1 /*
2 * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2016, 2023 SAP SE. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "precompiled.hpp"
27 #include "asm/macroAssembler.inline.hpp"
28 #include "c1/c1_Compilation.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_MacroAssembler.hpp"
31 #include "c1/c1_Runtime1.hpp"
32 #include "c1/c1_ValueStack.hpp"
33 #include "ci/ciArrayKlass.hpp"
34 #include "ci/ciInstance.hpp"
35 #include "gc/shared/collectedHeap.hpp"
36 #include "memory/universe.hpp"
37 #include "nativeInst_s390.hpp"
38 #include "oops/objArrayKlass.hpp"
39 #include "runtime/frame.inline.hpp"
40 #include "runtime/safepointMechanism.inline.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "runtime/stubRoutines.hpp"
43 #include "utilities/macros.hpp"
44 #include "utilities/powerOfTwo.hpp"
45 #include "vmreg_s390.inline.hpp"
46
47 #define __ _masm->
48
49 #ifndef PRODUCT
50 #undef __
51 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
52 #endif
53
54 //------------------------------------------------------------
55
56 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
57 // Not used on ZARCH_64
58 ShouldNotCallThis();
59 return false;
60 }
61
62 LIR_Opr LIR_Assembler::receiverOpr() {
63 return FrameMap::Z_R2_oop_opr;
64 }
65
66 LIR_Opr LIR_Assembler::osrBufferPointer() {
67 return FrameMap::Z_R2_opr;
68 }
69
70 int LIR_Assembler::initial_frame_size_in_bytes() const {
71 return in_bytes(frame_map()->framesize_in_bytes());
72 }
73
74 // Inline cache check: done before the frame is built.
75 // The inline cached class is in Z_inline_cache(Z_R9).
76 // We fetch the class of the receiver and compare it with the cached class.
77 // If they do not match we jump to the slow case.
78 int LIR_Assembler::check_icache() {
79 Register receiver = receiverOpr()->as_register();
80 int offset = __ offset();
81 __ inline_cache_check(receiver, Z_inline_cache);
82 return offset;
83 }
84
85 void LIR_Assembler::clinit_barrier(ciMethod* method) {
86 assert(!method->holder()->is_not_initialized(), "initialization should have been started");
87
88 Label L_skip_barrier;
89 Register klass = Z_R1_scratch;
90
91 metadata2reg(method->holder()->constant_encoding(), klass);
92 __ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
93
94 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
95 __ z_br(klass);
96
97 __ bind(L_skip_barrier);
98 }
99
100 void LIR_Assembler::osr_entry() {
101 // On-stack-replacement entry sequence (interpreter frame layout described in frame_s390.hpp):
102 //
103 // 1. Create a new compiled activation.
104 // 2. Initialize local variables in the compiled activation. The expression stack must be empty
105 // at the osr_bci; it is not initialized.
106 // 3. Jump to the continuation address in compiled code to resume execution.
107
108 // OSR entry point
109 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
110 BlockBegin* osr_entry = compilation()->hir()->osr_entry();
111 ValueStack* entry_state = osr_entry->end()->state();
112 int number_of_locks = entry_state->locks_size();
113
114 // Create a frame for the compiled activation.
115 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
116
117 // OSR buffer is
118 //
119 // locals[nlocals-1..0]
120 // monitors[number_of_locks-1..0]
121 //
122 // Locals is a direct copy of the interpreter frame so in the osr buffer
123 // the first slot in the local array is the last local from the interpreter
124 // and the last slot is local[0] (receiver) from the interpreter
125 //
126 // Similarly with locks. The first lock slot in the osr buffer is the nth lock
127 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
128 // in the interpreter frame (the method lock if a sync method)
129
130 // Initialize monitors in the compiled activation.
131 // I0: pointer to osr buffer
132 //
133 // All other registers are dead at this point and the locals will be
134 // copied into place by code emitted in the IR.
135
136 Register OSR_buf = osrBufferPointer()->as_register();
137 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
138 int monitor_offset = BytesPerWord * method()->max_locals() +
139 (2 * BytesPerWord) * (number_of_locks - 1);
140 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
141 // the OSR buffer using 2 word entries: first the lock and then
142 // the oop.
143 for (int i = 0; i < number_of_locks; i++) {
144 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
145 // Verify the interpreter's monitor has a non-null object.
146 __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is null", __LINE__);
147 // Copy the lock field into the compiled activation.
148 __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
149 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
150 __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
151 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
152 }
153 }
154 }
155
156 // --------------------------------------------------------------------------------------------
157
158 address LIR_Assembler::emit_call_c(address a) {
159 __ align_call_far_patchable(__ pc());
160 address call_addr = __ call_c_opt(a);
161 if (call_addr == nullptr) {
162 bailout("const section overflow");
163 }
164 return call_addr;
165 }
166
167 int LIR_Assembler::emit_exception_handler() {
168 // Generate code for exception handler.
169 address handler_base = __ start_a_stub(exception_handler_size());
170 if (handler_base == nullptr) {
171 // Not enough space left for the handler.
172 bailout("exception handler overflow");
173 return -1;
174 }
175
176 int offset = code_offset();
177
178 address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id);
179 address call_addr = emit_call_c(a);
180 CHECK_BAILOUT_(-1);
181 __ should_not_reach_here();
182 guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
183 __ end_a_stub();
184
185 return offset;
186 }
187
188 // Emit the code to remove the frame from the stack in the exception
189 // unwind path.
190 int LIR_Assembler::emit_unwind_handler() {
191 #ifndef PRODUCT
192 if (CommentedAssembly) {
193 _masm->block_comment("Unwind handler");
194 }
195 #endif
196
197 int offset = code_offset();
198 Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
199 Register Rtmp1 = Z_R11;
200 Register Rtmp2 = Z_R12;
201
202 // Fetch the exception from TLS and clear out exception related thread state.
203 Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
204 Address exc_pc_addr = Address(Z_thread, JavaThread::exception_pc_offset());
205 __ z_lg(Z_EXC_OOP, exc_oop_addr);
206 __ clear_mem(exc_oop_addr, sizeof(oop));
207 __ clear_mem(exc_pc_addr, sizeof(intptr_t));
208
209 __ bind(_unwind_handler_entry);
210 __ verify_not_null_oop(Z_EXC_OOP);
211 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
212 __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
213 }
214
215 // Perform needed unlocking.
216 MonitorExitStub* stub = nullptr;
217 if (method()->is_synchronized()) {
218 // Runtime1::monitorexit_id expects lock address in Z_R1_scratch.
219 LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
220 monitor_address(0, lock);
221 stub = new MonitorExitStub(lock, true, 0);
222 __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
223 __ bind(*stub->continuation());
224 }
225
226 if (compilation()->env()->dtrace_method_probes()) {
227 ShouldNotReachHere(); // Not supported.
228 #if 0
229 __ mov(rdi, r15_thread);
230 __ mov_metadata(rsi, method()->constant_encoding());
231 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
232 #endif
233 }
234
235 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
236 __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved); // Restore the exception.
237 }
238
239 // Remove the activation and dispatch to the unwind handler.
240 __ pop_frame();
241 __ z_lg(Z_EXC_PC, _z_common_abi(return_pc), Z_SP);
242
243 // Z_EXC_OOP: exception oop
244 // Z_EXC_PC: exception pc
245
246 // Dispatch to the unwind logic.
247 __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id));
248 __ z_br(Z_R5);
249
250 // Emit the slow path assembly.
251 if (stub != nullptr) {
252 stub->emit_code(this);
253 }
254
255 return offset;
256 }
257
258 int LIR_Assembler::emit_deopt_handler() {
259 // Generate code for exception handler.
260 address handler_base = __ start_a_stub(deopt_handler_size());
261 if (handler_base == nullptr) {
262 // Not enough space left for the handler.
263 bailout("deopt handler overflow");
264 return -1;
265 } int offset = code_offset();
266 // Size must be constant (see HandlerImpl::emit_deopt_handler).
267 __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
268 __ call(Z_R1_scratch);
269 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
270 __ end_a_stub();
271
272 return offset;
273 }
274
275 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
276 if (o == nullptr) {
277 __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
278 } else {
279 AddressLiteral a = __ allocate_oop_address(o);
280 bool success = __ load_oop_from_toc(reg, a, reg);
281 if (!success) {
282 bailout("const section overflow");
283 }
284 }
285 }
286
287 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
288 // Allocate a new index in table to hold the object once it's been patched.
289 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr);
290 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
291
292 AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
293 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
294 // The null will be dynamically patched later so the sequence to
295 // load the address literal must not be optimized.
296 __ load_const(reg, addrlit);
297
298 patching_epilog(patch, lir_patch_normal, reg, info);
299 }
300
301 void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
302 bool success = __ set_metadata_constant(md, reg);
303 if (!success) {
304 bailout("const section overflow");
305 return;
306 }
307 }
308
309 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
310 // Allocate a new index in table to hold the klass once it's been patched.
311 int index = __ oop_recorder()->allocate_metadata_index(nullptr);
312 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
313 AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
314 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
315 // The null will be dynamically patched later so the sequence to
316 // load the address literal must not be optimized.
