1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 // Get method->_constMethod->_result_type 50 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 51 ld(t0, Address(t0, Method::const_offset())); 52 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 53 54 Label done, notBool, notByte, notChar; 55 56 // common case first 57 mv(t1, T_INT); 58 beq(t0, t1, done); 59 60 // mask integer result to narrower return type. 61 mv(t1, T_BOOLEAN); 62 bne(t0, t1, notBool); 63 64 andi(result, result, 0x1); 65 j(done); 66 67 bind(notBool); 68 mv(t1, T_BYTE); 69 bne(t0, t1, notByte); 70 sign_extend(result, result, 8); 71 j(done); 72 73 bind(notByte); 74 mv(t1, T_CHAR); 75 bne(t0, t1, notChar); 76 zero_extend(result, result, 16); 77 j(done); 78 79 bind(notChar); 80 sign_extend(result, result, 16); 81 82 bind(done); 83 sign_extend(result, result, 32); 84 } 85 86 void InterpreterMacroAssembler::jump_to_entry(address entry) { 87 assert(entry != nullptr, "Entry must have been generated by now"); 88 j(entry); 89 } 90 91 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 92 if (JvmtiExport::can_pop_frame()) { 93 Label L; 94 // Initiate popframe handling only if it is not already being 95 // processed. If the flag has the popframe_processing bit set, 96 // it means that this code is called *during* popframe handling - we 97 // don't want to reenter. 98 // This method is only called just after the call into the vm in 99 // call_VM_base, so the arg registers are available. 100 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 101 test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit)); 102 beqz(t0, L); 103 test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit)); 104 bnez(t0, L); 105 // Call Interpreter::remove_activation_preserving_args_entry() to get the 106 // address of the same-named entrypoint in the generated interpreter code. 107 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 108 jr(x10); 109 bind(L); 110 } 111 } 112 113 114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 115 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 116 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 117 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 118 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 119 switch (state) { 120 case atos: 121 ld(x10, oop_addr); 122 sd(zr, oop_addr); 123 verify_oop(x10); 124 break; 125 case ltos: 126 ld(x10, val_addr); 127 break; 128 case btos: // fall through 129 case ztos: // fall through 130 case ctos: // fall through 131 case stos: // fall through 132 case itos: 133 lwu(x10, val_addr); 134 break; 135 case ftos: 136 flw(f10, val_addr); 137 break; 138 case dtos: 139 fld(f10, val_addr); 140 break; 141 case vtos: 142 /* nothing to do */ 143 break; 144 default: 145 ShouldNotReachHere(); 146 } 147 // Clean up tos value in the thread object 148 mv(t0, (int)ilgl); 149 sw(t0, tos_addr); 150 sw(zr, val_addr); 151 } 152 153 154 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 155 if (JvmtiExport::can_force_early_return()) { 156 Label L; 157 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 158 beqz(t0, L); // if thread->jvmti_thread_state() is null then exit 159 160 // Initiate earlyret handling only if it is not already being processed. 161 // If the flag has the earlyret_processing bit set, it means that this code 162 // is called *during* earlyret handling - we don't want to reenter. 163 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 164 mv(t1, JvmtiThreadState::earlyret_pending); 165 bne(t0, t1, L); 166 167 // Call Interpreter::remove_activation_early_entry() to get the address of the 168 // same-named entrypoint in the generated interpreter code. 169 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 170 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 171 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 172 jr(x10); 173 bind(L); 174 } 175 } 176 177 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 178 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 179 if (AvoidUnalignedAccesses && (bcp_offset % 2)) { 180 lbu(t1, Address(xbcp, bcp_offset)); 181 lbu(reg, Address(xbcp, bcp_offset + 1)); 182 slli(t1, t1, 8); 183 add(reg, reg, t1); 184 } else { 185 lhu(reg, Address(xbcp, bcp_offset)); 186 revb_h_h_u(reg, reg); 187 } 188 } 189 190 void InterpreterMacroAssembler::get_dispatch() { 191 ExternalAddress target((address)Interpreter::dispatch_table()); 192 relocate(target.rspec(), [&] { 193 int32_t offset; 194 la_patchable(xdispatch, target, offset); 195 addi(xdispatch, xdispatch, offset); 196 }); 197 } 198 199 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 200 Register tmp, 201 int bcp_offset, 202 size_t index_size) { 203 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 204 if (index_size == sizeof(u2)) { 205 if (AvoidUnalignedAccesses) { 206 assert_different_registers(index, tmp); 207 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 208 load_unsigned_byte(tmp, Address(xbcp, bcp_offset + 1)); 209 slli(tmp, tmp, 8); 210 add(index, index, tmp); 211 } else { 212 load_unsigned_short(index, Address(xbcp, bcp_offset)); 213 } 214 } else if (index_size == sizeof(u4)) { 215 load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false); 216 217 // Check if the secondary index definition is still ~x, otherwise 218 // we have to change the following assembler code to calculate the 219 // plain index. 220 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 221 xori(index, index, -1); 222 sign_extend(index, index, 32); 223 } else if (index_size == sizeof(u1)) { 224 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 225 } else { 226 ShouldNotReachHere(); 227 } 228 } 229 230 // Return 231 // Rindex: index into constant pool 232 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 233 // 234 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 235 // the true address of the cache entry. 236 // 237 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 238 Register index, 239 int bcp_offset, 240 size_t index_size) { 241 assert_different_registers(cache, index); 242 assert_different_registers(cache, xcpool); 243 // register "cache" is trashed in next shadd, so lets use it as a temporary register 244 get_cache_index_at_bcp(index, cache, bcp_offset, index_size); 245 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 246 // Convert from field index to ConstantPoolCacheEntry 247 // riscv already has the cache in xcpool so there is no need to 248 // install it in cache. Instead we pre-add the indexed offset to 249 // xcpool and return it in cache. All clients of this method need to 250 // be modified accordingly. 251 shadd(cache, index, xcpool, cache, 5); 252 } 253 254 255 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 256 Register index, 257 Register bytecode, 258 int byte_no, 259 int bcp_offset, 260 size_t index_size) { 261 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 262 // We use a 32-bit load here since the layout of 64-bit words on 263 // little-endian machines allow us that. 264 // n.b. unlike x86 cache already includes the index offset 265 la(bytecode, Address(cache, 266 ConstantPoolCache::base_offset() + 267 ConstantPoolCacheEntry::indices_offset())); 268 membar(MacroAssembler::AnyAny); 269 lwu(bytecode, bytecode); 270 membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 271 const int shift_count = (1 + byte_no) * BitsPerByte; 272 slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte)); 273 srli(bytecode, bytecode, XLEN - BitsPerByte); 274 } 275 276 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 277 Register tmp, 278 int bcp_offset, 279 size_t index_size) { 280 assert_different_registers(cache, tmp); 281 // register "cache" is trashed in next ld, so lets use it as a temporary register 282 get_cache_index_at_bcp(tmp, cache, bcp_offset, index_size); 283 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 284 // Convert from field index to ConstantPoolCacheEntry index 285 // and from word offset to byte offset 286 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, 