1 /* 2 * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_PPC_MACROASSEMBLER_PPC_HPP 27 #define CPU_PPC_MACROASSEMBLER_PPC_HPP 28 29 #include "asm/assembler.hpp" 30 #include "oops/accessDecorators.hpp" 31 #include "runtime/rtmLocking.hpp" 32 #include "utilities/macros.hpp" 33 34 // MacroAssembler extends Assembler by a few frequently used macros. 35 36 class ciTypeArray; 37 class OopMap; 38 39 class MacroAssembler: public Assembler { 40 public: 41 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 42 43 // Indicates whether and, if so, which registers must be preserved when calling runtime code. 44 enum PreservationLevel { 45 PRESERVATION_NONE, 46 PRESERVATION_FRAME_LR, 47 PRESERVATION_FRAME_LR_GP_REGS, 48 PRESERVATION_FRAME_LR_GP_FP_REGS 49 }; 50 51 // 52 // Optimized instruction emitters 53 // 54 55 inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; } 56 inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); } 57 58 // load d = *[a+si31] 59 // Emits several instructions if the offset is not encodable in one instruction. 60 void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop); 61 void ld_largeoffset (Register d, int si31, Register a, int emit_filler_nop); 62 inline static bool is_ld_largeoffset(address a); 63 inline static int get_ld_largeoffset_offset(address a); 64 65 inline void round_to(Register r, int modulus); 66 67 // Load/store with type given by parameter. 68 void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed); 69 void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes); 70 71 // Move register if destination register and target register are different 72 inline void mr_if_needed(Register rd, Register rs); 73 inline void fmr_if_needed(FloatRegister rd, FloatRegister rs); 74 // This is dedicated for emitting scheduled mach nodes. For better 75 // readability of the ad file I put it here. 76 // Endgroups are not needed if 77 // - the scheduler is off 78 // - the scheduler found that there is a natural group end, in that 79 // case it reduced the size of the instruction used in the test 80 // yielding 'needed'. 81 inline void endgroup_if_needed(bool needed); 82 83 // Memory barriers. 84 inline void membar(int bits); 85 inline void release(); 86 inline void acquire(); 87 inline void fence(); 88 89 // nop padding 90 void align(int modulus, int max = 252, int rem = 0); 91 92 // Align prefix opcode to make sure it's not on the last word of a 93 // 64-byte block. 94 // 95 // Note: do not call align_prefix() in a .ad file (e.g. ppc.ad). Instead 96 // add ins_alignment(2) to the instruct definition and implement the 97 // compute_padding() method of the instruct node to use 98 // compute_prefix_padding(). See loadConI32Node::compute_padding() in 99 // ppc.ad for an example. 100 void align_prefix(); 101 102 // 103 // Constants, loading constants, TOC support 104 // 105 106 // Address of the global TOC. 107 inline static address global_toc(); 108 // Offset of given address to the global TOC. 109 inline static int offset_to_global_toc(const address addr); 110 111 // Address of TOC of the current method. 112 inline address method_toc(); 113 // Offset of given address to TOC of the current method. 114 inline int offset_to_method_toc(const address addr); 115 116 // Global TOC. 117 void calculate_address_from_global_toc(Register dst, address addr, 118 bool hi16 = true, bool lo16 = true, 119 bool add_relocation = true, bool emit_dummy_addr = false); 120 inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) { 121 calculate_address_from_global_toc(dst, addr, true, false); 122 }; 123 inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) { 124 calculate_address_from_global_toc(dst, addr, false, true); 125 }; 126 127 inline static bool is_calculate_address_from_global_toc_at(address a, address bound); 128 // Returns address of first instruction in sequence. 129 static address patch_calculate_address_from_global_toc_at(address a, address bound, address addr); 130 static address get_address_of_calculate_address_from_global_toc_at(address a, address addr); 131 132 #ifdef _LP64 133 // Patch narrow oop constant. 134 inline static bool is_set_narrow_oop(address a, address bound); 135 // Returns address of first instruction in sequence. 136 static address patch_set_narrow_oop(address a, address bound, narrowOop data); 137 static narrowOop get_narrow_oop(address a, address bound); 138 #endif 139 140 inline static bool is_load_const_at(address a); 141 142 // Emits an oop const to the constant pool, loads the constant, and 143 // sets a relocation info with address current_pc. 144 // Returns true if successful. 145 bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false); 146 147 static bool is_load_const_from_method_toc_at(address a); 148 static int get_offset_of_load_const_from_method_toc_at(address a); 149 150 // Get the 64 bit constant from a `load_const' sequence. 151 static long get_const(address load_const); 152 153 // Patch the 64 bit constant of a `load_const' sequence. This is a 154 // low level procedure. It neither flushes the instruction cache nor 155 // is it atomic. 156 static void patch_const(address load_const, long x); 157 158 // Metadata in code that we have to keep track of. 159 AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index 160 AddressLiteral constant_metadata_address(Metadata* obj); // find_index 161 // Oops used directly in compiled code are stored in the constant pool, 162 // and loaded from there. 