1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "c1/c1_LIR.hpp" 29 #include "c1/c1_MacroAssembler.hpp" 30 #include "c1/c1_Runtime1.hpp" 31 #include "classfile/systemDictionary.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.hpp" 34 #include "interpreter/interpreter.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/os.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 #include "runtime/stubRoutines.hpp" 41 42 void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, 43 FloatRegister freg0, FloatRegister freg1, 44 Register result) { 45 if (is_float) { 46 float_compare(result, freg0, freg1, unordered_result); 47 } else { 48 double_compare(result, freg0, freg1, unordered_result); 49 } 50 } 51 52 int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register temp, Label& slow_case) { 53 const int aligned_mask = BytesPerWord - 1; 54 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 55 assert_different_registers(hdr, obj, disp_hdr, temp, t0, t1); 56 int null_check_offset = -1; 57 58 verify_oop(obj); 59 60 // save object being locked into the BasicObjectLock 61 sd(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 62 63 null_check_offset = offset(); 64 65 if (DiagnoseSyncOnValueBasedClasses != 0) { 66 load_klass(hdr, obj); 67 lwu(hdr, Address(hdr, Klass::access_flags_offset())); 68 test_bit(temp, hdr, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 69 bnez(temp, slow_case, true /* is_far */); 70 } 71 72 if (LockingMode == LM_LIGHTWEIGHT) { 73 lightweight_lock(obj, hdr, temp, t1, slow_case); 74 } else if (LockingMode == LM_LEGACY) { 75 Label done; 76 // Load object header 77 ld(hdr, Address(obj, hdr_offset)); 78 // and mark it as unlocked 79 ori(hdr, hdr, markWord::unlocked_value); 80 // save unlocked object header into the displaced header location on the stack 81 sd(hdr, Address(disp_hdr, 0)); 82 // test if object header is still the same (i.e. unlocked), and if so, store the 83 // displaced header address in the object header - if it is not the same, get the 84 // object header instead 85 la(temp, Address(obj, hdr_offset)); 86 cmpxchgptr(hdr, disp_hdr, temp, t1, done, /*fallthough*/nullptr); 87 // if the object header was the same, we're done 88 // if the object header was not the same, it is now in the hdr register 89 // => test if it is a stack pointer into the same stack (recursive locking), i.e.: 90 // 91 // 1) (hdr & aligned_mask) == 0 92 // 2) sp <= hdr 93 // 3) hdr <= sp + page_size 94 // 95 // these 3 tests can be done by evaluating the following expression: 96 // 97 // (hdr -sp) & (aligned_mask - page_size) 98 // 99 // assuming both the stack pointer and page_size have their least 100 // significant 2 bits cleared and page_size is a power of 2 101 sub(hdr, hdr, sp); 102 mv(temp, aligned_mask - (int)os::vm_page_size()); 103 andr(hdr, hdr, temp); 104 // for recursive locking, the result is zero => save it in the displaced header 105 // location (null in the displaced hdr location indicates recursive locking) 106 sd(hdr, Address(disp_hdr, 0)); 107 // otherwise we don't care about the result and handle locking via runtime call 108 bnez(hdr, slow_case, /* is_far */ true); 109 // done 110 bind(done); 111 } 112 113 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 114 return null_check_offset; 115 } 116 117 void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Register temp, Label& slow_case) { 118 const int aligned_mask = BytesPerWord - 1; 119 const int hdr_offset = oopDesc::mark_offset_in_bytes(); 120 assert_different_registers(hdr, obj, disp_hdr, temp, t0, t1); 121 Label done; 122 123 if (LockingMode != LM_LIGHTWEIGHT) { 124 // load displaced header 125 ld(hdr, Address(disp_hdr, 0)); 126 // if the loaded hdr is null we had recursive locking 127 // if we had recursive locking, we are done 128 beqz(hdr, done); 129 } 130 131 // load object 132 ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset())); 133 verify_oop(obj); 134 135 if (LockingMode == LM_LIGHTWEIGHT) { 136 lightweight_unlock(obj, hdr, temp, t1, slow_case); 