1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_ppc.hpp" 32 #include "interpreter/interpreterRuntime.hpp" 33 #include "oops/methodData.hpp" 34 #include "prims/jvmtiExport.hpp" 35 #include "prims/jvmtiThreadState.hpp" 36 #include "runtime/frame.inline.hpp" 37 #include "runtime/safepointMechanism.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 #include "runtime/vm_version.hpp" 40 #include "utilities/macros.hpp" 41 #include "utilities/powerOfTwo.hpp" 42 43 // Implementation of InterpreterMacroAssembler. 44 45 // This file specializes the assembler with interpreter-specific macros. 46 47 #ifdef PRODUCT 48 #define BLOCK_COMMENT(str) // nothing 49 #else 50 #define BLOCK_COMMENT(str) block_comment(str) 51 #endif 52 53 void InterpreterMacroAssembler::null_check_throw(Register a, int offset, Register temp_reg) { 54 address exception_entry = Interpreter::throw_NullPointerException_entry(); 55 MacroAssembler::null_check_throw(a, offset, temp_reg, exception_entry); 56 } 57 58 void InterpreterMacroAssembler::load_klass_check_null_throw(Register dst, Register src, Register temp_reg) { 59 null_check_throw(src, oopDesc::klass_offset_in_bytes(), temp_reg); 60 load_klass(dst, src); 61 } 62 63 void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) { 64 assert(entry, "Entry must have been generated by now"); 65 if (is_within_range_of_b(entry, pc())) { 66 b(entry); 67 } else { 68 load_const_optimized(Rscratch, entry, R0); 69 mtctr(Rscratch); 70 bctr(); 71 } 72 } 73 74 void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) { 75 Register bytecode = R12_scratch2; 76 if (bcp_incr != 0) { 77 lbzu(bytecode, bcp_incr, R14_bcp); 78 } else { 79 lbz(bytecode, 0, R14_bcp); 80 } 81 82 dispatch_Lbyte_code(state, bytecode, Interpreter::dispatch_table(state), generate_poll); 83 } 84 85 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 86 // Load current bytecode. 87 Register bytecode = R12_scratch2; 88 lbz(bytecode, 0, R14_bcp); 89 dispatch_Lbyte_code(state, bytecode, table); 90 } 91 92 // Dispatch code executed in the prolog of a bytecode which does not do it's 93 // own dispatch. The dispatch address is computed and placed in R24_dispatch_addr. 94 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) { 95 Register bytecode = R12_scratch2; 96 lbz(bytecode, bcp_incr, R14_bcp); 97 98 load_dispatch_table(R24_dispatch_addr, Interpreter::dispatch_table(state)); 99 100 sldi(bytecode, bytecode, LogBytesPerWord); 101 ldx(R24_dispatch_addr, R24_dispatch_addr, bytecode); 102 } 103 104 // Dispatch code executed in the epilog of a bytecode which does not do it's 105 // own dispatch. The dispatch address in R24_dispatch_addr is used for the 106 // dispatch. 107 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int bcp_incr) { 108 if (bcp_incr) { addi(R14_bcp, R14_bcp, bcp_incr); } 109 mtctr(R24_dispatch_addr); 110 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 111 } 112 113 void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) { 114 assert(scratch_reg != R0, "can't use R0 as scratch_reg here"); 115 if (JvmtiExport::can_pop_frame()) { 116 Label L; 117 118 // Check the "pending popframe condition" flag in the current thread. 119 lwz(scratch_reg, in_bytes(JavaThread::popframe_condition_offset()), R16_thread); 120 121 // Initiate popframe handling only if it is not already being 122 // processed. If the flag has the popframe_processing bit set, it 123 // means that this code is called *during* popframe handling - we 124 // don't want to reenter. 125 andi_(R0, scratch_reg, JavaThread::popframe_pending_bit); 126 beq(CCR0, L); 127 128 andi_(R0, scratch_reg, JavaThread::popframe_processing_bit); 129 bne(CCR0, L); 130 131 // Call the Interpreter::remove_activation_preserving_args_entry() 132 // func to get the address of the same-named entrypoint in the 133 // generated interpreter code. 134 #if defined(ABI_ELFv2) 135 call_c(CAST_FROM_FN_PTR(address, 136 Interpreter::remove_activation_preserving_args_entry), 137 relocInfo::none); 138 #else 139 call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, 140 Interpreter::remove_activation_preserving_args_entry), 141 relocInfo::none); 142 #endif 143 144 // Jump to Interpreter::_remove_activation_preserving_args_entry. 145 mtctr(R3_RET); 146 bctr(); 147 148 align(32, 12); 149 bind(L); 150 } 151 } 152 153 void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) { 154 const Register Rthr_state_addr = scratch_reg; 155 if (JvmtiExport::can_force_early_return()) { 156 Label Lno_early_ret; 157 ld(Rthr_state_addr, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 158 cmpdi(CCR0, Rthr_state_addr, 0); 159 beq(CCR0, Lno_early_ret); 160 161 lwz(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rthr_state_addr); 162 cmpwi(CCR0, R0, JvmtiThreadState::earlyret_pending); 163 bne(CCR0, Lno_early_ret); 164 165 // Jump to Interpreter::_earlyret_entry. 166 lwz(R3_ARG1, in_bytes(JvmtiThreadState::earlyret_tos_offset()), Rthr_state_addr); 167 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry)); 168 mtlr(R3_RET); 169 blr(); 170 171 align(32, 12); 172 bind(Lno_early_ret); 173 } 174 } 175 176 void InterpreterMacroAssembler::load_earlyret_value(TosState state, Register Rscratch1) { 177 const Register RjvmtiState = Rscratch1; 178 const Register Rscratch2 = R0; 179 180 ld(RjvmtiState, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread); 181 li(Rscratch2, 0); 182 183 switch (state) { 184 case atos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 185 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_oop_offset()), RjvmtiState); 186 break; 187 case ltos: ld(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 188 break; 189 case btos: // fall through 190 case ztos: // fall through 191 case ctos: // fall through 192 case stos: // fall through 193 case itos: lwz(R17_tos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 194 break; 195 case ftos: lfs(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 196 break; 197 case dtos: lfd(F15_ftos, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 198 break; 199 case vtos: break; 200 default : ShouldNotReachHere(); 201 } 202 203 // Clean up tos value in the jvmti thread state. 204 std(Rscratch2, in_bytes(JvmtiThreadState::earlyret_value_offset()), RjvmtiState); 205 // Set tos state field to illegal value. 206 li(Rscratch2, ilgl); 207 stw(Rscratch2, in_bytes(JvmtiThreadState::earlyret_tos_offset()), RjvmtiState); 208 } 209 210 // Common code to dispatch and dispatch_only. 211 // Dispatch value in Lbyte_code and increment Lbcp. 212 213 void InterpreterMacroAssembler::load_dispatch_table(Register dst, address* table) { 214 address table_base = (address)Interpreter::dispatch_table((TosState)0); 215 intptr_t table_offs = (intptr_t)table - (intptr_t)table_base; 216 if (is_simm16(table_offs)) { 217 addi(dst, R25_templateTableBase, (int)table_offs); 218 } else { 219 load_const_optimized(dst, table, R0); 220 } 221 } 222 223 void InterpreterMacroAssembler::dispatch_Lbyte_code(TosState state, Register bytecode, 224 address* table, bool generate_poll) { 225 assert_different_registers(bytecode, R11_scratch1); 226 227 // Calc dispatch table address. 228 load_dispatch_table(R11_scratch1, table); 229 230 if (generate_poll) { 231 address *sfpt_tbl = Interpreter::safept_table(state); 232 if (table != sfpt_tbl) { 233 Label dispatch; 234 ld(R0, in_bytes(JavaThread::polling_word_offset()), R16_thread); 235 // Armed page has poll_bit set, if poll bit is cleared just continue. 236 andi_(R0, R0, SafepointMechanism::poll_bit()); 237 beq(CCR0, dispatch); 238 load_dispatch_table(R11_scratch1, sfpt_tbl); 239 align(32, 16); 240 bind(dispatch); 241 } 242 } 243 244 sldi(R12_scratch2, bytecode, LogBytesPerWord); 245 ldx(R11_scratch1, R11_scratch1, R12_scratch2); 246 247 // Jump off! 248 mtctr(R11_scratch1); 249 bcctr(bcondAlways, 0, bhintbhBCCTRisNotPredictable); 250 } 251 252 void InterpreterMacroAssembler::load_receiver(Register Rparam_count, Register Rrecv_dst) { 253 sldi(Rrecv_dst, Rparam_count, Interpreter::logStackElementSize); 254 ldx(Rrecv_dst, Rrecv_dst, R15_esp); 255 } 256 257 // helpers for expression stack 258 259 void InterpreterMacroAssembler::pop_i(Register r) { 260 lwzu(r, Interpreter::stackElementSize, R15_esp); 261 } 262 263 void InterpreterMacroAssembler::pop_ptr(Register r) { 264 ldu(r, Interpreter::stackElementSize, R15_esp); 265 } 266 267 void InterpreterMacroAssembler::pop_l(Register r) { 268 ld(r, Interpreter::stackElementSize, R15_esp); 269 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 270 } 271 272 void InterpreterMacroAssembler::pop_f(FloatRegister f) { 273 lfsu(f, Interpreter::stackElementSize, R15_esp); 274 } 275 276 void InterpreterMacroAssembler::pop_d(FloatRegister f) { 277 lfd(f, Interpreter::stackElementSize, R15_esp); 278 addi(R15_esp, R15_esp, 2 * Interpreter::stackElementSize); 279 } 280 281 void InterpreterMacroAssembler::push_i(Register r) { 282 stw(r, 0, R15_esp); 283 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 284 } 285 286 void InterpreterMacroAssembler::push_ptr(Register r) { 287 std(r, 0, R15_esp); 288 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 289 } 290 291 void InterpreterMacroAssembler::push_l(Register r) { 292 // Clear unused slot. 293 load_const_optimized(R0, 0L); 294 std(R0, 0, R15_esp); 295 std(r, - Interpreter::stackElementSize, R15_esp); 296 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 297 } 298 299 void InterpreterMacroAssembler::push_f(FloatRegister f) { 300 stfs(f, 0, R15_esp); 301 addi(R15_esp, R15_esp, - Interpreter::stackElementSize ); 302 } 303 304 void InterpreterMacroAssembler::push_d(FloatRegister f) { 305 stfd(f, - Interpreter::stackElementSize, R15_esp); 306 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 307 } 308 309 void InterpreterMacroAssembler::push_2ptrs(Register first, Register second) { 310 std(first, 0, R15_esp); 311 std(second, -Interpreter::stackElementSize, R15_esp); 312 addi(R15_esp, R15_esp, - 2 * Interpreter::stackElementSize ); 313 } 314 315 void InterpreterMacroAssembler::move_l_to_d(Register l, FloatRegister d) { 316 if (VM_Version::has_mtfprd()) { 317 mtfprd(d, l); 318 } else { 319 std(l, 0, R15_esp); 320 lfd(d, 0, R15_esp); 321 } 322 } 323 324 void InterpreterMacroAssembler::move_d_to_l(FloatRegister d, Register l) { 325 if (VM_Version::has_mtfprd()) { 326 mffprd(l, d); 327 } else { 328 stfd(d, 0, R15_esp); 329 ld(l, 0, R15_esp); 330 } 331 } 332 333 void InterpreterMacroAssembler::push(TosState state) { 334 switch (state) { 335 case atos: push_ptr(); break; 336 case btos: 337 case ztos: 338 case ctos: 339 case stos: 340 case itos: push_i(); break; 341 case ltos: push_l(); break; 342 case ftos: push_f(); break; 343 case dtos: push_d(); break; 344 case vtos: /* nothing to do */ break; 345 default : ShouldNotReachHere(); 346 } 347 } 348 349 void InterpreterMacroAssembler::pop(TosState state) { 350 switch (state) { 351 case atos: pop_ptr(); break; 352 case btos: 353 case ztos: 354 case ctos: 355 case stos: 356 case itos: pop_i(); break; 357 case ltos: pop_l(); break; 358 case ftos: pop_f(); break; 359 case dtos: pop_d(); break; 360 case vtos: /* nothing to do */ break; 361 default : ShouldNotReachHere(); 362 } 363 verify_oop(R17_tos, state); 364 } 365 366 void InterpreterMacroAssembler::empty_expression_stack() { 367 addi(R15_esp, R26_monitor, - Interpreter::stackElementSize); 368 } 369 370 void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(int bcp_offset, 371 Register Rdst, 372 signedOrNot is_signed) { 373 #if defined(VM_LITTLE_ENDIAN) 374 if (bcp_offset) { 375 load_const_optimized(Rdst, bcp_offset); 376 lhbrx(Rdst, R14_bcp, Rdst); 377 } else { 378 lhbrx(Rdst, R14_bcp); 379 } 380 if (is_signed == Signed) { 381 extsh(Rdst, Rdst); 382 } 383 #else 384 // Read Java big endian format. 