1 /* 2 * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #ifndef CPU_PPC_MACROASSEMBLER_PPC_HPP 27 #define CPU_PPC_MACROASSEMBLER_PPC_HPP 28 29 #include "asm/assembler.hpp" 30 #include "oops/accessDecorators.hpp" 31 #include "utilities/macros.hpp" 32 33 // MacroAssembler extends Assembler by a few frequently used macros. 34 35 class ciTypeArray; 36 class OopMap; 37 38 class MacroAssembler: public Assembler { 39 public: 40 MacroAssembler(CodeBuffer* code) : Assembler(code) {} 41 42 // Indicates whether and, if so, which registers must be preserved when calling runtime code. 43 enum PreservationLevel { 44 PRESERVATION_NONE, 45 PRESERVATION_FRAME_LR, 46 PRESERVATION_FRAME_LR_GP_REGS, 47 PRESERVATION_FRAME_LR_GP_FP_REGS 48 }; 49 50 // 51 // Optimized instruction emitters 52 // 53 54 inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; } 55 inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); } 56 57 // load d = *[a+si31] 58 // Emits several instructions if the offset is not encodable in one instruction. 59 void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop); 60 void ld_largeoffset (Register d, int si31, Register a, int emit_filler_nop); 61 inline static bool is_ld_largeoffset(address a); 62 inline static int get_ld_largeoffset_offset(address a); 63 64 inline void round_to(Register r, int modulus); 65 66 // Load/store with type given by parameter. 67 void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed); 68 void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes); 69 70 // Move register if destination register and target register are different 71 inline void mr_if_needed(Register rd, Register rs); 72 inline void fmr_if_needed(FloatRegister rd, FloatRegister rs); 73 // This is dedicated for emitting scheduled mach nodes. For better 74 // readability of the ad file I put it here. 75 // Endgroups are not needed if 76 // - the scheduler is off 77 // - the scheduler found that there is a natural group end, in that 78 // case it reduced the size of the instruction used in the test 79 // yielding 'needed'. 80 inline void endgroup_if_needed(bool needed); 81 82 // Memory barriers. 83 inline void membar(int bits); 84 inline void release(); 85 inline void acquire(); 86 inline void fence(); 87 88 // nop padding 89 void align(int modulus, int max = 252, int rem = 0); 90 91 // Align prefix opcode to make sure it's not on the last word of a 92 // 64-byte block. 93 // 94 // Note: do not call align_prefix() in a .ad file (e.g. ppc.ad). Instead 95 // add ins_alignment(2) to the instruct definition and implement the 96 // compute_padding() method of the instruct node to use 97 // compute_prefix_padding(). See loadConI32Node::compute_padding() in 98 // ppc.ad for an example. 99 void align_prefix(); 100 101 // 102 // Constants, loading constants, TOC support 103 // 104 105 // Address of the global TOC. 106 inline static address global_toc(); 107 // Offset of given address to the global TOC. 108 inline static int offset_to_global_toc(const address addr); 109 110 // Address of TOC of the current method. 111 inline address method_toc(); 112 // Offset of given address to TOC of the current method. 113 inline int offset_to_method_toc(const address addr); 114 115 // Global TOC. 116 void calculate_address_from_global_toc(Register dst, address addr, 117 bool hi16 = true, bool lo16 = true, 118 bool add_relocation = true, bool emit_dummy_addr = false); 119 inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) { 120 calculate_address_from_global_toc(dst, addr, true, false); 121 }; 122 inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) { 123 calculate_address_from_global_toc(dst, addr, false, true); 124 }; 125 126 inline static bool is_calculate_address_from_global_toc_at(address a, address bound); 127 // Returns address of first instruction in sequence. 128 static address patch_calculate_address_from_global_toc_at(address a, address bound, address addr); 129 static address get_address_of_calculate_address_from_global_toc_at(address a, address addr); 130 131 #ifdef _LP64 132 // Patch narrow oop constant. 133 inline static bool is_set_narrow_oop(address a, address bound); 134 // Returns address of first instruction in sequence. 135 static address patch_set_narrow_oop(address a, address bound, narrowOop data); 136 static narrowOop get_narrow_oop(address a, address bound); 137 #endif 138 139 inline static bool is_load_const_at(address a); 140 141 // Emits an oop const to the constant pool, loads the constant, and 142 // sets a relocation info with address current_pc. 143 // Returns true if successful. 144 bool load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc, bool fixed_size = false); 145 146 static bool is_load_const_from_method_toc_at(address a); 147 static int get_offset_of_load_const_from_method_toc_at(address a); 148 149 // Get the 64 bit constant from a `load_const' sequence. 150 static long get_const(address load_const); 151 152 // Patch the 64 bit constant of a `load_const' sequence. This is a 153 // low level procedure. It neither flushes the instruction cache nor 154 // is it atomic. 155 static void patch_const(address load_const, long x); 156 157 // Metadata in code that we have to keep track of. 158 AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index 159 AddressLiteral constant_metadata_address(Metadata* obj); // find_index 160 // Oops used directly in compiled code are stored in the constant pool, 161 // and loaded from there. 