1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interp_masm_riscv.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "logging/log.hpp" 35 #include "oops/arrayOop.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/method.hpp" 38 #include "oops/methodData.hpp" 39 #include "prims/jvmtiExport.hpp" 40 #include "prims/jvmtiThreadState.hpp" 41 #include "runtime/basicLock.hpp" 42 #include "runtime/frame.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/safepointMechanism.hpp" 45 #include "runtime/sharedRuntime.hpp" 46 #include "utilities/powerOfTwo.hpp" 47 48 void InterpreterMacroAssembler::narrow(Register result) { 49 // Get method->_constMethod->_result_type 50 ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 51 ld(t0, Address(t0, Method::const_offset())); 52 lbu(t0, Address(t0, ConstMethod::result_type_offset())); 53 54 Label done, notBool, notByte, notChar; 55 56 // common case first 57 mv(t1, T_INT); 58 beq(t0, t1, done); 59 60 // mask integer result to narrower return type. 61 mv(t1, T_BOOLEAN); 62 bne(t0, t1, notBool); 63 64 andi(result, result, 0x1); 65 j(done); 66 67 bind(notBool); 68 mv(t1, T_BYTE); 69 bne(t0, t1, notByte); 70 sign_extend(result, result, 8); 71 j(done); 72 73 bind(notByte); 74 mv(t1, T_CHAR); 75 bne(t0, t1, notChar); 76 zero_extend(result, result, 16); 77 j(done); 78 79 bind(notChar); 80 sign_extend(result, result, 16); 81 82 bind(done); 83 sign_extend(result, result, 32); 84 } 85 86 void InterpreterMacroAssembler::jump_to_entry(address entry) { 87 assert(entry != nullptr, "Entry must have been generated by now"); 88 j(entry); 89 } 90 91 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 92 if (JvmtiExport::can_pop_frame()) { 93 Label L; 94 // Initiate popframe handling only if it is not already being 95 // processed. If the flag has the popframe_processing bit set, 96 // it means that this code is called *during* popframe handling - we 97 // don't want to reenter. 98 // This method is only called just after the call into the vm in 99 // call_VM_base, so the arg registers are available. 100 lwu(t1, Address(xthread, JavaThread::popframe_condition_offset())); 101 test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit)); 102 beqz(t0, L); 103 test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit)); 104 bnez(t0, L); 105 // Call Interpreter::remove_activation_preserving_args_entry() to get the 106 // address of the same-named entrypoint in the generated interpreter code. 107 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 108 jr(x10); 109 bind(L); 110 } 111 } 112 113 114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 115 ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset())); 116 const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset()); 117 const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset()); 118 const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset()); 119 switch (state) { 120 case atos: 121 ld(x10, oop_addr); 122 sd(zr, oop_addr); 123 verify_oop(x10); 124 break; 125 case ltos: 126 ld(x10, val_addr); 127 break; 128 case btos: // fall through 129 case ztos: // fall through 130 case ctos: // fall through 131 case stos: // fall through 132 case itos: 133 lwu(x10, val_addr); 134 break; 135 case ftos: 136 flw(f10, val_addr); 137 break; 138 case dtos: 139 fld(f10, val_addr); 140 break; 141 case vtos: 142 /* nothing to do */ 143 break; 144 default: 145 ShouldNotReachHere(); 146 } 147 // Clean up tos value in the thread object 148 mv(t0, (int)ilgl); 149 sw(t0, tos_addr); 150 sw(zr, val_addr); 151 } 152 153 154 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 155 if (JvmtiExport::can_force_early_return()) { 156 Label L; 157 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 158 beqz(t0, L); // if thread->jvmti_thread_state() is null then exit 159 160 // Initiate earlyret handling only if it is not already being processed. 161 // If the flag has the earlyret_processing bit set, it means that this code 162 // is called *during* earlyret handling - we don't want to reenter. 163 lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset())); 164 mv(t1, JvmtiThreadState::earlyret_pending); 165 bne(t0, t1, L); 166 167 // Call Interpreter::remove_activation_early_entry() to get the address of the 168 // same-named entrypoint in the generated interpreter code. 169 ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset())); 170 lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset())); 171 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0); 172 jr(x10); 173 bind(L); 174 } 175 } 176 177 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 178 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 179 if (AvoidUnalignedAccesses && (bcp_offset % 2)) { 180 lbu(t1, Address(xbcp, bcp_offset)); 181 lbu(reg, Address(xbcp, bcp_offset + 1)); 182 slli(t1, t1, 8); 183 add(reg, reg, t1); 184 } else { 185 lhu(reg, Address(xbcp, bcp_offset)); 186 revb_h_h_u(reg, reg); 187 } 188 } 189 190 void InterpreterMacroAssembler::get_dispatch() { 191 ExternalAddress target((address)Interpreter::dispatch_table()); 192 relocate(target.rspec(), [&] { 193 int32_t offset; 194 la_patchable(xdispatch, target, offset); 195 addi(xdispatch, xdispatch, offset); 196 }); 197 } 198 199 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 200 Register tmp, 201 int bcp_offset, 202 size_t index_size) { 203 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 204 if (index_size == sizeof(u2)) { 205 if (AvoidUnalignedAccesses) { 206 assert_different_registers(index, tmp); 207 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 208 load_unsigned_byte(tmp, Address(xbcp, bcp_offset + 1)); 209 slli(tmp, tmp, 8); 210 add(index, index, tmp); 211 } else { 212 load_unsigned_short(index, Address(xbcp, bcp_offset)); 213 } 214 } else if (index_size == sizeof(u4)) { 215 load_int_misaligned(index, Address(xbcp, bcp_offset), tmp, false); 216 217 // Check if the secondary index definition is still ~x, otherwise 218 // we have to change the following assembler code to calculate the 219 // plain index. 220 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 221 xori(index, index, -1); 222 sign_extend(index, index, 32); 223 } else if (index_size == sizeof(u1)) { 224 load_unsigned_byte(index, Address(xbcp, bcp_offset)); 225 } else { 226 ShouldNotReachHere(); 227 } 228 } 229 230 // Return 231 // Rindex: index into constant pool 232 // Rcache: address of cache entry - ConstantPoolCache::base_offset() 233 // 234 // A caller must add ConstantPoolCache::base_offset() to Rcache to get 235 // the true address of the cache entry. 236 // 237 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 238 Register index, 239 int bcp_offset, 240 size_t index_size) { 241 assert_different_registers(cache, index); 242 assert_different_registers(cache, xcpool); 243 // register "cache" is trashed in next shadd, so lets use it as a temporary register 244 get_cache_index_at_bcp(index, cache, bcp_offset, index_size); 245 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 246 // Convert from field index to ConstantPoolCacheEntry 247 // riscv already has the cache in xcpool so there is no need to 248 // install it in cache. Instead we pre-add the indexed offset to 249 // xcpool and return it in cache. All clients of this method need to 250 // be modified accordingly. 