163 // Allocate new entry for oop in constant pool. Generate relocation. 164 AddressLiteral allocate_oop_address(jobject obj); 165 // Find oop obj in constant pool. Return relocation with it's index. 166 AddressLiteral constant_oop_address(jobject obj); 167 168 // Find oop in constant pool and emit instructions to load it. 169 // Uses constant_oop_address. 170 inline void set_oop_constant(jobject obj, Register d); 171 // Same as load_address. 172 inline void set_oop (AddressLiteral obj_addr, Register d); 173 174 // 175 // branch, jump 176 // 177 // set dst to -1, 0, +1 as follows: if CCR0bi is "greater than", dst is set to 1, 178 // if CCR0bi is "equal", dst is set to 0, otherwise it's set to -1. 179 void inline set_cmp3(Register dst); 180 // set dst to (treat_unordered_like_less ? -1 : +1) 181 void inline set_cmpu3(Register dst, bool treat_unordered_like_less); 182 183 inline void pd_patch_instruction(address branch, address target, const char* file, int line); 184 NOT_PRODUCT(static void pd_print_patched_instruction(address branch);) 185 186 // Conditional far branch for destinations encodable in 24+2 bits. 187 // Same interface as bc, e.g. no inverse boint-field. 188 enum { 189 bc_far_optimize_not = 0, 190 bc_far_optimize_on_relocate = 1 191 }; 192 // optimize: flag for telling the conditional far branch to optimize 193 // itself when relocated. 194 void bc_far(int boint, int biint, Label& dest, int optimize); 195 void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions 196 // Relocation of conditional far branches. 197 static bool is_bc_far_at(address instruction_addr); 198 static address get_dest_of_bc_far_at(address instruction_addr); 199 static void set_dest_of_bc_far_at(address instruction_addr, address dest); 200 private: 201 static bool inline is_bc_far_variant1_at(address instruction_addr); 202 static bool inline is_bc_far_variant2_at(address instruction_addr); 203 static bool inline is_bc_far_variant3_at(address instruction_addr); 204 public: 205 206 // Convenience bc_far versions. 207 inline void blt_far(ConditionRegister crx, Label& L, int optimize); 208 inline void bgt_far(ConditionRegister crx, Label& L, int optimize); 209 inline void beq_far(ConditionRegister crx, Label& L, int optimize); 210 inline void bso_far(ConditionRegister crx, Label& L, int optimize); 211 inline void bge_far(ConditionRegister crx, Label& L, int optimize); 212 inline void ble_far(ConditionRegister crx, Label& L, int optimize); 213 inline void bne_far(ConditionRegister crx, Label& L, int optimize); 214 inline void bns_far(ConditionRegister crx, Label& L, int optimize); 215 216 // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump. 217 private: 218 enum { 219 bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/), 220 bxx64_patchable_size = bxx64_patchable_instruction_count * BytesPerInstWord, 221 bxx64_patchable_ret_addr_offset = bxx64_patchable_size 222 }; 223 void bxx64_patchable(address target, relocInfo::relocType rt, bool link); 224 static bool is_bxx64_patchable_at( address instruction_addr, bool link); 225 // Does the instruction use a pc-relative encoding of the destination? 226 static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link); 227 static bool is_bxx64_patchable_variant1_at( address instruction_addr, bool link); 228 // Load destination relative to global toc. 229 static bool is_bxx64_patchable_variant1b_at( address instruction_addr, bool link); 230 static bool is_bxx64_patchable_variant2_at( address instruction_addr, bool link); 231 static void set_dest_of_bxx64_patchable_at( address instruction_addr, address target, bool link); 232 static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link); 233 234 public: 235 // call 236 enum { 237 bl64_patchable_instruction_count = bxx64_patchable_instruction_count, 238 bl64_patchable_size = bxx64_patchable_size, 239 bl64_patchable_ret_addr_offset = bxx64_patchable_ret_addr_offset 240 }; 241 inline void bl64_patchable(address target, relocInfo::relocType rt) { 242 bxx64_patchable(target, rt, /*link=*/true); 243 } 244 inline static bool is_bl64_patchable_at(address instruction_addr) { 245 return is_bxx64_patchable_at(instruction_addr, /*link=*/true); 246 } 247 inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) { 248 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true); 249 } 250 inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) { 251 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true); 252 } 253 inline static address get_dest_of_bl64_patchable_at(address instruction_addr) { 254 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true); 255 } 256 // jump 257 enum { 258 b64_patchable_instruction_count = bxx64_patchable_instruction_count, 259 b64_patchable_size = bxx64_patchable_size, 260 }; 261 inline void b64_patchable(address target, relocInfo::relocType rt) { 262 bxx64_patchable(target, rt, /*link=*/false); 263 } 264 inline static bool is_b64_patchable_at(address instruction_addr) { 265 return is_bxx64_patchable_at(instruction_addr, /*link=*/false); 266 } 267 inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) { 268 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false); 269 } 270 inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) { 271 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false); 272 } 273 inline static address get_dest_of_b64_patchable_at(address instruction_addr) { 274 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false); 275 } 276 277 // 278 // Support for frame handling 279 // 280 281 // some ABI-related functions 282 283 // Clobbers all volatile, (non-floating-point) general-purpose registers for debugging purposes. 