385 if (is_signed == Signed) { 386 lha(Rdst, bcp_offset, R14_bcp); 387 } else { 388 lhz(Rdst, bcp_offset, R14_bcp); 389 } 390 #endif 391 } 392 393 void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(int bcp_offset, 394 Register Rdst, 395 signedOrNot is_signed) { 396 #if defined(VM_LITTLE_ENDIAN) 397 if (bcp_offset) { 398 load_const_optimized(Rdst, bcp_offset); 399 lwbrx(Rdst, R14_bcp, Rdst); 400 } else { 401 lwbrx(Rdst, R14_bcp); 402 } 403 if (is_signed == Signed) { 404 extsw(Rdst, Rdst); 405 } 406 #else 407 // Read Java big endian format. 408 if (bcp_offset & 3) { // Offset unaligned? 409 load_const_optimized(Rdst, bcp_offset); 410 if (is_signed == Signed) { 411 lwax(Rdst, R14_bcp, Rdst); 412 } else { 413 lwzx(Rdst, R14_bcp, Rdst); 414 } 415 } else { 416 if (is_signed == Signed) { 417 lwa(Rdst, bcp_offset, R14_bcp); 418 } else { 419 lwz(Rdst, bcp_offset, R14_bcp); 420 } 421 } 422 #endif 423 } 424 425 426 // Load the constant pool cache index from the bytecode stream. 427 // 428 // Kills / writes: 429 // - Rdst, Rscratch 430 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register Rdst, int bcp_offset, 431 size_t index_size) { 432 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 433 // Cache index is always in the native format, courtesy of Rewriter. 434 if (index_size == sizeof(u2)) { 435 lhz(Rdst, bcp_offset, R14_bcp); 436 } else if (index_size == sizeof(u4)) { 437 if (bcp_offset & 3) { 438 load_const_optimized(Rdst, bcp_offset); 439 lwax(Rdst, R14_bcp, Rdst); 440 } else { 441 lwa(Rdst, bcp_offset, R14_bcp); 442 } 443 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 444 nand(Rdst, Rdst, Rdst); // convert to plain index 445 } else if (index_size == sizeof(u1)) { 446 lbz(Rdst, bcp_offset, R14_bcp); 447 } else { 448 ShouldNotReachHere(); 449 } 450 // Rdst now contains cp cache index. 451 } 452 453 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, int bcp_offset, 454 size_t index_size) { 455 get_cache_index_at_bcp(cache, bcp_offset, index_size); 456 sldi(cache, cache, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord)); 457 add(cache, R27_constPoolCache, cache); 458 } 459 460 // Load 4-byte signed or unsigned integer in Java format (that is, big-endian format) 461 // from (Rsrc)+offset. 462 void InterpreterMacroAssembler::get_u4(Register Rdst, Register Rsrc, int offset, 463 signedOrNot is_signed) { 464 #if defined(VM_LITTLE_ENDIAN) 465 if (offset) { 466 load_const_optimized(Rdst, offset); 467 lwbrx(Rdst, Rdst, Rsrc); 468 } else { 469 lwbrx(Rdst, Rsrc); 470 } 471 if (is_signed == Signed) { 472 extsw(Rdst, Rdst); 473 } 474 #else 475 if (is_signed == Signed) { 476 lwa(Rdst, offset, Rsrc); 477 } else { 478 lwz(Rdst, offset, Rsrc); 479 } 480 #endif 481 } 482 483 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 484 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 485 get_cache_index_at_bcp(index, 1, sizeof(u4)); 486 487 // Get address of invokedynamic array 488 ld_ptr(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()), R27_constPoolCache); 489 // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo) 490 sldi(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 491 add(cache, cache, index); 492 } 493 494 // Load object from cpool->resolved_references(index). 495 // Kills: 496 // - index 497 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index, 498 Register tmp1, Register tmp2, 499 Label *L_handle_null) { 500 assert_different_registers(result, index, tmp1, tmp2); 501 assert(index->is_nonvolatile(), "needs to survive C-call in resolve_oop_handle"); 502 get_constant_pool(result); 503 504 // Convert from field index to resolved_references() index and from 505 // word index to byte offset. Since this is a java object, it can be compressed. 506 sldi(index, index, LogBytesPerHeapOop); 507 // Load pointer for resolved_references[] objArray. 508 ld(result, ConstantPool::cache_offset(), result); 509 ld(result, ConstantPoolCache::resolved_references_offset(), result); 510 resolve_oop_handle(result, tmp1, tmp2, MacroAssembler::PRESERVATION_NONE); 511 #ifdef ASSERT 512 Label index_ok; 513 lwa(R0, arrayOopDesc::length_offset_in_bytes(), result); 514 sldi(R0, R0, LogBytesPerHeapOop); 515 cmpd(CCR0, index, R0); 516 blt(CCR0, index_ok); 517 stop("resolved reference index out of bounds"); 518 bind(index_ok); 519 #endif 520 // Add in the index. 521 add(result, index, result); 522 load_heap_oop(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT), result, 523 tmp1, tmp2, 524 MacroAssembler::PRESERVATION_NONE, 525 0, L_handle_null); 526 } 527 528 // load cpool->resolved_klass_at(index) 529 void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register Rcpool, Register Roffset, Register Rklass) { 530 // int value = *(Rcpool->int_at_addr(which)); 531 // int resolved_klass_index = extract_low_short_from_int(value); 532 add(Roffset, Rcpool, Roffset); 533 #if defined(VM_LITTLE_ENDIAN) 534 lhz(Roffset, sizeof(ConstantPool), Roffset); // Roffset = resolved_klass_index 535 #else 536 lhz(Roffset, sizeof(ConstantPool) + 2, Roffset); // Roffset = resolved_klass_index 537 #endif 538 539 ld(Rklass, ConstantPool::resolved_klasses_offset(), Rcpool); // Rklass = Rcpool->_resolved_klasses 540 541 sldi(Roffset, Roffset, LogBytesPerWord); 542 addi(Roffset, Roffset, Array<Klass*>::base_offset_in_bytes()); 543 isync(); // Order load of instance Klass wrt. tags. 544 ldx(Rklass, Rklass, Roffset); 545 } 546 547 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 548 Register cache, 549 Register method) { 550 const int method_offset = in_bytes( 551 ConstantPoolCache::base_offset() + 552 ((byte_no == TemplateTable::f2_byte) 553 ? ConstantPoolCacheEntry::f2_offset() 554 : ConstantPoolCacheEntry::f1_offset())); 555 556 ld(method, method_offset, cache); // get f1 Method* 557 } 558 559 // Generate a subtype check: branch to ok_is_subtype if sub_klass is 560 // a subtype of super_klass. Blows registers Rsub_klass, tmp1, tmp2. 561 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, Register Rsuper_klass, Register Rtmp1, 562 Register Rtmp2, Register Rtmp3, Label &ok_is_subtype) { 563 // Profile the not-null value's klass. 564 profile_typecheck(Rsub_klass, Rtmp1, Rtmp2); 565 check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype); 566 profile_typecheck_failed(Rtmp1, Rtmp2); 567 } 568 569 // Separate these two to allow for delay slot in middle. 570 // These are used to do a test and full jump to exception-throwing code. 571 572 // Check that index is in range for array, then shift index by index_shift, 573 // and put arrayOop + shifted_index into res. 574 // Note: res is still shy of address by array offset into object. 575 576 void InterpreterMacroAssembler::index_check_without_pop(Register Rarray, Register Rindex, 577 int index_shift, Register Rtmp, Register Rres) { 578 // Check that index is in range for array, then shift index by index_shift, 579 // and put arrayOop + shifted_index into res. 580 // Note: res is still shy of address by array offset into object. 581 // Kills: 582 // - Rindex 583 // Writes: 584 // - Rres: Address that corresponds to the array index if check was successful. 585 verify_oop(Rarray); 586 const Register Rlength = R0; 587 const Register RsxtIndex = Rtmp; 588 Label LisNull, LnotOOR; 589 590 // Array nullcheck 591 if (!ImplicitNullChecks) { 592 cmpdi(CCR0, Rarray, 0); 593 beq(CCR0, LisNull); 594 } else { 595 null_check_throw(Rarray, arrayOopDesc::length_offset_in_bytes(), /*temp*/RsxtIndex); 596 } 597 598 // Rindex might contain garbage in upper bits (remember that we don't sign extend 599 // during integer arithmetic operations). So kill them and put value into same register 600 // where ArrayIndexOutOfBounds would expect the index in. 601 rldicl(RsxtIndex, Rindex, 0, 32); // zero extend 32 bit -> 64 bit 602 603 // Index check 604 lwz(Rlength, arrayOopDesc::length_offset_in_bytes(), Rarray); 605 cmplw(CCR0, Rindex, Rlength); 606 sldi(RsxtIndex, RsxtIndex, index_shift); 607 blt(CCR0, LnotOOR); 608 // Index should be in R17_tos, array should be in R4_ARG2. 609 mr_if_needed(R17_tos, Rindex); 610 mr_if_needed(R4_ARG2, Rarray); 611 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_ArrayIndexOutOfBoundsException_entry); 612 mtctr(Rtmp); 613 bctr(); 614 615 if (!ImplicitNullChecks) { 616 bind(LisNull); 617 load_dispatch_table(Rtmp, (address*)Interpreter::_throw_NullPointerException_entry); 618 mtctr(Rtmp); 619 bctr(); 620 } 621 622 align(32, 16); 623 bind(LnotOOR); 624 625 // Calc address 626 add(Rres, RsxtIndex, Rarray); 627 } 628 629 void InterpreterMacroAssembler::index_check(Register array, Register index, 630 int index_shift, Register tmp, Register res) { 631 // pop array 632 pop_ptr(array); 633 634 // check array 635 index_check_without_pop(array, index, index_shift, tmp, res); 636 } 637 638 void InterpreterMacroAssembler::get_const(Register Rdst) { 639 ld(Rdst, in_bytes(Method::const_offset()), R19_method); 640 } 641 642 void InterpreterMacroAssembler::get_constant_pool(Register Rdst) { 643 get_const(Rdst); 644 ld(Rdst, in_bytes(ConstMethod::constants_offset()), Rdst); 645 } 646 647 void InterpreterMacroAssembler::get_constant_pool_cache(Register Rdst) { 648 get_constant_pool(Rdst); 649 ld(Rdst, ConstantPool::cache_offset(), Rdst); 650 } 651 652 void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) { 653 get_constant_pool(Rcpool); 654 ld(Rtags, ConstantPool::tags_offset(), Rcpool); 655 } 656 657 // Unlock if synchronized method. 658 // 659 // Unlock the receiver if this is a synchronized method. 660 // Unlock any Java monitors from synchronized blocks. 661 // 662 // If there are locked Java monitors 663 // If throw_monitor_exception 664 // throws IllegalMonitorStateException 665 // Else if install_monitor_exception 666 // installs IllegalMonitorStateException 667 // Else 668 // no error processing 669 void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state, 670 bool throw_monitor_exception, 671 bool install_monitor_exception) { 672 Label Lunlocked, Lno_unlock; 673 { 674 Register Rdo_not_unlock_flag = R11_scratch1; 675 Register Raccess_flags = R12_scratch2; 676 677 // Check if synchronized method or unlocking prevented by 678 // JavaThread::do_not_unlock_if_synchronized flag. 679 lbz(Rdo_not_unlock_flag, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); 680 lwz(Raccess_flags, in_bytes(Method::access_flags_offset()), R19_method); 681 li(R0, 0); 682 stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread); // reset flag 683 684 push(state); 685 686 // Skip if we don't have to unlock. 