1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2023 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "frame_ppc.hpp"
  33 #include "compiler/oopMap.hpp"
  34 #include "gc/shared/gcLocker.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interp_masm.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/compiledICHolder.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "prims/methodHandles.hpp"
  41 #include "runtime/continuation.hpp"
  42 #include "runtime/continuationEntry.inline.hpp"
  43 #include "runtime/jniHandles.hpp"
  44 #include "runtime/os.inline.hpp"
  45 #include "runtime/safepointMechanism.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 #include "runtime/signature.hpp"
  48 #include "runtime/stubRoutines.hpp"
  49 #include "runtime/vframeArray.hpp"
  50 #include "utilities/align.hpp"
  51 #include "utilities/macros.hpp"
  52 #include "vmreg_ppc.inline.hpp"
  53 #ifdef COMPILER1
  54 #include "c1/c1_Runtime1.hpp"
  55 #endif
  56 #ifdef COMPILER2
  57 #include "opto/ad.hpp"
  58 #include "opto/runtime.hpp"
  59 #endif
  60 
  61 #include <alloca.h>
  62 
  63 #define __ masm->
  64 
  65 #ifdef PRODUCT
  66 #define BLOCK_COMMENT(str) // nothing
  67 #else
  68 #define BLOCK_COMMENT(str) __ block_comment(str)
  69 #endif
  70 
  71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  72 
  73 
  74 class RegisterSaver {
  75  // Used for saving volatile registers.
  76  public:
  77 
  78   // Support different return pc locations.
  79   enum ReturnPCLocation {
  80     return_pc_is_lr,
  81     return_pc_is_pre_saved,
  82     return_pc_is_thread_saved_exception_pc
  83   };
  84 
  85   static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
  86                          int* out_frame_size_in_bytes,
  87                          bool generate_oop_map,
  88                          int return_pc_adjustment,
  89                          ReturnPCLocation return_pc_location,
  90                          bool save_vectors = false);
  91   static void    restore_live_registers_and_pop_frame(MacroAssembler* masm,
  92                          int frame_size_in_bytes,
  93                          bool restore_ctr,
  94                          bool save_vectors = false);
  95 
  96   static void push_frame_and_save_argument_registers(MacroAssembler* masm,
  97                          Register r_temp,
  98                          int frame_size,
  99                          int total_args,
 100                          const VMRegPair *regs, const VMRegPair *regs2 = nullptr);
 101   static void restore_argument_registers_and_pop_frame(MacroAssembler*masm,
 102                          int frame_size,
 103                          int total_args,
 104                          const VMRegPair *regs, const VMRegPair *regs2 = nullptr);
 105 
 106   // During deoptimization only the result registers need to be restored
 107   // all the other values have already been extracted.
 108   static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes);
 109 
 110   // Constants and data structures:
 111 
 112   typedef enum {
 113     int_reg,
 114     float_reg,
 115     special_reg,
 116     vs_reg
 117   } RegisterType;
 118 
 119   typedef enum {
 120     reg_size          = 8,
 121     half_reg_size     = reg_size / 2,
 122     vs_reg_size       = 16
 123   } RegisterConstants;
 124 
 125   typedef struct {
 126     RegisterType        reg_type;
 127     int                 reg_num;
 128     VMReg               vmreg;
 129   } LiveRegType;
 130 };
 131 
 132 
 133 #define RegisterSaver_LiveIntReg(regname) \
 134   { RegisterSaver::int_reg,     regname->encoding(), regname->as_VMReg() }
 135 
 136 #define RegisterSaver_LiveFloatReg(regname) \
 137   { RegisterSaver::float_reg,   regname->encoding(), regname->as_VMReg() }
 138 
 139 #define RegisterSaver_LiveSpecialReg(regname) \
 140   { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() }
 141 
 142 #define RegisterSaver_LiveVSReg(regname) \
 143   { RegisterSaver::vs_reg,      regname->encoding(), regname->as_VMReg() }
 144 
 145 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = {
 146   // Live registers which get spilled to the stack. Register
 147   // positions in this array correspond directly to the stack layout.
 148 
 149   //
 150   // live special registers:
 151   //
 152   RegisterSaver_LiveSpecialReg(SR_CTR),
 153   //
 154   // live float registers:
 155   //
 156   RegisterSaver_LiveFloatReg( F0  ),
 157   RegisterSaver_LiveFloatReg( F1  ),
 158   RegisterSaver_LiveFloatReg( F2  ),
 159   RegisterSaver_LiveFloatReg( F3  ),
 160   RegisterSaver_LiveFloatReg( F4  ),
 161   RegisterSaver_LiveFloatReg( F5  ),
 162   RegisterSaver_LiveFloatReg( F6  ),
 163   RegisterSaver_LiveFloatReg( F7  ),
 164   RegisterSaver_LiveFloatReg( F8  ),
 165   RegisterSaver_LiveFloatReg( F9  ),
 166   RegisterSaver_LiveFloatReg( F10 ),
 167   RegisterSaver_LiveFloatReg( F11 ),
 168   RegisterSaver_LiveFloatReg( F12 ),
 169   RegisterSaver_LiveFloatReg( F13 ),
 170   RegisterSaver_LiveFloatReg( F14 ),
 171   RegisterSaver_LiveFloatReg( F15 ),
 172   RegisterSaver_LiveFloatReg( F16 ),
 173   RegisterSaver_LiveFloatReg( F17 ),
 174   RegisterSaver_LiveFloatReg( F18 ),
 175   RegisterSaver_LiveFloatReg( F19 ),
 176   RegisterSaver_LiveFloatReg( F20 ),
 177   RegisterSaver_LiveFloatReg( F21 ),
 178   RegisterSaver_LiveFloatReg( F22 ),
 179   RegisterSaver_LiveFloatReg( F23 ),
 180   RegisterSaver_LiveFloatReg( F24 ),
 181   RegisterSaver_LiveFloatReg( F25 ),
 182   RegisterSaver_LiveFloatReg( F26 ),
 183   RegisterSaver_LiveFloatReg( F27 ),
 184   RegisterSaver_LiveFloatReg( F28 ),
 185   RegisterSaver_LiveFloatReg( F29 ),
 186   RegisterSaver_LiveFloatReg( F30 ),
 187   RegisterSaver_LiveFloatReg( F31 ),
 188   //
 189   // live integer registers:
 190   //
 191   RegisterSaver_LiveIntReg(   R0  ),
 192   //RegisterSaver_LiveIntReg( R1  ), // stack pointer
 193   RegisterSaver_LiveIntReg(   R2  ),
 194   RegisterSaver_LiveIntReg(   R3  ),
 195   RegisterSaver_LiveIntReg(   R4  ),
 196   RegisterSaver_LiveIntReg(   R5  ),
 197   RegisterSaver_LiveIntReg(   R6  ),
 198   RegisterSaver_LiveIntReg(   R7  ),
 199   RegisterSaver_LiveIntReg(   R8  ),
 200   RegisterSaver_LiveIntReg(   R9  ),
 201   RegisterSaver_LiveIntReg(   R10 ),
 202   RegisterSaver_LiveIntReg(   R11 ),
 203   RegisterSaver_LiveIntReg(   R12 ),
 204   //RegisterSaver_LiveIntReg( R13 ), // system thread id
 205   RegisterSaver_LiveIntReg(   R14 ),
 206   RegisterSaver_LiveIntReg(   R15 ),
 207   RegisterSaver_LiveIntReg(   R16 ),
 208   RegisterSaver_LiveIntReg(   R17 ),
 209   RegisterSaver_LiveIntReg(   R18 ),
 210   RegisterSaver_LiveIntReg(   R19 ),
 211   RegisterSaver_LiveIntReg(   R20 ),
 212   RegisterSaver_LiveIntReg(   R21 ),
 213   RegisterSaver_LiveIntReg(   R22 ),
 214   RegisterSaver_LiveIntReg(   R23 ),
 215   RegisterSaver_LiveIntReg(   R24 ),
 216   RegisterSaver_LiveIntReg(   R25 ),
 217   RegisterSaver_LiveIntReg(   R26 ),
 218   RegisterSaver_LiveIntReg(   R27 ),
 219   RegisterSaver_LiveIntReg(   R28 ),
 220   RegisterSaver_LiveIntReg(   R29 ),
 221   RegisterSaver_LiveIntReg(   R30 ),
 222   RegisterSaver_LiveIntReg(   R31 )  // must be the last register (see save/restore functions below)
 223 };
 224 
 225 static const RegisterSaver::LiveRegType RegisterSaver_LiveVSRegs[] = {
 226   //
 227   // live vector scalar registers (optional, only these ones are used by C2):
 228   //
 229   RegisterSaver_LiveVSReg( VSR32 ),
 230   RegisterSaver_LiveVSReg( VSR33 ),
 231   RegisterSaver_LiveVSReg( VSR34 ),
 232   RegisterSaver_LiveVSReg( VSR35 ),
 233   RegisterSaver_LiveVSReg( VSR36 ),
 234   RegisterSaver_LiveVSReg( VSR37 ),
 235   RegisterSaver_LiveVSReg( VSR38 ),
 236   RegisterSaver_LiveVSReg( VSR39 ),
 237   RegisterSaver_LiveVSReg( VSR40 ),
 238   RegisterSaver_LiveVSReg( VSR41 ),
 239   RegisterSaver_LiveVSReg( VSR42 ),
 240   RegisterSaver_LiveVSReg( VSR43 ),
 241   RegisterSaver_LiveVSReg( VSR44 ),
 242   RegisterSaver_LiveVSReg( VSR45 ),
 243   RegisterSaver_LiveVSReg( VSR46 ),
 244   RegisterSaver_LiveVSReg( VSR47 ),
 245   RegisterSaver_LiveVSReg( VSR48 ),
 246   RegisterSaver_LiveVSReg( VSR49 ),
 247   RegisterSaver_LiveVSReg( VSR50 ),
 248   RegisterSaver_LiveVSReg( VSR51 )
 249 };
 250 
 251 
 252 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm,
 253                          int* out_frame_size_in_bytes,
 254                          bool generate_oop_map,
 255                          int return_pc_adjustment,
 256                          ReturnPCLocation return_pc_location,
 257                          bool save_vectors) {
 258   // Push an abi_reg_args-frame and store all registers which may be live.
 259   // If requested, create an OopMap: Record volatile registers as
 260   // callee-save values in an OopMap so their save locations will be
 261   // propagated to the RegisterMap of the caller frame during
 262   // StackFrameStream construction (needed for deoptimization; see
 263   // compiledVFrame::create_stack_value).
 264   // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment.
 265   // Updated return pc is returned in R31 (if not return_pc_is_pre_saved).
 266 
 267   // calculate frame size
 268   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 269                                    sizeof(RegisterSaver::LiveRegType);
 270   const int vsregstosave_num     = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) /
 271                                                    sizeof(RegisterSaver::LiveRegType))
 272                                                 : 0;
 273   const int register_save_size   = regstosave_num * reg_size + vsregstosave_num * vs_reg_size;
 274   const int frame_size_in_bytes  = align_up(register_save_size, frame::alignment_in_bytes)
 275                                    + frame::native_abi_reg_args_size;
 276 
 277   *out_frame_size_in_bytes       = frame_size_in_bytes;
 278   const int frame_size_in_slots  = frame_size_in_bytes / sizeof(jint);
 279   const int register_save_offset = frame_size_in_bytes - register_save_size;
 280 
 281   // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words.
 282   OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : nullptr;
 283 
 284   BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {");
 285 
 286   // push a new frame
 287   __ push_frame(frame_size_in_bytes, noreg);
 288 
 289   // Save some registers in the last (non-vector) slots of the new frame so we
 290   // can use them as scratch regs or to determine the return pc.
 291   __ std(R31, frame_size_in_bytes -   reg_size - vsregstosave_num * vs_reg_size, R1_SP);
 292   __ std(R30, frame_size_in_bytes - 2*reg_size - vsregstosave_num * vs_reg_size, R1_SP);
 293 
 294   // save the flags
 295   // Do the save_LR_CR by hand and adjust the return pc if requested.
 296   __ mfcr(R30);
 297   __ std(R30, frame_size_in_bytes + _abi0(cr), R1_SP);
 298   switch (return_pc_location) {
 299     case return_pc_is_lr: __ mflr(R31); break;
 300     case return_pc_is_pre_saved: assert(return_pc_adjustment == 0, "unsupported"); break;
 301     case return_pc_is_thread_saved_exception_pc: __ ld(R31, thread_(saved_exception_pc)); break;
 302     default: ShouldNotReachHere();
 303   }
 304   if (return_pc_location != return_pc_is_pre_saved) {
 305     if (return_pc_adjustment != 0) {
 306       __ addi(R31, R31, return_pc_adjustment);
 307     }
 308     __ std(R31, frame_size_in_bytes + _abi0(lr), R1_SP);
 309   }
 310 
 311   // save all registers (ints and floats)
 312   int offset = register_save_offset;
 313 
 314   for (int i = 0; i < regstosave_num; i++) {
 315     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 316     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 317 
 318     switch (reg_type) {
 319       case RegisterSaver::int_reg: {
 320         if (reg_num < 30) { // We spilled R30-31 right at the beginning.
 321           __ std(as_Register(reg_num), offset, R1_SP);
 322         }
 323         break;
 324       }
 325       case RegisterSaver::float_reg: {
 326         __ stfd(as_FloatRegister(reg_num), offset, R1_SP);
 327         break;
 328       }
 329       case RegisterSaver::special_reg: {
 330         if (reg_num == SR_CTR.encoding()) {
 331           __ mfctr(R30);
 332           __ std(R30, offset, R1_SP);
 333         } else {
 334           Unimplemented();
 335         }
 336         break;
 337       }
 338       default:
 339         ShouldNotReachHere();
 340     }
 341 
 342     if (generate_oop_map) {
 343       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
 344                             RegisterSaver_LiveRegs[i].vmreg);
 345       map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2),
 346                             RegisterSaver_LiveRegs[i].vmreg->next());
 347     }
 348     offset += reg_size;
 349   }
 350 
 351   for (int i = 0; i < vsregstosave_num; i++) {
 352     int reg_num  = RegisterSaver_LiveVSRegs[i].reg_num;
 353     int reg_type = RegisterSaver_LiveVSRegs[i].reg_type;
 354 
 355     __ li(R30, offset);
 356     __ stxvd2x(as_VectorSRegister(reg_num), R30, R1_SP);
 357 
 358     if (generate_oop_map) {
 359       map->set_callee_saved(VMRegImpl::stack2reg(offset>>2),
 360                             RegisterSaver_LiveVSRegs[i].vmreg);
 361     }
 362     offset += vs_reg_size;
 363   }
 364 
 365   assert(offset == frame_size_in_bytes, "consistency check");
 366 
 367   BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers");
 368 
 369   // And we're done.
 370   return map;
 371 }
 372 
 373 
 374 // Pop the current frame and restore all the registers that we
 375 // saved.
 376 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm,
 377                                                          int frame_size_in_bytes,
 378                                                          bool restore_ctr,
 379                                                          bool save_vectors) {
 380   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 381                                    sizeof(RegisterSaver::LiveRegType);
 382   const int vsregstosave_num     = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) /
 383                                                    sizeof(RegisterSaver::LiveRegType))
 384                                                 : 0;
 385   const int register_save_size   = regstosave_num * reg_size + vsregstosave_num * vs_reg_size;
 386 
 387   const int register_save_offset = frame_size_in_bytes - register_save_size;
 388 
 389   BLOCK_COMMENT("restore_live_registers_and_pop_frame {");
 390 
 391   // restore all registers (ints and floats)
 392   int offset = register_save_offset;
 393 
 394   for (int i = 0; i < regstosave_num; i++) {
 395     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 396     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 397 
 398     switch (reg_type) {
 399       case RegisterSaver::int_reg: {
 400         if (reg_num != 31) // R31 restored at the end, it's the tmp reg!
 401           __ ld(as_Register(reg_num), offset, R1_SP);
 402         break;
 403       }
 404       case RegisterSaver::float_reg: {
 405         __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
 406         break;
 407       }
 408       case RegisterSaver::special_reg: {
 409         if (reg_num == SR_CTR.encoding()) {
 410           if (restore_ctr) { // Nothing to do here if ctr already contains the next address.