284 // This is especially useful for making calls to the JRT in places in which this hasn't been done before; 285 // e.g. with the introduction of LRBs (load reference barriers) for concurrent garbage collection. 286 void clobber_volatile_gprs(Register excluded_register = noreg); 287 void clobber_carg_stack_slots(Register tmp); 288 289 void save_nonvolatile_gprs( Register dst_base, int offset); 290 void restore_nonvolatile_gprs(Register src_base, int offset); 291 292 enum { 293 num_volatile_gp_regs = 11, 294 num_volatile_fp_regs = 14, 295 num_volatile_regs = num_volatile_gp_regs + num_volatile_fp_regs 296 }; 297 298 void save_volatile_gprs( Register dst_base, int offset, 299 bool include_fp_regs = true, bool include_R3_RET_reg = true); 300 void restore_volatile_gprs(Register src_base, int offset, 301 bool include_fp_regs = true, bool include_R3_RET_reg = true); 302 void save_LR_CR( Register tmp); // tmp contains LR on return. 303 void restore_LR_CR(Register tmp); 304 305 // Get current PC using bl-next-instruction trick. 306 address get_PC_trash_LR(Register result); 307 308 // Resize current frame either relatively wrt to current SP or absolute. 309 void resize_frame(Register offset, Register tmp); 310 void resize_frame(int offset, Register tmp); 311 void resize_frame_absolute(Register addr, Register tmp1, Register tmp2); 312 313 // Push a frame of size bytes. 314 void push_frame(Register bytes, Register tmp); 315 316 // Push a frame of size `bytes'. No abi space provided. 317 void push_frame(unsigned int bytes, Register tmp); 318 319 // Push a frame of size `bytes' plus native_abi_reg_args on top. 320 void push_frame_reg_args(unsigned int bytes, Register tmp); 321 322 // Setup up a new C frame with a spill area for non-volatile GPRs and additional 323 // space for local variables 324 void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp); 325 326 // pop current C frame 327 void pop_frame(); 328 329 // 330 // Calls 331 // 332 333 private: 334 address _last_calls_return_pc; 335 336 #if defined(ABI_ELFv2) 337 // Generic version of a call to C function. 338 // Updates and returns _last_calls_return_pc. 339 address branch_to(Register function_entry, bool and_link); 340 #else 341 // Generic version of a call to C function via a function descriptor 342 // with variable support for C calling conventions (TOC, ENV, etc.). 343 // updates and returns _last_calls_return_pc. 344 address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call, 345 bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee); 346 #endif 347 348 public: 349 350 // Get the pc where the last call will return to. returns _last_calls_return_pc. 351 inline address last_calls_return_pc(); 352 353 #if defined(ABI_ELFv2) 354 // Call a C function via a function descriptor and use full C 355 // calling conventions. Updates and returns _last_calls_return_pc. 356 address call_c(Register function_entry); 357 // For tail calls: only branch, don't link, so callee returns to caller of this function. 358 address call_c_and_return_to_caller(Register function_entry); 359 address call_c(address function_entry, relocInfo::relocType rt); 360 #else 361 // Call a C function via a function descriptor and use full C 362 // calling conventions. Updates and returns _last_calls_return_pc. 363 address call_c(Register function_descriptor); 364 // For tail calls: only branch, don't link, so callee returns to caller of this function. 365 address call_c_and_return_to_caller(Register function_descriptor); 366 address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt); 367 address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt, 368 Register toc); 369 #endif 370 371 protected: 372 373 // It is imperative that all calls into the VM are handled via the 374 // call_VM macros. They make sure that the stack linkage is setup 375 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points 376 // while call_VM_leaf's correspond to LEAF entry points. 377 // 378 // This is the base routine called by the different versions of 379 // call_VM. The interpreter may customize this version by overriding 380 // it for its purposes (e.g., to save/restore additional registers 381 // when doing a VM call). 382 // 383 // If no last_java_sp is specified (noreg) then SP will be used instead. 384 virtual void call_VM_base( 385 // where an oop-result ends up if any; use noreg otherwise 386 Register oop_result, 387 // to set up last_Java_frame in stubs; use noreg otherwise 388 Register last_java_sp, 389 // the entry point 390 address entry_point, 391 // flag which indicates if exception should be checked 392 bool check_exception = true 393 ); 394 395 // Support for VM calls. This is the base routine called by the 396 // different versions of call_VM_leaf. The interpreter may customize 397 // this version by overriding it for its purposes (e.g., to 398 // save/restore additional registers when doing a VM call). 