687 rldicl_(R0, Raccess_flags, 64-JVM_ACC_SYNCHRONIZED_BIT, 63); // Extract bit and compare to 0. 688 beq(CCR0, Lunlocked); 689 690 cmpwi(CCR0, Rdo_not_unlock_flag, 0); 691 bne(CCR0, Lno_unlock); 692 } 693 694 // Unlock 695 { 696 Register Rmonitor_base = R11_scratch1; 697 698 Label Lunlock; 699 // If it's still locked, everything is ok, unlock it. 700 ld(Rmonitor_base, 0, R1_SP); 701 addi(Rmonitor_base, Rmonitor_base, 702 -(frame::ijava_state_size + frame::interpreter_frame_monitor_size_in_bytes())); // Monitor base 703 704 ld(R0, BasicObjectLock::obj_offset(), Rmonitor_base); 705 cmpdi(CCR0, R0, 0); 706 bne(CCR0, Lunlock); 707 708 // If it's already unlocked, throw exception. 709 if (throw_monitor_exception) { 710 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 711 should_not_reach_here(); 712 } else { 713 if (install_monitor_exception) { 714 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 715 b(Lunlocked); 716 } 717 } 718 719 bind(Lunlock); 720 unlock_object(Rmonitor_base); 721 } 722 723 // Check that all other monitors are unlocked. Throw IllegelMonitorState exception if not. 724 bind(Lunlocked); 725 { 726 Label Lexception, Lrestart; 727 Register Rcurrent_obj_addr = R11_scratch1; 728 const int delta = frame::interpreter_frame_monitor_size_in_bytes(); 729 assert((delta & LongAlignmentMask) == 0, "sizeof BasicObjectLock must be even number of doublewords"); 730 731 bind(Lrestart); 732 // Set up search loop: Calc num of iterations. 733 { 734 Register Riterations = R12_scratch2; 735 Register Rmonitor_base = Rcurrent_obj_addr; 736 ld(Rmonitor_base, 0, R1_SP); 737 addi(Rmonitor_base, Rmonitor_base, - frame::ijava_state_size); // Monitor base 738 739 subf_(Riterations, R26_monitor, Rmonitor_base); 740 ble(CCR0, Lno_unlock); 741 742 addi(Rcurrent_obj_addr, Rmonitor_base, 743 in_bytes(BasicObjectLock::obj_offset()) - frame::interpreter_frame_monitor_size_in_bytes()); 744 // Check if any monitor is on stack, bail out if not 745 srdi(Riterations, Riterations, exact_log2(delta)); 746 mtctr(Riterations); 747 } 748 749 // The search loop: Look for locked monitors. 750 { 751 const Register Rcurrent_obj = R0; 752 Label Lloop; 753 754 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 755 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 756 bind(Lloop); 757 758 // Check if current entry is used. 759 cmpdi(CCR0, Rcurrent_obj, 0); 760 bne(CCR0, Lexception); 761 // Preload next iteration's compare value. 762 ld(Rcurrent_obj, 0, Rcurrent_obj_addr); 763 addi(Rcurrent_obj_addr, Rcurrent_obj_addr, -delta); 764 bdnz(Lloop); 765 } 766 // Fell through: Everything's unlocked => finish. 767 b(Lno_unlock); 768 769 // An object is still locked => need to throw exception. 770 bind(Lexception); 771 if (throw_monitor_exception) { 772 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception)); 773 should_not_reach_here(); 774 } else { 775 // Stack unrolling. Unlock object and if requested, install illegal_monitor_exception. 776 // Unlock does not block, so don't have to worry about the frame. 777 Register Rmonitor_addr = R11_scratch1; 778 addi(Rmonitor_addr, Rcurrent_obj_addr, -in_bytes(BasicObjectLock::obj_offset()) + delta); 779 unlock_object(Rmonitor_addr); 780 if (install_monitor_exception) { 781 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception)); 782 } 783 b(Lrestart); 784 } 785 } 786 787 align(32, 12); 788 bind(Lno_unlock); 789 pop(state); 790 } 791 792 // Support function for remove_activation & Co. 793 void InterpreterMacroAssembler::merge_frames(Register Rsender_sp, Register return_pc, 794 Register Rscratch1, Register Rscratch2) { 795 // Pop interpreter frame. 796 ld(Rscratch1, 0, R1_SP); // *SP 797 ld(Rsender_sp, _ijava_state_neg(sender_sp), Rscratch1); // top_frame_sp 798 ld(Rscratch2, 0, Rscratch1); // **SP 799 if (return_pc!=noreg) { 800 ld(return_pc, _abi0(lr), Rscratch1); // LR 801 } 802 803 // Merge top frames. 804 subf(Rscratch1, R1_SP, Rsender_sp); // top_frame_sp - SP 805 stdux(Rscratch2, R1_SP, Rscratch1); // atomically set *(SP = top_frame_sp) = **SP 806 } 807 808 void InterpreterMacroAssembler::narrow(Register result) { 809 Register ret_type = R11_scratch1; 810 ld(R11_scratch1, in_bytes(Method::const_offset()), R19_method); 811 lbz(ret_type, in_bytes(ConstMethod::result_type_offset()), R11_scratch1); 812 813 Label notBool, notByte, notChar, done; 814 815 // common case first 816 cmpwi(CCR0, ret_type, T_INT); 817 beq(CCR0, done); 818 819 cmpwi(CCR0, ret_type, T_BOOLEAN); 820 bne(CCR0, notBool); 821 andi(result, result, 0x1); 822 b(done); 823 824 bind(notBool); 825 cmpwi(CCR0, ret_type, T_BYTE); 826 bne(CCR0, notByte); 827 extsb(result, result); 828 b(done); 829 830 bind(notByte); 831 cmpwi(CCR0, ret_type, T_CHAR); 832 bne(CCR0, notChar); 833 andi(result, result, 0xffff); 834 b(done); 835 836 bind(notChar); 837 // cmpwi(CCR0, ret_type, T_SHORT); // all that's left 838 // bne(CCR0, done); 839 extsh(result, result); 840 841 // Nothing to do for T_INT 842 bind(done); 843 } 844 845 // Remove activation. 846 // 847 // Apply stack watermark barrier. 848 // Unlock the receiver if this is a synchronized method. 849 // Unlock any Java monitors from synchronized blocks. 850 // Remove the activation from the stack. 851 // 852 // If there are locked Java monitors 853 // If throw_monitor_exception 854 // throws IllegalMonitorStateException 855 // Else if install_monitor_exception 856 // installs IllegalMonitorStateException 857 // Else 858 // no error processing 859 void InterpreterMacroAssembler::remove_activation(TosState state, 860 bool throw_monitor_exception, 861 bool install_monitor_exception) { 862 BLOCK_COMMENT("remove_activation {"); 863 864 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 865 // that would normally not be safe to use. Such bad returns into unsafe territory of 866 // the stack, will call InterpreterRuntime::at_unwind. 867 Label slow_path; 868 Label fast_path; 869 safepoint_poll(slow_path, R11_scratch1, true /* at_return */, false /* in_nmethod */); 870 b(fast_path); 871 bind(slow_path); 872 push(state); 873 set_last_Java_frame(R1_SP, noreg); 874 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), R16_thread); 875 reset_last_Java_frame(); 876 pop(state); 877 align(32); 878 bind(fast_path); 879 880 unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception); 881 882 // Save result (push state before jvmti call and pop it afterwards) and notify jvmti. 883 notify_method_exit(false, state, NotifyJVMTI, true); 884 885 BLOCK_COMMENT("reserved_stack_check:"); 886 if (StackReservedPages > 0) { 887 // Test if reserved zone needs to be enabled. 888 Label no_reserved_zone_enabling; 889 890 // check if already enabled - if so no re-enabling needed 891 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 892 lwz(R0, in_bytes(JavaThread::stack_guard_state_offset()), R16_thread); 893 cmpwi(CCR0, R0, StackOverflow::stack_guard_enabled); 894 beq_predict_taken(CCR0, no_reserved_zone_enabling); 895 896 // Compare frame pointers. There is no good stack pointer, as with stack 897 // frame compression we can get different SPs when we do calls. A subsequent 898 // call could have a smaller SP, so that this compare succeeds for an 899 // inner call of the method annotated with ReservedStack. 900 ld_ptr(R0, JavaThread::reserved_stack_activation_offset(), R16_thread); 901 ld_ptr(R11_scratch1, _abi0(callers_sp), R1_SP); // Load frame pointer. 902 cmpld(CCR0, R11_scratch1, R0); 903 blt_predict_taken(CCR0, no_reserved_zone_enabling); 904 905 // Enable reserved zone again, throw stack overflow exception. 906 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), R16_thread); 907 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError)); 908 909 should_not_reach_here(); 910 911 bind(no_reserved_zone_enabling); 912 } 913 914 verify_oop(R17_tos, state); 915 916 merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2); 917 mtlr(R0); 918 pop_cont_fastpath(); 919 BLOCK_COMMENT("} remove_activation"); 920 } 921 922 // Lock object 923 // 924 // Registers alive 925 // monitor - Address of the BasicObjectLock to be used for locking, 926 // which must be initialized with the object to lock. 927 // object - Address of the object to be locked. 928 // 929 void InterpreterMacroAssembler::lock_object(Register monitor, Register object) { 930 if (LockingMode == LM_MONITOR) { 931 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 932 } else { 933 // template code (for LM_LEGACY): 934 // 935 // markWord displaced_header = obj->mark().set_unlocked(); 936 // monitor->lock()->set_displaced_header(displaced_header); 937 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 938 // // We stored the monitor address into the object's mark word. 939 // } else if (THREAD->is_lock_owned((address)displaced_header)) 940 // // Simple recursive case. 941 // monitor->lock()->set_displaced_header(nullptr); 942 // } else { 943 // // Slow path. 944 // InterpreterRuntime::monitorenter(THREAD, monitor); 945 // } 946 947 const Register header = R7_ARG5; 948 const Register object_mark_addr = R8_ARG6; 949 const Register current_header = R9_ARG7; 950 const Register tmp = R10_ARG8; 951 952 Label count_locking, done; 953 Label cas_failed, slow_case; 954 955 assert_different_registers(header, object_mark_addr, current_header, tmp); 956 957 // markWord displaced_header = obj->mark().set_unlocked(); 958 959 // Load markWord from object into header. 960 ld(header, oopDesc::mark_offset_in_bytes(), object); 961 962 if (DiagnoseSyncOnValueBasedClasses != 0) { 963 load_klass(tmp, object); 964 lwz(tmp, in_bytes(Klass::access_flags_offset()), tmp); 965 testbitdi(CCR0, R0, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 966 bne(CCR0, slow_case); 967 } 968 969 if (LockingMode == LM_LIGHTWEIGHT) { 970 lightweight_lock(object, /* mark word */ header, tmp, slow_case); 971 b(count_locking); 972 } else if (LockingMode == LM_LEGACY) { 973 974 // Set displaced_header to be (markWord of object | UNLOCK_VALUE). 975 ori(header, header, markWord::unlocked_value); 976 977 // monitor->lock()->set_displaced_header(displaced_header); 978 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 979 const int mark_offset = lock_offset + 980 BasicLock::displaced_header_offset_in_bytes(); 981 982 // Initialize the box (Must happen before we update the object mark!). 983 std(header, mark_offset, monitor); 984 985 // if (Atomic::cmpxchg(/*addr*/obj->mark_addr(), /*cmp*/displaced_header, /*ex=*/monitor) == displaced_header) { 986 987 // Store stack address of the BasicObjectLock (this is monitor) into object. 988 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 989 990 // Must fence, otherwise, preceding store(s) may float below cmpxchg. 991 // CmpxchgX sets CCR0 to cmpX(current, displaced). 