 411             __ ld(R31, offset, R1_SP);
 412             __ mtctr(R31);
 413           }
 414         } else {
 415           Unimplemented();
 416         }
 417         break;
 418       }
 419       default:
 420         ShouldNotReachHere();
 421     }
 422     offset += reg_size;
 423   }
 424 
 425   for (int i = 0; i < vsregstosave_num; i++) {
 426     int reg_num  = RegisterSaver_LiveVSRegs[i].reg_num;
 427     int reg_type = RegisterSaver_LiveVSRegs[i].reg_type;
 428 
 429     __ li(R31, offset);
 430     __ lxvd2x(as_VectorSRegister(reg_num), R31, R1_SP);
 431 
 432     offset += vs_reg_size;
 433   }
 434 
 435   assert(offset == frame_size_in_bytes, "consistency check");
 436 
 437   // restore link and the flags
 438   __ ld(R31, frame_size_in_bytes + _abi0(lr), R1_SP);
 439   __ mtlr(R31);
 440 
 441   __ ld(R31, frame_size_in_bytes + _abi0(cr), R1_SP);
 442   __ mtcr(R31);
 443 
 444   // restore scratch register's value
 445   __ ld(R31, frame_size_in_bytes - reg_size - vsregstosave_num * vs_reg_size, R1_SP);
 446 
 447   // pop the frame
 448   __ addi(R1_SP, R1_SP, frame_size_in_bytes);
 449 
 450   BLOCK_COMMENT("} restore_live_registers_and_pop_frame");
 451 }
 452 
 453 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp,
 454                                                            int frame_size,int total_args, const VMRegPair *regs,
 455                                                            const VMRegPair *regs2) {
 456   __ push_frame(frame_size, r_temp);
 457   int st_off = frame_size - wordSize;
 458   for (int i = 0; i < total_args; i++) {
 459     VMReg r_1 = regs[i].first();
 460     VMReg r_2 = regs[i].second();
 461     if (!r_1->is_valid()) {
 462       assert(!r_2->is_valid(), "");
 463       continue;
 464     }
 465     if (r_1->is_Register()) {
 466       Register r = r_1->as_Register();
 467       __ std(r, st_off, R1_SP);
 468       st_off -= wordSize;
 469     } else if (r_1->is_FloatRegister()) {
 470       FloatRegister f = r_1->as_FloatRegister();
 471       __ stfd(f, st_off, R1_SP);
 472       st_off -= wordSize;
 473     }
 474   }
 475   if (regs2 != nullptr) {
 476     for (int i = 0; i < total_args; i++) {
 477       VMReg r_1 = regs2[i].first();
 478       VMReg r_2 = regs2[i].second();
 479       if (!r_1->is_valid()) {
 480         assert(!r_2->is_valid(), "");
 481         continue;
 482       }
 483       if (r_1->is_Register()) {
 484         Register r = r_1->as_Register();
 485         __ std(r, st_off, R1_SP);
 486         st_off -= wordSize;
 487       } else if (r_1->is_FloatRegister()) {
 488         FloatRegister f = r_1->as_FloatRegister();
 489         __ stfd(f, st_off, R1_SP);
 490         st_off -= wordSize;
 491       }
 492     }
 493   }
 494 }
 495 
 496 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size,
 497                                                              int total_args, const VMRegPair *regs,
 498                                                              const VMRegPair *regs2) {
 499   int st_off = frame_size - wordSize;
 500   for (int i = 0; i < total_args; i++) {
 501     VMReg r_1 = regs[i].first();
 502     VMReg r_2 = regs[i].second();
 503     if (r_1->is_Register()) {
 504       Register r = r_1->as_Register();
 505       __ ld(r, st_off, R1_SP);
 506       st_off -= wordSize;
 507     } else if (r_1->is_FloatRegister()) {
 508       FloatRegister f = r_1->as_FloatRegister();
 509       __ lfd(f, st_off, R1_SP);
 510       st_off -= wordSize;
 511     }
 512   }
 513   if (regs2 != nullptr)
 514     for (int i = 0; i < total_args; i++) {
 515       VMReg r_1 = regs2[i].first();
 516       VMReg r_2 = regs2[i].second();
 517       if (r_1->is_Register()) {
 518         Register r = r_1->as_Register();
 519         __ ld(r, st_off, R1_SP);
 520         st_off -= wordSize;
 521       } else if (r_1->is_FloatRegister()) {
 522         FloatRegister f = r_1->as_FloatRegister();
 523         __ lfd(f, st_off, R1_SP);
 524         st_off -= wordSize;
 525       }
 526     }
 527   __ pop_frame();
 528 }
 529 
 530 // Restore the registers that might be holding a result.
 531 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) {
 532   const int regstosave_num       = sizeof(RegisterSaver_LiveRegs) /
 533                                    sizeof(RegisterSaver::LiveRegType);
 534   const int register_save_size   = regstosave_num * reg_size; // VS registers not relevant here.
 535   const int register_save_offset = frame_size_in_bytes - register_save_size;
 536 
 537   // restore all result registers (ints and floats)
 538   int offset = register_save_offset;
 539   for (int i = 0; i < regstosave_num; i++) {
 540     int reg_num  = RegisterSaver_LiveRegs[i].reg_num;
 541     int reg_type = RegisterSaver_LiveRegs[i].reg_type;
 542     switch (reg_type) {
 543       case RegisterSaver::int_reg: {
 544         if (as_Register(reg_num)==R3_RET) // int result_reg
 545           __ ld(as_Register(reg_num), offset, R1_SP);
 546         break;
 547       }
 548       case RegisterSaver::float_reg: {
 549         if (as_FloatRegister(reg_num)==F1_RET) // float result_reg
 550           __ lfd(as_FloatRegister(reg_num), offset, R1_SP);
 551         break;
 552       }
 553       case RegisterSaver::special_reg: {
 554         // Special registers don't hold a result.
 555         break;
 556       }
 557       default:
 558         ShouldNotReachHere();
 559     }
 560     offset += reg_size;
 561   }
 562 
 563   assert(offset == frame_size_in_bytes, "consistency check");
 564 }
 565 
 566 // Is vector's size (in bytes) bigger than a size saved by default?
 567 bool SharedRuntime::is_wide_vector(int size) {
 568   // Note, MaxVectorSize == 8/16 on PPC64.
 569   assert(size <= (SuperwordUseVSX ? 16 : 8), "%d bytes vectors are not supported", size);
 570   return size > 8;
 571 }
 572 
 573 static int reg2slot(VMReg r) {
 574   return r->reg2stack() + SharedRuntime::out_preserve_stack_slots();
 575 }
 576 
 577 static int reg2offset(VMReg r) {
 578   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 579 }
 580 
 581 // ---------------------------------------------------------------------------
 582 // Read the array of BasicTypes from a signature, and compute where the
 583 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
 584 // quantities. Values less than VMRegImpl::stack0 are registers, those above
 585 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
 586 // as framesizes are fixed.
 587 // VMRegImpl::stack0 refers to the first slot 0(sp).
 588 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register
 589 // up to Register::number_of_registers) are the 64-bit
 590 // integer registers.
 591 
 592 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 593 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit
 594 // units regardless of build. Of course for i486 there is no 64 bit build
 595 
 596 // The Java calling convention is a "shifted" version of the C ABI.
 597 // By skipping the first C ABI register we can call non-static jni methods
 598 // with small numbers of arguments without having to shuffle the arguments
 599 // at all. Since we control the java ABI we ought to at least get some
 600 // advantage out of it.
 601 
 602 const VMReg java_iarg_reg[8] = {
 603   R3->as_VMReg(),
 604   R4->as_VMReg(),
 605   R5->as_VMReg(),
 606   R6->as_VMReg(),
 607   R7->as_VMReg(),
 608   R8->as_VMReg(),
 609   R9->as_VMReg(),
 610   R10->as_VMReg()
 611 };
 612 
 613 const VMReg java_farg_reg[13] = {
 614   F1->as_VMReg(),
 615   F2->as_VMReg(),
 616   F3->as_VMReg(),
 617   F4->as_VMReg(),
 618   F5->as_VMReg(),
 619   F6->as_VMReg(),
 620   F7->as_VMReg(),
 621   F8->as_VMReg(),
 622   F9->as_VMReg(),
 623   F10->as_VMReg(),
 624   F11->as_VMReg(),
 625   F12->as_VMReg(),
 626   F13->as_VMReg()
 627 };
 628 
 629 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]);
 630 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]);
 631 
 632 STATIC_ASSERT(num_java_iarg_registers == Argument::n_int_register_parameters_j);
 633 STATIC_ASSERT(num_java_farg_registers == Argument::n_float_register_parameters_j);
 634 
 635 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 636                                            VMRegPair *regs,
 637                                            int total_args_passed) {
 638   // C2c calling conventions for compiled-compiled calls.
 639   // Put 8 ints/longs into registers _AND_ 13 float/doubles into
 640   // registers _AND_ put the rest on the stack.
 641 
 642   const int inc_stk_for_intfloat   = 1; // 1 slots for ints and floats
 643   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
 644 
 645   int i;
 646   VMReg reg;
 647   int stk = 0;
 648   int ireg = 0;
 649   int freg = 0;
 650 
 651   // We put the first 8 arguments into registers and the rest on the
 652   // stack, float arguments are already in their argument registers
 653   // due to c2c calling conventions (see calling_convention).
 654   for (int i = 0; i < total_args_passed; ++i) {
 655     switch(sig_bt[i]) {
 656     case T_BOOLEAN:
 657     case T_CHAR:
 658     case T_BYTE:
 659     case T_SHORT:
 660     case T_INT:
 661       if (ireg < num_java_iarg_registers) {
 662         // Put int/ptr in register
 663         reg = java_iarg_reg[ireg];
 664         ++ireg;
 665       } else {
 666         // Put int/ptr on stack.
 667         reg = VMRegImpl::stack2reg(stk);
 668         stk += inc_stk_for_intfloat;
 669       }
 670       regs[i].set1(reg);
 671       break;
 672     case T_LONG:
 673       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 674       if (ireg < num_java_iarg_registers) {
 675         // Put long in register.
 676         reg = java_iarg_reg[ireg];
 677         ++ireg;
 678       } else {
 679         // Put long on stack. They must be aligned to 2 slots.
 680         if (stk & 0x1) ++stk;
 681         reg = VMRegImpl::stack2reg(stk);
 682         stk += inc_stk_for_longdouble;
 683       }
 684       regs[i].set2(reg);
 685       break;
 686     case T_OBJECT:
 687     case T_ARRAY:
 688     case T_ADDRESS:
 689       if (ireg < num_java_iarg_registers) {
 690         // Put ptr in register.
 691         reg = java_iarg_reg[ireg];
 692         ++ireg;
 693       } else {
 694         // Put ptr on stack. Objects must be aligned to 2 slots too,
 695         // because "64-bit pointers record oop-ishness on 2 aligned
 696         // adjacent registers." (see OopFlow::build_oop_map).
 697         if (stk & 0x1) ++stk;
 698         reg = VMRegImpl::stack2reg(stk);
 699         stk += inc_stk_for_longdouble;
 700       }
 701       regs[i].set2(reg);
 702       break;
 703     case T_FLOAT:
 704       if (freg < num_java_farg_registers) {
 705         // Put float in register.
 706         reg = java_farg_reg[freg];
 707         ++freg;
 708       } else {
 709         // Put float on stack.
 710         reg = VMRegImpl::stack2reg(stk);
 711         stk += inc_stk_for_intfloat;
 712       }
 713       regs[i].set1(reg);
 714       break;
 715     case T_DOUBLE:
 716       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 717       if (freg < num_java_farg_registers) {
 718         // Put double in register.
 719         reg = java_farg_reg[freg];
 720         ++freg;
 721       } else {
 722         // Put double on stack. They must be aligned to 2 slots.
 723         if (stk & 0x1) ++stk;
 724         reg = VMRegImpl::stack2reg(stk);
 725         stk += inc_stk_for_longdouble;
 726       }
 727       regs[i].set2(reg);
 728       break;
 729     case T_VOID:
 730       // Do not count halves.
 731       regs[i].set_bad();
 732       break;
 733     default:
 734       ShouldNotReachHere();
 735     }
 736   }
 737   return stk;
 738 }
 739 
 740 #if defined(COMPILER1) || defined(COMPILER2)
 741 // Calling convention for calling C code.
 742 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 743                                         VMRegPair *regs,
 744                                         VMRegPair *regs2,
 745                                         int total_args_passed) {
 746   // Calling conventions for C runtime calls and calls to JNI native methods.
 747   //
 748   // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8
 749   // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist
 750   // the first 13 flt/dbl's in the first 13 fp regs but additionally
 751   // copy flt/dbl to the stack if they are beyond the 8th argument.
 752 
 753   const VMReg iarg_reg[8] = {
 754     R3->as_VMReg(),
 755     R4->as_VMReg(),
 756     R5->as_VMReg(),
 757     R6->as_VMReg(),
 758     R7->as_VMReg(),
 759     R8->as_VMReg(),
 760     R9->as_VMReg(),
 761     R10->as_VMReg()
 762   };
 763 
 764   const VMReg farg_reg[13] = {
 765     F1->as_VMReg(),
 766     F2->as_VMReg(),
 767     F3->as_VMReg(),
 768     F4->as_VMReg(),
 769     F5->as_VMReg(),
 770     F6->as_VMReg(),
 771     F7->as_VMReg(),
 772     F8->as_VMReg(),
 773     F9->as_VMReg(),
 774     F10->as_VMReg(),
 775     F11->as_VMReg(),
 776     F12->as_VMReg(),
 777     F13->as_VMReg()
 778   };
 779 
 780   // Check calling conventions consistency.
 781   assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c &&
 782          sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c,
 783          "consistency");
 784 
 785   // `Stk' counts stack slots. Due to alignment, 32 bit values occupy
 786   // 2 such slots, like 64 bit values do.
 787   const int inc_stk_for_intfloat   = 2; // 2 slots for ints and floats
 788   const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles
 789 
 790   int i;
 791   VMReg reg;
 792   // Leave room for C-compatible ABI_REG_ARGS.
 793   int stk = (frame::native_abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size;
 794   int arg = 0;
 795   int freg = 0;
 796 
 797   // Avoid passing C arguments in the wrong stack slots.
 798 #if defined(ABI_ELFv2)
 799   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96,
 800          "passing C arguments in wrong stack slots");
 801 #else
 802   assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112,
 803          "passing C arguments in wrong stack slots");
 804 #endif
 805   // We fill-out regs AND regs2 if an argument must be passed in a
 806   // register AND in a stack slot. If regs2 is null in such a
 807   // situation, we bail-out with a fatal error.
 808   for (int i = 0; i < total_args_passed; ++i, ++arg) {
 809     // Initialize regs2 to BAD.
 810     if (regs2 != nullptr) regs2[i].set_bad();
 811 
 812     switch(sig_bt[i]) {
 813 
 814     //
 815     // If arguments 0-7 are integers, they are passed in integer registers.
 816     // Argument i is placed in iarg_reg[i].
 817     //
 818     case T_BOOLEAN:
 819     case T_CHAR:
 820     case T_BYTE:
 821     case T_SHORT:
 822     case T_INT:
 823       // We must cast ints to longs and use full 64 bit stack slots
 824       // here.  Thus fall through, handle as long.
 825     case T_LONG:
 826     case T_OBJECT:
 827     case T_ARRAY:
 828     case T_ADDRESS:
 829     case T_METADATA:
 830       // Oops are already boxed if required (JNI).
 831       if (arg < Argument::n_int_register_parameters_c) {
 832         reg = iarg_reg[arg];
 833       } else {
 834         reg = VMRegImpl::stack2reg(stk);
 835         stk += inc_stk_for_longdouble;
 836       }
 837       regs[i].set2(reg);
 838       break;
 839 
 840     //
 841     // Floats are treated differently from int regs:  The first 13 float arguments
 842     // are passed in registers (not the float args among the first 13 args).
 843     // Thus argument i is NOT passed in farg_reg[i] if it is float.  It is passed
 844     // in farg_reg[j] if argument i is the j-th float argument of this call.
 845     //
 846     case T_FLOAT:
 847 #if defined(LINUX)
 848       // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 849       // in the least significant word of an argument slot.
 850 #if defined(VM_LITTLE_ENDIAN)
 851 #define FLOAT_WORD_OFFSET_IN_SLOT 0
 852 #else
 853 #define FLOAT_WORD_OFFSET_IN_SLOT 1
 854 #endif
 855 #elif defined(AIX)
 856       // Although AIX runs on big endian CPU, float is in the most
 857       // significant word of an argument slot.
 858 #define FLOAT_WORD_OFFSET_IN_SLOT 0
 859 #else
 860 #error "unknown OS"
 861 #endif
 862       if (freg < Argument::n_float_register_parameters_c) {
 863         // Put float in register ...
 864         reg = farg_reg[freg];
 865         ++freg;
 866 
 867         // Argument i for i > 8 is placed on the stack even if it's
 868         // placed in a register (if it's a float arg). Aix disassembly
 869         // shows that xlC places these float args on the stack AND in
 870         // a register. This is not documented, but we follow this
 871         // convention, too.
 872         if (arg >= Argument::n_regs_not_on_stack_c) {
 873           // ... and on the stack.
 874           guarantee(regs2 != nullptr, "must pass float in register and stack slot");
 875           VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
 876           regs2[i].set1(reg2);
 877           stk += inc_stk_for_intfloat;
 878         }
 879 
 880       } else {
 881         // Put float on stack.
 882         reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT);
 883         stk += inc_stk_for_intfloat;
 884       }
 885       regs[i].set1(reg);
 886       break;
 887     case T_DOUBLE:
 888       assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half");
 889       if (freg < Argument::n_float_register_parameters_c) {
 890         // Put double in register ...
 891         reg = farg_reg[freg];
 892         ++freg;
 893 
 894         // Argument i for i > 8 is placed on the stack even if it's
 895         // placed in a register (if it's a double arg). Aix disassembly
 896         // shows that xlC places these float args on the stack AND in
 897         // a register. This is not documented, but we follow this
 898         // convention, too.
 899         if (arg >= Argument::n_regs_not_on_stack_c) {
 900           // ... and on the stack.
 901           guarantee(regs2 != nullptr, "must pass float in register and stack slot");
 902           VMReg reg2 = VMRegImpl::stack2reg(stk);
 903           regs2[i].set2(reg2);
 904           stk += inc_stk_for_longdouble;
 905         }
 906       } else {
 907         // Put double on stack.
 908         reg = VMRegImpl::stack2reg(stk);
 909         stk += inc_stk_for_longdouble;
 910       }
 911       regs[i].set2(reg);
 912       break;
 913 
 914     case T_VOID:
 915       // Do not count halves.
 916       regs[i].set_bad();
 917       --arg;
 918       break;
 919     default:
 920       ShouldNotReachHere();
 921     }
 922   }
 923 
 924   return align_up(stk, 2);
 925 }
 926 #endif // COMPILER2
 927 
 928 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
 929                                              uint num_bits,
 930                                              uint total_args_passed) {
 931   Unimplemented();
 932   return 0;
 933 }
 934 
 935 static address gen_c2i_adapter(MacroAssembler *masm,
 936                             int total_args_passed,
 937                             int comp_args_on_stack,
 938                             const BasicType *sig_bt,
 939                             const VMRegPair *regs,
 940                             Label& call_interpreter,
 941                             const Register& ientry) {
 942 
 943   address c2i_entrypoint;
 944 
 945   const Register sender_SP = R21_sender_SP; // == R21_tmp1
 946   const Register code      = R22_tmp2;
 947   //const Register ientry  = R23_tmp3;
 948   const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 };
 949   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
 950   int value_regs_index = 0;
 951 
 952   const Register return_pc = R27_tmp7;
 953   const Register tmp       = R28_tmp8;
 954 
 955   assert_different_registers(sender_SP, code, ientry, return_pc, tmp);
 956 
 957   // Adapter needs TOP_IJAVA_FRAME_ABI.