399 void call_VM_leaf_base(address entry_point); 400 401 public: 402 // Call into the VM. 403 // Passes the thread pointer (in R3_ARG1) as a prepended argument. 404 // Makes sure oop return values are visible to the GC. 405 void call_VM(Register oop_result, address entry_point, bool check_exceptions = true); 406 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); 407 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 408 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true); 409 void call_VM_leaf(address entry_point); 410 void call_VM_leaf(address entry_point, Register arg_1); 411 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 412 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 413 414 // Call a stub function via a function descriptor, but don't save 415 // TOC before call, don't setup TOC and ENV for call, and don't 416 // restore TOC after call. Updates and returns _last_calls_return_pc. 417 inline address call_stub(Register function_entry); 418 inline void call_stub_and_return_to(Register function_entry, Register return_pc); 419 420 void post_call_nop(); 421 422 // 423 // Java utilities 424 // 425 426 // Read from the polling page, its address is already in a register. 427 inline void load_from_polling_page(Register polling_page_address, int offset = 0); 428 // Check whether instruction is a read access to the polling page 429 // which was emitted by load_from_polling_page(..). 430 static bool is_load_from_polling_page(int instruction, void* ucontext/*may be nullptr*/, 431 address* polling_address_ptr = nullptr); 432 433 // Support for null-checks 434 // 435 // Generates code that causes a null OS exception if the content of reg is null. 436 // If the accessed location is M[reg + offset] and the offset is known, provide the 437 // offset. No explicit code generation is needed if the offset is within a certain 438 // range (0 <= offset <= page_size). 439 440 // Stack overflow checking 441 void bang_stack_with_offset(int offset); 442 443 // If instruction is a stack bang of the form ld, stdu, or 444 // stdux, return the banged address. Otherwise, return 0. 445 static address get_stack_bang_address(int instruction, void* ucontext); 446 447 // Check for reserved stack access in method being exited. If the reserved 448 // stack area was accessed, protect it again and throw StackOverflowError. 449 void reserved_stack_check(Register return_pc); 450 451 // Atomics 452 // CmpxchgX sets condition register to cmpX(current, compare). 453 // (flag == ne) => (dest_current_value != compare_value), (!swapped) 454 // (flag == eq) => (dest_current_value == compare_value), ( swapped) 455 static inline bool cmpxchgx_hint_acquire_lock() { return true; } 456 // The stxcx will probably not be succeeded by a releasing store. 457 static inline bool cmpxchgx_hint_release_lock() { return false; } 458 static inline bool cmpxchgx_hint_atomic_update() { return false; } 459 460 // Cmpxchg semantics 461 enum { 462 MemBarNone = 0, 463 MemBarRel = 1, 464 MemBarAcq = 2, 465 MemBarFenceAfter = 4 // use powers of 2 466 }; 467 private: 468 // Helper functions for word/sub-word atomics. 469 void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value, 470 Register addr_base, Register tmp1, Register tmp2, Register tmp3, 471 bool cmpxchgx_hint, bool is_add, int size); 472 void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value, 473 Register compare_value, Register exchange_value, 474 Register addr_base, Register tmp1, Register tmp2, 475 Label &retry, Label &failed, bool cmpxchgx_hint, int size); 476 void cmpxchg_generic(ConditionRegister flag, 477 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 478 Register tmp1, Register tmp2, 479 int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint, bool weak, int size); 480 public: 481 // Temps and addr_base are killed if processor does not support Power 8 instructions. 482 // Result will be sign extended. 483 void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base, 484 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 485 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1); 486 } 487 // Temps and addr_base are killed if processor does not support Power 8 instructions. 488 // Result will be sign extended. 489 void getandseth(Register dest_current_value, Register exchange_value, Register addr_base, 490 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 491 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2); 492 } 493 void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base, 494 bool cmpxchgx_hint) { 495 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4); 496 } 497 void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base, 498 bool cmpxchgx_hint); 499 // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed). 500 // Result will be sign extended. 501 void getandaddb(Register dest_current_value, Register inc_value, Register addr_base, 502 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 503 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1); 504 } 505 // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed). 506 // Result will be sign extended. 