992 cmpxchgd(/*flag=*/CCR0, 993 /*current_value=*/current_header, 994 /*compare_value=*/header, /*exchange_value=*/monitor, 995 /*where=*/object_mark_addr, 996 MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq, 997 MacroAssembler::cmpxchgx_hint_acquire_lock(), 998 noreg, 999 &cas_failed, 1000 /*check without membar and ldarx first*/true); 1001 1002 // If the compare-and-exchange succeeded, then we found an unlocked 1003 // object and we have now locked it. 1004 b(count_locking); 1005 bind(cas_failed); 1006 1007 // } else if (THREAD->is_lock_owned((address)displaced_header)) 1008 // // Simple recursive case. 1009 // monitor->lock()->set_displaced_header(nullptr); 1010 1011 // We did not see an unlocked object so try the fast recursive case. 1012 1013 // Check if owner is self by comparing the value in the markWord of object 1014 // (current_header) with the stack pointer. 1015 sub(current_header, current_header, R1_SP); 1016 1017 assert(os::vm_page_size() > 0xfff, "page size too small - change the constant"); 1018 load_const_optimized(tmp, ~(os::vm_page_size()-1) | markWord::lock_mask_in_place); 1019 1020 and_(R0/*==0?*/, current_header, tmp); 1021 // If condition is true we are done and hence we can store 0 in the displaced 1022 // header indicating it is a recursive lock. 1023 bne(CCR0, slow_case); 1024 std(R0/*==0!*/, mark_offset, monitor); 1025 b(count_locking); 1026 } 1027 1028 // } else { 1029 // // Slow path. 1030 // InterpreterRuntime::monitorenter(THREAD, monitor); 1031 1032 // None of the above fast optimizations worked so we have to get into the 1033 // slow case of monitor enter. 1034 bind(slow_case); 1035 if (LockingMode == LM_LIGHTWEIGHT) { 1036 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), object); 1037 } else { 1038 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor); 1039 } 1040 b(done); 1041 // } 1042 align(32, 12); 1043 bind(count_locking); 1044 inc_held_monitor_count(current_header /*tmp*/); 1045 bind(done); 1046 } 1047 } 1048 1049 // Unlocks an object. Used in monitorexit bytecode and remove_activation. 1050 // 1051 // Registers alive 1052 // monitor - Address of the BasicObjectLock to be used for locking, 1053 // which must be initialized with the object to lock. 1054 // 1055 // Throw IllegalMonitorException if object is not locked by current thread. 1056 void InterpreterMacroAssembler::unlock_object(Register monitor) { 1057 if (LockingMode == LM_MONITOR) { 1058 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1059 } else { 1060 1061 // template code (for LM_LEGACY): 1062 // 1063 // if ((displaced_header = monitor->displaced_header()) == nullptr) { 1064 // // Recursive unlock. Mark the monitor unlocked by setting the object field to null. 1065 // monitor->set_obj(nullptr); 1066 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1067 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1068 // monitor->set_obj(nullptr); 1069 // } else { 1070 // // Slow path. 1071 // InterpreterRuntime::monitorexit(monitor); 1072 // } 1073 1074 const Register object = R7_ARG5; 1075 const Register header = R8_ARG6; 1076 const Register object_mark_addr = R9_ARG7; 1077 const Register current_header = R10_ARG8; 1078 1079 Label free_slot; 1080 Label slow_case; 1081 1082 assert_different_registers(object, header, object_mark_addr, current_header); 1083 1084 if (LockingMode != LM_LIGHTWEIGHT) { 1085 // Test first if we are in the fast recursive case. 1086 ld(header, in_bytes(BasicObjectLock::lock_offset()) + 1087 BasicLock::displaced_header_offset_in_bytes(), monitor); 1088 1089 // If the displaced header is zero, we have a recursive unlock. 1090 cmpdi(CCR0, header, 0); 1091 beq(CCR0, free_slot); // recursive unlock 1092 } 1093 1094 // } else if (Atomic::cmpxchg(obj->mark_addr(), monitor, displaced_header) == monitor) { 1095 // // We swapped the unlocked mark in displaced_header into the object's mark word. 1096 // monitor->set_obj(nullptr); 1097 1098 // If we still have a lightweight lock, unlock the object and be done. 1099 1100 // The object address from the monitor is in object. 1101 ld(object, in_bytes(BasicObjectLock::obj_offset()), monitor); 1102 1103 if (LockingMode == LM_LIGHTWEIGHT) { 1104 // Check for non-symmetric locking. This is allowed by the spec and the interpreter 1105 // must handle it. 1106 Register tmp = current_header; 1107 // First check for lock-stack underflow. 1108 lwz(tmp, in_bytes(JavaThread::lock_stack_top_offset()), R16_thread); 1109 cmplwi(CCR0, tmp, (unsigned)LockStack::start_offset()); 1110 ble(CCR0, slow_case); 1111 // Then check if the top of the lock-stack matches the unlocked object. 1112 addi(tmp, tmp, -oopSize); 1113 ldx(tmp, tmp, R16_thread); 1114 cmpd(CCR0, tmp, object); 1115 bne(CCR0, slow_case); 1116 1117 ld(header, oopDesc::mark_offset_in_bytes(), object); 1118 andi_(R0, header, markWord::monitor_value); 1119 bne(CCR0, slow_case); 1120 lightweight_unlock(object, header, slow_case); 1121 } else { 1122 addi(object_mark_addr, object, oopDesc::mark_offset_in_bytes()); 1123 1124 // We have the displaced header in displaced_header. If the lock is still 1125 // lightweight, it will contain the monitor address and we'll store the 1126 // displaced header back into the object's mark word. 1127 // CmpxchgX sets CCR0 to cmpX(current, monitor). 1128 cmpxchgd(/*flag=*/CCR0, 1129 /*current_value=*/current_header, 1130 /*compare_value=*/monitor, /*exchange_value=*/header, 1131 /*where=*/object_mark_addr, 1132 MacroAssembler::MemBarRel, 1133 MacroAssembler::cmpxchgx_hint_release_lock(), 1134 noreg, 1135 &slow_case); 1136 } 1137 b(free_slot); 1138 1139 // } else { 1140 // // Slow path. 1141 // InterpreterRuntime::monitorexit(monitor); 1142 1143 // The lock has been converted into a heavy lock and hence 1144 // we need to get into the slow case. 1145 bind(slow_case); 1146 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor); 1147 // } 1148 1149 Label done; 1150 b(done); // Monitor register may be overwritten! Runtime has already freed the slot. 1151 1152 // Exchange worked, do monitor->set_obj(nullptr); 1153 align(32, 12); 1154 bind(free_slot); 1155 li(R0, 0); 1156 std(R0, in_bytes(BasicObjectLock::obj_offset()), monitor); 1157 dec_held_monitor_count(current_header /*tmp*/); 1158 bind(done); 1159 } 1160 } 1161 1162 // Load compiled (i2c) or interpreter entry when calling from interpreted and 1163 // do the call. Centralized so that all interpreter calls will do the same actions. 1164 // If jvmti single stepping is on for a thread we must not call compiled code. 1165 // 1166 // Input: 1167 // - Rtarget_method: method to call 1168 // - Rret_addr: return address 1169 // - 2 scratch regs 1170 // 1171 void InterpreterMacroAssembler::call_from_interpreter(Register Rtarget_method, Register Rret_addr, 1172 Register Rscratch1, Register Rscratch2) { 1173 assert_different_registers(Rscratch1, Rscratch2, Rtarget_method, Rret_addr); 1174 // Assume we want to go compiled if available. 1175 const Register Rtarget_addr = Rscratch1; 1176 const Register Rinterp_only = Rscratch2; 1177 1178 ld(Rtarget_addr, in_bytes(Method::from_interpreted_offset()), Rtarget_method); 1179 1180 if (JvmtiExport::can_post_interpreter_events()) { 1181 lwz(Rinterp_only, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1182 1183 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 1184 // compiled code in threads for which the event is enabled. Check here for 1185 // interp_only_mode if these events CAN be enabled. 1186 Label done; 1187 cmpwi(CCR0, Rinterp_only, 0); 1188 beq(CCR0, done); 1189 ld(Rtarget_addr, in_bytes(Method::interpreter_entry_offset()), Rtarget_method); 1190 align(32, 12); 1191 bind(done); 1192 } 1193 1194 #ifdef ASSERT 1195 { 1196 Label Lok; 1197 cmpdi(CCR0, Rtarget_addr, 0); 1198 bne(CCR0, Lok); 1199 stop("null entry point"); 1200 bind(Lok); 1201 } 1202 #endif // ASSERT 1203 1204 mr(R21_sender_SP, R1_SP); 1205 1206 // Calc a precise SP for the call. The SP value we calculated in 1207 // generate_fixed_frame() is based on the max_stack() value, so we would waste stack space 1208 // if esp is not max. Also, the i2c adapter extends the stack space without restoring 1209 // our pre-calced value, so repeating calls via i2c would result in stack overflow. 1210 // Since esp already points to an empty slot, we just have to sub 1 additional slot 1211 // to meet the abi scratch requirements. 1212 // The max_stack pointer will get restored by means of the GR_Lmax_stack local in 1213 // the return entry of the interpreter. 1214 addi(Rscratch2, R15_esp, Interpreter::stackElementSize - frame::top_ijava_frame_abi_size); 1215 clrrdi(Rscratch2, Rscratch2, exact_log2(frame::alignment_in_bytes)); // round towards smaller address 1216 resize_frame_absolute(Rscratch2, Rscratch2, R0); 1217 1218 mr_if_needed(R19_method, Rtarget_method); 1219 mtctr(Rtarget_addr); 1220 mtlr(Rret_addr); 1221 1222 save_interpreter_state(Rscratch2); 1223 #ifdef ASSERT 1224 ld(Rscratch1, _ijava_state_neg(top_frame_sp), Rscratch2); // Rscratch2 contains fp 1225 cmpd(CCR0, R21_sender_SP, Rscratch1); 1226 asm_assert_eq("top_frame_sp incorrect"); 1227 #endif 1228 1229 bctr(); 1230 } 1231 1232 // Set the method data pointer for the current bcp. 1233 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1234 assert(ProfileInterpreter, "must be profiling interpreter"); 1235 Label get_continue; 1236 ld(R28_mdx, in_bytes(Method::method_data_offset()), R19_method); 1237 test_method_data_pointer(get_continue); 1238 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), R19_method, R14_bcp); 1239 1240 addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset())); 1241 add(R28_mdx, R28_mdx, R3_RET); 1242 bind(get_continue); 1243 } 1244 1245 // Test ImethodDataPtr. If it is null, continue at the specified label. 1246 void InterpreterMacroAssembler::test_method_data_pointer(Label& zero_continue) { 1247 assert(ProfileInterpreter, "must be profiling interpreter"); 1248 cmpdi(CCR0, R28_mdx, 0); 1249 beq(CCR0, zero_continue); 1250 } 1251 1252 void InterpreterMacroAssembler::verify_method_data_pointer() { 1253 assert(ProfileInterpreter, "must be profiling interpreter"); 1254 #ifdef ASSERT 1255 Label verify_continue; 1256 test_method_data_pointer(verify_continue); 1257 1258 // If the mdp is valid, it will point to a DataLayout header which is 1259 // consistent with the bcp. The converse is highly probable also. 1260 lhz(R11_scratch1, in_bytes(DataLayout::bci_offset()), R28_mdx); 1261 ld(R12_scratch2, in_bytes(Method::const_offset()), R19_method); 1262 addi(R11_scratch1, R11_scratch1, in_bytes(ConstMethod::codes_offset())); 1263 add(R11_scratch1, R12_scratch2, R12_scratch2); 1264 cmpd(CCR0, R11_scratch1, R14_bcp); 1265 beq(CCR0, verify_continue); 1266 1267 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp ), R19_method, R14_bcp, R28_mdx); 1268 1269 bind(verify_continue); 1270 #endif 1271 } 1272 1273 // Store a value at some constant offset from the method data pointer. 1274 void InterpreterMacroAssembler::set_mdp_data_at(int constant, Register value) { 1275 assert(ProfileInterpreter, "must be profiling interpreter"); 1276 1277 std(value, constant, R28_mdx); 1278 } 1279 1280 // Increment the value at some constant offset from the method data pointer. 