 958   const int adapter_size = frame::top_ijava_frame_abi_size +
 959                            align_up(total_args_passed * wordSize, frame::alignment_in_bytes);
 960 
 961   // regular (verified) c2i entry point
 962   c2i_entrypoint = __ pc();
 963 
 964   // Does compiled code exists? If yes, patch the caller's callsite.
 965   __ ld(code, method_(code));
 966   __ cmpdi(CCR0, code, 0);
 967   __ ld(ientry, method_(interpreter_entry)); // preloaded
 968   __ beq(CCR0, call_interpreter);
 969 
 970 
 971   // Patch caller's callsite, method_(code) was not null which means that
 972   // compiled code exists.
 973   __ mflr(return_pc);
 974   __ std(return_pc, _abi0(lr), R1_SP);
 975   RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs);
 976 
 977   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc);
 978 
 979   RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs);
 980   __ ld(return_pc, _abi0(lr), R1_SP);
 981   __ ld(ientry, method_(interpreter_entry)); // preloaded
 982   __ mtlr(return_pc);
 983 
 984 
 985   // Call the interpreter.
 986   __ BIND(call_interpreter);
 987   __ mtctr(ientry);
 988 
 989   // Get a copy of the current SP for loading caller's arguments.
 990   __ mr(sender_SP, R1_SP);
 991 
 992   // Add space for the adapter.
 993   __ resize_frame(-adapter_size, R12_scratch2);
 994 
 995   int st_off = adapter_size - wordSize;
 996 
 997   // Write the args into the outgoing interpreter space.
 998   for (int i = 0; i < total_args_passed; i++) {
 999     VMReg r_1 = regs[i].first();
1000     VMReg r_2 = regs[i].second();
1001     if (!r_1->is_valid()) {
1002       assert(!r_2->is_valid(), "");
1003       continue;
1004     }
1005     if (r_1->is_stack()) {
1006       Register tmp_reg = value_regs[value_regs_index];
1007       value_regs_index = (value_regs_index + 1) % num_value_regs;
1008       // The calling convention produces OptoRegs that ignore the out
1009       // preserve area (JIT's ABI). We must account for it here.
1010       int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
1011       if (!r_2->is_valid()) {
1012         __ lwz(tmp_reg, ld_off, sender_SP);
1013       } else {
1014         __ ld(tmp_reg, ld_off, sender_SP);
1015       }
1016       // Pretend stack targets were loaded into tmp_reg.
1017       r_1 = tmp_reg->as_VMReg();
1018     }
1019 
1020     if (r_1->is_Register()) {
1021       Register r = r_1->as_Register();
1022       if (!r_2->is_valid()) {
1023         __ stw(r, st_off, R1_SP);
1024         st_off-=wordSize;
1025       } else {
1026         // Longs are given 2 64-bit slots in the interpreter, but the
1027         // data is passed in only 1 slot.
1028         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1029           DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
1030           st_off-=wordSize;
1031         }
1032         __ std(r, st_off, R1_SP);
1033         st_off-=wordSize;
1034       }
1035     } else {
1036       assert(r_1->is_FloatRegister(), "");
1037       FloatRegister f = r_1->as_FloatRegister();
1038       if (!r_2->is_valid()) {
1039         __ stfs(f, st_off, R1_SP);
1040         st_off-=wordSize;
1041       } else {
1042         // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the
1043         // data is passed in only 1 slot.
1044         // One of these should get known junk...
1045         DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); )
1046         st_off-=wordSize;
1047         __ stfd(f, st_off, R1_SP);
1048         st_off-=wordSize;
1049       }
1050     }
1051   }
1052 
1053   // Jump to the interpreter just as if interpreter was doing it.
1054 
1055   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
1056 
1057   // load TOS
1058   __ addi(R15_esp, R1_SP, st_off);
1059 
1060   // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1.
1061   assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register");
1062   __ bctr();
1063 
1064   return c2i_entrypoint;
1065 }
1066 
1067 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
1068                                     int total_args_passed,
1069                                     int comp_args_on_stack,
1070                                     const BasicType *sig_bt,
1071                                     const VMRegPair *regs) {
1072 
1073   // Load method's entry-point from method.
1074   __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method);
1075   __ mtctr(R12_scratch2);
1076 
1077   // We will only enter here from an interpreted frame and never from after
1078   // passing thru a c2i. Azul allowed this but we do not. If we lose the
1079   // race and use a c2i we will remain interpreted for the race loser(s).
1080   // This removes all sorts of headaches on the x86 side and also eliminates
1081   // the possibility of having c2i -> i2c -> c2i -> ... endless transitions.
1082 
1083   // Note: r13 contains the senderSP on entry. We must preserve it since
1084   // we may do a i2c -> c2i transition if we lose a race where compiled
1085   // code goes non-entrant while we get args ready.
1086   // In addition we use r13 to locate all the interpreter args as
1087   // we must align the stack to 16 bytes on an i2c entry else we
1088   // lose alignment we expect in all compiled code and register
1089   // save code can segv when fxsave instructions find improperly
1090   // aligned stack pointer.
1091 
1092   const Register ld_ptr = R15_esp;
1093   const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 };
1094   const int num_value_regs = sizeof(value_regs) / sizeof(Register);
1095   int value_regs_index = 0;
1096 
1097   int ld_offset = total_args_passed*wordSize;
1098 
1099   // Cut-out for having no stack args. Since up to 2 int/oop args are passed
1100   // in registers, we will occasionally have no stack args.
1101   int comp_words_on_stack = 0;
1102   if (comp_args_on_stack) {
1103     // Sig words on the stack are greater-than VMRegImpl::stack0. Those in
1104     // registers are below. By subtracting stack0, we either get a negative
1105     // number (all values in registers) or the maximum stack slot accessed.
1106 
1107     // Convert 4-byte c2 stack slots to words.
1108     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
1109     // Round up to miminum stack alignment, in wordSize.
1110     comp_words_on_stack = align_up(comp_words_on_stack, 2);
1111     __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1);
1112   }
1113 
1114   // Now generate the shuffle code.  Pick up all register args and move the
1115   // rest through register value=Z_R12.
1116   BLOCK_COMMENT("Shuffle arguments");
1117   for (int i = 0; i < total_args_passed; i++) {
1118     if (sig_bt[i] == T_VOID) {
1119       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
1120       continue;
1121     }
1122 
1123     // Pick up 0, 1 or 2 words from ld_ptr.
1124     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
1125             "scrambled load targets?");
1126     VMReg r_1 = regs[i].first();
1127     VMReg r_2 = regs[i].second();
1128     if (!r_1->is_valid()) {
1129       assert(!r_2->is_valid(), "");
1130       continue;
1131     }
1132     if (r_1->is_FloatRegister()) {
1133       if (!r_2->is_valid()) {
1134         __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr);
1135         ld_offset-=wordSize;
1136       } else {
1137         // Skip the unused interpreter slot.
1138         __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr);
1139         ld_offset-=2*wordSize;
1140       }
1141     } else {
1142       Register r;
1143       if (r_1->is_stack()) {
1144         // Must do a memory to memory move thru "value".
1145         r = value_regs[value_regs_index];
1146         value_regs_index = (value_regs_index + 1) % num_value_regs;
1147       } else {
1148         r = r_1->as_Register();
1149       }
1150       if (!r_2->is_valid()) {
1151         // Not sure we need to do this but it shouldn't hurt.
1152         if (is_reference_type(sig_bt[i]) || sig_bt[i] == T_ADDRESS) {
1153           __ ld(r, ld_offset, ld_ptr);
1154           ld_offset-=wordSize;
1155         } else {
1156           __ lwz(r, ld_offset, ld_ptr);
1157           ld_offset-=wordSize;
1158         }
1159       } else {
1160         // In 64bit, longs are given 2 64-bit slots in the interpreter, but the
1161         // data is passed in only 1 slot.
1162         if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
1163           ld_offset-=wordSize;
1164         }
1165         __ ld(r, ld_offset, ld_ptr);
1166         ld_offset-=wordSize;
1167       }
1168 
1169       if (r_1->is_stack()) {
1170         // Now store value where the compiler expects it
1171         int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size;
1172 
1173         if (sig_bt[i] == T_INT   || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN ||
1174             sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR  || sig_bt[i] == T_BYTE) {
1175           __ stw(r, st_off, R1_SP);
1176         } else {
1177           __ std(r, st_off, R1_SP);
1178         }
1179       }
1180     }
1181   }
1182 
1183   __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about
1184 
1185   BLOCK_COMMENT("Store method");
1186   // Store method into thread->callee_target.
1187   // We might end up in handle_wrong_method if the callee is
1188   // deoptimized as we race thru here. If that happens we don't want
1189   // to take a safepoint because the caller frame will look
1190   // interpreted and arguments are now "compiled" so it is much better
1191   // to make this transition invisible to the stack walking
1192   // code. Unfortunately if we try and find the callee by normal means
1193   // a safepoint is possible. So we stash the desired callee in the
1194   // thread and the vm will find there should this case occur.
1195   __ std(R19_method, thread_(callee_target));
1196 
1197   // Jump to the compiled code just as if compiled code was doing it.
1198   __ bctr();
1199 }
1200 
1201 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
1202                                                             int total_args_passed,
1203                                                             int comp_args_on_stack,
1204                                                             const BasicType *sig_bt,
1205                                                             const VMRegPair *regs,
1206                                                             AdapterFingerPrint* fingerprint) {
1207   address i2c_entry;
1208   address c2i_unverified_entry;
1209   address c2i_entry;
1210 
1211 
1212   // entry: i2c
1213 
1214   __ align(CodeEntryAlignment);
1215   i2c_entry = __ pc();
1216   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
1217 
1218 
1219   // entry: c2i unverified
1220 
1221   __ align(CodeEntryAlignment);
1222   BLOCK_COMMENT("c2i unverified entry");
1223   c2i_unverified_entry = __ pc();
1224 
1225   // inline_cache contains a compiledICHolder
1226   const Register ic             = R19_method;
1227   const Register ic_klass       = R11_scratch1;
1228   const Register receiver_klass = R12_scratch2;
1229   const Register code           = R21_tmp1;
1230   const Register ientry         = R23_tmp3;
1231 
1232   assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry);
1233   assert(R11_scratch1 == R11, "need prologue scratch register");
1234 
1235   Label call_interpreter;
1236 
1237   assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()),
1238          "klass offset should reach into any page");
1239   // Check for null argument if we don't have implicit null checks.
1240   if (!ImplicitNullChecks || !os::zero_page_read_protected()) {
1241     if (TrapBasedNullChecks) {
1242       __ trap_null_check(R3_ARG1);
1243     } else {
1244       Label valid;
1245       __ cmpdi(CCR0, R3_ARG1, 0);
1246       __ bne_predict_taken(CCR0, valid);
1247       // We have a null argument, branch to ic_miss_stub.
1248       __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1249                        relocInfo::runtime_call_type);
1250       __ BIND(valid);
1251     }
1252   }
1253   // Assume argument is not null, load klass from receiver.
1254   __ load_klass(receiver_klass, R3_ARG1);
1255 
1256   __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic);
1257 
1258   if (TrapBasedICMissChecks) {
1259     __ trap_ic_miss_check(receiver_klass, ic_klass);
1260   } else {
1261     Label valid;
1262     __ cmpd(CCR0, receiver_klass, ic_klass);
1263     __ beq_predict_taken(CCR0, valid);
1264     // We have an unexpected klass, branch to ic_miss_stub.
1265     __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
1266                      relocInfo::runtime_call_type);
1267     __ BIND(valid);
1268   }
1269 
1270   // Argument is valid and klass is as expected, continue.
1271 
1272   // Extract method from inline cache, verified entry point needs it.
1273   __ ld(R19_method, CompiledICHolder::holder_metadata_offset(), ic);
1274   assert(R19_method == ic, "the inline cache register is dead here");
1275 
1276   __ ld(code, method_(code));
1277   __ cmpdi(CCR0, code, 0);
1278   __ ld(ientry, method_(interpreter_entry)); // preloaded
1279   __ beq_predict_taken(CCR0, call_interpreter);
1280 
1281   // Branch to ic_miss_stub.
1282   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type);
1283 
1284   // entry: c2i
1285 
1286   c2i_entry = __ pc();
1287 
1288   // Class initialization barrier for static methods
1289   address c2i_no_clinit_check_entry = nullptr;
1290   if (VM_Version::supports_fast_class_init_checks()) {
1291     Label L_skip_barrier;
1292 
1293     { // Bypass the barrier for non-static methods
1294       __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1295       __ andi_(R0, R0, JVM_ACC_STATIC);
1296       __ beq(CCR0, L_skip_barrier); // non-static
1297     }
1298 
1299     Register klass = R11_scratch1;
1300     __ load_method_holder(klass, R19_method);
1301     __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
1302 
1303     __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
1304     __ mtctr(klass);
1305     __ bctr();
1306 
1307     __ bind(L_skip_barrier);
1308     c2i_no_clinit_check_entry = __ pc();
1309   }
1310 
1311   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1312   bs->c2i_entry_barrier(masm, /* tmp register*/ ic_klass, /* tmp register*/ receiver_klass, /* tmp register*/ code);
1313 
1314   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry);
1315 
1316   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry,
1317                                           c2i_no_clinit_check_entry);
1318 }
1319 
1320 // An oop arg. Must pass a handle not the oop itself.
1321 static void object_move(MacroAssembler* masm,
1322                         int frame_size_in_slots,
1323                         OopMap* oop_map, int oop_handle_offset,
1324                         bool is_receiver, int* receiver_offset,
1325                         VMRegPair src, VMRegPair dst,
1326                         Register r_caller_sp, Register r_temp_1, Register r_temp_2) {
1327   assert(!is_receiver || (is_receiver && (*receiver_offset == -1)),
1328          "receiver has already been moved");
1329 
1330   // We must pass a handle. First figure out the location we use as a handle.
1331 
1332   if (src.first()->is_stack()) {
1333     // stack to stack or reg
1334 
1335     const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1336     Label skip;
1337     const int oop_slot_in_callers_frame = reg2slot(src.first());
1338 
1339     guarantee(!is_receiver, "expecting receiver in register");
1340     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots));
1341 
1342     __ addi(r_handle, r_caller_sp, reg2offset(src.first()));
1343     __ ld(  r_temp_2, reg2offset(src.first()), r_caller_sp);
1344     __ cmpdi(CCR0, r_temp_2, 0);
1345     __ bne(CCR0, skip);
1346     // Use a null handle if oop is null.
1347     __ li(r_handle, 0);
1348     __ bind(skip);
1349 
1350     if (dst.first()->is_stack()) {
1351       // stack to stack
1352       __ std(r_handle, reg2offset(dst.first()), R1_SP);
1353     } else {
1354       // stack to reg
1355       // Nothing to do, r_handle is already the dst register.
1356     }
1357   } else {
1358     // reg to stack or reg
1359     const Register r_oop      = src.first()->as_Register();
1360     const Register r_handle   = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register();
1361     const int oop_slot        = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word
1362                                 + oop_handle_offset; // in slots
1363     const int oop_offset = oop_slot * VMRegImpl::stack_slot_size;
1364     Label skip;
1365 
1366     if (is_receiver) {
1367       *receiver_offset = oop_offset;
1368     }
1369     oop_map->set_oop(VMRegImpl::stack2reg(oop_slot));
1370 
1371     __ std( r_oop,    oop_offset, R1_SP);
1372     __ addi(r_handle, R1_SP, oop_offset);
1373 
1374     __ cmpdi(CCR0, r_oop, 0);
1375     __ bne(CCR0, skip);
1376     // Use a null handle if oop is null.
1377     __ li(r_handle, 0);
1378     __ bind(skip);
1379 
1380     if (dst.first()->is_stack()) {
1381       // reg to stack
1382       __ std(r_handle, reg2offset(dst.first()), R1_SP);
1383     } else {
1384       // reg to reg
1385       // Nothing to do, r_handle is already the dst register.
