1 /* 2 * Copyright (c) 2003, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "precompiled.hpp" 28 #include "asm/macroAssembler.hpp" 29 #include "asm/macroAssembler.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/debugInfoRec.hpp" 32 #include "code/icBuffer.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interp_masm.hpp" 37 #include "interpreter/interpreter.hpp" 38 #include "logging/log.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "nativeInst_riscv.hpp" 41 #include "oops/compiledICHolder.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "oops/method.inline.hpp" 44 #include "prims/methodHandles.hpp" 45 #include "runtime/continuation.hpp" 46 #include "runtime/continuationEntry.inline.hpp" 47 #include "runtime/globals.hpp" 48 #include "runtime/jniHandles.hpp" 49 #include "runtime/safepointMechanism.hpp" 50 #include "runtime/sharedRuntime.hpp" 51 #include "runtime/signature.hpp" 52 #include "runtime/stubRoutines.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/formatBuffer.hpp" 56 #include "vmreg_riscv.inline.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_Runtime1.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "adfiles/ad_riscv.hpp" 62 #include "opto/runtime.hpp" 63 #endif 64 #if INCLUDE_JVMCI 65 #include "jvmci/jvmciJavaClasses.hpp" 66 #endif 67 68 #define __ masm-> 69 70 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 71 72 class SimpleRuntimeFrame { 73 public: 74 75 // Most of the runtime stubs have this simple frame layout. 76 // This class exists to make the layout shared in one place. 77 // Offsets are for compiler stack slots, which are jints. 78 enum layout { 79 // The frame sender code expects that fp will be in the "natural" place and 80 // will override any oopMap setting for it. We must therefore force the layout 81 // so that it agrees with the frame sender code. 82 // we don't expect any arg reg save area so riscv asserts that 83 // frame::arg_reg_save_area_bytes == 0 84 fp_off = 0, fp_off2, 85 return_off, return_off2, 86 framesize 87 }; 88 }; 89 90 class RegisterSaver { 91 const bool _save_vectors; 92 public: 93 RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {} 94 ~RegisterSaver() {} 95 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 96 void restore_live_registers(MacroAssembler* masm); 97 98 // Offsets into the register save area 99 // Used by deoptimization when it is managing result register 100 // values on its own 101 // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4) 102 // |---v0---|<---SP 103 // |---v1---|save vectors only in generate_handler_blob 104 // |-- .. --| 105 // |---v31--|----- 106 // |---f0---| 107 // |---f1---| 108 // | .. | 109 // |---f31--| 110 // |---reserved slot for stack alignment---| 111 // |---x5---| 112 // | x6 | 113 // |---.. --| 114 // |---x31--| 115 // |---fp---| 116 // |---ra---| 117 int v0_offset_in_bytes(void) { return 0; } 118 int f0_offset_in_bytes(void) { 119 int f0_offset = 0; 120 #ifdef COMPILER2 121 if (_save_vectors) { 122 f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegister::number_of_registers * 123 BytesPerInt; 124 } 125 #endif 126 return f0_offset; 127 } 128 int reserved_slot_offset_in_bytes(void) { 129 return f0_offset_in_bytes() + 130 FloatRegister::max_slots_per_register * 131 FloatRegister::number_of_registers * 132 BytesPerInt; 133 } 134 135 int reg_offset_in_bytes(Register r) { 136 assert (r->encoding() > 4, "ra, sp, gp and tp not saved"); 137 return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize; 138 } 139 140 int freg_offset_in_bytes(FloatRegister f) { 141 return f0_offset_in_bytes() + f->encoding() * wordSize; 142 } 143 144 int ra_offset_in_bytes(void) { 145 return reserved_slot_offset_in_bytes() + 146 (Register::number_of_registers - 3) * 147 Register::max_slots_per_register * 148 BytesPerInt; 149 } 150 }; 151 152 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 153 int vector_size_in_bytes = 0; 154 int vector_size_in_slots = 0; 155 #ifdef COMPILER2 156 if (_save_vectors) { 157 vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE); 158 vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT); 159 } 160 #endif 161 162 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16); 163 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 164 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 165 // The caller will allocate additional_frame_words 166 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 167 // CodeBlob frame size is in words. 168 int frame_size_in_words = frame_size_in_bytes / wordSize; 169 *total_frame_words = frame_size_in_words; 170 171 // Save Integer, Float and Vector registers. 172 __ enter(); 173 __ push_CPU_state(_save_vectors, vector_size_in_bytes); 174 175 // Set an oopmap for the call site. This oopmap will map all 176 // oop-registers and debug-info registers as callee-saved. This 177 // will allow deoptimization at this safepoint to find all possible 178 // debug-info recordings, as well as let GC find all oops. 179 180 OopMapSet *oop_maps = new OopMapSet(); 181 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 182 assert_cond(oop_maps != nullptr && oop_map != nullptr); 183 184 int sp_offset_in_slots = 0; 185 int step_in_slots = 0; 186 if (_save_vectors) { 187 step_in_slots = vector_size_in_slots; 188 for (int i = 0; i < VectorRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 189 VectorRegister r = as_VectorRegister(i); 190 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 191 } 192 } 193 194 step_in_slots = FloatRegister::max_slots_per_register; 195 for (int i = 0; i < FloatRegister::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 196 FloatRegister r = as_FloatRegister(i); 197 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg()); 198 } 199 200 step_in_slots = Register::max_slots_per_register; 201 // skip the slot reserved for alignment, see MacroAssembler::push_reg; 202 // also skip x5 ~ x6 on the stack because they are caller-saved registers. 203 sp_offset_in_slots += Register::max_slots_per_register * 3; 204 // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack. 205 for (int i = 7; i < Register::number_of_registers; i++, sp_offset_in_slots += step_in_slots) { 206 Register r = as_Register(i); 207 if (r != xthread) { 208 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg()); 209 } 210 } 211 212 return oop_map; 213 } 214 215 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 216 #ifdef COMPILER2 217 __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE)); 218 #else 219 #if !INCLUDE_JVMCI 220 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 221 #endif 222 __ pop_CPU_state(_save_vectors); 223 #endif 224 __ leave(); 225 } 226 227 // Is vector's size (in bytes) bigger than a size saved by default? 228 // riscv does not ovlerlay the floating-point registers on vector registers like aarch64. 229 bool SharedRuntime::is_wide_vector(int size) { 230 return UseRVV; 231 } 232 233 // --------------------------------------------------------------------------- 234 // Read the array of BasicTypes from a signature, and compute where the 235 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 236 // quantities. Values less than VMRegImpl::stack0 are registers, those above 237 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 238 // as framesizes are fixed. 239 // VMRegImpl::stack0 refers to the first slot 0(sp). 240 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 241 // Register up to Register::number_of_registers) are the 64-bit 242 // integer registers. 243 244 // Note: the INPUTS in sig_bt are in units of Java argument words, 245 // which are 64-bit. The OUTPUTS are in 32-bit units. 246 247 // The Java calling convention is a "shifted" version of the C ABI. 248 // By skipping the first C ABI register we can call non-static jni 249 // methods with small numbers of arguments without having to shuffle 250 // the arguments at all. Since we control the java ABI we ought to at 251 // least get some advantage out of it. 252 253 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 254 VMRegPair *regs, 255 int total_args_passed) { 256 // Create the mapping between argument positions and 257 // registers. 258 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 259 j_rarg0, j_rarg1, j_rarg2, j_rarg3, 260 j_rarg4, j_rarg5, j_rarg6, j_rarg7 261 }; 262 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 263 j_farg0, j_farg1, j_farg2, j_farg3, 264 j_farg4, j_farg5, j_farg6, j_farg7 265 }; 266 267 uint int_args = 0; 268 uint fp_args = 0; 269 uint stk_args = 0; 270 271 for (int i = 0; i < total_args_passed; i++) { 272 switch (sig_bt[i]) { 273 case T_BOOLEAN: // fall through 274 case T_CHAR: // fall through 275 case T_BYTE: // fall through 276 case T_SHORT: // fall through 277 case T_INT: 278 if (int_args < Argument::n_int_register_parameters_j) { 279 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 280 } else { 281 stk_args = align_up(stk_args, 2); 282 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 283 stk_args += 1; 284 } 285 break; 286 case T_VOID: 287 // halves of T_LONG or T_DOUBLE 288 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 289 regs[i].set_bad(); 290 break; 291 case T_LONG: // fall through 292 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 293 case T_OBJECT: // fall through 294 case T_ARRAY: // fall through 295 case T_ADDRESS: 296 if (int_args < Argument::n_int_register_parameters_j) { 297 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 298 } else { 299 stk_args = align_up(stk_args, 2); 300 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 301 stk_args += 2; 302 } 303 break; 304 case T_FLOAT: 305 if (fp_args < Argument::n_float_register_parameters_j) { 306 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 307 } else { 308 stk_args = align_up(stk_args, 2); 309 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 310 stk_args += 1; 311 } 312 break; 313 case T_DOUBLE: 314 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 315 if (fp_args < Argument::n_float_register_parameters_j) { 316 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 317 } else { 318 stk_args = align_up(stk_args, 2); 319 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 320 stk_args += 2; 321 } 322 break; 323 default: 324 ShouldNotReachHere(); 325 } 326 } 327 328 return stk_args; 329 } 330 331 // Patch the callers callsite with entry to compiled code if it exists. 332 static void patch_callers_callsite(MacroAssembler *masm) { 333 Label L; 334 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 335 __ beqz(t0, L); 336 337 __ enter(); 338 __ push_CPU_state(); 339 340 // VM needs caller's callsite 341 // VM needs target method 342 // This needs to be a long call since we will relocate this adapter to 343 // the codeBuffer and it may not reach 344 345 #ifndef PRODUCT 346 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 347 #endif 348 349 __ mv(c_rarg0, xmethod); 350 __ mv(c_rarg1, ra); 351 RuntimeAddress target(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)); 352 __ relocate(target.rspec(), [&] { 353 int32_t offset; 354 __ la_patchable(t0, target, offset); 355 __ jalr(x1, t0, offset); 356 }); 357 358 __ pop_CPU_state(); 359 // restore sp 360 __ leave(); 361 __ bind(L); 362 } 363 364 static void gen_c2i_adapter(MacroAssembler *masm, 365 int total_args_passed, 366 int comp_args_on_stack, 367 const BasicType *sig_bt, 368 const VMRegPair *regs, 369 Label& skip_fixup) { 370 // Before we get into the guts of the C2I adapter, see if we should be here 371 // at all. We've come from compiled code and are attempting to jump to the 372 // interpreter, which means the caller made a static call to get here 373 // (vcalls always get a compiled target if there is one). Check for a 374 // compiled target. If there is one, we need to patch the caller's call. 375 patch_callers_callsite(masm); 376 377 __ bind(skip_fixup); 378 379 int words_pushed = 0; 380 381 // Since all args are passed on the stack, total_args_passed * 382 // Interpreter::stackElementSize is the space we need. 383 384 int extraspace = total_args_passed * Interpreter::stackElementSize; 385 386 __ mv(x19_sender_sp, sp); 387 388 // stack is aligned, keep it that way 389 extraspace = align_up(extraspace, 2 * wordSize); 390 391 if (extraspace) { 392 __ sub(sp, sp, extraspace); 393 } 394 395 // Now write the args into the outgoing interpreter space 396 for (int i = 0; i < total_args_passed; i++) { 397 if (sig_bt[i] == T_VOID) { 398 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 399 continue; 400 } 401 402 // offset to start parameters 403 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 404 int next_off = st_off - Interpreter::stackElementSize; 405 406 // Say 4 args: 407 // i st_off 408 // 0 32 T_LONG 409 // 1 24 T_VOID 410 // 2 16 T_OBJECT 411 // 3 8 T_BOOL 412 // - 0 return address 413 // 414 // However to make thing extra confusing. Because we can fit a Java long/double in 415 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 416 // leaves one slot empty and only stores to a single slot. In this case the 417 // slot that is occupied is the T_VOID slot. See I said it was confusing. 