251 shadd(cache, index, xcpool, cache, 5); 252 } 253 254 255 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 256 Register index, 257 Register bytecode, 258 int byte_no, 259 int bcp_offset, 260 size_t index_size) { 261 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 262 // We use a 32-bit load here since the layout of 64-bit words on 263 // little-endian machines allow us that. 264 // n.b. unlike x86 cache already includes the index offset 265 la(bytecode, Address(cache, 266 ConstantPoolCache::base_offset() + 267 ConstantPoolCacheEntry::indices_offset())); 268 membar(MacroAssembler::AnyAny); 269 lwu(bytecode, bytecode); 270 membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 271 const int shift_count = (1 + byte_no) * BitsPerByte; 272 slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte)); 273 srli(bytecode, bytecode, XLEN - BitsPerByte); 274 } 275 276 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 277 Register tmp, 278 int bcp_offset, 279 size_t index_size) { 280 assert_different_registers(cache, tmp); 281 // register "cache" is trashed in next ld, so lets use it as a temporary register 282 get_cache_index_at_bcp(tmp, cache, bcp_offset, index_size); 283 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 284 // Convert from field index to ConstantPoolCacheEntry index 285 // and from word offset to byte offset 286 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, 287 "else change next line"); 288 ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize)); 289 // skip past the header 290 add(cache, cache, in_bytes(ConstantPoolCache::base_offset())); 291 // construct pointer to cache entry 292 shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord); 293 } 294 295 // Load object from cpool->resolved_references(index) 296 void InterpreterMacroAssembler::load_resolved_reference_at_index( 297 Register result, Register index, Register tmp) { 298 assert_different_registers(result, index); 299 300 get_constant_pool(result); 301 // Load pointer for resolved_references[] objArray 302 ld(result, Address(result, ConstantPool::cache_offset())); 303 ld(result, Address(result, ConstantPoolCache::resolved_references_offset())); 304 resolve_oop_handle(result, tmp, t1); 305 // Add in the index 306 addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop); 307 shadd(result, index, result, index, LogBytesPerHeapOop); 308 load_heap_oop(result, Address(result, 0), tmp, t1); 309 } 310 311 void InterpreterMacroAssembler::load_resolved_klass_at_offset( 312 Register cpool, Register index, Register klass, Register temp) { 313 shadd(temp, index, cpool, temp, LogBytesPerWord); 314 lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index 315 ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses 316 shadd(klass, temp, klass, temp, LogBytesPerWord); 317 ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes())); 318 } 319 320 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 321 Register method, 322 Register cache) { 323 const int method_offset = in_bytes( 324 ConstantPoolCache::base_offset() + 325 ((byte_no == TemplateTable::f2_byte) 326 ? ConstantPoolCacheEntry::f2_offset() 327 : ConstantPoolCacheEntry::f1_offset())); 328 329 ld(method, Address(cache, method_offset)); // get f1 Method* 330 } 331 332 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 333 // subtype of super_klass. 334 // 335 // Args: 336 // x10: superklass 337 // Rsub_klass: subklass 338 // 339 // Kills: 340 // x12, x15 341 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 342 Label& ok_is_subtype) { 343 assert(Rsub_klass != x10, "x10 holds superklass"); 344 assert(Rsub_klass != x12, "x12 holds 2ndary super array length"); 345 assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr"); 346 347 // Profile the not-null value's klass. 348 profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15 349 350 // Do the check. 351 check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12 352 353 // Profile the failure of the check. 354 profile_typecheck_failed(x12); // blows x12 355 } 356 357 // Java Expression Stack 358 359 void InterpreterMacroAssembler::pop_ptr(Register r) { 360 ld(r, Address(esp, 0)); 361 addi(esp, esp, wordSize); 362 } 363 364 void InterpreterMacroAssembler::pop_i(Register r) { 365 lw(r, Address(esp, 0)); // lw do signed extended 366 addi(esp, esp, wordSize); 367 } 368 369 void InterpreterMacroAssembler::pop_l(Register r) { 370 ld(r, Address(esp, 0)); 371 addi(esp, esp, 2 * Interpreter::stackElementSize); 372 } 373 374 void InterpreterMacroAssembler::push_ptr(Register r) { 375 addi(esp, esp, -wordSize); 376 sd(r, Address(esp, 0)); 377 } 378 379 void InterpreterMacroAssembler::push_i(Register r) { 380 addi(esp, esp, -wordSize); 381 sign_extend(r, r, 32); 382 sd(r, Address(esp, 0)); 383 } 384 385 void InterpreterMacroAssembler::push_l(Register r) { 386 addi(esp, esp, -2 * wordSize); 387 sd(zr, Address(esp, wordSize)); 388 sd(r, Address(esp)); 389 } 390 391 void InterpreterMacroAssembler::pop_f(FloatRegister r) { 392 flw(r, Address(esp, 0)); 393 addi(esp, esp, wordSize); 394 } 395 396 void InterpreterMacroAssembler::pop_d(FloatRegister r) { 397 fld(r, Address(esp, 0)); 398 addi(esp, esp, 2 * Interpreter::stackElementSize); 399 } 400 401 void InterpreterMacroAssembler::push_f(FloatRegister r) { 402 addi(esp, esp, -wordSize); 403 fsw(r, Address(esp, 0)); 404 } 405 406 void InterpreterMacroAssembler::push_d(FloatRegister r) { 407 addi(esp, esp, -2 * wordSize); 408 fsd(r, Address(esp, 0)); 409 } 410 411 void InterpreterMacroAssembler::pop(TosState state) { 412 switch (state) { 413 case atos: 414 pop_ptr(); 415 verify_oop(x10); 416 break; 417 case btos: // fall through 418 case ztos: // fall through 419 case ctos: // fall through 420 case stos: // fall through 421 case itos: 422 pop_i(); 423 break; 424 case ltos: 425 pop_l(); 426 break; 427 case ftos: 428 pop_f(); 429 break; 430 case dtos: 431 pop_d(); 432 break; 433 case vtos: 434 /* nothing to do */ 435 break; 436 default: 437 ShouldNotReachHere(); 438 } 439 } 440 441 void InterpreterMacroAssembler::push(TosState state) { 442 switch (state) { 443 case atos: 444 verify_oop(x10); 445 push_ptr(); 446 break; 447 case btos: // fall through 448 case ztos: // fall through 449 case ctos: // fall through 450 case stos: // fall through 451 case itos: 452 push_i(); 453 break; 454 case ltos: 455 push_l(); 456 break; 457 case ftos: 458 push_f(); 459 break; 460 case dtos: 461 push_d(); 462 break; 463 case vtos: 464 /* nothing to do */ 465 break; 466 default: 467 ShouldNotReachHere(); 468 } 469 } 470 471 // Helpers for swap and dup 472 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 473 ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 474 } 475 476 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 477 sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n))); 478 } 479 480 void InterpreterMacroAssembler::load_float(Address src) { 481 flw(f10, src); 482 } 483 484 void InterpreterMacroAssembler::load_double(Address src) { 485 fld(f10, src); 486 } 487 488 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 489 // set sender sp 490 mv(x19_sender_sp, sp); 491 // record last_sp 492 sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 493 } 494 495 // Jump to from_interpreted entry of a call unless single stepping is possible 496 // in this thread in which case we must call the i2i entry 497 void InterpreterMacroAssembler::jump_from_interpreted(Register method) { 498 prepare_to_jump_from_interpreted(); 499 if (JvmtiExport::can_post_interpreter_events()) { 500 Label run_compiled_code; 501 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 502 // compiled code in threads for which the event is enabled. Check here for 503 // interp_only_mode if these events CAN be enabled. 504 lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 505 beqz(t0, run_compiled_code); 506 ld(t0, Address(method, Method::interpreter_entry_offset())); 507 jr(t0); 508 bind(run_compiled_code); 509 } 510 511 ld(t0, Address(method, Method::from_interpreted_offset())); 512 jr(t0); 513 } 514 515 // The following two routines provide a hook so that an implementation 516 // can schedule the dispatch in two parts. amd64 does not do this. 517 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 518 } 519 520 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 521 dispatch_next(state, step); 522 } 523 524 void InterpreterMacroAssembler::dispatch_base(TosState state, 525 address* table, 526 bool verifyoop, 527 bool generate_poll, 528 Register Rs) { 529 // Pay attention to the argument Rs, which is acquiesce in t0. 