1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2012, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "code/debugInfoRec.hpp" 29 #include "code/compiledIC.hpp" 30 #include "code/icBuffer.hpp" 31 #include "code/vtableStubs.hpp" 32 #include "frame_ppc.hpp" 33 #include "compiler/oopMap.hpp" 34 #include "gc/shared/gcLocker.hpp" 35 #include "interpreter/interpreter.hpp" 36 #include "interpreter/interp_masm.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/compiledICHolder.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "prims/methodHandles.hpp" 41 #include "runtime/continuation.hpp" 42 #include "runtime/continuationEntry.inline.hpp" 43 #include "runtime/jniHandles.hpp" 44 #include "runtime/os.inline.hpp" 45 #include "runtime/safepointMechanism.hpp" 46 #include "runtime/sharedRuntime.hpp" 47 #include "runtime/signature.hpp" 48 #include "runtime/stubRoutines.hpp" 49 #include "runtime/vframeArray.hpp" 50 #include "utilities/align.hpp" 51 #include "utilities/macros.hpp" 52 #include "vmreg_ppc.inline.hpp" 53 #ifdef COMPILER1 54 #include "c1/c1_Runtime1.hpp" 55 #endif 56 #ifdef COMPILER2 57 #include "opto/ad.hpp" 58 #include "opto/runtime.hpp" 59 #endif 60 61 #include <alloca.h> 62 63 #define __ masm-> 64 65 #ifdef PRODUCT 66 #define BLOCK_COMMENT(str) // nothing 67 #else 68 #define BLOCK_COMMENT(str) __ block_comment(str) 69 #endif 70 71 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 72 73 74 class RegisterSaver { 75 // Used for saving volatile registers. 76 public: 77 78 // Support different return pc locations. 79 enum ReturnPCLocation { 80 return_pc_is_lr, 81 return_pc_is_pre_saved, 82 return_pc_is_thread_saved_exception_pc 83 }; 84 85 static OopMap* push_frame_reg_args_and_save_live_registers(MacroAssembler* masm, 86 int* out_frame_size_in_bytes, 87 bool generate_oop_map, 88 int return_pc_adjustment, 89 ReturnPCLocation return_pc_location, 90 bool save_vectors = false); 91 static void restore_live_registers_and_pop_frame(MacroAssembler* masm, 92 int frame_size_in_bytes, 93 bool restore_ctr, 94 bool save_vectors = false); 95 96 static void push_frame_and_save_argument_registers(MacroAssembler* masm, 97 Register r_temp, 98 int frame_size, 99 int total_args, 100 const VMRegPair *regs, const VMRegPair *regs2 = nullptr); 101 static void restore_argument_registers_and_pop_frame(MacroAssembler*masm, 102 int frame_size, 103 int total_args, 104 const VMRegPair *regs, const VMRegPair *regs2 = nullptr); 105 106 // During deoptimization only the result registers need to be restored 107 // all the other values have already been extracted. 108 static void restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes); 109 110 // Constants and data structures: 111 112 typedef enum { 113 int_reg, 114 float_reg, 115 special_reg, 116 vs_reg 117 } RegisterType; 118 119 typedef enum { 120 reg_size = 8, 121 half_reg_size = reg_size / 2, 122 vs_reg_size = 16 123 } RegisterConstants; 124 125 typedef struct { 126 RegisterType reg_type; 127 int reg_num; 128 VMReg vmreg; 129 } LiveRegType; 130 }; 131 132 133 #define RegisterSaver_LiveIntReg(regname) \ 134 { RegisterSaver::int_reg, regname->encoding(), regname->as_VMReg() } 135 136 #define RegisterSaver_LiveFloatReg(regname) \ 137 { RegisterSaver::float_reg, regname->encoding(), regname->as_VMReg() } 138 139 #define RegisterSaver_LiveSpecialReg(regname) \ 140 { RegisterSaver::special_reg, regname->encoding(), regname->as_VMReg() } 141 142 #define RegisterSaver_LiveVSReg(regname) \ 143 { RegisterSaver::vs_reg, regname->encoding(), regname->as_VMReg() } 144 145 static const RegisterSaver::LiveRegType RegisterSaver_LiveRegs[] = { 146 // Live registers which get spilled to the stack. Register 147 // positions in this array correspond directly to the stack layout. 148 149 // 150 // live special registers: 151 // 152 RegisterSaver_LiveSpecialReg(SR_CTR), 153 // 154 // live float registers: 155 // 156 RegisterSaver_LiveFloatReg( F0 ), 157 RegisterSaver_LiveFloatReg( F1 ), 158 RegisterSaver_LiveFloatReg( F2 ), 159 RegisterSaver_LiveFloatReg( F3 ), 160 RegisterSaver_LiveFloatReg( F4 ), 161 RegisterSaver_LiveFloatReg( F5 ), 162 RegisterSaver_LiveFloatReg( F6 ), 163 RegisterSaver_LiveFloatReg( F7 ), 164 RegisterSaver_LiveFloatReg( F8 ), 165 RegisterSaver_LiveFloatReg( F9 ), 166 RegisterSaver_LiveFloatReg( F10 ), 167 RegisterSaver_LiveFloatReg( F11 ), 168 RegisterSaver_LiveFloatReg( F12 ), 169 RegisterSaver_LiveFloatReg( F13 ), 170 RegisterSaver_LiveFloatReg( F14 ), 171 RegisterSaver_LiveFloatReg( F15 ), 172 RegisterSaver_LiveFloatReg( F16 ), 173 RegisterSaver_LiveFloatReg( F17 ), 174 RegisterSaver_LiveFloatReg( F18 ), 175 RegisterSaver_LiveFloatReg( F19 ), 176 RegisterSaver_LiveFloatReg( F20 ), 177 RegisterSaver_LiveFloatReg( F21 ), 178 RegisterSaver_LiveFloatReg( F22 ), 179 RegisterSaver_LiveFloatReg( F23 ), 180 RegisterSaver_LiveFloatReg( F24 ), 181 RegisterSaver_LiveFloatReg( F25 ), 182 RegisterSaver_LiveFloatReg( F26 ), 183 RegisterSaver_LiveFloatReg( F27 ), 184 RegisterSaver_LiveFloatReg( F28 ), 185 RegisterSaver_LiveFloatReg( F29 ), 186 RegisterSaver_LiveFloatReg( F30 ), 187 RegisterSaver_LiveFloatReg( F31 ), 188 // 189 // live integer registers: 190 // 191 RegisterSaver_LiveIntReg( R0 ), 192 //RegisterSaver_LiveIntReg( R1 ), // stack pointer 193 RegisterSaver_LiveIntReg( R2 ), 194 RegisterSaver_LiveIntReg( R3 ), 195 RegisterSaver_LiveIntReg( R4 ), 196 RegisterSaver_LiveIntReg( R5 ), 197 RegisterSaver_LiveIntReg( R6 ), 198 RegisterSaver_LiveIntReg( R7 ), 199 RegisterSaver_LiveIntReg( R8 ), 200 RegisterSaver_LiveIntReg( R9 ), 201 RegisterSaver_LiveIntReg( R10 ), 202 RegisterSaver_LiveIntReg( R11 ), 203 RegisterSaver_LiveIntReg( R12 ), 204 //RegisterSaver_LiveIntReg( R13 ), // system thread id 205 RegisterSaver_LiveIntReg( R14 ), 206 RegisterSaver_LiveIntReg( R15 ), 207 RegisterSaver_LiveIntReg( R16 ), 208 RegisterSaver_LiveIntReg( R17 ), 209 RegisterSaver_LiveIntReg( R18 ), 210 RegisterSaver_LiveIntReg( R19 ), 211 RegisterSaver_LiveIntReg( R20 ), 212 RegisterSaver_LiveIntReg( R21 ), 213 RegisterSaver_LiveIntReg( R22 ), 214 RegisterSaver_LiveIntReg( R23 ), 215 RegisterSaver_LiveIntReg( R24 ), 216 RegisterSaver_LiveIntReg( R25 ), 217 RegisterSaver_LiveIntReg( R26 ), 218 RegisterSaver_LiveIntReg( R27 ), 219 RegisterSaver_LiveIntReg( R28 ), 220 RegisterSaver_LiveIntReg( R29 ), 221 RegisterSaver_LiveIntReg( R30 ), 222 RegisterSaver_LiveIntReg( R31 ) // must be the last register (see save/restore functions below) 223 }; 224 225 static const RegisterSaver::LiveRegType RegisterSaver_LiveVSRegs[] = { 226 // 227 // live vector scalar registers (optional, only these ones are used by C2): 228 // 229 RegisterSaver_LiveVSReg( VSR32 ), 230 RegisterSaver_LiveVSReg( VSR33 ), 231 RegisterSaver_LiveVSReg( VSR34 ), 232 RegisterSaver_LiveVSReg( VSR35 ), 233 RegisterSaver_LiveVSReg( VSR36 ), 234 RegisterSaver_LiveVSReg( VSR37 ), 235 RegisterSaver_LiveVSReg( VSR38 ), 236 RegisterSaver_LiveVSReg( VSR39 ), 237 RegisterSaver_LiveVSReg( VSR40 ), 238 RegisterSaver_LiveVSReg( VSR41 ), 239 RegisterSaver_LiveVSReg( VSR42 ), 240 RegisterSaver_LiveVSReg( VSR43 ), 241 RegisterSaver_LiveVSReg( VSR44 ), 242 RegisterSaver_LiveVSReg( VSR45 ), 243 RegisterSaver_LiveVSReg( VSR46 ), 244 RegisterSaver_LiveVSReg( VSR47 ), 245 RegisterSaver_LiveVSReg( VSR48 ), 246 RegisterSaver_LiveVSReg( VSR49 ), 247 RegisterSaver_LiveVSReg( VSR50 ), 248 RegisterSaver_LiveVSReg( VSR51 ) 249 }; 250 251 252 OopMap* RegisterSaver::push_frame_reg_args_and_save_live_registers(MacroAssembler* masm, 253 int* out_frame_size_in_bytes, 254 bool generate_oop_map, 255 int return_pc_adjustment, 256 ReturnPCLocation return_pc_location, 257 bool save_vectors) { 258 // Push an abi_reg_args-frame and store all registers which may be live. 259 // If requested, create an OopMap: Record volatile registers as 260 // callee-save values in an OopMap so their save locations will be 261 // propagated to the RegisterMap of the caller frame during 262 // StackFrameStream construction (needed for deoptimization; see 263 // compiledVFrame::create_stack_value). 264 // If return_pc_adjustment != 0 adjust the return pc by return_pc_adjustment. 265 // Updated return pc is returned in R31 (if not return_pc_is_pre_saved). 266 267 // calculate frame size 268 const int regstosave_num = sizeof(RegisterSaver_LiveRegs) / 269 sizeof(RegisterSaver::LiveRegType); 270 const int vsregstosave_num = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) / 271 sizeof(RegisterSaver::LiveRegType)) 272 : 0; 273 const int register_save_size = regstosave_num * reg_size + vsregstosave_num * vs_reg_size; 274 const int frame_size_in_bytes = align_up(register_save_size, frame::alignment_in_bytes) 275 + frame::native_abi_reg_args_size; 276 277 *out_frame_size_in_bytes = frame_size_in_bytes; 278 const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); 279 const int register_save_offset = frame_size_in_bytes - register_save_size; 280 281 // OopMap frame size is in c2 stack slots (sizeof(jint)) not bytes or words. 282 OopMap* map = generate_oop_map ? new OopMap(frame_size_in_slots, 0) : nullptr; 283 284 BLOCK_COMMENT("push_frame_reg_args_and_save_live_registers {"); 285 286 // push a new frame 287 __ push_frame(frame_size_in_bytes, noreg); 288 289 // Save some registers in the last (non-vector) slots of the new frame so we 290 // can use them as scratch regs or to determine the return pc. 291 __ std(R31, frame_size_in_bytes - reg_size - vsregstosave_num * vs_reg_size, R1_SP); 292 __ std(R30, frame_size_in_bytes - 2*reg_size - vsregstosave_num * vs_reg_size, R1_SP); 293 294 // save the flags 295 // Do the save_LR_CR by hand and adjust the return pc if requested. 296 __ mfcr(R30); 297 __ std(R30, frame_size_in_bytes + _abi0(cr), R1_SP); 298 switch (return_pc_location) { 299 case return_pc_is_lr: __ mflr(R31); break; 300 case return_pc_is_pre_saved: assert(return_pc_adjustment == 0, "unsupported"); break; 301 case return_pc_is_thread_saved_exception_pc: __ ld(R31, thread_(saved_exception_pc)); break; 302 default: ShouldNotReachHere(); 303 } 304 if (return_pc_location != return_pc_is_pre_saved) { 305 if (return_pc_adjustment != 0) { 306 __ addi(R31, R31, return_pc_adjustment); 307 } 308 __ std(R31, frame_size_in_bytes + _abi0(lr), R1_SP); 309 } 310 311 // save all registers (ints and floats) 312 int offset = register_save_offset; 313 314 for (int i = 0; i < regstosave_num; i++) { 315 int reg_num = RegisterSaver_LiveRegs[i].reg_num; 316 int reg_type = RegisterSaver_LiveRegs[i].reg_type; 317 318 switch (reg_type) { 319 case RegisterSaver::int_reg: { 320 if (reg_num < 30) { // We spilled R30-31 right at the beginning. 321 __ std(as_Register(reg_num), offset, R1_SP); 322 } 323 break; 324 } 325 case RegisterSaver::float_reg: { 326 __ stfd(as_FloatRegister(reg_num), offset, R1_SP); 327 break; 328 } 329 case RegisterSaver::special_reg: { 330 if (reg_num == SR_CTR.encoding()) { 331 __ mfctr(R30); 332 __ std(R30, offset, R1_SP); 333 } else { 334 Unimplemented(); 335 } 336 break; 337 } 338 default: 339 ShouldNotReachHere(); 340 } 341 342 if (generate_oop_map) { 343 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), 344 RegisterSaver_LiveRegs[i].vmreg); 345 map->set_callee_saved(VMRegImpl::stack2reg((offset + half_reg_size)>>2), 346 RegisterSaver_LiveRegs[i].vmreg->next()); 347 } 348 offset += reg_size; 349 } 350 351 for (int i = 0; i < vsregstosave_num; i++) { 352 int reg_num = RegisterSaver_LiveVSRegs[i].reg_num; 353 int reg_type = RegisterSaver_LiveVSRegs[i].reg_type; 354 355 __ li(R30, offset); 356 __ stxvd2x(as_VectorSRegister(reg_num), R30, R1_SP); 357 358 if (generate_oop_map) { 359 map->set_callee_saved(VMRegImpl::stack2reg(offset>>2), 360 RegisterSaver_LiveVSRegs[i].vmreg); 361 } 362 offset += vs_reg_size; 363 } 364 365 assert(offset == frame_size_in_bytes, "consistency check"); 366 367 BLOCK_COMMENT("} push_frame_reg_args_and_save_live_registers"); 368 369 // And we're done. 370 return map; 371 } 372 373 374 // Pop the current frame and restore all the registers that we 375 // saved. 376 void RegisterSaver::restore_live_registers_and_pop_frame(MacroAssembler* masm, 377 int frame_size_in_bytes, 378 bool restore_ctr, 379 bool save_vectors) { 380 const int regstosave_num = sizeof(RegisterSaver_LiveRegs) / 381 sizeof(RegisterSaver::LiveRegType); 382 const int vsregstosave_num = save_vectors ? (sizeof(RegisterSaver_LiveVSRegs) / 383 sizeof(RegisterSaver::LiveRegType)) 384 : 0; 385 const int register_save_size = regstosave_num * reg_size + vsregstosave_num * vs_reg_size; 386 387 const int register_save_offset = frame_size_in_bytes - register_save_size; 388 389 BLOCK_COMMENT("restore_live_registers_and_pop_frame {"); 390 391 // restore all registers (ints and floats) 392 int offset = register_save_offset; 393 394 for (int i = 0; i < regstosave_num; i++) { 395 int reg_num = RegisterSaver_LiveRegs[i].reg_num; 396 int reg_type = RegisterSaver_LiveRegs[i].reg_type; 397 398 switch (reg_type) { 399 case RegisterSaver::int_reg: { 400 if (reg_num != 31) // R31 restored at the end, it's the tmp reg! 401 __ ld(as_Register(reg_num), offset, R1_SP); 402 break; 403 } 404 case RegisterSaver::float_reg: { 405 __ lfd(as_FloatRegister(reg_num), offset, R1_SP); 406 break; 407 } 408 case RegisterSaver::special_reg: { 409 if (reg_num == SR_CTR.encoding()) { 410 if (restore_ctr) { // Nothing to do here if ctr already contains the next address. 411 __ ld(R31, offset, R1_SP); 412 __ mtctr(R31); 413 } 414 } else { 415 Unimplemented(); 416 } 417 break; 418 } 419 default: 420 ShouldNotReachHere(); 421 } 422 offset += reg_size; 423 } 424 425 for (int i = 0; i < vsregstosave_num; i++) { 426 int reg_num = RegisterSaver_LiveVSRegs[i].reg_num; 427 int reg_type = RegisterSaver_LiveVSRegs[i].reg_type; 428 429 __ li(R31, offset); 430 __ lxvd2x(as_VectorSRegister(reg_num), R31, R1_SP); 431 432 offset += vs_reg_size; 433 } 434 435 assert(offset == frame_size_in_bytes, "consistency check"); 436 437 // restore link and the flags 438 __ ld(R31, frame_size_in_bytes + _abi0(lr), R1_SP); 439 __ mtlr(R31); 440 441 __ ld(R31, frame_size_in_bytes + _abi0(cr), R1_SP); 442 __ mtcr(R31); 443 444 // restore scratch register's value 445 __ ld(R31, frame_size_in_bytes - reg_size - vsregstosave_num * vs_reg_size, R1_SP); 446 447 // pop the frame 448 __ addi(R1_SP, R1_SP, frame_size_in_bytes); 449 450 BLOCK_COMMENT("} restore_live_registers_and_pop_frame"); 451 } 452 453 void RegisterSaver::push_frame_and_save_argument_registers(MacroAssembler* masm, Register r_temp, 454 int frame_size,int total_args, const VMRegPair *regs, 455 const VMRegPair *regs2) { 456 __ push_frame(frame_size, r_temp); 457 int st_off = frame_size - wordSize; 458 for (int i = 0; i < total_args; i++) { 459 VMReg r_1 = regs[i].first(); 460 VMReg r_2 = regs[i].second(); 461 if (!r_1->is_valid()) { 462 assert(!r_2->is_valid(), ""); 463 continue; 464 } 465 if (r_1->is_Register()) { 466 Register r = r_1->as_Register(); 467 __ std(r, st_off, R1_SP); 468 st_off -= wordSize; 469 } else if (r_1->is_FloatRegister()) { 470 FloatRegister f = r_1->as_FloatRegister(); 471 __ stfd(f, st_off, R1_SP); 472 st_off -= wordSize; 473 } 474 } 475 if (regs2 != nullptr) { 476 for (int i = 0; i < total_args; i++) { 477 VMReg r_1 = regs2[i].first(); 478 VMReg r_2 = regs2[i].second(); 479 if (!r_1->is_valid()) { 480 assert(!r_2->is_valid(), ""); 481 continue; 482 } 483 if (r_1->is_Register()) { 484 Register r = r_1->as_Register(); 485 __ std(r, st_off, R1_SP); 486 st_off -= wordSize; 487 } else if (r_1->is_FloatRegister()) { 488 FloatRegister f = r_1->as_FloatRegister(); 489 __ stfd(f, st_off, R1_SP); 490 st_off -= wordSize; 491 } 492 } 493 } 494 } 495 496 void RegisterSaver::restore_argument_registers_and_pop_frame(MacroAssembler*masm, int frame_size, 497 int total_args, const VMRegPair *regs, 498 const VMRegPair *regs2) { 499 int st_off = frame_size - wordSize; 500 for (int i = 0; i < total_args; i++) { 501 VMReg r_1 = regs[i].first(); 502 VMReg r_2 = regs[i].second(); 503 if (r_1->is_Register()) { 504 Register r = r_1->as_Register(); 505 __ ld(r, st_off, R1_SP); 506 st_off -= wordSize; 507 } else if (r_1->is_FloatRegister()) { 508 FloatRegister f = r_1->as_FloatRegister(); 509 __ lfd(f, st_off, R1_SP); 510 st_off -= wordSize; 511 } 512 } 513 if (regs2 != nullptr) 514 for (int i = 0; i < total_args; i++) { 515 VMReg r_1 = regs2[i].first(); 516 VMReg r_2 = regs2[i].second(); 517 if (r_1->is_Register()) { 518 Register r = r_1->as_Register(); 519 __ ld(r, st_off, R1_SP); 520 st_off -= wordSize; 521 } else if (r_1->is_FloatRegister()) { 522 FloatRegister f = r_1->as_FloatRegister(); 523 __ lfd(f, st_off, R1_SP); 524 st_off -= wordSize; 525 } 526 } 527 __ pop_frame(); 528 } 529 530 // Restore the registers that might be holding a result. 