162 // Allocate new entry for oop in constant pool. Generate relocation. 163 AddressLiteral allocate_oop_address(jobject obj); 164 // Find oop obj in constant pool. Return relocation with it's index. 165 AddressLiteral constant_oop_address(jobject obj); 166 167 // Find oop in constant pool and emit instructions to load it. 168 // Uses constant_oop_address. 169 inline void set_oop_constant(jobject obj, Register d); 170 // Same as load_address. 171 inline void set_oop (AddressLiteral obj_addr, Register d); 172 173 // 174 // branch, jump 175 // 176 // set dst to -1, 0, +1 as follows: if CCR0bi is "greater than", dst is set to 1, 177 // if CCR0bi is "equal", dst is set to 0, otherwise it's set to -1. 178 void inline set_cmp3(Register dst); 179 // set dst to (treat_unordered_like_less ? -1 : +1) 180 void inline set_cmpu3(Register dst, bool treat_unordered_like_less); 181 182 inline void pd_patch_instruction(address branch, address target, const char* file, int line); 183 NOT_PRODUCT(static void pd_print_patched_instruction(address branch);) 184 185 // Conditional far branch for destinations encodable in 24+2 bits. 186 // Same interface as bc, e.g. no inverse boint-field. 187 enum { 188 bc_far_optimize_not = 0, 189 bc_far_optimize_on_relocate = 1 190 }; 191 // optimize: flag for telling the conditional far branch to optimize 192 // itself when relocated. 193 void bc_far(int boint, int biint, Label& dest, int optimize); 194 void bc_far_optimized(int boint, int biint, Label& dest); // 1 or 2 instructions 195 // Relocation of conditional far branches. 196 static bool is_bc_far_at(address instruction_addr); 197 static address get_dest_of_bc_far_at(address instruction_addr); 198 static void set_dest_of_bc_far_at(address instruction_addr, address dest); 199 private: 200 static bool inline is_bc_far_variant1_at(address instruction_addr); 201 static bool inline is_bc_far_variant2_at(address instruction_addr); 202 static bool inline is_bc_far_variant3_at(address instruction_addr); 203 public: 204 205 // Convenience bc_far versions. 206 inline void blt_far(ConditionRegister crx, Label& L, int optimize); 207 inline void bgt_far(ConditionRegister crx, Label& L, int optimize); 208 inline void beq_far(ConditionRegister crx, Label& L, int optimize); 209 inline void bso_far(ConditionRegister crx, Label& L, int optimize); 210 inline void bge_far(ConditionRegister crx, Label& L, int optimize); 211 inline void ble_far(ConditionRegister crx, Label& L, int optimize); 212 inline void bne_far(ConditionRegister crx, Label& L, int optimize); 213 inline void bns_far(ConditionRegister crx, Label& L, int optimize); 214 215 // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump. 216 private: 217 enum { 218 bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/), 219 bxx64_patchable_size = bxx64_patchable_instruction_count * BytesPerInstWord, 220 bxx64_patchable_ret_addr_offset = bxx64_patchable_size 221 }; 222 void bxx64_patchable(address target, relocInfo::relocType rt, bool link); 223 static bool is_bxx64_patchable_at( address instruction_addr, bool link); 224 // Does the instruction use a pc-relative encoding of the destination? 225 static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link); 226 static bool is_bxx64_patchable_variant1_at( address instruction_addr, bool link); 227 // Load destination relative to global toc. 228 static bool is_bxx64_patchable_variant1b_at( address instruction_addr, bool link); 229 static bool is_bxx64_patchable_variant2_at( address instruction_addr, bool link); 230 static void set_dest_of_bxx64_patchable_at( address instruction_addr, address target, bool link); 231 static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link); 232 233 public: 234 // call 235 enum { 236 bl64_patchable_instruction_count = bxx64_patchable_instruction_count, 237 bl64_patchable_size = bxx64_patchable_size, 238 bl64_patchable_ret_addr_offset = bxx64_patchable_ret_addr_offset 239 }; 240 inline void bl64_patchable(address target, relocInfo::relocType rt) { 241 bxx64_patchable(target, rt, /*link=*/true); 242 } 243 inline static bool is_bl64_patchable_at(address instruction_addr) { 244 return is_bxx64_patchable_at(instruction_addr, /*link=*/true); 245 } 246 inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) { 247 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true); 248 } 249 inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) { 250 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true); 251 } 252 inline static address get_dest_of_bl64_patchable_at(address instruction_addr) { 253 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true); 254 } 255 // jump 256 enum { 257 b64_patchable_instruction_count = bxx64_patchable_instruction_count, 258 b64_patchable_size = bxx64_patchable_size, 259 }; 260 inline void b64_patchable(address target, relocInfo::relocType rt) { 261 bxx64_patchable(target, rt, /*link=*/false); 262 } 263 inline static bool is_b64_patchable_at(address instruction_addr) { 264 return is_bxx64_patchable_at(instruction_addr, /*link=*/false); 265 } 266 inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) { 267 return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false); 268 } 269 inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) { 270 set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false); 271 } 272 inline static address get_dest_of_b64_patchable_at(address instruction_addr) { 273 return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false); 274 } 275 276 // 277 // Support for frame handling 278 // 279 280 // some ABI-related functions 281 282 // Clobbers all volatile, (non-floating-point) general-purpose registers for debugging purposes. 