418 419 VMReg r_1 = regs[i].first(); 420 VMReg r_2 = regs[i].second(); 421 if (!r_1->is_valid()) { 422 assert(!r_2->is_valid(), ""); 423 continue; 424 } 425 if (r_1->is_stack()) { 426 // memory to memory use t0 427 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 428 + extraspace 429 + words_pushed * wordSize); 430 if (!r_2->is_valid()) { 431 __ lwu(t0, Address(sp, ld_off)); 432 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 433 } else { 434 __ ld(t0, Address(sp, ld_off), /*temp register*/esp); 435 436 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 437 // T_DOUBLE and T_LONG use two slots in the interpreter 438 if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 439 // ld_off == LSW, ld_off+wordSize == MSW 440 // st_off == MSW, next_off == LSW 441 __ sd(t0, Address(sp, next_off), /*temp register*/esp); 442 #ifdef ASSERT 443 // Overwrite the unused slot with known junk 444 __ mv(t0, 0xdeadffffdeadaaaaul); 445 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 446 #endif /* ASSERT */ 447 } else { 448 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 449 } 450 } 451 } else if (r_1->is_Register()) { 452 Register r = r_1->as_Register(); 453 if (!r_2->is_valid()) { 454 // must be only an int (or less ) so move only 32bits to slot 455 __ sd(r, Address(sp, st_off)); 456 } else { 457 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 458 // T_DOUBLE and T_LONG use two slots in the interpreter 459 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 460 // long/double in gpr 461 #ifdef ASSERT 462 // Overwrite the unused slot with known junk 463 __ mv(t0, 0xdeadffffdeadaaabul); 464 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 465 #endif /* ASSERT */ 466 __ sd(r, Address(sp, next_off)); 467 } else { 468 __ sd(r, Address(sp, st_off)); 469 } 470 } 471 } else { 472 assert(r_1->is_FloatRegister(), ""); 473 if (!r_2->is_valid()) { 474 // only a float use just part of the slot 475 __ fsw(r_1->as_FloatRegister(), Address(sp, st_off)); 476 } else { 477 #ifdef ASSERT 478 // Overwrite the unused slot with known junk 479 __ mv(t0, 0xdeadffffdeadaaacul); 480 __ sd(t0, Address(sp, st_off), /*temp register*/esp); 481 #endif /* ASSERT */ 482 __ fsd(r_1->as_FloatRegister(), Address(sp, next_off)); 483 } 484 } 485 } 486 487 __ mv(esp, sp); // Interp expects args on caller's expression stack 488 489 __ ld(t0, Address(xmethod, in_bytes(Method::interpreter_entry_offset()))); 490 __ jr(t0); 491 } 492 493 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 494 int total_args_passed, 495 int comp_args_on_stack, 496 const BasicType *sig_bt, 497 const VMRegPair *regs) { 498 // Note: x19_sender_sp contains the senderSP on entry. We must 499 // preserve it since we may do a i2c -> c2i transition if we lose a 500 // race where compiled code goes non-entrant while we get args 501 // ready. 502 503 // Cut-out for having no stack args. 504 int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord; 505 if (comp_args_on_stack != 0) { 506 __ sub(t0, sp, comp_words_on_stack * wordSize); 507 __ andi(sp, t0, -16); 508 } 509 510 // Will jump to the compiled code just as if compiled code was doing it. 511 // Pre-load the register-jump target early, to schedule it better. 512 __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset()))); 513 514 #if INCLUDE_JVMCI 515 if (EnableJVMCI) { 516 // check if this call should be routed towards a specific entry point 517 __ ld(t0, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 518 Label no_alternative_target; 519 __ beqz(t0, no_alternative_target); 520 __ mv(t1, t0); 521 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 522 __ bind(no_alternative_target); 523 } 524 #endif // INCLUDE_JVMCI 525 526 // Now generate the shuffle code. 527 for (int i = 0; i < total_args_passed; i++) { 528 if (sig_bt[i] == T_VOID) { 529 assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half"); 530 continue; 531 } 532 533 // Pick up 0, 1 or 2 words from SP+offset. 534 535 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 536 "scrambled load targets?"); 537 // Load in argument order going down. 538 int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 539 // Point to interpreter value (vs. tag) 540 int next_off = ld_off - Interpreter::stackElementSize; 541 542 VMReg r_1 = regs[i].first(); 543 VMReg r_2 = regs[i].second(); 544 if (!r_1->is_valid()) { 545 assert(!r_2->is_valid(), ""); 546 continue; 547 } 548 if (r_1->is_stack()) { 549 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 550 int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size; 551 if (!r_2->is_valid()) { 552 __ lw(t0, Address(esp, ld_off)); 553 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 554 } else { 555 // 556 // We are using two optoregs. This can be either T_OBJECT, 557 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 558 // two slots but only uses one for thr T_LONG or T_DOUBLE case 559 // So we must adjust where to pick up the data to match the 560 // interpreter. 561 // 562 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 563 // are accessed as negative so LSW is at LOW address 564 565 // ld_off is MSW so get LSW 566 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 567 next_off : ld_off; 568 __ ld(t0, Address(esp, offset)); 569 // st_off is LSW (i.e. reg.first()) 570 __ sd(t0, Address(sp, st_off), /*temp register*/t2); 571 } 572 } else if (r_1->is_Register()) { // Register argument 573 Register r = r_1->as_Register(); 574 if (r_2->is_valid()) { 575 // 576 // We are using two VMRegs. This can be either T_OBJECT, 577 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 578 // two slots but only uses one for thr T_LONG or T_DOUBLE case 579 // So we must adjust where to pick up the data to match the 580 // interpreter. 581 582 const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ? 583 next_off : ld_off; 584 585 // this can be a misaligned move 586 __ ld(r, Address(esp, offset)); 587 } else { 588 // sign extend and use a full word? 589 __ lw(r, Address(esp, ld_off)); 590 } 591 } else { 592 if (!r_2->is_valid()) { 593 __ flw(r_1->as_FloatRegister(), Address(esp, ld_off)); 594 } else { 595 __ fld(r_1->as_FloatRegister(), Address(esp, next_off)); 596 } 597 } 598 } 599 600 __ push_cont_fastpath(xthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about 601 602 // 6243940 We might end up in handle_wrong_method if 603 // the callee is deoptimized as we race thru here. If that 604 // happens we don't want to take a safepoint because the 605 // caller frame will look interpreted and arguments are now 606 // "compiled" so it is much better to make this transition 607 // invisible to the stack walking code. Unfortunately if 608 // we try and find the callee by normal means a safepoint 609 // is possible. So we stash the desired callee in the thread 610 // and the vm will find there should this case occur. 611 612 __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset())); 613 614 __ jr(t1); 615 } 616 617 // --------------------------------------------------------------- 618 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 619 int total_args_passed, 620 int comp_args_on_stack, 621 const BasicType *sig_bt, 622 const VMRegPair *regs, 623 AdapterFingerPrint* fingerprint) { 624 address i2c_entry = __ pc(); 625 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 626 627 address c2i_unverified_entry = __ pc(); 628 Label skip_fixup; 629 630 Label ok; 631 632 const Register holder = t1; 633 const Register receiver = j_rarg0; 634 const Register tmp = t2; // A call-clobbered register not used for arg passing 635 636 // ------------------------------------------------------------------------- 637 // Generate a C2I adapter. On entry we know xmethod holds the Method* during calls 638 // to the interpreter. The args start out packed in the compiled layout. They 639 // need to be unpacked into the interpreter layout. This will almost always 640 // require some stack space. We grow the current (compiled) stack, then repack 641 // the args. We finally end in a jump to the generic interpreter entry point. 642 // On exit from the interpreter, the interpreter will restore our SP (lest the 643 // compiled code, which relies solely on SP and not FP, get sick). 644 645 { 646 __ block_comment("c2i_unverified_entry {"); 647 __ load_klass(t0, receiver, tmp); 648 __ ld(tmp, Address(holder, CompiledICHolder::holder_klass_offset())); 649 __ ld(xmethod, Address(holder, CompiledICHolder::holder_metadata_offset())); 650 __ beq(t0, tmp, ok); 651 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 652 653 __ bind(ok); 654 // Method might have been compiled since the call site was patched to 655 // interpreted; if that is the case treat it as a miss so we can get 656 // the call site corrected. 657 __ ld(t0, Address(xmethod, in_bytes(Method::code_offset()))); 658 __ beqz(t0, skip_fixup); 659 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 660 __ block_comment("} c2i_unverified_entry"); 661 } 662 663 address c2i_entry = __ pc(); 664 665 // Class initialization barrier for static methods 666 address c2i_no_clinit_check_entry = nullptr; 667 if (VM_Version::supports_fast_class_init_checks()) { 668 Label L_skip_barrier; 669 670 { // Bypass the barrier for non-static methods 671 __ lwu(t0, Address(xmethod, Method::access_flags_offset())); 672 __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC)); 673 __ beqz(t1, L_skip_barrier); // non-static 674 } 675 676 __ load_method_holder(t1, xmethod); 677 __ clinit_barrier(t1, t0, &L_skip_barrier); 678 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 679 680 __ bind(L_skip_barrier); 681 c2i_no_clinit_check_entry = __ pc(); 682 } 683 684 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 685 bs->c2i_entry_barrier(masm); 686 687 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 688 689 return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry); 690 } 691 692 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 693 uint num_bits, 694 uint total_args_passed) { 695 Unimplemented(); 696 return 0; 697 } 698 699 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 700 VMRegPair *regs, 701 VMRegPair *regs2, 702 int total_args_passed) { 703 assert(regs2 == nullptr, "not needed on riscv"); 704 705 // We return the amount of VMRegImpl stack slots we need to reserve for all 706 // the arguments NOT counting out_preserve_stack_slots. 707 708 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 709 c_rarg0, c_rarg1, c_rarg2, c_rarg3, 710 c_rarg4, c_rarg5, c_rarg6, c_rarg7 711 }; 712 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 713 c_farg0, c_farg1, c_farg2, c_farg3, 714 c_farg4, c_farg5, c_farg6, c_farg7 715 }; 716 717 uint int_args = 0; 718 uint fp_args = 0; 719 uint stk_args = 0; // inc by 2 each time 720 721 for (int i = 0; i < total_args_passed; i++) { 722 switch (sig_bt[i]) { 723 case T_BOOLEAN: // fall through 724 case T_CHAR: // fall through 725 case T_BYTE: // fall through 726 case T_SHORT: // fall through 727 case T_INT: 728 if (int_args < Argument::n_int_register_parameters_c) { 729 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 730 } else { 731 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 732 stk_args += 2; 733 } 734 break; 735 case T_LONG: // fall through 736 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 737 case T_OBJECT: // fall through 738 case T_ARRAY: // fall through 739 case T_ADDRESS: // fall through 740 case T_METADATA: 741 if (int_args < Argument::n_int_register_parameters_c) { 742 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 743 } else { 744 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 745 stk_args += 2; 746 } 747 break; 748 case T_FLOAT: 749 if (fp_args < Argument::n_float_register_parameters_c) { 750 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 751 } else if (int_args < Argument::n_int_register_parameters_c) { 752 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 753 } else { 754 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 755 stk_args += 2; 756 } 757 break; 758 case T_DOUBLE: 759 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 760 if (fp_args < Argument::n_float_register_parameters_c) { 761 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 762 } else if (int_args < Argument::n_int_register_parameters_c) { 763 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 764 } else { 765 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 766 stk_args += 2; 767 } 768 break; 769 case T_VOID: // Halves of longs and doubles 770 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 771 regs[i].set_bad(); 772 break; 773 default: 774 ShouldNotReachHere(); 775 } 776 } 777 778 return stk_args; 779 } 780 781 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 782 // We always ignore the frame_slots arg and just use the space just below frame pointer 783 // which by this time is free to use 784 switch (ret_type) { 785 case T_FLOAT: 786 __ fsw(f10, Address(fp, -3 * wordSize)); 787 break; 788 case T_DOUBLE: 789 __ fsd(f10, Address(fp, -3 * wordSize)); 790 break; 791 case T_VOID: break; 792 default: { 793 __ sd(x10, Address(fp, -3 * wordSize)); 794 } 795 } 796 } 797 798 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 799 // We always ignore the frame_slots arg and just use the space just below frame pointer 800 // which by this time is free to use 801 switch (ret_type) { 802 case T_FLOAT: 803 __ flw(f10, Address(fp, -3 * wordSize)); 804 break; 805 case T_DOUBLE: 806 __ fld(f10, Address(fp, -3 * wordSize)); 807 break; 808 case T_VOID: break; 809 default: { 810 __ ld(x10, Address(fp, -3 * wordSize)); 811 } 812 } 813 } 814 815 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 816 RegSet x; 817 for ( int i = first_arg ; i < arg_count ; i++ ) { 818 if (args[i].first()->is_Register()) { 819 x = x + args[i].first()->as_Register(); 820 } else if (args[i].first()->is_FloatRegister()) { 821 __ addi(sp, sp, -2 * wordSize); 822 __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0)); 823 } 824 } 825 __ push_reg(x, sp); 826 } 827 828 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 829 RegSet x; 830 for ( int i = first_arg ; i < arg_count ; i++ ) { 831 if (args[i].first()->is_Register()) { 832 x = x + args[i].first()->as_Register(); 833 } else { 834 ; 835 } 836 } 837 __ pop_reg(x, sp); 838 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 839 if (args[i].first()->is_Register()) { 840 ; 841 } else if (args[i].first()->is_FloatRegister()) { 842 __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0)); 843 __ add(sp, sp, 2 * wordSize); 844 } 845 } 846 } 847 848 static void verify_oop_args(MacroAssembler* masm, 849 const methodHandle& method, 850 const BasicType* sig_bt, 851 const VMRegPair* regs) { 852 const Register temp_reg = x9; // not part of any compiled calling seq 853 if (VerifyOops) { 854 for (int i = 0; i < method->size_of_parameters(); i++) { 855 if (sig_bt[i] == T_OBJECT || 856 sig_bt[i] == T_ARRAY) { 857 VMReg r = regs[i].first(); 858 assert(r->is_valid(), "bad oop arg"); 859 if (r->is_stack()) { 860 __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 861 __ verify_oop(temp_reg); 862 } else { 863 __ verify_oop(r->as_Register()); 864 } 865 } 866 } 867 } 868 } 869 870 // on exit, sp points to the ContinuationEntry 871 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 872 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 873 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 874 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 875 876 stack_slots += (int)ContinuationEntry::size() / wordSize; 877 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 878 879 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize) / VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 880 881 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 882 __ sd(t0, Address(sp, ContinuationEntry::parent_offset())); 883 __ sd(sp, Address(xthread, JavaThread::cont_entry_offset())); 884 885 return map; 886 } 887 888 // on entry c_rarg1 points to the continuation 889 // sp points to ContinuationEntry 890 // c_rarg3 -- isVirtualThread 891 static void fill_continuation_entry(MacroAssembler* masm) { 892 #ifdef ASSERT 893 __ mv(t0, ContinuationEntry::cookie_value()); 894 __ sw(t0, Address(sp, ContinuationEntry::cookie_offset())); 895 #endif 896 897 __ sd(c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 898 __ sw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 899 __ sd(zr, Address(sp, ContinuationEntry::chunk_offset())); 900 __ sw(zr, Address(sp, ContinuationEntry::argsize_offset())); 901 __ sw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 902 903 __ ld(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 904 __ sd(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 905 __ ld(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 906 __ sd(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 907 908 __ sd(zr, Address(xthread, JavaThread::cont_fastpath_offset())); 909 __ sd(zr, Address(xthread, JavaThread::held_monitor_count_offset())); 910 } 911 912 // on entry, sp points to the ContinuationEntry 913 // on exit, fp points to the spilled fp + 2 * wordSize in the entry frame 914 static void continuation_enter_cleanup(MacroAssembler* masm) { 915 #ifndef PRODUCT 916 Label OK; 917 __ ld(t0, Address(xthread, JavaThread::cont_entry_offset())); 918 __ beq(sp, t0, OK); 919 __ stop("incorrect sp"); 920 __ bind(OK); 921 #endif 922 923 __ ld(t0, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 924 __ sd(t0, Address(xthread, JavaThread::cont_fastpath_offset())); 925 __ ld(t0, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 926 __ sd(t0, Address(xthread, JavaThread::held_monitor_count_offset())); 927 928 __ ld(t0, Address(sp, ContinuationEntry::parent_offset())); 929 __ sd(t0, Address(xthread, JavaThread::cont_entry_offset())); 930 __ add(fp, sp, (int)ContinuationEntry::size() + 2 * wordSize /* 2 extra words to match up with leave() */); 931 } 932 933 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 934 // On entry: c_rarg1 -- the continuation object 935 // c_rarg2 -- isContinue 936 // c_rarg3 -- isVirtualThread 937 static void gen_continuation_enter(MacroAssembler* masm, 938 const methodHandle& method, 939 const BasicType* sig_bt, 940 const VMRegPair* regs, 941 int& exception_offset, 942 OopMapSet*oop_maps, 943 int& frame_complete, 944 int& stack_slots, 945 int& interpreted_entry_offset, 946 int& compiled_entry_offset) { 947 // verify_oop_args(masm, method, sig_bt, regs); 948 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 949 950 address start = __ pc(); 951 952 Label call_thaw, exit; 953 954 // i2i entry used at interp_only_mode only 955 interpreted_entry_offset = __ pc() - start; 956 { 957 #ifdef ASSERT 958 Label is_interp_only; 959 __ lw(t0, Address(xthread, JavaThread::interp_only_mode_offset())); 960 __ bnez(t0, is_interp_only); 961 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 962 __ bind(is_interp_only); 963 #endif 964 965 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 966 __ ld(c_rarg1, Address(esp, Interpreter::stackElementSize * 2)); 967 __ ld(c_rarg2, Address(esp, Interpreter::stackElementSize * 1)); 968 __ ld(c_rarg3, Address(esp, Interpreter::stackElementSize * 0)); 969 __ push_cont_fastpath(xthread); 970 971 __ enter(); 972 stack_slots = 2; // will be adjusted in setup 973 OopMap* map = continuation_enter_setup(masm, stack_slots); 974 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 975 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 976 977 fill_continuation_entry(masm); 978 979 __ bnez(c_rarg2, call_thaw); 980 981 // Make sure the call is patchable 982 __ align(NativeInstruction::instruction_size); 983 984 const address tr_call = __ trampoline_call(resolve); 985 if (tr_call == nullptr) { 986 fatal("CodeCache is full at gen_continuation_enter"); 987 } 988 989 oop_maps->add_gc_map(__ pc() - start, map); 990 __ post_call_nop(); 991 992 __ j(exit); 993 994 CodeBuffer* cbuf = masm->code_section()->outer(); 995 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 996 if (stub == nullptr) { 997 fatal("CodeCache is full at gen_continuation_enter"); 998 } 999 } 1000 1001 // compiled entry 1002 __ align(CodeEntryAlignment); 1003 compiled_entry_offset = __ pc() - start; 1004 1005 __ enter(); 1006 stack_slots = 2; // will be adjusted in setup 1007 OopMap* map = continuation_enter_setup(masm, stack_slots); 1008 frame_complete = __ pc() - start; 1009 1010 fill_continuation_entry(masm); 1011 1012 __ bnez(c_rarg2, call_thaw); 1013 1014 // Make sure the call is patchable 1015 __ align(NativeInstruction::instruction_size); 1016 1017 const address tr_call = __ trampoline_call(resolve); 1018 if (tr_call == nullptr) { 1019 fatal("CodeCache is full at gen_continuation_enter"); 1020 } 1021 1022 oop_maps->add_gc_map(__ pc() - start, map); 1023 __ post_call_nop(); 1024 1025 __ j(exit); 1026 1027 __ bind(call_thaw); 1028 1029 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1030 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1031 ContinuationEntry::_return_pc_offset = __ pc() - start; 1032 __ post_call_nop(); 1033 1034 __ bind(exit); 1035 continuation_enter_cleanup(masm); 1036 __ leave(); 1037 __ ret(); 1038 1039 // exception handling 1040 exception_offset = __ pc() - start; 1041 { 1042 __ mv(x9, x10); // save return value contaning the exception oop in callee-saved x9 1043 1044 continuation_enter_cleanup(masm); 1045 1046 __ ld(c_rarg1, Address(fp, -1 * wordSize)); // return address 1047 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, c_rarg1); 1048 1049 // see OptoRuntime::generate_exception_blob: x10 -- exception oop, x13 -- exception pc 1050 1051 __ mv(x11, x10); // the exception handler 1052 __ mv(x10, x9); // restore return value contaning the exception oop 1053 __ verify_oop(x10); 1054 1055 __ leave(); 1056 __ mv(x13, ra); 1057 __ jr(x11); // the exception handler 1058 } 1059 1060 CodeBuffer* cbuf = masm->code_section()->outer(); 1061 address stub = CompiledStaticCall::emit_to_interp_stub(*cbuf, tr_call); 1062 if (stub == nullptr) { 1063 fatal("CodeCache is full at gen_continuation_enter"); 1064 } 1065 } 1066 1067 static void gen_continuation_yield(MacroAssembler* masm, 1068 const methodHandle& method, 1069 const BasicType* sig_bt, 1070 const VMRegPair* regs, 1071 OopMapSet* oop_maps, 1072 int& frame_complete, 1073 int& stack_slots, 1074 int& compiled_entry_offset) { 1075 enum layout { 1076 fp_off, 1077 fp_off2, 1078 return_off, 1079 return_off2, 1080 framesize // inclusive of return address 1081 }; 1082 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1083 1084 stack_slots = framesize / VMRegImpl::slots_per_word; 1085 assert(stack_slots == 2, "recheck layout"); 1086 1087 address start = __ pc(); 1088 1089 compiled_entry_offset = __ pc() - start; 1090 __ enter(); 1091 1092 __ mv(c_rarg1, sp); 1093 1094 frame_complete = __ pc() - start; 1095 address the_pc = __ pc(); 1096 1097 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1098 1099 __ mv(c_rarg0, xthread); 1100 __ set_last_Java_frame(sp, fp, the_pc, t0); 1101 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1102 __ reset_last_Java_frame(true); 1103 1104 Label pinned; 1105 1106 __ bnez(x10, pinned); 1107 1108 // We've succeeded, set sp to the ContinuationEntry 1109 __ ld(sp, Address(xthread, JavaThread::cont_entry_offset())); 1110 continuation_enter_cleanup(masm); 1111 1112 __ bind(pinned); // pinned -- return to caller 1113 1114 // handle pending exception thrown by freeze 1115 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1116 Label ok; 1117 __ beqz(t0, ok); 1118 __ leave(); 1119 __ la(t0, RuntimeAddress(StubRoutines::forward_exception_entry())); 1120 __ jr(t0); 1121 __ bind(ok); 1122 1123 __ leave(); 1124 __ ret(); 1125 1126 OopMap* map = new OopMap(framesize, 1); 1127 oop_maps->add_gc_map(the_pc - start, map); 1128 } 1129 1130 static void gen_special_dispatch(MacroAssembler* masm, 1131 const methodHandle& method, 1132 const BasicType* sig_bt, 1133 const VMRegPair* regs) { 1134 verify_oop_args(masm, method, sig_bt, regs); 1135 vmIntrinsics::ID iid = method->intrinsic_id(); 1136 1137 // Now write the args into the outgoing interpreter space 1138 bool has_receiver = false; 1139 Register receiver_reg = noreg; 1140 int member_arg_pos = -1; 1141 Register member_reg = noreg; 1142 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1143 if (ref_kind != 0) { 1144 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1145 member_reg = x9; // known to be free at this point 1146 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1147 } else if (iid == vmIntrinsics::_invokeBasic) { 1148 has_receiver = true; 1149 } else if (iid == vmIntrinsics::_linkToNative) { 1150 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1151 member_reg = x9; // known to be free at this point 1152 } else { 1153 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1154 } 1155 1156 if (member_reg != noreg) { 1157 // Load the member_arg into register, if necessary. 1158 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1159 VMReg r = regs[member_arg_pos].first(); 1160 if (r->is_stack()) { 1161 __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1162 } else { 1163 // no data motion is needed 1164 member_reg = r->as_Register(); 1165 } 1166 } 1167 1168 if (has_receiver) { 1169 // Make sure the receiver is loaded into a register. 1170 assert(method->size_of_parameters() > 0, "oob"); 1171 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1172 VMReg r = regs[0].first(); 1173 assert(r->is_valid(), "bad receiver arg"); 1174 if (r->is_stack()) { 1175 // Porting note: This assumes that compiled calling conventions always 1176 // pass the receiver oop in a register. If this is not true on some 1177 // platform, pick a temp and load the receiver from stack. 