137 } else if (LockingMode == LM_LEGACY) { 138 // test if object header is pointing to the displaced header, and if so, restore 139 // the displaced header in the object - if the object header is not pointing to 140 // the displaced header, get the object header instead 141 // if the object header was not pointing to the displaced header, 142 // we do unlocking via runtime call 143 if (hdr_offset) { 144 la(temp, Address(obj, hdr_offset)); 145 cmpxchgptr(disp_hdr, hdr, temp, t1, done, &slow_case); 146 } else { 147 cmpxchgptr(disp_hdr, hdr, obj, t1, done, &slow_case); 148 } 149 // done 150 bind(done); 151 } 152 153 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 154 } 155 156 // Defines obj, preserves var_size_in_bytes 157 void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, Label& slow_case) { 158 if (UseTLAB) { 159 tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, /* is_far */ true); 160 } else { 161 j(slow_case); 162 } 163 } 164 165 void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register tmp1, Register tmp2) { 166 assert_different_registers(obj, klass, len, tmp1, tmp2); 167 // This assumes that all prototype bits fitr in an int32_t 168 mv(tmp1, (int32_t)(intptr_t)markWord::prototype().value()); 169 sd(tmp1, Address(obj, oopDesc::mark_offset_in_bytes())); 170 171 if (UseCompressedClassPointers) { // Take care not to kill klass 172 encode_klass_not_null(tmp1, klass, tmp2); 173 sw(tmp1, Address(obj, oopDesc::klass_offset_in_bytes())); 174 } else { 175 sd(klass, Address(obj, oopDesc::klass_offset_in_bytes())); 176 } 177 178 if (len->is_valid()) { 179 sw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); 180 if (!is_aligned(arrayOopDesc::header_size_in_bytes(), BytesPerWord)) { 181 assert(is_aligned(arrayOopDesc::header_size_in_bytes(), BytesPerInt), "must be 4-byte aligned"); 182 sw(zr, Address(obj, arrayOopDesc::header_size_in_bytes())); 183 } 184 } else if (UseCompressedClassPointers) { 185 store_klass_gap(obj, zr); 186 } 187 } 188 189 // preserves obj, destroys len_in_bytes 190 void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register tmp) { 191 assert(hdr_size_in_bytes >= 0, "header size must be positive or 0"); 192 Label done; 193 194 // len_in_bytes is positive and ptr sized 195 sub(len_in_bytes, len_in_bytes, hdr_size_in_bytes); 196 beqz(len_in_bytes, done); 197 198 // Preserve obj 199 if (hdr_size_in_bytes) { 200 add(obj, obj, hdr_size_in_bytes); 201 } 202 zero_memory(obj, len_in_bytes, tmp); 203 if (hdr_size_in_bytes) { 204 sub(obj, obj, hdr_size_in_bytes); 205 } 206 207 bind(done); 208 } 209 210 void C1_MacroAssembler::allocate_object(Register obj, Register tmp1, Register tmp2, int header_size, int object_size, Register klass, Label& slow_case) { 211 assert_different_registers(obj, tmp1, tmp2); 212 assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); 213 214 try_allocate(obj, noreg, object_size * BytesPerWord, tmp1, tmp2, slow_case); 215 216 initialize_object(obj, klass, noreg, object_size * HeapWordSize, tmp1, tmp2, UseTLAB); 217 } 218 219 void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, bool is_tlab_allocated) { 220 assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, 221 "con_size_in_bytes is not multiple of alignment"); 222 const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; 223 224 initialize_header(obj, klass, noreg, tmp1, tmp2); 225 226 if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) { 227 // clear rest of allocated space 228 const Register index = tmp2; 229 // 16: multiplier for threshold 230 const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below) 231 if (var_size_in_bytes != noreg) { 232 mv(index, var_size_in_bytes); 233 initialize_body(obj, index, hdr_size_in_bytes, tmp1); 234 } else if (con_size_in_bytes <= threshold) { 235 // use explicit null stores 236 int i = hdr_size_in_bytes; 237 if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { // 2: multiplier for BytesPerWord 238 sd(zr, Address(obj, i)); 239 i += BytesPerWord; 240 } 241 