317 __ load_const(reg, addrlit);
318
319 patching_epilog(patch, lir_patch_normal, reg, info);
320 }
321
322 void LIR_Assembler::emit_op3(LIR_Op3* op) {
323 switch (op->code()) {
324 case lir_idiv:
325 case lir_irem:
326 arithmetic_idiv(op->code(),
327 op->in_opr1(),
328 op->in_opr2(),
329 op->in_opr3(),
330 op->result_opr(),
331 op->info());
332 break;
333 case lir_fmad: {
334 const FloatRegister opr1 = op->in_opr1()->as_double_reg(),
335 opr2 = op->in_opr2()->as_double_reg(),
336 opr3 = op->in_opr3()->as_double_reg(),
337 res = op->result_opr()->as_double_reg();
338 __ z_madbr(opr3, opr1, opr2);
339 if (res != opr3) { __ z_ldr(res, opr3); }
340 } break;
341 case lir_fmaf: {
342 const FloatRegister opr1 = op->in_opr1()->as_float_reg(),
343 opr2 = op->in_opr2()->as_float_reg(),
344 opr3 = op->in_opr3()->as_float_reg(),
345 res = op->result_opr()->as_float_reg();
346 __ z_maebr(opr3, opr1, opr2);
347 if (res != opr3) { __ z_ler(res, opr3); }
348 } break;
349 default: ShouldNotReachHere(); break;
350 }
351 }
352
353
354 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
355 #ifdef ASSERT
356 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
357 if (op->block() != nullptr) { _branch_target_blocks.append(op->block()); }
358 if (op->ublock() != nullptr) { _branch_target_blocks.append(op->ublock()); }
359 #endif
360
361 if (op->cond() == lir_cond_always) {
362 if (op->info() != nullptr) { add_debug_info_for_branch(op->info()); }
363 __ branch_optimized(Assembler::bcondAlways, *(op->label()));
364 } else {
365 Assembler::branch_condition acond = Assembler::bcondZero;
366 if (op->code() == lir_cond_float_branch) {
367 assert(op->ublock() != nullptr, "must have unordered successor");
368 __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
369 }
370 switch (op->cond()) {
371 case lir_cond_equal: acond = Assembler::bcondEqual; break;
372 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; break;
373 case lir_cond_less: acond = Assembler::bcondLow; break;
374 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; break;
375 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; break;
376 case lir_cond_greater: acond = Assembler::bcondHigh; break;
377 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; break;
378 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; break;
379 default: ShouldNotReachHere();
380 }
381 __ branch_optimized(acond,*(op->label()));
382 }
383 }
384
385
386 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
387 LIR_Opr src = op->in_opr();
388 LIR_Opr dest = op->result_opr();
389
390 switch (op->bytecode()) {
391 case Bytecodes::_i2l:
392 __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
393 break;
394
395 case Bytecodes::_l2i:
396 __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
397 break;
398
399 case Bytecodes::_i2b:
400 __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
401 break;
402
403 case Bytecodes::_i2c:
404 __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
405 break;
406
407 case Bytecodes::_i2s:
408 __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
409 break;
410
411 case Bytecodes::_f2d:
412 assert(dest->is_double_fpu(), "check");
413 __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
414 break;
415
416 case Bytecodes::_d2f:
417 assert(dest->is_single_fpu(), "check");
418 __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
419 break;
420
421 case Bytecodes::_i2f:
422 __ z_cefbr(dest->as_float_reg(), src->as_register());
423 break;
424
425 case Bytecodes::_i2d:
426 __ z_cdfbr(dest->as_double_reg(), src->as_register());
427 break;
428
429 case Bytecodes::_l2f:
430 __ z_cegbr(dest->as_float_reg(), src->as_register_lo());
431 break;
432 case Bytecodes::_l2d:
433 __ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
434 break;
435
436 case Bytecodes::_f2i:
437 case Bytecodes::_f2l: {
438 Label done;
439 FloatRegister Rsrc = src->as_float_reg();
440 Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
441 __ clear_reg(Rdst, true, false);
442 __ z_cebr(Rsrc, Rsrc);
443 __ z_brno(done); // NaN -> 0
444 if (op->bytecode() == Bytecodes::_f2i) {
445 __ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
446 } else { // op->bytecode() == Bytecodes::_f2l
447 __ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
448 }
449 __ bind(done);
450 }
451 break;
452
453 case Bytecodes::_d2i:
454 case Bytecodes::_d2l: {
455 Label done;
456 FloatRegister Rsrc = src->as_double_reg();
457 Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
458 __ clear_reg(Rdst, true, false); // Don't set CC.
459 __ z_cdbr(Rsrc, Rsrc);
460 __ z_brno(done); // NaN -> 0
461 if (op->bytecode() == Bytecodes::_d2i) {
462 __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
463 } else { // Bytecodes::_d2l
464 __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
465 }
466 __ bind(done);
467 }
468 break;
469
470 default: ShouldNotReachHere();
471 }
472 }
473
474 void LIR_Assembler::align_call(LIR_Code code) {
475 // End of call instruction must be 4 byte aligned.
476 int offset = __ offset();
477 switch (code) {
478 case lir_icvirtual_call:
479 offset += MacroAssembler::load_const_from_toc_size();
480 // no break
481 case lir_static_call:
482 case lir_optvirtual_call:
483 case lir_dynamic_call:
484 offset += NativeCall::call_far_pcrelative_displacement_offset;
485 break;
486 default: ShouldNotReachHere();
487 }
488 if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
489 __ nop();
490 }
491 }
492
493 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
494 assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
495 "must be aligned (offset=%d)", __ offset());
496 assert(rtype == relocInfo::none ||
497 rtype == relocInfo::opt_virtual_call_type ||
498 rtype == relocInfo::static_call_type, "unexpected rtype");
499 // Prepend each BRASL with a nop.
500 __ relocate(rtype);
501 __ z_nop();
502 __ z_brasl(Z_R14, op->addr());
503 add_call_info(code_offset(), op->info());
504 }
505
506 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
507 address virtual_call_oop_addr = nullptr;
508 AddressLiteral empty_ic((address) Universe::non_oop_word());
509 virtual_call_oop_addr = __ pc();
510 bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
511 if (!success) {
512 bailout("const section overflow");
513 return;
514 }
515
516 // CALL to fixup routine. Fixup routine uses ScopeDesc info
517 // to determine who we intended to call.
518 __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
519 call(op, relocInfo::none);
520 }
521
522 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
523 if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
524 }
525
526 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
527 assert(src->is_constant(), "should not call otherwise");
528 assert(dest->is_stack(), "should not call otherwise");
529 LIR_Const* c = src->as_constant_ptr();
530
531 unsigned int lmem = 0;
532 unsigned int lcon = 0;
533 int64_t cbits = 0;
534 Address dest_addr;
535 switch (c->type()) {
536 case T_INT: // fall through
537 case T_FLOAT:
538 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
539 lmem = 4; lcon = 4; cbits = c->as_jint_bits();
540 break;
541
542 case T_ADDRESS:
543 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
544 lmem = 8; lcon = 4; cbits = c->as_jint_bits();
545 break;
546
547 case T_OBJECT:
548 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
549 if (c->as_jobject() == nullptr) {
550 __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
551 } else {
552 jobject2reg(c->as_jobject(), Z_R1_scratch);
553 __ reg2mem_opt(Z_R1_scratch, dest_addr, true);
554 }
555 return;
556
557 case T_LONG: // fall through
558 case T_DOUBLE:
559 dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
560 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
561 break;
562
563 default:
564 ShouldNotReachHere();
565 }
566
567 __ store_const(dest_addr, cbits, lmem, lcon);
568 }
569
570 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
571 assert(src->is_constant(), "should not call otherwise");
572 assert(dest->is_address(), "should not call otherwise");
573
574 LIR_Const* c = src->as_constant_ptr();
575 Address addr = as_Address(dest->as_address_ptr());
576
577 int store_offset = -1;
578
579 if (dest->as_address_ptr()->index()->is_valid()) {
580 switch (type) {
581 case T_INT: // fall through
582 case T_FLOAT:
583 __ load_const_optimized(Z_R0_scratch, c->as_jint_bits());
584 store_offset = __ offset();
585 if (Immediate::is_uimm12(addr.disp())) {
586 __ z_st(Z_R0_scratch, addr);
587 } else {
588 __ z_sty(Z_R0_scratch, addr);
589 }
590 break;
591
592 case T_ADDRESS:
593 __ load_const_optimized(Z_R1_scratch, c->as_jint_bits());
594 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
595 break;
596
597 case T_OBJECT: // fall through
598 case T_ARRAY:
599 if (c->as_jobject() == nullptr) {
600 if (UseCompressedOops && !wide) {
601 __ clear_reg(Z_R1_scratch, false);
602 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
603 } else {
604 __ clear_reg(Z_R1_scratch, true);
605 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
606 }
607 } else {
608 jobject2reg(c->as_jobject(), Z_R1_scratch);
609 if (UseCompressedOops && !wide) {
610 __ encode_heap_oop(Z_R1_scratch);
611 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
612 } else {
613 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
614 }
615 }
616 assert(store_offset >= 0, "check");
617 break;
618
619 case T_LONG: // fall through
620 case T_DOUBLE:
621 __ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits()));
622 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
623 break;
624
625 case T_BOOLEAN: // fall through
626 case T_BYTE:
627 __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
628 store_offset = __ offset();
629 if (Immediate::is_uimm12(addr.disp())) {
630 __ z_stc(Z_R0_scratch, addr);
631 } else {
632 __ z_stcy(Z_R0_scratch, addr);
633 }
634 break;
635
636 case T_CHAR: // fall through
637 case T_SHORT:
638 __ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint()));
639 store_offset = __ offset();
640 if (Immediate::is_uimm12(addr.disp())) {
641 __ z_sth(Z_R0_scratch, addr);
642 } else {
643 __ z_sthy(Z_R0_scratch, addr);
644 }
645 break;
646
647 default:
648 ShouldNotReachHere();
649 }
650
651 } else { // no index
652
653 unsigned int lmem = 0;
654 unsigned int lcon = 0;
655 int64_t cbits = 0;
656
657 switch (type) {
658 case T_INT: // fall through
659 case T_FLOAT:
660 lmem = 4; lcon = 4; cbits = c->as_jint_bits();
661 break;
662
663 case T_ADDRESS:
664 lmem = 8; lcon = 4; cbits = c->as_jint_bits();
665 break;
666
667 case T_OBJECT: // fall through
668 case T_ARRAY:
669 if (c->as_jobject() == nullptr) {
670 if (UseCompressedOops && !wide) {
671 store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
672 } else {
673 store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
674 }
675 } else {
676 jobject2reg(c->as_jobject(), Z_R1_scratch);
677 if (UseCompressedOops && !wide) {
678 __ encode_heap_oop(Z_R1_scratch);
679 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
680 } else {
681 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
682 }
683 }
684 assert(store_offset >= 0, "check");
685 break;
686
687 case T_LONG: // fall through
688 case T_DOUBLE:
689 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
690 break;
691
692 case T_BOOLEAN: // fall through
693 case T_BYTE:
694 lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
695 break;
696
697 case T_CHAR: // fall through
698 case T_SHORT:
699 lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
700 break;
701
702 default:
703 ShouldNotReachHere();
704 }
705
706 if (store_offset == -1) {
707 store_offset = __ store_const(addr, cbits, lmem, lcon);
708 assert(store_offset >= 0, "check");
709 }
710 }
711
712 if (info != nullptr) {
713 add_debug_info_for_null_check(store_offset, info);
714 }
715 }
716
717 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
718 assert(src->is_constant(), "should not call otherwise");
719 assert(dest->is_register(), "should not call otherwise");
720 LIR_Const* c = src->as_constant_ptr();
721
722 switch (c->type()) {
723 case T_INT: {
724 assert(patch_code == lir_patch_none, "no patching handled here");
725 __ load_const_optimized(dest->as_register(), c->as_jint());
726 break;
727 }
728
729 case T_ADDRESS: {
730 assert(patch_code == lir_patch_none, "no patching handled here");
731 __ load_const_optimized(dest->as_register(), c->as_jint());
732 break;
733 }
734
735 case T_LONG: {
736 assert(patch_code == lir_patch_none, "no patching handled here");
737 __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
738 break;
739 }
740
741 case T_OBJECT: {
742 if (patch_code != lir_patch_none) {
743 jobject2reg_with_patching(dest->as_register(), info);
744 } else {
745 jobject2reg(c->as_jobject(), dest->as_register());
746 }
747 break;
748 }
749
750 case T_METADATA: {
751 if (patch_code != lir_patch_none) {
752 klass2reg_with_patching(dest->as_register(), info);
753 } else {
754 metadata2reg(c->as_metadata(), dest->as_register());
755 }
756 break;
757 }
758
759 case T_FLOAT: {
760 Register toc_reg = Z_R1_scratch;
761 __ load_toc(toc_reg);
762 address const_addr = __ float_constant(c->as_jfloat());
763 if (const_addr == nullptr) {
764 bailout("const section overflow");
765 break;
766 }
767 int displ = const_addr - _masm->code()->consts()->start();
768 if (dest->is_single_fpu()) {
769 __ z_ley(dest->as_float_reg(), displ, toc_reg);
770 } else {
771 assert(dest->is_single_cpu(), "Must be a cpu register.");
772 __ z_ly(dest->as_register(), displ, toc_reg);
773 }
774 }
775 break;
776
777 case T_DOUBLE: {
778 Register toc_reg = Z_R1_scratch;
779 __ load_toc(toc_reg);
780 address const_addr = __ double_constant(c->as_jdouble());
781 if (const_addr == nullptr) {
782 bailout("const section overflow");
783 break;
784 }
785 int displ = const_addr - _masm->code()->consts()->start();
786 if (dest->is_double_fpu()) {
787 __ z_ldy(dest->as_double_reg(), displ, toc_reg);
788 } else {
789 assert(dest->is_double_cpu(), "Must be a long register.");
790 __ z_lg(dest->as_register_lo(), displ, toc_reg);
791 }
792 }
793 break;
794
795 default:
796 ShouldNotReachHere();
797 }
798 }
799
800 Address LIR_Assembler::as_Address(LIR_Address* addr) {
801 if (addr->base()->is_illegal()) {
802 Unimplemented();
803 }
804
805 Register base = addr->base()->as_pointer_register();
806
807 if (addr->index()->is_illegal()) {
808 return Address(base, addr->disp());
809 } else if (addr->index()->is_cpu_register()) {
810 Register index = addr->index()->as_pointer_register();
811 return Address(base, index, addr->disp());
812 } else if (addr->index()->is_constant()) {
813 intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
814 return Address(base, addr_offset);
815 } else {
816 ShouldNotReachHere();
817 return Address();
818 }
819 }
820
821 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
822 switch (type) {
823 case T_INT:
824 case T_FLOAT: {
825 Register tmp = Z_R1_scratch;
826 Address from = frame_map()->address_for_slot(src->single_stack_ix());
827 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
828 __ mem2reg_opt(tmp, from, false);
829 __ reg2mem_opt(tmp, to, false);
830 break;
831 }
832 case T_ADDRESS:
833 case T_OBJECT: {
834 Register tmp = Z_R1_scratch;
835 Address from = frame_map()->address_for_slot(src->single_stack_ix());
836 Address to = frame_map()->address_for_slot(dest->single_stack_ix());
837 __ mem2reg_opt(tmp, from, true);
838 __ reg2mem_opt(tmp, to, true);
839 break;
840 }
841 case T_LONG:
842 case T_DOUBLE: {
843 Register tmp = Z_R1_scratch;
844 Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
845 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix());
846 __ mem2reg_opt(tmp, from, true);
847 __ reg2mem_opt(tmp, to, true);
848 break;
849 }
850
851 default:
852 ShouldNotReachHere();
853 }
854 }
855
856 // 4-byte accesses only! Don't use it to access 8 bytes!