287 "else change next line"); 288 ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize)); 289 // skip past the header 290 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 291 // construct pointer to cache entry 292 shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord); 293 } 294 295 // Load object from cpool->resolved_references(index) 296 void InterpreterMacroAssembler::load_resolved_reference_at_index( 297 Register result, Register index, Register tmp) { 298 assert_different_registers(result, index); 299 300 get_constant_pool(result); 301 // Load pointer for resolved_references[] objArray 302 ld(result, Address(result, ConstantPool::cache_offset())); 303 ld(result, Address(result, ConstantPoolCache::resolved_references_offset())); 304 resolve_oop_handle(result, tmp, t1); 305 // Add in the index 306 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 307 shadd(result, index, result, index, LogBytesPerHeapOop); 308 load_heap_oop(result, Address(result, 0), tmp, t1); 309 } 310 311 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 312 Register cpool, Register index, Register klass, Register temp) { 313 shadd(temp, index, cpool, temp, LogBytesPerWord); 314 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 315 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 316 shadd(klass, temp, klass, temp, LogBytesPerWord); 317 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 318 } 319 320 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 321 Register method, 322 Register cache) { 323 const int method_offset = in_bytes( 324 ConstantPoolCache::base_offset() + 325 ((byte_no == TemplateTable::f2_byte) 326 ? ConstantPoolCacheEntry::f2_offset() 327 : ConstantPoolCacheEntry::f1_offset())); 328 329 ld(method, Address(cache, method_offset)); // get f1 Method* 330 } 331 332 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 333 // subtype of super_klass. 334 // 335 // Args: 336 // x10: superklass 337 // Rsub_klass: subklass 338 // 339 // Kills: 340 // x12, x15 341 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 342 Label& ok_is_subtype) { 343 assert(Rsub_klass != x10, "x10 holds superklass"); 344 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 345 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 346 347 // Profile the not-null value's klass. 348 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 349 350 // Do the check. 351 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 352 353 // Profile the failure of the check. 354 profile_typecheck_failed(x12); // blows x12 355 } 356 357 // Java Expression Stack 358 359 void InterpreterMacroAssembler::pop_ptr(Register r) { 360 ld(r, Address(esp, 0)); 361 addi(esp, esp, wordSize); 362 } 363 364 void InterpreterMacroAssembler::pop_i(Register r) { 365 lw(r, Address(esp, 0)); // lw do signed extended 366 addi(esp, esp, wordSize); 367 } 368 369 void InterpreterMacroAssembler::pop_l(Register r) { 370 ld(r, Address(esp, 0)); 371 addi(esp, esp, 2 * Interpreter::stackElementSize); 372 } 373 374 void InterpreterMacroAssembler::push_ptr(Register r) { 375 addi(esp, esp, -wordSize); 376 sd(r, Address(esp, 0)); 377 } 378 379 void InterpreterMacroAssembler::push_i(Register r) { 380 addi(esp, esp, -wordSize); 381 sign_extend(r, r, 32); 382 sd(r, Address(esp, 0)); 383 } 384 385 void InterpreterMacroAssembler::push_l(Register r) { 386 addi(esp, esp, -2 * wordSize); 387 sd(zr, Address(esp, wordSize)); 388 sd(r, Address(esp)); 389 } 390 391 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 392 flw(r, Address(esp, 0)); 393 addi(esp, esp, wordSize); 394 } 395 396 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 397 fld(r, Address(esp, 0)); 398 addi(esp, esp, 2 * Interpreter::stackElementSize); 399 } 400 401 void InterpreterMacroAssembler::push_f(FloatRegister r) { 402 addi(esp, esp, -wordSize); 403 fsw(r, Address(esp, 0)); 404 } 405 406 void InterpreterMacroAssembler::push_d(FloatRegister r) { 407 addi(esp, esp, -2 * wordSize); 408 fsd(r, Address(esp, 0)); 409 } 410 411 void InterpreterMacroAssembler::pop(TosState state) { 412 switch (state) { 413 case atos: 414 pop_ptr(); 415 verify_oop(x10); 416 break; 417 case btos: // fall through 418 case ztos: // fall through 419 case ctos: // fall through 420 case stos: // fall through 421 case itos: 422 pop_i(); 423 break; 424 case ltos: 425 pop_l(); 426 break; 427 case ftos: 428 pop_f(); 429 break; 430 case dtos: 431 pop_d(); 432 break; 433 case vtos: 434 /* nothing to do */ 435 break; 436 default: 437 ShouldNotReachHere(); 438 } 439 } 440 441 void InterpreterMacroAssembler::push(TosState state) { 442 switch (state) { 443 case atos: 444 verify_oop(x10); 445 push_ptr(); 446 break; 447 case btos: // fall through 448 case ztos: // fall through 449 case ctos: // fall through 450 case stos: // fall through 451 case itos: 452 push_i(); 453 break; 454 case ltos: 455 push_l(); 456 break; 457 case ftos: 458 push_f(); 459 break; 460 case dtos: 461 push_d(); 462 break; 463 case vtos: 464 /* nothing to do */ 465 break; 466 default: 467 ShouldNotReachHere(); 468 } 469 } 470 471 // Helpers for swap and dup 472 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 473 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 474 } 475 476 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 477 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 478 } 479 480 void InterpreterMacroAssembler::load_float(Address src) { 481 flw(f10, src); 482 } 483 484 void InterpreterMacroAssembler::load_double(Address src) { 485 fld(f10, src); 486 } 487 488 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 489 // set sender sp 490 mv(x19_sender_sp, sp); 491 // record last_sp 492 sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 493 } 494 495 // Jump to from_interpreted entry of a call unless single stepping is possible 496 // in this thread in which case we must call the i2i entry 497 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 498 prepare_to_jump_from_interpreted(); 499 if (JvmtiExport::can_post_interpreter_events()) { 500 Label run_compiled_code; 501 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 502 // compiled code in threads for which the event is enabled. Check here for 503 // interp_only_mode if these events CAN be enabled. 504 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 505 beqz(t0, run_compiled_code); 506 ld(t0, Address(method, Method::interpreter_entry_offset())); 507 jr(t0); 508 bind(run_compiled_code); 509 } 510 511 ld(t0, Address(method, Method::from_interpreted_offset())); 512 jr(t0); 513 } 514 515 // The following two routines provide a hook so that an implementation 516 // can schedule the dispatch in two parts. amd64 does not do this. 517 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 518 } 519 520 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 521 dispatch_next(state, step); 522 } 523 524 void InterpreterMacroAssembler::dispatch_base(TosState state, 525 address* table, 526 bool verifyoop, 527 bool generate_poll, 528 Register Rs) { 529 // Pay attention to the argument Rs, which is acquiesce in t0. 530 if (VerifyActivationFrameSize) { 531 Unimplemented(); 532 } 533 if (verifyoop && state == atos) { 534 verify_oop(x10); 535 } 536 537 Label safepoint; 538 address* const safepoint_table = Interpreter::safept_table(state); 539 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 540 541 if (needs_thread_local_poll) { 542 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 543 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 544 test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit())); 545 bnez(t1, safepoint); 546 } 547 if (table == Interpreter::dispatch_table(state)) { 548 mv(t1, Interpreter::distance_from_dispatch_table(state)); 549 add(t1, Rs, t1); 550 shadd(t1, t1, xdispatch, t1, 3); 551 } else { 552 mv(t1, (address)table); 553 shadd(t1, Rs, t1, Rs, 3); 554 } 555 ld(t1, Address(t1)); 556 jr(t1); 557 558 if (needs_thread_local_poll) { 559 bind(safepoint); 560 la(t1, ExternalAddress((address)safepoint_table)); 561 shadd(t1, Rs, t1, Rs, 3); 562 ld(t1, Address(t1)); 563 jr(t1); 564 } 565 } 566 567 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 568 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 569 } 570 571 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 572 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs); 573 } 574 575 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 576 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs); 577 } 578 579 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 580 // load next bytecode 581 load_unsigned_byte(t0, Address(xbcp, step)); 582 add(xbcp, xbcp, step); 583 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 584 } 585 586 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 587 // load current bytecode 588 lbu(t0, Address(xbcp, 0)); 589 dispatch_base(state, table); 590 } 591 592 // remove activation 593 // 594 // Apply stack watermark barrier. 