for (; i < con_size_in_bytes; i += BytesPerWord) { 242 sd(zr, Address(obj, i)); 243 } 244 } else if (con_size_in_bytes > hdr_size_in_bytes) { 245 block_comment("zero memory"); 246 // use loop to null out the fields 247 int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord; 248 mv(index, words / 8); // 8: byte size 249 250 const int unroll = 8; // Number of sd(zr) instructions we'll unroll 251 int remainder = words % unroll; 252 la(t0, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord)); 253 254 Label entry_point, loop; 255 j(entry_point); 256 257 bind(loop); 258 sub(index, index, 1); 259 for (int i = -unroll; i < 0; i++) { 260 if (-i == remainder) { 261 bind(entry_point); 262 } 263 sd(zr, Address(t0, i * wordSize)); 264 } 265 if (remainder == 0) { 266 bind(entry_point); 267 } 268 add(t0, t0, unroll * wordSize); 269 bnez(index, loop); 270 } 271 } 272 273 membar(MacroAssembler::StoreStore); 274 275 if (CURRENT_ENV->dtrace_alloc_probes()) { 276 assert(obj == x10, "must be"); 277 far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); 278 } 279 280 verify_oop(obj); 281 } 282 283 void C1_MacroAssembler::allocate_array(Register obj, Register len, Register tmp1, Register tmp2, int base_offset_in_bytes, int f, Register klass, Label& slow_case) { 284 assert_different_registers(obj, len, tmp1, tmp2, klass); 285 286 // determine alignment mask 287 assert(!(BytesPerWord & 1), "must be multiple of 2 for masking code to work"); 288 289 // check for negative or excessive length 290 mv(t0, (int32_t)max_array_allocation_length); 291 bgeu(len, t0, slow_case, /* is_far */ true); 292 293 const Register arr_size = tmp2; // okay to be the same 294 // align object end 295 mv(arr_size, (int32_t)base_offset_in_bytes + MinObjAlignmentInBytesMask); 296 shadd(arr_size, len, arr_size, t0, f); 297 andi(arr_size, arr_size, ~(uint)MinObjAlignmentInBytesMask); 298 299 try_allocate(obj, arr_size, 0, tmp1, tmp2, slow_case); 300 301 initialize_header(obj, klass, len, tmp1, tmp2); 302 303 // clear rest of allocated space 304 const Register len_zero = len; 305 // We align-up the header size to word-size, because we clear the 306 // possible alignment gap in initialize_header(). 307 int hdr_size = align_up(base_offset_in_bytes, BytesPerWord); 308 initialize_body(obj, arr_size, hdr_size, len_zero); 309 310 membar(MacroAssembler::StoreStore); 311 312 if (CURRENT_ENV->dtrace_alloc_probes()) { 313 assert(obj == x10, "must be"); 314 far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); 315 } 316 317 verify_oop(obj); 318 } 319 320 void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache, Label &L) { 321 verify_oop(receiver); 322 // explicit null check not needed since load from [klass_offset] causes a trap 323 // check against inline cache 324 assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check"); 325 assert_different_registers(receiver, iCache, t0, t2); 326 cmp_klass(receiver, iCache, t0, t2 /* call-clobbered t2 as a tmp */, L); 327 } 328 329 void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes) { 330 assert(bang_size_in_bytes >= framesize, "stack bang size incorrect"); 331 // Make sure there is enough stack space for this method's activation. 332 // Note that we do this before creating a frame. 333 generate_stack_overflow_check(bang_size_in_bytes); 334 MacroAssembler::build_frame(framesize); 335 336 // Insert nmethod entry barrier into frame. 337 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 338 bs->nmethod_entry_barrier(this, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 339 } 340 341 void C1_MacroAssembler::remove_frame(int framesize) { 342 MacroAssembler::remove_frame(framesize); 343 } 344 345 346 void C1_MacroAssembler::verified_entry(bool breakAtEntry) { 347 // If we have to make this method not-entrant we'll overwrite its 348 // first instruction with a jump. For this action to be legal we 349 // must ensure that this first instruction is a J, JAL or NOP. 350 // Make it a NOP. 351 IncompressibleRegion ir(this); // keep the nop as 4 bytes for patching. 