857 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
858 ShouldNotCallThis();
859 return Address(); // unused
860 }
861
862 // 4-byte accesses only! Don't use it to access 8 bytes!
863 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
864 ShouldNotCallThis();
865 return Address(); // unused
866 }
867
868 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
869 CodeEmitInfo* info, bool wide) {
870
871 assert(type != T_METADATA, "load of metadata ptr not supported");
872 LIR_Address* addr = src_opr->as_address_ptr();
873 LIR_Opr to_reg = dest;
874
875 Register src = addr->base()->as_pointer_register();
876 Register disp_reg = Z_R0;
877 int disp_value = addr->disp();
878 bool needs_patching = (patch_code != lir_patch_none);
879
880 if (addr->base()->type() == T_OBJECT) {
881 __ verify_oop(src, FILE_AND_LINE);
882 }
883
884 PatchingStub* patch = nullptr;
885 if (needs_patching) {
886 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
887 assert(!to_reg->is_double_cpu() ||
888 patch_code == lir_patch_none ||
889 patch_code == lir_patch_normal, "patching doesn't match register");
890 }
891
892 if (addr->index()->is_illegal()) {
893 if (!Immediate::is_simm20(disp_value)) {
894 if (needs_patching) {
895 __ load_const(Z_R1_scratch, (intptr_t)0);
896 } else {
897 __ load_const_optimized(Z_R1_scratch, disp_value);
898 }
899 disp_reg = Z_R1_scratch;
900 disp_value = 0;
901 }
902 } else {
903 if (!Immediate::is_simm20(disp_value)) {
904 __ load_const_optimized(Z_R1_scratch, disp_value);
905 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
906 disp_reg = Z_R1_scratch;
907 disp_value = 0;
908 }
909 disp_reg = addr->index()->as_pointer_register();
910 }
911
912 // Remember the offset of the load. The patching_epilog must be done
913 // before the call to add_debug_info, otherwise the PcDescs don't get
914 // entered in increasing order.
915 int offset = code_offset();
916
917 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
918
919 bool short_disp = Immediate::is_uimm12(disp_value);
920
921 switch (type) {
922 case T_BOOLEAN: // fall through
923 case T_BYTE : __ z_lb(dest->as_register(), disp_value, disp_reg, src); break;
924 case T_CHAR : __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
925 case T_SHORT :
926 if (short_disp) {
927 __ z_lh(dest->as_register(), disp_value, disp_reg, src);
928 } else {
929 __ z_lhy(dest->as_register(), disp_value, disp_reg, src);
930 }
931 break;
932 case T_INT :
933 if (short_disp) {
934 __ z_l(dest->as_register(), disp_value, disp_reg, src);
935 } else {
936 __ z_ly(dest->as_register(), disp_value, disp_reg, src);
937 }
938 break;
939 case T_ADDRESS:
940 __ z_lg(dest->as_register(), disp_value, disp_reg, src);
941 break;
942 case T_ARRAY : // fall through
943 case T_OBJECT:
944 {
945 if (UseCompressedOops && !wide) {
946 __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
947 __ oop_decoder(dest->as_register(), dest->as_register(), true);
948 } else {
949 __ z_lg(dest->as_register(), disp_value, disp_reg, src);
950 }
951 __ verify_oop(dest->as_register(), FILE_AND_LINE);
952 break;
953 }
954 case T_FLOAT:
955 if (short_disp) {
956 __ z_le(dest->as_float_reg(), disp_value, disp_reg, src);
957 } else {
958 __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
959 }
960 break;
961 case T_DOUBLE:
962 if (short_disp) {
963 __ z_ld(dest->as_double_reg(), disp_value, disp_reg, src);
964 } else {
965 __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
966 }
967 break;
968 case T_LONG : __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
969 default : ShouldNotReachHere();
970 }
971
972 if (patch != nullptr) {
973 patching_epilog(patch, patch_code, src, info);
974 }
975 if (info != nullptr) add_debug_info_for_null_check(offset, info);
976 }
977
978 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
979 assert(src->is_stack(), "should not call otherwise");
980 assert(dest->is_register(), "should not call otherwise");
981
982 if (dest->is_single_cpu()) {
983 if (is_reference_type(type)) {
984 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
985 __ verify_oop(dest->as_register(), FILE_AND_LINE);
986 } else if (type == T_METADATA || type == T_ADDRESS) {
987 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
988 } else {
989 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
990 }
991 } else if (dest->is_double_cpu()) {
992 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
993 __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
994 } else if (dest->is_single_fpu()) {
995 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
996 __ mem2freg_opt(dest->as_float_reg(), src_addr, false);
997 } else if (dest->is_double_fpu()) {
998 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
999 __ mem2freg_opt(dest->as_double_reg(), src_addr, true);
1000 } else {
1001 ShouldNotReachHere();
1002 }
1003 }
1004
1005 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1006 assert(src->is_register(), "should not call otherwise");
1007 assert(dest->is_stack(), "should not call otherwise");
1008
1009 if (src->is_single_cpu()) {
1010 const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
1011 if (is_reference_type(type)) {
1012 __ verify_oop(src->as_register(), FILE_AND_LINE);
1013 __ reg2mem_opt(src->as_register(), dst, true);
1014 } else if (type == T_METADATA || type == T_ADDRESS) {
1015 __ reg2mem_opt(src->as_register(), dst, true);
1016 } else {
1017 __ reg2mem_opt(src->as_register(), dst, false);
1018 }
1019 } else if (src->is_double_cpu()) {
1020 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
1021 __ reg2mem_opt(src->as_register_lo(), dstLO, true);
1022 } else if (src->is_single_fpu()) {
1023 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1024 __ freg2mem_opt(src->as_float_reg(), dst_addr, false);
1025 } else if (src->is_double_fpu()) {
1026 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1027 __ freg2mem_opt(src->as_double_reg(), dst_addr, true);
1028 } else {
1029 ShouldNotReachHere();
1030 }
1031 }
1032
1033 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1034 if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1035 if (from_reg->is_double_fpu()) {
1036 // double to double moves
1037 assert(to_reg->is_double_fpu(), "should match");
1038 __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
1039 } else {
1040 // float to float moves
1041 assert(to_reg->is_single_fpu(), "should match");
1042 __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
1043 }
1044 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1045 if (from_reg->is_double_cpu()) {
1046 __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1047 } else if (to_reg->is_double_cpu()) {
1048 // int to int moves
1049 __ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
1050 } else {
1051 // int to int moves
1052 __ z_lgr(to_reg->as_register(), from_reg->as_register());
1053 }
1054 } else {
1055 ShouldNotReachHere();
1056 }
1057 if (is_reference_type(to_reg->type())) {
1058 __ verify_oop(to_reg->as_register(), FILE_AND_LINE);
1059 }
1060 }
1061
1062 void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
1063 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1064 bool wide) {
1065 assert(type != T_METADATA, "store of metadata ptr not supported");
1066 LIR_Address* addr = dest_opr->as_address_ptr();
1067
1068 Register dest = addr->base()->as_pointer_register();
1069 Register disp_reg = Z_R0;
1070 int disp_value = addr->disp();
1071 bool needs_patching = (patch_code != lir_patch_none);
1072
1073 if (addr->base()->is_oop_register()) {
1074 __ verify_oop(dest, FILE_AND_LINE);
1075 }
1076
1077 PatchingStub* patch = nullptr;
1078 if (needs_patching) {
1079 patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1080 assert(!from->is_double_cpu() ||
1081 patch_code == lir_patch_none ||
1082 patch_code == lir_patch_normal, "patching doesn't match register");
1083 }
1084
1085 assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
1086 if (addr->index()->is_illegal()) {
1087 if (!Immediate::is_simm20(disp_value)) {
1088 if (needs_patching) {
1089 __ load_const(Z_R1_scratch, (intptr_t)0);
1090 } else {
1091 __ load_const_optimized(Z_R1_scratch, disp_value);
1092 }
1093 disp_reg = Z_R1_scratch;
1094 disp_value = 0;
1095 }
1096 } else {
1097 if (!Immediate::is_simm20(disp_value)) {
1098 __ load_const_optimized(Z_R1_scratch, disp_value);
1099 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
1100 disp_reg = Z_R1_scratch;
1101 disp_value = 0;
1102 }
1103 disp_reg = addr->index()->as_pointer_register();
1104 }
1105
1106 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
1107
1108 if (is_reference_type(type)) {
1109 __ verify_oop(from->as_register(), FILE_AND_LINE);
1110 }
1111
1112 bool short_disp = Immediate::is_uimm12(disp_value);
1113
1114 // Remember the offset of the store. The patching_epilog must be done
1115 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1116 // entered in increasing order.