283 // This is especially useful for making calls to the JRT in places in which this hasn't been done before; 284 // e.g. with the introduction of LRBs (load reference barriers) for concurrent garbage collection. 285 void clobber_volatile_gprs(Register excluded_register = noreg); 286 void clobber_carg_stack_slots(Register tmp); 287 288 void save_nonvolatile_gprs( Register dst_base, int offset); 289 void restore_nonvolatile_gprs(Register src_base, int offset); 290 291 enum { 292 num_volatile_gp_regs = 11, 293 num_volatile_fp_regs = 14, 294 num_volatile_regs = num_volatile_gp_regs + num_volatile_fp_regs 295 }; 296 297 void save_volatile_gprs( Register dst_base, int offset, 298 bool include_fp_regs = true, bool include_R3_RET_reg = true); 299 void restore_volatile_gprs(Register src_base, int offset, 300 bool include_fp_regs = true, bool include_R3_RET_reg = true); 301 void save_LR_CR( Register tmp); // tmp contains LR on return. 302 void restore_LR_CR(Register tmp); 303 304 // Get current PC using bl-next-instruction trick. 305 address get_PC_trash_LR(Register result); 306 307 // Resize current frame either relatively wrt to current SP or absolute. 308 void resize_frame(Register offset, Register tmp); 309 void resize_frame(int offset, Register tmp); 310 void resize_frame_absolute(Register addr, Register tmp1, Register tmp2); 311 312 // Push a frame of size bytes. 313 void push_frame(Register bytes, Register tmp); 314 315 // Push a frame of size `bytes'. No abi space provided. 316 void push_frame(unsigned int bytes, Register tmp); 317 318 // Push a frame of size `bytes' plus native_abi_reg_args on top. 319 void push_frame_reg_args(unsigned int bytes, Register tmp); 320 321 // Setup up a new C frame with a spill area for non-volatile GPRs and additional 322 // space for local variables 323 void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp); 324 325 // pop current C frame 326 void pop_frame(); 327 328 // 329 // Calls 330 // 331 332 private: 333 address _last_calls_return_pc; 334 335 #if defined(ABI_ELFv2) 336 // Generic version of a call to C function. 337 // Updates and returns _last_calls_return_pc. 338 address branch_to(Register function_entry, bool and_link); 339 #else 340 // Generic version of a call to C function via a function descriptor 341 // with variable support for C calling conventions (TOC, ENV, etc.). 342 // updates and returns _last_calls_return_pc. 343 address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call, 344 bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee); 345 #endif 346 347 public: 348 349 // Get the pc where the last call will return to. returns _last_calls_return_pc. 350 inline address last_calls_return_pc(); 351 352 #if defined(ABI_ELFv2) 353 // Call a C function via a function descriptor and use full C 354 // calling conventions. Updates and returns _last_calls_return_pc. 355 address call_c(Register function_entry); 356 // For tail calls: only branch, don't link, so callee returns to caller of this function. 357 address call_c_and_return_to_caller(Register function_entry); 358 address call_c(address function_entry, relocInfo::relocType rt); 359 #else 360 // Call a C function via a function descriptor and use full C 361 // calling conventions. Updates and returns _last_calls_return_pc. 362 address call_c(Register function_descriptor); 363 // For tail calls: only branch, don't link, so callee returns to caller of this function. 364 address call_c_and_return_to_caller(Register function_descriptor); 365 address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt); 366 address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt, 367 Register toc); 368 #endif 369 370 protected: 371 372 // It is imperative that all calls into the VM are handled via the 373 // call_VM macros. They make sure that the stack linkage is setup 374 // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points 375 // while call_VM_leaf's correspond to LEAF entry points. 376 // 377 // This is the base routine called by the different versions of 378 // call_VM. The interpreter may customize this version by overriding 379 // it for its purposes (e.g., to save/restore additional registers 380 // when doing a VM call). 381 // 382 // If no last_java_sp is specified (noreg) then SP will be used instead. 383 virtual void call_VM_base( 384 // where an oop-result ends up if any; use noreg otherwise 385 Register oop_result, 386 // to set up last_Java_frame in stubs; use noreg otherwise 387 Register last_java_sp, 388 // the entry point 389 address entry_point, 390 // flag which indicates if exception should be checked 391 bool check_exception = true 392 ); 393 394 // Support for VM calls. This is the base routine called by the 395 // different versions of call_VM_leaf. The interpreter may customize 396 // this version by overriding it for its purposes (e.g., to 397 // save/restore additional registers when doing a VM call). 