1178 fatal("receiver always in a register"); 1179 receiver_reg = x12; // known to be free at this point 1180 __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1181 } else { 1182 // no data motion is needed 1183 receiver_reg = r->as_Register(); 1184 } 1185 } 1186 1187 // Figure out which address we are really jumping to: 1188 MethodHandles::generate_method_handle_dispatch(masm, iid, 1189 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1190 } 1191 1192 // --------------------------------------------------------------------------- 1193 // Generate a native wrapper for a given method. The method takes arguments 1194 // in the Java compiled code convention, marshals them to the native 1195 // convention (handlizes oops, etc), transitions to native, makes the call, 1196 // returns to java state (possibly blocking), unhandlizes any result and 1197 // returns. 1198 // 1199 // Critical native functions are a shorthand for the use of 1200 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1201 // functions. The wrapper is expected to unpack the arguments before 1202 // passing them to the callee and perform checks before and after the 1203 // native call to ensure that they GCLocker 1204 // lock_critical/unlock_critical semantics are followed. Some other 1205 // parts of JNI setup are skipped like the tear down of the JNI handle 1206 // block and the check for pending exceptions it's impossible for them 1207 // to be thrown. 1208 // 1209 // They are roughly structured like this: 1210 // if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical() 1211 // tranistion to thread_in_native 1212 // unpack array arguments and call native entry point 1213 // check for safepoint in progress 1214 // check if any thread suspend flags are set 1215 // call into JVM and possible unlock the JNI critical 1216 // if a GC was suppressed while in the critical native. 1217 // transition back to thread_in_Java 1218 // return to caller 1219 // 1220 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1221 const methodHandle& method, 1222 int compile_id, 1223 BasicType* in_sig_bt, 1224 VMRegPair* in_regs, 1225 BasicType ret_type) { 1226 if (method->is_continuation_native_intrinsic()) { 1227 int exception_offset = -1; 1228 OopMapSet* oop_maps = new OopMapSet(); 1229 int frame_complete = -1; 1230 int stack_slots = -1; 1231 int interpreted_entry_offset = -1; 1232 int vep_offset = -1; 1233 if (method->is_continuation_enter_intrinsic()) { 1234 gen_continuation_enter(masm, 1235 method, 1236 in_sig_bt, 1237 in_regs, 1238 exception_offset, 1239 oop_maps, 1240 frame_complete, 1241 stack_slots, 1242 interpreted_entry_offset, 1243 vep_offset); 1244 } else if (method->is_continuation_yield_intrinsic()) { 1245 gen_continuation_yield(masm, 1246 method, 1247 in_sig_bt, 1248 in_regs, 1249 oop_maps, 1250 frame_complete, 1251 stack_slots, 1252 vep_offset); 1253 } else { 1254 guarantee(false, "Unknown Continuation native intrinsic"); 1255 } 1256 1257 #ifdef ASSERT 1258 if (method->is_continuation_enter_intrinsic()) { 1259 assert(interpreted_entry_offset != -1, "Must be set"); 1260 assert(exception_offset != -1, "Must be set"); 1261 } else { 1262 assert(interpreted_entry_offset == -1, "Must be unset"); 1263 assert(exception_offset == -1, "Must be unset"); 1264 } 1265 assert(frame_complete != -1, "Must be set"); 1266 assert(stack_slots != -1, "Must be set"); 1267 assert(vep_offset != -1, "Must be set"); 1268 #endif 1269 1270 __ flush(); 1271 nmethod* nm = nmethod::new_native_nmethod(method, 1272 compile_id, 1273 masm->code(), 1274 vep_offset, 1275 frame_complete, 1276 stack_slots, 1277 in_ByteSize(-1), 1278 in_ByteSize(-1), 1279 oop_maps, 1280 exception_offset); 1281 if (method->is_continuation_enter_intrinsic()) { 1282 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1283 } else if (method->is_continuation_yield_intrinsic()) { 1284 _cont_doYield_stub = nm; 1285 } else { 1286 guarantee(false, "Unknown Continuation native intrinsic"); 1287 } 1288 return nm; 1289 } 1290 1291 if (method->is_method_handle_intrinsic()) { 1292 vmIntrinsics::ID iid = method->intrinsic_id(); 1293 intptr_t start = (intptr_t)__ pc(); 1294 int vep_offset = ((intptr_t)__ pc()) - start; 1295 1296 // First instruction must be a nop as it may need to be patched on deoptimisation 1297 { 1298 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1299 MacroAssembler::assert_alignment(__ pc()); 1300 __ nop(); // 4 bytes 1301 } 1302 gen_special_dispatch(masm, 1303 method, 1304 in_sig_bt, 1305 in_regs); 1306 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1307 __ flush(); 1308 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1309 return nmethod::new_native_nmethod(method, 1310 compile_id, 1311 masm->code(), 1312 vep_offset, 1313 frame_complete, 1314 stack_slots / VMRegImpl::slots_per_word, 1315 in_ByteSize(-1), 1316 in_ByteSize(-1), 1317 (OopMapSet*)nullptr); 1318 } 1319 address native_func = method->native_function(); 1320 assert(native_func != nullptr, "must have function"); 1321 1322 // An OopMap for lock (and class if static) 1323 OopMapSet *oop_maps = new OopMapSet(); 1324 assert_cond(oop_maps != nullptr); 1325 intptr_t start = (intptr_t)__ pc(); 1326 1327 // We have received a description of where all the java arg are located 1328 // on entry to the wrapper. We need to convert these args to where 1329 // the jni function will expect them. To figure out where they go 1330 // we convert the java signature to a C signature by inserting 1331 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1332 1333 const int total_in_args = method->size_of_parameters(); 1334 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1335 1336 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1337 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1338 BasicType* in_elem_bt = nullptr; 1339 1340 int argc = 0; 1341 out_sig_bt[argc++] = T_ADDRESS; 1342 if (method->is_static()) { 1343 out_sig_bt[argc++] = T_OBJECT; 1344 } 1345 1346 for (int i = 0; i < total_in_args ; i++) { 1347 out_sig_bt[argc++] = in_sig_bt[i]; 1348 } 1349 1350 // Now figure out where the args must be stored and how much stack space 1351 // they require. 1352 int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, nullptr, total_c_args); 1353 1354 // Compute framesize for the wrapper. We need to handlize all oops in 1355 // incoming registers 1356 1357 // Calculate the total number of stack slots we will need. 1358 1359 // First count the abi requirement plus all of the outgoing args 1360 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1361 1362 // Now the space for the inbound oop handle area 1363 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1364 1365 int oop_handle_offset = stack_slots; 1366 stack_slots += total_save_slots; 1367 1368 // Now any space we need for handlizing a klass if static method 1369 1370 int klass_slot_offset = 0; 1371 int klass_offset = -1; 1372 int lock_slot_offset = 0; 1373 bool is_static = false; 1374 1375 if (method->is_static()) { 1376 klass_slot_offset = stack_slots; 1377 stack_slots += VMRegImpl::slots_per_word; 1378 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1379 is_static = true; 1380 } 1381 1382 // Plus a lock if needed 1383 1384 if (method->is_synchronized()) { 1385 lock_slot_offset = stack_slots; 1386 stack_slots += VMRegImpl::slots_per_word; 1387 } 1388 1389 // Now a place (+2) to save return values or temp during shuffling 1390 // + 4 for return address (which we own) and saved fp 1391 stack_slots += 6; 1392 1393 // Ok The space we have allocated will look like: 1394 // 1395 // 1396 // FP-> | | 1397 // | 2 slots (ra) | 1398 // | 2 slots (fp) | 1399 // |---------------------| 1400 // | 2 slots for moves | 1401 // |---------------------| 1402 // | lock box (if sync) | 1403 // |---------------------| <- lock_slot_offset 1404 // | klass (if static) | 1405 // |---------------------| <- klass_slot_offset 1406 // | oopHandle area | 1407 // |---------------------| <- oop_handle_offset (8 java arg registers) 1408 // | outbound memory | 1409 // | based arguments | 1410 // | | 1411 // |---------------------| 1412 // | | 1413 // SP-> | out_preserved_slots | 1414 // 1415 // 1416 1417 1418 // Now compute actual number of stack words we need rounding to make 1419 // stack properly aligned. 1420 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1421 1422 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1423 1424 // First thing make an ic check to see if we should even be here 1425 1426 // We are free to use all registers as temps without saving them and 1427 // restoring them except fp. fp is the only callee save register 1428 // as far as the interpreter and the compiler(s) are concerned. 1429 1430 1431 const Register ic_reg = t1; 1432 const Register receiver = j_rarg0; 1433 1434 Label hit; 1435 Label exception_pending; 1436 1437 __ verify_oop(receiver); 1438 assert_different_registers(ic_reg, receiver, t0, t2); 1439 __ cmp_klass(receiver, ic_reg, t0, t2 /* call-clobbered t2 as a tmp */, hit); 1440 1441 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1442 1443 // Verified entry point must be aligned 1444 __ align(8); 1445 1446 __ bind(hit); 1447 1448 int vep_offset = ((intptr_t)__ pc()) - start; 1449 1450 // If we have to make this method not-entrant we'll overwrite its 1451 // first instruction with a jump. 1452 { 1453 Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching. 1454 MacroAssembler::assert_alignment(__ pc()); 1455 __ nop(); // 4 bytes 1456 } 1457 1458 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1459 Label L_skip_barrier; 1460 __ mov_metadata(t1, method->method_holder()); // InstanceKlass* 1461 __ clinit_barrier(t1, t0, &L_skip_barrier); 1462 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1463 1464 __ bind(L_skip_barrier); 1465 } 1466 1467 // Generate stack overflow check 1468 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1469 1470 // Generate a new frame for the wrapper. 1471 __ enter(); 1472 // -2 because return address is already present and so is saved fp 1473 __ sub(sp, sp, stack_size - 2 * wordSize); 1474 1475 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1476 assert_cond(bs != nullptr); 1477 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1478 1479 // Frame is now completed as far as size and linkage. 1480 int frame_complete = ((intptr_t)__ pc()) - start; 1481 1482 // We use x18 as the oop handle for the receiver/klass 1483 // It is callee save so it survives the call to native 1484 1485 const Register oop_handle_reg = x18; 1486 1487 // 1488 // We immediately shuffle the arguments so that any vm call we have to 1489 // make from here on out (sync slow path, jvmti, etc.) we will have 1490 // captured the oops from our caller and have a valid oopMap for 1491 // them. 1492 1493 // ----------------- 1494 // The Grand Shuffle 1495 1496 // The Java calling convention is either equal (linux) or denser (win64) than the 1497 // c calling convention. However the because of the jni_env argument the c calling 1498 // convention always has at least one more (and two for static) arguments than Java. 1499 // Therefore if we move the args from java -> c backwards then we will never have 1500 // a register->register conflict and we don't have to build a dependency graph 1501 // and figure out how to break any cycles. 1502 // 1503 1504 // Record esp-based slot for receiver on stack for non-static methods 1505 int receiver_offset = -1; 1506 1507 // This is a trick. We double the stack slots so we can claim 1508 // the oops in the caller's frame. Since we are sure to have 1509 // more args than the caller doubling is enough to make 1510 // sure we can capture all the incoming oop args from the 1511 // caller. 1512 // 1513 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1514 assert_cond(map != nullptr); 1515 1516 int float_args = 0; 1517 int int_args = 0; 1518 1519 #ifdef ASSERT 1520 bool reg_destroyed[Register::number_of_registers]; 1521 bool freg_destroyed[FloatRegister::number_of_registers]; 1522 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1523 reg_destroyed[r] = false; 1524 } 1525 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1526 freg_destroyed[f] = false; 1527 } 1528 1529 #endif /* ASSERT */ 1530 1531 // For JNI natives the incoming and outgoing registers are offset upwards. 