1386     }
1387   }
1388 }
1389 
1390 static void int_move(MacroAssembler*masm,
1391                      VMRegPair src, VMRegPair dst,
1392                      Register r_caller_sp, Register r_temp) {
1393   assert(src.first()->is_valid(), "incoming must be int");
1394   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1395 
1396   if (src.first()->is_stack()) {
1397     if (dst.first()->is_stack()) {
1398       // stack to stack
1399       __ lwa(r_temp, reg2offset(src.first()), r_caller_sp);
1400       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1401     } else {
1402       // stack to reg
1403       __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1404     }
1405   } else if (dst.first()->is_stack()) {
1406     // reg to stack
1407     __ extsw(r_temp, src.first()->as_Register());
1408     __ std(r_temp, reg2offset(dst.first()), R1_SP);
1409   } else {
1410     // reg to reg
1411     __ extsw(dst.first()->as_Register(), src.first()->as_Register());
1412   }
1413 }
1414 
1415 static void long_move(MacroAssembler*masm,
1416                       VMRegPair src, VMRegPair dst,
1417                       Register r_caller_sp, Register r_temp) {
1418   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long");
1419   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long");
1420 
1421   if (src.first()->is_stack()) {
1422     if (dst.first()->is_stack()) {
1423       // stack to stack
1424       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1425       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1426     } else {
1427       // stack to reg
1428       __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp);
1429     }
1430   } else if (dst.first()->is_stack()) {
1431     // reg to stack
1432     __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP);
1433   } else {
1434     // reg to reg
1435     if (dst.first()->as_Register() != src.first()->as_Register())
1436       __ mr(dst.first()->as_Register(), src.first()->as_Register());
1437   }
1438 }
1439 
1440 static void float_move(MacroAssembler*masm,
1441                        VMRegPair src, VMRegPair dst,
1442                        Register r_caller_sp, Register r_temp) {
1443   assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float");
1444   assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float");
1445 
1446   if (src.first()->is_stack()) {
1447     if (dst.first()->is_stack()) {
1448       // stack to stack
1449       __ lwz(r_temp, reg2offset(src.first()), r_caller_sp);
1450       __ stw(r_temp, reg2offset(dst.first()), R1_SP);
1451     } else {
1452       // stack to reg
1453       __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1454     }
1455   } else if (dst.first()->is_stack()) {
1456     // reg to stack
1457     __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1458   } else {
1459     // reg to reg
1460     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1461       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1462   }
1463 }
1464 
1465 static void double_move(MacroAssembler*masm,
1466                         VMRegPair src, VMRegPair dst,
1467                         Register r_caller_sp, Register r_temp) {
1468   assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double");
1469   assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double");
1470 
1471   if (src.first()->is_stack()) {
1472     if (dst.first()->is_stack()) {
1473       // stack to stack
1474       __ ld( r_temp, reg2offset(src.first()), r_caller_sp);
1475       __ std(r_temp, reg2offset(dst.first()), R1_SP);
1476     } else {
1477       // stack to reg
1478       __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp);
1479     }
1480   } else if (dst.first()->is_stack()) {
1481     // reg to stack
1482     __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP);
1483   } else {
1484     // reg to reg
1485     if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister())
1486       __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
1487   }
1488 }
1489 
1490 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1491   switch (ret_type) {
1492     case T_BOOLEAN:
1493     case T_CHAR:
1494     case T_BYTE:
1495     case T_SHORT:
1496     case T_INT:
1497       __ stw (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1498       break;
1499     case T_ARRAY:
1500     case T_OBJECT:
1501     case T_LONG:
1502       __ std (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1503       break;
1504     case T_FLOAT:
1505       __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1506       break;
1507     case T_DOUBLE:
1508       __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1509       break;
1510     case T_VOID:
1511       break;
1512     default:
1513       ShouldNotReachHere();
1514       break;
1515   }
1516 }
1517 
1518 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1519   switch (ret_type) {
1520     case T_BOOLEAN:
1521     case T_CHAR:
1522     case T_BYTE:
1523     case T_SHORT:
1524     case T_INT:
1525       __ lwz(R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1526       break;
1527     case T_ARRAY:
1528     case T_OBJECT:
1529     case T_LONG:
1530       __ ld (R3_RET,  frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1531       break;
1532     case T_FLOAT:
1533       __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1534       break;
1535     case T_DOUBLE:
1536       __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP);
1537       break;
1538     case T_VOID:
1539       break;
1540     default:
1541       ShouldNotReachHere();
1542       break;
1543   }
1544 }
1545 
1546 static void verify_oop_args(MacroAssembler* masm,
1547                             const methodHandle& method,
1548                             const BasicType* sig_bt,
1549                             const VMRegPair* regs) {
1550   Register temp_reg = R19_method;  // not part of any compiled calling seq
1551   if (VerifyOops) {
1552     for (int i = 0; i < method->size_of_parameters(); i++) {
1553       if (is_reference_type(sig_bt[i])) {
1554         VMReg r = regs[i].first();
1555         assert(r->is_valid(), "bad oop arg");
1556         if (r->is_stack()) {
1557           __ ld(temp_reg, reg2offset(r), R1_SP);
1558           __ verify_oop(temp_reg, FILE_AND_LINE);
1559         } else {
1560           __ verify_oop(r->as_Register(), FILE_AND_LINE);
1561         }
1562       }
1563     }
1564   }
1565 }
1566 
1567 static void gen_special_dispatch(MacroAssembler* masm,
1568                                  const methodHandle& method,
1569                                  const BasicType* sig_bt,
1570                                  const VMRegPair* regs) {
1571   verify_oop_args(masm, method, sig_bt, regs);
1572   vmIntrinsics::ID iid = method->intrinsic_id();
1573 
1574   // Now write the args into the outgoing interpreter space
1575   bool     has_receiver   = false;
1576   Register receiver_reg   = noreg;
1577   int      member_arg_pos = -1;
1578   Register member_reg     = noreg;
1579   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1580   if (ref_kind != 0) {
1581     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1582     member_reg = R19_method;  // known to be free at this point
1583     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1584   } else if (iid == vmIntrinsics::_invokeBasic) {
1585     has_receiver = true;
1586   } else if (iid == vmIntrinsics::_linkToNative) {
1587     member_arg_pos = method->size_of_parameters() - 1;  // trailing NativeEntryPoint argument
1588     member_reg = R19_method;  // known to be free at this point
1589   } else {
1590     fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1591   }
1592 
1593   if (member_reg != noreg) {
1594     // Load the member_arg into register, if necessary.
1595     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1596     VMReg r = regs[member_arg_pos].first();
1597     if (r->is_stack()) {
1598       __ ld(member_reg, reg2offset(r), R1_SP);
1599     } else {
1600       // no data motion is needed
1601       member_reg = r->as_Register();
1602     }
1603   }
1604 
1605   if (has_receiver) {
1606     // Make sure the receiver is loaded into a register.
1607     assert(method->size_of_parameters() > 0, "oob");
1608     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1609     VMReg r = regs[0].first();
1610     assert(r->is_valid(), "bad receiver arg");
1611     if (r->is_stack()) {
1612       // Porting note:  This assumes that compiled calling conventions always
1613       // pass the receiver oop in a register.  If this is not true on some
1614       // platform, pick a temp and load the receiver from stack.
1615       fatal("receiver always in a register");
1616       receiver_reg = R11_scratch1;  // TODO (hs24): is R11_scratch1 really free at this point?
1617       __ ld(receiver_reg, reg2offset(r), R1_SP);
1618     } else {
1619       // no data motion is needed
1620       receiver_reg = r->as_Register();
1621     }
1622   }
1623 
1624   // Figure out which address we are really jumping to:
1625   MethodHandles::generate_method_handle_dispatch(masm, iid,
1626                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1627 }
1628 
1629 //---------------------------- continuation_enter_setup ---------------------------
1630 //
1631 // Frame setup.
1632 //
1633 // Arguments:
1634 //   None.
1635 //
1636 // Results:
1637 //   R1_SP: pointer to blank ContinuationEntry in the pushed frame.
1638 //
1639 // Kills:
1640 //   R0, R20
1641 //
1642 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& framesize_words) {
1643   assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
1644   assert(in_bytes(ContinuationEntry::cont_offset())  % VMRegImpl::stack_slot_size == 0, "");
1645   assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
1646 
1647   const int frame_size_in_bytes = (int)ContinuationEntry::size();
1648   assert(is_aligned(frame_size_in_bytes, frame::alignment_in_bytes), "alignment error");
1649 
1650   framesize_words = frame_size_in_bytes / wordSize;
1651 
1652   DEBUG_ONLY(__ block_comment("setup {"));
1653   // Save return pc and push entry frame
1654   const Register return_pc = R20;
1655   __ mflr(return_pc);
1656   __ std(return_pc, _abi0(lr), R1_SP);     // SP->lr = return_pc
1657   __ push_frame(frame_size_in_bytes , R0); // SP -= frame_size_in_bytes
1658 
1659   OopMap* map = new OopMap((int)frame_size_in_bytes / VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
1660 
1661   __ ld_ptr(R0, JavaThread::cont_entry_offset(), R16_thread);
1662   __ st_ptr(R1_SP, JavaThread::cont_entry_offset(), R16_thread);
1663   __ st_ptr(R0, ContinuationEntry::parent_offset(), R1_SP);
1664   DEBUG_ONLY(__ block_comment("} setup"));
1665 
1666   return map;
1667 }
1668 
1669 //---------------------------- fill_continuation_entry ---------------------------
1670 //
1671 // Initialize the new ContinuationEntry.
1672 //
1673 // Arguments:
1674 //   R1_SP: pointer to blank Continuation entry
1675 //   reg_cont_obj: pointer to the continuation
1676 //   reg_flags: flags
1677 //
1678 // Results:
1679 //   R1_SP: pointer to filled out ContinuationEntry
1680 //
1681 // Kills:
1682 //   R8_ARG6, R9_ARG7, R10_ARG8
1683 //
1684 static void fill_continuation_entry(MacroAssembler* masm, Register reg_cont_obj, Register reg_flags) {
1685   assert_different_registers(reg_cont_obj, reg_flags);
1686   Register zero = R8_ARG6;
1687   Register tmp2 = R9_ARG7;
1688   Register tmp3 = R10_ARG8;
1689 
1690   DEBUG_ONLY(__ block_comment("fill {"));
1691 #ifdef ASSERT
1692   __ load_const_optimized(tmp2, ContinuationEntry::cookie_value());
1693   __ stw(tmp2, in_bytes(ContinuationEntry::cookie_offset()), R1_SP);
1694 #endif //ASSERT
1695 
1696   __ li(zero, 0);
1697   __ st_ptr(reg_cont_obj, ContinuationEntry::cont_offset(), R1_SP);
1698   __ stw(reg_flags, in_bytes(ContinuationEntry::flags_offset()), R1_SP);
1699   __ st_ptr(zero, ContinuationEntry::chunk_offset(), R1_SP);
1700   __ stw(zero, in_bytes(ContinuationEntry::argsize_offset()), R1_SP);
1701   __ stw(zero, in_bytes(ContinuationEntry::pin_count_offset()), R1_SP);
1702 
1703   __ ld_ptr(tmp2, JavaThread::cont_fastpath_offset(), R16_thread);
1704   __ ld(tmp3, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
1705   __ st_ptr(tmp2, ContinuationEntry::parent_cont_fastpath_offset(), R1_SP);
1706   __ std(tmp3, in_bytes(ContinuationEntry::parent_held_monitor_count_offset()), R1_SP);
1707 
1708   __ st_ptr(zero, JavaThread::cont_fastpath_offset(), R16_thread);
1709   __ std(zero, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
1710   DEBUG_ONLY(__ block_comment("} fill"));
1711 }
1712 
1713 //---------------------------- continuation_enter_cleanup ---------------------------
1714 //
1715 // Copy corresponding attributes from the top ContinuationEntry to the JavaThread
1716 // before deleting it.
1717 //
1718 // Arguments:
1719 //   R1_SP: pointer to the ContinuationEntry
1720 //
1721 // Results:
1722 //   None.
1723 //
1724 // Kills:
1725 //   R8_ARG6, R9_ARG7, R10_ARG8
1726 //
1727 static void continuation_enter_cleanup(MacroAssembler* masm) {
1728   Register tmp1 = R8_ARG6;
1729   Register tmp2 = R9_ARG7;
1730   Register tmp3 = R10_ARG8;
1731 
1732 #ifdef ASSERT
1733   __ block_comment("clean {");
1734   __ ld_ptr(tmp1, JavaThread::cont_entry_offset(), R16_thread);
1735   __ cmpd(CCR0, R1_SP, tmp1);
1736   __ asm_assert_eq(FILE_AND_LINE ": incorrect R1_SP");
1737 #endif
1738 
1739   __ ld_ptr(tmp1, ContinuationEntry::parent_cont_fastpath_offset(), R1_SP);
1740   __ ld(tmp2, in_bytes(ContinuationEntry::parent_held_monitor_count_offset()), R1_SP);
1741   __ ld_ptr(tmp3, ContinuationEntry::parent_offset(), R1_SP);
1742   __ st_ptr(tmp1, JavaThread::cont_fastpath_offset(), R16_thread);
1743   __ std(tmp2, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread);
1744   __ st_ptr(tmp3, JavaThread::cont_entry_offset(), R16_thread);
1745   DEBUG_ONLY(__ block_comment("} clean"));
1746 }
1747 
1748 static void check_continuation_enter_argument(VMReg actual_vmreg,
1749                                               Register expected_reg,
1750                                               const char* name) {
1751   assert(!actual_vmreg->is_stack(), "%s cannot be on stack", name);
1752   assert(actual_vmreg->as_Register() == expected_reg,
1753          "%s is in unexpected register: %s instead of %s",
1754          name, actual_vmreg->as_Register()->name(), expected_reg->name());
1755 }
1756 
1757 static void gen_continuation_enter(MacroAssembler* masm,
1758                                    const VMRegPair* regs,
1759                                    int& exception_offset,
1760                                    OopMapSet* oop_maps,
1761                                    int& frame_complete,
1762                                    int& framesize_words,
1763                                    int& interpreted_entry_offset,
1764                                    int& compiled_entry_offset) {
1765 
1766   // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1767   int pos_cont_obj   = 0;
1768   int pos_is_cont    = 1;
1769   int pos_is_virtual = 2;
1770 
1771   // The platform-specific calling convention may present the arguments in various registers.
1772   // To simplify the rest of the code, we expect the arguments to reside at these known
1773   // registers, and we additionally check the placement here in case calling convention ever
1774   // changes.
1775   Register reg_cont_obj   = R3_ARG1;
1776   Register reg_is_cont    = R4_ARG2;
1777   Register reg_is_virtual = R5_ARG3;
1778 
1779   check_continuation_enter_argument(regs[pos_cont_obj].first(),   reg_cont_obj,   "Continuation object");
1780   check_continuation_enter_argument(regs[pos_is_cont].first(),    reg_is_cont,    "isContinue");
1781   check_continuation_enter_argument(regs[pos_is_virtual].first(), reg_is_virtual, "isVirtualThread");
1782 
1783   address resolve_static_call = SharedRuntime::get_resolve_static_call_stub();
1784 
1785   address start = __ pc();
1786 
1787   Label L_thaw, L_exit;
1788 
1789   // i2i entry used at interp_only_mode only
1790   interpreted_entry_offset = __ pc() - start;
1791   {
1792 #ifdef ASSERT
1793     Label is_interp_only;
1794     __ lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread);
1795     __ cmpwi(CCR0, R0, 0);
1796     __ bne(CCR0, is_interp_only);
1797     __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1798     __ bind(is_interp_only);
1799 #endif
1800 
1801     // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1802     __ ld(reg_cont_obj,    Interpreter::stackElementSize*3, R15_esp);
1803     __ lwz(reg_is_cont,    Interpreter::stackElementSize*2, R15_esp);
1804     __ lwz(reg_is_virtual, Interpreter::stackElementSize*1, R15_esp);
1805 
1806     __ push_cont_fastpath();
1807 
1808     OopMap* map = continuation_enter_setup(masm, framesize_words);
1809 
1810     // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1811     // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1812 
1813     fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1814 
1815     // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue)
1816     __ cmpwi(CCR0, reg_is_cont, 0);
1817     __ bne(CCR0, L_thaw);
1818 
1819     // --- call Continuation.enter(Continuation c, boolean isContinue)
1820 
1821     // Emit compiled static call. The call will be always resolved to the c2i
1822     // entry of Continuation.enter(Continuation c, boolean isContinue).
1823     // There are special cases in SharedRuntime::resolve_static_call_C() and
1824     // SharedRuntime::resolve_sub_helper_internal() to achieve this
1825     // See also corresponding call below.
1826     address c2i_call_pc = __ pc();
1827     int start_offset = __ offset();
1828     // Put the entry point as a constant into the constant pool.
1829     const address entry_point_toc_addr   = __ address_constant(resolve_static_call, RelocationHolder::none);
1830     const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1831     guarantee(entry_point_toc_addr != nullptr, "const section overflow");
1832 
1833     // Emit the trampoline stub which will be related to the branch-and-link below.
1834     address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset);
1835     guarantee(stub != nullptr, "no space for trampoline stub");
1836 
1837     __ relocate(relocInfo::static_call_type);
1838     // Note: At this point we do not have the address of the trampoline
1839     // stub, and the entry point might be too far away for bl, so __ pc()
1840     // serves as dummy and the bl will be patched later.
1841     __ bl(__ pc());
1842     oop_maps->add_gc_map(__ pc() - start, map);
1843     __ post_call_nop();
1844 
1845     __ b(L_exit);
1846 
1847     // static stub for the call above
1848     CodeBuffer* cbuf = masm->code_section()->outer();
1849     stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, c2i_call_pc);
1850     guarantee(stub != nullptr, "no space for static stub");
1851   }
1852 
1853   // compiled entry
1854   __ align(CodeEntryAlignment);
1855   compiled_entry_offset = __ pc() - start;
1856 
1857   OopMap* map = continuation_enter_setup(masm, framesize_words);
1858 
1859   // Frame is now completed as far as size and linkage.
1860   frame_complete =__ pc() - start;
1861 
1862   fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual);
1863 
1864   // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue)
1865   __ cmpwi(CCR0, reg_is_cont, 0);
1866   __ bne(CCR0, L_thaw);
1867 
1868   // --- call Continuation.enter(Continuation c, boolean isContinue)
1869 
1870   // Emit compiled static call
1871   // The call needs to be resolved. There's a special case for this in
1872   // SharedRuntime::find_callee_info_helper() which calls
1873   // LinkResolver::resolve_continuation_enter() which resolves the call to
1874   // Continuation.enter(Continuation c, boolean isContinue).
1875   address call_pc = __ pc();
1876   int start_offset = __ offset();
1877   // Put the entry point as a constant into the constant pool.
1878   const address entry_point_toc_addr   = __ address_constant(resolve_static_call, RelocationHolder::none);
1879   const int     entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr);
1880   guarantee(entry_point_toc_addr != nullptr, "const section overflow");
1881 
1882   // Emit the trampoline stub which will be related to the branch-and-link below.
1883   address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset);
1884   guarantee(stub != nullptr, "no space for trampoline stub");
1885 
1886   __ relocate(relocInfo::static_call_type);
1887   // Note: At this point we do not have the address of the trampoline
1888   // stub, and the entry point might be too far away for bl, so __ pc()
1889   // serves as dummy and the bl will be patched later.