1281 void InterpreterMacroAssembler::increment_mdp_data_at(int constant, 1282 Register counter_addr, 1283 Register Rbumped_count, 1284 bool decrement) { 1285 // Locate the counter at a fixed offset from the mdp: 1286 addi(counter_addr, R28_mdx, constant); 1287 increment_mdp_data_at(counter_addr, Rbumped_count, decrement); 1288 } 1289 1290 // Increment the value at some non-fixed (reg + constant) offset from 1291 // the method data pointer. 1292 void InterpreterMacroAssembler::increment_mdp_data_at(Register reg, 1293 int constant, 1294 Register scratch, 1295 Register Rbumped_count, 1296 bool decrement) { 1297 // Add the constant to reg to get the offset. 1298 add(scratch, R28_mdx, reg); 1299 // Then calculate the counter address. 1300 addi(scratch, scratch, constant); 1301 increment_mdp_data_at(scratch, Rbumped_count, decrement); 1302 } 1303 1304 void InterpreterMacroAssembler::increment_mdp_data_at(Register counter_addr, 1305 Register Rbumped_count, 1306 bool decrement) { 1307 assert(ProfileInterpreter, "must be profiling interpreter"); 1308 1309 // Load the counter. 1310 ld(Rbumped_count, 0, counter_addr); 1311 1312 if (decrement) { 1313 // Decrement the register. Set condition codes. 1314 addi(Rbumped_count, Rbumped_count, - DataLayout::counter_increment); 1315 // Store the decremented counter, if it is still negative. 1316 std(Rbumped_count, 0, counter_addr); 1317 // Note: add/sub overflow check are not ported, since 64 bit 1318 // calculation should never overflow. 1319 } else { 1320 // Increment the register. Set carry flag. 1321 addi(Rbumped_count, Rbumped_count, DataLayout::counter_increment); 1322 // Store the incremented counter. 1323 std(Rbumped_count, 0, counter_addr); 1324 } 1325 } 1326 1327 // Set a flag value at the current method data pointer position. 1328 void InterpreterMacroAssembler::set_mdp_flag_at(int flag_constant, 1329 Register scratch) { 1330 assert(ProfileInterpreter, "must be profiling interpreter"); 1331 // Load the data header. 1332 lbz(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1333 // Set the flag. 1334 ori(scratch, scratch, flag_constant); 1335 // Store the modified header. 1336 stb(scratch, in_bytes(DataLayout::flags_offset()), R28_mdx); 1337 } 1338 1339 // Test the location at some offset from the method data pointer. 1340 // If it is not equal to value, branch to the not_equal_continue Label. 1341 void InterpreterMacroAssembler::test_mdp_data_at(int offset, 1342 Register value, 1343 Label& not_equal_continue, 1344 Register test_out) { 1345 assert(ProfileInterpreter, "must be profiling interpreter"); 1346 1347 ld(test_out, offset, R28_mdx); 1348 cmpd(CCR0, value, test_out); 1349 bne(CCR0, not_equal_continue); 1350 } 1351 1352 // Update the method data pointer by the displacement located at some fixed 1353 // offset from the method data pointer. 1354 void InterpreterMacroAssembler::update_mdp_by_offset(int offset_of_disp, 1355 Register scratch) { 1356 assert(ProfileInterpreter, "must be profiling interpreter"); 1357 1358 ld(scratch, offset_of_disp, R28_mdx); 1359 add(R28_mdx, scratch, R28_mdx); 1360 } 1361 1362 // Update the method data pointer by the displacement located at the 1363 // offset (reg + offset_of_disp). 1364 void InterpreterMacroAssembler::update_mdp_by_offset(Register reg, 1365 int offset_of_disp, 1366 Register scratch) { 1367 assert(ProfileInterpreter, "must be profiling interpreter"); 1368 1369 add(scratch, reg, R28_mdx); 1370 ld(scratch, offset_of_disp, scratch); 1371 add(R28_mdx, scratch, R28_mdx); 1372 } 1373 1374 // Update the method data pointer by a simple constant displacement. 1375 void InterpreterMacroAssembler::update_mdp_by_constant(int constant) { 1376 assert(ProfileInterpreter, "must be profiling interpreter"); 1377 addi(R28_mdx, R28_mdx, constant); 1378 } 1379 1380 // Update the method data pointer for a _ret bytecode whose target 1381 // was not among our cached targets. 1382 void InterpreterMacroAssembler::update_mdp_for_ret(TosState state, 1383 Register return_bci) { 1384 assert(ProfileInterpreter, "must be profiling interpreter"); 1385 1386 push(state); 1387 assert(return_bci->is_nonvolatile(), "need to protect return_bci"); 1388 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), return_bci); 1389 pop(state); 1390 } 1391 1392 // Increments the backedge counter. 1393 // Returns backedge counter + invocation counter in Rdst. 1394 void InterpreterMacroAssembler::increment_backedge_counter(const Register Rcounters, const Register Rdst, 1395 const Register Rtmp1, Register Rscratch) { 1396 assert(UseCompiler, "incrementing must be useful"); 1397 assert_different_registers(Rdst, Rtmp1); 1398 const Register invocation_counter = Rtmp1; 1399 const Register counter = Rdst; 1400 // TODO: PPC port: assert(4 == InvocationCounter::sz_counter(), "unexpected field size."); 1401 1402 // Load backedge counter. 1403 lwz(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1404 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1405 // Load invocation counter. 1406 lwz(invocation_counter, in_bytes(MethodCounters::invocation_counter_offset()) + 1407 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1408 1409 // Add the delta to the backedge counter. 1410 addi(counter, counter, InvocationCounter::count_increment); 1411 1412 // Mask the invocation counter. 1413 andi(invocation_counter, invocation_counter, InvocationCounter::count_mask_value); 1414 1415 // Store new counter value. 1416 stw(counter, in_bytes(MethodCounters::backedge_counter_offset()) + 1417 in_bytes(InvocationCounter::counter_offset()), Rcounters); 1418 // Return invocation counter + backedge counter. 1419 add(counter, counter, invocation_counter); 1420 } 1421 1422 // Count a taken branch in the bytecodes. 1423 void InterpreterMacroAssembler::profile_taken_branch(Register scratch, Register bumped_count) { 1424 if (ProfileInterpreter) { 1425 Label profile_continue; 1426 1427 // If no method data exists, go to profile_continue. 1428 test_method_data_pointer(profile_continue); 1429 1430 // We are taking a branch. Increment the taken count. 1431 increment_mdp_data_at(in_bytes(JumpData::taken_offset()), scratch, bumped_count); 1432 1433 // The method data pointer needs to be updated to reflect the new target. 1434 update_mdp_by_offset(in_bytes(JumpData::displacement_offset()), scratch); 1435 bind (profile_continue); 1436 } 1437 } 1438 1439 // Count a not-taken branch in the bytecodes. 1440 void InterpreterMacroAssembler::profile_not_taken_branch(Register scratch1, Register scratch2) { 1441 if (ProfileInterpreter) { 1442 Label profile_continue; 1443 1444 // If no method data exists, go to profile_continue. 1445 test_method_data_pointer(profile_continue); 1446 1447 // We are taking a branch. Increment the not taken count. 1448 increment_mdp_data_at(in_bytes(BranchData::not_taken_offset()), scratch1, scratch2); 1449 1450 // The method data pointer needs to be updated to correspond to the 1451 // next bytecode. 1452 update_mdp_by_constant(in_bytes(BranchData::branch_data_size())); 1453 bind (profile_continue); 1454 } 1455 } 1456 1457 // Count a non-virtual call in the bytecodes. 1458 void InterpreterMacroAssembler::profile_call(Register scratch1, Register scratch2) { 1459 if (ProfileInterpreter) { 1460 Label profile_continue; 1461 1462 // If no method data exists, go to profile_continue. 1463 test_method_data_pointer(profile_continue); 1464 1465 // We are making a call. Increment the count. 1466 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1467 1468 // The method data pointer needs to be updated to reflect the new target. 1469 update_mdp_by_constant(in_bytes(CounterData::counter_data_size())); 1470 bind (profile_continue); 1471 } 1472 } 1473 1474 // Count a final call in the bytecodes. 1475 void InterpreterMacroAssembler::profile_final_call(Register scratch1, Register scratch2) { 1476 if (ProfileInterpreter) { 1477 Label profile_continue; 1478 1479 // If no method data exists, go to profile_continue. 1480 test_method_data_pointer(profile_continue); 1481 1482 // We are making a call. Increment the count. 1483 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1484 1485 // The method data pointer needs to be updated to reflect the new target. 1486 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1487 bind (profile_continue); 1488 } 1489 } 1490 1491 // Count a virtual call in the bytecodes. 1492 void InterpreterMacroAssembler::profile_virtual_call(Register Rreceiver, 1493 Register Rscratch1, 1494 Register Rscratch2, 1495 bool receiver_can_be_null) { 1496 if (!ProfileInterpreter) { return; } 1497 Label profile_continue; 1498 1499 // If no method data exists, go to profile_continue. 1500 test_method_data_pointer(profile_continue); 1501 1502 Label skip_receiver_profile; 1503 if (receiver_can_be_null) { 1504 Label not_null; 1505 cmpdi(CCR0, Rreceiver, 0); 1506 bne(CCR0, not_null); 1507 // We are making a call. Increment the count for null receiver. 1508 increment_mdp_data_at(in_bytes(CounterData::count_offset()), Rscratch1, Rscratch2); 1509 b(skip_receiver_profile); 1510 bind(not_null); 1511 } 1512 1513 // Record the receiver type. 1514 record_klass_in_profile(Rreceiver, Rscratch1, Rscratch2, true); 1515 bind(skip_receiver_profile); 1516 1517 // The method data pointer needs to be updated to reflect the new target. 1518 update_mdp_by_constant(in_bytes(VirtualCallData::virtual_call_data_size())); 1519 bind (profile_continue); 1520 } 1521 1522 void InterpreterMacroAssembler::profile_typecheck(Register Rklass, Register Rscratch1, Register Rscratch2) { 1523 if (ProfileInterpreter) { 1524 Label profile_continue; 1525 1526 // If no method data exists, go to profile_continue. 1527 test_method_data_pointer(profile_continue); 1528 1529 int mdp_delta = in_bytes(BitData::bit_data_size()); 1530 if (TypeProfileCasts) { 1531 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1532 1533 // Record the object type. 1534 record_klass_in_profile(Rklass, Rscratch1, Rscratch2, false); 1535 } 1536 1537 // The method data pointer needs to be updated. 1538 update_mdp_by_constant(mdp_delta); 1539 1540 bind (profile_continue); 1541 } 1542 } 1543 1544 void InterpreterMacroAssembler::profile_typecheck_failed(Register Rscratch1, Register Rscratch2) { 1545 if (ProfileInterpreter && TypeProfileCasts) { 1546 Label profile_continue; 1547 1548 // If no method data exists, go to profile_continue. 1549 test_method_data_pointer(profile_continue); 1550 1551 int count_offset = in_bytes(CounterData::count_offset()); 1552 // Back up the address, since we have already bumped the mdp. 1553 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1554 1555 // *Decrement* the counter. We expect to see zero or small negatives. 1556 increment_mdp_data_at(count_offset, Rscratch1, Rscratch2, true); 1557 1558 bind (profile_continue); 1559 } 1560 } 1561 1562 // Count a ret in the bytecodes. 1563 void InterpreterMacroAssembler::profile_ret(TosState state, Register return_bci, 1564 Register scratch1, Register scratch2) { 1565 if (ProfileInterpreter) { 1566 Label profile_continue; 1567 uint row; 1568 1569 // If no method data exists, go to profile_continue. 1570 test_method_data_pointer(profile_continue); 1571 1572 // Update the total ret count. 