595 // Unlock the receiver if this is a synchronized method. 596 // Unlock any Java monitors from synchronized blocks. 597 // Remove the activation from the stack. 598 // 599 // If there are locked Java monitors 600 // If throw_monitor_exception 601 // throws IllegalMonitorStateException 602 // Else if install_monitor_exception 603 // installs IllegalMonitorStateException 604 // Else 605 // no error processing 606 void InterpreterMacroAssembler::remove_activation( 607 TosState state, 608 bool throw_monitor_exception, 609 bool install_monitor_exception, 610 bool notify_jvmdi) { 611 // Note: Registers x13 may be in use for the 612 // result check if synchronized method 613 Label unlocked, unlock, no_unlock; 614 615 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 616 // that would normally not be safe to use. Such bad returns into unsafe territory of 617 // the stack, will call InterpreterRuntime::at_unwind. 618 Label slow_path; 619 Label fast_path; 620 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 621 j(fast_path); 622 623 bind(slow_path); 624 push(state); 625 set_last_Java_frame(esp, fp, (address)pc(), t0); 626 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 627 reset_last_Java_frame(true); 628 pop(state); 629 630 bind(fast_path); 631 632 // get the value of _do_not_unlock_if_synchronized into x13 633 const Address do_not_unlock_if_synchronized(xthread, 634 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 635 lbu(x13, do_not_unlock_if_synchronized); 636 sb(zr, do_not_unlock_if_synchronized); // reset the flag 637 638 // get method access flags 639 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 640 ld(x12, Address(x11, Method::access_flags_offset())); 641 test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED)); 642 beqz(t0, unlocked); 643 644 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 645 // is set. 646 bnez(x13, no_unlock); 647 648 // unlock monitor 649 push(state); // save result 650 651 // BasicObjectLock will be first in list, since this is a 652 // synchronized method. However, need to check that the object has 653 // not been unlocked by an explicit monitorexit bytecode. 654 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 655 wordSize - (int) sizeof(BasicObjectLock)); 656 // We use c_rarg1 so that if we go slow path it will be the correct 657 // register for unlock_object to pass to VM directly 658 la(c_rarg1, monitor); // address of first monitor 659 660 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset())); 661 bnez(x10, unlock); 662 663 pop(state); 664 if (throw_monitor_exception) { 665 // Entry already unlocked, need to throw exception 666 call_VM(noreg, CAST_FROM_FN_PTR(address, 667 InterpreterRuntime::throw_illegal_monitor_state_exception)); 668 should_not_reach_here(); 669 } else { 670 // Monitor already unlocked during a stack unroll. If requested, 671 // install an illegal_monitor_state_exception. Continue with 672 // stack unrolling. 673 if (install_monitor_exception) { 674 call_VM(noreg, CAST_FROM_FN_PTR(address, 675 InterpreterRuntime::new_illegal_monitor_state_exception)); 676 } 677 j(unlocked); 678 } 679 680 bind(unlock); 681 unlock_object(c_rarg1); 682 pop(state); 683 684 // Check that for block-structured locking (i.e., that all locked 685 // objects has been unlocked) 686 bind(unlocked); 687 688 // x10: Might contain return value 689 690 // Check that all monitors are unlocked 691 { 692 Label loop, exception, entry, restart; 693 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 694 const Address monitor_block_top( 695 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 696 const Address monitor_block_bot( 697 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 698 699 bind(restart); 700 // We use c_rarg1 so that if we go slow path it will be the correct 701 // register for unlock_object to pass to VM directly 702 ld(c_rarg1, monitor_block_top); // points to current entry, starting 703 // with top-most entry 704 la(x9, monitor_block_bot); // points to word before bottom of 705 // monitor block 706 707 j(entry); 708 709 // Entry already locked, need to throw exception 710 bind(exception); 711 712 if (throw_monitor_exception) { 713 // Throw exception 714 MacroAssembler::call_VM(noreg, 715 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 716 throw_illegal_monitor_state_exception)); 717 718 should_not_reach_here(); 719 } else { 720 // Stack unrolling. Unlock object and install illegal_monitor_exception. 721 // Unlock does not block, so don't have to worry about the frame. 722 // We don't have to preserve c_rarg1 since we are going to throw an exception. 723 724 push(state); 725 unlock_object(c_rarg1); 726 pop(state); 727 728 if (install_monitor_exception) { 729 call_VM(noreg, CAST_FROM_FN_PTR(address, 730 InterpreterRuntime:: 731 new_illegal_monitor_state_exception)); 732 } 733 734 j(restart); 735 } 736 737 bind(loop); 738 // check if current entry is used 739 add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset())); 740 ld(t0, Address(t0, 0)); 741 bnez(t0, exception); 742 743 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 744 bind(entry); 745 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 746 } 747 748 bind(no_unlock); 749 750 // jvmti support 751 if (notify_jvmdi) { 752 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 753 754 } else { 755 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 756 } 757 758 // remove activation 759 // get sender esp 760 ld(t1, 761 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 762 if (StackReservedPages > 0) { 763 // testing if reserved zone needs to be re-enabled 764 Label no_reserved_zone_enabling; 765 766 // check if already enabled - if so no re-enabling needed 767 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 768 lw(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 769 subw(t0, t0, StackOverflow::stack_guard_enabled); 770 beqz(t0, no_reserved_zone_enabling); 771 772 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 773 ble(t1, t0, no_reserved_zone_enabling); 774 775 call_VM_leaf( 776 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 777 call_VM(noreg, CAST_FROM_FN_PTR(address, 778 InterpreterRuntime::throw_delayed_StackOverflowError)); 779 should_not_reach_here(); 780 781 bind(no_reserved_zone_enabling); 782 } 783 784 // restore sender esp 785 mv(esp, t1); 786 787 // remove frame anchor 788 leave(); 789 // If we're returning to interpreted code we will shortly be 790 // adjusting SP to allow some space for ESP. If we're returning to 791 // compiled code the saved sender SP was saved in sender_sp, so this 792 // restores it. 793 andi(sp, esp, -16); 794 } 795 796 // Lock object 797 // 798 // Args: 799 // c_rarg1: BasicObjectLock to be used for locking 800 // 801 // Kills: 802 // x10 803 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, .. (param regs) 804 // t0, t1 (temp regs) 805 void InterpreterMacroAssembler::lock_object(Register lock_reg) 806 { 807 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 808 if (LockingMode == LM_MONITOR) { 809 call_VM(noreg, 810 