1890   __ bl(__ pc());
1891   oop_maps->add_gc_map(__ pc() - start, map);
1892   __ post_call_nop();
1893 
1894   __ b(L_exit);
1895 
1896   // --- Thawing path
1897 
1898   __ bind(L_thaw);
1899   __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(StubRoutines::cont_thaw()));
1900   __ mtctr(R0);
1901   __ bctrl();
1902   oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1903   ContinuationEntry::_return_pc_offset = __ pc() - start;
1904   __ post_call_nop();
1905 
1906   // --- Normal exit (resolve/thawing)
1907 
1908   __ bind(L_exit);
1909   continuation_enter_cleanup(masm);
1910 
1911   // Pop frame and return
1912   DEBUG_ONLY(__ ld_ptr(R0, 0, R1_SP));
1913   __ addi(R1_SP, R1_SP, framesize_words*wordSize);
1914   DEBUG_ONLY(__ cmpd(CCR0, R0, R1_SP));
1915   __ asm_assert_eq(FILE_AND_LINE ": inconsistent frame size");
1916   __ ld(R0, _abi0(lr), R1_SP); // Return pc
1917   __ mtlr(R0);
1918   __ blr();
1919 
1920   // --- Exception handling path
1921 
1922   exception_offset = __ pc() - start;
1923 
1924   continuation_enter_cleanup(masm);
1925   Register ex_pc  = R17_tos;   // nonvolatile register
1926   Register ex_oop = R15_esp;   // nonvolatile register
1927   __ ld(ex_pc, _abi0(callers_sp), R1_SP); // Load caller's return pc
1928   __ ld(ex_pc, _abi0(lr), ex_pc);
1929   __ mr(ex_oop, R3_RET);                  // save return value containing the exception oop
1930   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, ex_pc);
1931   __ mtlr(R3_RET);                        // the exception handler
1932   __ ld(R1_SP, _abi0(callers_sp), R1_SP); // remove enterSpecial frame
1933 
1934   // Continue at exception handler
1935   // See OptoRuntime::generate_exception_blob for register arguments
1936   __ mr(R3_ARG1, ex_oop); // pass exception oop
1937   __ mr(R4_ARG2, ex_pc);  // pass exception pc
1938   __ blr();
1939 
1940   // static stub for the call above
1941   CodeBuffer* cbuf = masm->code_section()->outer();
1942   stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, call_pc);
1943   guarantee(stub != nullptr, "no space for static stub");
1944 }
1945 
1946 static void gen_continuation_yield(MacroAssembler* masm,
1947                                    const VMRegPair* regs,
1948                                    OopMapSet* oop_maps,
1949                                    int& frame_complete,
1950                                    int& framesize_words,
1951                                    int& compiled_entry_offset) {
1952   Register tmp = R10_ARG8;
1953 
1954   const int framesize_bytes = (int)align_up((int)frame::native_abi_reg_args_size, frame::alignment_in_bytes);
1955   framesize_words = framesize_bytes / wordSize;
1956 
1957   address start = __ pc();
1958   compiled_entry_offset = __ pc() - start;
1959 
1960   // Save return pc and push entry frame
1961   __ mflr(tmp);
1962   __ std(tmp, _abi0(lr), R1_SP);       // SP->lr = return_pc
1963   __ push_frame(framesize_bytes , R0); // SP -= frame_size_in_bytes
1964 
1965   DEBUG_ONLY(__ block_comment("Frame Complete"));
1966   frame_complete = __ pc() - start;
1967   address last_java_pc = __ pc();
1968 
1969   // This nop must be exactly at the PC we push into the frame info.
1970   // We use this nop for fast CodeBlob lookup, associate the OopMap
1971   // with it right away.
1972   __ post_call_nop();
1973   OopMap* map = new OopMap(framesize_bytes / VMRegImpl::stack_slot_size, 1);
1974   oop_maps->add_gc_map(last_java_pc - start, map);
1975 
1976   __ calculate_address_from_global_toc(tmp, last_java_pc); // will be relocated
1977   __ set_last_Java_frame(R1_SP, tmp);
1978   __ call_VM_leaf(Continuation::freeze_entry(), R16_thread, R1_SP);
1979   __ reset_last_Java_frame();
1980 
1981   Label L_pinned;
1982 
1983   __ cmpwi(CCR0, R3_RET, 0);
1984   __ bne(CCR0, L_pinned);
1985 
1986   // yield succeeded
1987 
1988   // Pop frames of continuation including this stub's frame
1989   __ ld_ptr(R1_SP, JavaThread::cont_entry_offset(), R16_thread);
1990   // The frame pushed by gen_continuation_enter is on top now again
1991   continuation_enter_cleanup(masm);
1992 
1993   // Pop frame and return
1994   Label L_return;
1995   __ bind(L_return);
1996   __ pop_frame();
1997   __ ld(R0, _abi0(lr), R1_SP); // Return pc
1998   __ mtlr(R0);
1999   __ blr();
2000 
2001   // yield failed - continuation is pinned
2002 
2003   __ bind(L_pinned);
2004 
2005   // handle pending exception thrown by freeze
2006   __ ld(tmp, in_bytes(JavaThread::pending_exception_offset()), R16_thread);
2007   __ cmpdi(CCR0, tmp, 0);
2008   __ beq(CCR0, L_return); // return if no exception is pending
2009   __ pop_frame();
2010   __ ld(R0, _abi0(lr), R1_SP); // Return pc
2011   __ mtlr(R0);
2012   __ load_const_optimized(tmp, StubRoutines::forward_exception_entry(), R0);
2013   __ mtctr(tmp);
2014   __ bctr();
2015 }
2016 
2017 // ---------------------------------------------------------------------------
2018 // Generate a native wrapper for a given method. The method takes arguments
2019 // in the Java compiled code convention, marshals them to the native
2020 // convention (handlizes oops, etc), transitions to native, makes the call,
2021 // returns to java state (possibly blocking), unhandlizes any result and
2022 // returns.
2023 //
2024 // Critical native functions are a shorthand for the use of
2025 // GetPrimtiveArrayCritical and disallow the use of any other JNI
2026 // functions.  The wrapper is expected to unpack the arguments before
2027 // passing them to the callee. Critical native functions leave the state _in_Java,
2028 // since they cannot stop for GC.
2029 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
2030 // block and the check for pending exceptions it's impossible for them
2031 // to be thrown.
2032 //
2033 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm,
2034                                                 const methodHandle& method,
2035                                                 int compile_id,
2036                                                 BasicType *in_sig_bt,
2037                                                 VMRegPair *in_regs,
2038                                                 BasicType ret_type) {
2039   if (method->is_continuation_native_intrinsic()) {
2040     int exception_offset = -1;
2041     OopMapSet* oop_maps = new OopMapSet();
2042     int frame_complete = -1;
2043     int stack_slots = -1;
2044     int interpreted_entry_offset = -1;
2045     int vep_offset = -1;
2046     if (method->is_continuation_enter_intrinsic()) {
2047       gen_continuation_enter(masm,
2048                              in_regs,
2049                              exception_offset,
2050                              oop_maps,
2051                              frame_complete,
2052                              stack_slots,
2053                              interpreted_entry_offset,
2054                              vep_offset);
2055     } else if (method->is_continuation_yield_intrinsic()) {
2056       gen_continuation_yield(masm,
2057                              in_regs,
2058                              oop_maps,
2059                              frame_complete,
2060                              stack_slots,
2061                              vep_offset);
2062     } else {
2063       guarantee(false, "Unknown Continuation native intrinsic");
2064     }
2065 
2066 #ifdef ASSERT
2067     if (method->is_continuation_enter_intrinsic()) {
2068       assert(interpreted_entry_offset != -1, "Must be set");
2069       assert(exception_offset != -1,         "Must be set");
2070     } else {
2071       assert(interpreted_entry_offset == -1, "Must be unset");
2072       assert(exception_offset == -1,         "Must be unset");
2073     }
2074     assert(frame_complete != -1,    "Must be set");
2075     assert(stack_slots != -1,       "Must be set");
2076     assert(vep_offset != -1,        "Must be set");
2077 #endif
2078 
2079     __ flush();
2080     nmethod* nm = nmethod::new_native_nmethod(method,
2081                                               compile_id,
2082                                               masm->code(),
2083                                               vep_offset,
2084                                               frame_complete,
2085                                               stack_slots,
2086                                               in_ByteSize(-1),
2087                                               in_ByteSize(-1),
2088                                               oop_maps,
2089                                               exception_offset);
2090     if (method->is_continuation_enter_intrinsic()) {
2091       ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
2092     } else if (method->is_continuation_yield_intrinsic()) {
2093       _cont_doYield_stub = nm;
2094     }
2095     return nm;
2096   }
2097 
2098   if (method->is_method_handle_intrinsic()) {
2099     vmIntrinsics::ID iid = method->intrinsic_id();
2100     intptr_t start = (intptr_t)__ pc();
2101     int vep_offset = ((intptr_t)__ pc()) - start;
2102     gen_special_dispatch(masm,
2103                          method,
2104                          in_sig_bt,
2105                          in_regs);
2106     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
2107     __ flush();
2108     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
2109     return nmethod::new_native_nmethod(method,
2110                                        compile_id,
2111                                        masm->code(),
2112                                        vep_offset,
2113                                        frame_complete,
2114                                        stack_slots / VMRegImpl::slots_per_word,
2115                                        in_ByteSize(-1),
2116                                        in_ByteSize(-1),
2117                                        (OopMapSet*)nullptr);
2118   }
2119 
2120   address native_func = method->native_function();
2121   assert(native_func != nullptr, "must have function");
2122 
2123   // First, create signature for outgoing C call
2124   // --------------------------------------------------------------------------
2125 
2126   int total_in_args = method->size_of_parameters();
2127   // We have received a description of where all the java args are located
2128   // on entry to the wrapper. We need to convert these args to where
2129   // the jni function will expect them. To figure out where they go
2130   // we convert the java signature to a C signature by inserting
2131   // the hidden arguments as arg[0] and possibly arg[1] (static method)
2132 
2133   // Calculate the total number of C arguments and create arrays for the
2134   // signature and the outgoing registers.
2135   // On ppc64, we have two arrays for the outgoing registers, because
2136   // some floating-point arguments must be passed in registers _and_
2137   // in stack locations.
2138   bool method_is_static = method->is_static();
2139   int  total_c_args     = total_in_args + (method_is_static ? 2 : 1);
2140 
2141   BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
2142   VMRegPair *out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2143   VMRegPair *out_regs2  = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
2144   BasicType* in_elem_bt = nullptr;
2145 
2146   // Create the signature for the C call:
2147   //   1) add the JNIEnv*
2148   //   2) add the class if the method is static
2149   //   3) copy the rest of the incoming signature (shifted by the number of
2150   //      hidden arguments).
2151 
2152   int argc = 0;
2153   out_sig_bt[argc++] = T_ADDRESS;
2154   if (method->is_static()) {
2155     out_sig_bt[argc++] = T_OBJECT;
2156   }
2157 
2158   for (int i = 0; i < total_in_args ; i++ ) {
2159     out_sig_bt[argc++] = in_sig_bt[i];
2160   }
2161 
2162 
2163   // Compute the wrapper's frame size.
2164   // --------------------------------------------------------------------------
2165 
2166   // Now figure out where the args must be stored and how much stack space
2167   // they require.
2168   //
2169   // Compute framesize for the wrapper. We need to handlize all oops in
2170   // incoming registers.
2171   //
2172   // Calculate the total number of stack slots we will need:
2173   //   1) abi requirements
2174   //   2) outgoing arguments
2175   //   3) space for inbound oop handle area
2176   //   4) space for handlizing a klass if static method
2177   //   5) space for a lock if synchronized method
2178   //   6) workspace for saving return values, int <-> float reg moves, etc.
2179   //   7) alignment
2180   //
2181   // Layout of the native wrapper frame:
2182   // (stack grows upwards, memory grows downwards)
2183   //
2184   // NW     [ABI_REG_ARGS]             <-- 1) R1_SP
2185   //        [outgoing arguments]       <-- 2) R1_SP + out_arg_slot_offset
2186   //        [oopHandle area]           <-- 3) R1_SP + oop_handle_offset
2187   //        klass                      <-- 4) R1_SP + klass_offset
2188   //        lock                       <-- 5) R1_SP + lock_offset
2189   //        [workspace]                <-- 6) R1_SP + workspace_offset
2190   //        [alignment] (optional)     <-- 7)
2191   // caller [JIT_TOP_ABI_48]           <-- r_callers_sp
2192   //
2193   // - *_slot_offset Indicates offset from SP in number of stack slots.
2194   // - *_offset      Indicates offset from SP in bytes.
2195 
2196   int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) + // 1+2)
2197                     SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention.
2198 
2199   // Now the space for the inbound oop handle area.
2200   int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word;
2201 
2202   int oop_handle_slot_offset = stack_slots;
2203   stack_slots += total_save_slots;                                                // 3)
2204 
2205   int klass_slot_offset = 0;
2206   int klass_offset      = -1;
2207   if (method_is_static) {                                                         // 4)
2208     klass_slot_offset  = stack_slots;
2209     klass_offset       = klass_slot_offset * VMRegImpl::stack_slot_size;
2210     stack_slots       += VMRegImpl::slots_per_word;
2211   }
2212 
2213   int lock_slot_offset = 0;
2214   int lock_offset      = -1;
2215   if (method->is_synchronized()) {                                                // 5)
2216     lock_slot_offset   = stack_slots;
2217     lock_offset        = lock_slot_offset * VMRegImpl::stack_slot_size;
2218     stack_slots       += VMRegImpl::slots_per_word;
2219   }
2220 
2221   int workspace_slot_offset = stack_slots;                                        // 6)
2222   stack_slots         += 2;
2223 
2224   // Now compute actual number of stack words we need.
2225   // Rounding to make stack properly aligned.
2226   stack_slots = align_up(stack_slots,                                             // 7)
2227                          frame::alignment_in_bytes / VMRegImpl::stack_slot_size);
2228   int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size;
2229 
2230 
2231   // Now we can start generating code.
2232   // --------------------------------------------------------------------------
2233 
2234   intptr_t start_pc = (intptr_t)__ pc();
2235   intptr_t vep_start_pc;
2236   intptr_t frame_done_pc;
2237   intptr_t oopmap_pc;
2238 
2239   Label    ic_miss;
2240   Label    handle_pending_exception;
2241 
2242   Register r_callers_sp = R21;
2243   Register r_temp_1     = R22;
2244   Register r_temp_2     = R23;
2245   Register r_temp_3     = R24;
2246   Register r_temp_4     = R25;
2247   Register r_temp_5     = R26;
2248   Register r_temp_6     = R27;
2249   Register r_return_pc  = R28;
2250 
2251   Register r_carg1_jnienv        = noreg;
2252   Register r_carg2_classorobject = noreg;
2253   r_carg1_jnienv        = out_regs[0].first()->as_Register();
2254   r_carg2_classorobject = out_regs[1].first()->as_Register();
2255 
2256 
2257   // Generate the Unverified Entry Point (UEP).
2258   // --------------------------------------------------------------------------
2259   assert(start_pc == (intptr_t)__ pc(), "uep must be at start");
2260 
2261   // Check ic: object class == cached class?
2262   if (!method_is_static) {
2263   Register ic = R19_inline_cache_reg;
2264   Register receiver_klass = r_temp_1;
2265 
2266   __ cmpdi(CCR0, R3_ARG1, 0);
2267   __ beq(CCR0, ic_miss);
2268   __ verify_oop(R3_ARG1, FILE_AND_LINE);
2269   __ load_klass(receiver_klass, R3_ARG1);
2270 
2271   __ cmpd(CCR0, receiver_klass, ic);
2272   __ bne(CCR0, ic_miss);
2273   }
2274 
2275 
2276   // Generate the Verified Entry Point (VEP).
2277   // --------------------------------------------------------------------------
2278   vep_start_pc = (intptr_t)__ pc();
2279 
2280   if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
2281     Label L_skip_barrier;
2282     Register klass = r_temp_1;
2283     // Notify OOP recorder (don't need the relocation)
2284     AddressLiteral md = __ constant_metadata_address(method->method_holder());
2285     __ load_const_optimized(klass, md.value(), R0);
2286     __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/);
2287 
2288     __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0);
2289     __ mtctr(klass);
2290     __ bctr();
2291 
2292     __ bind(L_skip_barrier);
2293   }
2294 
2295   __ save_LR_CR(r_temp_1);
2296   __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame.
2297   __ mr(r_callers_sp, R1_SP);                            // Remember frame pointer.
2298   __ push_frame(frame_size_in_bytes, r_temp_1);          // Push the c2n adapter's frame.
2299 
2300   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2301   bs->nmethod_entry_barrier(masm, r_temp_1);
2302 
2303   frame_done_pc = (intptr_t)__ pc();
2304 
2305   // Native nmethod wrappers never take possession of the oop arguments.
2306   // So the caller will gc the arguments.
2307   // The only thing we need an oopMap for is if the call is static.
2308   //
2309   // An OopMap for lock (and class if static), and one for the VM call itself.
2310   OopMapSet *oop_maps = new OopMapSet();
2311   OopMap    *oop_map  = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2312 
2313   // Move arguments from register/stack to register/stack.
2314   // --------------------------------------------------------------------------
2315   //
2316   // We immediately shuffle the arguments so that for any vm call we have
2317   // to make from here on out (sync slow path, jvmti, etc.) we will have
2318   // captured the oops from our caller and have a valid oopMap for them.
2319   //
2320   // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv*
2321   // (derived from JavaThread* which is in R16_thread) and, if static,
2322   // the class mirror instead of a receiver. This pretty much guarantees that
2323   // register layout will not match. We ignore these extra arguments during
2324   // the shuffle. The shuffle is described by the two calling convention
2325   // vectors we have in our possession. We simply walk the java vector to
2326   // get the source locations and the c vector to get the destinations.