530 if (VerifyActivationFrameSize) { 531 Unimplemented(); 532 } 533 if (verifyoop && state == atos) { 534 verify_oop(x10); 535 } 536 537 Label safepoint; 538 address* const safepoint_table = Interpreter::safept_table(state); 539 bool needs_thread_local_poll = generate_poll && table != safepoint_table; 540 541 if (needs_thread_local_poll) { 542 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 543 ld(t1, Address(xthread, JavaThread::polling_word_offset())); 544 test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit())); 545 bnez(t1, safepoint); 546 } 547 if (table == Interpreter::dispatch_table(state)) { 548 mv(t1, Interpreter::distance_from_dispatch_table(state)); 549 add(t1, Rs, t1); 550 shadd(t1, t1, xdispatch, t1, 3); 551 } else { 552 mv(t1, (address)table); 553 shadd(t1, Rs, t1, Rs, 3); 554 } 555 ld(t1, Address(t1)); 556 jr(t1); 557 558 if (needs_thread_local_poll) { 559 bind(safepoint); 560 la(t1, ExternalAddress((address)safepoint_table)); 561 shadd(t1, Rs, t1, Rs, 3); 562 ld(t1, Address(t1)); 563 jr(t1); 564 } 565 } 566 567 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) { 568 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs); 569 } 570 571 void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) { 572 dispatch_base(state, Interpreter::normal_table(state), true, false, Rs); 573 } 574 575 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) { 576 dispatch_base(state, Interpreter::normal_table(state), false, false, Rs); 577 } 578 579 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 580 // load next bytecode 581 load_unsigned_byte(t0, Address(xbcp, step)); 582 add(xbcp, xbcp, step); 583 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 584 } 585 586 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 587 // load current bytecode 588 lbu(t0, Address(xbcp, 0)); 589 dispatch_base(state, table); 590 } 591 592 // remove activation 593 // 594 // Apply stack watermark barrier. 595 // Unlock the receiver if this is a synchronized method. 596 // Unlock any Java monitors from synchronized blocks. 597 // Remove the activation from the stack. 598 // 599 // If there are locked Java monitors 600 // If throw_monitor_exception 601 // throws IllegalMonitorStateException 602 // Else if install_monitor_exception 603 // installs IllegalMonitorStateException 604 // Else 605 // no error processing 606 void InterpreterMacroAssembler::remove_activation( 607 TosState state, 608 bool throw_monitor_exception, 609 bool install_monitor_exception, 610 bool notify_jvmdi) { 611 // Note: Registers x13 may be in use for the 612 // result check if synchronized method 613 Label unlocked, unlock, no_unlock; 614 615 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 616 // that would normally not be safe to use. Such bad returns into unsafe territory of 617 // the stack, will call InterpreterRuntime::at_unwind. 618 Label slow_path; 619 Label fast_path; 620 safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */); 621 j(fast_path); 622 623 bind(slow_path); 624 push(state); 625 set_last_Java_frame(esp, fp, (address)pc(), t0); 626 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread); 627 reset_last_Java_frame(true); 628 pop(state); 629 630 bind(fast_path); 631 632 // get the value of _do_not_unlock_if_synchronized into x13 633 const Address do_not_unlock_if_synchronized(xthread, 634 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 635 lbu(x13, do_not_unlock_if_synchronized); 636 sb(zr, do_not_unlock_if_synchronized); // reset the flag 637 638 // get method access flags 639 ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize)); 640 ld(x12, Address(x11, Method::access_flags_offset())); 641 test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED)); 642 beqz(t0, unlocked); 643 644 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 645 // is set. 646 bnez(x13, no_unlock); 647 648 // unlock monitor 649 push(state); // save result 650 651 // BasicObjectLock will be first in list, since this is a 652 // synchronized method. However, need to check that the object has 653 // not been unlocked by an explicit monitorexit bytecode. 654 const Address monitor(fp, frame::interpreter_frame_initial_sp_offset * 655 wordSize - (int) sizeof(BasicObjectLock)); 656 // We use c_rarg1 so that if we go slow path it will be the correct 657 // register for unlock_object to pass to VM directly 658 la(c_rarg1, monitor); // address of first monitor 659 660 ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset())); 661 bnez(x10, unlock); 662 663 pop(state); 664 if (throw_monitor_exception) { 665 // Entry already unlocked, need to throw exception 666 call_VM(noreg, CAST_FROM_FN_PTR(address, 667 InterpreterRuntime::throw_illegal_monitor_state_exception)); 668 should_not_reach_here(); 669 } else { 670 // Monitor already unlocked during a stack unroll. If requested, 671 // install an illegal_monitor_state_exception. Continue with 672 // stack unrolling. 673 if (install_monitor_exception) { 674 call_VM(noreg, CAST_FROM_FN_PTR(address, 675 InterpreterRuntime::new_illegal_monitor_state_exception)); 676 } 677 j(unlocked); 678 } 679 680 bind(unlock); 681 unlock_object(c_rarg1); 682 pop(state); 683 684 // Check that for block-structured locking (i.e., that all locked 685 // objects has been unlocked) 686 bind(unlocked); 687 688 // x10: Might contain return value 689 690 // Check that all monitors are unlocked 691 { 692 Label loop, exception, entry, restart; 693 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 694 const Address monitor_block_top( 695 fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 696 const Address monitor_block_bot( 697 fp, frame::interpreter_frame_initial_sp_offset * wordSize); 698 699 bind(restart); 700 // We use c_rarg1 so that if we go slow path it will be the correct 701 // register for unlock_object to pass to VM directly 702 ld(c_rarg1, monitor_block_top); // points to current entry, starting 703 // with top-most entry 704 la(x9, monitor_block_bot); // points to word before bottom of 705 // monitor block 706 707 j(entry); 708 709 // Entry already locked, need to throw exception 710 bind(exception); 711 712 if (throw_monitor_exception) { 713 // Throw exception 714 MacroAssembler::call_VM(noreg, 715 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 716 throw_illegal_monitor_state_exception)); 717 718 should_not_reach_here(); 719 } else { 720 // Stack unrolling. Unlock object and install illegal_monitor_exception. 721 // Unlock does not block, so don't have to worry about the frame. 722 // We don't have to preserve c_rarg1 since we are going to throw an exception. 723 724 push(state); 725 unlock_object(c_rarg1); 726 pop(state); 727 728 if (install_monitor_exception) { 729 call_VM(noreg, CAST_FROM_FN_PTR(address, 730 InterpreterRuntime:: 731 new_illegal_monitor_state_exception)); 732 } 733 734 j(restart); 735 } 736 737 bind(loop); 738 // check if current entry is used 739 add(t0, c_rarg1, in_bytes(BasicObjectLock::obj_offset())); 740 ld(t0, Address(t0, 0)); 741 bnez(t0, exception); 742 743 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry 744 bind(entry); 745 bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry 746 } 747 748 bind(no_unlock); 749 750 // jvmti support 751 if (notify_jvmdi) { 752 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 753 754 } else { 755 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 756 } 757 758 // remove activation 759 // get sender esp 760 ld(t1, 761 Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); 762 if (StackReservedPages > 0) { 763 // testing if reserved zone needs to be re-enabled 764 Label no_reserved_zone_enabling; 765 766 // check if already enabled - if so no re-enabling needed 767 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 768 lw(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 769 subw(t0, t0, StackOverflow::stack_guard_enabled); 770 beqz(t0, no_reserved_zone_enabling); 771 772 ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset())); 773 ble(t1, t0, no_reserved_zone_enabling); 774 775 call_VM_leaf( 776 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread); 777 call_VM(noreg, CAST_FROM_FN_PTR(address, 778 InterpreterRuntime::throw_delayed_StackOverflowError)); 779 should_not_reach_here(); 780 781 bind(no_reserved_zone_enabling); 782 } 783 784 // restore sender esp 785 mv(esp, t1); 786 787 // remove frame