1532 GrowableArray<int> arg_order(2 * total_in_args); 1533 VMRegPair tmp_vmreg; 1534 tmp_vmreg.set2(x9->as_VMReg()); 1535 1536 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1537 arg_order.push(i); 1538 arg_order.push(c_arg); 1539 } 1540 1541 int temploc = -1; 1542 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1543 int i = arg_order.at(ai); 1544 int c_arg = arg_order.at(ai + 1); 1545 __ block_comment(err_msg("mv %d -> %d", i, c_arg)); 1546 assert(c_arg != -1 && i != -1, "wrong order"); 1547 #ifdef ASSERT 1548 if (in_regs[i].first()->is_Register()) { 1549 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1550 } else if (in_regs[i].first()->is_FloatRegister()) { 1551 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1552 } 1553 if (out_regs[c_arg].first()->is_Register()) { 1554 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1555 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1556 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1557 } 1558 #endif /* ASSERT */ 1559 switch (in_sig_bt[i]) { 1560 case T_ARRAY: 1561 case T_OBJECT: 1562 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1563 ((i == 0) && (!is_static)), 1564 &receiver_offset); 1565 int_args++; 1566 break; 1567 case T_VOID: 1568 break; 1569 1570 case T_FLOAT: 1571 __ float_move(in_regs[i], out_regs[c_arg]); 1572 float_args++; 1573 break; 1574 1575 case T_DOUBLE: 1576 assert( i + 1 < total_in_args && 1577 in_sig_bt[i + 1] == T_VOID && 1578 out_sig_bt[c_arg + 1] == T_VOID, "bad arg list"); 1579 __ double_move(in_regs[i], out_regs[c_arg]); 1580 float_args++; 1581 break; 1582 1583 case T_LONG : 1584 __ long_move(in_regs[i], out_regs[c_arg]); 1585 int_args++; 1586 break; 1587 1588 case T_ADDRESS: 1589 assert(false, "found T_ADDRESS in java args"); 1590 break; 1591 1592 default: 1593 __ move32_64(in_regs[i], out_regs[c_arg]); 1594 int_args++; 1595 } 1596 } 1597 1598 // point c_arg at the first arg that is already loaded in case we 1599 // need to spill before we call out 1600 int c_arg = total_c_args - total_in_args; 1601 1602 // Pre-load a static method's oop into c_rarg1. 1603 if (method->is_static()) { 1604 1605 // load oop into a register 1606 __ movoop(c_rarg1, 1607 JNIHandles::make_local(method->method_holder()->java_mirror())); 1608 1609 // Now handlize the static class mirror it's known not-null. 1610 __ sd(c_rarg1, Address(sp, klass_offset)); 1611 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1612 1613 // Now get the handle 1614 __ la(c_rarg1, Address(sp, klass_offset)); 1615 // and protect the arg if we must spill 1616 c_arg--; 1617 } 1618 1619 // Change state to native (we save the return address in the thread, since it might not 1620 // be pushed on the stack when we do a stack traversal). 1621 // We use the same pc/oopMap repeatedly when we call out 1622 1623 Label native_return; 1624 __ set_last_Java_frame(sp, noreg, native_return, t0); 1625 1626 Label dtrace_method_entry, dtrace_method_entry_done; 1627 { 1628 ExternalAddress target((address)&DTraceMethodProbes); 1629 __ relocate(target.rspec(), [&] { 1630 int32_t offset; 1631 __ la_patchable(t0, target, offset); 1632 __ lbu(t0, Address(t0, offset)); 1633 }); 1634 __ bnez(t0, dtrace_method_entry); 1635 __ bind(dtrace_method_entry_done); 1636 } 1637 1638 // RedefineClasses() tracing support for obsolete method entry 1639 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1640 // protect the args we've loaded 1641 save_args(masm, total_c_args, c_arg, out_regs); 1642 __ mov_metadata(c_rarg1, method()); 1643 __ call_VM_leaf( 1644 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1645 xthread, c_rarg1); 1646 restore_args(masm, total_c_args, c_arg, out_regs); 1647 } 1648 1649 // Lock a synchronized method 1650 1651 // Register definitions used by locking and unlocking 1652 1653 const Register swap_reg = x10; 1654 const Register obj_reg = x9; // Will contain the oop 1655 const Register lock_reg = x30; // Address of compiler lock object (BasicLock) 1656 const Register old_hdr = x30; // value of old header at unlock time 1657 const Register lock_tmp = x31; // Temporary used by lightweight_lock/unlock 1658 const Register tmp = ra; 1659 1660 Label slow_path_lock; 1661 Label lock_done; 1662 1663 if (method->is_synchronized()) { 1664 Label count; 1665 1666 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes(); 1667 1668 // Get the handle (the 2nd argument) 1669 __ mv(oop_handle_reg, c_rarg1); 1670 1671 // Get address of the box 1672 1673 __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1674 1675 // Load the oop from the handle 1676 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1677 1678 if (LockingMode == LM_MONITOR) { 1679 __ j(slow_path_lock); 1680 } else if (LockingMode == LM_LEGACY) { 1681 // Load (object->mark() | 1) into swap_reg % x10 1682 __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1683 __ ori(swap_reg, t0, 1); 1684 1685 // Save (object->mark() | 1) into BasicLock's displaced header 1686 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1687 1688 // src -> dest if dest == x10 else x10 <- dest 1689 __ cmpxchg_obj_header(x10, lock_reg, obj_reg, t0, count, /*fallthrough*/nullptr); 1690 1691 // Test if the oopMark is an obvious stack pointer, i.e., 1692 // 1) (mark & 3) == 0, and 1693 // 2) sp <= mark < mark + os::pagesize() 1694 // These 3 tests can be done by evaluating the following 1695 // expression: ((mark - sp) & (3 - os::vm_page_size())), 1696 // assuming both stack pointer and pagesize have their 1697 // least significant 2 bits clear. 1698 // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg 1699 1700 __ sub(swap_reg, swap_reg, sp); 1701 __ andi(swap_reg, swap_reg, 3 - (int)os::vm_page_size()); 1702 1703 // Save the test result, for recursive case, the result is zero 1704 __ sd(swap_reg, Address(lock_reg, mark_word_offset)); 1705 __ bnez(swap_reg, slow_path_lock); 1706 } else { 1707 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1708 __ ld(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1709 __ lightweight_lock(obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1710 } 1711 1712 __ bind(count); 1713 __ increment(Address(xthread, JavaThread::held_monitor_count_offset())); 1714 1715 // Slow path will re-enter here 1716 __ bind(lock_done); 1717 } 1718 1719 1720 // Finally just about ready to make the JNI call 1721 1722 // get JNIEnv* which is first argument to native 1723 __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset()))); 1724 1725 // Now set thread in native 1726 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1727 __ mv(t0, _thread_in_native); 1728 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1729 __ sw(t0, Address(t1)); 1730 1731 __ rt_call(native_func); 1732 1733 __ bind(native_return); 1734 1735 intptr_t return_pc = (intptr_t) __ pc(); 1736 oop_maps->add_gc_map(return_pc - start, map); 1737 1738 // Unpack native results. 1739 if (ret_type != T_OBJECT && ret_type != T_ARRAY) { 1740 __ cast_primitive_type(ret_type, x10); 1741 } 1742 1743 Label safepoint_in_progress, safepoint_in_progress_done; 1744 Label after_transition; 1745 1746 // Switch thread to "native transition" state before reading the synchronization state. 1747 // This additional state is necessary because reading and testing the synchronization 1748 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1749 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1750 // VM thread changes sync state to synchronizing and suspends threads for GC. 1751 // Thread A is resumed to finish this native method, but doesn't block here since it 1752 // didn't see any synchronization is progress, and escapes. 1753 __ mv(t0, _thread_in_native_trans); 1754 1755 __ sw(t0, Address(xthread, JavaThread::thread_state_offset())); 1756 1757 // Force this write out before the read below 1758 if (!UseSystemMemoryBarrier) { 1759 __ membar(MacroAssembler::AnyAny); 1760 } 1761 1762 // check for safepoint operation in progress and/or pending suspend requests 1763 { 1764 // We need an acquire here to ensure that any subsequent load of the 1765 // global SafepointSynchronize::_state flag is ordered after this load 1766 // of the thread-local polling word. We don't want this poll to 1767 // return false (i.e. not safepointing) and a later poll of the global 1768 // SafepointSynchronize::_state spuriously to return true. 1769 // This is to avoid a race when we're in a native->Java transition 1770 // racing the code which wakes up from a safepoint. 1771 1772 __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */); 1773 __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset())); 1774 __ bnez(t0, safepoint_in_progress); 1775 __ bind(safepoint_in_progress_done); 1776 } 1777 1778 // change thread state 1779 __ la(t1, Address(xthread, JavaThread::thread_state_offset())); 1780 __ mv(t0, _thread_in_Java); 1781 __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore); 1782 __ sw(t0, Address(t1)); 1783 __ bind(after_transition); 1784 1785 Label reguard; 1786 Label reguard_done; 1787 __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset())); 1788 __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled); 1789 __ beq(t0, t1, reguard); 1790 __ bind(reguard_done); 1791 1792 // native result if any is live 1793 1794 // Unlock 1795 Label unlock_done; 1796 Label slow_path_unlock; 1797 if (method->is_synchronized()) { 1798 1799 // Get locked oop from the handle we passed to jni 1800 __ ld(obj_reg, Address(oop_handle_reg, 0)); 1801 1802 Label done, not_recursive; 1803 1804 if (LockingMode == LM_LEGACY) { 1805 // Simple recursive lock? 1806 __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1807 __ bnez(t0, not_recursive); 1808 __ decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 1809 __ j(done); 1810 } 1811 1812 __ bind(not_recursive); 1813 1814 // Must save x10 if if it is live now because cmpxchg must use it 1815 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1816 save_native_result(masm, ret_type, stack_slots); 1817 } 1818 1819 if (LockingMode == LM_MONITOR) { 1820 __ j(slow_path_unlock); 1821 } else if (LockingMode == LM_LEGACY) { 1822 // get address of the stack lock 1823 __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1824 // get old displaced header 1825 __ ld(old_hdr, Address(x10, 0)); 1826 1827 // Atomic swap old header if oop still contains the stack lock 1828 Label count; 1829 __ cmpxchg_obj_header(x10, old_hdr, obj_reg, t0, count, &slow_path_unlock); 1830 __ bind(count); 1831 __ decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 1832 } else { 1833 assert(LockingMode == LM_LIGHTWEIGHT, ""); 1834 __ ld(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1835 __ test_bit(t0, old_hdr, exact_log2(markWord::monitor_value)); 1836 __ bnez(t0, slow_path_unlock); 1837 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1838 __ decrement(Address(xthread, JavaThread::held_monitor_count_offset())); 1839 } 1840 1841 // slow path re-enters here 1842 __ bind(unlock_done); 1843 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1844 restore_native_result(masm, ret_type, stack_slots); 1845 } 1846 1847 __ bind(done); 1848 } 1849 1850 Label dtrace_method_exit, dtrace_method_exit_done; 1851 { 1852 ExternalAddress target((address)&DTraceMethodProbes); 1853 __ relocate(target.rspec(), [&] { 1854 int32_t offset; 1855 __ la_patchable(t0, target, offset); 1856 __ lbu(t0, Address(t0, offset)); 1857 }); 1858 __ bnez(t0, dtrace_method_exit); 1859 __ bind(dtrace_method_exit_done); 1860 } 1861 1862 __ reset_last_Java_frame(false); 1863 1864 // Unbox oop result, e.g. JNIHandles::resolve result. 1865 if (is_reference_type(ret_type)) { 1866 __ resolve_jobject(x10, x11, x12); 1867 } 1868 1869 if (CheckJNICalls) { 1870 // clear_pending_jni_exception_check 1871 __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset())); 1872 } 1873 1874 // reset handle block 1875 __ ld(x12, Address(xthread, JavaThread::active_handles_offset())); 1876 __ sd(zr, Address(x12, JNIHandleBlock::top_offset())); 1877 1878 __ leave(); 1879 1880 // Any exception pending? 1881 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1882 __ bnez(t0, exception_pending); 1883 1884 // We're done 1885 __ ret(); 1886 1887 // Unexpected paths are out of line and go here 1888 1889 // forward the exception 1890 __ bind(exception_pending); 1891 1892 // and forward the exception 1893 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1894 1895 // Slow path locking & unlocking 1896 if (method->is_synchronized()) { 1897 1898 __ block_comment("Slow path lock {"); 1899 __ bind(slow_path_lock); 1900 1901 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1902 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1903 1904 // protect the args we've loaded 1905 save_args(masm, total_c_args, c_arg, out_regs); 1906 1907 __ mv(c_rarg0, obj_reg); 1908 __ mv(c_rarg1, lock_reg); 1909 __ mv(c_rarg2, xthread); 1910 1911 // Not a leaf but we have last_Java_frame setup as we want 1912 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 1913 restore_args(masm, total_c_args, c_arg, out_regs); 1914 1915 #ifdef ASSERT 1916 { Label L; 1917 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1918 __ beqz(t0, L); 1919 __ stop("no pending exception allowed on exit from monitorenter"); 1920 __ bind(L); 1921 } 1922 #endif 1923 __ j(lock_done); 1924 1925 __ block_comment("} Slow path lock"); 1926 1927 __ block_comment("Slow path unlock {"); 1928 __ bind(slow_path_unlock); 1929 1930 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1931 save_native_result(masm, ret_type, stack_slots); 1932 } 1933 1934 __ mv(c_rarg2, xthread); 1935 __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1936 __ mv(c_rarg0, obj_reg); 1937 1938 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 1939 // NOTE that obj_reg == x9 currently 1940 __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1941 __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1942 1943 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 1944 1945 #ifdef ASSERT 1946 { 1947 Label L; 1948 __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1949 __ beqz(t0, L); 1950 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 1951 __ bind(L); 1952 } 1953 #endif /* ASSERT */ 1954 1955 __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset()))); 1956 1957 if (ret_type == T_FLOAT || ret_type == T_DOUBLE) { 1958 restore_native_result(masm, ret_type, stack_slots); 1959 } 1960 __ j(unlock_done); 1961 1962 __ block_comment("} Slow path unlock"); 1963 1964 } // synchronized 1965 1966 // SLOW PATH Reguard the stack if needed 1967 1968 __ bind(reguard); 1969 save_native_result(masm, ret_type, stack_slots); 1970 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 1971 restore_native_result(masm, ret_type, stack_slots); 1972 // and continue 1973 __ j(reguard_done); 1974 1975 // SLOW PATH safepoint 1976 { 1977 __ block_comment("safepoint {"); 1978 __ bind(safepoint_in_progress); 1979 1980 // Don't use call_VM as it will see a possible pending exception and forward it 1981 // and never return here preventing us from clearing _last_native_pc down below. 