352 assert_alignment(pc()); 353 nop(); // 4 bytes 354 } 355 356 void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) { 357 // fp + -2: link 358 // + -1: return address 359 // + 0: argument with offset 0 360 // + 1: argument with offset 1 361 // + 2: ... 362 ld(reg, Address(fp, offset_in_words * BytesPerWord)); 363 } 364 365 #ifndef PRODUCT 366 367 void C1_MacroAssembler::verify_stack_oop(int stack_offset) { 368 if (!VerifyOops) { 369 return; 370 } 371 verify_oop_addr(Address(sp, stack_offset)); 372 } 373 374 void C1_MacroAssembler::verify_not_null_oop(Register r) { 375 if (!VerifyOops) return; 376 Label not_null; 377 bnez(r, not_null); 378 stop("non-null oop required"); 379 bind(not_null); 380 verify_oop(r); 381 } 382 383 void C1_MacroAssembler::invalidate_registers(bool inv_x10, bool inv_x9, bool inv_x12, bool inv_x13, bool inv_x14, bool inv_x15) { 384 #ifdef ASSERT 385 static int nn; 386 if (inv_x10) { mv(x10, 0xDEAD); } 387 if (inv_x9) { mv(x9, 0xDEAD); } 388 if (inv_x12) { mv(x12, nn++); } 389 if (inv_x13) { mv(x13, 0xDEAD); } 390 if (inv_x14) { mv(x14, 0xDEAD); } 391 if (inv_x15) { mv(x15, 0xDEAD); } 392 #endif // ASSERT 393 } 394 #endif // ifndef PRODUCT 395 396 typedef void (C1_MacroAssembler::*c1_cond_branch_insn)(Register op1, Register op2, Label& label, bool is_far); 397 typedef void (C1_MacroAssembler::*c1_float_cond_branch_insn)(FloatRegister op1, FloatRegister op2, 398 Label& label, bool is_far, bool is_unordered); 399 400 static c1_cond_branch_insn c1_cond_branch[] = 401 { 402 /* SHORT branches */ 403 (c1_cond_branch_insn)&MacroAssembler::beq, 404 (c1_cond_branch_insn)&MacroAssembler::bne, 405 (c1_cond_branch_insn)&MacroAssembler::blt, 406 (c1_cond_branch_insn)&MacroAssembler::ble, 407 (c1_cond_branch_insn)&MacroAssembler::bge, 408 (c1_cond_branch_insn)&MacroAssembler::bgt, 409 (c1_cond_branch_insn)&MacroAssembler::bleu, // lir_cond_belowEqual 410 (c1_cond_branch_insn)&MacroAssembler::bgeu // lir_cond_aboveEqual 411 }; 412 413 static c1_float_cond_branch_insn c1_float_cond_branch[] = 414 { 415 /* FLOAT branches */ 416 (c1_float_cond_branch_insn)&MacroAssembler::float_beq, 417 (c1_float_cond_branch_insn)&MacroAssembler::float_bne, 418 (c1_float_cond_branch_insn)&MacroAssembler::float_blt, 419 (c1_float_cond_branch_insn)&MacroAssembler::float_ble, 420 (c1_float_cond_branch_insn)&MacroAssembler::float_bge, 421 (c1_float_cond_branch_insn)&MacroAssembler::float_bgt, 422 nullptr, // lir_cond_belowEqual 423 nullptr, // lir_cond_aboveEqual 424 425 /* DOUBLE branches */ 426 (c1_float_cond_branch_insn)&MacroAssembler::double_beq, 427 (c1_float_cond_branch_insn)&MacroAssembler::double_bne, 428 (c1_float_cond_branch_insn)&MacroAssembler::double_blt, 429 (c1_float_cond_branch_insn)&MacroAssembler::double_ble, 430 (c1_float_cond_branch_insn)&MacroAssembler::double_bge, 431 (c1_float_cond_branch_insn)&MacroAssembler::double_bgt, 432 nullptr, // lir_cond_belowEqual 433 nullptr // lir_cond_aboveEqual 434 }; 435 436 void C1_MacroAssembler::c1_cmp_branch(int cmpFlag, Register op1, Register op2, Label& label, 437 BasicType type, bool is_far) { 438 if (type == T_OBJECT || type == T_ARRAY) { 439 assert(cmpFlag == lir_cond_equal || cmpFlag == lir_cond_notEqual, "Should be equal or notEqual"); 440 if (cmpFlag == lir_cond_equal) { 441 beq(op1, op2, label, is_far); 442 } else { 443 bne(op1, op2, label, is_far); 444 } 445 } else { 446 assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(c1_cond_branch) / sizeof(c1_cond_branch[0])), 447 "invalid c1 conditional branch index"); 448 (this->*c1_cond_branch[cmpFlag])(op1, op2, label, is_far); 449 } 450 } 451 452 void C1_MacroAssembler::c1_float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label, 453 bool is_far, bool is_unordered) { 454 assert(cmpFlag >= 0 && 455 cmpFlag < (int)(sizeof(c1_float_cond_branch) / sizeof(c1_float_cond_branch[0])), 456 "invalid c1 float conditional branch index"); 457 (this->*c1_float_cond_branch[cmpFlag])(op1, op2, label, is_far, is_unordered); 458 }