398 void call_VM_leaf_base(address entry_point); 399 400 public: 401 // Call into the VM. 402 // Passes the thread pointer (in R3_ARG1) as a prepended argument. 403 // Makes sure oop return values are visible to the GC. 404 void call_VM(Register oop_result, address entry_point, bool check_exceptions = true); 405 void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true); 406 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true); 407 void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true); 408 void call_VM_leaf(address entry_point); 409 void call_VM_leaf(address entry_point, Register arg_1); 410 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2); 411 void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3); 412 413 // Call a stub function via a function descriptor, but don't save 414 // TOC before call, don't setup TOC and ENV for call, and don't 415 // restore TOC after call. Updates and returns _last_calls_return_pc. 416 inline address call_stub(Register function_entry); 417 inline void call_stub_and_return_to(Register function_entry, Register return_pc); 418 419 void post_call_nop(); 420 421 // 422 // Java utilities 423 // 424 425 // Read from the polling page, its address is already in a register. 426 inline void load_from_polling_page(Register polling_page_address, int offset = 0); 427 // Check whether instruction is a read access to the polling page 428 // which was emitted by load_from_polling_page(..). 429 static bool is_load_from_polling_page(int instruction, void* ucontext/*may be nullptr*/, 430 address* polling_address_ptr = nullptr); 431 432 // Support for null-checks 433 // 434 // Generates code that causes a null OS exception if the content of reg is null. 435 // If the accessed location is M[reg + offset] and the offset is known, provide the 436 // offset. No explicit code generation is needed if the offset is within a certain 437 // range (0 <= offset <= page_size). 438 439 // Stack overflow checking 440 void bang_stack_with_offset(int offset); 441 442 // If instruction is a stack bang of the form ld, stdu, or 443 // stdux, return the banged address. Otherwise, return 0. 444 static address get_stack_bang_address(int instruction, void* ucontext); 445 446 // Check for reserved stack access in method being exited. If the reserved 447 // stack area was accessed, protect it again and throw StackOverflowError. 448 void reserved_stack_check(Register return_pc); 449 450 // Atomics 451 // CmpxchgX sets condition register to cmpX(current, compare). 452 // (flag == ne) => (dest_current_value != compare_value), (!swapped) 453 // (flag == eq) => (dest_current_value == compare_value), ( swapped) 454 static inline bool cmpxchgx_hint_acquire_lock() { return true; } 455 // The stxcx will probably not be succeeded by a releasing store. 456 static inline bool cmpxchgx_hint_release_lock() { return false; } 457 static inline bool cmpxchgx_hint_atomic_update() { return false; } 458 459 // Cmpxchg semantics 460 enum { 461 MemBarNone = 0, 462 MemBarRel = 1, 463 MemBarAcq = 2, 464 MemBarFenceAfter = 4 // use powers of 2 465 }; 466 private: 467 // Helper functions for word/sub-word atomics. 468 void atomic_get_and_modify_generic(Register dest_current_value, Register exchange_value, 469 Register addr_base, Register tmp1, Register tmp2, Register tmp3, 470 bool cmpxchgx_hint, bool is_add, int size); 471 void cmpxchg_loop_body(ConditionRegister flag, Register dest_current_value, 472 Register compare_value, Register exchange_value, 473 Register addr_base, Register tmp1, Register tmp2, 474 Label &retry, Label &failed, bool cmpxchgx_hint, int size); 475 void cmpxchg_generic(ConditionRegister flag, 476 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 477 Register tmp1, Register tmp2, 478 int semantics, bool cmpxchgx_hint, Register int_flag_success, bool contention_hint, bool weak, int size); 479 public: 480 // Temps and addr_base are killed if processor does not support Power 8 instructions. 481 // Result will be sign extended. 482 void getandsetb(Register dest_current_value, Register exchange_value, Register addr_base, 483 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 484 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 1); 485 } 486 // Temps and addr_base are killed if processor does not support Power 8 instructions. 487 // Result will be sign extended. 488 void getandseth(Register dest_current_value, Register exchange_value, Register addr_base, 489 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 490 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, false, 2); 491 } 492 void getandsetw(Register dest_current_value, Register exchange_value, Register addr_base, 493 bool cmpxchgx_hint) { 494 atomic_get_and_modify_generic(dest_current_value, exchange_value, addr_base, noreg, noreg, noreg, cmpxchgx_hint, false, 4); 495 } 496 void getandsetd(Register dest_current_value, Register exchange_value, Register addr_base, 497 bool cmpxchgx_hint); 498 // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed). 499 // Result will be sign extended. 