, TypeEntries::type_unknown); 3225 } 3226 } 3227 3228 __ bind(Ldo_update); 3229 __ std(R0, index_or_disp(mdo_addr), mdo_addr->base()->as_pointer_register()); 3230 3231 __ bind(Lnext); 3232 if (klass_reg_used) { __ load_const_optimized(R29_TOC, MacroAssembler::global_toc(), R0); } // reinit 3233 } 3234 __ bind(Ldone); 3235 } 3236 3237 3238 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3239 assert(op->crc()->is_single_cpu(), "crc must be register"); 3240 assert(op->val()->is_single_cpu(), "byte value must be register"); 3241 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3242 Register crc = op->crc()->as_register(); 3243 Register val = op->val()->as_register(); 3244 Register res = op->result_opr()->as_register(); 3245 3246 assert_different_registers(val, crc, res); 3247 3248 __ load_const_optimized(res, StubRoutines::crc_table_addr(), R0); 3249 __ kernel_crc32_singleByteReg(crc, val, res, true); 3250 __ mr(res, crc); 3251 } 3252 3253 #undef __