507 void getandaddh(Register dest_current_value, Register inc_value, Register addr_base, 508 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 509 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2); 510 } 511 void getandaddw(Register dest_current_value, Register inc_value, Register addr_base, 512 Register tmp1, bool cmpxchgx_hint) { 513 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4); 514 } 515 void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base, 516 Register tmp, bool cmpxchgx_hint); 517 // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions. 518 // compare_value must be at least 32 bit sign extended. Result will be sign extended. 519 void cmpxchgb(ConditionRegister flag, 520 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 521 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false, 522 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 523 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2, 524 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 1); 525 } 526 // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions. 527 // compare_value must be at least 32 bit sign extended. Result will be sign extended. 528 void cmpxchgh(ConditionRegister flag, 529 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 530 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false, 531 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 532 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2, 533 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 2); 534 } 535 void cmpxchgw(ConditionRegister flag, 536 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 537 int semantics, bool cmpxchgx_hint = false, 538 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 539 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg, 540 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 4); 541 } 542 void cmpxchgd(ConditionRegister flag, 543 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value, 544 Register addr_base, int semantics, bool cmpxchgx_hint = false, 545 Register int_flag_success = noreg, Label* failed = nullptr, bool contention_hint = false, bool weak = false); 546 547 // interface method calling 548 void lookup_interface_method(Register recv_klass, 549 Register intf_klass, 550 RegisterOrConstant itable_index, 551 Register method_result, 552 Register temp_reg, Register temp2_reg, 553 Label& no_such_interface, 554 bool return_method = true); 555 556 // virtual method calling 557 void lookup_virtual_method(Register recv_klass, 558 RegisterOrConstant vtable_index, 559 Register method_result); 560 561 // Test sub_klass against super_klass, with fast and slow paths. 562 563 // The fast path produces a tri-state answer: yes / no / maybe-slow. 564 // One of the three labels can be null, meaning take the fall-through. 565 // If super_check_offset is -1, the value is loaded up from super_klass. 566 // No registers are killed, except temp_reg and temp2_reg. 567 // If super_check_offset is not -1, temp2_reg is not used and can be noreg. 568 void check_klass_subtype_fast_path(Register sub_klass, 569 Register super_klass, 570 Register temp1_reg, 571 Register temp2_reg, 572 Label* L_success, 573 Label* L_failure, 574 Label* L_slow_path = nullptr, // default fall through 575 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 576 577 // The rest of the type check; must be wired to a corresponding fast path. 578 // It does not repeat the fast path logic, so don't use it standalone. 579 // The temp_reg can be noreg, if no temps are available. 580 // It can also be sub_klass or super_klass, meaning it's OK to kill that one. 581 // Updates the sub's secondary super cache as necessary. 582 void check_klass_subtype_slow_path(Register sub_klass, 583 Register super_klass, 584 Register temp1_reg, 585 Register temp2_reg, 586 Label* L_success = nullptr, 587 Register result_reg = noreg); 588 589 // Simplified, combined version, good for typical uses. 590 // Falls through on failure. 591 void check_klass_subtype(Register sub_klass, 592 Register super_klass, 593 Register temp1_reg, 594 Register temp2_reg, 595 Label& L_success); 596 597 void clinit_barrier(Register klass, 598 Register thread, 599 Label* L_fast_path = nullptr, 600 Label* L_slow_path = nullptr); 601 602 // Method handle support (JSR 292). 603 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0); 604 605 void push_cont_fastpath(); 606 void pop_cont_fastpath(); 607 void inc_held_monitor_count(Register tmp); 608 void dec_held_monitor_count(Register tmp); 609 void atomically_flip_locked_state(bool is_unlock, Register obj, Register tmp, Label& failed, int semantics); 610 void lightweight_lock(Register obj, Register hdr, Register t1, Label& slow); 611 void lightweight_unlock(Register obj, Register hdr, Label& slow); 612 613 // allocation (for C1) 614 void tlab_allocate( 615 Register obj, // result: pointer to object after successful allocation 616 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 617 int con_size_in_bytes, // object size in bytes if known at compile time 618 Register t1, // temp register 619 Label& slow_case // continuation point if fast allocation fails 620 ); 621 void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2); 622 623 enum { trampoline_stub_size = 6 * 4 }; 624 address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg); 625 626 void atomic_inc_ptr(Register addr, Register result, int simm16 = 1); 627 void atomic_ori_int(Register addr, Register