500 void getandaddb(Register dest_current_value, Register inc_value, Register addr_base, 501 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 502 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 1); 503 } 504 // tmp2/3 and addr_base are killed if processor does not support Power 8 instructions (tmp1 is always needed). 505 // Result will be sign extended. 506 void getandaddh(Register dest_current_value, Register inc_value, Register addr_base, 507 Register tmp1, Register tmp2, Register tmp3, bool cmpxchgx_hint) { 508 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, tmp2, tmp3, cmpxchgx_hint, true, 2); 509 } 510 void getandaddw(Register dest_current_value, Register inc_value, Register addr_base, 511 Register tmp1, bool cmpxchgx_hint) { 512 atomic_get_and_modify_generic(dest_current_value, inc_value, addr_base, tmp1, noreg, noreg, cmpxchgx_hint, true, 4); 513 } 514 void getandaddd(Register dest_current_value, Register exchange_value, Register addr_base, 515 Register tmp, bool cmpxchgx_hint); 516 // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions. 517 // compare_value must be at least 32 bit sign extended. Result will be sign extended. 518 void cmpxchgb(ConditionRegister flag, 519 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 520 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false, 521 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 522 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2, 523 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 1); 524 } 525 // Temps, addr_base and exchange_value are killed if processor does not support Power 8 instructions. 526 // compare_value must be at least 32 bit sign extended. Result will be sign extended. 527 void cmpxchgh(ConditionRegister flag, 528 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 529 Register tmp1, Register tmp2, int semantics, bool cmpxchgx_hint = false, 530 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 531 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, tmp1, tmp2, 532 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 2); 533 } 534 void cmpxchgw(ConditionRegister flag, 535 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base, 536 int semantics, bool cmpxchgx_hint = false, 537 Register int_flag_success = noreg, bool contention_hint = false, bool weak = false) { 538 cmpxchg_generic(flag, dest_current_value, compare_value, exchange_value, addr_base, noreg, noreg, 539 semantics, cmpxchgx_hint, int_flag_success, contention_hint, weak, 4); 540 } 541 void cmpxchgd(ConditionRegister flag, 542 Register dest_current_value, RegisterOrConstant compare_value, Register exchange_value, 543 Register addr_base, int semantics, bool cmpxchgx_hint = false, 544 Register int_flag_success = noreg, Label* failed = nullptr, bool contention_hint = false, bool weak = false); 545 546 // interface method calling 547 void lookup_interface_method(Register recv_klass, 548 Register intf_klass, 549 RegisterOrConstant itable_index, 550 Register method_result, 551 Register temp_reg, Register temp2_reg, 552 Label& no_such_interface, 553 bool return_method = true); 554 555 // virtual method calling 556 void lookup_virtual_method(Register recv_klass, 557 RegisterOrConstant vtable_index, 558 Register method_result); 559 560 // Test sub_klass against super_klass, with fast and slow paths. 561 562 // The fast path produces a tri-state answer: yes / no / maybe-slow. 563 // One of the three labels can be null, meaning take the fall-through. 564 // If super_check_offset is -1, the value is loaded up from super_klass. 565 // No registers are killed, except temp_reg and temp2_reg. 566 // If super_check_offset is not -1, temp2_reg is not used and can be noreg. 567 void check_klass_subtype_fast_path(Register sub_klass, 568 Register super_klass, 569 Register temp1_reg, 570 Register temp2_reg, 571 Label* L_success, 572 Label* L_failure, 573 Label* L_slow_path = nullptr, // default fall through 574 RegisterOrConstant super_check_offset = RegisterOrConstant(-1)); 575 576 // The rest of the type check; must be wired to a corresponding fast path. 577 // It does not repeat the fast path logic, so don't use it standalone. 578 // The temp_reg can be noreg, if no temps are available. 579 // It can also be sub_klass or super_klass, meaning it's OK to kill that one. 580 // Updates the sub's secondary super cache as necessary. 581 void check_klass_subtype_slow_path(Register sub_klass, 582 Register super_klass, 583 Register temp1_reg, 584 Register temp2_reg, 585 Label* L_success = nullptr, 586 Register result_reg = noreg); 587 588 // Simplified, combined version, good for typical uses. 589 // Falls through on failure. 590 void check_klass_subtype(Register sub_klass, 591 Register super_klass, 592 Register temp1_reg, 593 Register temp2_reg, 594 Label& L_success); 595 596 void clinit_barrier(Register klass, 597 Register thread, 598 Label* L_fast_path = nullptr, 599 Label* L_slow_path = nullptr); 600 601 // Method handle support (JSR 292). 