anchor 788 leave(); 789 // If we're returning to interpreted code we will shortly be 790 // adjusting SP to allow some space for ESP. If we're returning to 791 // compiled code the saved sender SP was saved in sender_sp, so this 792 // restores it. 793 andi(sp, esp, -16); 794 } 795 796 // Lock object 797 // 798 // Args: 799 // c_rarg1: BasicObjectLock to be used for locking 800 // 801 // Kills: 802 // x10 803 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, .. (param regs) 804 // t0, t1 (temp regs) 805 void InterpreterMacroAssembler::lock_object(Register lock_reg) 806 { 807 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1"); 808 if (LockingMode == LM_MONITOR) { 809 call_VM(noreg, 810 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 811 lock_reg); 812 } else { 813 Label count, done; 814 815 const Register swap_reg = x10; 816 const Register tmp = c_rarg2; 817 const Register obj_reg = c_rarg3; // Will contain the oop 818 const Register tmp2 = c_rarg4; 819 const Register tmp3 = c_rarg5; 820 821 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 822 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 823 const int mark_offset = lock_offset + 824 BasicLock::displaced_header_offset_in_bytes(); 825 826 Label slow_case; 827 828 // Load object pointer into obj_reg c_rarg3 829 ld(obj_reg, Address(lock_reg, obj_offset)); 830 831 if (DiagnoseSyncOnValueBasedClasses != 0) { 832 load_klass(tmp, obj_reg); 833 lwu(tmp, Address(tmp, Klass::access_flags_offset())); 834 test_bit(tmp, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS)); 835 bnez(tmp, slow_case); 836 } 837 838 if (LockingMode == LM_LIGHTWEIGHT) { 839 lightweight_lock(obj_reg, tmp, tmp2, tmp3, slow_case); 840 j(count); 841 } else if (LockingMode == LM_LEGACY) { 842 // Load (object->mark() | 1) into swap_reg 843 ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 844 ori(swap_reg, t0, 1); 845 846 // Save (object->mark() | 1) into BasicLock's displaced header 847 sd(swap_reg, Address(lock_reg, mark_offset)); 848 849 assert(lock_offset == 0, 850 "displached header must be first word in BasicObjectLock"); 851 852 cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, count, /*fallthrough*/nullptr); 853 854 // Test if the oopMark is an obvious stack pointer, i.e., 855 // 1) (mark & 7) == 0, and 856 // 2) sp <= mark < mark + os::pagesize() 857 // 858 // These 3 tests can be done by evaluating the following 859 // expression: ((mark - sp) & (7 - os::vm_page_size())), 860 // assuming both stack pointer and pagesize have their 861 // least significant 3 bits clear. 862 // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg 863 sub(swap_reg, swap_reg, sp); 864 mv(t0, (int64_t)(7 - (int)os::vm_page_size())); 865 andr(swap_reg, swap_reg, t0); 866 867 // Save the test result, for recursive case, the result is zero 868 sd(swap_reg, Address(lock_reg, mark_offset)); 869 beqz(swap_reg, count); 870 } 871 872 bind(slow_case); 873 874 // Call the runtime routine for slow case 875 if (LockingMode == LM_LIGHTWEIGHT) { 876 call_VM(noreg, 877 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 878 obj_reg); 879 } else { 880 call_VM(noreg, 881 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 882 lock_reg); 883 } 884 j(done); 885 886 bind(count); 887 increment(Address(xthread, JavaThread::held_monitor_count_offset())); 888 889 bind(done); 890 } 891 } 892 893 894 // Unlocks an object. Used in monitorexit bytecode and 895 // remove_activation. Throws an IllegalMonitorException if object is 896 // not locked by current thread. 897 // 898 // Args: 899 // c_rarg1: BasicObjectLock for lock 900 // 901 // Kills: 902 // x10 903 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, ... (param regs) 904 // t0, t1 (temp regs) 905 void InterpreterMacroAssembler::unlock_object(Register lock_reg) 906 { 907 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1"); 908 909 if (LockingMode == LM_MONITOR) { 910 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 911 } else { 912 Label count, done; 913 914 const Register swap_reg = x10; 915 const Register header_reg = c_rarg2; // Will contain the old oopMark 916 const Register obj_reg = c_rarg3; // Will contain the oop 917 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock 918 919 save_bcp(); // Save in case of exception 920 921 if (LockingMode != LM_LIGHTWEIGHT) { 922 // Convert from BasicObjectLock structure to object and BasicLock 923 // structure Store the BasicLock address into x10 924 la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 925 } 926 927 // Load oop into obj_reg(c_rarg3) 928 ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 929 930 // Free entry 931 sd(zr, Address(lock_reg, BasicObjectLock::obj_offset())); 932 933 if (LockingMode == LM_LIGHTWEIGHT) { 934 Label slow_case; 935 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case); 936 j(count); 937 938 bind(slow_case); 939 } else if (LockingMode == LM_LEGACY) { 940 // Load the old header from BasicLock structure 941 ld(header_reg, Address(swap_reg, 942 BasicLock::displaced_header_offset_in_bytes())); 943 944 // Test for recursion 945 beqz(header_reg, count); 946 947 // Atomic swap back the old header 948 cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, count, /*fallthrough*/nullptr); 949 } 950 951 // Call the runtime routine for slow case. 952 sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj 953 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 954 955 j(done); 956 957 bind(count); 958 decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 959 960 bind(done); 961 962 restore_bcp(); 963 } 964 } 965 966 967 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 968 Label& zero_continue) { 969 assert(ProfileInterpreter, "must be profiling interpreter"); 970 ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 971 beqz(mdp, zero_continue); 972 } 973 974 // Set the method data pointer for the current bcp. 975 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 976 assert(ProfileInterpreter, "must be profiling interpreter"); 977 Label set_mdp; 978 push_reg(RegSet::of(x10, x11), sp); // save x10, x11 979 980 // Test MDO to avoid the call if it is null. 981 ld(x10, Address(xmethod, in_bytes(Method::method_data_offset()))); 982 beqz(x10, set_mdp); 983 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp); 984 // x10: mdi 985 // mdo is guaranteed to be non-zero here, we checked for it before the call. 986 ld(x11, Address(xmethod, in_bytes(Method::method_data_offset()))); 987 la(x11, Address(x11, in_bytes(MethodData::data_offset()))); 988 add(x10, x11, x10); 989 sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 990 bind(set_mdp); 991 pop_reg(RegSet::of(x10, x11), sp); 992 } 993 994 void InterpreterMacroAssembler::verify_method_data_pointer() { 995 assert(ProfileInterpreter, "must be profiling interpreter"); 996 #ifdef ASSERT 997 Label verify_continue; 998 add(sp, sp, -4 * wordSize); 999 sd(x10, Address(sp, 0)); 1000 sd(x11, Address(sp, wordSize)); 1001 sd(x12, Address(sp, 2 * wordSize)); 1002 sd(x13, Address(sp, 3 * wordSize)); 1003 test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue 1004 get_method(x11); 1005 1006 // If the mdp is valid, it will point to a DataLayout header which is 1007 // consistent with the bcp. The converse is highly probable also. 1008 lh(x12, Address(x13, in_bytes(DataLayout::bci_offset()))); 1009 ld(t0, Address(x11, Method::const_offset())); 1010 add(x12, x12, t0); 1011 la(x12, Address(x12, ConstMethod::codes_offset())); 1012 beq(x12, xbcp, verify_continue); 1013 // x10: method 1014 // xbcp: bcp // xbcp == 22 1015 // x13: mdp 1016 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1017 x11, xbcp, x13); 1018 bind(verify_continue); 1019 ld(x10, Address(sp, 0)); 1020 ld(x11, Address(sp, wordSize)); 1021 ld(x12, Address(sp, 2 * wordSize)); 1022 ld(x13, Address(sp, 3 * wordSize)); 1023 add(sp, sp, 4 * wordSize); 1024 #endif // ASSERT 1025 } 1026 1027 1028 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1029 int constant, 1030 Register value) { 1031 assert(ProfileInterpreter, "must be profiling interpreter"); 1032 Address