1117 int offset = code_offset();
1118 switch (type) {
1119 case T_BOOLEAN: // fall through
1120 case T_BYTE :
1121 if (short_disp) {
1122 __ z_stc(from->as_register(), disp_value, disp_reg, dest);
1123 } else {
1124 __ z_stcy(from->as_register(), disp_value, disp_reg, dest);
1125 }
1126 break;
1127 case T_CHAR : // fall through
1128 case T_SHORT :
1129 if (short_disp) {
1130 __ z_sth(from->as_register(), disp_value, disp_reg, dest);
1131 } else {
1132 __ z_sthy(from->as_register(), disp_value, disp_reg, dest);
1133 }
1134 break;
1135 case T_INT :
1136 if (short_disp) {
1137 __ z_st(from->as_register(), disp_value, disp_reg, dest);
1138 } else {
1139 __ z_sty(from->as_register(), disp_value, disp_reg, dest);
1140 }
1141 break;
1142 case T_LONG : __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
1143 case T_ADDRESS: __ z_stg(from->as_register(), disp_value, disp_reg, dest); break;
1144 break;
1145 case T_ARRAY : // fall through
1146 case T_OBJECT:
1147 {
1148 if (UseCompressedOops && !wide) {
1149 Register compressed_src = Z_R14;
1150 __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true);
1151 offset = code_offset();
1152 if (short_disp) {
1153 __ z_st(compressed_src, disp_value, disp_reg, dest);
1154 } else {
1155 __ z_sty(compressed_src, disp_value, disp_reg, dest);
1156 }
1157 } else {
1158 __ z_stg(from->as_register(), disp_value, disp_reg, dest);
1159 }
1160 break;
1161 }
1162 case T_FLOAT :
1163 if (short_disp) {
1164 __ z_ste(from->as_float_reg(), disp_value, disp_reg, dest);
1165 } else {
1166 __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
1167 }
1168 break;
1169 case T_DOUBLE:
1170 if (short_disp) {
1171 __ z_std(from->as_double_reg(), disp_value, disp_reg, dest);
1172 } else {
1173 __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
1174 }
1175 break;
1176 default: ShouldNotReachHere();
1177 }
1178
1179 if (patch != nullptr) {
1180 patching_epilog(patch, patch_code, dest, info);
1181 }
1182
1183 if (info != nullptr) add_debug_info_for_null_check(offset, info);
1184 }
1185
1186
1187 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
1188 assert(result->is_illegal() ||
1189 (result->is_single_cpu() && result->as_register() == Z_R2) ||
1190 (result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
1191 (result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
1192 (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
1193
1194 __ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::polling_page_offset()));
1195
1196 // Pop the frame before the safepoint code.
1197 __ pop_frame_restore_retPC(initial_frame_size_in_bytes());
1198
1199 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1200 __ reserved_stack_check(Z_R14);
1201 }
1202
1203 // We need to mark the code position where the load from the safepoint
1204 // polling page was emitted as relocInfo::poll_return_type here.
1205 __ relocate(relocInfo::poll_return_type);
1206 __ load_from_polling_page(Z_R1_scratch);
1207
1208 __ z_br(Z_R14); // Return to caller.
1209 }
1210
1211 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1212 const Register poll_addr = tmp->as_register_lo();
1213 __ z_lg(poll_addr, Address(Z_thread, JavaThread::polling_page_offset()));
1214 guarantee(info != nullptr, "Shouldn't be null");
1215 add_debug_info_for_branch(info);
1216 int offset = __ offset();
1217 __ relocate(relocInfo::poll_type);
1218 __ load_from_polling_page(poll_addr);
1219 return offset;
1220 }
1221
1222 void LIR_Assembler::emit_static_call_stub() {
1223
1224 // Stub is fixed up when the corresponding call is converted from calling
1225 // compiled code to calling interpreted code.
1226
1227 address call_pc = __ pc();
1228 address stub = __ start_a_stub(call_stub_size());
1229 if (stub == nullptr) {
1230 bailout("static call stub overflow");
1231 return;
1232 }
1233
1234 int start = __ offset();
1235
1236 __ relocate(static_stub_Relocation::spec(call_pc));
1237
1238 // See also Matcher::interpreter_method_reg().
1239 AddressLiteral meta = __ allocate_metadata_address(nullptr);
1240 bool success = __ load_const_from_toc(Z_method, meta);
1241
1242 __ set_inst_mark();
1243 AddressLiteral a((address)-1);
1244 success = success && __ load_const_from_toc(Z_R1, a);
1245 if (!success) {
1246 bailout("const section overflow");
1247 return;
1248 }
1249
1250 __ z_br(Z_R1);
1251 assert(__ offset() - start <= call_stub_size(), "stub too big");
1252 __ end_a_stub(); // Update current stubs pointer and restore insts_end.
1253 }
1254
1255 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1256 bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
1257 if (opr1->is_single_cpu()) {
1258 Register reg1 = opr1->as_register();
1259 if (opr2->is_single_cpu()) {
1260 // cpu register - cpu register
1261 if (is_reference_type(opr1->type())) {
1262 __ z_clgr(reg1, opr2->as_register());
1263 } else {
1264 assert(!is_reference_type(opr2->type()), "cmp int, oop?");
1265 if (unsigned_comp) {
1266 __ z_clr(reg1, opr2->as_register());
1267 } else {
1268 __ z_cr(reg1, opr2->as_register());
1269 }
1270 }
1271 } else if (opr2->is_stack()) {
1272 // cpu register - stack
1273 if (is_reference_type(opr1->type())) {
1274 __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1275 } else {
1276 if (unsigned_comp) {
1277 __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1278 } else {
1279 __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1280 }
1281 }
1282 } else if (opr2->is_constant()) {
1283 // cpu register - constant
1284 LIR_Const* c = opr2->as_constant_ptr();
1285 if (c->type() == T_INT) {
1286 if (unsigned_comp) {
1287 __ z_clfi(reg1, c->as_jint());
1288 } else {
1289 __ z_cfi(reg1, c->as_jint());
1290 }
1291 } else if (c->type() == T_METADATA) {
1292 // We only need, for now, comparison with null for metadata.
1293 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
1294 Metadata* m = c->as_metadata();
1295 if (m == nullptr) {
1296 __ z_cghi(reg1, 0);
1297 } else {
1298 ShouldNotReachHere();
1299 }
1300 } else if (is_reference_type(c->type())) {
1301 // In 64bit oops are single register.
1302 jobject o = c->as_jobject();
1303 if (o == nullptr) {
1304 __ z_ltgr(reg1, reg1);
1305 } else {
1306 jobject2reg(o, Z_R1_scratch);
1307 __ z_cgr(reg1, Z_R1_scratch);
1308 }
1309 } else {
1310 fatal("unexpected type: %s", basictype_to_str(c->type()));
1311 }
1312 // cpu register - address
1313 } else if (opr2->is_address()) {
1314 if (op->info() != nullptr) {
1315 add_debug_info_for_null_check_here(op->info());
1316 }
1317 if (unsigned_comp) {
1318 __ z_cly(reg1, as_Address(opr2->as_address_ptr()));
1319 } else {
1320 __ z_cy(reg1, as_Address(opr2->as_address_ptr()));
1321 }
1322 } else {
1323 ShouldNotReachHere();
1324 }
1325
1326 } else if (opr1->is_double_cpu()) {
1327 assert(!unsigned_comp, "unexpected");
1328 Register xlo = opr1->as_register_lo();
1329 Register xhi = opr1->as_register_hi();
1330 if (opr2->is_double_cpu()) {
1331 __ z_cgr(xlo, opr2->as_register_lo());
1332 } else if (opr2->is_constant()) {
1333 // cpu register - constant 0
1334 assert(opr2->as_jlong() == (jlong)0, "only handles zero");
1335 __ z_ltgr(xlo, xlo);
1336 } else {
1337 ShouldNotReachHere();
1338 }
1339
1340 } else if (opr1->is_single_fpu()) {
1341 if (opr2->is_single_fpu()) {
1342 __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
1343 } else {
1344 // stack slot
1345 Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
1346 if (Immediate::is_uimm12(addr.disp())) {
1347 __ z_ceb(opr1->as_float_reg(), addr);
1348 } else {
1349 __ z_ley(Z_fscratch_1, addr);
1350 __ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
1351 }
1352 }
1353 } else if (opr1->is_double_fpu()) {
1354 if (opr2->is_double_fpu()) {
1355 __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
1356 } else {
1357 // stack slot
1358 Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
1359 if (Immediate::is_uimm12(addr.disp())) {
1360 __ z_cdb(opr1->as_double_reg(), addr);
1361 } else {
1362 __ z_ldy(Z_fscratch_1, addr);
1363 __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
1364 }
1365 }
1366 } else {
1367 ShouldNotReachHere();
1368 }
1369 }
1370
1371 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1372 Label done;
1373 Register dreg = dst->as_register();
1374
1375 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1376 assert((left->is_single_fpu() && right->is_single_fpu()) ||
1377 (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
1378 bool is_single = left->is_single_fpu();
1379 bool is_unordered_less = (code == lir_ucmp_fd2i);
1380 FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
1381 FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
1382 if (is_single) {
1383 __ z_cebr(lreg, rreg);
1384 } else {
1385 __ z_cdbr(lreg, rreg);
1386 }
1387 if (VM_Version::has_LoadStoreConditional()) {
1388 Register one = Z_R0_scratch;
1389 Register minus_one = Z_R1_scratch;
1390 __ z_lghi(minus_one, -1);
1391 __ z_lghi(one, 1);
1392 __ z_lghi(dreg, 0);
1393 __ z_locgr(dreg, one, is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered);
1394 __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
1395 } else {
1396 __ clear_reg(dreg, true, false);
1397 __ z_bre(done); // if (left == right) dst = 0
1398
1399 // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
1400 __ z_lhi(dreg, 1);
1401 __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
1402
1403 // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
1404 __ z_lhi(dreg, -1);
1405 }
1406 } else {
1407 assert(code == lir_cmp_l2i, "check");
1408 if (VM_Version::has_LoadStoreConditional()) {
1409 Register one = Z_R0_scratch;
1410 Register minus_one = Z_R1_scratch;
1411 __ z_cgr(left->as_register_lo(), right->as_register_lo());
1412 __ z_lghi(minus_one, -1);
1413 __ z_lghi(one, 1);
1414 __ z_lghi(dreg, 0);
1415 __ z_locgr(dreg, one, Assembler::bcondHigh);
1416 __ z_locgr(dreg, minus_one, Assembler::bcondLow);
1417 } else {
1418 __ z_cgr(left->as_register_lo(), right->as_register_lo());
1419 __ z_lghi(dreg, 0); // eq value
1420 __ z_bre(done);
1421 __ z_lghi(dreg, 1); // gt value
1422 __ z_brh(done);
1423 __ z_lghi(dreg, -1); // lt value
1424 }
1425 }
1426 __ bind(done);
1427 }
1428
1429 // result = condition ? opr1 : opr2
1430 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
1431 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
1432 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on s390");
1433
1434 Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
1435 switch (condition) {
1436 case lir_cond_equal: acond = Assembler::bcondEqual; ncond = Assembler::bcondNotEqual; break;
1437 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual; break;
1438 case lir_cond_less: acond = Assembler::bcondLow; ncond = Assembler::bcondNotLow; break;
1439 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break;
1440 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break;
1441 case lir_cond_greater: acond = Assembler::bcondHigh; ncond = Assembler::bcondNotHigh; break;
1442 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break;
1443 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break;
1444 default: ShouldNotReachHere();
1445 }
1446
1447 if (opr1->is_cpu_register()) {
1448 reg2reg(opr1, result);
1449 } else if (opr1->is_stack()) {
1450 stack2reg(opr1, result, result->type());
1451 } else if (opr1->is_constant()) {
1452 const2reg(opr1, result, lir_patch_none, nullptr);
1453 } else {
1454 ShouldNotReachHere();
1455 }
1456
1457 if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
1458 // Optimized version that does not require a branch.