602 RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0); 603 604 void push_cont_fastpath(); 605 void pop_cont_fastpath(); 606 void inc_held_monitor_count(Register tmp); 607 void dec_held_monitor_count(Register tmp); 608 void atomically_flip_locked_state(bool is_unlock, Register obj, Register tmp, Label& failed, int semantics); 609 void lightweight_lock(Register obj, Register t1, Register t2, Label& slow); 610 void lightweight_unlock(Register obj, Register t1, Label& slow); 611 612 // allocation (for C1) 613 void tlab_allocate( 614 Register obj, // result: pointer to object after successful allocation 615 Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise 616 int con_size_in_bytes, // object size in bytes if known at compile time 617 Register t1, // temp register 618 Label& slow_case // continuation point if fast allocation fails 619 ); 620 void incr_allocated_bytes(RegisterOrConstant size_in_bytes, Register t1, Register t2); 621 622 enum { trampoline_stub_size = 6 * 4 }; 623 address emit_trampoline_stub(int destination_toc_offset, int insts_call_instruction_offset, Register Rtoc = noreg); 624 625 void compiler_fast_lock_object(ConditionRegister flag, Register oop, Register box, 626 Register tmp1, Register tmp2, Register tmp3); 627 628 void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, 629 Register tmp1, Register tmp2, Register tmp3); 630 631 void compiler_fast_lock_lightweight_object(ConditionRegister flag, Register oop, Register tmp1, 632 Register tmp2, Register tmp3); 633 634 void compiler_fast_unlock_lightweight_object(ConditionRegister flag, Register oop, Register tmp1, 635 Register tmp2, Register tmp3); 636 637 // Check if safepoint requested and if so branch 638 void safepoint_poll(Label& slow_path, Register temp, bool at_return, bool in_nmethod); 639 640 void resolve_jobject(Register value, Register tmp1, Register tmp2, 641 MacroAssembler::PreservationLevel preservation_level); 642 void resolve_global_jobject(Register value, Register tmp1, Register tmp2, 643 MacroAssembler::PreservationLevel preservation_level); 644 645 // Support for managing the JavaThread pointer (i.e.; the reference to 646 // thread-local information). 647 648 // Support for last Java frame (but use call_VM instead where possible): 649 // access R16_thread->last_Java_sp. 650 void set_last_Java_frame(Register last_java_sp, Register last_Java_pc); 651 void reset_last_Java_frame(void); 652 void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1); 653 654 // Read vm result from thread: oop_result = R16_thread->result; 655 void get_vm_result (Register oop_result); 656 void get_vm_result_2(Register metadata_result); 657 658 static bool needs_explicit_null_check(intptr_t offset); 659 static bool uses_implicit_null_check(void* address); 660 661 // Trap-instruction-based checks. 662 // Range checks can be distinguished from zero checks as they check 32 bit, 663 // zero checks all 64 bits (tw, td). 664 inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual); 665 static bool is_trap_null_check(int x) { 666 return is_tdi(x, traptoEqual, -1/*any reg*/, 0) || 667 is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0); 668 } 669 670 inline void trap_ic_miss_check(Register a, Register b); 671 static bool is_trap_ic_miss_check(int x) { 672 return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/); 673 } 674 675 // Implicit or explicit null check, jumps to static address exception_entry. 676 inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry); 677 inline void null_check(Register a, int offset, Label *Lis_null); // implicit only if Lis_null not provided 678 679 // Access heap oop, handle encoding and GC barriers. 680 // Some GC barriers call C so use needs_frame = true if an extra frame is needed at the current call site. 681 inline void access_store_at(BasicType type, DecoratorSet decorators, 682 Register base, RegisterOrConstant ind_or_offs, Register val, 683 Register tmp1, Register tmp2, Register tmp3, 684 MacroAssembler::PreservationLevel preservation_level); 685 inline void access_load_at(BasicType type, DecoratorSet decorators, 686 Register base, RegisterOrConstant ind_or_offs, Register dst, 687 Register tmp1, Register tmp2, 688 MacroAssembler::PreservationLevel preservation_level, Label *L_handle_null = nullptr); 689 690 public: 691 // Specify tmp1 for better code in certain compressed oops cases. Specify Label to bail out on null oop. 692 // tmp1, tmp2 and needs_frame are used with decorators ON_PHANTOM_OOP_REF or ON_WEAK_OOP_REF. 693 inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1, 694 Register tmp1, Register tmp2, 695 MacroAssembler::PreservationLevel preservation_level, 696 DecoratorSet decorators = 0, Label *L_handle_null = nullptr); 697 698 inline void store_heap_oop(Register d, RegisterOrConstant offs, Register s1, 699 Register tmp1, Register tmp2, Register tmp3, 700 MacroAssembler::PreservationLevel preservation_level, DecoratorSet decorators = 0); 701 702 // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong. 703 // src == d allowed. 704 inline Register encode_heap_oop_not_null(Register d, Register src = noreg); 705 inline Register decode_heap_oop_not_null(Register d, Register src = noreg); 706 707 // Null allowed. 708 inline Register encode_heap_oop(Register d, Register src); // Prefer null check in GC barrier! 709 inline void decode_heap_oop(Register d); 710 711 // Load/Store klass oop from klass field. Compress. 712 void load_klass(Register dst, Register src); 713 void load_klass_check_null(Register dst, Register src, Label* is_null = nullptr); 714 void store_klass(Register dst_oop, Register klass, Register tmp = R0); 715 void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified. 