data(mdp_in, constant); 1033 sd(value, data); 1034 } 1035 1036 1037 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1038 int constant, 1039 bool decrement) { 1040 increment_mdp_data_at(mdp_in, noreg, constant, decrement); 1041 } 1042 1043 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1044 Register reg, 1045 int constant, 1046 bool decrement) { 1047 assert(ProfileInterpreter, "must be profiling interpreter"); 1048 // %%% this does 64bit counters at best it is wasting space 1049 // at worst it is a rare bug when counters overflow 1050 1051 assert_different_registers(t1, t0, mdp_in, reg); 1052 1053 Address addr1(mdp_in, constant); 1054 Address addr2(t1, 0); 1055 Address &addr = addr1; 1056 if (reg != noreg) { 1057 la(t1, addr1); 1058 add(t1, t1, reg); 1059 addr = addr2; 1060 } 1061 1062 if (decrement) { 1063 ld(t0, addr); 1064 addi(t0, t0, -DataLayout::counter_increment); 1065 Label L; 1066 bltz(t0, L); // skip store if counter underflow 1067 sd(t0, addr); 1068 bind(L); 1069 } else { 1070 assert(DataLayout::counter_increment == 1, 1071 "flow-free idiom only works with 1"); 1072 ld(t0, addr); 1073 addi(t0, t0, DataLayout::counter_increment); 1074 Label L; 1075 blez(t0, L); // skip store if counter overflow 1076 sd(t0, addr); 1077 bind(L); 1078 } 1079 } 1080 1081 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1082 int flag_byte_constant) { 1083 assert(ProfileInterpreter, "must be profiling interpreter"); 1084 int flags_offset = in_bytes(DataLayout::flags_offset()); 1085 // Set the flag 1086 lbu(t1, Address(mdp_in, flags_offset)); 1087 ori(t1, t1, flag_byte_constant); 1088 sb(t1, Address(mdp_in, flags_offset)); 1089 } 1090 1091 1092 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1093 int offset, 1094 Register value, 1095 Register test_value_out, 1096 Label& not_equal_continue) { 1097 assert(ProfileInterpreter, "must be profiling interpreter"); 1098 if (test_value_out == noreg) { 1099 ld(t1, Address(mdp_in, offset)); 1100 bne(value, t1, not_equal_continue); 1101 } else { 1102 // Put the test value into a register, so caller can use it: 1103 ld(test_value_out, Address(mdp_in, offset)); 1104 bne(value, test_value_out, not_equal_continue); 1105 } 1106 } 1107 1108 1109 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1110 int offset_of_disp) { 1111 assert(ProfileInterpreter, "must be profiling interpreter"); 1112 ld(t1, Address(mdp_in, offset_of_disp)); 1113 add(mdp_in, mdp_in, t1); 1114 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1115 } 1116 1117 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1118 Register reg, 1119 int offset_of_disp) { 1120 assert(ProfileInterpreter, "must be profiling interpreter"); 1121 add(t1, mdp_in, reg); 1122 ld(t1, Address(t1, offset_of_disp)); 1123 add(mdp_in, mdp_in, t1); 1124 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1125 } 1126 1127 1128 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1129 int constant) { 1130 assert(ProfileInterpreter, "must be profiling interpreter"); 1131 addi(mdp_in, mdp_in, (unsigned)constant); 1132 sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1133 } 1134 1135 1136 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1137 assert(ProfileInterpreter, "must be profiling interpreter"); 1138 1139 // save/restore across call_VM 1140 addi(sp, sp, -2 * wordSize); 1141 sd(zr, Address(sp, 0)); 1142 sd(return_bci, Address(sp, wordSize)); 1143 call_VM(noreg, 1144 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1145 return_bci); 1146 ld(zr, Address(sp, 0)); 1147 ld(return_bci, Address(sp, wordSize)); 1148 addi(sp, sp, 2 * wordSize); 1149 } 1150 1151 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1152 Register bumped_count) { 1153 if (ProfileInterpreter) { 1154 Label profile_continue; 1155 1156 // If no method data exists, go to profile_continue. 1157 // Otherwise, assign to mdp 1158 test_method_data_pointer(mdp, profile_continue); 1159 1160 // We are taking a branch. Increment the taken count. 1161 Address data(mdp, in_bytes(JumpData::taken_offset())); 1162 ld(bumped_count, data); 1163 assert(DataLayout::counter_increment == 1, 1164 "flow-free idiom only works with 1"); 1165 addi(bumped_count, bumped_count, DataLayout::counter_increment); 1166 Label L; 1167 // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0; 1168 blez(bumped_count, L); // skip store if counter overflow, 1169 sd(bumped_count, data); 1170 bind(L); 1171 // The method data pointer needs to be updated to reflect the new target. 1172 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1173 bind(profile_continue); 1174 } 1175 } 1176 1177 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1178 if (ProfileInterpreter) { 1179 Label profile_continue; 1180 1181 // If no method data exists, go to profile_continue. 1182 test_method_data_pointer(mdp, profile_continue); 1183 1184 // We are taking a branch. Increment the not taken count. 1185 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1186 1187 // The method data pointer needs to be updated to correspond to 1188 // the next bytecode 1189 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1190 bind(profile_continue); 1191 } 1192 } 1193 1194 void InterpreterMacroAssembler::profile_call(Register mdp) { 1195 if (ProfileInterpreter) { 1196 Label profile_continue; 1197 1198 // If no method data exists, go to profile_continue. 1199 test_method_data_pointer(mdp, profile_continue); 1200 1201 // We are making a call. Increment the count. 1202 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1203 1204 // The method data pointer needs to be updated to reflect the new target. 1205 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1206 bind(profile_continue); 1207 } 1208 } 1209 1210 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1211 if (ProfileInterpreter) { 1212 Label profile_continue; 1213 1214 // If no method data exists, go to profile_continue. 1215 test_method_data_pointer(mdp, profile_continue); 1216 1217 // We are making a call. Increment the count. 1218 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1219 1220 // The method data pointer needs to be updated to reflect the new target. 1221 update_mdp_by_constant(mdp, 1222 in_bytes(VirtualCallData:: 1223 virtual_call_data_size())); 1224 bind(profile_continue); 1225 } 1226 } 1227 1228 1229 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1230 Register mdp, 1231 Register reg2, 1232 bool receiver_can_be_null) { 1233 if (ProfileInterpreter) { 1234 Label profile_continue; 1235 1236 // If no method data exists, go to profile_continue. 1237 test_method_data_pointer(mdp, profile_continue); 1238 1239 Label skip_receiver_profile; 1240 if (receiver_can_be_null) { 1241 Label not_null; 1242 // We are making a call. Increment the count for null receiver. 1243 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1244 j(skip_receiver_profile); 1245 bind(not_null); 1246 } 1247 1248 // Record the receiver type. 1249 record_klass_in_profile(receiver, mdp, reg2, true); 1250 bind(skip_receiver_profile); 1251 1252 // The method data pointer needs to be updated to reflect the new target. 1253 1254 update_mdp_by_constant(mdp, 1255 in_bytes(VirtualCallData:: 1256 virtual_call_data_size())); 1257 bind(profile_continue); 1258 } 1259 } 1260 1261 // This routine creates a state machine for updating the multi-row 1262 // type profile at a virtual call site (or other type-sensitive bytecode). 1263 // The machine visits each row (of receiver/count) until the receiver type 1264 // is found, or until it runs out of rows. At the same time, it remembers 1265 // the location of the first empty row. (An empty row records null for its 1266 // receiver, and can be allocated for a newly-observed receiver type.) 1267 // Because there are two degrees of freedom in the state, a simple linear 1268 // search will not work; it must be a decision tree. Hence this helper 1269 // function is recursive, to generate the required tree structured code. 1270 // It's the interpreter, so we are trading off code space for speed. 