2327 
2328   // Record sp-based slot for receiver on stack for non-static methods.
2329   int receiver_offset = -1;
2330 
2331   // We move the arguments backward because the floating point registers
2332   // destination will always be to a register with a greater or equal
2333   // register number or the stack.
2334   //   in  is the index of the incoming Java arguments
2335   //   out is the index of the outgoing C arguments
2336 
2337 #ifdef ASSERT
2338   bool reg_destroyed[Register::number_of_registers];
2339   bool freg_destroyed[FloatRegister::number_of_registers];
2340   for (int r = 0 ; r < Register::number_of_registers ; r++) {
2341     reg_destroyed[r] = false;
2342   }
2343   for (int f = 0 ; f < FloatRegister::number_of_registers ; f++) {
2344     freg_destroyed[f] = false;
2345   }
2346 #endif // ASSERT
2347 
2348   for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) {
2349 
2350 #ifdef ASSERT
2351     if (in_regs[in].first()->is_Register()) {
2352       assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!");
2353     } else if (in_regs[in].first()->is_FloatRegister()) {
2354       assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!");
2355     }
2356     if (out_regs[out].first()->is_Register()) {
2357       reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true;
2358     } else if (out_regs[out].first()->is_FloatRegister()) {
2359       freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true;
2360     }
2361     if (out_regs2[out].first()->is_Register()) {
2362       reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true;
2363     } else if (out_regs2[out].first()->is_FloatRegister()) {
2364       freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true;
2365     }
2366 #endif // ASSERT
2367 
2368     switch (in_sig_bt[in]) {
2369       case T_BOOLEAN:
2370       case T_CHAR:
2371       case T_BYTE:
2372       case T_SHORT:
2373       case T_INT:
2374         // Move int and do sign extension.
2375         int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2376         break;
2377       case T_LONG:
2378         long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2379         break;
2380       case T_ARRAY:
2381       case T_OBJECT:
2382         object_move(masm, stack_slots,
2383                     oop_map, oop_handle_slot_offset,
2384                     ((in == 0) && (!method_is_static)), &receiver_offset,
2385                     in_regs[in], out_regs[out],
2386                     r_callers_sp, r_temp_1, r_temp_2);
2387         break;
2388       case T_VOID:
2389         break;
2390       case T_FLOAT:
2391         float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2392         if (out_regs2[out].first()->is_valid()) {
2393           float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
2394         }
2395         break;
2396       case T_DOUBLE:
2397         double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1);
2398         if (out_regs2[out].first()->is_valid()) {
2399           double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1);
2400         }
2401         break;
2402       case T_ADDRESS:
2403         fatal("found type (T_ADDRESS) in java args");
2404         break;
2405       default:
2406         ShouldNotReachHere();
2407         break;
2408     }
2409   }
2410 
2411   // Pre-load a static method's oop into ARG2.
2412   // Used both by locking code and the normal JNI call code.
2413   if (method_is_static) {
2414     __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()),
2415                         r_carg2_classorobject);
2416 
2417     // Now handlize the static class mirror in carg2. It's known not-null.
2418     __ std(r_carg2_classorobject, klass_offset, R1_SP);
2419     oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2420     __ addi(r_carg2_classorobject, R1_SP, klass_offset);
2421   }
2422 
2423   // Get JNIEnv* which is first argument to native.
2424   __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset()));
2425 
2426   // NOTE:
2427   //
2428   // We have all of the arguments setup at this point.
2429   // We MUST NOT touch any outgoing regs from this point on.
2430   // So if we must call out we must push a new frame.
2431 
2432   // Get current pc for oopmap, and load it patchable relative to global toc.
2433   oopmap_pc = (intptr_t) __ pc();
2434   __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true);
2435 
2436   // We use the same pc/oopMap repeatedly when we call out.
2437   oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map);
2438 
2439   // r_return_pc now has the pc loaded that we will use when we finally call
2440   // to native.
2441 
2442   // Make sure that thread is non-volatile; it crosses a bunch of VM calls below.
2443   assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register");
2444 
2445 # if 0
2446   // DTrace method entry
2447 # endif
2448 
2449   // Lock a synchronized method.
2450   // --------------------------------------------------------------------------
2451 
2452   if (method->is_synchronized()) {
2453     Register          r_oop  = r_temp_4;
2454     const Register    r_box  = r_temp_5;
2455     Label             done, locked;
2456 
2457     // Load the oop for the object or class. r_carg2_classorobject contains
2458     // either the handlized oop from the incoming arguments or the handlized
2459     // class mirror (if the method is static).
2460     __ ld(r_oop, 0, r_carg2_classorobject);
2461 
2462     // Get the lock box slot's address.
2463     __ addi(r_box, R1_SP, lock_offset);
2464 
2465     // Try fastpath for locking.
2466     if (LockingMode == LM_LIGHTWEIGHT) {
2467       // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
2468       __ compiler_fast_lock_lightweight_object(CCR0, r_oop, r_temp_1, r_temp_2, r_temp_3);
2469     } else {
2470       // fast_lock kills r_temp_1, r_temp_2, r_temp_3.
2471       __ compiler_fast_lock_object(CCR0, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2472     }
2473     __ beq(CCR0, locked);
2474 
2475     // None of the above fast optimizations worked so we have to get into the
2476     // slow case of monitor enter. Inline a special case of call_VM that
2477     // disallows any pending_exception.
2478 
2479     // Save argument registers and leave room for C-compatible ABI_REG_ARGS.
2480     int frame_size = frame::native_abi_reg_args_size + align_up(total_c_args * wordSize, frame::alignment_in_bytes);
2481     __ mr(R11_scratch1, R1_SP);
2482     RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2);
2483 
2484     // Do the call.
2485     __ set_last_Java_frame(R11_scratch1, r_return_pc);
2486     assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register");
2487     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread);
2488     __ reset_last_Java_frame();
2489 
2490     RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2);
2491 
2492     __ asm_assert_mem8_is_zero(thread_(pending_exception),
2493        "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C");
2494 
2495     __ bind(locked);
2496   }
2497 
2498   // Use that pc we placed in r_return_pc a while back as the current frame anchor.
2499   __ set_last_Java_frame(R1_SP, r_return_pc);
2500 
2501   // Publish thread state
2502   // --------------------------------------------------------------------------
2503 
2504   // Transition from _thread_in_Java to _thread_in_native.
2505   __ li(R0, _thread_in_native);
2506   __ release();
2507   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2508   __ stw(R0, thread_(thread_state));
2509 
2510 
2511   // The JNI call
2512   // --------------------------------------------------------------------------
2513 #if defined(ABI_ELFv2)
2514   __ call_c(native_func, relocInfo::runtime_call_type);
2515 #else
2516   FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func;
2517   __ call_c(fd_native_method, relocInfo::runtime_call_type);
2518 #endif
2519 
2520 
2521   // Now, we are back from the native code.
2522 
2523 
2524   // Unpack the native result.
2525   // --------------------------------------------------------------------------
2526 
2527   // For int-types, we do any needed sign-extension required.
2528   // Care must be taken that the return values (R3_RET and F1_RET)
2529   // will survive any VM calls for blocking or unlocking.
2530   // An OOP result (handle) is done specially in the slow-path code.
2531 
2532   switch (ret_type) {
2533     case T_VOID:    break;        // Nothing to do!
2534     case T_FLOAT:   break;        // Got it where we want it (unless slow-path).
2535     case T_DOUBLE:  break;        // Got it where we want it (unless slow-path).
2536     case T_LONG:    break;        // Got it where we want it (unless slow-path).
2537     case T_OBJECT:  break;        // Really a handle.
2538                                   // Cannot de-handlize until after reclaiming jvm_lock.
2539     case T_ARRAY:   break;
2540 
2541     case T_BOOLEAN: {             // 0 -> false(0); !0 -> true(1)
2542       Label skip_modify;
2543       __ cmpwi(CCR0, R3_RET, 0);
2544       __ beq(CCR0, skip_modify);
2545       __ li(R3_RET, 1);
2546       __ bind(skip_modify);
2547       break;
2548       }
2549     case T_BYTE: {                // sign extension
2550       __ extsb(R3_RET, R3_RET);
2551       break;
2552       }
2553     case T_CHAR: {                // unsigned result
2554       __ andi(R3_RET, R3_RET, 0xffff);
2555       break;
2556       }
2557     case T_SHORT: {               // sign extension
2558       __ extsh(R3_RET, R3_RET);
2559       break;
2560       }
2561     case T_INT:                   // nothing to do
2562       break;
2563     default:
2564       ShouldNotReachHere();
2565       break;
2566   }
2567 
2568   Label after_transition;
2569 
2570   // Publish thread state
2571   // --------------------------------------------------------------------------
2572 
2573   // Switch thread to "native transition" state before reading the
2574   // synchronization state. This additional state is necessary because reading
2575   // and testing the synchronization state is not atomic w.r.t. GC, as this
2576   // scenario demonstrates:
2577   //   - Java thread A, in _thread_in_native state, loads _not_synchronized
2578   //     and is preempted.
2579   //   - VM thread changes sync state to synchronizing and suspends threads
2580   //     for GC.
2581   //   - Thread A is resumed to finish this native method, but doesn't block
2582   //     here since it didn't see any synchronization in progress, and escapes.
2583 
2584   // Transition from _thread_in_native to _thread_in_native_trans.
2585   __ li(R0, _thread_in_native_trans);
2586   __ release();
2587   // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2588   __ stw(R0, thread_(thread_state));
2589 
2590 
2591   // Must we block?
2592   // --------------------------------------------------------------------------
2593 
2594   // Block, if necessary, before resuming in _thread_in_Java state.
2595   // In order for GC to work, don't clear the last_Java_sp until after blocking.
2596   {
2597     Label no_block, sync;
2598 
2599     // Force this write out before the read below.
2600     if (!UseSystemMemoryBarrier) {
2601       __ fence();
2602     }
2603 
2604     Register sync_state_addr = r_temp_4;
2605     Register sync_state      = r_temp_5;
2606     Register suspend_flags   = r_temp_6;
2607 
2608     // No synchronization in progress nor yet synchronized
2609     // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
2610     __ safepoint_poll(sync, sync_state, true /* at_return */, false /* in_nmethod */);
2611 
2612     // Not suspended.
2613     // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
2614     __ lwz(suspend_flags, thread_(suspend_flags));
2615     __ cmpwi(CCR1, suspend_flags, 0);
2616     __ beq(CCR1, no_block);
2617 
2618     // Block. Save any potential method result value before the operation and
2619     // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this
2620     // lets us share the oopMap we used when we went native rather than create
2621     // a distinct one for this pc.
2622     __ bind(sync);
2623     __ isync();
2624 
2625     address entry_point =
2626       CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans);
2627     save_native_result(masm, ret_type, workspace_slot_offset);
2628     __ call_VM_leaf(entry_point, R16_thread);
2629     restore_native_result(masm, ret_type, workspace_slot_offset);
2630 
2631     __ bind(no_block);
2632 
2633     // Publish thread state.
2634     // --------------------------------------------------------------------------
2635 
2636     // Thread state is thread_in_native_trans. Any safepoint blocking has
2637     // already happened so we can now change state to _thread_in_Java.
2638 
2639     // Transition from _thread_in_native_trans to _thread_in_Java.
2640     __ li(R0, _thread_in_Java);
2641     __ lwsync(); // Acquire safepoint and suspend state, release thread state.
2642     // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
2643     __ stw(R0, thread_(thread_state));
2644     __ bind(after_transition);
2645   }
2646 
2647   // Reguard any pages if necessary.
2648   // --------------------------------------------------------------------------
2649 
2650   Label no_reguard;
2651   __ lwz(r_temp_1, thread_(stack_guard_state));
2652   __ cmpwi(CCR0, r_temp_1, StackOverflow::stack_guard_yellow_reserved_disabled);
2653   __ bne(CCR0, no_reguard);
2654 
2655   save_native_result(masm, ret_type, workspace_slot_offset);
2656   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2657   restore_native_result(masm, ret_type, workspace_slot_offset);
2658 
2659   __ bind(no_reguard);
2660 
2661 
2662   // Unlock
2663   // --------------------------------------------------------------------------
2664 
2665   if (method->is_synchronized()) {
2666     const Register r_oop       = r_temp_4;
2667     const Register r_box       = r_temp_5;
2668     const Register r_exception = r_temp_6;
2669     Label done;
2670 
2671     // Get oop and address of lock object box.
2672     if (method_is_static) {
2673       assert(klass_offset != -1, "");
2674       __ ld(r_oop, klass_offset, R1_SP);
2675     } else {
2676       assert(receiver_offset != -1, "");
2677       __ ld(r_oop, receiver_offset, R1_SP);
2678     }
2679     __ addi(r_box, R1_SP, lock_offset);
2680 
2681     // Try fastpath for unlocking.
2682     if (LockingMode == LM_LIGHTWEIGHT) {
2683       __ compiler_fast_unlock_lightweight_object(CCR0, r_oop, r_temp_1, r_temp_2, r_temp_3);
2684     } else {
2685       __ compiler_fast_unlock_object(CCR0, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3);
2686     }
2687     __ beq(CCR0, done);
2688 
2689     // Save and restore any potential method result value around the unlocking operation.
2690     save_native_result(masm, ret_type, workspace_slot_offset);
2691 
2692     // Must save pending exception around the slow-path VM call. Since it's a
2693     // leaf call, the pending exception (if any) can be kept in a register.
2694     __ ld(r_exception, thread_(pending_exception));
2695     assert(r_exception->is_nonvolatile(), "exception register must be non-volatile");
2696     __ li(R0, 0);
2697     __ std(R0, thread_(pending_exception));
2698 
2699     // Slow case of monitor enter.
2700     // Inline a special case of call_VM that disallows any pending_exception.
2701     // Arguments are (oop obj, BasicLock* lock, JavaThread* thread).
2702     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box, R16_thread);
2703 
2704     __ asm_assert_mem8_is_zero(thread_(pending_exception),
2705        "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C");
2706 
2707     restore_native_result(masm, ret_type, workspace_slot_offset);
2708 
2709     // Check_forward_pending_exception jump to forward_exception if any pending
2710     // exception is set. The forward_exception routine expects to see the
2711     // exception in pending_exception and not in a register. Kind of clumsy,
2712     // since all folks who branch to forward_exception must have tested
2713     // pending_exception first and hence have it in a register already.
2714     __ std(r_exception, thread_(pending_exception));
2715 
2716     __ bind(done);
2717   }
2718 
2719 # if 0
2720   // DTrace method exit
2721 # endif
2722 
2723   // Clear "last Java frame" SP and PC.
2724   // --------------------------------------------------------------------------
2725 
2726   __ reset_last_Java_frame();
2727 
2728   // Unbox oop result, e.g. JNIHandles::resolve value.
2729   // --------------------------------------------------------------------------
2730 
2731   if (is_reference_type(ret_type)) {
2732     __ resolve_jobject(R3_RET, r_temp_1, r_temp_2, MacroAssembler::PRESERVATION_NONE);
2733   }
2734 
2735   if (CheckJNICalls) {
2736     // clear_pending_jni_exception_check
2737     __ load_const_optimized(R0, 0L);
2738     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
2739   }
2740 
2741   // Reset handle block.
2742   // --------------------------------------------------------------------------
2743   __ ld(r_temp_1, thread_(active_handles));
2744   // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
2745   __ li(r_temp_2, 0);
2746   __ stw(r_temp_2, in_bytes(JNIHandleBlock::top_offset()), r_temp_1);
2747 
2748 
2749   // Check for pending exceptions.
2750   // --------------------------------------------------------------------------
2751   __ ld(r_temp_2, thread_(pending_exception));
2752   __ cmpdi(CCR0, r_temp_2, 0);
2753   __ bne(CCR0, handle_pending_exception);
2754 
2755   // Return
2756   // --------------------------------------------------------------------------
2757 
2758   __ pop_frame();
2759   __ restore_LR_CR(R11);
2760   __ blr();
2761 
2762 
2763   // Handler for pending exceptions (out-of-line).
2764   // --------------------------------------------------------------------------
2765   // Since this is a native call, we know the proper exception handler
2766   // is the empty function. We just pop this frame and then jump to
2767   // forward_exception_entry.
2768   __ bind(handle_pending_exception);
2769 
2770   __ pop_frame();
2771   __ restore_LR_CR(R11);
2772   __ b64_patchable((address)StubRoutines::forward_exception_entry(),
2773                        relocInfo::runtime_call_type);
2774 
2775   // Handler for a cache miss (out-of-line).
2776   // --------------------------------------------------------------------------
2777 
2778   if (!method_is_static) {
2779   __ bind(ic_miss);
2780 
2781   __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(),
2782                        relocInfo::runtime_call_type);
2783   }
2784 
2785   // Done.
2786   // --------------------------------------------------------------------------
2787 
2788   __ flush();
2789 
2790   nmethod *nm = nmethod::new_native_nmethod(method,
2791                                             compile_id,
2792                                             masm->code(),
2793                                             vep_start_pc-start_pc,
2794                                             frame_done_pc-start_pc,
2795                                             stack_slots / VMRegImpl::slots_per_word,
2796                                             (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2797                                             in_ByteSize(lock_offset),
2798                                             oop_maps);
2799 
2800   return nm;
2801 }
2802 
2803 // This function returns the adjust size (in number of words) to a c2i adapter
2804 // activation for use during deoptimization.
2805 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2806   return align_up((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::frame_alignment_in_words);
2807 }
2808 
2809 uint SharedRuntime::in_preserve_stack_slots() {
2810   return frame::jit_in_preserve_size / VMRegImpl::stack_slot_size;
2811 }
2812 
2813 uint SharedRuntime::out_preserve_stack_slots() {
2814 #if defined(COMPILER1) || defined(COMPILER2)
2815   return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size;
2816 #else
2817   return 0;
2818 #endif
2819 }
2820 
2821 #if defined(COMPILER1) || defined(COMPILER2)
2822 // Frame generation for deopt and uncommon trap blobs.