531 void RegisterSaver::restore_result_registers(MacroAssembler* masm, int frame_size_in_bytes) { 532 const int regstosave_num = sizeof(RegisterSaver_LiveRegs) / 533 sizeof(RegisterSaver::LiveRegType); 534 const int register_save_size = regstosave_num * reg_size; // VS registers not relevant here. 535 const int register_save_offset = frame_size_in_bytes - register_save_size; 536 537 // restore all result registers (ints and floats) 538 int offset = register_save_offset; 539 for (int i = 0; i < regstosave_num; i++) { 540 int reg_num = RegisterSaver_LiveRegs[i].reg_num; 541 int reg_type = RegisterSaver_LiveRegs[i].reg_type; 542 switch (reg_type) { 543 case RegisterSaver::int_reg: { 544 if (as_Register(reg_num)==R3_RET) // int result_reg 545 __ ld(as_Register(reg_num), offset, R1_SP); 546 break; 547 } 548 case RegisterSaver::float_reg: { 549 if (as_FloatRegister(reg_num)==F1_RET) // float result_reg 550 __ lfd(as_FloatRegister(reg_num), offset, R1_SP); 551 break; 552 } 553 case RegisterSaver::special_reg: { 554 // Special registers don't hold a result. 555 break; 556 } 557 default: 558 ShouldNotReachHere(); 559 } 560 offset += reg_size; 561 } 562 563 assert(offset == frame_size_in_bytes, "consistency check"); 564 } 565 566 // Is vector's size (in bytes) bigger than a size saved by default? 567 bool SharedRuntime::is_wide_vector(int size) { 568 // Note, MaxVectorSize == 8/16 on PPC64. 569 assert(size <= (SuperwordUseVSX ? 16 : 8), "%d bytes vectors are not supported", size); 570 return size > 8; 571 } 572 573 static int reg2slot(VMReg r) { 574 return r->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 575 } 576 577 static int reg2offset(VMReg r) { 578 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 579 } 580 581 // --------------------------------------------------------------------------- 582 // Read the array of BasicTypes from a signature, and compute where the 583 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 584 // quantities. Values less than VMRegImpl::stack0 are registers, those above 585 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 586 // as framesizes are fixed. 587 // VMRegImpl::stack0 refers to the first slot 0(sp). 588 // and VMRegImpl::stack0+1 refers to the memory word 4-bytes higher. Register 589 // up to Register::number_of_registers) are the 64-bit 590 // integer registers. 591 592 // Note: the INPUTS in sig_bt are in units of Java argument words, which are 593 // either 32-bit or 64-bit depending on the build. The OUTPUTS are in 32-bit 594 // units regardless of build. Of course for i486 there is no 64 bit build 595 596 // The Java calling convention is a "shifted" version of the C ABI. 597 // By skipping the first C ABI register we can call non-static jni methods 598 // with small numbers of arguments without having to shuffle the arguments 599 // at all. Since we control the java ABI we ought to at least get some 600 // advantage out of it. 601 602 const VMReg java_iarg_reg[8] = { 603 R3->as_VMReg(), 604 R4->as_VMReg(), 605 R5->as_VMReg(), 606 R6->as_VMReg(), 607 R7->as_VMReg(), 608 R8->as_VMReg(), 609 R9->as_VMReg(), 610 R10->as_VMReg() 611 }; 612 613 const VMReg java_farg_reg[13] = { 614 F1->as_VMReg(), 615 F2->as_VMReg(), 616 F3->as_VMReg(), 617 F4->as_VMReg(), 618 F5->as_VMReg(), 619 F6->as_VMReg(), 620 F7->as_VMReg(), 621 F8->as_VMReg(), 622 F9->as_VMReg(), 623 F10->as_VMReg(), 624 F11->as_VMReg(), 625 F12->as_VMReg(), 626 F13->as_VMReg() 627 }; 628 629 const int num_java_iarg_registers = sizeof(java_iarg_reg) / sizeof(java_iarg_reg[0]); 630 const int num_java_farg_registers = sizeof(java_farg_reg) / sizeof(java_farg_reg[0]); 631 632 STATIC_ASSERT(num_java_iarg_registers == Argument::n_int_register_parameters_j); 633 STATIC_ASSERT(num_java_farg_registers == Argument::n_float_register_parameters_j); 634 635 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 636 VMRegPair *regs, 637 int total_args_passed) { 638 // C2c calling conventions for compiled-compiled calls. 639 // Put 8 ints/longs into registers _AND_ 13 float/doubles into 640 // registers _AND_ put the rest on the stack. 641 642 const int inc_stk_for_intfloat = 1; // 1 slots for ints and floats 643 const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles 644 645 int i; 646 VMReg reg; 647 int stk = 0; 648 int ireg = 0; 649 int freg = 0; 650 651 // We put the first 8 arguments into registers and the rest on the 652 // stack, float arguments are already in their argument registers 653 // due to c2c calling conventions (see calling_convention). 654 for (int i = 0; i < total_args_passed; ++i) { 655 switch(sig_bt[i]) { 656 case T_BOOLEAN: 657 case T_CHAR: 658 case T_BYTE: 659 case T_SHORT: 660 case T_INT: 661 if (ireg < num_java_iarg_registers) { 662 // Put int/ptr in register 663 reg = java_iarg_reg[ireg]; 664 ++ireg; 665 } else { 666 // Put int/ptr on stack. 667 reg = VMRegImpl::stack2reg(stk); 668 stk += inc_stk_for_intfloat; 669 } 670 regs[i].set1(reg); 671 break; 672 case T_LONG: 673 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half"); 674 if (ireg < num_java_iarg_registers) { 675 // Put long in register. 676 reg = java_iarg_reg[ireg]; 677 ++ireg; 678 } else { 679 // Put long on stack. They must be aligned to 2 slots. 680 if (stk & 0x1) ++stk; 681 reg = VMRegImpl::stack2reg(stk); 682 stk += inc_stk_for_longdouble; 683 } 684 regs[i].set2(reg); 685 break; 686 case T_OBJECT: 687 case T_ARRAY: 688 case T_ADDRESS: 689 if (ireg < num_java_iarg_registers) { 690 // Put ptr in register. 691 reg = java_iarg_reg[ireg]; 692 ++ireg; 693 } else { 694 // Put ptr on stack. Objects must be aligned to 2 slots too, 695 // because "64-bit pointers record oop-ishness on 2 aligned 696 // adjacent registers." (see OopFlow::build_oop_map). 697 if (stk & 0x1) ++stk; 698 reg = VMRegImpl::stack2reg(stk); 699 stk += inc_stk_for_longdouble; 700 } 701 regs[i].set2(reg); 702 break; 703 case T_FLOAT: 704 if (freg < num_java_farg_registers) { 705 // Put float in register. 706 reg = java_farg_reg[freg]; 707 ++freg; 708 } else { 709 // Put float on stack. 710 reg = VMRegImpl::stack2reg(stk); 711 stk += inc_stk_for_intfloat; 712 } 713 regs[i].set1(reg); 714 break; 715 case T_DOUBLE: 716 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half"); 717 if (freg < num_java_farg_registers) { 718 // Put double in register. 719 reg = java_farg_reg[freg]; 720 ++freg; 721 } else { 722 // Put double on stack. They must be aligned to 2 slots. 723 if (stk & 0x1) ++stk; 724 reg = VMRegImpl::stack2reg(stk); 725 stk += inc_stk_for_longdouble; 726 } 727 regs[i].set2(reg); 728 break; 729 case T_VOID: 730 // Do not count halves. 731 regs[i].set_bad(); 732 break; 733 default: 734 ShouldNotReachHere(); 735 } 736 } 737 return stk; 738 } 739 740 #if defined(COMPILER1) || defined(COMPILER2) 741 // Calling convention for calling C code. 742 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 743 VMRegPair *regs, 744 VMRegPair *regs2, 745 int total_args_passed) { 746 // Calling conventions for C runtime calls and calls to JNI native methods. 747 // 748 // PPC64 convention: Hoist the first 8 int/ptr/long's in the first 8 749 // int regs, leaving int regs undefined if the arg is flt/dbl. Hoist 750 // the first 13 flt/dbl's in the first 13 fp regs but additionally 751 // copy flt/dbl to the stack if they are beyond the 8th argument. 752 753 const VMReg iarg_reg[8] = { 754 R3->as_VMReg(), 755 R4->as_VMReg(), 756 R5->as_VMReg(), 757 R6->as_VMReg(), 758 R7->as_VMReg(), 759 R8->as_VMReg(), 760 R9->as_VMReg(), 761 R10->as_VMReg() 762 }; 763 764 const VMReg farg_reg[13] = { 765 F1->as_VMReg(), 766 F2->as_VMReg(), 767 F3->as_VMReg(), 768 F4->as_VMReg(), 769 F5->as_VMReg(), 770 F6->as_VMReg(), 771 F7->as_VMReg(), 772 F8->as_VMReg(), 773 F9->as_VMReg(), 774 F10->as_VMReg(), 775 F11->as_VMReg(), 776 F12->as_VMReg(), 777 F13->as_VMReg() 778 }; 779 780 // Check calling conventions consistency. 781 assert(sizeof(iarg_reg) / sizeof(iarg_reg[0]) == Argument::n_int_register_parameters_c && 782 sizeof(farg_reg) / sizeof(farg_reg[0]) == Argument::n_float_register_parameters_c, 783 "consistency"); 784 785 // `Stk' counts stack slots. Due to alignment, 32 bit values occupy 786 // 2 such slots, like 64 bit values do. 787 const int inc_stk_for_intfloat = 2; // 2 slots for ints and floats 788 const int inc_stk_for_longdouble = 2; // 2 slots for longs and doubles 789 790 int i; 791 VMReg reg; 792 // Leave room for C-compatible ABI_REG_ARGS. 793 int stk = (frame::native_abi_reg_args_size - frame::jit_out_preserve_size) / VMRegImpl::stack_slot_size; 794 int arg = 0; 795 int freg = 0; 796 797 // Avoid passing C arguments in the wrong stack slots. 798 #if defined(ABI_ELFv2) 799 assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 96, 800 "passing C arguments in wrong stack slots"); 801 #else 802 assert((SharedRuntime::out_preserve_stack_slots() + stk) * VMRegImpl::stack_slot_size == 112, 803 "passing C arguments in wrong stack slots"); 804 #endif 805 // We fill-out regs AND regs2 if an argument must be passed in a 806 // register AND in a stack slot. If regs2 is null in such a 807 // situation, we bail-out with a fatal error. 808 for (int i = 0; i < total_args_passed; ++i, ++arg) { 809 // Initialize regs2 to BAD. 810 if (regs2 != nullptr) regs2[i].set_bad(); 811 812 switch(sig_bt[i]) { 813 814 // 815 // If arguments 0-7 are integers, they are passed in integer registers. 816 // Argument i is placed in iarg_reg[i]. 817 // 818 case T_BOOLEAN: 819 case T_CHAR: 820 case T_BYTE: 821 case T_SHORT: 822 case T_INT: 823 // We must cast ints to longs and use full 64 bit stack slots 824 // here. Thus fall through, handle as long. 825 case T_LONG: 826 case T_OBJECT: 827 case T_ARRAY: 828 case T_ADDRESS: 829 case T_METADATA: 830 // Oops are already boxed if required (JNI). 831 if (arg < Argument::n_int_register_parameters_c) { 832 reg = iarg_reg[arg]; 833 } else { 834 reg = VMRegImpl::stack2reg(stk); 835 stk += inc_stk_for_longdouble; 836 } 837 regs[i].set2(reg); 838 break; 839 840 // 841 // Floats are treated differently from int regs: The first 13 float arguments 842 // are passed in registers (not the float args among the first 13 args). 843 // Thus argument i is NOT passed in farg_reg[i] if it is float. It is passed 844 // in farg_reg[j] if argument i is the j-th float argument of this call. 845 // 846 case T_FLOAT: 847 #if defined(LINUX) 848 // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float 849 // in the least significant word of an argument slot. 850 #if defined(VM_LITTLE_ENDIAN) 851 #define FLOAT_WORD_OFFSET_IN_SLOT 0 852 #else 853 #define FLOAT_WORD_OFFSET_IN_SLOT 1 854 #endif 855 #elif defined(AIX) 856 // Although AIX runs on big endian CPU, float is in the most 857 // significant word of an argument slot. 858 #define FLOAT_WORD_OFFSET_IN_SLOT 0 859 #else 860 #error "unknown OS" 861 #endif 862 if (freg < Argument::n_float_register_parameters_c) { 863 // Put float in register ... 864 reg = farg_reg[freg]; 865 ++freg; 866 867 // Argument i for i > 8 is placed on the stack even if it's 868 // placed in a register (if it's a float arg). Aix disassembly 869 // shows that xlC places these float args on the stack AND in 870 // a register. This is not documented, but we follow this 871 // convention, too. 872 if (arg >= Argument::n_regs_not_on_stack_c) { 873 // ... and on the stack. 874 guarantee(regs2 != nullptr, "must pass float in register and stack slot"); 875 VMReg reg2 = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT); 876 regs2[i].set1(reg2); 877 stk += inc_stk_for_intfloat; 878 } 879 880 } else { 881 // Put float on stack. 882 reg = VMRegImpl::stack2reg(stk + FLOAT_WORD_OFFSET_IN_SLOT); 883 stk += inc_stk_for_intfloat; 884 } 885 regs[i].set1(reg); 886 break; 887 case T_DOUBLE: 888 assert((i + 1) < total_args_passed && sig_bt[i+1] == T_VOID, "expecting half"); 889 if (freg < Argument::n_float_register_parameters_c) { 890 // Put double in register ... 891 reg = farg_reg[freg]; 892 ++freg; 893 894 // Argument i for i > 8 is placed on the stack even if it's 895 // placed in a register (if it's a double arg). Aix disassembly 896 // shows that xlC places these float args on the stack AND in 897 // a register. This is not documented, but we follow this 898 // convention, too. 899 if (arg >= Argument::n_regs_not_on_stack_c) { 900 // ... and on the stack. 901 guarantee(regs2 != nullptr, "must pass float in register and stack slot"); 902 VMReg reg2 = VMRegImpl::stack2reg(stk); 903 regs2[i].set2(reg2); 904 stk += inc_stk_for_longdouble; 905 } 906 } else { 907 // Put double on stack. 908 reg = VMRegImpl::stack2reg(stk); 909 stk += inc_stk_for_longdouble; 910 } 911 regs[i].set2(reg); 912 break; 913 914 case T_VOID: 915 // Do not count halves. 916 regs[i].set_bad(); 917 --arg; 918 break; 919 default: 920 ShouldNotReachHere(); 921 } 922 } 923 924 return align_up(stk, 2); 925 } 926 #endif // COMPILER2 927 928 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 929 uint num_bits, 930 uint total_args_passed) { 931 Unimplemented(); 932 return 0; 933 } 934 935 static address gen_c2i_adapter(MacroAssembler *masm, 936 int total_args_passed, 937 int comp_args_on_stack, 938 const BasicType *sig_bt, 939 const VMRegPair *regs, 940 Label& call_interpreter, 941 const Register& ientry) { 942 943 address c2i_entrypoint; 944 945 const Register sender_SP = R21_sender_SP; // == R21_tmp1 946 const Register code = R22_tmp2; 947 //const Register ientry = R23_tmp3; 948 const Register value_regs[] = { R24_tmp4, R25_tmp5, R26_tmp6 }; 949 const int num_value_regs = sizeof(value_regs) / sizeof(Register); 950 int value_regs_index = 0; 951 952 const Register return_pc = R27_tmp7; 953 const Register tmp = R28_tmp8; 954 955 assert_different_registers(sender_SP, code, ientry, return_pc, tmp); 956 957 // Adapter needs TOP_IJAVA_FRAME_ABI. 958 const int adapter_size = frame::top_ijava_frame_abi_size + 959 align_up(total_args_passed * wordSize, frame::alignment_in_bytes); 960 961 // regular (verified) c2i entry point 962 c2i_entrypoint = __ pc(); 963 964 // Does compiled code exists? If yes, patch the caller's callsite. 965 __ ld(code, method_(code)); 966 __ cmpdi(CCR0, code, 0); 967 __ ld(ientry, method_(interpreter_entry)); // preloaded 968 __ beq(CCR0, call_interpreter); 969 970 971 // Patch caller's callsite, method_(code) was not null which means that 972 // compiled code exists. 973 __ mflr(return_pc); 974 __ std(return_pc, _abi0(lr), R1_SP); 975 RegisterSaver::push_frame_and_save_argument_registers(masm, tmp, adapter_size, total_args_passed, regs); 976 977 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite), R19_method, return_pc); 978 979 RegisterSaver::restore_argument_registers_and_pop_frame(masm, adapter_size, total_args_passed, regs); 980 __ ld(return_pc, _abi0(lr), R1_SP); 981 __ ld(ientry, method_(interpreter_entry)); // preloaded 982 __ mtlr(return_pc); 983 984 985 // Call the interpreter. 986 __ BIND(call_interpreter); 987 __ mtctr(ientry); 988 989 // Get a copy of the current SP for loading caller's arguments. 990 __ mr(sender_SP, R1_SP); 991 992 // Add space for the adapter. 993 __ resize_frame(-adapter_size, R12_scratch2); 994 995 int st_off = adapter_size - wordSize; 996 997 // Write the args into the outgoing interpreter space. 998 for (int i = 0; i < total_args_passed; i++) { 999 VMReg r_1 = regs[i].first(); 1000 VMReg r_2 = regs[i].second(); 1001 if (!r_1->is_valid()) { 1002 assert(!r_2->is_valid(), ""); 1003 continue; 1004 } 1005 if (r_1->is_stack()) { 1006 Register tmp_reg = value_regs[value_regs_index]; 1007 value_regs_index = (value_regs_index + 1) % num_value_regs; 1008 // The calling convention produces OptoRegs that ignore the out 1009 // preserve area (JIT's ABI). We must account for it here. 1010 int ld_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 1011 if (!r_2->is_valid()) { 1012 __ lwz(tmp_reg, ld_off, sender_SP); 1013 } else { 1014 __ ld(tmp_reg, ld_off, sender_SP); 1015 } 1016 // Pretend stack targets were loaded into tmp_reg. 1017 r_1 = tmp_reg->as_VMReg(); 1018 } 1019 1020 if (r_1->is_Register()) { 1021 Register r = r_1->as_Register(); 1022 if (!r_2->is_valid()) { 1023 __ stw(r, st_off, R1_SP); 1024 st_off-=wordSize; 1025 } else { 1026 // Longs are given 2 64-bit slots in the interpreter, but the 1027 // data is passed in only 1 slot. 1028 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 1029 DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); ) 1030 st_off-=wordSize; 1031 } 1032 __ std(r, st_off, R1_SP); 1033 st_off-=wordSize; 1034 } 1035 } else { 1036 assert(r_1->is_FloatRegister(), ""); 1037 FloatRegister f = r_1->as_FloatRegister(); 1038 if (!r_2->is_valid()) { 1039 __ stfs(f, st_off, R1_SP); 1040 st_off-=wordSize; 1041 } else { 1042 // In 64bit, doubles are given 2 64-bit slots in the interpreter, but the 1043 // data is passed in only 1 slot. 1044 // One of these should get known junk... 1045 DEBUG_ONLY( __ li(tmp, 0); __ std(tmp, st_off, R1_SP); ) 1046 st_off-=wordSize; 1047 __ stfd(f, st_off, R1_SP); 1048 st_off-=wordSize; 1049 } 1050 } 1051 } 1052 1053 // Jump to the interpreter just as if interpreter was doing it. 1054 1055 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); 1056 1057 // load TOS 1058 __ addi(R15_esp, R1_SP, st_off); 1059 1060 // Frame_manager expects initial_caller_sp (= SP without resize by c2i) in R21_tmp1. 