1459 if (opr2->is_single_cpu()) {
1460 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1461 __ z_locgr(result->as_register(), opr2->as_register(), ncond);
1462 } else if (opr2->is_double_cpu()) {
1463 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1464 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1465 __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
1466 } else if (opr2->is_single_stack()) {
1467 __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
1468 } else if (opr2->is_double_stack()) {
1469 __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
1470 } else {
1471 ShouldNotReachHere();
1472 }
1473 } else {
1474 Label skip;
1475 __ z_brc(acond, skip);
1476 if (opr2->is_cpu_register()) {
1477 reg2reg(opr2, result);
1478 } else if (opr2->is_stack()) {
1479 stack2reg(opr2, result, result->type());
1480 } else if (opr2->is_constant()) {
1481 const2reg(opr2, result, lir_patch_none, nullptr);
1482 } else {
1483 ShouldNotReachHere();
1484 }
1485 __ bind(skip);
1486 }
1487 }
1488
1489 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1490 CodeEmitInfo* info, bool pop_fpu_stack) {
1491 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1492
1493 if (left->is_single_cpu()) {
1494 assert(left == dest, "left and dest must be equal");
1495 Register lreg = left->as_register();
1496
1497 if (right->is_single_cpu()) {
1498 // cpu register - cpu register
1499 Register rreg = right->as_register();
1500 switch (code) {
1501 case lir_add: __ z_ar (lreg, rreg); break;
1502 case lir_sub: __ z_sr (lreg, rreg); break;
1503 case lir_mul: __ z_msr(lreg, rreg); break;
1504 default: ShouldNotReachHere();
1505 }
1506
1507 } else if (right->is_stack()) {
1508 // cpu register - stack
1509 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1510 switch (code) {
1511 case lir_add: __ z_ay(lreg, raddr); break;
1512 case lir_sub: __ z_sy(lreg, raddr); break;
1513 default: ShouldNotReachHere();
1514 }
1515
1516 } else if (right->is_constant()) {
1517 // cpu register - constant
1518 jint c = right->as_constant_ptr()->as_jint();
1519 switch (code) {
1520 case lir_add: __ z_agfi(lreg, c); break;
1521 case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
1522 case lir_mul: __ z_msfi(lreg, c); break;
1523 default: ShouldNotReachHere();
1524 }
1525
1526 } else {
1527 ShouldNotReachHere();
1528 }
1529
1530 } else if (left->is_double_cpu()) {
1531 assert(left == dest, "left and dest must be equal");
1532 Register lreg_lo = left->as_register_lo();
1533 Register lreg_hi = left->as_register_hi();
1534
1535 if (right->is_double_cpu()) {
1536 // cpu register - cpu register
1537 Register rreg_lo = right->as_register_lo();
1538 Register rreg_hi = right->as_register_hi();
1539 assert_different_registers(lreg_lo, rreg_lo);
1540 switch (code) {
1541 case lir_add:
1542 __ z_agr(lreg_lo, rreg_lo);
1543 break;
1544 case lir_sub:
1545 __ z_sgr(lreg_lo, rreg_lo);
1546 break;
1547 case lir_mul:
1548 __ z_msgr(lreg_lo, rreg_lo);
1549 break;
1550 default:
1551 ShouldNotReachHere();
1552 }
1553
1554 } else if (right->is_constant()) {
1555 // cpu register - constant
1556 jlong c = right->as_constant_ptr()->as_jlong_bits();
1557 switch (code) {
1558 case lir_add: __ z_agfi(lreg_lo, c); break;
1559 case lir_sub:
1560 if (c != min_jint) {
1561 __ z_agfi(lreg_lo, -c);
1562 } else {
1563 // -min_jint cannot be represented as simm32 in z_agfi
1564 // min_jint sign extended: 0xffffffff80000000
1565 // -min_jint as 64 bit integer: 0x0000000080000000
1566 // 0x80000000 can be represented as uimm32 in z_algfi
1567 // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
1568 __ z_algfi(lreg_lo, UCONST64(0x80000000));
1569 }
1570 break;
1571 case lir_mul: __ z_msgfi(lreg_lo, c); break;
1572 default:
1573 ShouldNotReachHere();
1574 }
1575
1576 } else {
1577 ShouldNotReachHere();
1578 }
1579
1580 } else if (left->is_single_fpu()) {
1581 assert(left == dest, "left and dest must be equal");
1582 FloatRegister lreg = left->as_float_reg();
1583 FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
1584 Address raddr;
1585
1586 if (rreg == fnoreg) {
1587 assert(right->is_single_stack(), "constants should be loaded into register");
1588 raddr = frame_map()->address_for_slot(right->single_stack_ix());
1589 if (!Immediate::is_uimm12(raddr.disp())) {
1590 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
1591 }
1592 }
1593
1594 if (rreg != fnoreg) {
1595 switch (code) {
1596 case lir_add: __ z_aebr(lreg, rreg); break;
1597 case lir_sub: __ z_sebr(lreg, rreg); break;
1598 case lir_mul: __ z_meebr(lreg, rreg); break;
1599 case lir_div: __ z_debr(lreg, rreg); break;
1600 default: ShouldNotReachHere();
1601 }
1602 } else {
1603 switch (code) {
1604 case lir_add: __ z_aeb(lreg, raddr); break;
1605 case lir_sub: __ z_seb(lreg, raddr); break;
1606 case lir_mul: __ z_meeb(lreg, raddr); break;
1607 case lir_div: __ z_deb(lreg, raddr); break;
1608 default: ShouldNotReachHere();
1609 }
1610 }
1611 } else if (left->is_double_fpu()) {
1612 assert(left == dest, "left and dest must be equal");
1613 FloatRegister lreg = left->as_double_reg();
1614 FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
1615 Address raddr;
1616
1617 if (rreg == fnoreg) {
1618 assert(right->is_double_stack(), "constants should be loaded into register");
1619 raddr = frame_map()->address_for_slot(right->double_stack_ix());
1620 if (!Immediate::is_uimm12(raddr.disp())) {
1621 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
1622 }
1623 }
1624
1625 if (rreg != fnoreg) {
1626 switch (code) {
1627 case lir_add: __ z_adbr(lreg, rreg); break;
1628 case lir_sub: __ z_sdbr(lreg, rreg); break;
1629 case lir_mul: __ z_mdbr(lreg, rreg); break;
1630 case lir_div: __ z_ddbr(lreg, rreg); break;
1631 default: ShouldNotReachHere();
1632 }
1633 } else {
1634 switch (code) {
1635 case lir_add: __ z_adb(lreg, raddr); break;
1636 case lir_sub: __ z_sdb(lreg, raddr); break;
1637 case lir_mul: __ z_mdb(lreg, raddr); break;
1638 case lir_div: __ z_ddb(lreg, raddr); break;
1639 default: ShouldNotReachHere();
1640 }
1641 }
1642 } else if (left->is_address()) {
1643 assert(left == dest, "left and dest must be equal");
1644 assert(code == lir_add, "unsupported operation");
1645 assert(right->is_constant(), "unsupported operand");
1646 jint c = right->as_constant_ptr()->as_jint();
1647 LIR_Address* lir_addr = left->as_address_ptr();
1648 Address addr = as_Address(lir_addr);
1649 switch (lir_addr->type()) {
1650 case T_INT:
1651 __ add2mem_32(addr, c, Z_R1_scratch);
1652 break;
1653 case T_LONG:
1654 __ add2mem_64(addr, c, Z_R1_scratch);
1655 break;
1656 default:
1657 ShouldNotReachHere();
1658 }
1659 } else {
1660 ShouldNotReachHere();
1661 }
1662 }
1663
1664 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1665 switch (code) {
1666 case lir_sqrt: {
1667 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1668 FloatRegister src_reg = value->as_double_reg();
1669 FloatRegister dst_reg = dest->as_double_reg();
1670 __ z_sqdbr(dst_reg, src_reg);
1671 break;
1672 }
1673 case lir_abs: {
1674 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1675 FloatRegister src_reg = value->as_double_reg();
1676 FloatRegister dst_reg = dest->as_double_reg();
1677 __ z_lpdbr(dst_reg, src_reg);
1678 break;
1679 }
1680 default: {
1681 ShouldNotReachHere();
1682 break;
1683 }
1684 }
1685 }
1686
1687 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1688 if (left->is_single_cpu()) {
1689 Register reg = left->as_register();
1690 if (right->is_constant()) {
1691 int val = right->as_constant_ptr()->as_jint();
1692 switch (code) {
1693 case lir_logic_and: __ z_nilf(reg, val); break;
1694 case lir_logic_or: __ z_oilf(reg, val); break;
1695 case lir_logic_xor: __ z_xilf(reg, val); break;
1696 default: ShouldNotReachHere();
1697 }
1698 } else if (right->is_stack()) {
1699 Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1700 switch (code) {
1701 case lir_logic_and: __ z_ny(reg, raddr); break;
1702 case lir_logic_or: __ z_oy(reg, raddr); break;
1703 case lir_logic_xor: __ z_xy(reg, raddr); break;
1704 default: ShouldNotReachHere();
1705 }
1706 } else {
1707 Register rright = right->as_register();
1708 switch (code) {
1709 case lir_logic_and: __ z_nr(reg, rright); break;
1710 case lir_logic_or : __ z_or(reg, rright); break;
1711 case lir_logic_xor: __ z_xr(reg, rright); break;
1712 default: ShouldNotReachHere();
1713 }
1714 }
1715 move_regs(reg, dst->as_register());
1716 } else {
1717 Register l_lo = left->as_register_lo();
1718 if (right->is_constant()) {
1719 __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
1720 switch (code) {
1721 case lir_logic_and:
1722 __ z_ngr(l_lo, Z_R1_scratch);
1723 break;
1724 case lir_logic_or:
1725 __ z_ogr(l_lo, Z_R1_scratch);
1726 break;
1727 case lir_logic_xor:
1728 __ z_xgr(l_lo, Z_R1_scratch);
1729 break;
1730 default: ShouldNotReachHere();
1731 }
1732 } else {
1733 Register r_lo;
1734 if (is_reference_type(right->type())) {
1735 r_lo = right->as_register();
1736 } else {
1737 r_lo = right->as_register_lo();
1738 }
1739 switch (code) {
1740 case lir_logic_and:
1741 __ z_ngr(l_lo, r_lo);
1742 break;
1743 case lir_logic_or:
1744 __ z_ogr(l_lo, r_lo);
1745 break;
1746 case lir_logic_xor:
1747 __ z_xgr(l_lo, r_lo);
1748 break;
1749 default: ShouldNotReachHere();
1750 }
1751 }
1752
1753 Register dst_lo = dst->as_register_lo();
1754
1755 move_regs(l_lo, dst_lo);
1756 }
1757 }
1758
1759 // See operand selection in LIRGenerator::do_ArithmeticOp_Int().