result, int uimm16); 628 629 #if INCLUDE_RTM_OPT 630 void rtm_counters_update(Register abort_status, Register rtm_counters); 631 void branch_on_random_using_tb(Register tmp, int count, Label& brLabel); 632 void rtm_abort_ratio_calculation(Register rtm_counters_reg, RTMLockingCounters* rtm_counters, 633 Metadata* method_data); 634 void rtm_profiling(Register abort_status_Reg, Register temp_Reg, 635 RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm); 636 void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, 637 Label& retryLabel, Label* checkRetry = nullptr); 638 void rtm_retry_lock_on_busy(Register retry_count, Register owner_addr, Label& retryLabel); 639 void rtm_stack_locking(ConditionRegister flag, Register obj, Register mark_word, Register tmp, 640 Register retry_on_abort_count, 641 RTMLockingCounters* stack_rtm_counters, 642 Metadata* method_data, bool profile_rtm, 643 Label& DONE_LABEL, Label& IsInflated); 644 void rtm_inflated_locking(ConditionRegister flag, Register obj, Register mark_word, Register box, 645 Register retry_on_busy_count, Register retry_on_abort_count, 646 RTMLockingCounters* rtm_counters, 647 Metadata* method_data, bool profile_rtm, 648 Label& DONE_LABEL); 649 #endif 650 651 void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box, 652 Register tmp1, Register tmp2, Register tmp3, 653 RTMLockingCounters* rtm_counters = nullptr, 654 RTMLockingCounters* stack_rtm_counters = nullptr, 655 Metadata* method_data = nullptr, 656 bool use_rtm = false, bool profile_rtm = false); 657 658 void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, 659 Register tmp1, Register tmp2, Register tmp3, 660 bool use_rtm = false); 661 662 // Check if safepoint requested and if so branch 663 void safepoint_poll(Label& slow_path, Register temp, bool at_return, bool in_nmethod); 664 665 void resolve_jobject(Register value, Register tmp1, Register tmp2, 666 MacroAssembler::PreservationLevel preservation_level); 667 void resolve_global_jobject(Register value, Register tmp1, Register tmp2, 668 MacroAssembler::PreservationLevel preservation_level); 669 670 // Support for managing the JavaThread pointer (i.e.; the reference to 671 // thread-local information). 672 673 // Support for last Java frame (but use call_VM instead where possible): 674 // access R16_thread->last_Java_sp. 675 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc); 676 void reset_last_Java_frame(void); 677 void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1); 678 679 // Read vm result from thread: oop_result = R16_thread->result; 680 void get_vm_result (Register oop_result); 681 void get_vm_result_2(Register metadata_result); 682 683 static bool needs_explicit_null_check(intptr_t offset); 684 static bool uses_implicit_null_check(void* address); 685 686 // Trap-instruction-based checks. 687 // Range checks can be distinguished from zero checks as they check 32 bit, 688 // zero checks all 64 bits (tw, td). 689 inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual); 690 static bool is_trap_null_check(int x) { 691 return is_tdi(x, traptoEqual, -1/*any reg*/, 0) || 692 is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0); 693 } 694 695 inline void trap_ic_miss_check(Register a, Register b); 696 static bool is_trap_ic_miss_check(int x) { 697 return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/); 698 } 699 700 // Implicit or explicit null check, jumps to static address exception_entry. 701 inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry); 702 inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided 703 704 // Access heap oop, handle encoding and GC barriers. 705 // Some GC barriers call C so use needs_frame = true if an extra frame is needed at the current call site. 706 inline void access_store_at(BasicType type, DecoratorSet decorators, 707 Register base, RegisterOrConstant ind_or_offs, Register val, 708 Register tmp1, Register tmp2, Register tmp3, 709 MacroAssembler::PreservationLevel preservation_level); 710 inline void access_load_at(BasicType type, DecoratorSet decorators, 711 Register base, RegisterOrConstant ind_or_offs, Register dst, 712 Register tmp1, Register tmp2, 713 MacroAssembler::PreservationLevel preservation_level, Label *L_handle_null = nullptr); 714 715 public: 716 // Specify tmp1 for better code in certain compressed oops cases. Specify Label to bail out on null oop. 717 // tmp1, tmp2 and needs_frame are used with decorators ON_PHANTOM_OOP_REF or ON_WEAK_OOP_REF. 718 inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1, 719 Register tmp1, Register tmp2, 720 MacroAssembler::PreservationLevel preservation_level, 721 DecoratorSet decorators = 0, Label *L_handle_null = nullptr); 722 723 inline void store_heap_oop(Register d, RegisterOrConstant offs, Register s1, 724 Register tmp1, Register tmp2, Register tmp3, 725 MacroAssembler::PreservationLevel preservation_level, DecoratorSet decorators = 0); 726 727 // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong. 728 // src == d allowed. 729 inline Register encode_heap_oop_not_null(Register d, Register src = noreg); 730 inline Register decode_heap_oop_not_null(Register d, Register src = noreg); 731 732 // Null allowed. 733 inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier! 734 inline void decode_heap_oop(Register d); 735 736 // Load/Store klass oop from klass field. Compress. 