1271 // See below for example code. 1272 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1273 Register receiver, Register mdp, 1274 Register reg2, 1275 Label& done, bool is_virtual_call) { 1276 if (TypeProfileWidth == 0) { 1277 if (is_virtual_call) { 1278 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1279 } 1280 1281 } else { 1282 int non_profiled_offset = -1; 1283 if (is_virtual_call) { 1284 non_profiled_offset = in_bytes(CounterData::count_offset()); 1285 } 1286 1287 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1288 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1289 } 1290 } 1291 1292 void InterpreterMacroAssembler::record_item_in_profile_helper( 1293 Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows, 1294 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) { 1295 int last_row = total_rows - 1; 1296 assert(start_row <= last_row, "must be work left to do"); 1297 // Test this row for both the item and for null. 1298 // Take any of three different outcomes: 1299 // 1. found item => increment count and goto done 1300 // 2. found null => keep looking for case 1, maybe allocate this cell 1301 // 3. found something else => keep looking for cases 1 and 2 1302 // Case 3 is handled by a recursive call. 1303 for (int row = start_row; row <= last_row; row++) { 1304 Label next_test; 1305 bool test_for_null_also = (row == start_row); 1306 1307 // See if the item is item[n]. 1308 int item_offset = in_bytes(item_offset_fn(row)); 1309 test_mdp_data_at(mdp, item_offset, item, 1310 (test_for_null_also ? reg2 : noreg), 1311 next_test); 1312 // (Reg2 now contains the item from the CallData.) 1313 1314 // The item is item[n]. Increment count[n]. 1315 int count_offset = in_bytes(item_count_offset_fn(row)); 1316 increment_mdp_data_at(mdp, count_offset); 1317 j(done); 1318 bind(next_test); 1319 1320 if (test_for_null_also) { 1321 Label found_null; 1322 // Failed the equality check on item[n]... Test for null. 1323 if (start_row == last_row) { 1324 // The only thing left to do is handle the null case. 1325 if (non_profiled_offset >= 0) { 1326 beqz(reg2, found_null); 1327 // Item did not match any saved item and there is no empty row for it. 1328 // Increment total counter to indicate polymorphic case. 1329 increment_mdp_data_at(mdp, non_profiled_offset); 1330 j(done); 1331 bind(found_null); 1332 } else { 1333 bnez(reg2, done); 1334 } 1335 break; 1336 } 1337 // Since null is rare, make it be the branch-taken case. 1338 beqz(reg2, found_null); 1339 1340 // Put all the "Case 3" tests here. 1341 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1342 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1343 1344 // Found a null. Keep searching for a matching item, 1345 // but remember that this is an empty (unused) slot. 1346 bind(found_null); 1347 } 1348 } 1349 1350 // In the fall-through case, we found no matching item, but we 1351 // observed the item[start_row] is null. 1352 // Fill in the item field and increment the count. 1353 int item_offset = in_bytes(item_offset_fn(start_row)); 1354 set_mdp_data_at(mdp, item_offset, item); 1355 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1356 mv(reg2, DataLayout::counter_increment); 1357 set_mdp_data_at(mdp, count_offset, reg2); 1358 if (start_row > 0) { 1359 j(done); 1360 } 1361 } 1362 1363 // Example state machine code for three profile rows: 1364 // # main copy of decision tree, rooted at row[1] 1365 // if (row[0].rec == rec) then [ 1366 // row[0].incr() 1367 // goto done 1368 // ] 1369 // if (row[0].rec != nullptr) then [ 1370 // # inner copy of decision tree, rooted at row[1] 1371 // if (row[1].rec == rec) then [ 1372 // row[1].incr() 1373 // goto done 1374 // ] 1375 // if (row[1].rec != nullptr) then [ 1376 // # degenerate decision tree, rooted at row[2] 1377 // if (row[2].rec == rec) then [ 1378 // row[2].incr() 1379 // goto done 1380 // ] 1381 // if (row[2].rec != nullptr) then [ 1382 // count.incr() 1383 // goto done 1384 // ] # overflow 1385 // row[2].init(rec) 1386 // goto done 1387 // ] else [ 1388 // # remember row[1] is empty 1389 // if (row[2].rec == rec) then [ 1390 // row[2].incr() 1391 // goto done 1392 // ] 1393 // row[1].init(rec) 1394 // goto done 1395 // ] 1396 // else [ 1397 // # remember row[0] is empty 1398 // if (row[1].rec == rec) then [ 1399 // row[1].incr() 1400 // goto done 1401 // ] 1402 // if (row[2].rec == rec) then [ 1403 // row[2].incr() 1404 // goto done 1405 // ] 1406 // row[0].init(rec) 1407 // goto done 1408 // ] 1409 // done: 1410 1411 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1412 Register mdp, Register reg2, 1413 bool is_virtual_call) { 1414 assert(ProfileInterpreter, "must be profiling"); 1415 Label done; 1416 1417 record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call); 1418 1419 bind(done); 1420 } 1421 1422 void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) { 1423 if (ProfileInterpreter) { 1424 Label profile_continue; 1425 1426 // If no method data exists, go to profile_continue. 1427 test_method_data_pointer(mdp, profile_continue); 1428 1429 // Update the total ret count. 1430 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1431 1432 for (uint row = 0; row < RetData::row_limit(); row++) { 1433 Label next_test; 1434 1435 // See if return_bci is equal to bci[n]: 1436 test_mdp_data_at(mdp, 1437 in_bytes(RetData::bci_offset(row)), 1438 return_bci, noreg, 1439 next_test); 1440 1441 // return_bci is equal to bci[n]. Increment the count. 1442 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1443 1444 // The method data pointer needs to be updated to reflect the new target. 1445 update_mdp_by_offset(mdp, 1446 in_bytes(RetData::bci_displacement_offset(row))); 1447 j(profile_continue); 1448 bind(next_test); 1449 } 1450 1451 update_mdp_for_ret(return_bci); 1452 1453 bind(profile_continue); 1454 } 1455 } 1456 1457 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1458 if (ProfileInterpreter) { 1459 Label profile_continue; 1460 1461 // If no method data exists, go to profile_continue. 1462 test_method_data_pointer(mdp, profile_continue); 1463 1464 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1465 1466 // The method data pointer needs to be updated. 1467 int mdp_delta = in_bytes(BitData::bit_data_size()); 1468 if (TypeProfileCasts) { 1469 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1470 } 1471 update_mdp_by_constant(mdp, mdp_delta); 1472 1473 bind(profile_continue); 1474 } 1475 } 1476 1477 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1478 if (ProfileInterpreter && TypeProfileCasts) { 1479 Label profile_continue; 1480 1481 // If no method data exists, go to profile_continue. 1482 test_method_data_pointer(mdp, profile_continue); 1483 1484 int count_offset = in_bytes(CounterData::count_offset()); 1485 // Back up the address, since we have already bumped the mdp. 1486 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1487 1488 // *Decrement* the counter. We expect to see zero or small negatives. 1489 increment_mdp_data_at(mdp, count_offset, true); 1490 1491 bind (profile_continue); 1492 } 1493 } 1494 1495 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1496 if (ProfileInterpreter) { 1497 Label profile_continue; 1498 1499 // If no method data exists, go to profile_continue. 1500 test_method_data_pointer(mdp, profile_continue); 1501 1502 // The method data pointer needs to be updated. 1503 int mdp_delta = in_bytes(BitData::bit_data_size()); 1504 if (TypeProfileCasts) { 1505 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1506 1507 // Record the object type. 1508 record_klass_in_profile(klass, mdp, reg2, false); 1509 } 1510 update_mdp_by_constant(mdp, mdp_delta); 1511 1512 bind(profile_continue); 1513 } 1514 } 1515 1516 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1517 if (ProfileInterpreter) { 1518 Label profile_continue; 1519 1520 // If no method data exists, go to profile_continue. 1521 test_method_data_pointer(mdp, profile_continue); 1522 1523 // Update the default case count 1524 increment_mdp_data_at(mdp, 1525 in_bytes(MultiBranchData::default_count_offset())); 1526 1527 // The method data pointer needs to be updated. 