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 811 lock_reg); 812 } else { 813 Label count, done; 814 815 const Register swap_reg = x10; 816 const Register tmp = c_rarg2; 817 const Register obj_reg = c_rarg3; // Will contain the oop 818 const Register tmp2 = c_rarg4; 819 const Register tmp3 = c_rarg5; 820 821 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 822 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 823 const int mark_offset = lock_offset + 824 BasicLock::displaced_header_offset_in_bytes(); 825 826 Label slow_case; 827 828 // Load object pointer into obj_reg c_rarg3 829 ld(obj_reg, Address(lock_reg, obj_offset)); 830 831 if (DiagnoseSyncOnValueBasedClasses != 0) { 832 load_klass(tmp, obj_reg); 833 lwu(tmp, Address(tmp, Klass::access_flags_offset())); 834 test_bit(tmp, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 835 bnez(tmp, slow_case); 836 } 837 838 if (LockingMode == LM_LIGHTWEIGHT) { 839 ld(tmp, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 840 lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case); 841 j(count); 842 } else if (LockingMode == LM_LEGACY) { 843 // Load (object->mark() | 1) into swap_reg 844 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 845 ori(swap_reg, t0, 1); 846 847 // Save (object->mark() | 1) into BasicLock's displaced header 848 sd(swap_reg, Address(lock_reg, mark_offset)); 849 850 assert(lock_offset == 0, 851 "displached header must be first word in BasicObjectLock"); 852 853 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, count, /*fallthrough*/nullptr); 854 855 // Test if the oopMark is an obvious stack pointer, i.e., 856 // 1) (mark & 7) == 0, and 857 // 2) sp <= mark < mark + os::pagesize() 858 // 859 // These 3 tests can be done by evaluating the following 860 // expression: ((mark - sp) & (7 - os::vm_page_size())), 861 // assuming both stack pointer and pagesize have their 862 // least significant 3 bits clear. 863 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 864 sub(swap_reg, swap_reg, sp); 865 mv(t0, (int64_t)(7 - (int)os::vm_page_size())); 866 andr(swap_reg, swap_reg, t0); 867 868 // Save the test result, for recursive case, the result is zero 869 sd(swap_reg, Address(lock_reg, mark_offset)); 870 beqz(swap_reg, count); 871 } 872 873 bind(slow_case); 874 875 // Call the runtime routine for slow case 876 if (LockingMode == LM_LIGHTWEIGHT) { 877 call_VM(noreg, 878 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 879 obj_reg); 880 } else { 881 call_VM(noreg, 882 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 883 lock_reg); 884 } 885 j(done); 886 887 bind(count); 888 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 889 890 bind(done); 891 } 892 } 893 894 895 // Unlocks an object. Used in monitorexit bytecode and 896 // remove_activation. Throws an IllegalMonitorException if object is 897 // not locked by current thread. 898 // 899 // Args: 900 // c_rarg1: BasicObjectLock for lock 901 // 902 // Kills: 903 // x10 904 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, ... (param regs) 905 // t0, t1 (temp regs) 906 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 907 { 908 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 909 910 if (LockingMode == LM_MONITOR) { 911 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 912 } else { 913 Label count, done; 914 915 const Register swap_reg = x10; 916 const Register header_reg = c_rarg2; // Will contain the old oopMark 917 const Register obj_reg = c_rarg3; // Will contain the oop 918 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 919 920 save_bcp(); // Save in case of exception 921 922 if (LockingMode != LM_LIGHTWEIGHT) { 923 // Convert from BasicObjectLock structure to object and BasicLock 924 // structure Store the BasicLock address into x10 925 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 926 } 927 928 // Load oop into obj_reg(c_rarg3) 929 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 930 931 // Free entry 932 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 933 934 if (LockingMode == LM_LIGHTWEIGHT) { 935 Label slow_case; 936 937 // Check for non-symmetric locking. This is allowed by the spec and the interpreter 938 // must handle it. 939 Register tmp1 = t0; 940 Register tmp2 = header_reg; 941 // First check for lock-stack underflow. 942 lwu(tmp1, Address(xthread, JavaThread::lock_stack_top_offset())); 943 mv(tmp2, (unsigned)LockStack::start_offset()); 944 ble(tmp1, tmp2, slow_case); 945 // Then check if the top of the lock-stack matches the unlocked object. 946 subw(tmp1, tmp1, oopSize); 947 add(tmp1, xthread, tmp1); 948 ld(tmp1, Address(tmp1, 0)); 949 bne(tmp1, obj_reg, slow_case); 950 951 ld(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 952 test_bit(t0, header_reg, exact_log2(markWord::monitor_value)); 953 bnez(t0, slow_case); 954 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 955 j(count); 956 957 bind(slow_case); 958 } else if (LockingMode == LM_LEGACY) { 959 // Load the old header from BasicLock structure 960 ld(header_reg, Address(swap_reg, 961 BasicLock::displaced_header_offset_in_bytes())); 962 963 // Test for recursion 964 beqz(header_reg, count); 965 966 // Atomic swap back the old header 967 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, count, /*fallthrough*/nullptr); 968 } 969 970 // Call the runtime routine for slow case. 971 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 972 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 973 974 j(done); 975 976 bind(count); 977 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 978 979 bind(done); 980 981 restore_bcp(); 982 } 983 } 984 985 986 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 987 Label& zero_continue) { 988 assert(ProfileInterpreter, "must be profiling interpreter"); 989 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 990 beqz(mdp, zero_continue); 991 } 992 993 // Set the method data pointer for the current bcp. 994 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 995 assert(ProfileInterpreter, "must be profiling interpreter"); 996 Label set_mdp; 997 push_reg(RegSet::of(x10, x11), sp); // save x10, x11 998 999 // Test MDO to avoid the call if it is null. 1000 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 1001 beqz(x10, set_mdp); 1002 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 1003 // x10: mdi 1004 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1005 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 1006 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 1007 add(x10, x11, x10); 1008 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1009 bind(set_mdp); 1010 pop_reg(RegSet::of(x10, x11), sp); 1011 } 1012 1013 void InterpreterMacroAssembler::verify_method_data_pointer() { 1014 assert(ProfileInterpreter, "must be profiling interpreter"); 1015 #ifdef ASSERT 1016 Label verify_continue; 1017 add(sp, sp, -4 * wordSize); 1018 sd(x10, Address(sp, 0)); 1019 sd(x11, Address(sp, wordSize)); 1020 sd(x12, Address(sp, 2 * wordSize)); 1021 sd(x13, Address(sp, 3 * wordSize)); 1022 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 1023 get_method(x11); 1024 1025 // If the mdp is valid, it will point to a DataLayout header which is 1026 // consistent with the bcp. The converse is highly probable also. 1027 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 1028 ld(t0, Address(x11, Method::const_offset())); 1029 add(x12, x12, t0); 1030 la(x12, Address(x12, ConstMethod::codes_offset())); 1031 beq(x12, xbcp, verify_continue); 1032 // x10: method 1033 // xbcp: bcp // xbcp == 22 1034 // x13: mdp 1035 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1036 x11, xbcp, x13); 1037 bind(verify_continue); 1038 ld(x10, Address(sp, 0)); 1039 ld(x11, Address(sp, wordSize)); 1040 ld(x12, Address(sp, 2 * wordSize)); 1041 ld(x13, Address(sp, 3 * wordSize)); 1042 add(sp, sp, 4 * wordSize); 1043 #endif // ASSERT 1044 } 1045 1046 1047 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1048 int constant, 1049 Register value) { 1050 assert(ProfileInterpreter, "must be profiling