1061 assert(sender_SP == R21_sender_SP, "passing initial caller's SP in wrong register"); 1062 __ bctr(); 1063 1064 return c2i_entrypoint; 1065 } 1066 1067 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 1068 int total_args_passed, 1069 int comp_args_on_stack, 1070 const BasicType *sig_bt, 1071 const VMRegPair *regs) { 1072 1073 // Load method's entry-point from method. 1074 __ ld(R12_scratch2, in_bytes(Method::from_compiled_offset()), R19_method); 1075 __ mtctr(R12_scratch2); 1076 1077 // We will only enter here from an interpreted frame and never from after 1078 // passing thru a c2i. Azul allowed this but we do not. If we lose the 1079 // race and use a c2i we will remain interpreted for the race loser(s). 1080 // This removes all sorts of headaches on the x86 side and also eliminates 1081 // the possibility of having c2i -> i2c -> c2i -> ... endless transitions. 1082 1083 // Note: r13 contains the senderSP on entry. We must preserve it since 1084 // we may do a i2c -> c2i transition if we lose a race where compiled 1085 // code goes non-entrant while we get args ready. 1086 // In addition we use r13 to locate all the interpreter args as 1087 // we must align the stack to 16 bytes on an i2c entry else we 1088 // lose alignment we expect in all compiled code and register 1089 // save code can segv when fxsave instructions find improperly 1090 // aligned stack pointer. 1091 1092 const Register ld_ptr = R15_esp; 1093 const Register value_regs[] = { R22_tmp2, R23_tmp3, R24_tmp4, R25_tmp5, R26_tmp6 }; 1094 const int num_value_regs = sizeof(value_regs) / sizeof(Register); 1095 int value_regs_index = 0; 1096 1097 int ld_offset = total_args_passed*wordSize; 1098 1099 // Cut-out for having no stack args. Since up to 2 int/oop args are passed 1100 // in registers, we will occasionally have no stack args. 1101 int comp_words_on_stack = 0; 1102 if (comp_args_on_stack) { 1103 // Sig words on the stack are greater-than VMRegImpl::stack0. Those in 1104 // registers are below. By subtracting stack0, we either get a negative 1105 // number (all values in registers) or the maximum stack slot accessed. 1106 1107 // Convert 4-byte c2 stack slots to words. 1108 comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 1109 // Round up to miminum stack alignment, in wordSize. 1110 comp_words_on_stack = align_up(comp_words_on_stack, 2); 1111 __ resize_frame(-comp_words_on_stack * wordSize, R11_scratch1); 1112 } 1113 1114 // Now generate the shuffle code. Pick up all register args and move the 1115 // rest through register value=Z_R12. 1116 BLOCK_COMMENT("Shuffle arguments"); 1117 for (int i = 0; i < total_args_passed; i++) { 1118 if (sig_bt[i] == T_VOID) { 1119 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 1120 continue; 1121 } 1122 1123 // Pick up 0, 1 or 2 words from ld_ptr. 1124 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 1125 "scrambled load targets?"); 1126 VMReg r_1 = regs[i].first(); 1127 VMReg r_2 = regs[i].second(); 1128 if (!r_1->is_valid()) { 1129 assert(!r_2->is_valid(), ""); 1130 continue; 1131 } 1132 if (r_1->is_FloatRegister()) { 1133 if (!r_2->is_valid()) { 1134 __ lfs(r_1->as_FloatRegister(), ld_offset, ld_ptr); 1135 ld_offset-=wordSize; 1136 } else { 1137 // Skip the unused interpreter slot. 1138 __ lfd(r_1->as_FloatRegister(), ld_offset-wordSize, ld_ptr); 1139 ld_offset-=2*wordSize; 1140 } 1141 } else { 1142 Register r; 1143 if (r_1->is_stack()) { 1144 // Must do a memory to memory move thru "value". 1145 r = value_regs[value_regs_index]; 1146 value_regs_index = (value_regs_index + 1) % num_value_regs; 1147 } else { 1148 r = r_1->as_Register(); 1149 } 1150 if (!r_2->is_valid()) { 1151 // Not sure we need to do this but it shouldn't hurt. 1152 if (is_reference_type(sig_bt[i]) || sig_bt[i] == T_ADDRESS) { 1153 __ ld(r, ld_offset, ld_ptr); 1154 ld_offset-=wordSize; 1155 } else { 1156 __ lwz(r, ld_offset, ld_ptr); 1157 ld_offset-=wordSize; 1158 } 1159 } else { 1160 // In 64bit, longs are given 2 64-bit slots in the interpreter, but the 1161 // data is passed in only 1 slot. 1162 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 1163 ld_offset-=wordSize; 1164 } 1165 __ ld(r, ld_offset, ld_ptr); 1166 ld_offset-=wordSize; 1167 } 1168 1169 if (r_1->is_stack()) { 1170 // Now store value where the compiler expects it 1171 int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots())*VMRegImpl::stack_slot_size; 1172 1173 if (sig_bt[i] == T_INT || sig_bt[i] == T_FLOAT ||sig_bt[i] == T_BOOLEAN || 1174 sig_bt[i] == T_SHORT || sig_bt[i] == T_CHAR || sig_bt[i] == T_BYTE) { 1175 __ stw(r, st_off, R1_SP); 1176 } else { 1177 __ std(r, st_off, R1_SP); 1178 } 1179 } 1180 } 1181 } 1182 1183 __ push_cont_fastpath(); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about 1184 1185 BLOCK_COMMENT("Store method"); 1186 // Store method into thread->callee_target. 1187 // We might end up in handle_wrong_method if the callee is 1188 // deoptimized as we race thru here. If that happens we don't want 1189 // to take a safepoint because the caller frame will look 1190 // interpreted and arguments are now "compiled" so it is much better 1191 // to make this transition invisible to the stack walking 1192 // code. Unfortunately if we try and find the callee by normal means 1193 // a safepoint is possible. So we stash the desired callee in the 1194 // thread and the vm will find there should this case occur. 1195 __ std(R19_method, thread_(callee_target)); 1196 1197 // Jump to the compiled code just as if compiled code was doing it. 1198 __ bctr(); 1199 } 1200 1201 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 1202 int total_args_passed, 1203 int comp_args_on_stack, 1204 const BasicType *sig_bt, 1205 const VMRegPair *regs, 1206 AdapterFingerPrint* fingerprint) { 1207 address i2c_entry; 1208 address c2i_unverified_entry; 1209 address c2i_entry; 1210 1211 1212 // entry: i2c 1213 1214 __ align(CodeEntryAlignment); 1215 i2c_entry = __ pc(); 1216 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 1217 1218 1219 // entry: c2i unverified 1220 1221 __ align(CodeEntryAlignment); 1222 BLOCK_COMMENT("c2i unverified entry"); 1223 c2i_unverified_entry = __ pc(); 1224 1225 // inline_cache contains a compiledICHolder 1226 const Register ic = R19_method; 1227 const Register ic_klass = R11_scratch1; 1228 const Register receiver_klass = R12_scratch2; 1229 const Register code = R21_tmp1; 1230 const Register ientry = R23_tmp3; 1231 1232 assert_different_registers(ic, ic_klass, receiver_klass, R3_ARG1, code, ientry); 1233 assert(R11_scratch1 == R11, "need prologue scratch register"); 1234 1235 Label call_interpreter; 1236 1237 assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), 1238 "klass offset should reach into any page"); 1239 // Check for null argument if we don't have implicit null checks. 1240 if (!ImplicitNullChecks || !os::zero_page_read_protected()) { 1241 if (TrapBasedNullChecks) { 1242 __ trap_null_check(R3_ARG1); 1243 } else { 1244 Label valid; 1245 __ cmpdi(CCR0, R3_ARG1, 0); 1246 __ bne_predict_taken(CCR0, valid); 1247 // We have a null argument, branch to ic_miss_stub. 1248 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), 1249 relocInfo::runtime_call_type); 1250 __ BIND(valid); 1251 } 1252 } 1253 // Assume argument is not null, load klass from receiver. 1254 __ load_klass(receiver_klass, R3_ARG1); 1255 1256 __ ld(ic_klass, CompiledICHolder::holder_klass_offset(), ic); 1257 1258 if (TrapBasedICMissChecks) { 1259 __ trap_ic_miss_check(receiver_klass, ic_klass); 1260 } else { 1261 Label valid; 1262 __ cmpd(CCR0, receiver_klass, ic_klass); 1263 __ beq_predict_taken(CCR0, valid); 1264 // We have an unexpected klass, branch to ic_miss_stub. 1265 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), 1266 relocInfo::runtime_call_type); 1267 __ BIND(valid); 1268 } 1269 1270 // Argument is valid and klass is as expected, continue. 1271 1272 // Extract method from inline cache, verified entry point needs it. 1273 __ ld(R19_method, CompiledICHolder::holder_metadata_offset(), ic); 1274 assert(R19_method == ic, "the inline cache register is dead here"); 1275 1276 __ ld(code, method_(code)); 1277 __ cmpdi(CCR0, code, 0); 1278 __ ld(ientry, method_(interpreter_entry)); // preloaded 1279 __ beq_predict_taken(CCR0, call_interpreter); 1280 1281 // Branch to ic_miss_stub. 1282 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), relocInfo::runtime_call_type); 1283 1284 // entry: c2i 1285 1286 c2i_entry = __ pc(); 1287 1288 // Class initialization barrier for static methods 1289 address c2i_no_clinit_check_entry = nullptr; 1290 if (VM_Version::supports_fast_class_init_checks()) { 1291 Label L_skip_barrier; 1292 1293 { // Bypass the barrier for non-static methods 1294 __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method); 1295 __ andi_(R0, R0, JVM_ACC_STATIC); 1296 __ beq(CCR0, L_skip_barrier); // non-static 1297 } 1298 1299 Register klass = R11_scratch1; 1300 __ load_method_holder(klass, R19_method); 1301 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 1302 1303 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 1304 __ mtctr(klass); 1305 __ bctr(); 1306 1307 __ bind(L_skip_barrier); 1308 c2i_no_clinit_check_entry = __ pc(); 1309 } 1310 1311 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1312 bs->c2i_entry_barrier(masm, /* tmp register*/ ic_klass, /* tmp register*/ receiver_klass, /* tmp register*/ code); 1313 1314 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, call_interpreter, ientry); 1315 1316 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 1317 c2i_no_clinit_check_entry); 1318 } 1319 1320 // An oop arg. Must pass a handle not the oop itself. 1321 static void object_move(MacroAssembler* masm, 1322 int frame_size_in_slots, 1323 OopMap* oop_map, int oop_handle_offset, 1324 bool is_receiver, int* receiver_offset, 1325 VMRegPair src, VMRegPair dst, 1326 Register r_caller_sp, Register r_temp_1, Register r_temp_2) { 1327 assert(!is_receiver || (is_receiver && (*receiver_offset == -1)), 1328 "receiver has already been moved"); 1329 1330 // We must pass a handle. First figure out the location we use as a handle. 1331 1332 if (src.first()->is_stack()) { 1333 // stack to stack or reg 1334 1335 const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register(); 1336 Label skip; 1337 const int oop_slot_in_callers_frame = reg2slot(src.first()); 1338 1339 guarantee(!is_receiver, "expecting receiver in register"); 1340 oop_map->set_oop(VMRegImpl::stack2reg(oop_slot_in_callers_frame + frame_size_in_slots)); 1341 1342 __ addi(r_handle, r_caller_sp, reg2offset(src.first())); 1343 __ ld( r_temp_2, reg2offset(src.first()), r_caller_sp); 1344 __ cmpdi(CCR0, r_temp_2, 0); 1345 __ bne(CCR0, skip); 1346 // Use a null handle if oop is null. 1347 __ li(r_handle, 0); 1348 __ bind(skip); 1349 1350 if (dst.first()->is_stack()) { 1351 // stack to stack 1352 __ std(r_handle, reg2offset(dst.first()), R1_SP); 1353 } else { 1354 // stack to reg 1355 // Nothing to do, r_handle is already the dst register. 1356 } 1357 } else { 1358 // reg to stack or reg 1359 const Register r_oop = src.first()->as_Register(); 1360 const Register r_handle = dst.first()->is_stack() ? r_temp_1 : dst.first()->as_Register(); 1361 const int oop_slot = (r_oop->encoding()-R3_ARG1->encoding()) * VMRegImpl::slots_per_word 1362 + oop_handle_offset; // in slots 1363 const int oop_offset = oop_slot * VMRegImpl::stack_slot_size; 1364 Label skip; 1365 1366 if (is_receiver) { 1367 *receiver_offset = oop_offset; 1368 } 1369 oop_map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1370 1371 __ std( r_oop, oop_offset, R1_SP); 1372 __ addi(r_handle, R1_SP, oop_offset); 1373 1374 __ cmpdi(CCR0, r_oop, 0); 1375 __ bne(CCR0, skip); 1376 // Use a null handle if oop is null. 1377 __ li(r_handle, 0); 1378 __ bind(skip); 1379 1380 if (dst.first()->is_stack()) { 1381 // reg to stack 1382 __ std(r_handle, reg2offset(dst.first()), R1_SP); 1383 } else { 1384 // reg to reg 1385 // Nothing to do, r_handle is already the dst register. 1386 } 1387 } 1388 } 1389 1390 static void int_move(MacroAssembler*masm, 1391 VMRegPair src, VMRegPair dst, 1392 Register r_caller_sp, Register r_temp) { 1393 assert(src.first()->is_valid(), "incoming must be int"); 1394 assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long"); 1395 1396 if (src.first()->is_stack()) { 1397 if (dst.first()->is_stack()) { 1398 // stack to stack 1399 __ lwa(r_temp, reg2offset(src.first()), r_caller_sp); 1400 __ std(r_temp, reg2offset(dst.first()), R1_SP); 1401 } else { 1402 // stack to reg 1403 __ lwa(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp); 1404 } 1405 } else if (dst.first()->is_stack()) { 1406 // reg to stack 1407 __ extsw(r_temp, src.first()->as_Register()); 1408 __ std(r_temp, reg2offset(dst.first()), R1_SP); 1409 } else { 1410 // reg to reg 1411 __ extsw(dst.first()->as_Register(), src.first()->as_Register()); 1412 } 1413 } 1414 1415 static void long_move(MacroAssembler*masm, 1416 VMRegPair src, VMRegPair dst, 1417 Register r_caller_sp, Register r_temp) { 1418 assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be long"); 1419 assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be long"); 1420 1421 if (src.first()->is_stack()) { 1422 if (dst.first()->is_stack()) { 1423 // stack to stack 1424 __ ld( r_temp, reg2offset(src.first()), r_caller_sp); 1425 __ std(r_temp, reg2offset(dst.first()), R1_SP); 1426 } else { 1427 // stack to reg 1428 __ ld(dst.first()->as_Register(), reg2offset(src.first()), r_caller_sp); 1429 } 1430 } else if (dst.first()->is_stack()) { 1431 // reg to stack 1432 __ std(src.first()->as_Register(), reg2offset(dst.first()), R1_SP); 1433 } else { 1434 // reg to reg 1435 if (dst.first()->as_Register() != src.first()->as_Register()) 1436 __ mr(dst.first()->as_Register(), src.first()->as_Register()); 1437 } 1438 } 1439 1440 static void float_move(MacroAssembler*masm, 1441 VMRegPair src, VMRegPair dst, 1442 Register r_caller_sp, Register r_temp) { 1443 assert(src.first()->is_valid() && !src.second()->is_valid(), "incoming must be float"); 1444 assert(dst.first()->is_valid() && !dst.second()->is_valid(), "outgoing must be float"); 1445 1446 if (src.first()->is_stack()) { 1447 if (dst.first()->is_stack()) { 1448 // stack to stack 1449 __ lwz(r_temp, reg2offset(src.first()), r_caller_sp); 1450 __ stw(r_temp, reg2offset(dst.first()), R1_SP); 1451 } else { 1452 // stack to reg 1453 __ lfs(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp); 1454 } 1455 } else if (dst.first()->is_stack()) { 1456 // reg to stack 1457 __ stfs(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP); 1458 } else { 1459 // reg to reg 1460 if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister()) 1461 __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 1462 } 1463 } 1464 1465 static void double_move(MacroAssembler*masm, 1466 VMRegPair src, VMRegPair dst, 1467 Register r_caller_sp, Register r_temp) { 1468 assert(src.first()->is_valid() && src.second() == src.first()->next(), "incoming must be double"); 1469 assert(dst.first()->is_valid() && dst.second() == dst.first()->next(), "outgoing must be double"); 1470 1471 if (src.first()->is_stack()) { 1472 if (dst.first()->is_stack()) { 1473 // stack to stack 1474 __ ld( r_temp, reg2offset(src.first()), r_caller_sp); 1475 __ std(r_temp, reg2offset(dst.first()), R1_SP); 1476 } else { 1477 // stack to reg 1478 __ lfd(dst.first()->as_FloatRegister(), reg2offset(src.first()), r_caller_sp); 1479 } 1480 } else if (dst.first()->is_stack()) { 1481 // reg to stack 1482 __ stfd(src.first()->as_FloatRegister(), reg2offset(dst.first()), R1_SP); 1483 } else { 1484 // reg to reg 1485 if (dst.first()->as_FloatRegister() != src.first()->as_FloatRegister()) 1486 __ fmr(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 1487 } 1488 } 1489 1490 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1491 switch (ret_type) { 1492 case T_BOOLEAN: 1493 case T_CHAR: 1494 case T_BYTE: 1495 case T_SHORT: 1496 case T_INT: 1497 __ stw (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1498 break; 1499 case T_ARRAY: 1500 case T_OBJECT: 1501 case T_LONG: 1502 __ std (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1503 break; 1504 case T_FLOAT: 1505 __ stfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1506 break; 1507 case T_DOUBLE: 1508 __ stfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1509 break; 1510 case T_VOID: 1511 break; 1512 default: 1513 ShouldNotReachHere(); 1514 break; 1515 } 1516 } 1517 1518 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 1519 switch (ret_type) { 1520 case T_BOOLEAN: 1521 case T_CHAR: 1522 case T_BYTE: 1523 case T_SHORT: 1524 case T_INT: 1525 __ lwz(R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1526 break; 1527 case T_ARRAY: 1528 case T_OBJECT: 1529 case T_LONG: 1530 __ ld (R3_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1531 break; 1532 case T_FLOAT: 1533 __ lfs(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1534 break; 1535 case T_DOUBLE: 1536 __ lfd(F1_RET, frame_slots*VMRegImpl::stack_slot_size, R1_SP); 1537 break; 1538 case T_VOID: 1539 break; 1540 default: 1541 ShouldNotReachHere(); 1542 break; 1543 } 1544 } 1545 1546 static void verify_oop_args(MacroAssembler* masm, 1547 const methodHandle& method, 1548 const BasicType* sig_bt, 1549 const VMRegPair* regs) { 1550 Register temp_reg = R19_method; // not part of any compiled calling seq 1551 if (VerifyOops) { 1552 for (int i = 0; i < method->size_of_parameters(); i++) { 1553 if (is_reference_type(sig_bt[i])) { 1554 VMReg r = regs[i].first(); 1555 assert(r->is_valid(), "bad oop arg"); 1556 if (r->is_stack()) { 1557 __ ld(temp_reg, reg2offset(r), R1_SP); 1558 __ verify_oop(temp_reg, FILE_AND_LINE); 1559 } else { 1560 __ verify_oop(r->as_Register(), FILE_AND_LINE); 1561 } 1562 } 1563 } 1564 } 1565 } 1566 1567 static void gen_special_dispatch(MacroAssembler* masm, 1568 const methodHandle& method, 1569 const BasicType* sig_bt, 1570 const VMRegPair* regs) { 1571 verify_oop_args(masm, method, sig_bt, regs); 1572 vmIntrinsics::ID iid = method->intrinsic_id(); 1573 1574 // Now write the args into the outgoing interpreter space 1575 bool has_receiver = false; 1576 Register receiver_reg = noreg; 1577 int member_arg_pos = -1; 1578 Register member_reg = noreg; 1579 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1580 if (ref_kind != 0) { 1581 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1582 member_reg = R19_method; // known to be free at this point 1583 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1584 } else if (iid == vmIntrinsics::_invokeBasic) { 1585 has_receiver = true; 1586 } else if (iid == vmIntrinsics::_linkToNative) { 1587 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1588 member_reg = R19_method; // known to be free at this point 1589 } else { 1590 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1591 } 1592 1593 if (member_reg != noreg) { 1594 // Load the member_arg into register, if necessary. 1595 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1596 VMReg r = regs[member_arg_pos].first(); 1597 if (r->is_stack()) { 1598 __ ld(member_reg, reg2offset(r), R1_SP); 1599 } else { 1600 // no data motion is needed 1601 member_reg = r->as_Register(); 1602 } 1603 } 1604 1605 if (has_receiver) { 1606 // Make sure the receiver is loaded into a register. 1607 assert(method->size_of_parameters() > 0, "oob"); 1608 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1609 VMReg r = regs[0].first(); 1610 assert(r->is_valid(), "bad receiver arg"); 1611 if (r->is_stack()) { 1612 // Porting note: This assumes that compiled calling conventions always 1613 // pass the receiver oop in a register. If this is not true on some 1614 // platform, pick a temp and load the receiver from stack. 1615 fatal("receiver always in a register"); 1616 receiver_reg = R11_scratch1; // TODO (hs24): is R11_scratch1 really free at this point? 1617 __ ld(receiver_reg, reg2offset(r), R1_SP); 1618 } else { 1619 // no data motion is needed 1620 receiver_reg = r->as_Register(); 1621 } 1622 } 1623 1624 // Figure out which address we are really jumping to: 1625 MethodHandles::generate_method_handle_dispatch(masm, iid, 1626 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1627 } 1628 1629 //---------------------------- continuation_enter_setup --------------------------- 1630 // 1631 // Frame setup. 1632 // 1633 // Arguments: 1634 // None. 1635 // 1636 // Results: 1637 // R1_SP: pointer to blank ContinuationEntry in the pushed frame. 1638 // 1639 // Kills: 1640 // R0, R20 1641 // 1642 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& framesize_words) { 1643 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 1644 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1645 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 1646 1647 const int frame_size_in_bytes = (int)ContinuationEntry::size(); 1648 assert(is_aligned(frame_size_in_bytes, frame::alignment_in_bytes), "alignment error"); 1649 1650 framesize_words = frame_size_in_bytes / wordSize; 1651 1652 DEBUG_ONLY(__ block_comment("setup {")); 1653 // Save return pc and push entry frame 1654 const Register return_pc = R20; 1655 __ mflr(return_pc); 1656 __ std(return_pc, _abi0(lr), R1_SP); // SP->lr = return_pc 1657 __ push_frame(frame_size_in_bytes , R0); // SP -= frame_size_in_bytes 1658 1659 OopMap* map = new OopMap((int)frame_size_in_bytes / VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 1660 1661 __ ld_ptr(R0, JavaThread::cont_entry_offset(), R16_thread); 1662 __ st_ptr(R1_SP, JavaThread::cont_entry_offset(), R16_thread); 1663 __ st_ptr(R0, ContinuationEntry::parent_offset(), R1_SP); 1664 DEBUG_ONLY(__ block_comment("} setup")); 1665 1666 return map; 1667 } 1668 1669 //---------------------------- fill_continuation_entry --------------------------- 1670 // 1671 // Initialize the new ContinuationEntry. 1672 // 1673 // Arguments: 1674 // R1_SP: pointer to blank Continuation entry 1675 // reg_cont_obj: pointer to the continuation 1676 // reg_flags: flags 1677 // 1678 // Results: 1679 // R1_SP: pointer to filled out ContinuationEntry 1680 // 1681 // Kills: 1682 // R8_ARG6, R9_ARG7, R10_ARG8 1683 // 1684 static void fill_continuation_entry(MacroAssembler* masm, Register reg_cont_obj, Register reg_flags) { 1685 assert_different_registers(reg_cont_obj, reg_flags); 1686 Register zero = R8_ARG6; 1687 Register tmp2 = R9_ARG7; 1688 Register tmp3 = R10_ARG8; 1689 1690 DEBUG_ONLY(__ block_comment("fill {")); 1691 #ifdef ASSERT 1692 __ load_const_optimized(tmp2, ContinuationEntry::cookie_value()); 1693 __ stw(tmp2, in_bytes(ContinuationEntry::cookie_offset()), R1_SP); 1694 #endif //ASSERT 1695 1696 __ li(zero, 0); 1697 __ st_ptr(reg_cont_obj, ContinuationEntry::cont_offset(), R1_SP); 1698 __ stw(reg_flags, in_bytes(ContinuationEntry::flags_offset()), R1_SP); 1699 __ st_ptr(zero, ContinuationEntry::chunk_offset(), R1_SP); 1700 __ stw(zero, in_bytes(ContinuationEntry::argsize_offset()), R1_SP); 1701 __ stw(zero, in_bytes(ContinuationEntry::pin_count_offset()), R1_SP); 1702 1703 __ ld_ptr(tmp2, JavaThread::cont_fastpath_offset(), R16_thread); 1704 __ ld(tmp3, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread); 1705 __ st_ptr(tmp2, ContinuationEntry::parent_cont_fastpath_offset(), R1_SP); 1706 __ std(tmp3, in_bytes(ContinuationEntry::parent_held_monitor_count_offset()), R1_SP); 1707 1708 __ st_ptr(zero, JavaThread::cont_fastpath_offset(), R16_thread); 1709 __ std(zero, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread); 1710 DEBUG_ONLY(__ block_comment("} fill")); 1711 } 1712 1713 //---------------------------- continuation_enter_cleanup --------------------------- 1714 // 1715 // Copy corresponding attributes from the top ContinuationEntry to the JavaThread 1716 // before deleting it. 1717 // 1718 // Arguments: 1719 // R1_SP: pointer to the ContinuationEntry 1720 // 1721 // Results: 1722 // None. 1723 // 1724 // Kills: 1725 // R8_ARG6, R9_ARG7, R10_ARG8 1726 // 1727 static void continuation_enter_cleanup(MacroAssembler* masm) { 1728 Register tmp1 = R8_ARG6; 1729 Register tmp2 = R9_ARG7; 1730 Register tmp3 = R10_ARG8; 1731 1732 #ifdef ASSERT 1733 __ block_comment("clean {"); 1734 __ ld_ptr(tmp1, JavaThread::cont_entry_offset(), R16_thread); 1735 __ cmpd(CCR0, R1_SP, tmp1); 1736 __ asm_assert_eq(FILE_AND_LINE ": incorrect R1_SP"); 1737 #endif 1738 1739 __ ld_ptr(tmp1, ContinuationEntry::parent_cont_fastpath_offset(), R1_SP); 1740 __ ld(tmp2, in_bytes(ContinuationEntry::parent_held_monitor_count_offset()), R1_SP); 1741 __ ld_ptr(tmp3, ContinuationEntry::parent_offset(), R1_SP); 1742 __ st_ptr(tmp1, JavaThread::cont_fastpath_offset(), R16_thread); 1743 __ std(tmp2, in_bytes(JavaThread::held_monitor_count_offset()), R16_thread); 1744 __ st_ptr(tmp3, JavaThread::cont_entry_offset(), R16_thread); 1745 DEBUG_ONLY(__ block_comment("} clean")); 1746 } 1747 1748 static void check_continuation_enter_argument(VMReg actual_vmreg, 1749 Register expected_reg, 1750 const char* name) { 1751 assert(!actual_vmreg->is_stack(), "%s cannot be on stack", name); 1752 assert(actual_vmreg->as_Register() == expected_reg, 1753 "%s is in unexpected register: %s instead of %s", 1754 name, actual_vmreg->as_Register()->name(), expected_reg->name()); 1755 } 1756 1757 static void gen_continuation_enter(MacroAssembler* masm, 1758 const VMRegPair* regs, 1759 int& exception_offset, 1760 OopMapSet* oop_maps, 1761 int& frame_complete, 1762 int& framesize_words, 1763 int& interpreted_entry_offset, 1764 int& compiled_entry_offset) { 1765 1766 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1767 int pos_cont_obj = 0; 1768 int pos_is_cont = 1; 1769 int pos_is_virtual = 2; 1770 1771 // The platform-specific calling convention may present the arguments in various registers. 1772 // To simplify the rest of the code, we expect the arguments to reside at these known 1773 // registers, and we additionally check the placement here in case calling convention ever 1774 // changes. 1775 Register reg_cont_obj = R3_ARG1; 1776 Register reg_is_cont = R4_ARG2; 1777 Register reg_is_virtual = R5_ARG3; 1778 1779 check_continuation_enter_argument(regs[pos_cont_obj].first(), reg_cont_obj, "Continuation object"); 1780 check_continuation_enter_argument(regs[pos_is_cont].first(), reg_is_cont, "isContinue"); 1781 check_continuation_enter_argument(regs[pos_is_virtual].first(), reg_is_virtual, "isVirtualThread"); 1782 1783 address resolve_static_call = SharedRuntime::get_resolve_static_call_stub(); 1784 1785 address start = __ pc(); 1786 1787 Label L_thaw, L_exit; 1788 1789 // i2i entry used at interp_only_mode only 1790 interpreted_entry_offset = __ pc() - start; 1791 { 1792 #ifdef ASSERT 1793 Label is_interp_only; 1794 __ lwz(R0, in_bytes(JavaThread::interp_only_mode_offset()), R16_thread); 1795 __ cmpwi(CCR0, R0, 0); 1796 __ bne(CCR0, is_interp_only); 1797 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1798 __ bind(is_interp_only); 1799 #endif 1800 1801 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1802 __ ld(reg_cont_obj, Interpreter::stackElementSize*3, R15_esp); 1803 __ lwz(reg_is_cont, Interpreter::stackElementSize*2, R15_esp); 1804 __ lwz(reg_is_virtual, Interpreter::stackElementSize*1, R15_esp); 1805 1806 __ push_cont_fastpath(); 1807 1808 OopMap* map = continuation_enter_setup(masm, framesize_words); 1809 1810 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1811 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1812 1813 fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual); 1814 1815 // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue) 1816 __ cmpwi(CCR0, reg_is_cont, 0); 1817 __ bne(CCR0, L_thaw); 1818 1819 // --- call Continuation.enter(Continuation c, boolean isContinue) 1820 1821 // Emit compiled static call. The call will be always resolved to the c2i 1822 // entry of Continuation.enter(Continuation c, boolean isContinue). 1823 // There are special cases in SharedRuntime::resolve_static_call_C() and 1824 // SharedRuntime::resolve_sub_helper_internal() to achieve this 1825 // See also corresponding call below. 1826 address c2i_call_pc = __ pc(); 1827 int start_offset = __ offset(); 1828 // Put the entry point as a constant into the constant pool. 1829 const address entry_point_toc_addr = __ address_constant(resolve_static_call, RelocationHolder::none); 1830 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 1831 guarantee(entry_point_toc_addr != nullptr, "const section overflow"); 1832 1833 // Emit the trampoline stub which will be related to the branch-and-link below. 1834 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset); 1835 guarantee(stub != nullptr, "no space for trampoline stub"); 1836 1837 __ relocate(relocInfo::static_call_type); 1838 // Note: At this point we do not have the address of the trampoline 1839 // stub, and the entry point might be too far away for bl, so __ pc() 1840 // serves as dummy and the bl will be patched later. 1841 __ bl(__ pc()); 1842 oop_maps->add_gc_map(__ pc() - start, map); 1843 __ post_call_nop(); 1844 1845 __ b(L_exit); 1846 1847 // static stub for the call above 1848 CodeBuffer* cbuf = masm->code_section()->outer(); 1849 stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, c2i_call_pc); 1850 guarantee(stub != nullptr, "no space for static stub"); 1851 } 1852 1853 // compiled entry 1854 __ align(CodeEntryAlignment); 1855 compiled_entry_offset = __ pc() - start; 1856 1857 OopMap* map = continuation_enter_setup(masm, framesize_words); 1858 1859 // Frame is now completed as far as size and linkage. 1860 frame_complete =__ pc() - start; 1861 1862 fill_continuation_entry(masm, reg_cont_obj, reg_is_virtual); 1863 1864 // If isContinue, call to thaw. Otherwise, call Continuation.enter(Continuation c, boolean isContinue) 1865 __ cmpwi(CCR0, reg_is_cont, 0); 1866 __ bne(CCR0, L_thaw); 1867 1868 // --- call Continuation.enter(Continuation c, boolean isContinue) 1869 1870 // Emit compiled static call 1871 // The call needs to be resolved. There's a special case for this in 1872 // SharedRuntime::find_callee_info_helper() which calls 1873 // LinkResolver::resolve_continuation_enter() which resolves the call to 1874 // Continuation.enter(Continuation c, boolean isContinue). 1875 address call_pc = __ pc(); 1876 int start_offset = __ offset(); 1877 // Put the entry point as a constant into the constant pool. 1878 const address entry_point_toc_addr = __ address_constant(resolve_static_call, RelocationHolder::none); 1879 const int entry_point_toc_offset = __ offset_to_method_toc(entry_point_toc_addr); 1880 guarantee(entry_point_toc_addr != nullptr, "const section overflow"); 1881 1882 // Emit the trampoline stub which will be related to the branch-and-link below. 1883 address stub = __ emit_trampoline_stub(entry_point_toc_offset, start_offset); 1884 guarantee(stub != nullptr, "no space for trampoline stub"); 1885 1886 __ relocate(relocInfo::static_call_type); 1887 // Note: At this point we do not have the address of the trampoline 1888 // stub, and the entry point might be too far away for bl, so __ pc() 1889 // serves as dummy and the bl will be patched later. 