716 717 void resolve_oop_handle(Register result, Register tmp1, Register tmp2, 718 MacroAssembler::PreservationLevel preservation_level); 719 void resolve_weak_handle(Register result, Register tmp1, Register tmp2, 720 MacroAssembler::PreservationLevel preservation_level); 721 void load_method_holder(Register holder, Register method); 722 723 static int instr_size_for_decode_klass_not_null(); 724 void decode_klass_not_null(Register dst, Register src = noreg); 725 Register encode_klass_not_null(Register dst, Register src = noreg); 726 727 // SIGTRAP-based range checks for arrays. 728 inline void trap_range_check_l(Register a, Register b); 729 inline void trap_range_check_l(Register a, int si16); 730 static bool is_trap_range_check_l(int x) { 731 return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) || 732 is_twi(x, traptoLessThanUnsigned, -1/*any reg*/) ); 733 } 734 inline void trap_range_check_le(Register a, int si16); 735 static bool is_trap_range_check_le(int x) { 736 return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/); 737 } 738 inline void trap_range_check_g(Register a, int si16); 739 static bool is_trap_range_check_g(int x) { 740 return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/); 741 } 742 inline void trap_range_check_ge(Register a, Register b); 743 inline void trap_range_check_ge(Register a, int si16); 744 static bool is_trap_range_check_ge(int x) { 745 return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) || 746 is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/) ); 747 } 748 static bool is_trap_range_check(int x) { 749 return is_trap_range_check_l(x) || is_trap_range_check_le(x) || 750 is_trap_range_check_g(x) || is_trap_range_check_ge(x); 751 } 752 753 void clear_memory_unrolled(Register base_ptr, int cnt_dwords, Register tmp = R0, int offset = 0); 754 void clear_memory_constlen(Register base_ptr, int cnt_dwords, Register tmp = R0); 755 void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0, long const_cnt = -1); 756 757 // Emitters for BigInteger.multiplyToLen intrinsic. 758 inline void multiply64(Register dest_hi, Register dest_lo, 759 Register x, Register y); 760 void add2_with_carry(Register dest_hi, Register dest_lo, 761 Register src1, Register src2); 762 void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 763 Register y, Register y_idx, Register z, 764 Register carry, Register product_high, Register product, 765 Register idx, Register kdx, Register tmp); 766 void multiply_add_128_x_128(Register x_xstart, Register y, Register z, 767 Register yz_idx, Register idx, Register carry, 768 Register product_high, Register product, Register tmp, 769 int offset); 770 void multiply_128_x_128_loop(Register x_xstart, 771 Register y, Register z, 772 Register yz_idx, Register idx, Register carry, 773 Register product_high, Register product, 774 Register carry2, Register tmp); 775 void muladd(Register out, Register in, Register offset, Register len, Register k, 776 Register tmp1, Register tmp2, Register carry); 777 void multiply_to_len(Register x, Register xlen, 778 Register y, Register ylen, 779 Register z, Register zlen, 780 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, 781 Register tmp6, Register tmp7, Register tmp8, Register tmp9, Register tmp10, 782 Register tmp11, Register tmp12, Register tmp13); 783 784 // Emitters for CRC32 calculation. 785 // A note on invertCRC: 786 // Unfortunately, internal representation of crc differs between CRC32 and CRC32C. 787 // CRC32 holds it's current crc value in the externally visible representation. 788 // CRC32C holds it's current crc value in internal format, ready for updating. 789 // Thus, the crc value must be bit-flipped before updating it in the CRC32 case. 790 // In the CRC32C case, it must be bit-flipped when it is given to the outside world (getValue()). 791 // The bool invertCRC parameter indicates whether bit-flipping is required before updates. 792 void load_reverse_32(Register dst, Register src); 793 int crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3); 794 void fold_byte_crc32(Register crc, Register val, Register table, Register tmp); 795 void update_byte_crc32(Register crc, Register val, Register table); 796 void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table, 797 Register data, bool loopAlignment); 798 void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc, 799 Register t0, Register t1, Register t2, Register t3, 800 Register tc0, Register tc1, Register tc2, Register tc3); 801 void kernel_crc32_1word(Register crc, Register buf, Register len, Register table, 802 Register t0, Register t1, Register t2, Register t3, 803 Register tc0, Register tc1, Register tc2, Register tc3, 804 bool invertCRC); 805 void kernel_crc32_vpmsum(Register crc, Register buf, Register len, Register constants, 806 Register t0, Register t1, Register t2, Register t3, Register t4, 807 Register t5, Register t6, bool invertCRC); 808 void kernel_crc32_vpmsum_aligned(Register crc, Register buf, Register len, Register constants, 809 Register t0, Register t1, Register t2, Register t3, Register t4, 810 Register t5, Register t6); 811 // Version which internally decides what to use. 812 void crc32(Register crc, Register buf, Register len, Register t0, Register t1, Register t2, 813 Register t3, Register t4, Register