1573 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2 ); 1574 1575 for (row = 0; row < RetData::row_limit(); row++) { 1576 Label next_test; 1577 1578 // See if return_bci is equal to bci[n]: 1579 test_mdp_data_at(in_bytes(RetData::bci_offset(row)), return_bci, next_test, scratch1); 1580 1581 // return_bci is equal to bci[n]. Increment the count. 1582 increment_mdp_data_at(in_bytes(RetData::bci_count_offset(row)), scratch1, scratch2); 1583 1584 // The method data pointer needs to be updated to reflect the new target. 1585 update_mdp_by_offset(in_bytes(RetData::bci_displacement_offset(row)), scratch1); 1586 b(profile_continue); 1587 bind(next_test); 1588 } 1589 1590 update_mdp_for_ret(state, return_bci); 1591 1592 bind (profile_continue); 1593 } 1594 } 1595 1596 // Count the default case of a switch construct. 1597 void InterpreterMacroAssembler::profile_switch_default(Register scratch1, Register scratch2) { 1598 if (ProfileInterpreter) { 1599 Label profile_continue; 1600 1601 // If no method data exists, go to profile_continue. 1602 test_method_data_pointer(profile_continue); 1603 1604 // Update the default case count 1605 increment_mdp_data_at(in_bytes(MultiBranchData::default_count_offset()), 1606 scratch1, scratch2); 1607 1608 // The method data pointer needs to be updated. 1609 update_mdp_by_offset(in_bytes(MultiBranchData::default_displacement_offset()), 1610 scratch1); 1611 1612 bind (profile_continue); 1613 } 1614 } 1615 1616 // Count the index'th case of a switch construct. 1617 void InterpreterMacroAssembler::profile_switch_case(Register index, 1618 Register scratch1, 1619 Register scratch2, 1620 Register scratch3) { 1621 if (ProfileInterpreter) { 1622 assert_different_registers(index, scratch1, scratch2, scratch3); 1623 Label profile_continue; 1624 1625 // If no method data exists, go to profile_continue. 1626 test_method_data_pointer(profile_continue); 1627 1628 // Build the base (index * per_case_size_in_bytes()) + case_array_offset_in_bytes(). 1629 li(scratch3, in_bytes(MultiBranchData::case_array_offset())); 1630 1631 assert (in_bytes(MultiBranchData::per_case_size()) == 16, "so that shladd works"); 1632 sldi(scratch1, index, exact_log2(in_bytes(MultiBranchData::per_case_size()))); 1633 add(scratch1, scratch1, scratch3); 1634 1635 // Update the case count. 1636 increment_mdp_data_at(scratch1, in_bytes(MultiBranchData::relative_count_offset()), scratch2, scratch3); 1637 1638 // The method data pointer needs to be updated. 1639 update_mdp_by_offset(scratch1, in_bytes(MultiBranchData::relative_displacement_offset()), scratch2); 1640 1641 bind (profile_continue); 1642 } 1643 } 1644 1645 void InterpreterMacroAssembler::profile_null_seen(Register Rscratch1, Register Rscratch2) { 1646 if (ProfileInterpreter) { 1647 assert_different_registers(Rscratch1, Rscratch2); 1648 Label profile_continue; 1649 1650 // If no method data exists, go to profile_continue. 1651 test_method_data_pointer(profile_continue); 1652 1653 set_mdp_flag_at(BitData::null_seen_byte_constant(), Rscratch1); 1654 1655 // The method data pointer needs to be updated. 1656 int mdp_delta = in_bytes(BitData::bit_data_size()); 1657 if (TypeProfileCasts) { 1658 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1659 } 1660 update_mdp_by_constant(mdp_delta); 1661 1662 bind (profile_continue); 1663 } 1664 } 1665 1666 void InterpreterMacroAssembler::record_klass_in_profile(Register Rreceiver, 1667 Register Rscratch1, Register Rscratch2, 1668 bool is_virtual_call) { 1669 assert(ProfileInterpreter, "must be profiling"); 1670 assert_different_registers(Rreceiver, Rscratch1, Rscratch2); 1671 1672 Label done; 1673 record_klass_in_profile_helper(Rreceiver, Rscratch1, Rscratch2, 0, done, is_virtual_call); 1674 bind (done); 1675 } 1676 1677 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1678 Register receiver, Register scratch1, Register scratch2, 1679 int start_row, Label& done, bool is_virtual_call) { 1680 if (TypeProfileWidth == 0) { 1681 if (is_virtual_call) { 1682 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1683 } 1684 return; 1685 } 1686 1687 int last_row = VirtualCallData::row_limit() - 1; 1688 assert(start_row <= last_row, "must be work left to do"); 1689 // Test this row for both the receiver and for null. 1690 // Take any of three different outcomes: 1691 // 1. found receiver => increment count and goto done 1692 // 2. found null => keep looking for case 1, maybe allocate this cell 1693 // 3. found something else => keep looking for cases 1 and 2 1694 // Case 3 is handled by a recursive call. 1695 for (int row = start_row; row <= last_row; row++) { 1696 Label next_test; 1697 bool test_for_null_also = (row == start_row); 1698 1699 // See if the receiver is receiver[n]. 1700 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row)); 1701 test_mdp_data_at(recvr_offset, receiver, next_test, scratch1); 1702 // delayed()->tst(scratch); 1703 1704 // The receiver is receiver[n]. Increment count[n]. 1705 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row)); 1706 increment_mdp_data_at(count_offset, scratch1, scratch2); 1707 b(done); 1708 bind(next_test); 1709 1710 if (test_for_null_also) { 1711 Label found_null; 1712 // Failed the equality check on receiver[n]... Test for null. 1713 if (start_row == last_row) { 1714 // The only thing left to do is handle the null case. 1715 if (is_virtual_call) { 1716 // Scratch1 contains test_out from test_mdp_data_at. 1717 cmpdi(CCR0, scratch1, 0); 1718 beq(CCR0, found_null); 1719 // Receiver did not match any saved receiver and there is no empty row for it. 1720 // Increment total counter to indicate polymorphic case. 1721 increment_mdp_data_at(in_bytes(CounterData::count_offset()), scratch1, scratch2); 1722 b(done); 1723 bind(found_null); 1724 } else { 1725 cmpdi(CCR0, scratch1, 0); 1726 bne(CCR0, done); 1727 } 1728 break; 1729 } 1730 // Since null is rare, make it be the branch-taken case. 1731 cmpdi(CCR0, scratch1, 0); 1732 beq(CCR0, found_null); 1733 1734 // Put all the "Case 3" tests here. 1735 record_klass_in_profile_helper(receiver, scratch1, scratch2, start_row + 1, done, is_virtual_call); 1736 1737 // Found a null. Keep searching for a matching receiver, 1738 // but remember that this is an empty (unused) slot. 1739 bind(found_null); 1740 } 1741 } 1742 1743 // In the fall-through case, we found no matching receiver, but we 1744 // observed the receiver[start_row] is null. 1745 1746 // Fill in the receiver field and increment the count. 1747 int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row)); 1748 set_mdp_data_at(recvr_offset, receiver); 1749 int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row)); 1750 li(scratch1, DataLayout::counter_increment); 1751 set_mdp_data_at(count_offset, scratch1); 1752 if (start_row > 0) { 1753 b(done); 1754 } 1755 } 1756 1757 // Argument and return type profilig. 1758 // kills: tmp, tmp2, R0, CR0, CR1 1759 void InterpreterMacroAssembler::profile_obj_type(Register obj, Register mdo_addr_base, 1760 RegisterOrConstant mdo_addr_offs, 1761 Register tmp, Register tmp2) { 1762 Label do_nothing, do_update; 1763 1764 // tmp2 = obj is allowed 1765 assert_different_registers(obj, mdo_addr_base, tmp, R0); 1766 assert_different_registers(tmp2, mdo_addr_base, tmp, R0); 1767 const Register klass = tmp2; 1768 1769 verify_oop(obj); 1770 1771 ld(tmp, mdo_addr_offs, mdo_addr_base); 1772 1773 // Set null_seen if obj is 0. 1774 cmpdi(CCR0, obj, 0); 1775 ori(R0, tmp, TypeEntries::null_seen); 1776 beq(CCR0, do_update); 1777 1778 load_klass(klass, obj); 1779 1780 clrrdi(R0, tmp, exact_log2(-TypeEntries::type_klass_mask)); 1781 // Basically same as andi(R0, tmp, TypeEntries::type_klass_mask); 1782 cmpd(CCR1, R0, klass); 1783 // Klass seen before, nothing to do (regardless of unknown bit). 1784 //beq(CCR1, do_nothing); 1785 1786 andi_(R0, tmp, TypeEntries::type_unknown); 1787 // Already unknown. Nothing to do anymore. 1788 //bne(CCR0, do_nothing); 1789 crorc(CCR0, Assembler::equal, CCR1, Assembler::equal); // cr0 eq = cr1 eq or cr0 ne 1790 beq(CCR0, do_nothing); 1791 1792 clrrdi_(R0, tmp, exact_log2(-TypeEntries::type_mask)); 1793 orr(R0, klass, tmp); // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 1794 beq(CCR0, do_update); // First time here. Set profile type. 1795 1796 // Different than before. Cannot keep accurate profile. 1797 ori(R0, tmp, TypeEntries::type_unknown); 1798 1799 bind(do_update); 1800 // update profile 1801 std(R0, mdo_addr_offs, mdo_addr_base); 1802 1803 align(32, 12); 1804 bind(do_nothing); 1805 } 1806 1807 void InterpreterMacroAssembler::profile_arguments_type(Register callee, 1808 Register tmp1, Register tmp2, 1809 bool is_virtual) { 1810 if (!ProfileInterpreter) { 1811 return; 1812 } 1813 1814 assert_different_registers(callee, tmp1, tmp2, R28_mdx); 1815 1816 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1817 Label profile_continue; 1818 1819 test_method_data_pointer(profile_continue); 1820 1821 int off_to_start = is_virtual ? 1822 in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1823 1824 lbz(tmp1, in_bytes(DataLayout::tag_offset()) - off_to_start, R28_mdx); 1825 cmpwi(CCR0, tmp1, is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 1826 bne(CCR0, profile_continue); 1827 1828 if (MethodData::profile_arguments()) { 1829 Label done; 1830 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 1831 addi(R28_mdx, R28_mdx, off_to_args); 1832 1833 for (int i = 0; i < TypeProfileArgsLimit; i++) { 1834 if (i > 0 || MethodData::profile_return()) { 1835 // If return value type is profiled we may have no argument to profile. 1836 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1837 cmpdi(CCR0, tmp1, (i+1)*TypeStackSlotEntries::per_arg_count()); 1838 addi(tmp1, tmp1, -i*TypeStackSlotEntries::per_arg_count()); 1839 blt(CCR0, done); 1840 } 1841 ld(tmp1, in_bytes(Method::const_offset()), callee); 1842 lhz(tmp1, in_bytes(ConstMethod::size_of_parameters_offset()), tmp1); 1843 // Stack offset o (zero based) from the start of the argument 1844 // list, for n arguments translates into offset n - o - 1 from 1845 // the end of the argument list. But there's an extra slot at 1846 // the top of the stack. So the offset is n - o from Lesp. 1847 ld(tmp2, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args, R28_mdx); 1848 subf(tmp1, tmp2, tmp1); 1849 1850 sldi(tmp1, tmp1, Interpreter::logStackElementSize); 1851 ldx(tmp1, tmp1, R15_esp); 1852 1853 profile_obj_type(tmp1, R28_mdx, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args, tmp2, tmp1); 1854 1855 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1856 addi(R28_mdx, R28_mdx, to_add); 1857 off_to_args += to_add; 1858 } 1859 1860 if (MethodData::profile_return()) { 1861 ld(tmp1, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, R28_mdx); 1862 addi(tmp1, tmp1, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1863 } 1864 1865 bind(done); 1866 1867 if (MethodData::profile_return()) { 1868 // We're right after the type profile for the last 1869 // argument. tmp1 is the number of cells left in the 1870 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1871 // if there's a return to profile. 