1890 __ bl(__ pc()); 1891 oop_maps->add_gc_map(__ pc() - start, map); 1892 __ post_call_nop(); 1893 1894 __ b(L_exit); 1895 1896 // --- Thawing path 1897 1898 __ bind(L_thaw); 1899 __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(StubRoutines::cont_thaw())); 1900 __ mtctr(R0); 1901 __ bctrl(); 1902 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1903 ContinuationEntry::_return_pc_offset = __ pc() - start; 1904 __ post_call_nop(); 1905 1906 // --- Normal exit (resolve/thawing) 1907 1908 __ bind(L_exit); 1909 continuation_enter_cleanup(masm); 1910 1911 // Pop frame and return 1912 DEBUG_ONLY(__ ld_ptr(R0, 0, R1_SP)); 1913 __ addi(R1_SP, R1_SP, framesize_words*wordSize); 1914 DEBUG_ONLY(__ cmpd(CCR0, R0, R1_SP)); 1915 __ asm_assert_eq(FILE_AND_LINE ": inconsistent frame size"); 1916 __ ld(R0, _abi0(lr), R1_SP); // Return pc 1917 __ mtlr(R0); 1918 __ blr(); 1919 1920 // --- Exception handling path 1921 1922 exception_offset = __ pc() - start; 1923 1924 continuation_enter_cleanup(masm); 1925 Register ex_pc = R17_tos; // nonvolatile register 1926 Register ex_oop = R15_esp; // nonvolatile register 1927 __ ld(ex_pc, _abi0(callers_sp), R1_SP); // Load caller's return pc 1928 __ ld(ex_pc, _abi0(lr), ex_pc); 1929 __ mr(ex_oop, R3_RET); // save return value containing the exception oop 1930 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, ex_pc); 1931 __ mtlr(R3_RET); // the exception handler 1932 __ ld(R1_SP, _abi0(callers_sp), R1_SP); // remove enterSpecial frame 1933 1934 // Continue at exception handler 1935 // See OptoRuntime::generate_exception_blob for register arguments 1936 __ mr(R3_ARG1, ex_oop); // pass exception oop 1937 __ mr(R4_ARG2, ex_pc); // pass exception pc 1938 __ blr(); 1939 1940 // static stub for the call above 1941 CodeBuffer* cbuf = masm->code_section()->outer(); 1942 stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, call_pc); 1943 guarantee(stub != nullptr, "no space for static stub"); 1944 } 1945 1946 static void gen_continuation_yield(MacroAssembler* masm, 1947 const VMRegPair* regs, 1948 OopMapSet* oop_maps, 1949 int& frame_complete, 1950 int& framesize_words, 1951 int& compiled_entry_offset) { 1952 Register tmp = R10_ARG8; 1953 1954 const int framesize_bytes = (int)align_up((int)frame::native_abi_reg_args_size, frame::alignment_in_bytes); 1955 framesize_words = framesize_bytes / wordSize; 1956 1957 address start = __ pc(); 1958 compiled_entry_offset = __ pc() - start; 1959 1960 // Save return pc and push entry frame 1961 __ mflr(tmp); 1962 __ std(tmp, _abi0(lr), R1_SP); // SP->lr = return_pc 1963 __ push_frame(framesize_bytes , R0); // SP -= frame_size_in_bytes 1964 1965 DEBUG_ONLY(__ block_comment("Frame Complete")); 1966 frame_complete = __ pc() - start; 1967 address last_java_pc = __ pc(); 1968 1969 // This nop must be exactly at the PC we push into the frame info. 1970 // We use this nop for fast CodeBlob lookup, associate the OopMap 1971 // with it right away. 1972 __ post_call_nop(); 1973 OopMap* map = new OopMap(framesize_bytes / VMRegImpl::stack_slot_size, 1); 1974 oop_maps->add_gc_map(last_java_pc - start, map); 1975 1976 __ calculate_address_from_global_toc(tmp, last_java_pc); // will be relocated 1977 __ set_last_Java_frame(R1_SP, tmp); 1978 __ call_VM_leaf(Continuation::freeze_entry(), R16_thread, R1_SP); 1979 __ reset_last_Java_frame(); 1980 1981 Label L_pinned; 1982 1983 __ cmpwi(CCR0, R3_RET, 0); 1984 __ bne(CCR0, L_pinned); 1985 1986 // yield succeeded 1987 1988 // Pop frames of continuation including this stub's frame 1989 __ ld_ptr(R1_SP, JavaThread::cont_entry_offset(), R16_thread); 1990 // The frame pushed by gen_continuation_enter is on top now again 1991 continuation_enter_cleanup(masm); 1992 1993 // Pop frame and return 1994 Label L_return; 1995 __ bind(L_return); 1996 __ pop_frame(); 1997 __ ld(R0, _abi0(lr), R1_SP); // Return pc 1998 __ mtlr(R0); 1999 __ blr(); 2000 2001 // yield failed - continuation is pinned 2002 2003 __ bind(L_pinned); 2004 2005 // handle pending exception thrown by freeze 2006 __ ld(tmp, in_bytes(JavaThread::pending_exception_offset()), R16_thread); 2007 __ cmpdi(CCR0, tmp, 0); 2008 __ beq(CCR0, L_return); // return if no exception is pending 2009 __ pop_frame(); 2010 __ ld(R0, _abi0(lr), R1_SP); // Return pc 2011 __ mtlr(R0); 2012 __ load_const_optimized(tmp, StubRoutines::forward_exception_entry(), R0); 2013 __ mtctr(tmp); 2014 __ bctr(); 2015 } 2016 2017 // --------------------------------------------------------------------------- 2018 // Generate a native wrapper for a given method. The method takes arguments 2019 // in the Java compiled code convention, marshals them to the native 2020 // convention (handlizes oops, etc), transitions to native, makes the call, 2021 // returns to java state (possibly blocking), unhandlizes any result and 2022 // returns. 2023 // 2024 // Critical native functions are a shorthand for the use of 2025 // GetPrimtiveArrayCritical and disallow the use of any other JNI 2026 // functions. The wrapper is expected to unpack the arguments before 2027 // passing them to the callee. Critical native functions leave the state _in_Java, 2028 // since they cannot stop for GC. 2029 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 2030 // block and the check for pending exceptions it's impossible for them 2031 // to be thrown. 2032 // 2033 nmethod *SharedRuntime::generate_native_wrapper(MacroAssembler *masm, 2034 const methodHandle& method, 2035 int compile_id, 2036 BasicType *in_sig_bt, 2037 VMRegPair *in_regs, 2038 BasicType ret_type) { 2039 if (method->is_continuation_native_intrinsic()) { 2040 int exception_offset = -1; 2041 OopMapSet* oop_maps = new OopMapSet(); 2042 int frame_complete = -1; 2043 int stack_slots = -1; 2044 int interpreted_entry_offset = -1; 2045 int vep_offset = -1; 2046 if (method->is_continuation_enter_intrinsic()) { 2047 gen_continuation_enter(masm, 2048 in_regs, 2049 exception_offset, 2050 oop_maps, 2051 frame_complete, 2052 stack_slots, 2053 interpreted_entry_offset, 2054 vep_offset); 2055 } else if (method->is_continuation_yield_intrinsic()) { 2056 gen_continuation_yield(masm, 2057 in_regs, 2058 oop_maps, 2059 frame_complete, 2060 stack_slots, 2061 vep_offset); 2062 } else { 2063 guarantee(false, "Unknown Continuation native intrinsic"); 2064 } 2065 2066 #ifdef ASSERT 2067 if (method->is_continuation_enter_intrinsic()) { 2068 assert(interpreted_entry_offset != -1, "Must be set"); 2069 assert(exception_offset != -1, "Must be set"); 2070 } else { 2071 assert(interpreted_entry_offset == -1, "Must be unset"); 2072 assert(exception_offset == -1, "Must be unset"); 2073 } 2074 assert(frame_complete != -1, "Must be set"); 2075 assert(stack_slots != -1, "Must be set"); 2076 assert(vep_offset != -1, "Must be set"); 2077 #endif 2078 2079 __ flush(); 2080 nmethod* nm = nmethod::new_native_nmethod(method, 2081 compile_id, 2082 masm->code(), 2083 vep_offset, 2084 frame_complete, 2085 stack_slots, 2086 in_ByteSize(-1), 2087 in_ByteSize(-1), 2088 oop_maps, 2089 exception_offset); 2090 if (method->is_continuation_enter_intrinsic()) { 2091 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 2092 } else if (method->is_continuation_yield_intrinsic()) { 2093 _cont_doYield_stub = nm; 2094 } 2095 return nm; 2096 } 2097 2098 if (method->is_method_handle_intrinsic()) { 2099 vmIntrinsics::ID iid = method->intrinsic_id(); 2100 intptr_t start = (intptr_t)__ pc(); 2101 int vep_offset = ((intptr_t)__ pc()) - start; 2102 gen_special_dispatch(masm, 2103 method, 2104 in_sig_bt, 2105 in_regs); 2106 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 2107 __ flush(); 2108 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 2109 return nmethod::new_native_nmethod(method, 2110 compile_id, 2111 masm->code(), 2112 vep_offset, 2113 frame_complete, 2114 stack_slots / VMRegImpl::slots_per_word, 2115 in_ByteSize(-1), 2116 in_ByteSize(-1), 2117 (OopMapSet*)nullptr); 2118 } 2119 2120 address native_func = method->native_function(); 2121 assert(native_func != nullptr, "must have function"); 2122 2123 // First, create signature for outgoing C call 2124 // -------------------------------------------------------------------------- 2125 2126 int total_in_args = method->size_of_parameters(); 2127 // We have received a description of where all the java args are located 2128 // on entry to the wrapper. We need to convert these args to where 2129 // the jni function will expect them. To figure out where they go 2130 // we convert the java signature to a C signature by inserting 2131 // the hidden arguments as arg[0] and possibly arg[1] (static method) 2132 2133 // Calculate the total number of C arguments and create arrays for the 2134 // signature and the outgoing registers. 2135 // On ppc64, we have two arrays for the outgoing registers, because 2136 // some floating-point arguments must be passed in registers _and_ 2137 // in stack locations. 2138 bool method_is_static = method->is_static(); 2139 int total_c_args = total_in_args + (method_is_static ? 2 : 1); 2140 2141 BasicType *out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 2142 VMRegPair *out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 2143 VMRegPair *out_regs2 = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 2144 BasicType* in_elem_bt = nullptr; 2145 2146 // Create the signature for the C call: 2147 // 1) add the JNIEnv* 2148 // 2) add the class if the method is static 2149 // 3) copy the rest of the incoming signature (shifted by the number of 2150 // hidden arguments). 2151 2152 int argc = 0; 2153 out_sig_bt[argc++] = T_ADDRESS; 2154 if (method->is_static()) { 2155 out_sig_bt[argc++] = T_OBJECT; 2156 } 2157 2158 for (int i = 0; i < total_in_args ; i++ ) { 2159 out_sig_bt[argc++] = in_sig_bt[i]; 2160 } 2161 2162 2163 // Compute the wrapper's frame size. 2164 // -------------------------------------------------------------------------- 2165 2166 // Now figure out where the args must be stored and how much stack space 2167 // they require. 2168 // 2169 // Compute framesize for the wrapper. We need to handlize all oops in 2170 // incoming registers. 2171 // 2172 // Calculate the total number of stack slots we will need: 2173 // 1) abi requirements 2174 // 2) outgoing arguments 2175 // 3) space for inbound oop handle area 2176 // 4) space for handlizing a klass if static method 2177 // 5) space for a lock if synchronized method 2178 // 6) workspace for saving return values, int <-> float reg moves, etc. 2179 // 7) alignment 2180 // 2181 // Layout of the native wrapper frame: 2182 // (stack grows upwards, memory grows downwards) 2183 // 2184 // NW [ABI_REG_ARGS] <-- 1) R1_SP 2185 // [outgoing arguments] <-- 2) R1_SP + out_arg_slot_offset 2186 // [oopHandle area] <-- 3) R1_SP + oop_handle_offset 2187 // klass <-- 4) R1_SP + klass_offset 2188 // lock <-- 5) R1_SP + lock_offset 2189 // [workspace] <-- 6) R1_SP + workspace_offset 2190 // [alignment] (optional) <-- 7) 2191 // caller [JIT_TOP_ABI_48] <-- r_callers_sp 2192 // 2193 // - *_slot_offset Indicates offset from SP in number of stack slots. 2194 // - *_offset Indicates offset from SP in bytes. 2195 2196 int stack_slots = c_calling_convention(out_sig_bt, out_regs, out_regs2, total_c_args) + // 1+2) 2197 SharedRuntime::out_preserve_stack_slots(); // See c_calling_convention. 2198 2199 // Now the space for the inbound oop handle area. 2200 int total_save_slots = num_java_iarg_registers * VMRegImpl::slots_per_word; 2201 2202 int oop_handle_slot_offset = stack_slots; 2203 stack_slots += total_save_slots; // 3) 2204 2205 int klass_slot_offset = 0; 2206 int klass_offset = -1; 2207 if (method_is_static) { // 4) 2208 klass_slot_offset = stack_slots; 2209 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 2210 stack_slots += VMRegImpl::slots_per_word; 2211 } 2212 2213 int lock_slot_offset = 0; 2214 int lock_offset = -1; 2215 if (method->is_synchronized()) { // 5) 2216 lock_slot_offset = stack_slots; 2217 lock_offset = lock_slot_offset * VMRegImpl::stack_slot_size; 2218 stack_slots += VMRegImpl::slots_per_word; 2219 } 2220 2221 int workspace_slot_offset = stack_slots; // 6) 2222 stack_slots += 2; 2223 2224 // Now compute actual number of stack words we need. 2225 // Rounding to make stack properly aligned. 2226 stack_slots = align_up(stack_slots, // 7) 2227 frame::alignment_in_bytes / VMRegImpl::stack_slot_size); 2228 int frame_size_in_bytes = stack_slots * VMRegImpl::stack_slot_size; 2229 2230 2231 // Now we can start generating code. 2232 // -------------------------------------------------------------------------- 2233 2234 intptr_t start_pc = (intptr_t)__ pc(); 2235 intptr_t vep_start_pc; 2236 intptr_t frame_done_pc; 2237 intptr_t oopmap_pc; 2238 2239 Label ic_miss; 2240 Label handle_pending_exception; 2241 2242 Register r_callers_sp = R21; 2243 Register r_temp_1 = R22; 2244 Register r_temp_2 = R23; 2245 Register r_temp_3 = R24; 2246 Register r_temp_4 = R25; 2247 Register r_temp_5 = R26; 2248 Register r_temp_6 = R27; 2249 Register r_return_pc = R28; 2250 2251 Register r_carg1_jnienv = noreg; 2252 Register r_carg2_classorobject = noreg; 2253 r_carg1_jnienv = out_regs[0].first()->as_Register(); 2254 r_carg2_classorobject = out_regs[1].first()->as_Register(); 2255 2256 2257 // Generate the Unverified Entry Point (UEP). 2258 // -------------------------------------------------------------------------- 2259 assert(start_pc == (intptr_t)__ pc(), "uep must be at start"); 2260 2261 // Check ic: object class == cached class? 2262 if (!method_is_static) { 2263 Register ic = R19_inline_cache_reg; 2264 Register receiver_klass = r_temp_1; 2265 2266 __ cmpdi(CCR0, R3_ARG1, 0); 2267 __ beq(CCR0, ic_miss); 2268 __ verify_oop(R3_ARG1, FILE_AND_LINE); 2269 __ load_klass(receiver_klass, R3_ARG1); 2270 2271 __ cmpd(CCR0, receiver_klass, ic); 2272 __ bne(CCR0, ic_miss); 2273 } 2274 2275 2276 // Generate the Verified Entry Point (VEP). 2277 // -------------------------------------------------------------------------- 2278 vep_start_pc = (intptr_t)__ pc(); 2279 2280 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 2281 Label L_skip_barrier; 2282 Register klass = r_temp_1; 2283 // Notify OOP recorder (don't need the relocation) 2284 AddressLiteral md = __ constant_metadata_address(method->method_holder()); 2285 __ load_const_optimized(klass, md.value(), R0); 2286 __ clinit_barrier(klass, R16_thread, &L_skip_barrier /*L_fast_path*/); 2287 2288 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub(), R0); 2289 __ mtctr(klass); 2290 __ bctr(); 2291 2292 __ bind(L_skip_barrier); 2293 } 2294 2295 __ save_LR_CR(r_temp_1); 2296 __ generate_stack_overflow_check(frame_size_in_bytes); // Check before creating frame. 2297 __ mr(r_callers_sp, R1_SP); // Remember frame pointer. 2298 __ push_frame(frame_size_in_bytes, r_temp_1); // Push the c2n adapter's frame. 2299 2300 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 2301 bs->nmethod_entry_barrier(masm, r_temp_1); 2302 2303 frame_done_pc = (intptr_t)__ pc(); 2304 2305 // Native nmethod wrappers never take possession of the oop arguments. 2306 // So the caller will gc the arguments. 2307 // The only thing we need an oopMap for is if the call is static. 2308 // 2309 // An OopMap for lock (and class if static), and one for the VM call itself. 2310 OopMapSet *oop_maps = new OopMapSet(); 2311 OopMap *oop_map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 2312 2313 // Move arguments from register/stack to register/stack. 2314 // -------------------------------------------------------------------------- 2315 // 2316 // We immediately shuffle the arguments so that for any vm call we have 2317 // to make from here on out (sync slow path, jvmti, etc.) we will have 2318 // captured the oops from our caller and have a valid oopMap for them. 2319 // 2320 // Natives require 1 or 2 extra arguments over the normal ones: the JNIEnv* 2321 // (derived from JavaThread* which is in R16_thread) and, if static, 2322 // the class mirror instead of a receiver. This pretty much guarantees that 2323 // register layout will not match. We ignore these extra arguments during 2324 // the shuffle. The shuffle is described by the two calling convention 2325 // vectors we have in our possession. We simply walk the java vector to 2326 // get the source locations and the c vector to get the destinations. 2327 2328 // Record sp-based slot for receiver on stack for non-static methods. 2329 int receiver_offset = -1; 2330 2331 // We move the arguments backward because the floating point registers 2332 // destination will always be to a register with a greater or equal 2333 // register number or the stack. 2334 // in is the index of the incoming Java arguments 2335 // out is the index of the outgoing C arguments 2336 2337 #ifdef ASSERT 2338 bool reg_destroyed[Register::number_of_registers]; 2339 bool freg_destroyed[FloatRegister::number_of_registers]; 2340 for (int r = 0 ; r < Register::number_of_registers ; r++) { 2341 reg_destroyed[r] = false; 2342 } 2343 for (int f = 0 ; f < FloatRegister::number_of_registers ; f++) { 2344 freg_destroyed[f] = false; 2345 } 2346 #endif // ASSERT 2347 2348 for (int in = total_in_args - 1, out = total_c_args - 1; in >= 0 ; in--, out--) { 2349 2350 #ifdef ASSERT 2351 if (in_regs[in].first()->is_Register()) { 2352 assert(!reg_destroyed[in_regs[in].first()->as_Register()->encoding()], "ack!"); 2353 } else if (in_regs[in].first()->is_FloatRegister()) { 2354 assert(!freg_destroyed[in_regs[in].first()->as_FloatRegister()->encoding()], "ack!"); 2355 } 2356 if (out_regs[out].first()->is_Register()) { 2357 reg_destroyed[out_regs[out].first()->as_Register()->encoding()] = true; 2358 } else if (out_regs[out].first()->is_FloatRegister()) { 2359 freg_destroyed[out_regs[out].first()->as_FloatRegister()->encoding()] = true; 2360 } 2361 if (out_regs2[out].first()->is_Register()) { 2362 reg_destroyed[out_regs2[out].first()->as_Register()->encoding()] = true; 2363 } else if (out_regs2[out].first()->is_FloatRegister()) { 2364 freg_destroyed[out_regs2[out].first()->as_FloatRegister()->encoding()] = true; 2365 } 2366 #endif // ASSERT 2367 2368 switch (in_sig_bt[in]) { 2369 case T_BOOLEAN: 2370 case T_CHAR: 2371 case T_BYTE: 2372 case T_SHORT: 2373 case T_INT: 2374 // Move int and do sign extension. 