1982 // 1983 save_native_result(masm, ret_type, stack_slots); 1984 __ mv(c_rarg0, xthread); 1985 #ifndef PRODUCT 1986 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 1987 #endif 1988 RuntimeAddress target(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)); 1989 __ relocate(target.rspec(), [&] { 1990 int32_t offset; 1991 __ la_patchable(t0, target, offset); 1992 __ jalr(x1, t0, offset); 1993 }); 1994 1995 // Restore any method result value 1996 restore_native_result(masm, ret_type, stack_slots); 1997 1998 __ j(safepoint_in_progress_done); 1999 __ block_comment("} safepoint"); 2000 } 2001 2002 // SLOW PATH dtrace support 2003 { 2004 __ block_comment("dtrace entry {"); 2005 __ bind(dtrace_method_entry); 2006 2007 // We have all of the arguments setup at this point. We must not touch any register 2008 // argument registers at this point (what if we save/restore them there are no oop? 2009 2010 save_args(masm, total_c_args, c_arg, out_regs); 2011 __ mov_metadata(c_rarg1, method()); 2012 __ call_VM_leaf( 2013 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2014 xthread, c_rarg1); 2015 restore_args(masm, total_c_args, c_arg, out_regs); 2016 __ j(dtrace_method_entry_done); 2017 __ block_comment("} dtrace entry"); 2018 } 2019 2020 { 2021 __ block_comment("dtrace exit {"); 2022 __ bind(dtrace_method_exit); 2023 save_native_result(masm, ret_type, stack_slots); 2024 __ mov_metadata(c_rarg1, method()); 2025 __ call_VM_leaf( 2026 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2027 xthread, c_rarg1); 2028 restore_native_result(masm, ret_type, stack_slots); 2029 __ j(dtrace_method_exit_done); 2030 __ block_comment("} dtrace exit"); 2031 } 2032 2033 __ flush(); 2034 2035 nmethod *nm = nmethod::new_native_nmethod(method, 2036 compile_id, 2037 masm->code(), 2038 vep_offset, 2039 frame_complete, 2040 stack_slots / VMRegImpl::slots_per_word, 2041 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2042 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2043 oop_maps); 2044 assert(nm != nullptr, "create native nmethod fail!"); 2045 return nm; 2046 } 2047 2048 // this function returns the adjust size (in number of words) to a c2i adapter 2049 // activation for use during deoptimization 2050 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2051 assert(callee_locals >= callee_parameters, 2052 "test and remove; got more parms than locals"); 2053 if (callee_locals < callee_parameters) { 2054 return 0; // No adjustment for negative locals 2055 } 2056 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2057 // diff is counted in stack words 2058 return align_up(diff, 2); 2059 } 2060 2061 //------------------------------generate_deopt_blob---------------------------- 2062 void SharedRuntime::generate_deopt_blob() { 2063 // Allocate space for the code 2064 ResourceMark rm; 2065 // Setup code generation tools 2066 int pad = 0; 2067 #if INCLUDE_JVMCI 2068 if (EnableJVMCI) { 2069 pad += 512; // Increase the buffer size when compiling for JVMCI 2070 } 2071 #endif 2072 CodeBuffer buffer("deopt_blob", 2048 + pad, 1024); 2073 MacroAssembler* masm = new MacroAssembler(&buffer); 2074 int frame_size_in_words = -1; 2075 OopMap* map = nullptr; 2076 OopMapSet *oop_maps = new OopMapSet(); 2077 assert_cond(masm != nullptr && oop_maps != nullptr); 2078 RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0); 2079 2080 // ------------- 2081 // This code enters when returning to a de-optimized nmethod. A return 2082 // address has been pushed on the stack, and return values are in 2083 // registers. 2084 // If we are doing a normal deopt then we were called from the patched 2085 // nmethod from the point we returned to the nmethod. So the return 2086 // address on the stack is wrong by NativeCall::instruction_size 2087 // We will adjust the value so it looks like we have the original return 2088 // address on the stack (like when we eagerly deoptimized). 2089 // In the case of an exception pending when deoptimizing, we enter 2090 // with a return address on the stack that points after the call we patched 2091 // into the exception handler. We have the following register state from, 2092 // e.g., the forward exception stub (see stubGenerator_riscv.cpp). 2093 // x10: exception oop 2094 // x9: exception handler 2095 // x13: throwing pc 2096 // So in this case we simply jam x13 into the useless return address and 2097 // the stack looks just like we want. 2098 // 2099 // At this point we need to de-opt. We save the argument return 2100 // registers. We call the first C routine, fetch_unroll_info(). This 2101 // routine captures the return values and returns a structure which 2102 // describes the current frame size and the sizes of all replacement frames. 2103 // The current frame is compiled code and may contain many inlined 2104 // functions, each with their own JVM state. We pop the current frame, then 2105 // push all the new frames. Then we call the C routine unpack_frames() to 2106 // populate these frames. Finally unpack_frames() returns us the new target 2107 // address. Notice that callee-save registers are BLOWN here; they have 2108 // already been captured in the vframeArray at the time the return PC was 2109 // patched. 2110 address start = __ pc(); 2111 Label cont; 2112 2113 // Prolog for non exception case! 2114 2115 // Save everything in sight. 2116 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2117 2118 // Normal deoptimization. Save exec mode for unpack_frames. 2119 __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved 2120 __ j(cont); 2121 2122 int reexecute_offset = __ pc() - start; 2123 #if INCLUDE_JVMCI && !defined(COMPILER1) 2124 if (EnableJVMCI && UseJVMCICompiler) { 2125 // JVMCI does not use this kind of deoptimization 2126 __ should_not_reach_here(); 2127 } 2128 #endif 2129 2130 // Reexecute case 2131 // return address is the pc describes what bci to do re-execute at 2132 2133 // No need to update map as each call to save_live_registers will produce identical oopmap 2134 (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2135 2136 __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved 2137 __ j(cont); 2138 2139 #if INCLUDE_JVMCI 2140 Label after_fetch_unroll_info_call; 2141 int implicit_exception_uncommon_trap_offset = 0; 2142 int uncommon_trap_offset = 0; 2143 2144 if (EnableJVMCI) { 2145 implicit_exception_uncommon_trap_offset = __ pc() - start; 2146 2147 __ ld(ra, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2148 __ sd(zr, Address(xthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2149 2150 uncommon_trap_offset = __ pc() - start; 2151 2152 // Save everything in sight. 2153 reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2154 // fetch_unroll_info needs to call last_java_frame() 2155 Label retaddr; 2156 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2157 2158 __ lw(c_rarg1, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2159 __ mv(t0, -1); 2160 __ sw(t0, Address(xthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2161 2162 __ mv(xcpool, Deoptimization::Unpack_reexecute); 2163 __ mv(c_rarg0, xthread); 2164 __ orrw(c_rarg2, zr, xcpool); // exec mode 2165 RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)); 2166 __ relocate(target.rspec(), [&] { 2167 int32_t offset; 2168 __ la_patchable(t0, target, offset); 2169 __ jalr(x1, t0, offset); 2170 }); 2171 __ bind(retaddr); 2172 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2173 2174 __ reset_last_Java_frame(false); 2175 2176 __ j(after_fetch_unroll_info_call); 2177 } // EnableJVMCI 2178 #endif // INCLUDE_JVMCI 2179 2180 int exception_offset = __ pc() - start; 2181 2182 // Prolog for exception case 2183 2184 // all registers are dead at this entry point, except for x10, and 2185 // x13 which contain the exception oop and exception pc 2186 // respectively. Set them in TLS and fall thru to the 2187 // unpack_with_exception_in_tls entry point. 2188 2189 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2190 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2191 2192 int exception_in_tls_offset = __ pc() - start; 2193 2194 // new implementation because exception oop is now passed in JavaThread 2195 2196 // Prolog for exception case 2197 // All registers must be preserved because they might be used by LinearScan 2198 // Exceptiop oop and throwing PC are passed in JavaThread 2199 // tos: stack at point of call to method that threw the exception (i.e. only 2200 // args are on the stack, no return address) 2201 2202 // The return address pushed by save_live_registers will be patched 2203 // later with the throwing pc. The correct value is not available 2204 // now because loading it from memory would destroy registers. 2205 2206 // NB: The SP at this point must be the SP of the method that is 2207 // being deoptimized. Deoptimization assumes that the frame created 2208 // here by save_live_registers is immediately below the method's SP. 2209 // This is a somewhat fragile mechanism. 2210 2211 // Save everything in sight. 2212 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2213 2214 // Now it is safe to overwrite any register 2215 2216 // Deopt during an exception. Save exec mode for unpack_frames. 2217 __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved 2218 2219 // load throwing pc from JavaThread and patch it as the return address 2220 // of the current frame. Then clear the field in JavaThread 2221 2222 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2223 __ sd(x13, Address(fp, frame::return_addr_offset * wordSize)); 2224 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2225 2226 #ifdef ASSERT 2227 // verify that there is really an exception oop in JavaThread 2228 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2229 __ verify_oop(x10); 2230 2231 // verify that there is no pending exception 2232 Label no_pending_exception; 2233 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2234 __ beqz(t0, no_pending_exception); 2235 __ stop("must not have pending exception here"); 2236 __ bind(no_pending_exception); 2237 #endif 2238 2239 __ bind(cont); 2240 2241 // Call C code. Need thread and this frame, but NOT official VM entry 2242 // crud. We cannot block on this call, no GC can happen. 2243 // 2244 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2245 2246 // fetch_unroll_info needs to call last_java_frame(). 2247 2248 Label retaddr; 2249 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2250 #ifdef ASSERT 2251 { 2252 Label L; 2253 __ ld(t0, Address(xthread, 2254 JavaThread::last_Java_fp_offset())); 2255 __ beqz(t0, L); 2256 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2257 __ bind(L); 2258 } 2259 #endif // ASSERT 2260 __ mv(c_rarg0, xthread); 2261 __ mv(c_rarg1, xcpool); 2262 RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)); 2263 __ relocate(target.rspec(), [&] { 2264 int32_t offset; 2265 __ la_patchable(t0, target, offset); 2266 __ jalr(x1, t0, offset); 2267 }); 2268 __ bind(retaddr); 2269 2270 // Need to have an oopmap that tells fetch_unroll_info where to 2271 // find any register it might need. 2272 oop_maps->add_gc_map(__ pc() - start, map); 2273 2274 __ reset_last_Java_frame(false); 2275 2276 #if INCLUDE_JVMCI 2277 if (EnableJVMCI) { 2278 __ bind(after_fetch_unroll_info_call); 2279 } 2280 #endif 2281 2282 // Load UnrollBlock* into x15 2283 __ mv(x15, x10); 2284 2285 __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset())); 2286 Label noException; 2287 __ mv(t0, Deoptimization::Unpack_exception); 2288 __ bne(xcpool, t0, noException); // Was exception pending? 2289 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2290 __ ld(x13, Address(xthread, JavaThread::exception_pc_offset())); 2291 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 2292 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2293 2294 __ verify_oop(x10); 2295 2296 // Overwrite the result registers with the exception results. 