interpreter"); 1051 Address data(mdp_in, constant); 1052 sd(value, data); 1053 } 1054 1055 1056 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1057 int constant, 1058 bool decrement) { 1059 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1060 } 1061 1062 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1063 Register reg, 1064 int constant, 1065 bool decrement) { 1066 assert(ProfileInterpreter, "must be profiling interpreter"); 1067 // %%% this does 64bit counters at best it is wasting space 1068 // at worst it is a rare bug when counters overflow 1069 1070 assert_different_registers(t1, t0, mdp_in, reg); 1071 1072 Address addr1(mdp_in, constant); 1073 Address addr2(t1, 0); 1074 Address &addr = addr1; 1075 if (reg != noreg) { 1076 la(t1, addr1); 1077 add(t1, t1, reg); 1078 addr = addr2; 1079 } 1080 1081 if (decrement) { 1082 ld(t0, addr); 1083 addi(t0, t0, -DataLayout::counter_increment); 1084 Label L; 1085 bltz(t0, L); // skip store if counter underflow 1086 sd(t0, addr); 1087 bind(L); 1088 } else { 1089 assert(DataLayout::counter_increment == 1, 1090 "flow-free idiom only works with 1"); 1091 ld(t0, addr); 1092 addi(t0, t0, DataLayout::counter_increment); 1093 Label L; 1094 blez(t0, L); // skip store if counter overflow 1095 sd(t0, addr); 1096 bind(L); 1097 } 1098 } 1099 1100 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1101 int flag_byte_constant) { 1102 assert(ProfileInterpreter, "must be profiling interpreter"); 1103 int flags_offset = in_bytes(DataLayout::flags_offset()); 1104 // Set the flag 1105 lbu(t1, Address(mdp_in, flags_offset)); 1106 ori(t1, t1, flag_byte_constant); 1107 sb(t1, Address(mdp_in, flags_offset)); 1108 } 1109 1110 1111 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1112 int offset, 1113 Register value, 1114 Register test_value_out, 1115 Label& not_equal_continue) { 1116 assert(ProfileInterpreter, "must be profiling interpreter"); 1117 if (test_value_out == noreg) { 1118 ld(t1, Address(mdp_in, offset)); 1119 bne(value, t1, not_equal_continue); 1120 } else { 1121 // Put the test value into a register, so caller can use it: 1122 ld(test_value_out, Address(mdp_in, offset)); 1123 bne(value, test_value_out, not_equal_continue); 1124 } 1125 } 1126 1127 1128 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1129 int offset_of_disp) { 1130 assert(ProfileInterpreter, "must be profiling interpreter"); 1131 ld(t1, Address(mdp_in, offset_of_disp)); 1132 add(mdp_in, mdp_in, t1); 1133 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1134 } 1135 1136 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1137 Register reg, 1138 int offset_of_disp) { 1139 assert(ProfileInterpreter, "must be profiling interpreter"); 1140 add(t1, mdp_in, reg); 1141 ld(t1, Address(t1, offset_of_disp)); 1142 add(mdp_in, mdp_in, t1); 1143 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1144 } 1145 1146 1147 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1148 int constant) { 1149 assert(ProfileInterpreter, "must be profiling interpreter"); 1150 addi(mdp_in, mdp_in, (unsigned)constant); 1151 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1152 } 1153 1154 1155 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1156 assert(ProfileInterpreter, "must be profiling interpreter"); 1157 1158 // save/restore across call_VM 1159 addi(sp, sp, -2 * wordSize); 1160 sd(zr, Address(sp, 0)); 1161 sd(return_bci, Address(sp, wordSize)); 1162 call_VM(noreg, 1163 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1164 return_bci); 1165 ld(zr, Address(sp, 0)); 1166 ld(return_bci, Address(sp, wordSize)); 1167 addi(sp, sp, 2 * wordSize); 1168 } 1169 1170 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1171 Register bumped_count) { 1172 if (ProfileInterpreter) { 1173 Label profile_continue; 1174 1175 // If no method data exists, go to profile_continue. 1176 // Otherwise, assign to mdp 1177 test_method_data_pointer(mdp, profile_continue); 1178 1179 // We are taking a branch. Increment the taken count. 1180 Address data(mdp, in_bytes(JumpData::taken_offset())); 1181 ld(bumped_count, data); 1182 assert(DataLayout::counter_increment == 1, 1183 "flow-free idiom only works with 1"); 1184 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1185 Label L; 1186 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1187 blez(bumped_count, L); // skip store if counter overflow, 1188 sd(bumped_count, data); 1189 bind(L); 1190 // The method data pointer needs to be updated to reflect the new target. 1191 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1192 bind(profile_continue); 1193 } 1194 } 1195 1196 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1197 if (ProfileInterpreter) { 1198 Label profile_continue; 1199 1200 // If no method data exists, go to profile_continue. 1201 test_method_data_pointer(mdp, profile_continue); 1202 1203 // We are taking a branch. Increment the not taken count. 1204 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1205 1206 // The method data pointer needs to be updated to correspond to 1207 // the next bytecode 1208 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1209 bind(profile_continue); 1210 } 1211 } 1212 1213 void InterpreterMacroAssembler::profile_call(Register mdp) { 1214 if (ProfileInterpreter) { 1215 Label profile_continue; 1216 1217 // If no method data exists, go to profile_continue. 1218 test_method_data_pointer(mdp, profile_continue); 1219 1220 // We are making a call. Increment the count. 1221 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1222 1223 // The method data pointer needs to be updated to reflect the new target. 1224 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1225 bind(profile_continue); 1226 } 1227 } 1228 1229 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1230 if (ProfileInterpreter) { 1231 Label profile_continue; 1232 1233 // If no method data exists, go to profile_continue. 1234 test_method_data_pointer(mdp, profile_continue); 1235 1236 // We are making a call. Increment the count. 1237 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1238 1239 // The method data pointer needs to be updated to reflect the new target. 1240 update_mdp_by_constant(mdp, 1241 in_bytes(VirtualCallData:: 1242 virtual_call_data_size())); 1243 bind(profile_continue); 1244 } 1245 } 1246 1247 1248 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1249 Register mdp, 1250 Register reg2, 1251 bool receiver_can_be_null) { 1252 if (ProfileInterpreter) { 1253 Label profile_continue; 1254 1255 // If no method data exists, go to profile_continue. 1256 test_method_data_pointer(mdp, profile_continue); 1257 1258 Label skip_receiver_profile; 1259 if (receiver_can_be_null) { 1260 Label not_null; 1261 // We are making a call. Increment the count for null receiver. 1262 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1263 j(skip_receiver_profile); 1264 bind(not_null); 1265 } 1266 1267 // Record the receiver type. 1268 record_klass_in_profile(receiver, mdp, reg2, true); 1269 bind(skip_receiver_profile); 1270 1271 // The method data pointer needs to be updated to reflect the new target. 1272 1273 update_mdp_by_constant(mdp, 1274 in_bytes(VirtualCallData:: 1275 virtual_call_data_size())); 1276 bind(profile_continue); 1277 } 1278 } 1279 1280 // This routine creates a state machine for updating the multi-row 1281 // type profile at a virtual call site (or other type-sensitive bytecode). 1282 // The machine visits each row (of receiver/count) until the receiver type 1283 // is found, or until it runs out of rows. At the same time, it remembers 1284 // the location of the first empty row. (An empty row records null for its 1285 // receiver, and can be allocated for a newly-observed receiver type.) 1286 // Because there are two degrees of freedom in the state, a simple linear 1287 // search will not work; it must be a decision tree. Hence this helper 1288 // function is recursive, to generate the required tree structured code. 1289 // It's the interpreter, so we are trading off code space for speed. 