2375 int_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); 2376 break; 2377 case T_LONG: 2378 long_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); 2379 break; 2380 case T_ARRAY: 2381 case T_OBJECT: 2382 object_move(masm, stack_slots, 2383 oop_map, oop_handle_slot_offset, 2384 ((in == 0) && (!method_is_static)), &receiver_offset, 2385 in_regs[in], out_regs[out], 2386 r_callers_sp, r_temp_1, r_temp_2); 2387 break; 2388 case T_VOID: 2389 break; 2390 case T_FLOAT: 2391 float_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); 2392 if (out_regs2[out].first()->is_valid()) { 2393 float_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1); 2394 } 2395 break; 2396 case T_DOUBLE: 2397 double_move(masm, in_regs[in], out_regs[out], r_callers_sp, r_temp_1); 2398 if (out_regs2[out].first()->is_valid()) { 2399 double_move(masm, in_regs[in], out_regs2[out], r_callers_sp, r_temp_1); 2400 } 2401 break; 2402 case T_ADDRESS: 2403 fatal("found type (T_ADDRESS) in java args"); 2404 break; 2405 default: 2406 ShouldNotReachHere(); 2407 break; 2408 } 2409 } 2410 2411 // Pre-load a static method's oop into ARG2. 2412 // Used both by locking code and the normal JNI call code. 2413 if (method_is_static) { 2414 __ set_oop_constant(JNIHandles::make_local(method->method_holder()->java_mirror()), 2415 r_carg2_classorobject); 2416 2417 // Now handlize the static class mirror in carg2. It's known not-null. 2418 __ std(r_carg2_classorobject, klass_offset, R1_SP); 2419 oop_map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 2420 __ addi(r_carg2_classorobject, R1_SP, klass_offset); 2421 } 2422 2423 // Get JNIEnv* which is first argument to native. 2424 __ addi(r_carg1_jnienv, R16_thread, in_bytes(JavaThread::jni_environment_offset())); 2425 2426 // NOTE: 2427 // 2428 // We have all of the arguments setup at this point. 2429 // We MUST NOT touch any outgoing regs from this point on. 2430 // So if we must call out we must push a new frame. 2431 2432 // Get current pc for oopmap, and load it patchable relative to global toc. 2433 oopmap_pc = (intptr_t) __ pc(); 2434 __ calculate_address_from_global_toc(r_return_pc, (address)oopmap_pc, true, true, true, true); 2435 2436 // We use the same pc/oopMap repeatedly when we call out. 2437 oop_maps->add_gc_map(oopmap_pc - start_pc, oop_map); 2438 2439 // r_return_pc now has the pc loaded that we will use when we finally call 2440 // to native. 2441 2442 // Make sure that thread is non-volatile; it crosses a bunch of VM calls below. 2443 assert(R16_thread->is_nonvolatile(), "thread must be in non-volatile register"); 2444 2445 # if 0 2446 // DTrace method entry 2447 # endif 2448 2449 // Lock a synchronized method. 2450 // -------------------------------------------------------------------------- 2451 2452 if (method->is_synchronized()) { 2453 Register r_oop = r_temp_4; 2454 const Register r_box = r_temp_5; 2455 Label done, locked; 2456 2457 // Load the oop for the object or class. r_carg2_classorobject contains 2458 // either the handlized oop from the incoming arguments or the handlized 2459 // class mirror (if the method is static). 2460 __ ld(r_oop, 0, r_carg2_classorobject); 2461 2462 // Get the lock box slot's address. 2463 __ addi(r_box, R1_SP, lock_offset); 2464 2465 // Try fastpath for locking. 2466 if (LockingMode == LM_LIGHTWEIGHT) { 2467 // fast_lock kills r_temp_1, r_temp_2, r_temp_3. 2468 __ compiler_fast_lock_lightweight_object(CCR0, r_oop, r_temp_1, r_temp_2, r_temp_3); 2469 } else { 2470 // fast_lock kills r_temp_1, r_temp_2, r_temp_3. 2471 __ compiler_fast_lock_object(CCR0, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3); 2472 } 2473 __ beq(CCR0, locked); 2474 2475 // None of the above fast optimizations worked so we have to get into the 2476 // slow case of monitor enter. Inline a special case of call_VM that 2477 // disallows any pending_exception. 2478 2479 // Save argument registers and leave room for C-compatible ABI_REG_ARGS. 2480 int frame_size = frame::native_abi_reg_args_size + align_up(total_c_args * wordSize, frame::alignment_in_bytes); 2481 __ mr(R11_scratch1, R1_SP); 2482 RegisterSaver::push_frame_and_save_argument_registers(masm, R12_scratch2, frame_size, total_c_args, out_regs, out_regs2); 2483 2484 // Do the call. 2485 __ set_last_Java_frame(R11_scratch1, r_return_pc); 2486 assert(r_return_pc->is_nonvolatile(), "expecting return pc to be in non-volatile register"); 2487 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), r_oop, r_box, R16_thread); 2488 __ reset_last_Java_frame(); 2489 2490 RegisterSaver::restore_argument_registers_and_pop_frame(masm, frame_size, total_c_args, out_regs, out_regs2); 2491 2492 __ asm_assert_mem8_is_zero(thread_(pending_exception), 2493 "no pending exception allowed on exit from SharedRuntime::complete_monitor_locking_C"); 2494 2495 __ bind(locked); 2496 } 2497 2498 // Use that pc we placed in r_return_pc a while back as the current frame anchor. 2499 __ set_last_Java_frame(R1_SP, r_return_pc); 2500 2501 // Publish thread state 2502 // -------------------------------------------------------------------------- 2503 2504 // Transition from _thread_in_Java to _thread_in_native. 2505 __ li(R0, _thread_in_native); 2506 __ release(); 2507 // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); 2508 __ stw(R0, thread_(thread_state)); 2509 2510 2511 // The JNI call 2512 // -------------------------------------------------------------------------- 2513 #if defined(ABI_ELFv2) 2514 __ call_c(native_func, relocInfo::runtime_call_type); 2515 #else 2516 FunctionDescriptor* fd_native_method = (FunctionDescriptor*) native_func; 2517 __ call_c(fd_native_method, relocInfo::runtime_call_type); 2518 #endif 2519 2520 2521 // Now, we are back from the native code. 2522 2523 2524 // Unpack the native result. 2525 // -------------------------------------------------------------------------- 2526 2527 // For int-types, we do any needed sign-extension required. 2528 // Care must be taken that the return values (R3_RET and F1_RET) 2529 // will survive any VM calls for blocking or unlocking. 2530 // An OOP result (handle) is done specially in the slow-path code. 2531 2532 switch (ret_type) { 2533 case T_VOID: break; // Nothing to do! 2534 case T_FLOAT: break; // Got it where we want it (unless slow-path). 2535 case T_DOUBLE: break; // Got it where we want it (unless slow-path). 2536 case T_LONG: break; // Got it where we want it (unless slow-path). 2537 case T_OBJECT: break; // Really a handle. 2538 // Cannot de-handlize until after reclaiming jvm_lock. 2539 case T_ARRAY: break; 2540 2541 case T_BOOLEAN: { // 0 -> false(0); !0 -> true(1) 2542 Label skip_modify; 2543 __ cmpwi(CCR0, R3_RET, 0); 2544 __ beq(CCR0, skip_modify); 2545 __ li(R3_RET, 1); 2546 __ bind(skip_modify); 2547 break; 2548 } 2549 case T_BYTE: { // sign extension 2550 __ extsb(R3_RET, R3_RET); 2551 break; 2552 } 2553 case T_CHAR: { // unsigned result 2554 __ andi(R3_RET, R3_RET, 0xffff); 2555 break; 2556 } 2557 case T_SHORT: { // sign extension 2558 __ extsh(R3_RET, R3_RET); 2559 break; 2560 } 2561 case T_INT: // nothing to do 2562 break; 2563 default: 2564 ShouldNotReachHere(); 2565 break; 2566 } 2567 2568 Label after_transition; 2569 2570 // Publish thread state 2571 // -------------------------------------------------------------------------- 2572 2573 // Switch thread to "native transition" state before reading the 2574 // synchronization state. This additional state is necessary because reading 2575 // and testing the synchronization state is not atomic w.r.t. GC, as this 2576 // scenario demonstrates: 2577 // - Java thread A, in _thread_in_native state, loads _not_synchronized 2578 // and is preempted. 2579 // - VM thread changes sync state to synchronizing and suspends threads 2580 // for GC. 2581 // - Thread A is resumed to finish this native method, but doesn't block 2582 // here since it didn't see any synchronization in progress, and escapes. 2583 2584 // Transition from _thread_in_native to _thread_in_native_trans. 2585 __ li(R0, _thread_in_native_trans); 2586 __ release(); 2587 // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); 2588 __ stw(R0, thread_(thread_state)); 2589 2590 2591 // Must we block? 2592 // -------------------------------------------------------------------------- 2593 2594 // Block, if necessary, before resuming in _thread_in_Java state. 2595 // In order for GC to work, don't clear the last_Java_sp until after blocking. 2596 { 2597 Label no_block, sync; 2598 2599 // Force this write out before the read below. 2600 if (!UseSystemMemoryBarrier) { 2601 __ fence(); 2602 } 2603 2604 Register sync_state_addr = r_temp_4; 2605 Register sync_state = r_temp_5; 2606 Register suspend_flags = r_temp_6; 2607 2608 // No synchronization in progress nor yet synchronized 2609 // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path). 2610 __ safepoint_poll(sync, sync_state, true /* at_return */, false /* in_nmethod */); 2611 2612 // Not suspended. 2613 // TODO: PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size"); 2614 __ lwz(suspend_flags, thread_(suspend_flags)); 2615 __ cmpwi(CCR1, suspend_flags, 0); 2616 __ beq(CCR1, no_block); 2617 2618 // Block. Save any potential method result value before the operation and 2619 // use a leaf call to leave the last_Java_frame setup undisturbed. Doing this 2620 // lets us share the oopMap we used when we went native rather than create 2621 // a distinct one for this pc. 2622 __ bind(sync); 2623 __ isync(); 2624 2625 address entry_point = 2626 CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans); 2627 save_native_result(masm, ret_type, workspace_slot_offset); 2628 __ call_VM_leaf(entry_point, R16_thread); 2629 restore_native_result(masm, ret_type, workspace_slot_offset); 2630 2631 __ bind(no_block); 2632 2633 // Publish thread state. 2634 // -------------------------------------------------------------------------- 2635 2636 // Thread state is thread_in_native_trans. Any safepoint blocking has 2637 // already happened so we can now change state to _thread_in_Java. 2638 2639 // Transition from _thread_in_native_trans to _thread_in_Java. 2640 __ li(R0, _thread_in_Java); 2641 __ lwsync(); // Acquire safepoint and suspend state, release thread state. 2642 // TODO: PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size"); 2643 __ stw(R0, thread_(thread_state)); 2644 __ bind(after_transition); 2645 } 2646 2647 // Reguard any pages if necessary. 2648 // -------------------------------------------------------------------------- 2649 2650 Label no_reguard; 2651 __ lwz(r_temp_1, thread_(stack_guard_state)); 2652 __ cmpwi(CCR0, r_temp_1, StackOverflow::stack_guard_yellow_reserved_disabled); 2653 __ bne(CCR0, no_reguard); 2654 2655 save_native_result(masm, ret_type, workspace_slot_offset); 2656 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2657 restore_native_result(masm, ret_type, workspace_slot_offset); 2658 2659 __ bind(no_reguard); 2660 2661 2662 // Unlock 2663 // -------------------------------------------------------------------------- 2664 2665 if (method->is_synchronized()) { 2666 const Register r_oop = r_temp_4; 2667 const Register r_box = r_temp_5; 2668 const Register r_exception = r_temp_6; 2669 Label done; 2670 2671 // Get oop and address of lock object box. 2672 if (method_is_static) { 2673 assert(klass_offset != -1, ""); 2674 __ ld(r_oop, klass_offset, R1_SP); 2675 } else { 2676 assert(receiver_offset != -1, ""); 2677 __ ld(r_oop, receiver_offset, R1_SP); 2678 } 2679 __ addi(r_box, R1_SP, lock_offset); 2680 2681 // Try fastpath for unlocking. 2682 if (LockingMode == LM_LIGHTWEIGHT) { 2683 __ compiler_fast_unlock_lightweight_object(CCR0, r_oop, r_temp_1, r_temp_2, r_temp_3); 2684 } else { 2685 __ compiler_fast_unlock_object(CCR0, r_oop, r_box, r_temp_1, r_temp_2, r_temp_3); 2686 } 2687 __ beq(CCR0, done); 2688 2689 // Save and restore any potential method result value around the unlocking operation. 2690 save_native_result(masm, ret_type, workspace_slot_offset); 2691 2692 // Must save pending exception around the slow-path VM call. Since it's a 2693 // leaf call, the pending exception (if any) can be kept in a register. 2694 __ ld(r_exception, thread_(pending_exception)); 2695 assert(r_exception->is_nonvolatile(), "exception register must be non-volatile"); 2696 __ li(R0, 0); 2697 __ std(R0, thread_(pending_exception)); 2698 2699 // Slow case of monitor enter. 2700 // Inline a special case of call_VM that disallows any pending_exception. 2701 // Arguments are (oop obj, BasicLock* lock, JavaThread* thread). 2702 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), r_oop, r_box, R16_thread); 2703 2704 __ asm_assert_mem8_is_zero(thread_(pending_exception), 2705 "no pending exception allowed on exit from SharedRuntime::complete_monitor_unlocking_C"); 2706 2707 restore_native_result(masm, ret_type, workspace_slot_offset); 2708 2709 // Check_forward_pending_exception jump to forward_exception if any pending 2710 // exception is set. The forward_exception routine expects to see the 2711 // exception in pending_exception and not in a register. Kind of clumsy, 2712 // since all folks who branch to forward_exception must have tested 2713 // pending_exception first and hence have it in a register already. 2714 __ std(r_exception, thread_(pending_exception)); 2715 2716 __ bind(done); 2717 } 2718 2719 # if 0 2720 // DTrace method exit 2721 # endif 2722 2723 // Clear "last Java frame" SP and PC. 2724 // -------------------------------------------------------------------------- 2725 2726 __ reset_last_Java_frame(); 2727 2728 // Unbox oop result, e.g. JNIHandles::resolve value. 2729 // -------------------------------------------------------------------------- 2730 2731 if (is_reference_type(ret_type)) { 2732 __ resolve_jobject(R3_RET, r_temp_1, r_temp_2, MacroAssembler::PRESERVATION_NONE); 2733 } 2734 2735 if (CheckJNICalls) { 2736 // clear_pending_jni_exception_check 2737 __ load_const_optimized(R0, 0L); 2738 __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread); 2739 } 2740 2741 // Reset handle block. 2742 // -------------------------------------------------------------------------- 2743 __ ld(r_temp_1, thread_(active_handles)); 2744 // TODO: PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size"); 2745 __ li(r_temp_2, 0); 2746 __ stw(r_temp_2, in_bytes(JNIHandleBlock::top_offset()), r_temp_1); 2747 2748 2749 // Check for pending exceptions. 2750 // -------------------------------------------------------------------------- 2751 __ ld(r_temp_2, thread_(pending_exception)); 2752 __ cmpdi(CCR0, r_temp_2, 0); 2753 __ bne(CCR0, handle_pending_exception); 2754 2755 // Return 2756 // -------------------------------------------------------------------------- 2757 2758 __ pop_frame(); 2759 __ restore_LR_CR(R11); 2760 __ blr(); 2761 2762 2763 // Handler for pending exceptions (out-of-line). 2764 // -------------------------------------------------------------------------- 2765 // Since this is a native call, we know the proper exception handler 2766 // is the empty function. We just pop this frame and then jump to 2767 // forward_exception_entry. 2768 __ bind(handle_pending_exception); 2769 2770 __ pop_frame(); 2771 __ restore_LR_CR(R11); 2772 __ b64_patchable((address)StubRoutines::forward_exception_entry(), 2773 relocInfo::runtime_call_type); 2774 2775 // Handler for a cache miss (out-of-line). 2776 // -------------------------------------------------------------------------- 2777 2778 if (!method_is_static) { 2779 __ bind(ic_miss); 2780 2781 __ b64_patchable((address)SharedRuntime::get_ic_miss_stub(), 2782 relocInfo::runtime_call_type); 2783 } 2784 2785 // Done. 2786 // -------------------------------------------------------------------------- 2787 2788 __ flush(); 2789 2790 nmethod *nm = nmethod::new_native_nmethod(method, 2791 compile_id, 2792 masm->code(), 2793 vep_start_pc-start_pc, 2794 frame_done_pc-start_pc, 2795 stack_slots / VMRegImpl::slots_per_word, 2796 (method_is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2797 in_ByteSize(lock_offset), 2798 oop_maps); 2799 2800 return nm; 2801 } 2802 2803 // This function returns the adjust size (in number of words) to a c2i adapter 2804 // activation for use during deoptimization. 2805 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2806 return align_up((callee_locals - callee_parameters) * Interpreter::stackElementWords, frame::frame_alignment_in_words); 2807 } 2808 2809 uint SharedRuntime::in_preserve_stack_slots() { 2810 return frame::jit_in_preserve_size / VMRegImpl::stack_slot_size; 2811 } 2812 2813 uint SharedRuntime::out_preserve_stack_slots() { 2814 #if defined(COMPILER1) || defined(COMPILER2) 2815 return frame::jit_out_preserve_size / VMRegImpl::stack_slot_size; 2816 #else 2817 return 0; 2818 #endif 2819 } 2820 2821 #if defined(COMPILER1) || defined(COMPILER2) 2822 // Frame generation for deopt and uncommon trap blobs. 