2823 static void push_skeleton_frame(MacroAssembler* masm, bool deopt,
2824                                 /* Read */
2825                                 Register unroll_block_reg,
2826                                 /* Update */
2827                                 Register frame_sizes_reg,
2828                                 Register number_of_frames_reg,
2829                                 Register pcs_reg,
2830                                 /* Invalidate */
2831                                 Register frame_size_reg,
2832                                 Register pc_reg) {
2833 
2834   __ ld(pc_reg, 0, pcs_reg);
2835   __ ld(frame_size_reg, 0, frame_sizes_reg);
2836   __ std(pc_reg, _abi0(lr), R1_SP);
2837   __ push_frame(frame_size_reg, R0/*tmp*/);
2838   __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP);
2839   __ addi(number_of_frames_reg, number_of_frames_reg, -1);
2840   __ addi(frame_sizes_reg, frame_sizes_reg, wordSize);
2841   __ addi(pcs_reg, pcs_reg, wordSize);
2842 }
2843 
2844 // Loop through the UnrollBlock info and create new frames.
2845 static void push_skeleton_frames(MacroAssembler* masm, bool deopt,
2846                                  /* read */
2847                                  Register unroll_block_reg,
2848                                  /* invalidate */
2849                                  Register frame_sizes_reg,
2850                                  Register number_of_frames_reg,
2851                                  Register pcs_reg,
2852                                  Register frame_size_reg,
2853                                  Register pc_reg) {
2854   Label loop;
2855 
2856  // _number_of_frames is of type int (deoptimization.hpp)
2857   __ lwa(number_of_frames_reg,
2858              in_bytes(Deoptimization::UnrollBlock::number_of_frames_offset()),
2859              unroll_block_reg);
2860   __ ld(pcs_reg,
2861             in_bytes(Deoptimization::UnrollBlock::frame_pcs_offset()),
2862             unroll_block_reg);
2863   __ ld(frame_sizes_reg,
2864             in_bytes(Deoptimization::UnrollBlock::frame_sizes_offset()),
2865             unroll_block_reg);
2866 
2867   // stack: (caller_of_deoptee, ...).
2868 
2869   // At this point we either have an interpreter frame or a compiled
2870   // frame on top of stack. If it is a compiled frame we push a new c2i
2871   // adapter here
2872 
2873   // Memorize top-frame stack-pointer.
2874   __ mr(frame_size_reg/*old_sp*/, R1_SP);
2875 
2876   // Resize interpreter top frame OR C2I adapter.
2877 
2878   // At this moment, the top frame (which is the caller of the deoptee) is
2879   // an interpreter frame or a newly pushed C2I adapter or an entry frame.
2880   // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the
2881   // outgoing arguments.
2882   //
2883   // In order to push the interpreter frame for the deoptee, we need to
2884   // resize the top frame such that we are able to place the deoptee's
2885   // locals in the frame.
2886   // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI
2887   // into a valid PARENT_IJAVA_FRAME_ABI.
2888 
2889   __ lwa(R11_scratch1,
2890              in_bytes(Deoptimization::UnrollBlock::caller_adjustment_offset()),
2891              unroll_block_reg);
2892   __ neg(R11_scratch1, R11_scratch1);
2893 
2894   // R11_scratch1 contains size of locals for frame resizing.
2895   // R12_scratch2 contains top frame's lr.
2896 
2897   // Resize frame by complete frame size prevents TOC from being
2898   // overwritten by locals. A more stack space saving way would be
2899   // to copy the TOC to its location in the new abi.
2900   __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size);
2901 
2902   // now, resize the frame
2903   __ resize_frame(R11_scratch1, pc_reg/*tmp*/);
2904 
2905   // In the case where we have resized a c2i frame above, the optional
2906   // alignment below the locals has size 32 (why?).
2907   __ std(R12_scratch2, _abi0(lr), R1_SP);
2908 
2909   // Initialize initial_caller_sp.
2910  __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP);
2911 
2912 #ifdef ASSERT
2913   // Make sure that there is at least one entry in the array.
2914   __ cmpdi(CCR0, number_of_frames_reg, 0);
2915   __ asm_assert_ne("array_size must be > 0");
2916 #endif
2917 
2918   // Now push the new interpreter frames.
2919   //
2920   __ bind(loop);
2921   // Allocate a new frame, fill in the pc.
2922   push_skeleton_frame(masm, deopt,
2923                       unroll_block_reg,
2924                       frame_sizes_reg,
2925                       number_of_frames_reg,
2926                       pcs_reg,
2927                       frame_size_reg,
2928                       pc_reg);
2929   __ cmpdi(CCR0, number_of_frames_reg, 0);
2930   __ bne(CCR0, loop);
2931 
2932   // Get the return address pointing into the frame manager.
2933   __ ld(R0, 0, pcs_reg);
2934   // Store it in the top interpreter frame.
2935   __ std(R0, _abi0(lr), R1_SP);
2936   // Initialize frame_manager_lr of interpreter top frame.
2937 }
2938 #endif
2939 
2940 void SharedRuntime::generate_deopt_blob() {
2941   // Allocate space for the code
2942   ResourceMark rm;
2943   // Setup code generation tools
2944   CodeBuffer buffer("deopt_blob", 2048, 1024);
2945   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
2946   Label exec_mode_initialized;
2947   int frame_size_in_words;
2948   OopMap* map = nullptr;
2949   OopMapSet *oop_maps = new OopMapSet();
2950 
2951   // size of ABI112 plus spill slots for R3_RET and F1_RET.
2952   const int frame_size_in_bytes = frame::native_abi_reg_args_spill_size;
2953   const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
2954   int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info.
2955 
2956   const Register exec_mode_reg = R21_tmp1;
2957 
2958   const address start = __ pc();
2959 
2960 #if defined(COMPILER1) || defined(COMPILER2)
2961   // --------------------------------------------------------------------------
2962   // Prolog for non exception case!
2963 
2964   // We have been called from the deopt handler of the deoptee.
2965   //
2966   // deoptee:
2967   //                      ...
2968   //                      call X
2969   //                      ...
2970   //  deopt_handler:      call_deopt_stub
2971   //  cur. return pc  --> ...
2972   //
2973   // So currently SR_LR points behind the call in the deopt handler.
2974   // We adjust it such that it points to the start of the deopt handler.
2975   // The return_pc has been stored in the frame of the deoptee and
2976   // will replace the address of the deopt_handler in the call
2977   // to Deoptimization::fetch_unroll_info below.
2978   // We can't grab a free register here, because all registers may
2979   // contain live values, so let the RegisterSaver do the adjustment
2980   // of the return pc.
2981   const int return_pc_adjustment_no_exception = -MacroAssembler::bl64_patchable_size;
2982 
2983   // Push the "unpack frame"
2984   // Save everything in sight.
2985   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
2986                                                                    &first_frame_size_in_bytes,
2987                                                                    /*generate_oop_map=*/ true,
2988                                                                    return_pc_adjustment_no_exception,
2989                                                                    RegisterSaver::return_pc_is_lr);
2990   assert(map != nullptr, "OopMap must have been created");
2991 
2992   __ li(exec_mode_reg, Deoptimization::Unpack_deopt);
2993   // Save exec mode for unpack_frames.
2994   __ b(exec_mode_initialized);
2995 
2996   // --------------------------------------------------------------------------
2997   // Prolog for exception case
2998 
2999   // An exception is pending.
3000   // We have been called with a return (interpreter) or a jump (exception blob).
3001   //
3002   // - R3_ARG1: exception oop
3003   // - R4_ARG2: exception pc
3004 
3005   int exception_offset = __ pc() - start;
3006 
3007   BLOCK_COMMENT("Prolog for exception case");
3008 
3009   // Store exception oop and pc in thread (location known to GC).
3010   // This is needed since the call to "fetch_unroll_info()" may safepoint.
3011   __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
3012   __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
3013   __ std(R4_ARG2, _abi0(lr), R1_SP);
3014 
3015   // Vanilla deoptimization with an exception pending in exception_oop.
3016   int exception_in_tls_offset = __ pc() - start;
3017 
3018   // Push the "unpack frame".
3019   // Save everything in sight.
3020   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3021                                                              &first_frame_size_in_bytes,
3022                                                              /*generate_oop_map=*/ false,
3023                                                              /*return_pc_adjustment_exception=*/ 0,
3024                                                              RegisterSaver::return_pc_is_pre_saved);
3025 
3026   // Deopt during an exception. Save exec mode for unpack_frames.
3027   __ li(exec_mode_reg, Deoptimization::Unpack_exception);
3028 
3029   // fall through
3030 
3031   int reexecute_offset = 0;
3032 #ifdef COMPILER1
3033   __ b(exec_mode_initialized);
3034 
3035   // Reexecute entry, similar to c2 uncommon trap
3036   reexecute_offset = __ pc() - start;
3037 
3038   RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3039                                                              &first_frame_size_in_bytes,
3040                                                              /*generate_oop_map=*/ false,
3041                                                              /*return_pc_adjustment_reexecute=*/ 0,
3042                                                              RegisterSaver::return_pc_is_pre_saved);
3043   __ li(exec_mode_reg, Deoptimization::Unpack_reexecute);
3044 #endif
3045 
3046   // --------------------------------------------------------------------------
3047   __ BIND(exec_mode_initialized);
3048 
3049   const Register unroll_block_reg = R22_tmp2;
3050 
3051   // We need to set `last_Java_frame' because `fetch_unroll_info' will
3052   // call `last_Java_frame()'. The value of the pc in the frame is not
3053   // particularly important. It just needs to identify this blob.
3054   __ set_last_Java_frame(R1_SP, noreg);
3055 
3056   // With EscapeAnalysis turned on, this call may safepoint!
3057   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread, exec_mode_reg);
3058   address calls_return_pc = __ last_calls_return_pc();
3059   // Set an oopmap for the call site that describes all our saved registers.
3060   oop_maps->add_gc_map(calls_return_pc - start, map);
3061 
3062   __ reset_last_Java_frame();
3063   // Save the return value.
3064   __ mr(unroll_block_reg, R3_RET);
3065 
3066   // Restore only the result registers that have been saved
3067   // by save_volatile_registers(...).
3068   RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes);
3069 
3070   // reload the exec mode from the UnrollBlock (it might have changed)
3071   __ lwz(exec_mode_reg, in_bytes(Deoptimization::UnrollBlock::unpack_kind_offset()), unroll_block_reg);
3072   // In excp_deopt_mode, restore and clear exception oop which we
3073   // stored in the thread during exception entry above. The exception
3074   // oop will be the return value of this stub.
3075   Label skip_restore_excp;
3076   __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception);
3077   __ bne(CCR0, skip_restore_excp);
3078   __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
3079   __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread);
3080   __ li(R0, 0);
3081   __ std(R0, in_bytes(JavaThread::exception_pc_offset()),  R16_thread);
3082   __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread);
3083   __ BIND(skip_restore_excp);
3084 
3085   __ pop_frame();
3086 
3087   // stack: (deoptee, optional i2c, caller of deoptee, ...).
3088 
3089   // pop the deoptee's frame
3090   __ pop_frame();
3091 
3092   // stack: (caller_of_deoptee, ...).
3093 
3094   // Freezing continuation frames requires that the caller is trimmed to unextended sp if compiled.
3095   // If not compiled the loaded value is equal to the current SP (see frame::initial_deoptimization_info())
3096   // and the frame is effectively not resized.
3097   Register caller_sp = R23_tmp3;
3098   __ ld_ptr(caller_sp, Deoptimization::UnrollBlock::initial_info_offset(), unroll_block_reg);
3099   __ resize_frame_absolute(caller_sp, R24_tmp4, R25_tmp5);
3100 
3101   // Loop through the `UnrollBlock' info and create interpreter frames.
3102   push_skeleton_frames(masm, true/*deopt*/,
3103                        unroll_block_reg,
3104                        R23_tmp3,
3105                        R24_tmp4,
3106                        R25_tmp5,
3107                        R26_tmp6,
3108                        R27_tmp7);
3109 
3110   // stack: (skeletal interpreter frame, ..., optional skeletal
3111   // interpreter frame, optional c2i, caller of deoptee, ...).
3112 
3113   // push an `unpack_frame' taking care of float / int return values.
3114   __ push_frame(frame_size_in_bytes, R0/*tmp*/);
3115 
3116   // stack: (unpack frame, skeletal interpreter frame, ..., optional
3117   // skeletal interpreter frame, optional c2i, caller of deoptee,
3118   // ...).
3119 
3120   // Spill live volatile registers since we'll do a call.
3121   __ std( R3_RET, _native_abi_reg_args_spill(spill_ret),  R1_SP);
3122   __ stfd(F1_RET, _native_abi_reg_args_spill(spill_fret), R1_SP);
3123 
3124   // Let the unpacker layout information in the skeletal frames just
3125   // allocated.
3126   __ calculate_address_from_global_toc(R3_RET, calls_return_pc, true, true, true, true);
3127   __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET);
3128   // This is a call to a LEAF method, so no oop map is required.
3129   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3130                   R16_thread/*thread*/, exec_mode_reg/*exec_mode*/);
3131   __ reset_last_Java_frame();
3132 
3133   // Restore the volatiles saved above.
3134   __ ld( R3_RET, _native_abi_reg_args_spill(spill_ret),  R1_SP);
3135   __ lfd(F1_RET, _native_abi_reg_args_spill(spill_fret), R1_SP);
3136 
3137   // Pop the unpack frame.
3138   __ pop_frame();
3139   __ restore_LR_CR(R0);
3140 
3141   // stack: (top interpreter frame, ..., optional interpreter frame,
3142   // optional c2i, caller of deoptee, ...).
3143 
3144   // Initialize R14_state.
3145   __ restore_interpreter_state(R11_scratch1);
3146   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
3147 
3148   // Return to the interpreter entry point.
3149   __ blr();
3150   __ flush();
3151 #else // COMPILER2
3152   __ unimplemented("deopt blob needed only with compiler");
3153   int exception_offset = __ pc() - start;
3154 #endif // COMPILER2
3155 
3156   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset,
3157                                            reexecute_offset, first_frame_size_in_bytes / wordSize);
3158   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3159 }
3160 
3161 #ifdef COMPILER2
3162 void SharedRuntime::generate_uncommon_trap_blob() {
3163   // Allocate space for the code.
3164   ResourceMark rm;
3165   // Setup code generation tools.
3166   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3167   InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer);
3168   address start = __ pc();
3169 
3170   Register unroll_block_reg = R21_tmp1;
3171   Register klass_index_reg  = R22_tmp2;
3172   Register unc_trap_reg     = R23_tmp3;
3173   Register r_return_pc      = R27_tmp7;
3174 
3175   OopMapSet* oop_maps = new OopMapSet();
3176   int frame_size_in_bytes = frame::native_abi_reg_args_size;
3177   OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0);
3178 
3179   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
3180 
3181   // Push a dummy `unpack_frame' and call
3182   // `Deoptimization::uncommon_trap' to pack the compiled frame into a
3183   // vframe array and return the `UnrollBlock' information.
3184 
3185   // Save LR to compiled frame.
3186   __ save_LR_CR(R11_scratch1);
3187 
3188   // Push an "uncommon_trap" frame.
3189   __ push_frame_reg_args(0, R11_scratch1);
3190 
3191   // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...).
3192 
3193   // Set the `unpack_frame' as last_Java_frame.
3194   // `Deoptimization::uncommon_trap' expects it and considers its
3195   // sender frame as the deoptee frame.
3196   // Remember the offset of the instruction whose address will be
3197   // moved to R11_scratch1.
3198   address gc_map_pc = __ pc();
3199   __ calculate_address_from_global_toc(r_return_pc, gc_map_pc, true, true, true, true);
3200   __ set_last_Java_frame(/*sp*/R1_SP, r_return_pc);
3201 
3202   __ mr(klass_index_reg, R3);
3203   __ li(R5_ARG3, Deoptimization::Unpack_uncommon_trap);
3204   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap),
3205                   R16_thread, klass_index_reg, R5_ARG3);
3206 
3207   // Set an oopmap for the call site.
3208   oop_maps->add_gc_map(gc_map_pc - start, map);
3209 
3210   __ reset_last_Java_frame();
3211 
3212   // Pop the `unpack frame'.
3213   __ pop_frame();
3214 
3215   // stack: (deoptee, optional i2c, caller_of_deoptee, ...).
3216 
3217   // Save the return value.
3218   __ mr(unroll_block_reg, R3_RET);
3219 
3220   // Pop the uncommon_trap frame.
3221   __ pop_frame();
3222 
3223   // stack: (caller_of_deoptee, ...).
3224 
3225 #ifdef ASSERT
3226   __ lwz(R22_tmp2, in_bytes(Deoptimization::UnrollBlock::unpack_kind_offset()), unroll_block_reg);
3227   __ cmpdi(CCR0, R22_tmp2, (unsigned)Deoptimization::Unpack_uncommon_trap);
3228   __ asm_assert_eq("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3229 #endif
3230 
3231   // Freezing continuation frames requires that the caller is trimmed to unextended sp if compiled.
3232   // If not compiled the loaded value is equal to the current SP (see frame::initial_deoptimization_info())
3233   // and the frame is effectively not resized.
3234   Register caller_sp = R23_tmp3;
3235   __ ld_ptr(caller_sp, Deoptimization::UnrollBlock::initial_info_offset(), unroll_block_reg);
3236   __ resize_frame_absolute(caller_sp, R24_tmp4, R25_tmp5);
3237 
3238   // Allocate new interpreter frame(s) and possibly a c2i adapter
3239   // frame.