2297 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2298 2299 __ bind(noException); 2300 2301 // Only register save data is on the stack. 2302 // Now restore the result registers. Everything else is either dead 2303 // or captured in the vframeArray. 2304 2305 // Restore fp result register 2306 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2307 // Restore integer result register 2308 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2309 2310 // Pop all of the register save area off the stack 2311 __ add(sp, sp, frame_size_in_words * wordSize); 2312 2313 // All of the register save area has been popped of the stack. Only the 2314 // return address remains. 2315 2316 // Pop all the frames we must move/replace. 2317 // 2318 // Frame picture (youngest to oldest) 2319 // 1: self-frame (no frame link) 2320 // 2: deopting frame (no frame link) 2321 // 3: caller of deopting frame (could be compiled/interpreted). 2322 // 2323 // Note: by leaving the return address of self-frame on the stack 2324 // and using the size of frame 2 to adjust the stack 2325 // when we are done the return to frame 3 will still be on the stack. 2326 2327 // Pop deoptimized frame 2328 __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2329 __ sub(x12, x12, 2 * wordSize); 2330 __ add(sp, sp, x12); 2331 __ ld(fp, Address(sp, 0)); 2332 __ ld(ra, Address(sp, wordSize)); 2333 __ addi(sp, sp, 2 * wordSize); 2334 // RA should now be the return address to the caller (3) 2335 2336 #ifdef ASSERT 2337 // Compilers generate code that bang the stack by as much as the 2338 // interpreter would need. So this stack banging should never 2339 // trigger a fault. Verify that it does not on non product builds. 2340 __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2341 __ bang_stack_size(x9, x12); 2342 #endif 2343 // Load address of array of frame pcs into x12 2344 __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset())); 2345 2346 // Load address of array of frame sizes into x14 2347 __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset())); 2348 2349 // Load counter into x13 2350 __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset())); 2351 2352 // Now adjust the caller's stack to make up for the extra locals 2353 // but record the original sp so that we can save it in the skeletal interpreter 2354 // frame and the stack walking of interpreter_sender will get the unextended sp 2355 // value and not the "real" sp value. 2356 2357 const Register sender_sp = x16; 2358 2359 __ mv(sender_sp, sp); 2360 __ lwu(x9, Address(x15, 2361 Deoptimization::UnrollBlock:: 2362 caller_adjustment_offset())); 2363 __ sub(sp, sp, x9); 2364 2365 // Push interpreter frames in a loop 2366 __ mv(t0, 0xDEADDEAD); // Make a recognizable pattern 2367 __ mv(t1, t0); 2368 Label loop; 2369 __ bind(loop); 2370 __ ld(x9, Address(x14, 0)); // Load frame size 2371 __ addi(x14, x14, wordSize); 2372 __ sub(x9, x9, 2 * wordSize); // We'll push pc and fp by hand 2373 __ ld(ra, Address(x12, 0)); // Load pc 2374 __ addi(x12, x12, wordSize); 2375 __ enter(); // Save old & set new fp 2376 __ sub(sp, sp, x9); // Prolog 2377 // This value is corrected by layout_activation_impl 2378 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2379 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2380 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2381 __ addi(x13, x13, -1); // Decrement counter 2382 __ bnez(x13, loop); 2383 2384 // Re-push self-frame 2385 __ ld(ra, Address(x12)); 2386 __ enter(); 2387 2388 // Allocate a full sized register save area. We subtract 2 because 2389 // enter() just pushed 2 words 2390 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2391 2392 // Restore frame locals after moving the frame 2393 __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2394 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2395 2396 // Call C code. Need thread but NOT official VM entry 2397 // crud. We cannot block on this call, no GC can happen. Call should 2398 // restore return values to their stack-slots with the new SP. 2399 // 2400 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2401 2402 // Use fp because the frames look interpreted now 2403 // Don't need the precise return PC here, just precise enough to point into this code blob. 2404 address the_pc = __ pc(); 2405 __ set_last_Java_frame(sp, fp, the_pc, t0); 2406 2407 __ mv(c_rarg0, xthread); 2408 __ mv(c_rarg1, xcpool); // second arg: exec_mode 2409 target = RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)); 2410 __ relocate(target.rspec(), [&] { 2411 int32_t offset; 2412 __ la_patchable(t0, target, offset); 2413 __ jalr(x1, t0, offset); 2414 }); 2415 2416 // Set an oopmap for the call site 2417 // Use the same PC we used for the last java frame 2418 oop_maps->add_gc_map(the_pc - start, 2419 new OopMap(frame_size_in_words, 0)); 2420 2421 // Clear fp AND pc 2422 __ reset_last_Java_frame(true); 2423 2424 // Collect return values 2425 __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10))); 2426 __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10))); 2427 2428 // Pop self-frame. 2429 __ leave(); // Epilog 2430 2431 // Jump to interpreter 2432 __ ret(); 2433 2434 // Make sure all code is generated 2435 masm->flush(); 2436 2437 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2438 assert(_deopt_blob != nullptr, "create deoptimization blob fail!"); 2439 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2440 #if INCLUDE_JVMCI 2441 if (EnableJVMCI) { 2442 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2443 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2444 } 2445 #endif 2446 } 2447 2448 // Number of stack slots between incoming argument block and the start of 2449 // a new frame. The PROLOG must add this many slots to the stack. The 2450 // EPILOG must remove this many slots. 2451 // RISCV needs two words for RA (return address) and FP (frame pointer). 2452 uint SharedRuntime::in_preserve_stack_slots() { 2453 return 2 * VMRegImpl::slots_per_word; 2454 } 2455 2456 uint SharedRuntime::out_preserve_stack_slots() { 2457 return 0; 2458 } 2459 2460 #ifdef COMPILER2 2461 //------------------------------generate_uncommon_trap_blob-------------------- 2462 void SharedRuntime::generate_uncommon_trap_blob() { 2463 // Allocate space for the code 2464 ResourceMark rm; 2465 // Setup code generation tools 2466 CodeBuffer buffer("uncommon_trap_blob", 2048, 1024); 2467 MacroAssembler* masm = new MacroAssembler(&buffer); 2468 assert_cond(masm != nullptr); 2469 2470 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2471 2472 address start = __ pc(); 2473 2474 // Push self-frame. We get here with a return address in RA 2475 // and sp should be 16 byte aligned 2476 // push fp and retaddr by hand 2477 __ addi(sp, sp, -2 * wordSize); 2478 __ sd(ra, Address(sp, wordSize)); 2479 __ sd(fp, Address(sp, 0)); 2480 // we don't expect an arg reg save area 2481 #ifndef PRODUCT 2482 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2483 #endif 2484 // compiler left unloaded_class_index in j_rarg0 move to where the 2485 // runtime expects it. 2486 __ sign_extend(c_rarg1, j_rarg0, 32); 2487 2488 // we need to set the past SP to the stack pointer of the stub frame 2489 // and the pc to the address where this runtime call will return 2490 // although actually any pc in this code blob will do). 2491 Label retaddr; 2492 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2493 2494 // Call C code. Need thread but NOT official VM entry 2495 // crud. We cannot block on this call, no GC can happen. Call should 2496 // capture callee-saved registers as well as return values. 2497 // 2498 // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index, jint exec_mode) 2499 // 2500 // n.b. 3 gp args, 0 fp args, integral return type 2501 2502 __ mv(c_rarg0, xthread); 2503 __ mv(c_rarg2, Deoptimization::Unpack_uncommon_trap); 2504 RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)); 2505 __ relocate(target.rspec(), [&] { 2506 int32_t offset; 2507 __ la_patchable(t0, target, offset); 2508 __ jalr(x1, t0, offset); 2509 }); 2510 __ bind(retaddr); 2511 2512 // Set an oopmap for the call site 2513 OopMapSet* oop_maps = new OopMapSet(); 2514 OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0); 2515 assert_cond(oop_maps != nullptr && map != nullptr); 2516 2517 // location of fp is known implicitly by the frame sender code 2518 2519 oop_maps->add_gc_map(__ pc() - start, map); 2520 2521 __ reset_last_Java_frame(false); 2522 2523 // move UnrollBlock* into x14 2524 __ mv(x14, x10); 2525 2526 #ifdef ASSERT 2527 { Label L; 2528 __ lwu(t0, Address(x14, Deoptimization::UnrollBlock::unpack_kind_offset())); 2529 __ mv(t1, Deoptimization::Unpack_uncommon_trap); 2530 __ beq(t0, t1, L); 2531 __ stop("SharedRuntime::generate_uncommon_trap_blob: expected Unpack_uncommon_trap"); 2532 __ bind(L); 2533 } 2534 #endif 2535 2536 // Pop all the frames we must move/replace. 2537 // 2538 // Frame picture (youngest to oldest) 2539 // 1: self-frame (no frame link) 2540 // 2: deopting frame (no frame link) 2541 // 3: caller of deopting frame (could be compiled/interpreted). 2542 2543 __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog! 2544 2545 // Pop deoptimized frame (int) 2546 __ lwu(x12, Address(x14, 2547 Deoptimization::UnrollBlock:: 2548 size_of_deoptimized_frame_offset())); 2549 __ sub(x12, x12, 2 * wordSize); 2550 __ add(sp, sp, x12); 2551 __ ld(fp, Address(sp, 0)); 2552 __ ld(ra, Address(sp, wordSize)); 2553 __ addi(sp, sp, 2 * wordSize); 2554 // RA should now be the return address to the caller (3) frame 2555 2556 #ifdef ASSERT 2557 // Compilers generate code that bang the stack by as much as the 2558 // interpreter would need. So this stack banging should never 2559 // trigger a fault. Verify that it does not on non product builds. 2560 __ lwu(x11, Address(x14, 2561 Deoptimization::UnrollBlock:: 2562 total_frame_sizes_offset())); 2563 __ bang_stack_size(x11, x12); 2564 #endif 2565 2566 // Load address of array of frame pcs into x12 (address*) 2567 __ ld(x12, Address(x14, 2568 Deoptimization::UnrollBlock::frame_pcs_offset())); 2569 2570 // Load address of array of frame sizes into x15 (intptr_t*) 2571 __ ld(x15, Address(x14, 2572 Deoptimization::UnrollBlock:: 2573 frame_sizes_offset())); 2574 2575 // Counter 2576 __ lwu(x13, Address(x14, 2577 Deoptimization::UnrollBlock:: 2578 number_of_frames_offset())); // (int) 2579 2580 // Now adjust the caller's stack to make up for the extra locals but 2581 // record the original sp so that we can save it in the skeletal 2582 // interpreter frame and the stack walking of interpreter_sender 2583 // will get the unextended sp value and not the "real" sp value. 2584 2585 const Register sender_sp = t1; // temporary register 2586 2587 __ lwu(x11, Address(x14, 2588 Deoptimization::UnrollBlock:: 2589 caller_adjustment_offset())); // (int) 2590 __ mv(sender_sp, sp); 2591 __ sub(sp, sp, x11); 2592 2593 // Push interpreter frames in a loop 2594 Label loop; 2595 __ bind(loop); 2596 __ ld(x11, Address(x15, 0)); // Load frame size 2597 __ sub(x11, x11, 2 * wordSize); // We'll push pc and fp by hand 2598 __ ld(ra, Address(x12, 0)); // Save return address 2599 __ enter(); // and old fp & set new fp 2600 __ sub(sp, sp, x11); // Prolog 2601 __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2602 // This value is corrected by layout_activation_impl 2603 __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize)); 2604 __ mv(sender_sp, sp); // Pass sender_sp to next frame 2605 __ add(x15, x15, wordSize); // Bump array pointer (sizes) 2606 __ add(x12, x12, wordSize); // Bump array pointer (pcs) 2607 __ subw(x13, x13, 1); // Decrement counter 2608 __ bgtz(x13, loop); 2609 __ ld(ra, Address(x12, 0)); // save final return address 2610 // Re-push self-frame 2611 __ enter(); // & old fp & set new fp 2612 2613 // Use fp because the frames look interpreted now 2614 // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP. 2615 // Don't need the precise return PC here, just precise enough to point into this code blob. 2616 address the_pc = __ pc(); 2617 __ set_last_Java_frame(sp, fp, the_pc, t0); 2618 2619 // Call C code. Need thread but NOT official VM entry 2620 // crud. We cannot block on this call, no GC can happen. Call should 2621 // restore return values to their stack-slots with the new SP. 2622 // 2623 // BasicType unpack_frames(JavaThread* thread, int exec_mode) 2624 // 2625 2626 // n.b. 2 gp args, 0 fp args, integral return type 2627 2628 // sp should already be aligned 2629 __ mv(c_rarg0, xthread); 2630 __ mv(c_rarg1, Deoptimization::Unpack_uncommon_trap); 2631 target = RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)); 2632 __ relocate(target.rspec(), [&] { 2633 int32_t offset; 2634 __ la_patchable(t0, target, offset); 2635 __ jalr(x1, t0, offset); 2636 }); 2637 2638 // Set an oopmap for the call site 2639 // Use the same PC we used for the last java frame 2640 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2641 2642 // Clear fp AND pc 2643 __ reset_last_Java_frame(true); 2644 2645 // Pop self-frame. 