737 void load_klass(Register dst, Register src); 738 void load_klass_check_null(Register dst, Register src, Label* is_null = nullptr); 739 void store_klass(Register dst_oop, Register klass, Register tmp = R0); 740 void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified. 741 742 void resolve_oop_handle(Register result, Register tmp1, Register tmp2, 743 MacroAssembler::PreservationLevel preservation_level); 744 void resolve_weak_handle(Register result, Register tmp1, Register tmp2, 745 MacroAssembler::PreservationLevel preservation_level); 746 void load_method_holder(Register holder, Register method); 747 748 static int instr_size_for_decode_klass_not_null(); 749 void decode_klass_not_null(Register dst, Register src = noreg); 750 Register encode_klass_not_null(Register dst, Register src = noreg); 751 752 // SIGTRAP-based range checks for arrays. 753 inline void trap_range_check_l(Register a, Register b); 754 inline void trap_range_check_l(Register a, int si16); 755 static bool is_trap_range_check_l(int x) { 756 return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) || 757 is_twi(x, traptoLessThanUnsigned, -1/*any reg*/) ); 758 } 759 inline void trap_range_check_le(Register a, int si16); 760 static bool is_trap_range_check_le(int x) { 761 return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/); 762 } 763 inline void trap_range_check_g(Register a, int si16); 764 static bool is_trap_range_check_g(int x) { 765 return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/); 766 } 767 inline void trap_range_check_ge(Register a, Register b); 768 inline void trap_range_check_ge(Register a, int si16); 769 static bool is_trap_range_check_ge(int x) { 770 return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) || 771 is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/) ); 772 } 773 static bool is_trap_range_check(int x) { 774 return is_trap_range_check_l(x) || is_trap_range_check_le(x) || 775 is_trap_range_check_g(x) || is_trap_range_check_ge(x); 776 } 777 778 void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0); 779 void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0); 780 void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1); 781 782 // Emitters for BigInteger.multiplyToLen intrinsic. 783 inline void multiply64(Register dest_hi, Register dest_lo, 784 Register x, Register y); 785 void add2_with_carry(Register dest_hi, Register dest_lo, 786 Register src1, Register src2); 787 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 788 Register y, Register y_idx, Register z, 789 Register carry, Register product_high, Register product, 790 Register idx, Register kdx, Register tmp); 791 void multiply_add_128_x_128(Register x_xstart, Register y, Register z, 792 Register yz_idx, Register idx, Register carry, 793 Register product_high, Register product, Register tmp, 794 int offset); 795 void multiply_128_x_128_loop(Register x_xstart, 796 Register y, Register z, 797 Register yz_idx, Register idx, Register carry, 798 Register product_high, Register product, 799 Register carry2, Register tmp); 800 void muladd(Register out, Register in, Register offset, Register len, Register k, 801 Register tmp1, Register tmp2, Register carry); 802 void multiply_to_len(Register x, Register xlen, 803 Register y, Register ylen, 804 Register z, Register zlen, 805 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, 806 Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10, 807 Register tmp11, Register tmp12, Register tmp13); 808 809 // Emitters for CRC32 calculation. 810 // A note on invertCRC: 811 // Unfortunately, internal representation of crc differs between CRC32 and CRC32C. 812 // CRC32 holds it's current crc value in the externally visible representation. 813 // CRC32C holds it's current crc value in internal format, ready for updating. 814 // Thus, the crc value must be bit-flipped before updating it in the CRC32 case. 815 // In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()). 816 // The bool invertCRC parameter indicates whether bit-flipping is required before updates. 817 void load_reverse_32(Register dst, Register src); 818 int crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3); 819 void fold_byte_crc32(Register crc, Register val, Register table, Register tmp); 820 void update_byte_crc32(Register crc, Register val, Register table); 821 void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, 822 Register data, bool loopAlignment); 823 void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc, 824 Register t0, Register t1, Register t2, Register t3, 825 Register tc0, Register tc1, Register tc2, Register tc3); 826 void kernel_crc32_1word(Register crc, Register buf, Register len, Register table, 827 Register t0, Register t1, Register t2, Register t3, 828 Register tc0, Register tc1, Register tc2, Register tc3, 829 bool invertCRC); 830 void kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants, 831 Register t0, Register t1, Register t2, Register t3, Register t4, 832 Register t5, Register t6, bool invertCRC); 833 void kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants, 834 Register t0, Register t1, Register t2, Register t3, Register t4, 835 Register t5, Register t6); 836 // Version which internally decides what to use. 837 void crc32(Register crc, Register