1872 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), 1873 "can't move past ret type"); 1874 sldi(tmp1, tmp1, exact_log2(DataLayout::cell_size)); 1875 add(R28_mdx, tmp1, R28_mdx); 1876 } 1877 } else { 1878 assert(MethodData::profile_return(), "either profile call args or call ret"); 1879 update_mdp_by_constant(in_bytes(TypeEntriesAtCall::return_only_size())); 1880 } 1881 1882 // Mdp points right after the end of the 1883 // CallTypeData/VirtualCallTypeData, right after the cells for the 1884 // return value type if there's one. 1885 align(32, 12); 1886 bind(profile_continue); 1887 } 1888 } 1889 1890 void InterpreterMacroAssembler::profile_return_type(Register ret, Register tmp1, Register tmp2) { 1891 assert_different_registers(ret, tmp1, tmp2); 1892 if (ProfileInterpreter && MethodData::profile_return()) { 1893 Label profile_continue; 1894 1895 test_method_data_pointer(profile_continue); 1896 1897 if (MethodData::profile_return_jsr292_only()) { 1898 // If we don't profile all invoke bytecodes we must make sure 1899 // it's a bytecode we indeed profile. We can't go back to the 1900 // beginning of the ProfileData we intend to update to check its 1901 // type because we're right after it and we don't known its 1902 // length. 1903 lbz(tmp1, 0, R14_bcp); 1904 lbz(tmp2, in_bytes(Method::intrinsic_id_offset()), R19_method); 1905 cmpwi(CCR0, tmp1, Bytecodes::_invokedynamic); 1906 cmpwi(CCR1, tmp1, Bytecodes::_invokehandle); 1907 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1908 cmpwi(CCR1, tmp2, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1909 cror(CCR0, Assembler::equal, CCR1, Assembler::equal); 1910 bne(CCR0, profile_continue); 1911 } 1912 1913 profile_obj_type(ret, R28_mdx, -in_bytes(ReturnTypeEntry::size()), tmp1, tmp2); 1914 1915 align(32, 12); 1916 bind(profile_continue); 1917 } 1918 } 1919 1920 void InterpreterMacroAssembler::profile_parameters_type(Register tmp1, Register tmp2, 1921 Register tmp3, Register tmp4) { 1922 if (ProfileInterpreter && MethodData::profile_parameters()) { 1923 Label profile_continue, done; 1924 1925 test_method_data_pointer(profile_continue); 1926 1927 // Load the offset of the area within the MDO used for 1928 // parameters. If it's negative we're not profiling any parameters. 1929 lwz(tmp1, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()), R28_mdx); 1930 cmpwi(CCR0, tmp1, 0); 1931 blt(CCR0, profile_continue); 1932 1933 // Compute a pointer to the area for parameters from the offset 1934 // and move the pointer to the slot for the last 1935 // parameters. Collect profiling from last parameter down. 1936 // mdo start + parameters offset + array length - 1 1937 1938 // Pointer to the parameter area in the MDO. 1939 const Register mdp = tmp1; 1940 add(mdp, tmp1, R28_mdx); 1941 1942 // Offset of the current profile entry to update. 1943 const Register entry_offset = tmp2; 1944 // entry_offset = array len in number of cells 1945 ld(entry_offset, in_bytes(ArrayData::array_len_offset()), mdp); 1946 1947 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1948 assert(off_base % DataLayout::cell_size == 0, "should be a number of cells"); 1949 1950 // entry_offset (number of cells) = array len - size of 1 entry + offset of the stack slot field 1951 addi(entry_offset, entry_offset, -TypeStackSlotEntries::per_arg_count() + (off_base / DataLayout::cell_size)); 1952 // entry_offset in bytes 1953 sldi(entry_offset, entry_offset, exact_log2(DataLayout::cell_size)); 1954 1955 Label loop; 1956 align(32, 12); 1957 bind(loop); 1958 1959 // Load offset on the stack from the slot for this parameter. 1960 ld(tmp3, entry_offset, mdp); 1961 sldi(tmp3, tmp3, Interpreter::logStackElementSize); 1962 neg(tmp3, tmp3); 1963 // Read the parameter from the local area. 1964 ldx(tmp3, tmp3, R18_locals); 1965 1966 // Make entry_offset now point to the type field for this parameter. 1967 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1968 assert(type_base > off_base, "unexpected"); 1969 addi(entry_offset, entry_offset, type_base - off_base); 1970 1971 // Profile the parameter. 1972 profile_obj_type(tmp3, mdp, entry_offset, tmp4, tmp3); 1973 1974 // Go to next parameter. 1975 int delta = TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size + (type_base - off_base); 1976 cmpdi(CCR0, entry_offset, off_base + delta); 1977 addi(entry_offset, entry_offset, -delta); 1978 bge(CCR0, loop); 1979 1980 align(32, 12); 1981 bind(profile_continue); 1982 } 1983 } 1984 1985 // Add a monitor (see frame_ppc.hpp). 1986 void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty, Register Rtemp1, Register Rtemp2) { 1987 1988 // Very-local scratch registers. 1989 const Register esp = Rtemp1; 1990 const Register slot = Rtemp2; 1991 1992 // Extracted monitor_size. 1993 int monitor_size = frame::interpreter_frame_monitor_size_in_bytes(); 1994 assert(Assembler::is_aligned((unsigned int)monitor_size, 1995 (unsigned int)frame::alignment_in_bytes), 1996 "size of a monitor must respect alignment of SP"); 1997 1998 resize_frame(-monitor_size, /*temp*/esp); // Allocate space for new monitor 1999 std(R1_SP, _ijava_state_neg(top_frame_sp), esp); // esp contains fp 2000 2001 // Shuffle expression stack down. Recall that stack_base points 2002 // just above the new expression stack bottom. Old_tos and new_tos 2003 // are used to scan thru the old and new expression stacks. 2004 if (!stack_is_empty) { 2005 Label copy_slot, copy_slot_finished; 2006 const Register n_slots = slot; 2007 2008 addi(esp, R15_esp, Interpreter::stackElementSize); // Point to first element (pre-pushed stack). 2009 subf(n_slots, esp, R26_monitor); 2010 srdi_(n_slots, n_slots, LogBytesPerWord); // Compute number of slots to copy. 2011 assert(LogBytesPerWord == 3, "conflicts assembler instructions"); 2012 beq(CCR0, copy_slot_finished); // Nothing to copy. 2013 2014 mtctr(n_slots); 2015 2016 // loop 2017 bind(copy_slot); 2018 ld(slot, 0, esp); // Move expression stack down. 2019 std(slot, -monitor_size, esp); // distance = monitor_size 2020 addi(esp, esp, BytesPerWord); 2021 bdnz(copy_slot); 2022 2023 bind(copy_slot_finished); 2024 } 2025 2026 addi(R15_esp, R15_esp, -monitor_size); 2027 addi(R26_monitor, R26_monitor, -monitor_size); 2028 2029 // Restart interpreter 2030 } 2031 2032 // ============================================================================ 2033 // Java locals access 2034 2035 // Load a local variable at index in Rindex into register Rdst_value. 2036 // Also puts address of local into Rdst_address as a service. 2037 // Kills: 2038 // - Rdst_value 2039 // - Rdst_address 2040 void InterpreterMacroAssembler::load_local_int(Register Rdst_value, Register Rdst_address, Register Rindex) { 2041 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2042 subf(Rdst_address, Rdst_address, R18_locals); 2043 lwz(Rdst_value, 0, Rdst_address); 2044 } 2045 2046 // Load a local variable at index in Rindex into register Rdst_value. 2047 // Also puts address of local into Rdst_address as a service. 2048 // Kills: 2049 // - Rdst_value 2050 // - Rdst_address 2051 void InterpreterMacroAssembler::load_local_long(Register Rdst_value, Register Rdst_address, Register Rindex) { 2052 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2053 subf(Rdst_address, Rdst_address, R18_locals); 2054 ld(Rdst_value, -8, Rdst_address); 2055 } 2056 2057 // Load a local variable at index in Rindex into register Rdst_value. 2058 // Also puts address of local into Rdst_address as a service. 2059 // Input: 2060 // - Rindex: slot nr of local variable 2061 // Kills: 2062 // - Rdst_value 2063 // - Rdst_address 2064 void InterpreterMacroAssembler::load_local_ptr(Register Rdst_value, 2065 Register Rdst_address, 2066 Register Rindex) { 2067 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2068 subf(Rdst_address, Rdst_address, R18_locals); 2069 ld(Rdst_value, 0, Rdst_address); 2070 } 2071 2072 // Load a local variable at index in Rindex into register Rdst_value. 2073 // Also puts address of local into Rdst_address as a service. 2074 // Kills: 2075 // - Rdst_value 2076 // - Rdst_address 2077 void InterpreterMacroAssembler::load_local_float(FloatRegister Rdst_value, 2078 Register Rdst_address, 2079 Register Rindex) { 2080 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2081 subf(Rdst_address, Rdst_address, R18_locals); 2082 lfs(Rdst_value, 0, Rdst_address); 2083 } 2084 2085 // Load a local variable at index in Rindex into register Rdst_value. 2086 // Also puts address of local into Rdst_address as a service. 2087 // Kills: 2088 // - Rdst_value 2089 // - Rdst_address 2090 void InterpreterMacroAssembler::load_local_double(FloatRegister Rdst_value, 2091 Register Rdst_address, 2092 Register Rindex) { 2093 sldi(Rdst_address, Rindex, Interpreter::logStackElementSize); 2094 subf(Rdst_address, Rdst_address, R18_locals); 2095 lfd(Rdst_value, -8, Rdst_address); 2096 } 2097 2098 // Store an int value at local variable slot Rindex. 2099 // Kills: 2100 // - Rindex 2101 void InterpreterMacroAssembler::store_local_int(Register Rvalue, Register Rindex) { 2102 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2103 subf(Rindex, Rindex, R18_locals); 2104 stw(Rvalue, 0, Rindex); 2105 } 2106 2107 // Store a long value at local variable slot Rindex. 2108 // Kills: 2109 // - Rindex 2110 void InterpreterMacroAssembler::store_local_long(Register Rvalue, Register Rindex) { 2111 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2112 subf(Rindex, Rindex, R18_locals); 2113 std(Rvalue, -8, Rindex); 2114 } 2115 2116 // Store an oop value at local variable slot Rindex. 2117 // Kills: 2118 // - Rindex 2119 void InterpreterMacroAssembler::store_local_ptr(Register Rvalue, Register Rindex) { 2120 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2121 subf(Rindex, Rindex, R18_locals); 2122 std(Rvalue, 0, Rindex); 2123 } 2124 2125 // Store an int value at local variable slot Rindex. 2126 // Kills: 2127 // - Rindex 2128 void InterpreterMacroAssembler::store_local_float(FloatRegister Rvalue, Register Rindex) { 2129 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2130 subf(Rindex, Rindex, R18_locals); 2131 stfs(Rvalue, 0, Rindex); 2132 } 2133 2134 // Store an int value at local variable slot Rindex. 2135 // Kills: 2136 // - Rindex 2137 void InterpreterMacroAssembler::store_local_double(FloatRegister Rvalue, Register Rindex) { 2138 sldi(Rindex, Rindex, Interpreter::logStackElementSize); 2139 subf(Rindex, Rindex, R18_locals); 2140 stfd(Rvalue, -8, Rindex); 2141 } 2142 2143 // Read pending exception from thread and jump to interpreter. 2144 // Throw exception entry if one if pending. Fall through otherwise. 2145 void InterpreterMacroAssembler::check_and_forward_exception(Register Rscratch1, Register Rscratch2) { 2146 assert_different_registers(Rscratch1, Rscratch2, R3); 2147 Register Rexception = Rscratch1; 2148 Register Rtmp = Rscratch2; 2149 Label Ldone; 2150 // Get pending exception oop. 2151 ld(Rexception, thread_(pending_exception)); 2152 cmpdi(CCR0, Rexception, 0); 2153 beq(CCR0, Ldone); 2154 li(Rtmp, 0); 2155 mr_if_needed(R3, Rexception); 2156 std(Rtmp, thread_(pending_exception)); // Clear exception in thread 2157 if (Interpreter::rethrow_exception_entry() != nullptr) { 2158 // Already got entry address. 