3240   push_skeleton_frames(masm, false/*deopt*/,
3241                        unroll_block_reg,
3242                        R22_tmp2,
3243                        R23_tmp3,
3244                        R24_tmp4,
3245                        R25_tmp5,
3246                        R26_tmp6);
3247 
3248   // stack: (skeletal interpreter frame, ..., optional skeletal
3249   // interpreter frame, optional c2i, caller of deoptee, ...).
3250 
3251   // Push a dummy `unpack_frame' taking care of float return values.
3252   // Call `Deoptimization::unpack_frames' to layout information in the
3253   // interpreter frames just created.
3254 
3255   // Push a simple "unpack frame" here.
3256   __ push_frame_reg_args(0, R11_scratch1);
3257 
3258   // stack: (unpack frame, skeletal interpreter frame, ..., optional
3259   // skeletal interpreter frame, optional c2i, caller of deoptee,
3260   // ...).
3261 
3262   // Set the "unpack_frame" as last_Java_frame.
3263   __ set_last_Java_frame(/*sp*/R1_SP, r_return_pc);
3264 
3265   // Indicate it is the uncommon trap case.
3266   __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap);
3267   // Let the unpacker layout information in the skeletal frames just
3268   // allocated.
3269   __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames),
3270                   R16_thread, unc_trap_reg);
3271 
3272   __ reset_last_Java_frame();
3273   // Pop the `unpack frame'.
3274   __ pop_frame();
3275   // Restore LR from top interpreter frame.
3276   __ restore_LR_CR(R11_scratch1);
3277 
3278   // stack: (top interpreter frame, ..., optional interpreter frame,
3279   // optional c2i, caller of deoptee, ...).
3280 
3281   __ restore_interpreter_state(R11_scratch1);
3282   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
3283 
3284   // Return to the interpreter entry point.
3285   __ blr();
3286 
3287   masm->flush();
3288 
3289   _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize);
3290 }
3291 #endif // COMPILER2
3292 
3293 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap.
3294 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3295   assert(StubRoutines::forward_exception_entry() != nullptr,
3296          "must be generated before");
3297 
3298   ResourceMark rm;
3299   OopMapSet *oop_maps = new OopMapSet();
3300   OopMap* map;
3301 
3302   // Allocate space for the code. Setup code generation tools.
3303   CodeBuffer buffer("handler_blob", 2048, 1024);
3304   MacroAssembler* masm = new MacroAssembler(&buffer);
3305 
3306   address start = __ pc();
3307   int frame_size_in_bytes = 0;
3308 
3309   RegisterSaver::ReturnPCLocation return_pc_location;
3310   bool cause_return = (poll_type == POLL_AT_RETURN);
3311   if (cause_return) {
3312     // Nothing to do here. The frame has already been popped in MachEpilogNode.
3313     // Register LR already contains the return pc.
3314     return_pc_location = RegisterSaver::return_pc_is_pre_saved;
3315   } else {
3316     // Use thread()->saved_exception_pc() as return pc.
3317     return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc;
3318   }
3319 
3320   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3321 
3322   // Save registers, fpu state, and flags. Set R31 = return pc.
3323   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3324                                                                    &frame_size_in_bytes,
3325                                                                    /*generate_oop_map=*/ true,
3326                                                                    /*return_pc_adjustment=*/0,
3327                                                                    return_pc_location, save_vectors);
3328 
3329   // The following is basically a call_VM. However, we need the precise
3330   // address of the call in order to generate an oopmap. Hence, we do all the
3331   // work ourselves.
3332   __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg);
3333 
3334   // The return address must always be correct so that the frame constructor
3335   // never sees an invalid pc.
3336 
3337   // Do the call
3338   __ call_VM_leaf(call_ptr, R16_thread);
3339   address calls_return_pc = __ last_calls_return_pc();
3340 
3341   // Set an oopmap for the call site. This oopmap will map all
3342   // oop-registers and debug-info registers as callee-saved. This
3343   // will allow deoptimization at this safepoint to find all possible
3344   // debug-info recordings, as well as let GC find all oops.
3345   oop_maps->add_gc_map(calls_return_pc - start, map);
3346 
3347   Label noException;
3348 
3349   // Clear the last Java frame.
3350   __ reset_last_Java_frame();
3351 
3352   BLOCK_COMMENT("  Check pending exception.");
3353   const Register pending_exception = R0;
3354   __ ld(pending_exception, thread_(pending_exception));
3355   __ cmpdi(CCR0, pending_exception, 0);
3356   __ beq(CCR0, noException);
3357 
3358   // Exception pending
3359   RegisterSaver::restore_live_registers_and_pop_frame(masm,
3360                                                       frame_size_in_bytes,
3361                                                       /*restore_ctr=*/true, save_vectors);
3362 
3363   BLOCK_COMMENT("  Jump to forward_exception_entry.");
3364   // Jump to forward_exception_entry, with the issuing PC in LR
3365   // so it looks like the original nmethod called forward_exception_entry.
3366   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3367 
3368   // No exception case.
3369   __ BIND(noException);
3370 
3371   if (!cause_return) {
3372     Label no_adjust;
3373     // If our stashed return pc was modified by the runtime we avoid touching it
3374     __ ld(R0, frame_size_in_bytes + _abi0(lr), R1_SP);
3375     __ cmpd(CCR0, R0, R31);
3376     __ bne(CCR0, no_adjust);
3377 
3378     // Adjust return pc forward to step over the safepoint poll instruction
3379     __ addi(R31, R31, 4);
3380     __ std(R31, frame_size_in_bytes + _abi0(lr), R1_SP);
3381 
3382     __ bind(no_adjust);
3383   }
3384 
3385   // Normal exit, restore registers and exit.
3386   RegisterSaver::restore_live_registers_and_pop_frame(masm,
3387                                                       frame_size_in_bytes,
3388                                                       /*restore_ctr=*/true, save_vectors);
3389 
3390   __ blr();
3391 
3392   // Make sure all code is generated
3393   masm->flush();
3394 
3395   // Fill-out other meta info
3396   // CodeBlob frame size is in words.
3397   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize);
3398 }
3399 
3400 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss)
3401 //
3402 // Generate a stub that calls into the vm to find out the proper destination
3403 // of a java call. All the argument registers are live at this point
3404 // but since this is generic code we don't know what they are and the caller
3405 // must do any gc of the args.
3406 //
3407 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3408 
3409   // allocate space for the code
3410   ResourceMark rm;
3411 
3412   CodeBuffer buffer(name, 1000, 512);
3413   MacroAssembler* masm = new MacroAssembler(&buffer);
3414 
3415   int frame_size_in_bytes;
3416 
3417   OopMapSet *oop_maps = new OopMapSet();
3418   OopMap* map = nullptr;
3419 
3420   address start = __ pc();
3421 
3422   map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm,
3423                                                                    &frame_size_in_bytes,
3424                                                                    /*generate_oop_map*/ true,
3425                                                                    /*return_pc_adjustment*/ 0,
3426                                                                    RegisterSaver::return_pc_is_lr);
3427 
3428   // Use noreg as last_Java_pc, the return pc will be reconstructed
3429   // from the physical frame.
3430   __ set_last_Java_frame(/*sp*/R1_SP, noreg);
3431 
3432   int frame_complete = __ offset();
3433 
3434   // Pass R19_method as 2nd (optional) argument, used by
3435   // counter_overflow_stub.
3436   __ call_VM_leaf(destination, R16_thread, R19_method);
3437   address calls_return_pc = __ last_calls_return_pc();
3438   // Set an oopmap for the call site.
3439   // We need this not only for callee-saved registers, but also for volatile
3440   // registers that the compiler might be keeping live across a safepoint.
3441   // Create the oopmap for the call's return pc.
3442   oop_maps->add_gc_map(calls_return_pc - start, map);
3443 
3444   // R3_RET contains the address we are going to jump to assuming no exception got installed.
3445 
3446   // clear last_Java_sp
3447   __ reset_last_Java_frame();
3448 
3449   // Check for pending exceptions.
3450   BLOCK_COMMENT("Check for pending exceptions.");
3451   Label pending;
3452   __ ld(R11_scratch1, thread_(pending_exception));
3453   __ cmpdi(CCR0, R11_scratch1, 0);
3454   __ bne(CCR0, pending);
3455 
3456   __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame.
3457 
3458   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false);
3459 
3460   // Get the returned method.
3461   __ get_vm_result_2(R19_method);
3462 
3463   __ bctr();
3464 
3465 
3466   // Pending exception after the safepoint.
3467   __ BIND(pending);
3468 
3469   RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true);
3470 
3471   // exception pending => remove activation and forward to exception handler
3472 
3473   __ li(R11_scratch1, 0);
3474   __ ld(R3_ARG1, thread_(pending_exception));
3475   __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread);
3476   __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
3477 
3478   // -------------
3479   // Make sure all code is generated.
3480   masm->flush();
3481 
3482   // return the blob
3483   // frame_size_words or bytes??
3484   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize,
3485                                        oop_maps, true);
3486 }
3487 
3488 
3489 //------------------------------Montgomery multiplication------------------------
3490 //
3491 
3492 // Subtract 0:b from carry:a. Return carry.
3493 static unsigned long
3494 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3495   long i = 0;
3496   unsigned long tmp, tmp2;
3497   __asm__ __volatile__ (
3498     "subfc  %[tmp], %[tmp], %[tmp]   \n" // pre-set CA
3499     "mtctr  %[len]                   \n"
3500     "0:                              \n"
3501     "ldx    %[tmp], %[i], %[a]       \n"
3502     "ldx    %[tmp2], %[i], %[b]      \n"
3503     "subfe  %[tmp], %[tmp2], %[tmp]  \n" // subtract extended
3504     "stdx   %[tmp], %[i], %[a]       \n"
3505     "addi   %[i], %[i], 8            \n"
3506     "bdnz   0b                       \n"
3507     "addme  %[tmp], %[carry]         \n" // carry + CA - 1
3508     : [i]"+b"(i), [tmp]"=&r"(tmp), [tmp2]"=&r"(tmp2)
3509     : [a]"r"(a), [b]"r"(b), [carry]"r"(carry), [len]"r"(len)
3510     : "ctr", "xer", "memory"
3511   );
3512   return tmp;
3513 }
3514 
3515 // Multiply (unsigned) Long A by Long B, accumulating the double-
3516 // length result into the accumulator formed of T0, T1, and T2.
3517 inline void MACC(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
3518   unsigned long hi, lo;
3519   __asm__ __volatile__ (
3520     "mulld  %[lo], %[A], %[B]    \n"
3521     "mulhdu %[hi], %[A], %[B]    \n"
3522     "addc   %[T0], %[T0], %[lo]  \n"
3523     "adde   %[T1], %[T1], %[hi]  \n"
3524     "addze  %[T2], %[T2]         \n"
3525     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
3526     : [A]"r"(A), [B]"r"(B)
3527     : "xer"
3528   );
3529 }
3530 
3531 // As above, but add twice the double-length result into the
3532 // accumulator.
3533 inline void MACC2(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) {
3534   unsigned long hi, lo;
3535   __asm__ __volatile__ (
3536     "mulld  %[lo], %[A], %[B]    \n"
3537     "mulhdu %[hi], %[A], %[B]    \n"
3538     "addc   %[T0], %[T0], %[lo]  \n"
3539     "adde   %[T1], %[T1], %[hi]  \n"
3540     "addze  %[T2], %[T2]         \n"
3541     "addc   %[T0], %[T0], %[lo]  \n"
3542     "adde   %[T1], %[T1], %[hi]  \n"
3543     "addze  %[T2], %[T2]         \n"
3544     : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2)
3545     : [A]"r"(A), [B]"r"(B)
3546     : "xer"
3547   );
3548 }
3549 
3550 // Fast Montgomery multiplication. The derivation of the algorithm is
3551 // in "A Cryptographic Library for the Motorola DSP56000,
3552 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237".
3553 static void
3554 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3555                     unsigned long m[], unsigned long inv, int len) {
3556   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3557   int i;
3558 
3559   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3560 
3561   for (i = 0; i < len; i++) {
3562     int j;
3563     for (j = 0; j < i; j++) {
3564       MACC(a[j], b[i-j], t0, t1, t2);
3565       MACC(m[j], n[i-j], t0, t1, t2);
3566     }
3567     MACC(a[i], b[0], t0, t1, t2);
3568     m[i] = t0 * inv;
3569     MACC(m[i], n[0], t0, t1, t2);
3570 
3571     assert(t0 == 0, "broken Montgomery multiply");
3572 
3573     t0 = t1; t1 = t2; t2 = 0;
3574   }
3575 
3576   for (i = len; i < 2*len; i++) {
3577     int j;
3578     for (j = i-len+1; j < len; j++) {
3579       MACC(a[j], b[i-j], t0, t1, t2);
3580       MACC(m[j], n[i-j], t0, t1, t2);
3581     }
3582     m[i-len] = t0;
3583     t0 = t1; t1 = t2; t2 = 0;
3584   }
3585 
3586   while (t0) {
3587     t0 = sub(m, n, t0, len);
3588   }
3589 }
3590 
3591 // Fast Montgomery squaring. This uses asymptotically 25% fewer
3592 // multiplies so it should be up to 25% faster than Montgomery
3593 // multiplication. However, its loop control is more complex and it
3594 // may actually run slower on some machines.
3595 static void
3596 montgomery_square(unsigned long a[], unsigned long n[],
3597                   unsigned long m[], unsigned long inv, int len) {
3598   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3599   int i;
3600 
3601   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3602 
3603   for (i = 0; i < len; i++) {
3604     int j;
3605     int end = (i+1)/2;
3606     for (j = 0; j < end; j++) {
3607       MACC2(a[j], a[i-j], t0, t1, t2);
3608       MACC(m[j], n[i-j], t0, t1, t2);
3609     }
3610     if ((i & 1) == 0) {
3611       MACC(a[j], a[j], t0, t1, t2);
3612     }
3613     for (; j < i; j++) {
3614       MACC(m[j], n[i-j], t0, t1, t2);
3615     }
3616     m[i] = t0 * inv;
3617     MACC(m[i], n[0], t0, t1, t2);
3618 
3619     assert(t0 == 0, "broken Montgomery square");
3620 
3621     t0 = t1; t1 = t2; t2 = 0;
3622   }
3623 
3624   for (i = len; i < 2*len; i++) {
3625     int start = i-len+1;
3626     int end = start + (len - start)/2;
3627     int j;
3628     for (j = start; j < end; j++) {
3629       MACC2(a[j], a[i-j], t0, t1, t2);
3630       MACC(m[j], n[i-j], t0, t1, t2);
3631     }
3632     if ((i & 1) == 0) {
3633       MACC(a[j], a[j], t0, t1, t2);
3634     }
3635     for (; j < len; j++) {
3636       MACC(m[j], n[i-j], t0, t1, t2);
3637     }
3638     m[i-len] = t0;
3639     t0 = t1; t1 = t2; t2 = 0;
3640   }
3641 
3642   while (t0) {
3643     t0 = sub(m, n, t0, len);
3644   }
3645 }
3646 
3647 // The threshold at which squaring is advantageous was determined
3648 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3649 // Doesn't seem to be relevant for Power8 so we use the same value.
3650 #define MONTGOMERY_SQUARING_THRESHOLD 64
3651 
3652 // Copy len longwords from s to d, word-swapping as we go. The
3653 // destination array is reversed.
3654 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3655   d += len;
3656   while(len-- > 0) {
3657     d--;
3658     unsigned long s_val = *s;
3659     // Swap words in a longword on little endian machines.
3660 #ifdef VM_LITTLE_ENDIAN
3661      s_val = (s_val << 32) | (s_val >> 32);
3662 #endif
3663     *d = s_val;
3664     s++;
3665   }
3666 }
3667 
3668 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3669                                         jint len, jlong inv,
3670                                         jint *m_ints) {
3671   len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
3672   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3673   int longwords = len/2;
3674 
3675   // Make very sure we don't use so much space that the stack might
3676   // overflow. 512 jints corresponds to an 16384-bit integer and
3677   // will use here a total of 8k bytes of stack space.
3678   int divisor = sizeof(unsigned long) * 4;
3679   guarantee(longwords <= 8192 / divisor, "must be");
3680   int total_allocation = longwords * sizeof (unsigned long) * 4;
3681   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3682 
3683   // Local scratch arrays
3684   unsigned long
3685     *a = scratch + 0 * longwords,
3686     *b = scratch + 1 * longwords,
3687     *n = scratch + 2 * longwords,
3688     *m = scratch + 3 * longwords;
3689 
3690   reverse_words((unsigned long *)a_ints, a, longwords);
3691   reverse_words((unsigned long *)b_ints, b, longwords);
3692   reverse_words((unsigned long *)n_ints, n, longwords);
3693 
3694   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3695 
3696   reverse_words(m, (unsigned long *)m_ints, longwords);
3697 }
3698 
3699 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3700                                       jint len, jlong inv,
3701                                       jint *m_ints) {
3702   len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls.
3703   assert(len % 2 == 0, "array length in montgomery_square must be even");
3704   int longwords = len/2;
3705 
3706   // Make very sure we don't use so much space that the stack might
3707   // overflow. 512 jints corresponds to an 16384-bit integer and
3708   // will use here a total of 6k bytes of stack space.
3709   int divisor = sizeof(unsigned long) * 3;
3710   guarantee(longwords <= (8192 / divisor), "must be");
3711   int total_allocation = longwords * sizeof (unsigned long) * 3;
3712   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3713 
3714   // Local scratch arrays
3715   unsigned long
3716     *a = scratch + 0 * longwords,
3717     *n = scratch + 1 * longwords,
3718     *m = scratch + 2 * longwords;
3719 
3720   reverse_words((unsigned long *)a_ints, a, longwords);
3721   reverse_words((unsigned long *)n_ints, n, longwords);
3722 
3723   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3724     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3725   } else {
3726     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3727   }
3728 
3729   reverse_words(m, (unsigned long *)m_ints, longwords);
3730 }