2823 static void push_skeleton_frame(MacroAssembler* masm, bool deopt, 2824 /* Read */ 2825 Register unroll_block_reg, 2826 /* Update */ 2827 Register frame_sizes_reg, 2828 Register number_of_frames_reg, 2829 Register pcs_reg, 2830 /* Invalidate */ 2831 Register frame_size_reg, 2832 Register pc_reg) { 2833 2834 __ ld(pc_reg, 0, pcs_reg); 2835 __ ld(frame_size_reg, 0, frame_sizes_reg); 2836 __ std(pc_reg, _abi0(lr), R1_SP); 2837 __ push_frame(frame_size_reg, R0/*tmp*/); 2838 __ std(R1_SP, _ijava_state_neg(sender_sp), R1_SP); 2839 __ addi(number_of_frames_reg, number_of_frames_reg, -1); 2840 __ addi(frame_sizes_reg, frame_sizes_reg, wordSize); 2841 __ addi(pcs_reg, pcs_reg, wordSize); 2842 } 2843 2844 // Loop through the UnrollBlock info and create new frames. 2845 static void push_skeleton_frames(MacroAssembler* masm, bool deopt, 2846 /* read */ 2847 Register unroll_block_reg, 2848 /* invalidate */ 2849 Register frame_sizes_reg, 2850 Register number_of_frames_reg, 2851 Register pcs_reg, 2852 Register frame_size_reg, 2853 Register pc_reg) { 2854 Label loop; 2855 2856 // _number_of_frames is of type int (deoptimization.hpp) 2857 __ lwa(number_of_frames_reg, 2858 in_bytes(Deoptimization::UnrollBlock::number_of_frames_offset()), 2859 unroll_block_reg); 2860 __ ld(pcs_reg, 2861 in_bytes(Deoptimization::UnrollBlock::frame_pcs_offset()), 2862 unroll_block_reg); 2863 __ ld(frame_sizes_reg, 2864 in_bytes(Deoptimization::UnrollBlock::frame_sizes_offset()), 2865 unroll_block_reg); 2866 2867 // stack: (caller_of_deoptee, ...). 2868 2869 // At this point we either have an interpreter frame or a compiled 2870 // frame on top of stack. If it is a compiled frame we push a new c2i 2871 // adapter here 2872 2873 // Memorize top-frame stack-pointer. 2874 __ mr(frame_size_reg/*old_sp*/, R1_SP); 2875 2876 // Resize interpreter top frame OR C2I adapter. 2877 2878 // At this moment, the top frame (which is the caller of the deoptee) is 2879 // an interpreter frame or a newly pushed C2I adapter or an entry frame. 2880 // The top frame has a TOP_IJAVA_FRAME_ABI and the frame contains the 2881 // outgoing arguments. 2882 // 2883 // In order to push the interpreter frame for the deoptee, we need to 2884 // resize the top frame such that we are able to place the deoptee's 2885 // locals in the frame. 2886 // Additionally, we have to turn the top frame's TOP_IJAVA_FRAME_ABI 2887 // into a valid PARENT_IJAVA_FRAME_ABI. 2888 2889 __ lwa(R11_scratch1, 2890 in_bytes(Deoptimization::UnrollBlock::caller_adjustment_offset()), 2891 unroll_block_reg); 2892 __ neg(R11_scratch1, R11_scratch1); 2893 2894 // R11_scratch1 contains size of locals for frame resizing. 2895 // R12_scratch2 contains top frame's lr. 2896 2897 // Resize frame by complete frame size prevents TOC from being 2898 // overwritten by locals. A more stack space saving way would be 2899 // to copy the TOC to its location in the new abi. 2900 __ addi(R11_scratch1, R11_scratch1, - frame::parent_ijava_frame_abi_size); 2901 2902 // now, resize the frame 2903 __ resize_frame(R11_scratch1, pc_reg/*tmp*/); 2904 2905 // In the case where we have resized a c2i frame above, the optional 2906 // alignment below the locals has size 32 (why?). 2907 __ std(R12_scratch2, _abi0(lr), R1_SP); 2908 2909 // Initialize initial_caller_sp. 2910 __ std(frame_size_reg, _ijava_state_neg(sender_sp), R1_SP); 2911 2912 #ifdef ASSERT 2913 // Make sure that there is at least one entry in the array. 2914 __ cmpdi(CCR0, number_of_frames_reg, 0); 2915 __ asm_assert_ne("array_size must be > 0"); 2916 #endif 2917 2918 // Now push the new interpreter frames. 2919 // 2920 __ bind(loop); 2921 // Allocate a new frame, fill in the pc. 2922 push_skeleton_frame(masm, deopt, 2923 unroll_block_reg, 2924 frame_sizes_reg, 2925 number_of_frames_reg, 2926 pcs_reg, 2927 frame_size_reg, 2928 pc_reg); 2929 __ cmpdi(CCR0, number_of_frames_reg, 0); 2930 __ bne(CCR0, loop); 2931 2932 // Get the return address pointing into the frame manager. 2933 __ ld(R0, 0, pcs_reg); 2934 // Store it in the top interpreter frame. 2935 __ std(R0, _abi0(lr), R1_SP); 2936 // Initialize frame_manager_lr of interpreter top frame. 2937 } 2938 #endif 2939 2940 void SharedRuntime::generate_deopt_blob() { 2941 // Allocate space for the code 2942 ResourceMark rm; 2943 // Setup code generation tools 2944 CodeBuffer buffer("deopt_blob", 2048, 1024); 2945 InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer); 2946 Label exec_mode_initialized; 2947 int frame_size_in_words; 2948 OopMap* map = nullptr; 2949 OopMapSet *oop_maps = new OopMapSet(); 2950 2951 // size of ABI112 plus spill slots for R3_RET and F1_RET. 2952 const int frame_size_in_bytes = frame::native_abi_reg_args_spill_size; 2953 const int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); 2954 int first_frame_size_in_bytes = 0; // frame size of "unpack frame" for call to fetch_unroll_info. 2955 2956 const Register exec_mode_reg = R21_tmp1; 2957 2958 const address start = __ pc(); 2959 2960 #if defined(COMPILER1) || defined(COMPILER2) 2961 // -------------------------------------------------------------------------- 2962 // Prolog for non exception case! 2963 2964 // We have been called from the deopt handler of the deoptee. 2965 // 2966 // deoptee: 2967 // ... 2968 // call X 2969 // ... 2970 // deopt_handler: call_deopt_stub 2971 // cur. return pc --> ... 2972 // 2973 // So currently SR_LR points behind the call in the deopt handler. 2974 // We adjust it such that it points to the start of the deopt handler. 2975 // The return_pc has been stored in the frame of the deoptee and 2976 // will replace the address of the deopt_handler in the call 2977 // to Deoptimization::fetch_unroll_info below. 2978 // We can't grab a free register here, because all registers may 2979 // contain live values, so let the RegisterSaver do the adjustment 2980 // of the return pc. 2981 const int return_pc_adjustment_no_exception = -MacroAssembler::bl64_patchable_size; 2982 2983 // Push the "unpack frame" 2984 // Save everything in sight. 2985 map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, 2986 &first_frame_size_in_bytes, 2987 /*generate_oop_map=*/ true, 2988 return_pc_adjustment_no_exception, 2989 RegisterSaver::return_pc_is_lr); 2990 assert(map != nullptr, "OopMap must have been created"); 2991 2992 __ li(exec_mode_reg, Deoptimization::Unpack_deopt); 2993 // Save exec mode for unpack_frames. 2994 __ b(exec_mode_initialized); 2995 2996 // -------------------------------------------------------------------------- 2997 // Prolog for exception case 2998 2999 // An exception is pending. 3000 // We have been called with a return (interpreter) or a jump (exception blob). 3001 // 3002 // - R3_ARG1: exception oop 3003 // - R4_ARG2: exception pc 3004 3005 int exception_offset = __ pc() - start; 3006 3007 BLOCK_COMMENT("Prolog for exception case"); 3008 3009 // Store exception oop and pc in thread (location known to GC). 3010 // This is needed since the call to "fetch_unroll_info()" may safepoint. 3011 __ std(R3_ARG1, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 3012 __ std(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 3013 __ std(R4_ARG2, _abi0(lr), R1_SP); 3014 3015 // Vanilla deoptimization with an exception pending in exception_oop. 3016 int exception_in_tls_offset = __ pc() - start; 3017 3018 // Push the "unpack frame". 3019 // Save everything in sight. 3020 RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, 3021 &first_frame_size_in_bytes, 3022 /*generate_oop_map=*/ false, 3023 /*return_pc_adjustment_exception=*/ 0, 3024 RegisterSaver::return_pc_is_pre_saved); 3025 3026 // Deopt during an exception. Save exec mode for unpack_frames. 3027 __ li(exec_mode_reg, Deoptimization::Unpack_exception); 3028 3029 // fall through 3030 3031 int reexecute_offset = 0; 3032 #ifdef COMPILER1 3033 __ b(exec_mode_initialized); 3034 3035 // Reexecute entry, similar to c2 uncommon trap 3036 reexecute_offset = __ pc() - start; 3037 3038 RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, 3039 &first_frame_size_in_bytes, 3040 /*generate_oop_map=*/ false, 3041 /*return_pc_adjustment_reexecute=*/ 0, 3042 RegisterSaver::return_pc_is_pre_saved); 3043 __ li(exec_mode_reg, Deoptimization::Unpack_reexecute); 3044 #endif 3045 3046 // -------------------------------------------------------------------------- 3047 __ BIND(exec_mode_initialized); 3048 3049 const Register unroll_block_reg = R22_tmp2; 3050 3051 // We need to set `last_Java_frame' because `fetch_unroll_info' will 3052 // call `last_Java_frame()'. The value of the pc in the frame is not 3053 // particularly important. It just needs to identify this blob. 3054 __ set_last_Java_frame(R1_SP, noreg); 3055 3056 // With EscapeAnalysis turned on, this call may safepoint! 3057 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info), R16_thread, exec_mode_reg); 3058 address calls_return_pc = __ last_calls_return_pc(); 3059 // Set an oopmap for the call site that describes all our saved registers. 3060 oop_maps->add_gc_map(calls_return_pc - start, map); 3061 3062 __ reset_last_Java_frame(); 3063 // Save the return value. 3064 __ mr(unroll_block_reg, R3_RET); 3065 3066 // Restore only the result registers that have been saved 3067 // by save_volatile_registers(...). 3068 RegisterSaver::restore_result_registers(masm, first_frame_size_in_bytes); 3069 3070 // reload the exec mode from the UnrollBlock (it might have changed) 3071 __ lwz(exec_mode_reg, in_bytes(Deoptimization::UnrollBlock::unpack_kind_offset()), unroll_block_reg); 3072 // In excp_deopt_mode, restore and clear exception oop which we 3073 // stored in the thread during exception entry above. The exception 3074 // oop will be the return value of this stub. 3075 Label skip_restore_excp; 3076 __ cmpdi(CCR0, exec_mode_reg, Deoptimization::Unpack_exception); 3077 __ bne(CCR0, skip_restore_excp); 3078 __ ld(R3_RET, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 3079 __ ld(R4_ARG2, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 3080 __ li(R0, 0); 3081 __ std(R0, in_bytes(JavaThread::exception_pc_offset()), R16_thread); 3082 __ std(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); 3083 __ BIND(skip_restore_excp); 3084 3085 __ pop_frame(); 3086 3087 // stack: (deoptee, optional i2c, caller of deoptee, ...). 3088 3089 // pop the deoptee's frame 3090 __ pop_frame(); 3091 3092 // stack: (caller_of_deoptee, ...). 3093 3094 // Freezing continuation frames requires that the caller is trimmed to unextended sp if compiled. 3095 // If not compiled the loaded value is equal to the current SP (see frame::initial_deoptimization_info()) 3096 // and the frame is effectively not resized. 3097 Register caller_sp = R23_tmp3; 3098 __ ld_ptr(caller_sp, Deoptimization::UnrollBlock::initial_info_offset(), unroll_block_reg); 3099 __ resize_frame_absolute(caller_sp, R24_tmp4, R25_tmp5); 3100 3101 // Loop through the `UnrollBlock' info and create interpreter frames. 3102 push_skeleton_frames(masm, true/*deopt*/, 3103 unroll_block_reg, 3104 R23_tmp3, 3105 R24_tmp4, 3106 R25_tmp5, 3107 R26_tmp6, 3108 R27_tmp7); 3109 3110 // stack: (skeletal interpreter frame, ..., optional skeletal 3111 // interpreter frame, optional c2i, caller of deoptee, ...). 3112 3113 // push an `unpack_frame' taking care of float / int return values. 3114 __ push_frame(frame_size_in_bytes, R0/*tmp*/); 3115 3116 // stack: (unpack frame, skeletal interpreter frame, ..., optional 3117 // skeletal interpreter frame, optional c2i, caller of deoptee, 3118 // ...). 3119 3120 // Spill live volatile registers since we'll do a call. 3121 __ std( R3_RET, _native_abi_reg_args_spill(spill_ret), R1_SP); 3122 __ stfd(F1_RET, _native_abi_reg_args_spill(spill_fret), R1_SP); 3123 3124 // Let the unpacker layout information in the skeletal frames just 3125 // allocated. 3126 __ calculate_address_from_global_toc(R3_RET, calls_return_pc, true, true, true, true); 3127 __ set_last_Java_frame(/*sp*/R1_SP, /*pc*/R3_RET); 3128 // This is a call to a LEAF method, so no oop map is required. 3129 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), 3130 R16_thread/*thread*/, exec_mode_reg/*exec_mode*/); 3131 __ reset_last_Java_frame(); 3132 3133 // Restore the volatiles saved above. 3134 __ ld( R3_RET, _native_abi_reg_args_spill(spill_ret), R1_SP); 3135 __ lfd(F1_RET, _native_abi_reg_args_spill(spill_fret), R1_SP); 3136 3137 // Pop the unpack frame. 3138 __ pop_frame(); 3139 __ restore_LR_CR(R0); 3140 3141 // stack: (top interpreter frame, ..., optional interpreter frame, 3142 // optional c2i, caller of deoptee, ...). 3143 3144 // Initialize R14_state. 3145 __ restore_interpreter_state(R11_scratch1); 3146 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); 3147 3148 // Return to the interpreter entry point. 3149 __ blr(); 3150 __ flush(); 3151 #else // COMPILER2 3152 __ unimplemented("deopt blob needed only with compiler"); 3153 int exception_offset = __ pc() - start; 3154 #endif // COMPILER2 3155 3156 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, 3157 reexecute_offset, first_frame_size_in_bytes / wordSize); 3158 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 3159 } 3160 3161 #ifdef COMPILER2 3162 void SharedRuntime::generate_uncommon_trap_blob() { 3163 // Allocate space for the code. 3164 ResourceMark rm; 3165 // Setup code generation tools. 3166 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 3167 InterpreterMacroAssembler* masm = new InterpreterMacroAssembler(&buffer); 3168 address start = __ pc(); 3169 3170 Register unroll_block_reg = R21_tmp1; 3171 Register klass_index_reg = R22_tmp2; 3172 Register unc_trap_reg = R23_tmp3; 3173 Register r_return_pc = R27_tmp7; 3174 3175 OopMapSet* oop_maps = new OopMapSet(); 3176 int frame_size_in_bytes = frame::native_abi_reg_args_size; 3177 OopMap* map = new OopMap(frame_size_in_bytes / sizeof(jint), 0); 3178 3179 // stack: (deoptee, optional i2c, caller_of_deoptee, ...). 3180 3181 // Push a dummy `unpack_frame' and call 3182 // `Deoptimization::uncommon_trap' to pack the compiled frame into a 3183 // vframe array and return the `UnrollBlock' information. 3184 3185 // Save LR to compiled frame. 3186 __ save_LR_CR(R11_scratch1); 3187 3188 // Push an "uncommon_trap" frame. 3189 __ push_frame_reg_args(0, R11_scratch1); 3190 3191 // stack: (unpack frame, deoptee, optional i2c, caller_of_deoptee, ...). 3192 3193 // Set the `unpack_frame' as last_Java_frame. 3194 // `Deoptimization::uncommon_trap' expects it and considers its 3195 // sender frame as the deoptee frame. 3196 // Remember the offset of the instruction whose address will be 3197 // moved to R11_scratch1. 3198 address gc_map_pc = __ pc(); 3199 __ calculate_address_from_global_toc(r_return_pc, gc_map_pc, true, true, true, true); 3200 __ set_last_Java_frame(/*sp*/R1_SP, r_return_pc); 3201 3202 __ mr(klass_index_reg, R3); 3203 __ li(R5_ARG3, Deoptimization::Unpack_uncommon_trap); 3204 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap), 3205 R16_thread, klass_index_reg, R5_ARG3); 3206 3207 // Set an oopmap for the call site. 3208 oop_maps->add_gc_map(gc_map_pc - start, map); 3209 3210 __ reset_last_Java_frame(); 3211 3212 // Pop the `unpack frame'. 3213 __ pop_frame(); 3214 3215 // stack: (deoptee, optional i2c, caller_of_deoptee, ...). 3216 3217 // Save the return value. 3218 __ mr(unroll_block_reg, R3_RET); 3219 3220 // Pop the uncommon_trap frame. 3221 __ pop_frame(); 3222 3223 // stack: (caller_of_deoptee, ...). 3224 3225 #ifdef ASSERT 3226 __ lwz(R22_tmp2, in_bytes(Deoptimization::UnrollBlock::unpack_kind_offset()), unroll_block_reg); 3227 __ cmpdi(CCR0, R22_tmp2, (unsigned)Deoptimization::Unpack_uncommon_trap); 3228 __ asm_assert_eq("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap"); 3229 #endif 3230 3231 // Freezing continuation frames requires that the caller is trimmed to unextended sp if compiled. 3232 // If not compiled the loaded value is equal to the current SP (see frame::initial_deoptimization_info()) 3233 // and the frame is effectively not resized. 3234 Register caller_sp = R23_tmp3; 3235 __ ld_ptr(caller_sp, Deoptimization::UnrollBlock::initial_info_offset(), unroll_block_reg); 3236 __ resize_frame_absolute(caller_sp, R24_tmp4, R25_tmp5); 3237 3238 // Allocate new interpreter frame(s) and possibly a c2i adapter 3239 // frame. 3240 push_skeleton_frames(masm, false/*deopt*/, 3241 unroll_block_reg, 3242 R22_tmp2, 3243 R23_tmp3, 3244 R24_tmp4, 3245 R25_tmp5, 3246 R26_tmp6); 3247 3248 // stack: (skeletal interpreter frame, ..., optional skeletal 3249 // interpreter frame, optional c2i, caller of deoptee, ...). 