1528 update_mdp_by_offset(mdp, 1529 in_bytes(MultiBranchData:: 1530 default_displacement_offset())); 1531 1532 bind(profile_continue); 1533 } 1534 } 1535 1536 void InterpreterMacroAssembler::profile_switch_case(Register index, 1537 Register mdp, 1538 Register reg2) { 1539 if (ProfileInterpreter) { 1540 Label profile_continue; 1541 1542 // If no method data exists, go to profile_continue. 1543 test_method_data_pointer(mdp, profile_continue); 1544 1545 // Build the base (index * per_case_size_in_bytes()) + 1546 // case_array_offset_in_bytes() 1547 mv(reg2, in_bytes(MultiBranchData::per_case_size())); 1548 mv(t0, in_bytes(MultiBranchData::case_array_offset())); 1549 Assembler::mul(index, index, reg2); 1550 Assembler::add(index, index, t0); 1551 1552 // Update the case count 1553 increment_mdp_data_at(mdp, 1554 index, 1555 in_bytes(MultiBranchData::relative_count_offset())); 1556 1557 // The method data pointer need to be updated. 1558 update_mdp_by_offset(mdp, 1559 index, 1560 in_bytes(MultiBranchData:: 1561 relative_displacement_offset())); 1562 1563 bind(profile_continue); 1564 } 1565 } 1566 1567 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; } 1568 1569 void InterpreterMacroAssembler::notify_method_entry() { 1570 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1571 // track stack depth. If it is possible to enter interp_only_mode we add 1572 // the code to check if the event should be sent. 1573 if (JvmtiExport::can_post_interpreter_events()) { 1574 Label L; 1575 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1576 beqz(x13, L); 1577 call_VM(noreg, CAST_FROM_FN_PTR(address, 1578 InterpreterRuntime::post_method_entry)); 1579 bind(L); 1580 } 1581 1582 { 1583 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1584 get_method(c_rarg1); 1585 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 1586 xthread, c_rarg1); 1587 } 1588 1589 // RedefineClasses() tracing support for obsolete method entry 1590 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1591 get_method(c_rarg1); 1592 call_VM_leaf( 1593 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1594 xthread, c_rarg1); 1595 } 1596 } 1597 1598 1599 void InterpreterMacroAssembler::notify_method_exit( 1600 TosState state, NotifyMethodExitMode mode) { 1601 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 1602 // track stack depth. If it is possible to enter interp_only_mode we add 1603 // the code to check if the event should be sent. 1604 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 1605 Label L; 1606 // Note: frame::interpreter_frame_result has a dependency on how the 1607 // method result is saved across the call to post_method_exit. If this 1608 // is changed then the interpreter_frame_result implementation will 1609 // need to be updated too. 1610 1611 // template interpreter will leave the result on the top of the stack. 1612 push(state); 1613 lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset())); 1614 beqz(x13, L); 1615 call_VM(noreg, 1616 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 1617 bind(L); 1618 pop(state); 1619 } 1620 1621 { 1622 SkipIfEqual skip(this, &DTraceMethodProbes, false); 1623 push(state); 1624 get_method(c_rarg1); 1625 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 1626 xthread, c_rarg1); 1627 pop(state); 1628 } 1629 } 1630 1631 1632 // Jump if ((*counter_addr += increment) & mask) satisfies the condition. 1633 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, 1634 int increment, Address mask, 1635 Register tmp1, Register tmp2, 1636 bool preloaded, Label* where) { 1637 Label done; 1638 if (!preloaded) { 1639 lwu(tmp1, counter_addr); 1640 } 1641 add(tmp1, tmp1, increment); 1642 sw(tmp1, counter_addr); 1643 lwu(tmp2, mask); 1644 andr(tmp1, tmp1, tmp2); 1645 bnez(tmp1, done); 1646 j(*where); // offset is too large so we have to use j instead of beqz here 1647 bind(done); 1648 } 1649 1650 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 1651 int number_of_arguments) { 1652 // interpreter specific 1653 // 1654 // Note: No need to save/restore rbcp & rlocals pointer since these 1655 // are callee saved registers and no blocking/ GC can happen 1656 // in leaf calls. 1657 #ifdef ASSERT 1658 { 1659 Label L; 1660 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1661 beqz(t0, L); 1662 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 1663 " last_sp isn't null"); 1664 bind(L); 1665 } 1666 #endif /* ASSERT */ 1667 // super call 1668 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1669 } 1670 1671 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 1672 Register java_thread, 1673 Register last_java_sp, 1674 address entry_point, 1675 int number_of_arguments, 1676 bool check_exceptions) { 1677 // interpreter specific 1678 // 1679 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 1680 // really make a difference for these runtime calls, since they are 1681 // slow anyway. Btw., bcp must be saved/restored since it may change 1682 // due to GC. 1683 save_bcp(); 1684 #ifdef ASSERT 1685 { 1686 Label L; 1687 ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 1688 beqz(t0, L); 1689 stop("InterpreterMacroAssembler::call_VM_base:" 1690 " last_sp isn't null"); 1691 bind(L); 1692 } 1693 #endif /* ASSERT */ 1694 // super call 1695 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 1696 entry_point, number_of_arguments, 1697 check_exceptions); 1698 // interpreter specific 1699 restore_bcp(); 1700 restore_locals(); 1701 } 1702 1703 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) { 1704 assert_different_registers(obj, tmp, t0, mdo_addr.base()); 1705 Label update, next, none; 1706 1707 verify_oop(obj); 1708 1709 bnez(obj, update); 1710 orptr(mdo_addr, TypeEntries::null_seen, t0, tmp); 1711 j(next); 1712 1713 bind(update); 1714 load_klass(obj, obj); 1715 1716 ld(tmp, mdo_addr); 1717 xorr(obj, obj, tmp); 1718 andi(t0, obj, TypeEntries::type_klass_mask); 1719 beqz(t0, next); // klass seen before, nothing to 1720 // do. The unknown bit may have been 1721 // set already but no need to check. 1722 1723 test_bit(t0, obj, exact_log2(TypeEntries::type_unknown)); 1724 bnez(t0, next); 1725 // already unknown. Nothing to do anymore. 1726 1727 beqz(tmp, none); 1728 mv(t0, (u1)TypeEntries::null_seen); 1729 beq(tmp, t0, none); 1730 // There is a chance that the checks above 1731 // fail if another thread has just set the 1732 // profiling to this obj's klass 1733 xorr(obj, obj, tmp); // get back original value before XOR 1734 ld(tmp, mdo_addr); 1735 xorr(obj, obj, tmp); 1736 andi(t0, obj, TypeEntries::type_klass_mask); 1737 beqz(t0, next); 1738 1739 // different than before. Cannot keep accurate profile. 1740 orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp); 1741 j(next); 1742 1743 bind(none); 1744 // first time here. Set profile type. 1745 sd(obj, mdo_addr); 1746 #ifdef ASSERT 1747 andi(obj, obj, TypeEntries::type_mask); 1748 verify_klass_ptr(obj); 1749 #endif 1750 1751 bind(next); 1752 } 1753 1754 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 1755 if (!ProfileInterpreter) { 1756 return; 1757 } 1758 1759 if (MethodData::profile_arguments() || MethodData::profile_return()) { 1760 Label profile_continue; 1761 1762 test_method_data_pointer(mdp, profile_continue); 1763 1764 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 1765 1766 lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start)); 1767 if (is_virtual) { 1768 mv(tmp, (u1)DataLayout::virtual_call_type_data_tag); 1769 bne(t0, tmp, profile_continue); 1770 } else { 1771 mv(tmp, (u1)DataLayout::call_type_data_tag); 1772 bne(t0, tmp, profile_continue); 1773 } 1774 1775 // calculate slot step 1776 static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0)); 1777 static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0; 1778 1779 // calculate type step 1780 static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0)); 1781 static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0; 1782 1783 if (MethodData::profile_arguments()) { 1784 Label done, loop, loopEnd, profileArgument, profileReturnType; 1785 RegSet pushed_registers; 1786 pushed_registers += x15; 1787 