1760 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
1761 if (left->is_double_cpu()) {
1762 // 64 bit integer case
1763 assert(left->is_double_cpu(), "left must be register");
1764 assert(right->is_double_cpu() || is_power_of_2(right->as_jlong()),
1765 "right must be register or power of 2 constant");
1766 assert(result->is_double_cpu(), "result must be register");
1767
1768 Register lreg = left->as_register_lo();
1769 Register dreg = result->as_register_lo();
1770
1771 if (right->is_constant()) {
1772 // Convert division by a power of two into some shifts and logical operations.
1773 Register treg1 = Z_R0_scratch;
1774 Register treg2 = Z_R1_scratch;
1775 jlong divisor = right->as_jlong();
1776 jlong log_divisor = log2i_exact(right->as_jlong());
1777
1778 if (divisor == min_jlong) {
1779 // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
1780 if (dreg == lreg) {
1781 NearLabel done;
1782 __ load_const_optimized(treg2, min_jlong);
1783 __ z_cgr(lreg, treg2);
1784 __ z_lghi(dreg, 0); // Preserves condition code.
1785 __ z_brne(done);
1786 __ z_lghi(dreg, 1); // min_jlong / min_jlong = 1
1787 __ bind(done);
1788 } else {
1789 assert_different_registers(dreg, lreg);
1790 NearLabel done;
1791 __ z_lghi(dreg, 0);
1792 __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
1793 __ z_lghi(dreg, 1);
1794 __ bind(done);
1795 }
1796 return;
1797 }
1798 __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
1799 if (divisor == 2) {
1800 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0
1801 } else {
1802 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0
1803 __ and_imm(treg2, divisor - 1, treg1, true);
1804 }
1805 if (code == lir_idiv) {
1806 __ z_agr(dreg, treg2);
1807 __ z_srag(dreg, dreg, log_divisor);
1808 } else {
1809 assert(code == lir_irem, "check");
1810 __ z_agr(treg2, dreg);
1811 __ and_imm(treg2, ~(divisor - 1), treg1, true);
1812 __ z_sgr(dreg, treg2);
1813 }
1814 return;
1815 }
1816
1817 // Divisor is not a power of 2 constant.
1818 Register rreg = right->as_register_lo();
1819 Register treg = temp->as_register_lo();
1820 assert(right->is_double_cpu(), "right must be register");
1821 assert(lreg == Z_R11, "see ldivInOpr()");
1822 assert(rreg != lreg, "right register must not be same as left register");
1823 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
1824 (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
1825
1826 Register R1 = lreg->predecessor();
1827 Register R2 = rreg;
1828 assert(code != lir_idiv || lreg==dreg, "see code below");
1829 if (code == lir_idiv) {
1830 __ z_lcgr(lreg, lreg);
1831 } else {
1832 __ clear_reg(dreg, true, false);
1833 }
1834 NearLabel done;
1835 __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
1836 if (code == lir_idiv) {
1837 __ z_lcgr(lreg, lreg); // Revert lcgr above.
1838 }
1839 if (ImplicitDiv0Checks) {
1840 // No debug info because the idiv won't trap.
1841 // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1842 // which is unnecessary, too.
1843 add_debug_info_for_div0(__ offset(), info);
1844 }
1845 __ z_dsgr(R1, R2);
1846 __ bind(done);
1847 return;
1848 }
1849
1850 // 32 bit integer case
1851
1852 assert(left->is_single_cpu(), "left must be register");
1853 assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
1854 assert(result->is_single_cpu(), "result must be register");
1855
1856 Register lreg = left->as_register();
1857 Register dreg = result->as_register();
1858
1859 if (right->is_constant()) {
1860 // Convert division by a power of two into some shifts and logical operations.
1861 Register treg1 = Z_R0_scratch;
1862 Register treg2 = Z_R1_scratch;
1863 jlong divisor = right->as_jint();
1864 jlong log_divisor = log2i_exact(right->as_jint());
1865 __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
1866 if (divisor == 2) {
1867 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0
1868 } else {
1869 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0
1870 __ and_imm(treg2, divisor - 1, treg1, true);
1871 }
1872 if (code == lir_idiv) {
1873 __ z_agr(dreg, treg2);
1874 __ z_srag(dreg, dreg, log_divisor);
1875 } else {
1876 assert(code == lir_irem, "check");
1877 __ z_agr(treg2, dreg);
1878 __ and_imm(treg2, ~(divisor - 1), treg1, true);
1879 __ z_sgr(dreg, treg2);
1880 }
1881 return;
1882 }
1883
1884 // Divisor is not a power of 2 constant.
1885 Register rreg = right->as_register();
1886 Register treg = temp->as_register();
1887 assert(right->is_single_cpu(), "right must be register");
1888 assert(lreg == Z_R11, "left register must be rax,");
1889 assert(rreg != lreg, "right register must not be same as left register");
1890 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
1891 || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
1892
1893 Register R1 = lreg->predecessor();
1894 Register R2 = rreg;
1895 __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
1896 if (ImplicitDiv0Checks) {
1897 // No debug info because the idiv won't trap.
1898 // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1899 // which is unnecessary, too.
1900 add_debug_info_for_div0(__ offset(), info);
1901 }
1902 __ z_dsgfr(R1, R2);
1903 }
1904
1905 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1906 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1907 assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
1908
1909 // Exception object is not added to oop map by LinearScan
1910 // (LinearScan assumes that no oops are in fixed registers).
1911 info->add_register_oop(exceptionOop);
1912
1913 // Reuse the debug info from the safepoint poll for the throw op itself.
1914 __ get_PC(Z_EXC_PC);
1915 add_call_info(__ offset(), info); // for exception handler
1916 address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1917 : Runtime1::handle_exception_nofpu_id);
1918 emit_call_c(stub);
1919 }
1920
1921 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1922 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1923
1924 __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
1925 }
1926
1927 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1928 ciArrayKlass* default_type = op->expected_type();
1929 Register src = op->src()->as_register();
1930 Register dst = op->dst()->as_register();
1931 Register src_pos = op->src_pos()->as_register();
1932 Register dst_pos = op->dst_pos()->as_register();
1933 Register length = op->length()->as_register();
1934 Register tmp = op->tmp()->as_register();
1935
1936 CodeStub* stub = op->stub();
1937 int flags = op->flags();
1938 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
1939 if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1940
1941 // If we don't know anything, just go through the generic arraycopy.
1942 if (default_type == nullptr) {
1943 address copyfunc_addr = StubRoutines::generic_arraycopy();
1944
1945 if (copyfunc_addr == nullptr) {
1946 // Take a slow path for generic arraycopy.
1947 __ branch_optimized(Assembler::bcondAlways, *stub->entry());
1948 __ bind(*stub->continuation());
1949 return;
1950 }
1951
1952 // Save outgoing arguments in callee saved registers (C convention) in case
1953 // a call to System.arraycopy is needed.
1954 Register callee_saved_src = Z_R10;
1955 Register callee_saved_src_pos = Z_R11;
1956 Register callee_saved_dst = Z_R12;
1957 Register callee_saved_dst_pos = Z_R13;
1958 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
1959
1960 __ lgr_if_needed(callee_saved_src, src);
1961 __ lgr_if_needed(callee_saved_src_pos, src_pos);
1962 __ lgr_if_needed(callee_saved_dst, dst);
1963 __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
1964 __ lgr_if_needed(callee_saved_length, length);
1965
1966 // C function requires 64 bit values.
1967 __ z_lgfr(src_pos, src_pos);
1968 __ z_lgfr(dst_pos, dst_pos);
1969 __ z_lgfr(length, length);
1970
1971 // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
1972
1973 // The arguments are in the corresponding registers.
1974 assert(Z_ARG1 == src, "assumption");
1975 assert(Z_ARG2 == src_pos, "assumption");
1976 assert(Z_ARG3 == dst, "assumption");
1977 assert(Z_ARG4 == dst_pos, "assumption");
1978 assert(Z_ARG5 == length, "assumption");
1979 #ifndef PRODUCT
1980 if (PrintC1Statistics) {
1981 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
1982 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
1983 }
1984 #endif
1985 emit_call_c(copyfunc_addr);
1986 CHECK_BAILOUT();
1987
1988 __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
1989
1990 __ z_lgr(tmp, Z_RET);
1991 __ z_xilf(tmp, -1);
1992
1993 // Restore values from callee saved registers so they are where the stub
1994 // expects them.
1995 __ lgr_if_needed(src, callee_saved_src);
1996 __ lgr_if_needed(src_pos, callee_saved_src_pos);
1997 __ lgr_if_needed(dst, callee_saved_dst);
1998 __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
1999 __ lgr_if_needed(length, callee_saved_length);
2000
2001 __ z_sr(length, tmp);
2002 __ z_ar(src_pos, tmp);
2003 __ z_ar(dst_pos, tmp);
2004 __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2005
2006 __ bind(*stub->continuation());
2007 return;
2008 }
2009
2010 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2011
2012 int elem_size = type2aelembytes(basic_type);
2013 int shift_amount;
2014
2015 switch (elem_size) {
2016 case 1 :
2017 shift_amount = 0;
2018 break;
2019 case 2 :
2020 shift_amount = 1;
2021 break;
2022 case 4 :
2023 shift_amount = 2;
2024 break;
2025 case 8 :
2026 shift_amount = 3;
2027 break;
2028 default:
2029 shift_amount = -1;
2030 ShouldNotReachHere();
2031 }
2032
2033 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2034 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2035 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2036 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2037
2038 // Length and pos's are all sign extended at this point on 64bit.
2039
2040 // test for null
2041 if (flags & LIR_OpArrayCopy::src_null_check) {
2042 __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2043 }
2044 if (flags & LIR_OpArrayCopy::dst_null_check) {
2045 __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2046 }
2047
2048 // Check if negative.
2049 if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2050 __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2051 }
2052 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2053 __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2054 }
2055
2056 // If the compiler was not able to prove that exact type of the source or the destination
2057 // of the arraycopy is an array type, check at runtime if the source or the destination is
2058 // an instance type.