3250 3251 // Push a dummy `unpack_frame' taking care of float return values. 3252 // Call `Deoptimization::unpack_frames' to layout information in the 3253 // interpreter frames just created. 3254 3255 // Push a simple "unpack frame" here. 3256 __ push_frame_reg_args(0, R11_scratch1); 3257 3258 // stack: (unpack frame, skeletal interpreter frame, ..., optional 3259 // skeletal interpreter frame, optional c2i, caller of deoptee, 3260 // ...). 3261 3262 // Set the "unpack_frame" as last_Java_frame. 3263 __ set_last_Java_frame(/*sp*/R1_SP, r_return_pc); 3264 3265 // Indicate it is the uncommon trap case. 3266 __ li(unc_trap_reg, Deoptimization::Unpack_uncommon_trap); 3267 // Let the unpacker layout information in the skeletal frames just 3268 // allocated. 3269 __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames), 3270 R16_thread, unc_trap_reg); 3271 3272 __ reset_last_Java_frame(); 3273 // Pop the `unpack frame'. 3274 __ pop_frame(); 3275 // Restore LR from top interpreter frame. 3276 __ restore_LR_CR(R11_scratch1); 3277 3278 // stack: (top interpreter frame, ..., optional interpreter frame, 3279 // optional c2i, caller of deoptee, ...). 3280 3281 __ restore_interpreter_state(R11_scratch1); 3282 __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1); 3283 3284 // Return to the interpreter entry point. 3285 __ blr(); 3286 3287 masm->flush(); 3288 3289 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, frame_size_in_bytes/wordSize); 3290 } 3291 #endif // COMPILER2 3292 3293 // Generate a special Compile2Runtime blob that saves all registers, and setup oopmap. 3294 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 3295 assert(StubRoutines::forward_exception_entry() != nullptr, 3296 "must be generated before"); 3297 3298 ResourceMark rm; 3299 OopMapSet *oop_maps = new OopMapSet(); 3300 OopMap* map; 3301 3302 // Allocate space for the code. Setup code generation tools. 3303 CodeBuffer buffer("handler_blob", 2048, 1024); 3304 MacroAssembler* masm = new MacroAssembler(&buffer); 3305 3306 address start = __ pc(); 3307 int frame_size_in_bytes = 0; 3308 3309 RegisterSaver::ReturnPCLocation return_pc_location; 3310 bool cause_return = (poll_type == POLL_AT_RETURN); 3311 if (cause_return) { 3312 // Nothing to do here. The frame has already been popped in MachEpilogNode. 3313 // Register LR already contains the return pc. 3314 return_pc_location = RegisterSaver::return_pc_is_pre_saved; 3315 } else { 3316 // Use thread()->saved_exception_pc() as return pc. 3317 return_pc_location = RegisterSaver::return_pc_is_thread_saved_exception_pc; 3318 } 3319 3320 bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP); 3321 3322 // Save registers, fpu state, and flags. Set R31 = return pc. 3323 map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, 3324 &frame_size_in_bytes, 3325 /*generate_oop_map=*/ true, 3326 /*return_pc_adjustment=*/0, 3327 return_pc_location, save_vectors); 3328 3329 // The following is basically a call_VM. However, we need the precise 3330 // address of the call in order to generate an oopmap. Hence, we do all the 3331 // work ourselves. 3332 __ set_last_Java_frame(/*sp=*/R1_SP, /*pc=*/noreg); 3333 3334 // The return address must always be correct so that the frame constructor 3335 // never sees an invalid pc. 3336 3337 // Do the call 3338 __ call_VM_leaf(call_ptr, R16_thread); 3339 address calls_return_pc = __ last_calls_return_pc(); 3340 3341 // Set an oopmap for the call site. This oopmap will map all 3342 // oop-registers and debug-info registers as callee-saved. This 3343 // will allow deoptimization at this safepoint to find all possible 3344 // debug-info recordings, as well as let GC find all oops. 3345 oop_maps->add_gc_map(calls_return_pc - start, map); 3346 3347 Label noException; 3348 3349 // Clear the last Java frame. 3350 __ reset_last_Java_frame(); 3351 3352 BLOCK_COMMENT(" Check pending exception."); 3353 const Register pending_exception = R0; 3354 __ ld(pending_exception, thread_(pending_exception)); 3355 __ cmpdi(CCR0, pending_exception, 0); 3356 __ beq(CCR0, noException); 3357 3358 // Exception pending 3359 RegisterSaver::restore_live_registers_and_pop_frame(masm, 3360 frame_size_in_bytes, 3361 /*restore_ctr=*/true, save_vectors); 3362 3363 BLOCK_COMMENT(" Jump to forward_exception_entry."); 3364 // Jump to forward_exception_entry, with the issuing PC in LR 3365 // so it looks like the original nmethod called forward_exception_entry. 3366 __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); 3367 3368 // No exception case. 3369 __ BIND(noException); 3370 3371 if (!cause_return) { 3372 Label no_adjust; 3373 // If our stashed return pc was modified by the runtime we avoid touching it 3374 __ ld(R0, frame_size_in_bytes + _abi0(lr), R1_SP); 3375 __ cmpd(CCR0, R0, R31); 3376 __ bne(CCR0, no_adjust); 3377 3378 // Adjust return pc forward to step over the safepoint poll instruction 3379 __ addi(R31, R31, 4); 3380 __ std(R31, frame_size_in_bytes + _abi0(lr), R1_SP); 3381 3382 __ bind(no_adjust); 3383 } 3384 3385 // Normal exit, restore registers and exit. 3386 RegisterSaver::restore_live_registers_and_pop_frame(masm, 3387 frame_size_in_bytes, 3388 /*restore_ctr=*/true, save_vectors); 3389 3390 __ blr(); 3391 3392 // Make sure all code is generated 3393 masm->flush(); 3394 3395 // Fill-out other meta info 3396 // CodeBlob frame size is in words. 3397 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_bytes / wordSize); 3398 } 3399 3400 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss) 3401 // 3402 // Generate a stub that calls into the vm to find out the proper destination 3403 // of a java call. All the argument registers are live at this point 3404 // but since this is generic code we don't know what they are and the caller 3405 // must do any gc of the args. 3406 // 3407 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 3408 3409 // allocate space for the code 3410 ResourceMark rm; 3411 3412 CodeBuffer buffer(name, 1000, 512); 3413 MacroAssembler* masm = new MacroAssembler(&buffer); 3414 3415 int frame_size_in_bytes; 3416 3417 OopMapSet *oop_maps = new OopMapSet(); 3418 OopMap* map = nullptr; 3419 3420 address start = __ pc(); 3421 3422 map = RegisterSaver::push_frame_reg_args_and_save_live_registers(masm, 3423 &frame_size_in_bytes, 3424 /*generate_oop_map*/ true, 3425 /*return_pc_adjustment*/ 0, 3426 RegisterSaver::return_pc_is_lr); 3427 3428 // Use noreg as last_Java_pc, the return pc will be reconstructed 3429 // from the physical frame. 3430 __ set_last_Java_frame(/*sp*/R1_SP, noreg); 3431 3432 int frame_complete = __ offset(); 3433 3434 // Pass R19_method as 2nd (optional) argument, used by 3435 // counter_overflow_stub. 3436 __ call_VM_leaf(destination, R16_thread, R19_method); 3437 address calls_return_pc = __ last_calls_return_pc(); 3438 // Set an oopmap for the call site. 3439 // We need this not only for callee-saved registers, but also for volatile 3440 // registers that the compiler might be keeping live across a safepoint. 3441 // Create the oopmap for the call's return pc. 3442 oop_maps->add_gc_map(calls_return_pc - start, map); 3443 3444 // R3_RET contains the address we are going to jump to assuming no exception got installed. 3445 3446 // clear last_Java_sp 3447 __ reset_last_Java_frame(); 3448 3449 // Check for pending exceptions. 3450 BLOCK_COMMENT("Check for pending exceptions."); 3451 Label pending; 3452 __ ld(R11_scratch1, thread_(pending_exception)); 3453 __ cmpdi(CCR0, R11_scratch1, 0); 3454 __ bne(CCR0, pending); 3455 3456 __ mtctr(R3_RET); // Ctr will not be touched by restore_live_registers_and_pop_frame. 3457 3458 RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ false); 3459 3460 // Get the returned method. 3461 __ get_vm_result_2(R19_method); 3462 3463 __ bctr(); 3464 3465 3466 // Pending exception after the safepoint. 3467 __ BIND(pending); 3468 3469 RegisterSaver::restore_live_registers_and_pop_frame(masm, frame_size_in_bytes, /*restore_ctr*/ true); 3470 3471 // exception pending => remove activation and forward to exception handler 3472 3473 __ li(R11_scratch1, 0); 3474 __ ld(R3_ARG1, thread_(pending_exception)); 3475 __ std(R11_scratch1, in_bytes(JavaThread::vm_result_offset()), R16_thread); 3476 __ b64_patchable(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type); 3477 3478 // ------------- 3479 // Make sure all code is generated. 3480 masm->flush(); 3481 3482 // return the blob 3483 // frame_size_words or bytes?? 3484 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_bytes/wordSize, 3485 oop_maps, true); 3486 } 3487 3488 3489 //------------------------------Montgomery multiplication------------------------ 3490 // 3491 3492 // Subtract 0:b from carry:a. Return carry. 3493 static unsigned long 3494 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) { 3495 long i = 0; 3496 unsigned long tmp, tmp2; 3497 __asm__ __volatile__ ( 3498 "subfc %[tmp], %[tmp], %[tmp] \n" // pre-set CA 3499 "mtctr %[len] \n" 3500 "0: \n" 3501 "ldx %[tmp], %[i], %[a] \n" 3502 "ldx %[tmp2], %[i], %[b] \n" 3503 "subfe %[tmp], %[tmp2], %[tmp] \n" // subtract extended 3504 "stdx %[tmp], %[i], %[a] \n" 3505 "addi %[i], %[i], 8 \n" 3506 "bdnz 0b \n" 3507 "addme %[tmp], %[carry] \n" // carry + CA - 1 3508 : [i]"+b"(i), [tmp]"=&r"(tmp), [tmp2]"=&r"(tmp2) 3509 : [a]"r"(a), [b]"r"(b), [carry]"r"(carry), [len]"r"(len) 3510 : "ctr", "xer", "memory" 3511 ); 3512 return tmp; 3513 } 3514 3515 // Multiply (unsigned) Long A by Long B, accumulating the double- 3516 // length result into the accumulator formed of T0, T1, and T2. 3517 inline void MACC(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) { 3518 unsigned long hi, lo; 3519 __asm__ __volatile__ ( 3520 "mulld %[lo], %[A], %[B] \n" 3521 "mulhdu %[hi], %[A], %[B] \n" 3522 "addc %[T0], %[T0], %[lo] \n" 3523 "adde %[T1], %[T1], %[hi] \n" 3524 "addze %[T2], %[T2] \n" 3525 : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2) 3526 : [A]"r"(A), [B]"r"(B) 3527 : "xer" 3528 ); 3529 } 3530 3531 // As above, but add twice the double-length result into the 3532 // accumulator. 3533 inline void MACC2(unsigned long A, unsigned long B, unsigned long &T0, unsigned long &T1, unsigned long &T2) { 3534 unsigned long hi, lo; 3535 __asm__ __volatile__ ( 3536 "mulld %[lo], %[A], %[B] \n" 3537 "mulhdu %[hi], %[A], %[B] \n" 3538 "addc %[T0], %[T0], %[lo] \n" 3539 "adde %[T1], %[T1], %[hi] \n" 3540 "addze %[T2], %[T2] \n" 3541 "addc %[T0], %[T0], %[lo] \n" 3542 "adde %[T1], %[T1], %[hi] \n" 3543 "addze %[T2], %[T2] \n" 3544 : [hi]"=&r"(hi), [lo]"=&r"(lo), [T0]"+r"(T0), [T1]"+r"(T1), [T2]"+r"(T2) 3545 : [A]"r"(A), [B]"r"(B) 3546 : "xer" 3547 ); 3548 } 3549 3550 // Fast Montgomery multiplication. The derivation of the algorithm is 3551 // in "A Cryptographic Library for the Motorola DSP56000, 3552 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237". 3553 static void 3554 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[], 3555 unsigned long m[], unsigned long inv, int len) { 3556 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 3557 int i; 3558 3559 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 3560 3561 for (i = 0; i < len; i++) { 3562 int j; 3563 for (j = 0; j < i; j++) { 3564 MACC(a[j], b[i-j], t0, t1, t2); 3565 MACC(m[j], n[i-j], t0, t1, t2); 3566 } 3567 MACC(a[i], b[0], t0, t1, t2); 3568 m[i] = t0 * inv; 3569 MACC(m[i], n[0], t0, t1, t2); 3570 3571 assert(t0 == 0, "broken Montgomery multiply"); 3572 3573 t0 = t1; t1 = t2; t2 = 0; 3574 } 3575 3576 for (i = len; i < 2*len; i++) { 3577 int j; 3578 for (j = i-len+1; j < len; j++) { 3579 MACC(a[j], b[i-j], t0, t1, t2); 3580 MACC(m[j], n[i-j], t0, t1, t2); 3581 } 3582 m[i-len] = t0; 3583 t0 = t1; t1 = t2; t2 = 0; 3584 } 3585 3586 while (t0) { 3587 t0 = sub(m, n, t0, len); 3588 } 3589 } 3590 3591 // Fast Montgomery squaring. This uses asymptotically 25% fewer 3592 // multiplies so it should be up to 25% faster than Montgomery 3593 // multiplication. However, its loop control is more complex and it 3594 // may actually run slower on some machines. 3595 static void 3596 montgomery_square(unsigned long a[], unsigned long n[], 3597 unsigned long m[], unsigned long inv, int len) { 3598 unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator 3599 int i; 3600 3601 assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply"); 3602 3603 for (i = 0; i < len; i++) { 3604 int j; 3605 int end = (i+1)/2; 3606 for (j = 0; j < end; j++) { 3607 MACC2(a[j], a[i-j], t0, t1, t2); 3608 MACC(m[j], n[i-j], t0, t1, t2); 3609 } 3610 if ((i & 1) == 0) { 3611 MACC(a[j], a[j], t0, t1, t2); 3612 } 3613 for (; j < i; j++) { 3614 MACC(m[j], n[i-j], t0, t1, t2); 3615 } 3616 m[i] = t0 * inv; 3617 MACC(m[i], n[0], t0, t1, t2); 3618 3619 assert(t0 == 0, "broken Montgomery square"); 3620 3621 t0 = t1; t1 = t2; t2 = 0; 3622 } 3623 3624 for (i = len; i < 2*len; i++) { 3625 int start = i-len+1; 3626 int end = start + (len - start)/2; 3627 int j; 3628 for (j = start; j < end; j++) { 3629 MACC2(a[j], a[i-j], t0, t1, t2); 3630 MACC(m[j], n[i-j], t0, t1, t2); 3631 } 3632 if ((i & 1) == 0) { 3633 MACC(a[j], a[j], t0, t1, t2); 3634 } 3635 for (; j < len; j++) { 3636 MACC(m[j], n[i-j], t0, t1, t2); 3637 } 3638 m[i-len] = t0; 3639 t0 = t1; t1 = t2; t2 = 0; 3640 } 3641 3642 while (t0) { 3643 t0 = sub(m, n, t0, len); 3644 } 3645 } 3646 3647 // The threshold at which squaring is advantageous was determined 3648 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz. 3649 // Doesn't seem to be relevant for Power8 so we use the same value. 3650 #define MONTGOMERY_SQUARING_THRESHOLD 64 3651 3652 // Copy len longwords from s to d, word-swapping as we go. The 3653 // destination array is reversed. 3654 static void reverse_words(unsigned long *s, unsigned long *d, int len) { 3655 d += len; 3656 while(len-- > 0) { 3657 d--; 3658 unsigned long s_val = *s; 3659 // Swap words in a longword on little endian machines. 3660 #ifdef VM_LITTLE_ENDIAN 3661 s_val = (s_val << 32) | (s_val >> 32); 3662 #endif 3663 *d = s_val; 3664 s++; 3665 } 3666 } 3667 3668 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints, 3669 jint len, jlong inv, 3670 jint *m_ints) { 3671 len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls. 3672 assert(len % 2 == 0, "array length in montgomery_multiply must be even"); 3673 int longwords = len/2; 3674 3675 // Make very sure we don't use so much space that the stack might 3676 // overflow. 512 jints corresponds to an 16384-bit integer and 3677 // will use here a total of 8k bytes of stack space. 3678 int divisor = sizeof(unsigned long) * 4; 3679 guarantee(longwords <= 8192 / divisor, "must be"); 3680 int total_allocation = longwords * sizeof (unsigned long) * 4; 3681 unsigned long *scratch = (unsigned long *)alloca(total_allocation); 3682 3683 // Local scratch arrays 3684 unsigned long 3685 *a = scratch + 0 * longwords, 3686 *b = scratch + 1 * longwords, 3687 *n = scratch + 2 * longwords, 3688 *m = scratch + 3 * longwords; 3689 3690 reverse_words((unsigned long *)a_ints, a, longwords); 3691 reverse_words((unsigned long *)b_ints, b, longwords); 3692 reverse_words((unsigned long *)n_ints, n, longwords); 3693 3694 ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords); 3695 3696 reverse_words(m, (unsigned long *)m_ints, longwords); 3697 } 3698 3699 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints, 3700 jint len, jlong inv, 3701 jint *m_ints) { 3702 len = len & 0x7fffFFFF; // C2 does not respect int to long conversion for stub calls. 3703 assert(len % 2 == 0, "array length in montgomery_square must be even"); 3704 int longwords = len/2; 3705 3706 // Make very sure we don't use so much space that the stack might 3707 // overflow. 512 jints corresponds to an 16384-bit integer and 3708 // will use here a total of 6k bytes of stack space. 3709 int divisor = sizeof(unsigned long) * 3; 3710 guarantee(longwords <= (8192 / divisor), "must be"); 3711 int total_allocation = longwords * sizeof (unsigned long) * 3; 3712 unsigned long *scratch = (unsigned long *)alloca(total_allocation); 3713 3714 // Local scratch arrays 3715 unsigned long 3716 *a = scratch + 0 * longwords, 3717 *n = scratch + 1 * longwords, 3718 *m = scratch + 2 * longwords; 3719 3720 reverse_words((unsigned long *)a_ints, a, longwords); 3721 reverse_words((unsigned long *)n_ints, n, longwords); 3722 3723 if (len >= MONTGOMERY_SQUARING_THRESHOLD) { 3724 ::montgomery_square(a, n, m, (unsigned long)inv, longwords); 3725 } else { 3726 ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords); 3727 } 3728 3729 reverse_words(m, (unsigned long *)m_ints, longwords); 3730 }