1290 // See below for example code. 1291 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1292 Register receiver, Register mdp, 1293 Register reg2, 1294 Label& done, bool is_virtual_call) { 1295 if (TypeProfileWidth == 0) { 1296 if (is_virtual_call) { 1297 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1298 } 1299 1300 } else { 1301 int non_profiled_offset = -1; 1302 if (is_virtual_call) { 1303 non_profiled_offset = in_bytes(CounterData::count_offset()); 1304 } 1305 1306 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1307 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1308 } 1309 } 1310 1311 void InterpreterMacroAssembler::record_item_in_profile_helper( 1312 Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, 1313 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { 1314 int last_row = total_rows - 1; 1315 assert(start_row <= last_row, "must be work left to do"); 1316 // Test this row for both the item and for null. 1317 // Take any of three different outcomes: 1318 // 1. found item => increment count and goto done 1319 // 2. found null => keep looking for case 1, maybe allocate this cell 1320 // 3. found something else => keep looking for cases 1 and 2 1321 // Case 3 is handled by a recursive call. 1322 for (int row = start_row; row <= last_row; row++) { 1323 Label next_test; 1324 bool test_for_null_also = (row == start_row); 1325 1326 // See if the item is item[n]. 1327 int item_offset = in_bytes(item_offset_fn(row)); 1328 test_mdp_data_at(mdp, item_offset, item, 1329 (test_for_null_also ? reg2 : noreg), 1330 next_test); 1331 // (Reg2 now contains the item from the CallData.) 1332 1333 // The item is item[n]. Increment count[n]. 1334 int count_offset = in_bytes(item_count_offset_fn(row)); 1335 increment_mdp_data_at(mdp, count_offset); 1336 j(done); 1337 bind(next_test); 1338 1339 if (test_for_null_also) { 1340 Label found_null; 1341 // Failed the equality check on item[n]... Test for null. 1342 if (start_row == last_row) { 1343 // The only thing left to do is handle the null case. 1344 if (non_profiled_offset >= 0) { 1345 beqz(reg2, found_null); 1346 // Item did not match any saved item and there is no empty row for it. 1347 // Increment total counter to indicate polymorphic case. 1348 increment_mdp_data_at(mdp, non_profiled_offset); 1349 j(done); 1350 bind(found_null); 1351 } else { 1352 bnez(reg2, done); 1353 } 1354 break; 1355 } 1356 // Since null is rare, make it be the branch-taken case. 1357 beqz(reg2, found_null); 1358 1359 // Put all the "Case 3" tests here. 1360 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1361 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1362 1363 // Found a null. Keep searching for a matching item, 1364 // but remember that this is an empty (unused) slot. 1365 bind(found_null); 1366 } 1367 } 1368 1369 // In the fall-through case, we found no matching item, but we 1370 // observed the item[start_row] is null. 1371 // Fill in the item field and increment the count. 1372 int item_offset = in_bytes(item_offset_fn(start_row)); 1373 set_mdp_data_at(mdp, item_offset, item); 1374 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1375 mv(reg2, DataLayout::counter_increment); 1376 set_mdp_data_at(mdp, count_offset, reg2); 1377 if (start_row > 0) { 1378 j(done); 1379 } 1380 } 1381 1382 // Example state machine code for three profile rows: 1383 // # main copy of decision tree, rooted at row[1] 1384 // if (row[0].rec == rec) then [ 1385 // row[0].incr() 1386 // goto done 1387 // ] 1388 // if (row[0].rec != nullptr) then [ 1389 // # inner copy of decision tree, rooted at row[1] 1390 // if (row[1].rec == rec) then [ 1391 // row[1].incr() 1392 // goto done 1393 // ] 1394 // if (row[1].rec != nullptr) then [ 1395 // # degenerate decision tree, rooted at row[2] 1396 // if (row[2].rec == rec) then [ 1397 // row[2].incr() 1398 // goto done 1399 // ] 1400 // if (row[2].rec != nullptr) then [ 1401 // count.incr() 1402 // goto done 1403 // ] # overflow 1404 // row[2].init(rec) 1405 // goto done 1406 // ] else [ 1407 // # remember row[1] is empty 1408 // if (row[2].rec == rec) then [ 1409 // row[2].incr() 1410 // goto done 1411 // ] 1412 // row[1].init(rec) 1413 // goto done 1414 // ] 1415 // else [ 1416 // # remember row[0] is empty 1417 // if (row[1].rec == rec) then [ 1418 // row[1].incr() 1419 // goto done 1420 // ] 1421 // if (row[2].rec == rec) then [ 1422 // row[2].incr() 1423 // goto done 1424 // ] 1425 // row[0].init(rec) 1426 // goto done 1427 // ] 1428 // done: 1429 1430 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1431 Register mdp, Register reg2, 1432 bool is_virtual_call) { 1433 assert(ProfileInterpreter, "must be profiling"); 1434 Label done; 1435 1436 record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call); 1437 1438 bind(done); 1439 } 1440 1441 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1442 if (ProfileInterpreter) { 1443 Label profile_continue; 1444 1445 // If no method data exists, go to profile_continue. 1446 test_method_data_pointer(mdp, profile_continue); 1447 1448 // Update the total ret count. 1449 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1450 1451 for (uint row = 0; row < RetData::row_limit(); row++) { 1452 Label next_test; 1453 1454 // See if return_bci is equal to bci[n]: 1455 test_mdp_data_at(mdp, 1456 in_bytes(RetData::bci_offset(row)), 1457 return_bci, noreg, 1458 next_test); 1459 1460 // return_bci is equal to bci[n]. Increment the count. 1461 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1462 1463 // The method data pointer needs to be updated to reflect the new target. 1464 update_mdp_by_offset(mdp, 1465 in_bytes(RetData::bci_displacement_offset(row))); 1466 j(profile_continue); 1467 bind(next_test); 1468 } 1469 1470 update_mdp_for_ret(return_bci); 1471 1472 bind(profile_continue); 1473 } 1474 } 1475 1476 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1477 if (ProfileInterpreter) { 1478 Label profile_continue; 1479 1480 // If no method data exists, go to profile_continue. 1481 test_method_data_pointer(mdp, profile_continue); 1482 1483 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1484 1485 // The method data pointer needs to be updated. 1486 int mdp_delta = in_bytes(BitData::bit_data_size()); 1487 if (TypeProfileCasts) { 1488 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1489 } 1490 update_mdp_by_constant(mdp, mdp_delta); 1491 1492 bind(profile_continue); 1493 } 1494 } 1495 1496 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1497 if (ProfileInterpreter && TypeProfileCasts) { 1498 Label profile_continue; 1499 1500 // If no method data exists, go to profile_continue. 1501 test_method_data_pointer(mdp, profile_continue); 1502 1503 int count_offset = in_bytes(CounterData::count_offset()); 1504 // Back up the address, since we have already bumped the mdp. 1505 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1506 1507 // *Decrement* the counter. We expect to see zero or small negatives. 1508 increment_mdp_data_at(mdp, count_offset, true); 1509 1510 bind (profile_continue); 1511 } 1512 } 1513 1514 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1515 if (ProfileInterpreter) { 1516 Label profile_continue; 1517 1518 // If no method data exists, go to profile_continue. 1519 test_method_data_pointer(mdp, profile_continue); 1520 1521 // The method data pointer needs to be updated. 1522 int mdp_delta = in_bytes(BitData::bit_data_size()); 1523 if (TypeProfileCasts) { 1524 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1525 1526 // Record the object type. 1527 record_klass_in_profile(klass, mdp, reg2, false); 1528 } 1529 update_mdp_by_constant(mdp, mdp_delta); 1530 1531 bind(profile_continue); 1532 } 1533 } 1534 1535 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1536 if (ProfileInterpreter) { 1537 Label profile_continue; 1538 1539 // If no method data exists, go to profile_continue. 1540 test_method_data_pointer(mdp, profile_continue); 1541 1542 // Update the default case count 1543 increment_mdp_data_at(mdp, 1544 in_bytes(MultiBranchData::default_count_offset())); 1545 1546 // The method data pointer needs to be updated. 