t5, Register t6, Register t7, bool is_crc32c); 814 815 void kernel_crc32_singleByteReg(Register crc, Register val, Register table, 816 bool invertCRC); 817 818 // SHA-2 auxiliary functions and public interfaces 819 private: 820 void sha256_deque(const VectorRegister src, 821 const VectorRegister dst1, const VectorRegister dst2, const VectorRegister dst3); 822 void sha256_load_h_vec(const VectorRegister a, const VectorRegister e, const Register hptr); 823 void sha256_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw); 824 void sha256_load_w_plus_k_vec(const Register buf_in, const VectorRegister* ws, 825 const int total_ws, const Register k, const VectorRegister* kpws, 826 const int total_kpws); 827 void sha256_calc_4w(const VectorRegister w0, const VectorRegister w1, 828 const VectorRegister w2, const VectorRegister w3, const VectorRegister kpw0, 829 const VectorRegister kpw1, const VectorRegister kpw2, const VectorRegister kpw3, 830 const Register j, const Register k); 831 void sha256_update_sha_state(const VectorRegister a, const VectorRegister b, 832 const VectorRegister c, const VectorRegister d, const VectorRegister e, 833 const VectorRegister f, const VectorRegister g, const VectorRegister h, 834 const Register hptr); 835 836 void sha512_load_w_vec(const Register buf_in, const VectorRegister* ws, const int total_ws); 837 void sha512_update_sha_state(const Register state, const VectorRegister* hs, const int total_hs); 838 void sha512_round(const VectorRegister* hs, const int total_hs, int& h_cnt, const VectorRegister kpw); 839 void sha512_load_h_vec(const Register state, const VectorRegister* hs, const int total_hs); 840 void sha512_calc_2w(const VectorRegister w0, const VectorRegister w1, 841 const VectorRegister w2, const VectorRegister w3, 842 const VectorRegister w4, const VectorRegister w5, 843 const VectorRegister w6, const VectorRegister w7, 844 const VectorRegister kpw0, const VectorRegister kpw1, const Register j, 845 const VectorRegister vRb, const Register k); 846 847 public: 848 void sha256(bool multi_block); 849 void sha512(bool multi_block); 850 851 void cache_wb(Address line); 852 void cache_wbsync(bool is_presync); 853 854 // 855 // Debugging 856 // 857 858 // assert on cr0 859 void asm_assert(bool check_equal, const char* msg); 860 void asm_assert_eq(const char* msg) { asm_assert(true, msg); } 861 void asm_assert_ne(const char* msg) { asm_assert(false, msg); } 862 863 private: 864 void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base, 865 const char* msg); 866 867 public: 868 869 void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg) { 870 asm_assert_mems_zero(true, 8, mem_offset, mem_base, msg); 871 } 872 void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg) { 873 asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg); 874 } 875 876 // Calls verify_oop. If UseCompressedOops is on, decodes the oop. 877 // Preserves reg. 878 void verify_coop(Register reg, const char*); 879 // Emit code to verify that reg contains a valid oop if +VerifyOops is set. 880 void verify_oop(Register reg, const char* s = "broken oop"); 881 void verify_oop_addr(RegisterOrConstant offs, Register base, const char* s = "contains broken oop"); 882 883 // TODO: verify method and klass metadata (compare against vptr?) 884 void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {} 885 void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {} 886 887 // Convenience method returning function entry. For the ELFv1 case 888 // creates function descriptor at the current address and returns 889 // the pointer to it. For the ELFv2 case returns the current address. 890 inline address function_entry(); 891 892 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__) 893 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__) 894 895 private: 896 void stop(int type, const char* msg); 897 898 public: 899 enum { 900 stop_stop = 0, 901 stop_untested = 1, 902 stop_unimplemented = 2, 903 stop_shouldnotreachhere = 3, 904 stop_msg_present = -0x8000 905 }; 906 907 // Prints msg, dumps registers and stops execution. 908 void stop (const char* msg = nullptr) { stop(stop_stop, msg); } 909 void untested (const char* msg = nullptr) { stop(stop_untested, msg); } 910 void unimplemented (const char* msg = nullptr) { stop(stop_unimplemented, msg); } 911 void should_not_reach_here(const char* msg = nullptr) { stop(stop_shouldnotreachhere, msg); } 912 913 void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN; 914 }; 915 916 // class SkipIfEqualZero: 917 // 918 // Instantiating this class will result in assembly code being output that will 919 // jump around any code emitted between the creation of the instance and it's 920 // automatic destruction at the end of a scope block, depending on the value of 921 // the flag passed to the constructor, which will be checked at run-time. 922 class SkipIfEqualZero : public StackObj { 923 private: 924 MacroAssembler* _masm; 925 Label _label; 926 927 public: 928 // 'Temp' is a temp register that this object can use (and trash). 929 explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr); 930 static void skip_to_label_if_equal_zero(MacroAssembler*, Register temp, 931 const bool* flag_addr, Label& label); 932 ~SkipIfEqualZero(); 933 }; 934 935 #endif // CPU_PPC_MACROASSEMBLER_PPC_HPP