2646 __ leave(); // Epilog 2647 2648 // Jump to interpreter 2649 __ ret(); 2650 2651 // Make sure all code is generated 2652 masm->flush(); 2653 2654 _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps, 2655 SimpleRuntimeFrame::framesize >> 1); 2656 } 2657 #endif // COMPILER2 2658 2659 //------------------------------generate_handler_blob------ 2660 // 2661 // Generate a special Compile2Runtime blob that saves all registers, 2662 // and setup oopmap. 2663 // 2664 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) { 2665 ResourceMark rm; 2666 OopMapSet *oop_maps = new OopMapSet(); 2667 assert_cond(oop_maps != nullptr); 2668 OopMap* map = nullptr; 2669 2670 // Allocate space for the code. Setup code generation tools. 2671 CodeBuffer buffer("handler_blob", 2048, 1024); 2672 MacroAssembler* masm = new MacroAssembler(&buffer); 2673 assert_cond(masm != nullptr); 2674 2675 address start = __ pc(); 2676 address call_pc = nullptr; 2677 int frame_size_in_words = -1; 2678 bool cause_return = (poll_type == POLL_AT_RETURN); 2679 RegisterSaver reg_saver(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */); 2680 2681 // Save Integer and Float registers. 2682 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2683 2684 // The following is basically a call_VM. However, we need the precise 2685 // address of the call in order to generate an oopmap. Hence, we do all the 2686 // work ourselves. 2687 2688 Label retaddr; 2689 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2690 2691 // The return address must always be correct so that frame constructor never 2692 // sees an invalid pc. 2693 2694 if (!cause_return) { 2695 // overwrite the return address pushed by save_live_registers 2696 // Additionally, x18 is a callee-saved register so we can look at 2697 // it later to determine if someone changed the return address for 2698 // us! 2699 __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset())); 2700 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2701 } 2702 2703 // Do the call 2704 __ mv(c_rarg0, xthread); 2705 RuntimeAddress target(call_ptr); 2706 __ relocate(target.rspec(), [&] { 2707 int32_t offset; 2708 __ la_patchable(t0, target, offset); 2709 __ jalr(x1, t0, offset); 2710 }); 2711 __ bind(retaddr); 2712 2713 // Set an oopmap for the call site. This oopmap will map all 2714 // oop-registers and debug-info registers as callee-saved. This 2715 // will allow deoptimization at this safepoint to find all possible 2716 // debug-info recordings, as well as let GC find all oops. 2717 2718 oop_maps->add_gc_map( __ pc() - start, map); 2719 2720 Label noException; 2721 2722 __ reset_last_Java_frame(false); 2723 2724 __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore); 2725 2726 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2727 __ beqz(t0, noException); 2728 2729 // Exception pending 2730 2731 reg_saver.restore_live_registers(masm); 2732 2733 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2734 2735 // No exception case 2736 __ bind(noException); 2737 2738 Label no_adjust, bail; 2739 if (!cause_return) { 2740 // If our stashed return pc was modified by the runtime we avoid touching it 2741 __ ld(t0, Address(fp, frame::return_addr_offset * wordSize)); 2742 __ bne(x18, t0, no_adjust); 2743 2744 #ifdef ASSERT 2745 // Verify the correct encoding of the poll we're about to skip. 2746 // See NativeInstruction::is_lwu_to_zr() 2747 __ lwu(t0, Address(x18)); 2748 __ andi(t1, t0, 0b0000011); 2749 __ mv(t2, 0b0000011); 2750 __ bne(t1, t2, bail); // 0-6:0b0000011 2751 __ srli(t1, t0, 7); 2752 __ andi(t1, t1, 0b00000); 2753 __ bnez(t1, bail); // 7-11:0b00000 2754 __ srli(t1, t0, 12); 2755 __ andi(t1, t1, 0b110); 2756 __ mv(t2, 0b110); 2757 __ bne(t1, t2, bail); // 12-14:0b110 2758 #endif 2759 // Adjust return pc forward to step over the safepoint poll instruction 2760 __ add(x18, x18, NativeInstruction::instruction_size); 2761 __ sd(x18, Address(fp, frame::return_addr_offset * wordSize)); 2762 } 2763 2764 __ bind(no_adjust); 2765 // Normal exit, restore registers and exit. 2766 2767 reg_saver.restore_live_registers(masm); 2768 __ ret(); 2769 2770 #ifdef ASSERT 2771 __ bind(bail); 2772 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2773 #endif 2774 2775 // Make sure all code is generated 2776 masm->flush(); 2777 2778 // Fill-out other meta info 2779 return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2780 } 2781 2782 // 2783 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2784 // 2785 // Generate a stub that calls into vm to find out the proper destination 2786 // of a java call. All the argument registers are live at this point 2787 // but since this is generic code we don't know what they are and the caller 2788 // must do any gc of the args. 2789 // 2790 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) { 2791 assert(StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2792 2793 // allocate space for the code 2794 ResourceMark rm; 2795 2796 CodeBuffer buffer(name, 1000, 512); 2797 MacroAssembler* masm = new MacroAssembler(&buffer); 2798 assert_cond(masm != nullptr); 2799 2800 int frame_size_in_words = -1; 2801 RegisterSaver reg_saver(false /* save_vectors */); 2802 2803 OopMapSet *oop_maps = new OopMapSet(); 2804 assert_cond(oop_maps != nullptr); 2805 OopMap* map = nullptr; 2806 2807 int start = __ offset(); 2808 2809 map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words); 2810 2811 int frame_complete = __ offset(); 2812 2813 { 2814 Label retaddr; 2815 __ set_last_Java_frame(sp, noreg, retaddr, t0); 2816 2817 __ mv(c_rarg0, xthread); 2818 RuntimeAddress target(destination); 2819 __ relocate(target.rspec(), [&] { 2820 int32_t offset; 2821 __ la_patchable(t0, target, offset); 2822 __ jalr(x1, t0, offset); 2823 }); 2824 __ bind(retaddr); 2825 } 2826 2827 // Set an oopmap for the call site. 2828 // We need this not only for callee-saved registers, but also for volatile 2829 // registers that the compiler might be keeping live across a safepoint. 2830 2831 oop_maps->add_gc_map( __ offset() - start, map); 2832 2833 // x10 contains the address we are going to jump to assuming no exception got installed 2834 2835 // clear last_Java_sp 2836 __ reset_last_Java_frame(false); 2837 // check for pending exceptions 2838 Label pending; 2839 __ ld(t0, Address(xthread, Thread::pending_exception_offset())); 2840 __ bnez(t0, pending); 2841 2842 // get the returned Method* 2843 __ get_vm_result_2(xmethod, xthread); 2844 __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod))); 2845 2846 // x10 is where we want to jump, overwrite t0 which is saved and temporary 2847 __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t0))); 2848 reg_saver.restore_live_registers(masm); 2849 2850 // We are back to the original state on entry and ready to go. 2851 2852 __ jr(t0); 2853 2854 // Pending exception after the safepoint 2855 2856 __ bind(pending); 2857 2858 reg_saver.restore_live_registers(masm); 2859 2860 // exception pending => remove activation and forward to exception handler 2861 2862 __ sd(zr, Address(xthread, JavaThread::vm_result_offset())); 2863 2864 __ ld(x10, Address(xthread, Thread::pending_exception_offset())); 2865 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2866 2867 // ------------- 2868 // make sure all code is generated 2869 masm->flush(); 2870 2871 // return the blob 2872 return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2873 } 2874 2875 #ifdef COMPILER2 2876 //------------------------------generate_exception_blob--------------------------- 2877 // creates exception blob at the end 2878 // Using exception blob, this code is jumped from a compiled method. 2879 // (see emit_exception_handler in riscv.ad file) 2880 // 2881 // Given an exception pc at a call we call into the runtime for the 2882 // handler in this method. This handler might merely restore state 2883 // (i.e. callee save registers) unwind the frame and jump to the 2884 // exception handler for the nmethod if there is no Java level handler 2885 // for the nmethod. 2886 // 2887 // This code is entered with a jmp. 2888 // 2889 // Arguments: 2890 // x10: exception oop 2891 // x13: exception pc 2892 // 2893 // Results: 2894 // x10: exception oop 2895 // x13: exception pc in caller 2896 // destination: exception handler of caller 2897 // 2898 // Note: the exception pc MUST be at a call (precise debug information) 2899 // Registers x10, x13, x12, x14, x15, t0 are not callee saved. 2900 // 2901 2902 void OptoRuntime::generate_exception_blob() { 2903 assert(!OptoRuntime::is_callee_saved_register(R13_num), ""); 2904 assert(!OptoRuntime::is_callee_saved_register(R10_num), ""); 2905 assert(!OptoRuntime::is_callee_saved_register(R12_num), ""); 2906 2907 assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned"); 2908 2909 // Allocate space for the code 2910 ResourceMark rm; 2911 // Setup code generation tools 2912 CodeBuffer buffer("exception_blob", 2048, 1024); 2913 MacroAssembler* masm = new MacroAssembler(&buffer); 2914 assert_cond(masm != nullptr); 2915 2916 // TODO check various assumptions made here 2917 // 2918 // make sure we do so before running this 2919 2920 address start = __ pc(); 2921 2922 // push fp and retaddr by hand 2923 // Exception pc is 'return address' for stack walker 2924 __ addi(sp, sp, -2 * wordSize); 2925 __ sd(ra, Address(sp, wordSize)); 2926 __ sd(fp, Address(sp)); 2927 // there are no callee save registers and we don't expect an 2928 // arg reg save area 2929 #ifndef PRODUCT 2930 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2931 #endif 2932 // Store exception in Thread object. We cannot pass any arguments to the 2933 // handle_exception call, since we do not want to make any assumption 2934 // about the size of the frame where the exception happened in. 2935 __ sd(x10, Address(xthread, JavaThread::exception_oop_offset())); 2936 __ sd(x13, Address(xthread, JavaThread::exception_pc_offset())); 2937 2938 // This call does all the hard work. It checks if an exception handler 2939 // exists in the method. 2940 // If so, it returns the handler address. 2941 // If not, it prepares for stack-unwinding, restoring the callee-save 2942 // registers of the frame being removed. 2943 // 2944 // address OptoRuntime::handle_exception_C(JavaThread* thread) 2945 // 2946 // n.b. 1 gp arg, 0 fp args, integral return type 2947 2948 // the stack should always be aligned 2949 address the_pc = __ pc(); 2950 __ set_last_Java_frame(sp, noreg, the_pc, t0); 2951 __ mv(c_rarg0, xthread); 2952 RuntimeAddress target(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)); 2953 __ relocate(target.rspec(), [&] { 2954 int32_t offset; 2955 __ la_patchable(t0, target, offset); 2956 __ jalr(x1, t0, offset); 2957 }); 2958 2959 2960 // handle_exception_C is a special VM call which does not require an explicit 2961 // instruction sync afterwards. 2962 2963 // Set an oopmap for the call site. This oopmap will only be used if we 2964 // are unwinding the stack. Hence, all locations will be dead. 2965 // Callee-saved registers will be the same as the frame above (i.e., 2966 // handle_exception_stub), since they were restored when we got the 2967 // exception. 2968 2969 OopMapSet* oop_maps = new OopMapSet(); 2970 assert_cond(oop_maps != nullptr); 2971 2972 oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0)); 2973 2974 __ reset_last_Java_frame(false); 2975 2976 // Restore callee-saved registers 2977 2978 // fp is an implicitly saved callee saved register (i.e. the calling 2979 // convention will save restore it in prolog/epilog) Other than that 2980 // there are no callee save registers now that adapter frames are gone. 2981 // and we dont' expect an arg reg save area 2982 __ ld(fp, Address(sp)); 2983 __ ld(x13, Address(sp, wordSize)); 2984 __ addi(sp, sp , 2 * wordSize); 2985 2986 // x10: exception handler 2987 2988 // We have a handler in x10 (could be deopt blob). 2989 __ mv(t0, x10); 2990 2991 // Get the exception oop 2992 __ ld(x10, Address(xthread, JavaThread::exception_oop_offset())); 2993 // Get the exception pc in case we are deoptimized 2994 __ ld(x14, Address(xthread, JavaThread::exception_pc_offset())); 2995 #ifdef ASSERT 2996 __ sd(zr, Address(xthread, JavaThread::exception_handler_pc_offset())); 2997 __ sd(zr, Address(xthread, JavaThread::exception_pc_offset())); 2998 #endif 2999 // Clear the exception oop so GC no longer processes it as a root. 3000 __ sd(zr, Address(xthread, JavaThread::exception_oop_offset())); 3001 3002 // x10: exception oop 3003 // t0: exception handler 3004 // x14: exception pc 3005 // Jump to handler 3006 3007 __ jr(t0); 3008 3009 // Make sure all code is generated 3010 masm->flush(); 3011 3012 // Set exception blob 3013 _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1); 3014 } 3015 #endif // COMPILER2