1547 update_mdp_by_offset(mdp, 1548 in_bytes(MultiBranchData:: 1549 default_displacement_offset())); 1550 1551 bind(profile_continue); 1552 } 1553 } 1554 1555 void InterpreterMacroAssembler::profile_switch_case(Register index, 1556 Register mdp, 1557 Register reg2) { 1558 if (ProfileInterpreter) { 1559 Label profile_continue; 1560 1561 // If no method data exists, go to profile_continue. 1562 test_method_data_pointer(mdp, profile_continue); 1563 1564 // Build the base (index * per_case_size_in_bytes()) + 1565 // case_array_offset_in_bytes() 1566 mv(reg2, in_bytes(MultiBranchData::per_case_size())); 1567 mv(t0, in_bytes(MultiBranchData::case_array_offset())); 1568 Assembler::mul(index, index, reg2); 1569 Assembler::add(index, index, t0); 1570 1571 // Update the case count 1572 increment_mdp_data_at(mdp, 1573 index, 1574 in_bytes(MultiBranchData::relative_count_offset())); 1575 1576 // The method data pointer need to be updated. 1577 update_mdp_by_offset(mdp, 1578 index, 1579 in_bytes(MultiBranchData:: 1580 relative_displacement_offset())); 1581 1582 bind(profile_continue); 1583 } 1584 } 1585 1586 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1587 1588 void InterpreterMacroAssembler::notify_method_entry() { 1589 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1590 // track stack depth. If it is possible to enter interp_only_mode we add 1591 // the code to check if the event should be sent. 1592 if (JvmtiExport::can_post_interpreter_events()) { 1593 Label L; 1594 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1595 beqz(x13, L); 1596 call_VM(noreg, CAST_FROM_FN_PTR(address, 1597 InterpreterRuntime::post_method_entry)); 1598 bind(L); 1599 } 1600 1601 { 1602 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1603 get_method(c_rarg1); 1604 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1605 xthread, c_rarg1); 1606 } 1607 1608 // RedefineClasses() tracing support for obsolete method entry 1609 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1610 get_method(c_rarg1); 1611 call_VM_leaf( 1612 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1613 xthread, c_rarg1); 1614 } 1615 } 1616 1617 1618 void InterpreterMacroAssembler::notify_method_exit( 1619 TosState state, NotifyMethodExitMode mode) { 1620 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1621 // track stack depth. If it is possible to enter interp_only_mode we add 1622 // the code to check if the event should be sent. 1623 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1624 Label L; 1625 // Note: frame::interpreter_frame_result has a dependency on how the 1626 // method result is saved across the call to post_method_exit. If this 1627 // is changed then the interpreter_frame_result implementation will 1628 // need to be updated too. 1629 1630 // template interpreter will leave the result on the top of the stack. 1631 push(state); 1632 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1633 beqz(x13, L); 1634 call_VM(noreg, 1635 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1636 bind(L); 1637 pop(state); 1638 } 1639 1640 { 1641 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1642 push(state); 1643 get_method(c_rarg1); 1644 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1645 xthread, c_rarg1); 1646 pop(state); 1647 } 1648 } 1649 1650 1651 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1652 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1653 int increment, Address mask, 1654 Register tmp1, Register tmp2, 1655 bool preloaded, Label* where) { 1656 Label done; 1657 if (!preloaded) { 1658 lwu(tmp1, counter_addr); 1659 } 1660 add(tmp1, tmp1, increment); 1661 sw(tmp1, counter_addr); 1662 lwu(tmp2, mask); 1663 andr(tmp1, tmp1, tmp2); 1664 bnez(tmp1, done); 1665 j(*where); // offset is too large so we have to use j instead of beqz here 1666 bind(done); 1667 } 1668 1669 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1670 int number_of_arguments) { 1671 // interpreter specific 1672 // 1673 // Note: No need to save/restore rbcp & rlocals pointer since these 1674 // are callee saved registers and no blocking/ GC can happen 1675 // in leaf calls. 1676 #ifdef ASSERT 1677 { 1678 Label L; 1679 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1680 beqz(t0, L); 1681 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1682 " last_sp isn't null"); 1683 bind(L); 1684 } 1685 #endif /* ASSERT */ 1686 // super call 1687 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1688 } 1689 1690 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1691 Register java_thread, 1692 Register last_java_sp, 1693 address entry_point, 1694 int number_of_arguments, 1695 bool check_exceptions) { 1696 // interpreter specific 1697 // 1698 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1699 // really make a difference for these runtime calls, since they are 1700 // slow anyway. Btw., bcp must be saved/restored since it may change 1701 // due to GC. 1702 save_bcp(); 1703 #ifdef ASSERT 1704 { 1705 Label L; 1706 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1707 beqz(t0, L); 1708 stop("InterpreterMacroAssembler::call_VM_base:" 1709 " last_sp isn't null"); 1710 bind(L); 1711 } 1712 #endif /* ASSERT */ 1713 // super call 1714 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1715 entry_point, number_of_arguments, 1716 check_exceptions); 1717 // interpreter specific 1718 restore_bcp(); 1719 restore_locals(); 1720 } 1721 1722 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1723 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1724 Label update, next, none; 1725 1726 verify_oop(obj); 1727 1728 bnez(obj, update); 1729 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1730 j(next); 1731 1732 bind(update); 1733 load_klass(obj, obj); 1734 1735 ld(tmp, mdo_addr); 1736 xorr(obj, obj, tmp); 1737 andi(t0, obj, TypeEntries::type_klass_mask); 1738 beqz(t0, next); // klass seen before, nothing to 1739 // do. The unknown bit may have been 1740 // set already but no need to check. 1741 1742 test_bit(t0, obj, exact_log2(TypeEntries::type_unknown)); 1743 bnez(t0, next); 1744 // already unknown. Nothing to do anymore. 1745 1746 beqz(tmp, none); 1747 mv(t0, (u1)TypeEntries::null_seen); 1748 beq(tmp, t0, none); 1749 // There is a chance that the checks above 1750 // fail if another thread has just set the 1751 // profiling to this obj's klass 1752 xorr(obj, obj, tmp); // get back original value before XOR 1753 ld(tmp, mdo_addr); 1754 xorr(obj, obj, tmp); 1755 andi(t0, obj, TypeEntries::type_klass_mask); 1756 beqz(t0, next); 1757 1758 // different than before. Cannot keep accurate profile. 1759 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1760 j(next); 1761 1762 bind(none); 1763 // first time here. Set profile type. 1764 sd(obj, mdo_addr); 1765 #ifdef ASSERT 1766 andi(obj, obj, TypeEntries::type_mask); 1767 verify_klass_ptr(obj); 1768 #endif 1769 1770 bind(next); 1771 } 1772 1773 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1774 if (!ProfileInterpreter) { 1775 return; 1776 } 1777 1778 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1779 Label profile_continue; 1780 1781 test_method_data_pointer(mdp, profile_continue); 1782 1783 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1784 1785 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1786 if (is_virtual) { 1787 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1788 bne(t0, tmp, profile_continue); 1789 } else { 1790 mv(tmp, (u1)DataLayout::call_type_data_tag); 1791 bne(t0, tmp, profile_continue); 1792 } 1793 1794 // calculate slot step 1795 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1796 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1797 1798 // calculate type step 1799 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1800 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1801 1802 if (MethodData::profile_arguments()) { 1803 Label done, loop, loopEnd, profileArgument, profileReturnType; 