pushed_registers += x16; 1788 pushed_registers += x17; 1789 Register mdo_addr = x15; 1790 Register index = x16; 1791 Register off_to_args = x17; 1792 push_reg(pushed_registers, sp); 1793 1794 mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset())); 1795 mv(t0, TypeProfileArgsLimit); 1796 beqz(t0, loopEnd); 1797 1798 mv(index, zr); // index < TypeProfileArgsLimit 1799 bind(loop); 1800 bgtz(index, profileReturnType); 1801 mv(t0, (int)MethodData::profile_return()); 1802 beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false 1803 bind(profileReturnType); 1804 // If return value type is profiled we may have no argument to profile 1805 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1806 mv(t1, - TypeStackSlotEntries::per_arg_count()); 1807 mul(t1, index, t1); 1808 add(tmp, tmp, t1); 1809 mv(t1, TypeStackSlotEntries::per_arg_count()); 1810 add(t0, mdp, off_to_args); 1811 blt(tmp, t1, done); 1812 1813 bind(profileArgument); 1814 1815 ld(tmp, Address(callee, Method::const_offset())); 1816 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 1817 // stack offset o (zero based) from the start of the argument 1818 // list, for n arguments translates into offset n - o - 1 from 1819 // the end of the argument list 1820 mv(t0, stack_slot_offset0); 1821 mv(t1, slot_step); 1822 mul(t1, index, t1); 1823 add(t0, t0, t1); 1824 add(t0, mdp, t0); 1825 ld(t0, Address(t0)); 1826 sub(tmp, tmp, t0); 1827 addi(tmp, tmp, -1); 1828 Address arg_addr = argument_address(tmp); 1829 ld(tmp, arg_addr); 1830 1831 mv(t0, argument_type_offset0); 1832 mv(t1, type_step); 1833 mul(t1, index, t1); 1834 add(t0, t0, t1); 1835 add(mdo_addr, mdp, t0); 1836 Address mdo_arg_addr(mdo_addr, 0); 1837 profile_obj_type(tmp, mdo_arg_addr, t1); 1838 1839 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 1840 addi(off_to_args, off_to_args, to_add); 1841 1842 // increment index by 1 1843 addi(index, index, 1); 1844 mv(t1, TypeProfileArgsLimit); 1845 blt(index, t1, loop); 1846 bind(loopEnd); 1847 1848 if (MethodData::profile_return()) { 1849 ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset()))); 1850 addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 1851 } 1852 1853 add(t0, mdp, off_to_args); 1854 bind(done); 1855 mv(mdp, t0); 1856 1857 // unspill the clobbered registers 1858 pop_reg(pushed_registers, sp); 1859 1860 if (MethodData::profile_return()) { 1861 // We're right after the type profile for the last 1862 // argument. tmp is the number of cells left in the 1863 // CallTypeData/VirtualCallTypeData to reach its end. Non null 1864 // if there's a return to profile. 1865 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 1866 shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size)); 1867 } 1868 sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize)); 1869 } else { 1870 assert(MethodData::profile_return(), "either profile call args or call ret"); 1871 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 1872 } 1873 1874 // mdp points right after the end of the 1875 // CallTypeData/VirtualCallTypeData, right after the cells for the 1876 // return value type if there's one 1877 1878 bind(profile_continue); 1879 } 1880 } 1881 1882 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 1883 assert_different_registers(mdp, ret, tmp, xbcp, t0, t1); 1884 if (ProfileInterpreter && MethodData::profile_return()) { 1885 Label profile_continue, done; 1886 1887 test_method_data_pointer(mdp, profile_continue); 1888 1889 if (MethodData::profile_return_jsr292_only()) { 1890 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 1891 1892 // If we don't profile all invoke bytecodes we must make sure 1893 // it's a bytecode we indeed profile. We can't go back to the 1894 // beginning of the ProfileData we intend to update to check its 1895 // type because we're right after it and we don't known its 1896 // length 1897 Label do_profile; 1898 lbu(t0, Address(xbcp, 0)); 1899 mv(tmp, (u1)Bytecodes::_invokedynamic); 1900 beq(t0, tmp, do_profile); 1901 mv(tmp, (u1)Bytecodes::_invokehandle); 1902 beq(t0, tmp, do_profile); 1903 get_method(tmp); 1904 lhu(t0, Address(tmp, Method::intrinsic_id_offset())); 1905 mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 1906 bne(t0, t1, profile_continue); 1907 bind(do_profile); 1908 } 1909 1910 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 1911 mv(tmp, ret); 1912 profile_obj_type(tmp, mdo_ret_addr, t1); 1913 1914 bind(profile_continue); 1915 } 1916 } 1917 1918 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) { 1919 assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3); 1920 if (ProfileInterpreter && MethodData::profile_parameters()) { 1921 Label profile_continue, done; 1922 1923 test_method_data_pointer(mdp, profile_continue); 1924 1925 // Load the offset of the area within the MDO used for 1926 // parameters. If it's negative we're not profiling any parameters 1927 lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 1928 srli(tmp2, tmp1, 31); 1929 bnez(tmp2, profile_continue); // i.e. sign bit set 1930 1931 // Compute a pointer to the area for parameters from the offset 1932 // and move the pointer to the slot for the last 1933 // parameters. Collect profiling from last parameter down. 1934 // mdo start + parameters offset + array length - 1 1935 add(mdp, mdp, tmp1); 1936 ld(tmp1, Address(mdp, ArrayData::array_len_offset())); 1937 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1938 1939 Label loop; 1940 bind(loop); 1941 1942 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 1943 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 1944 int per_arg_scale = exact_log2(DataLayout::cell_size); 1945 add(t0, mdp, off_base); 1946 add(t1, mdp, type_base); 1947 1948 shadd(tmp2, tmp1, t0, tmp2, per_arg_scale); 1949 // load offset on the stack from the slot for this parameter 1950 ld(tmp2, Address(tmp2, 0)); 1951 neg(tmp2, tmp2); 1952 1953 // read the parameter from the local area 1954 shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize); 1955 ld(tmp2, Address(tmp2, 0)); 1956 1957 // profile the parameter 1958 shadd(t1, tmp1, t1, t0, per_arg_scale); 1959 Address arg_type(t1, 0); 1960 profile_obj_type(tmp2, arg_type, tmp3); 1961 1962 // go to next parameter 1963 add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count()); 1964 bgez(tmp1, loop); 1965 1966 bind(profile_continue); 1967 } 1968 } 1969 1970 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 1971 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 1972 // register "cache" is trashed in next ld, so lets use it as a temporary register 1973 get_cache_index_at_bcp(index, cache, 1, sizeof(u4)); 1974 // Get address of invokedynamic array 1975 ld(cache, Address(xcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 1976 // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo) 1977 slli(index, index, log2i_exact(sizeof(ResolvedIndyEntry))); 1978 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes()); 1979 add(cache, cache, index); 1980 la(cache, Address(cache, 0)); 1981 } 1982 1983 void InterpreterMacroAssembler::get_method_counters(Register method, 1984 Register mcs, Label& skip) { 1985 Label has_counters; 1986 ld(mcs, Address(method, Method::method_counters_offset())); 1987 bnez(mcs, has_counters); 1988 call_VM(noreg, CAST_FROM_FN_PTR(address, 1989 InterpreterRuntime::build_method_counters), method); 1990 ld(mcs, Address(method, Method::method_counters_offset())); 1991 beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory 1992 bind(has_counters); 1993 } 1994 1995 #ifdef ASSERT 1996 void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag, 1997 const char* msg, bool stop_by_hit) { 1998 Label L; 1999 test_bit(t0, access_flags, exact_log2(flag)); 2000 if (stop_by_hit) { 2001 beqz(t0, L); 2002 } else { 2003 bnez(t0, L); 2004 } 2005 stop(msg); 2006 bind(L); 2007 } 2008 2009 void InterpreterMacroAssembler::verify_frame_setup() { 2010 Label L; 2011 const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 2012 ld(t0, monitor_block_top); 2013 beq(esp, t0, L); 2014 stop("broken stack frame setup in interpreter"); 2015 bind(L); 2016 } 2017 #endif