2159 load_dispatch_table(Rtmp, (address*)Interpreter::rethrow_exception_entry()); 2160 } else { 2161 // Dynamically load entry address. 2162 int simm16_rest = load_const_optimized(Rtmp, &Interpreter::_rethrow_exception_entry, R0, true); 2163 ld(Rtmp, simm16_rest, Rtmp); 2164 } 2165 mtctr(Rtmp); 2166 save_interpreter_state(Rtmp); 2167 bctr(); 2168 2169 align(32, 12); 2170 bind(Ldone); 2171 } 2172 2173 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, bool check_exceptions) { 2174 save_interpreter_state(R11_scratch1); 2175 2176 MacroAssembler::call_VM(oop_result, entry_point, false); 2177 2178 restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true); 2179 2180 check_and_handle_popframe(R11_scratch1); 2181 check_and_handle_earlyret(R11_scratch1); 2182 // Now check exceptions manually. 2183 if (check_exceptions) { 2184 check_and_forward_exception(R11_scratch1, R12_scratch2); 2185 } 2186 } 2187 2188 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2189 Register arg_1, bool check_exceptions) { 2190 // ARG1 is reserved for the thread. 2191 mr_if_needed(R4_ARG2, arg_1); 2192 call_VM(oop_result, entry_point, check_exceptions); 2193 } 2194 2195 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2196 Register arg_1, Register arg_2, 2197 bool check_exceptions) { 2198 // ARG1 is reserved for the thread. 2199 mr_if_needed(R4_ARG2, arg_1); 2200 assert(arg_2 != R4_ARG2, "smashed argument"); 2201 mr_if_needed(R5_ARG3, arg_2); 2202 call_VM(oop_result, entry_point, check_exceptions); 2203 } 2204 2205 void InterpreterMacroAssembler::call_VM(Register oop_result, address entry_point, 2206 Register arg_1, Register arg_2, Register arg_3, 2207 bool check_exceptions) { 2208 // ARG1 is reserved for the thread. 2209 mr_if_needed(R4_ARG2, arg_1); 2210 assert(arg_2 != R4_ARG2, "smashed argument"); 2211 mr_if_needed(R5_ARG3, arg_2); 2212 assert(arg_3 != R4_ARG2 && arg_3 != R5_ARG3, "smashed argument"); 2213 mr_if_needed(R6_ARG4, arg_3); 2214 call_VM(oop_result, entry_point, check_exceptions); 2215 } 2216 2217 void InterpreterMacroAssembler::save_interpreter_state(Register scratch) { 2218 ld(scratch, 0, R1_SP); 2219 std(R15_esp, _ijava_state_neg(esp), scratch); 2220 std(R14_bcp, _ijava_state_neg(bcp), scratch); 2221 std(R26_monitor, _ijava_state_neg(monitors), scratch); 2222 if (ProfileInterpreter) { std(R28_mdx, _ijava_state_neg(mdx), scratch); } 2223 // Other entries should be unchanged. 2224 } 2225 2226 void InterpreterMacroAssembler::restore_interpreter_state(Register scratch, bool bcp_and_mdx_only, bool restore_top_frame_sp) { 2227 ld_ptr(scratch, _abi0(callers_sp), R1_SP); // Load frame pointer. 2228 if (restore_top_frame_sp) { 2229 // After thawing the top frame of a continuation we reach here with frame::java_abi. 2230 // therefore we have to restore top_frame_sp before the assertion below. 2231 assert(!bcp_and_mdx_only, "chose other registers"); 2232 Register tfsp = R18_locals; 2233 Register scratch2 = R26_monitor; 2234 ld(tfsp, _ijava_state_neg(top_frame_sp), scratch); 2235 resize_frame_absolute(tfsp, scratch2, R0); 2236 } 2237 ld(R14_bcp, _ijava_state_neg(bcp), scratch); // Changed by VM code (exception). 2238 if (ProfileInterpreter) { ld(R28_mdx, _ijava_state_neg(mdx), scratch); } // Changed by VM code. 2239 if (!bcp_and_mdx_only) { 2240 // Following ones are Metadata. 2241 ld(R19_method, _ijava_state_neg(method), scratch); 2242 ld(R27_constPoolCache, _ijava_state_neg(cpoolCache), scratch); 2243 // Following ones are stack addresses and don't require reload. 2244 ld(R15_esp, _ijava_state_neg(esp), scratch); 2245 ld(R18_locals, _ijava_state_neg(locals), scratch); 2246 sldi(R18_locals, R18_locals, Interpreter::logStackElementSize); 2247 add(R18_locals, R18_locals, scratch); 2248 ld(R26_monitor, _ijava_state_neg(monitors), scratch); 2249 } 2250 #ifdef ASSERT 2251 { 2252 Label Lok; 2253 subf(R0, R1_SP, scratch); 2254 cmpdi(CCR0, R0, frame::top_ijava_frame_abi_size + frame::ijava_state_size); 2255 bge(CCR0, Lok); 2256 stop("frame too small (restore istate)"); 2257 bind(Lok); 2258 } 2259 #endif 2260 } 2261 2262 void InterpreterMacroAssembler::get_method_counters(Register method, 2263 Register Rcounters, 2264 Label& skip) { 2265 BLOCK_COMMENT("Load and ev. allocate counter object {"); 2266 Label has_counters; 2267 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2268 cmpdi(CCR0, Rcounters, 0); 2269 bne(CCR0, has_counters); 2270 call_VM(noreg, CAST_FROM_FN_PTR(address, 2271 InterpreterRuntime::build_method_counters), method); 2272 ld(Rcounters, in_bytes(Method::method_counters_offset()), method); 2273 cmpdi(CCR0, Rcounters, 0); 2274 beq(CCR0, skip); // No MethodCounters, OutOfMemory. 2275 BLOCK_COMMENT("} Load and ev. allocate counter object"); 2276 2277 bind(has_counters); 2278 } 2279 2280 void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, 2281 Register iv_be_count, 2282 Register Rtmp_r0) { 2283 assert(UseCompiler, "incrementing must be useful"); 2284 Register invocation_count = iv_be_count; 2285 Register backedge_count = Rtmp_r0; 2286 int delta = InvocationCounter::count_increment; 2287 2288 // Load each counter in a register. 2289 // ld(inv_counter, Rtmp); 2290 // ld(be_counter, Rtmp2); 2291 int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + 2292 InvocationCounter::counter_offset()); 2293 int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + 2294 InvocationCounter::counter_offset()); 2295 2296 BLOCK_COMMENT("Increment profiling counters {"); 2297 2298 // Load the backedge counter. 2299 lwz(backedge_count, be_counter_offset, Rcounters); // is unsigned int 2300 // Mask the backedge counter. 2301 andi(backedge_count, backedge_count, InvocationCounter::count_mask_value); 2302 2303 // Load the invocation counter. 2304 lwz(invocation_count, inv_counter_offset, Rcounters); // is unsigned int 2305 // Add the delta to the invocation counter and store the result. 2306 addi(invocation_count, invocation_count, delta); 2307 // Store value. 2308 stw(invocation_count, inv_counter_offset, Rcounters); 2309 2310 // Add invocation counter + backedge counter. 2311 add(iv_be_count, backedge_count, invocation_count); 2312 2313 // Note that this macro must leave the backedge_count + invocation_count in 2314 // register iv_be_count! 2315 BLOCK_COMMENT("} Increment profiling counters"); 2316 } 2317 2318 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) { 2319 if (state == atos) { MacroAssembler::verify_oop(reg, FILE_AND_LINE); } 2320 } 2321 2322 // Local helper function for the verify_oop_or_return_address macro. 2323 static bool verify_return_address(Method* m, int bci) { 2324 #ifndef PRODUCT 2325 address pc = (address)(m->constMethod()) + in_bytes(ConstMethod::codes_offset()) + bci; 2326 // Assume it is a valid return address if it is inside m and is preceded by a jsr. 2327 if (!m->contains(pc)) return false; 2328 address jsr_pc; 2329 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr); 2330 if (*jsr_pc == Bytecodes::_jsr && jsr_pc >= m->code_base()) return true; 2331 jsr_pc = pc - Bytecodes::length_for(Bytecodes::_jsr_w); 2332 if (*jsr_pc == Bytecodes::_jsr_w && jsr_pc >= m->code_base()) return true; 2333 #endif // PRODUCT 2334 return false; 2335 } 2336 2337 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2338 if (VerifyFPU) { 2339 unimplemented("verfiyFPU"); 2340 } 2341 } 2342 2343 void InterpreterMacroAssembler::verify_oop_or_return_address(Register reg, Register Rtmp) { 2344 if (!VerifyOops) return; 2345 2346 // The VM documentation for the astore[_wide] bytecode allows 2347 // the TOS to be not only an oop but also a return address. 2348 Label test; 2349 Label skip; 2350 // See if it is an address (in the current method): 2351 2352 const int log2_bytecode_size_limit = 16; 2353 srdi_(Rtmp, reg, log2_bytecode_size_limit); 2354 bne(CCR0, test); 2355 2356 address fd = CAST_FROM_FN_PTR(address, verify_return_address); 2357 const int nbytes_save = MacroAssembler::num_volatile_regs * 8; 2358 save_volatile_gprs(R1_SP, -nbytes_save); // except R0 2359 save_LR_CR(Rtmp); // Save in old frame. 2360 push_frame_reg_args(nbytes_save, Rtmp); 2361 2362 load_const_optimized(Rtmp, fd, R0); 2363 mr_if_needed(R4_ARG2, reg); 2364 mr(R3_ARG1, R19_method); 2365 call_c(Rtmp); // call C 2366 2367 pop_frame(); 2368 restore_LR_CR(Rtmp); 2369 restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 2370 b(skip); 2371 2372 // Perform a more elaborate out-of-line call. 2373 // Not an address; verify it: 2374 bind(test); 2375 verify_oop(reg); 2376 bind(skip); 2377 } 2378 2379 // Inline assembly for: 2380 // 2381 // if (thread is in interp_only_mode) { 2382 // InterpreterRuntime::post_method_entry(); 2383 // } 2384 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY ) || 2385 // *jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_ENTRY2) ) { 2386 // SharedRuntime::jvmpi_method_entry(method, receiver); 2387 // } 2388 void InterpreterMacroAssembler::notify_method_entry() { 2389 // JVMTI 2390 // Whenever JVMTI puts a thread in interp_only_mode, method 2391 // entry/exit events are sent for that thread to track stack 2392 // depth. If it is possible to enter interp_only_mode we add 2393 // the code to check if the event should be sent. 2394 if (JvmtiExport::can_post_interpreter_events()) { 2395 Label jvmti_post_done; 2396 2397 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2398 cmpwi(CCR0, R0, 0); 2399 beq(CCR0, jvmti_post_done); 2400 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry)); 2401 2402 bind(jvmti_post_done); 2403 } 2404 } 2405 2406 // Inline assembly for: 2407 // 2408 // if (thread is in interp_only_mode) { 2409 // // save result 2410 // InterpreterRuntime::post_method_exit(); 2411 // // restore result 2412 // } 2413 // if (*jvmpi::event_flags_array_at_addr(JVMPI_EVENT_METHOD_EXIT)) { 2414 // // save result 2415 // SharedRuntime::jvmpi_method_exit(); 2416 // // restore result 2417 // } 2418 // 2419 // Native methods have their result stored in d_tmp and l_tmp. 2420 // Java methods have their result stored in the expression stack. 2421 void InterpreterMacroAssembler::notify_method_exit(bool is_native_method, TosState state, 2422 NotifyMethodExitMode mode, bool check_exceptions) { 2423 // JVMTI 2424 // Whenever JVMTI puts a thread in interp_only_mode, method 2425 // entry/exit events are sent for that thread to track stack 2426 // depth. If it is possible to enter interp_only_mode we add 2427 // the code to check if the event should be sent. 2428 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2429 Label jvmti_post_done; 2430 2431 lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 2432 cmpwi(CCR0, R0, 0); 2433 beq(CCR0, jvmti_post_done); 2434 if (!is_native_method) { push(state); } // Expose tos to GC. 2435 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit), check_exceptions); 2436 if (!is_native_method) { pop(state); } 2437 2438 align(32, 12); 2439 bind(jvmti_post_done); 2440 } 2441 2442 // Dtrace support not implemented. 2443 }