1804 RegSet pushed_registers; 1805 pushed_registers += x15; 1806 pushed_registers += x16; 1807 pushed_registers += x17; 1808 Register mdo_addr = x15; 1809 Register index = x16; 1810 Register off_to_args = x17; 1811 push_reg(pushed_registers, sp); 1812 1813 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1814 mv(t0, TypeProfileArgsLimit); 1815 beqz(t0, loopEnd); 1816 1817 mv(index, zr); // index < TypeProfileArgsLimit 1818 bind(loop); 1819 bgtz(index, profileReturnType); 1820 mv(t0, (int)MethodData::profile_return()); 1821 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1822 bind(profileReturnType); 1823 // If return value type is profiled we may have no argument to profile 1824 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1825 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1826 mul(t1, index, t1); 1827 add(tmp, tmp, t1); 1828 mv(t1, TypeStackSlotEntries::per_arg_count()); 1829 add(t0, mdp, off_to_args); 1830 blt(tmp, t1, done); 1831 1832 bind(profileArgument); 1833 1834 ld(tmp, Address(callee, Method::const_offset())); 1835 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1836 // stack offset o (zero based) from the start of the argument 1837 // list, for n arguments translates into offset n - o - 1 from 1838 // the end of the argument list 1839 mv(t0, stack_slot_offset0); 1840 mv(t1, slot_step); 1841 mul(t1, index, t1); 1842 add(t0, t0, t1); 1843 add(t0, mdp, t0); 1844 ld(t0, Address(t0)); 1845 sub(tmp, tmp, t0); 1846 addi(tmp, tmp, -1); 1847 Address arg_addr = argument_address(tmp); 1848 ld(tmp, arg_addr); 1849 1850 mv(t0, argument_type_offset0); 1851 mv(t1, type_step); 1852 mul(t1, index, t1); 1853 add(t0, t0, t1); 1854 add(mdo_addr, mdp, t0); 1855 Address mdo_arg_addr(mdo_addr, 0); 1856 profile_obj_type(tmp, mdo_arg_addr, t1); 1857 1858 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1859 addi(off_to_args, off_to_args, to_add); 1860 1861 // increment index by 1 1862 addi(index, index, 1); 1863 mv(t1, TypeProfileArgsLimit); 1864 blt(index, t1, loop); 1865 bind(loopEnd); 1866 1867 if (MethodData::profile_return()) { 1868 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1869 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1870 } 1871 1872 add(t0, mdp, off_to_args); 1873 bind(done); 1874 mv(mdp, t0); 1875 1876 // unspill the clobbered registers 1877 pop_reg(pushed_registers, sp); 1878 1879 if (MethodData::profile_return()) { 1880 // We're right after the type profile for the last 1881 // argument. tmp is the number of cells left in the 1882 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1883 // if there's a return to profile. 1884 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1885 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1886 } 1887 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1888 } else { 1889 assert(MethodData::profile_return(), "either profile call args or call ret"); 1890 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1891 } 1892 1893 // mdp points right after the end of the 1894 // CallTypeData/VirtualCallTypeData, right after the cells for the 1895 // return value type if there's one 1896 1897 bind(profile_continue); 1898 } 1899 } 1900 1901 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1902 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1903 if (ProfileInterpreter && MethodData::profile_return()) { 1904 Label profile_continue, done; 1905 1906 test_method_data_pointer(mdp, profile_continue); 1907 1908 if (MethodData::profile_return_jsr292_only()) { 1909 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1910 1911 // If we don't profile all invoke bytecodes we must make sure 1912 // it's a bytecode we indeed profile. We can't go back to the 1913 // beginning of the ProfileData we intend to update to check its 1914 // type because we're right after it and we don't known its 1915 // length 1916 Label do_profile; 1917 lbu(t0, Address(xbcp, 0)); 1918 mv(tmp, (u1)Bytecodes::_invokedynamic); 1919 beq(t0, tmp, do_profile); 1920 mv(tmp, (u1)Bytecodes::_invokehandle); 1921 beq(t0, tmp, do_profile); 1922 get_method(tmp); 1923 lhu(t0, Address(tmp, Method::intrinsic_id_offset())); 1924 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1925 bne(t0, t1, profile_continue); 1926 bind(do_profile); 1927 } 1928 1929 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1930 mv(tmp, ret); 1931 profile_obj_type(tmp, mdo_ret_addr, t1); 1932 1933 bind(profile_continue); 1934 } 1935 } 1936 1937 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1938 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1939 if (ProfileInterpreter && MethodData::profile_parameters()) { 1940 Label profile_continue, done; 1941 1942 test_method_data_pointer(mdp, profile_continue); 1943 1944 // Load the offset of the area within the MDO used for 1945 // parameters. If it's negative we're not profiling any parameters 1946 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1947 srli(tmp2, tmp1, 31); 1948 bnez(tmp2, profile_continue); // i.e. sign bit set 1949 1950 // Compute a pointer to the area for parameters from the offset 1951 // and move the pointer to the slot for the last 1952 // parameters. Collect profiling from last parameter down. 1953 // mdo start + parameters offset + array length - 1 1954 add(mdp, mdp, tmp1); 1955 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1956 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1957 1958 Label loop; 1959 bind(loop); 1960 1961 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1962 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1963 int per_arg_scale = exact_log2(DataLayout::cell_size); 1964 add(t0, mdp, off_base); 1965 add(t1, mdp, type_base); 1966 1967 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1968 // load offset on the stack from the slot for this parameter 1969 ld(tmp2, Address(tmp2, 0)); 1970 neg(tmp2, tmp2); 1971 1972 // read the parameter from the local area 1973 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1974 ld(tmp2, Address(tmp2, 0)); 1975 1976 // profile the parameter 1977 shadd(t1, tmp1, t1, t0, per_arg_scale); 1978 Address arg_type(t1, 0); 1979 profile_obj_type(tmp2, arg_type, tmp3); 1980 1981 // go to next parameter 1982 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1983 bgez(tmp1, loop); 1984 1985 bind(profile_continue); 1986 } 1987 } 1988 1989 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1990 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1991 // register "cache" is trashed in next ld, so lets use it as a temporary register 1992 get_cache_index_at_bcp(index, cache, 1, sizeof(u4)); 1993 // Get address of invokedynamic array 1994 ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1995 // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo) 1996 slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1997 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1998 add(cache, cache, index); 1999 la(cache, Address(cache, 0)); 2000 } 2001 2002 void InterpreterMacroAssembler::get_method_counters(Register method, 2003 Register mcs, Label& skip) { 2004 Label has_counters; 2005 ld(mcs, Address(method, Method::method_counters_offset())); 2006 bnez(mcs, has_counters); 2007 call_VM(noreg, CAST_FROM_FN_PTR(address, 2008 InterpreterRuntime::build_method_counters), method); 2009 ld(mcs, Address(method, Method::method_counters_offset())); 2010 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 2011 bind(has_counters); 2012 } 2013 2014 #ifdef ASSERT 2015 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag, 2016 const char* msg, bool stop_by_hit) { 2017 Label L; 2018 test_bit(t0, access_flags, exact_log2(flag)); 2019 if (stop_by_hit) { 2020 beqz(t0, L); 2021 } else { 2022 bnez(t0, L); 2023 } 2024 stop(msg); 2025 bind(L); 2026 } 2027 2028 void InterpreterMacroAssembler::verify_frame_setup() { 2029 Label L; 2030 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 2031 ld(t0, monitor_block_top); 2032 beq(esp, t0, L); 2033 stop("broken stack frame setup in interpreter"); 2034 bind(L); 2035 } 2036 #endif