2059 if (flags & LIR_OpArrayCopy::type_check) {
2060 assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
2061
2062 if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2063 __ load_klass(tmp, dst);
2064 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2065 __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2066 }
2067
2068 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2069 __ load_klass(tmp, src);
2070 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2071 __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2072 }
2073 }
2074
2075 if (flags & LIR_OpArrayCopy::src_range_check) {
2076 __ z_la(tmp, Address(src_pos, length));
2077 __ z_cl(tmp, src_length_addr);
2078 __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2079 }
2080 if (flags & LIR_OpArrayCopy::dst_range_check) {
2081 __ z_la(tmp, Address(dst_pos, length));
2082 __ z_cl(tmp, dst_length_addr);
2083 __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2084 }
2085
2086 if (flags & LIR_OpArrayCopy::length_positive_check) {
2087 __ z_ltr(length, length);
2088 __ branch_optimized(Assembler::bcondNegative, *stub->entry());
2089 }
2090
2091 // Stubs require 64 bit values.
2092 __ z_lgfr(src_pos, src_pos); // int -> long
2093 __ z_lgfr(dst_pos, dst_pos); // int -> long
2094 __ z_lgfr(length, length); // int -> long
2095
2096 if (flags & LIR_OpArrayCopy::type_check) {
2097 // We don't know the array types are compatible.
2098 if (basic_type != T_OBJECT) {
2099 // Simple test for basic type arrays.
2100 if (UseCompressedClassPointers) {
2101 __ z_l(tmp, src_klass_addr);
2102 __ z_c(tmp, dst_klass_addr);
2103 } else {
2104 __ z_lg(tmp, src_klass_addr);
2105 __ z_cg(tmp, dst_klass_addr);
2106 }
2107 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2108 } else {
2109 // For object arrays, if src is a sub class of dst then we can
2110 // safely do the copy.
2111 NearLabel cont, slow;
2112 Register src_klass = Z_R1_scratch;
2113 Register dst_klass = Z_R10;
2114
2115 __ load_klass(src_klass, src);
2116 __ load_klass(dst_klass, dst);
2117
2118 __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, nullptr);
2119
2120 store_parameter(src_klass, 0); // sub
2121 store_parameter(dst_klass, 1); // super
2122 emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id));
2123 CHECK_BAILOUT2(cont, slow);
2124 // Sets condition code 0 for match (2 otherwise).
2125 __ branch_optimized(Assembler::bcondEqual, cont);
2126
2127 __ bind(slow);
2128
2129 address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2130 if (copyfunc_addr != nullptr) { // use stub if available
2131 // Src is not a sub class of dst so we have to do a
2132 // per-element check.
2133
2134 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2135 if ((flags & mask) != mask) {
2136 // Check that at least both of them object arrays.
2137 assert(flags & mask, "one of the two should be known to be an object array");
2138
2139 if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2140 __ load_klass(tmp, src);
2141 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2142 __ load_klass(tmp, dst);
2143 }
2144 Address klass_lh_addr(tmp, Klass::layout_helper_offset());
2145 jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2146 __ load_const_optimized(Z_R1_scratch, objArray_lh);
2147 __ z_c(Z_R1_scratch, klass_lh_addr);
2148 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2149 }
2150
2151 // Save outgoing arguments in callee saved registers (C convention) in case
2152 // a call to System.arraycopy is needed.
2153 Register callee_saved_src = Z_R10;
2154 Register callee_saved_src_pos = Z_R11;
2155 Register callee_saved_dst = Z_R12;
2156 Register callee_saved_dst_pos = Z_R13;
2157 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
2158
2159 __ lgr_if_needed(callee_saved_src, src);
2160 __ lgr_if_needed(callee_saved_src_pos, src_pos);
2161 __ lgr_if_needed(callee_saved_dst, dst);
2162 __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
2163 __ lgr_if_needed(callee_saved_length, length);
2164
2165 __ z_llgfr(length, length); // Higher 32bits must be null.
2166
2167 __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
2168 __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
2169
2170 __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
2171 assert_different_registers(Z_ARG1, dst, dst_pos, length);
2172 __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
2173 assert_different_registers(Z_ARG2, dst, length);
2174
2175 __ z_lgr(Z_ARG3, length);
2176 assert_different_registers(Z_ARG3, dst);
2177
2178 __ load_klass(Z_ARG5, dst);
2179 __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
2180 __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
2181 emit_call_c(copyfunc_addr);
2182 CHECK_BAILOUT2(cont, slow);
2183
2184 #ifndef PRODUCT
2185 if (PrintC1Statistics) {
2186 NearLabel failed;
2187 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
2188 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
2189 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2190 __ bind(failed);
2191 }
2192 #endif
2193
2194 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2195
2196 #ifndef PRODUCT
2197 if (PrintC1Statistics) {
2198 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
2199 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2200 }
2201 #endif
2202
2203 __ z_lgr(tmp, Z_RET);
2204 __ z_xilf(tmp, -1);
2205
2206 // Restore previously spilled arguments
2207 __ lgr_if_needed(src, callee_saved_src);
2208 __ lgr_if_needed(src_pos, callee_saved_src_pos);
2209 __ lgr_if_needed(dst, callee_saved_dst);
2210 __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2211 __ lgr_if_needed(length, callee_saved_length);
2212
2213 __ z_sr(length, tmp);
2214 __ z_ar(src_pos, tmp);
2215 __ z_ar(dst_pos, tmp);
2216 }
2217
2218 __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2219
2220 __ bind(cont);
2221 }
2222 }
2223
2224 #ifdef ASSERT
2225 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2226 // Sanity check the known type with the incoming class. For the
2227 // primitive case the types must match exactly with src.klass and
2228 // dst.klass each exactly matching the default type. For the
2229 // object array case, if no type check is needed then either the
2230 // dst type is exactly the expected type and the src type is a
2231 // subtype which we can't check or src is the same array as dst
2232 // but not necessarily exactly of type default_type.
2233 NearLabel known_ok, halt;
2234 metadata2reg(default_type->constant_encoding(), tmp);
2235 if (UseCompressedClassPointers) {
2236 __ encode_klass_not_null(tmp);
2237 }
2238
2239 if (basic_type != T_OBJECT) {
2240 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); }
2241 else { __ z_cg(tmp, dst_klass_addr); }
2242 __ branch_optimized(Assembler::bcondNotEqual, halt);
2243 if (UseCompressedClassPointers) { __ z_c (tmp, src_klass_addr); }
2244 else { __ z_cg(tmp, src_klass_addr); }
2245 __ branch_optimized(Assembler::bcondEqual, known_ok);
2246 } else {
2247 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); }
2248 else { __ z_cg(tmp, dst_klass_addr); }
2249 __ branch_optimized(Assembler::bcondEqual, known_ok);
2250 __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
2251 }
2252 __ bind(halt);
2253 __ stop("incorrect type information in arraycopy");
2254 __ bind(known_ok);
2255 }
2256 #endif
2257
2258 #ifndef PRODUCT
2259 if (PrintC1Statistics) {
2260 __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
2261 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2262 }
2263 #endif
2264
2265 __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
2266 __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
2267
2268 assert_different_registers(Z_ARG1, dst, dst_pos, length);
2269 __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
2270 assert_different_registers(Z_ARG2, length);
2271 __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
2272 __ lgr_if_needed(Z_ARG3, length);
2273
2274 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2275 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2276 const char *name;
2277 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2278 __ call_VM_leaf(entry);
2279
2280 __ bind(*stub->continuation());
2281 }
2282
2283 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2284 if (dest->is_single_cpu()) {
2285 if (left->type() == T_OBJECT) {
2286 switch (code) {
2287 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2288 case lir_shr: __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2289 case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2290 default: ShouldNotReachHere();
2291 }
2292 } else {
2293 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2294 Register masked_count = Z_R1_scratch;
2295 __ z_lr(masked_count, count->as_register());
2296 __ z_nill(masked_count, 31);
2297 switch (code) {
2298 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
2299 case lir_shr: __ z_sra (dest->as_register(), 0, masked_count); break;
2300 case lir_ushr: __ z_srl (dest->as_register(), 0, masked_count); break;
2301 default: ShouldNotReachHere();
2302 }
2303 }
2304 } else {
2305 switch (code) {
2306 case lir_shl: __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2307 case lir_shr: __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2308 case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2309 default: ShouldNotReachHere();
2310 }
2311 }
2312 }
2313
2314 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2315 if (left->type() == T_OBJECT) {
2316 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t).
2317 Register l = left->as_register();
2318 Register d = dest->as_register_lo();
2319 switch (code) {
2320 case lir_shl: __ z_sllg (d, l, count); break;
2321 case lir_shr: __ z_srag (d, l, count); break;
2322 case lir_ushr: __ z_srlg (d, l, count); break;
2323 default: ShouldNotReachHere();
2324 }
2325 return;
2326 }
2327 if (dest->is_single_cpu()) {
2328 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2329 count = count & 0x1F; // Java spec
2330 switch (code) {
2331 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), count); break;
2332 case lir_shr: __ z_sra (dest->as_register(), count); break;
2333 case lir_ushr: __ z_srl (dest->as_register(), count); break;
2334 default: ShouldNotReachHere();
2335 }
2336 } else if (dest->is_double_cpu()) {
2337 count = count & 63; // Java spec
2338 Register l = left->as_pointer_register();
2339 Register d = dest->as_pointer_register();
2340 switch (code) {
2341 case lir_shl: __ z_sllg (d, l, count); break;
2342 case lir_shr: __ z_srag (d, l, count); break;
2343 case lir_ushr: __ z_srlg (d, l, count); break;
2344 default: ShouldNotReachHere();
2345 }
2346 } else {
2347 ShouldNotReachHere();
2348 }
2349 }
2350
2351 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2352 if (op->init_check()) {
2353 // Make sure klass is initialized & doesn't have finalizer.
2354 const int state_offset = in_bytes(InstanceKlass::init_state_offset());
2355 Register iklass = op->klass()->as_register();
2356 add_debug_info_for_null_check_here(op->stub()->info());
2357 if (Immediate::is_uimm12(state_offset)) {
2358 __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
2359 } else {
2360 __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
2361 }
2362 __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
2363 }
2364 __ allocate_object(op->obj()->as_register(),
2365 op->tmp1()->as_register(),
2366 op->tmp2()->as_register(),
2367 op->header_size(),
2368 op->object_size(),
2369 op->klass()->as_register(),
2370 *op->stub()->entry());
2371 __ bind(*op->stub()->continuation());
2372 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE);
2373 }
2374
2375 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2376 Register len = op->len()->as_register();
2377 __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
2378
2379 if (UseSlowPath ||
2380 (!UseFastNewObjectArray && (is_reference_type(op->type()))) ||
2381 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) {
2382 __ z_brul(*op->stub()->entry());
2383 } else {
2384 __ allocate_array(op->obj()->as_register(),
2385 op->len()->as_register(),
2386 op->tmp1()->as_register(),
2387 op->tmp2()->as_register(),
2388 arrayOopDesc::base_offset_in_bytes(op->type()),
2389 type2aelembytes(op->type()),
2390 op->klass()->as_register(),
2391 *op->stub()->entry());
2392 }
2393 __ bind(*op->stub()->continuation());
2394 }
2395
2396 void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
2397 Register recv, Register tmp1, Label* update_done) {
2398 uint i;
2399 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2400 Label next_test;
2401 // See if the receiver is receiver[n].