buf, Register len, Register t0, Register t1, Register t2, 838 Register t3, Register t4, Register t5, Register t6, Register t7, bool is_crc32c); 839 840 void kernel_crc32_singleByteReg(Register crc, Register val, Register table, 841 bool invertCRC); 842 843 // SHA-2 auxiliary functions and public interfaces 844 private: 845 void sha256_deque(const VectorRegister src, 846 const VectorRegister dst1, const VectorRegister dst2, const VectorRegister dst3); 847 void sha256_load_h_vec(const VectorRegister a, const VectorRegister e, const Register hptr); 848 void sha256_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw); 849 void sha256_load_w_plus_k_vec(const Register buf_in, const VectorRegister* ws, 850 const int total_ws, const Register k, const VectorRegister* kpws, 851 const int total_kpws); 852 void sha256_calc_4w(const VectorRegister w0, const VectorRegister w1, 853 const VectorRegister w2, const VectorRegister w3, const VectorRegister kpw0, 854 const VectorRegister kpw1, const VectorRegister kpw2, const VectorRegister kpw3, 855 const Register j, const Register k); 856 void sha256_update_sha_state(const VectorRegister a, const VectorRegister b, 857 const VectorRegister c, const VectorRegister d, const VectorRegister e, 858 const VectorRegister f, const VectorRegister g, const VectorRegister h, 859 const Register hptr); 860 861 void sha512_load_w_vec(const Register buf_in, const VectorRegister* ws, const int total_ws); 862 void sha512_update_sha_state(const Register state, const VectorRegister* hs, const int total_hs); 863 void sha512_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw); 864 void sha512_load_h_vec(const Register state, const VectorRegister* hs, const int total_hs); 865 void sha512_calc_2w(const VectorRegister w0, const VectorRegister w1, 866 const VectorRegister w2, const VectorRegister w3, 867 const VectorRegister w4, const VectorRegister w5, 868 const VectorRegister w6, const VectorRegister w7, 869 const VectorRegister kpw0, const VectorRegister kpw1, const Register j, 870 const VectorRegister vRb, const Register k); 871 872 public: 873 void sha256(bool multi_block); 874 void sha512(bool multi_block); 875 876 void cache_wb(Address line); 877 void cache_wbsync(bool is_presync); 878 879 // 880 // Debugging 881 // 882 883 // assert on cr0 884 void asm_assert(bool check_equal, const char* msg); 885 void asm_assert_eq(const char* msg) { asm_assert(true, msg); } 886 void asm_assert_ne(const char* msg) { asm_assert(false, msg); } 887 888 private: 889 void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base, 890 const char* msg); 891 892 public: 893 894 void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg) { 895 asm_assert_mems_zero(true, 8, mem_offset, mem_base, msg); 896 } 897 void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg) { 898 asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg); 899 } 900 901 // Calls verify_oop. If UseCompressedOops is on, decodes the oop. 902 // Preserves reg. 903 void verify_coop(Register reg, const char*); 904 // Emit code to verify that reg contains a valid oop if +VerifyOops is set. 905 void verify_oop(Register reg, const char* s = "broken oop"); 906 void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop"); 907 908 // TODO: verify method and klass metadata (compare against vptr?) 909 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 910 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {} 911 912 // Convenience method returning function entry. For the ELFv1 case 913 // creates function descriptor at the current address and returns 914 // the pointer to it. For the ELFv2 case returns the current address. 915 inline address function_entry(); 916 917 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 918 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 919 920 private: 921 void stop(int type, const char* msg); 922 923 public: 924 enum { 925 stop_stop = 0, 926 stop_untested = 1, 927 stop_unimplemented = 2, 928 stop_shouldnotreachhere = 3, 929 stop_msg_present = -0x8000 930 }; 931 932 // Prints msg, dumps registers and stops execution. 933 void stop (const char* msg = nullptr) { stop(stop_stop, msg); } 934 void untested (const char* msg = nullptr) { stop(stop_untested, msg); } 935 void unimplemented (const char* msg = nullptr) { stop(stop_unimplemented, msg); } 936 void should_not_reach_here(const char* msg = nullptr) { stop(stop_shouldnotreachhere, msg); } 937 938 void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN; 939 }; 940 941 // class SkipIfEqualZero: 942 // 943 // Instantiating this class will result in assembly code being output that will 944 // jump around any code emitted between the creation of the instance and it's 945 // automatic destruction at the end of a scope block, depending on the value of 946 // the flag passed to the constructor, which will be checked at run-time. 947 class SkipIfEqualZero : public StackObj { 948 private: 949 MacroAssembler* _masm; 950 Label _label; 951 952 public: 953 // 'Temp' is a temp register that this object can use (and trash). 954 explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr); 955 static void skip_to_label_if_equal_zero(MacroAssembler*, Register temp, 956 const bool* flag_addr, Label& label); 957 ~SkipIfEqualZero(); 958 }; 959 960 #endif // CPU_PPC_MACROASSEMBLER_PPC_HPP