2402 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2403 __ z_cg(recv, receiver_addr);
2404 __ z_brne(next_test);
2405 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
2406 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2407 __ branch_optimized(Assembler::bcondAlways, *update_done);
2408 __ bind(next_test);
2409 }
2410
2411 // Didn't find receiver; find next empty slot and fill it in.
2412 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2413 Label next_test;
2414 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2415 __ z_ltg(Z_R0_scratch, recv_addr);
2416 __ z_brne(next_test);
2417 __ z_stg(recv, recv_addr);
2418 __ load_const_optimized(tmp1, DataLayout::counter_increment);
2419 __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
2420 __ branch_optimized(Assembler::bcondAlways, *update_done);
2421 __ bind(next_test);
2422 }
2423 }
2424
2425 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2426 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2427 Unimplemented();
2428 }
2429
2430 void LIR_Assembler::store_parameter(Register r, int param_num) {
2431 assert(param_num >= 0, "invalid num");
2432 int offset_in_bytes = param_num * BytesPerWord;
2433 check_reserved_argument_area(offset_in_bytes);
2434 offset_in_bytes += FrameMap::first_available_sp_in_frame;
2435 __ z_stg(r, offset_in_bytes, Z_SP);
2436 }
2437
2438 void LIR_Assembler::store_parameter(jint c, int param_num) {
2439 assert(param_num >= 0, "invalid num");
2440 int offset_in_bytes = param_num * BytesPerWord;
2441 check_reserved_argument_area(offset_in_bytes);
2442 offset_in_bytes += FrameMap::first_available_sp_in_frame;
2443 __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
2444 }
2445
2446 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2447 // We always need a stub for the failure case.
2448 CodeStub* stub = op->stub();
2449 Register obj = op->object()->as_register();
2450 Register k_RInfo = op->tmp1()->as_register();
2451 Register klass_RInfo = op->tmp2()->as_register();
2452 Register dst = op->result_opr()->as_register();
2453 Register Rtmp1 = Z_R1_scratch;
2454 ciKlass* k = op->klass();
2455
2456 assert(!op->tmp3()->is_valid(), "tmp3's not needed");
2457
2458 // Check if it needs to be profiled.
2459 ciMethodData* md = nullptr;
2460 ciProfileData* data = nullptr;
2461
2462 if (op->should_profile()) {
2463 ciMethod* method = op->profiled_method();
2464 assert(method != nullptr, "Should have method");
2465 int bci = op->profiled_bci();
2466 md = method->method_data_or_null();
2467 assert(md != nullptr, "Sanity");
2468 data = md->bci_to_data(bci);
2469 assert(data != nullptr, "need data for type check");
2470 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2471 }
2472
2473 // Temp operands do not overlap with inputs, if this is their last
2474 // use (end of range is exclusive), so a register conflict is possible.
2475 if (obj == k_RInfo) {
2476 k_RInfo = dst;
2477 } else if (obj == klass_RInfo) {
2478 klass_RInfo = dst;
2479 }
2480 assert_different_registers(obj, k_RInfo, klass_RInfo);
2481
2482 if (op->should_profile()) {
2483 NearLabel not_null;
2484 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2485 // Object is null; update MDO and exit.
2486 Register mdo = klass_RInfo;
2487 metadata2reg(md->constant_encoding(), mdo);
2488 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2489 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2490 __ or2mem_8(data_addr, header_bits);
2491 __ branch_optimized(Assembler::bcondAlways, *obj_is_null);
2492 __ bind(not_null);
2493 } else {
2494 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
2495 }
2496
2497 NearLabel profile_cast_failure, profile_cast_success;
2498 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2499 Label *success_target = op->should_profile() ? &profile_cast_success : success;
2500
2501 // Patching may screw with our temporaries,
2502 // so let's do it before loading the class.
2503 if (k->is_loaded()) {
2504 metadata2reg(k->constant_encoding(), k_RInfo);
2505 } else {
2506 klass2reg_with_patching(k_RInfo, op->info_for_patch());
2507 }
2508 assert(obj != k_RInfo, "must be different");
2509
2510 __ verify_oop(obj, FILE_AND_LINE);
2511
2512 // Get object class.
2513 // Not a safepoint as obj null check happens earlier.
2514 if (op->fast_check()) {
2515 if (UseCompressedClassPointers) {
2516 __ load_klass(klass_RInfo, obj);
2517 __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
2518 } else {
2519 __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
2520 __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2521 }
2522 // Successful cast, fall through to profile or jump.
2523 } else {
2524 bool need_slow_path = !k->is_loaded() ||
2525 ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
2526 intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
2527 __ load_klass(klass_RInfo, obj);
2528 // Perform the fast part of the checking logic.
2529 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
2530 (need_slow_path ? success_target : nullptr),
2531 failure_target, nullptr,
2532 RegisterOrConstant(super_check_offset));
2533 if (need_slow_path) {
2534 // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2535 address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2536 store_parameter(klass_RInfo, 0); // sub
2537 store_parameter(k_RInfo, 1); // super
2538 emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2539 CHECK_BAILOUT2(profile_cast_failure, profile_cast_success);
2540 __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2541 // Fall through to success case.
2542 }
2543 }
2544
2545 if (op->should_profile()) {
2546 Register mdo = klass_RInfo, recv = k_RInfo;
2547 assert_different_registers(obj, mdo, recv);
2548 __ bind(profile_cast_success);
2549 metadata2reg(md->constant_encoding(), mdo);
2550 __ load_klass(recv, obj);
2551 type_profile_helper(mdo, md, data, recv, Rtmp1, success);
2552 __ branch_optimized(Assembler::bcondAlways, *success);
2553
2554 __ bind(profile_cast_failure);
2555 metadata2reg(md->constant_encoding(), mdo);
2556 __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2557 __ branch_optimized(Assembler::bcondAlways, *failure);
2558 } else {
2559 __ branch_optimized(Assembler::bcondAlways, *success);
2560 }
2561 }
2562
2563 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2564 LIR_Code code = op->code();
2565 if (code == lir_store_check) {
2566 Register value = op->object()->as_register();
2567 Register array = op->array()->as_register();
2568 Register k_RInfo = op->tmp1()->as_register();
2569 Register klass_RInfo = op->tmp2()->as_register();
2570 Register Rtmp1 = Z_R1_scratch;
2571
2572 CodeStub* stub = op->stub();
2573
2574 // Check if it needs to be profiled.
2575 ciMethodData* md = nullptr;
2576 ciProfileData* data = nullptr;
2577
2578 assert_different_registers(value, k_RInfo, klass_RInfo);
2579
2580 if (op->should_profile()) {
2581 ciMethod* method = op->profiled_method();
2582 assert(method != nullptr, "Should have method");
2583 int bci = op->profiled_bci();
2584 md = method->method_data_or_null();
2585 assert(md != nullptr, "Sanity");
2586 data = md->bci_to_data(bci);
2587 assert(data != nullptr, "need data for type check");
2588 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2589 }
2590 NearLabel profile_cast_success, profile_cast_failure, done;
2591 Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2592 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2593
2594 if (op->should_profile()) {
2595 NearLabel not_null;
2596 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2597 // Object is null; update MDO and exit.
2598 Register mdo = klass_RInfo;
2599 metadata2reg(md->constant_encoding(), mdo);
2600 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2601 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2602 __ or2mem_8(data_addr, header_bits);
2603 __ branch_optimized(Assembler::bcondAlways, done);
2604 __ bind(not_null);
2605 } else {
2606 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
2607 }
2608
2609 add_debug_info_for_null_check_here(op->info_for_exception());
2610 __ load_klass(k_RInfo, array);
2611 __ load_klass(klass_RInfo, value);
2612
2613 // Get instance klass (it's already uncompressed).
2614 __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
2615 // Perform the fast part of the checking logic.
2616 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
2617 // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2618 address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2619 store_parameter(klass_RInfo, 0); // sub
2620 store_parameter(k_RInfo, 1); // super
2621 emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2622 CHECK_BAILOUT3(profile_cast_success, profile_cast_failure, done);
2623 __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2624 // Fall through to success case.
2625
2626 if (op->should_profile()) {
2627 Register mdo = klass_RInfo, recv = k_RInfo;
2628 assert_different_registers(value, mdo, recv);
2629 __ bind(profile_cast_success);
2630 metadata2reg(md->constant_encoding(), mdo);
2631 __ load_klass(recv, value);
2632 type_profile_helper(mdo, md, data, recv, Rtmp1, &done);
2633 __ branch_optimized(Assembler::bcondAlways, done);
2634
2635 __ bind(profile_cast_failure);
2636 metadata2reg(md->constant_encoding(), mdo);
2637 __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2638 __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2639 }
2640
2641 __ bind(done);
2642 } else {
2643 if (code == lir_checkcast) {
2644 Register obj = op->object()->as_register();
2645 Register dst = op->result_opr()->as_register();
2646 NearLabel success;
2647 emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2648 __ bind(success);
2649 __ lgr_if_needed(dst, obj);
2650 } else {
2651 if (code == lir_instanceof) {
2652 Register obj = op->object()->as_register();
2653 Register dst = op->result_opr()->as_register();
2654 NearLabel success, failure, done;
2655 emit_typecheck_helper(op, &success, &failure, &failure);
2656 __ bind(failure);
2657 __ clear_reg(dst);
2658 __ branch_optimized(Assembler::bcondAlways, done);
2659 __ bind(success);
2660 __ load_const_optimized(dst, 1);
2661 __ bind(done);
2662 } else {
2663 ShouldNotReachHere();
2664 }
2665 }
2666 }
2667 }
2668
2669 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2670 Register addr = op->addr()->as_pointer_register();
2671 Register t1_cmp = Z_R1_scratch;
2672 if (op->code() == lir_cas_long) {
2673 assert(VM_Version::supports_cx8(), "wrong machine");
2674 Register cmp_value_lo = op->cmp_value()->as_register_lo();
2675 Register new_value_lo = op->new_value()->as_register_lo();
2676 __ z_lgr(t1_cmp, cmp_value_lo);
2677 // Perform the compare and swap operation.
2678 __ z_csg(t1_cmp, new_value_lo, 0, addr);
2679 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2680 Register cmp_value = op->cmp_value()->as_register();
2681 Register new_value = op->new_value()->as_register();
2682 if (op->code() == lir_cas_obj) {
2683 if (UseCompressedOops) {
2684 t1_cmp = op->tmp1()->as_register();
2685 Register t2_new = op->tmp2()->as_register();
2686 assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
2687 __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
2688 __ oop_encoder(t2_new, new_value, true /*maybe null*/);
2689 __ z_cs(t1_cmp, t2_new, 0, addr);
2690 } else {
2691 __ z_lgr(t1_cmp, cmp_value);
2692 __ z_csg(t1_cmp, new_value, 0, addr);
2693 }
2694 } else {
2695 __ z_lr(t1_cmp, cmp_value);
2696 __ z_cs(t1_cmp, new_value, 0, addr);
2697 }
2698 } else {
2699 ShouldNotReachHere(); // new lir_cas_??
2700 }
2701 }
2702
2703 void LIR_Assembler::breakpoint() {
2704 Unimplemented();
2705 // __ breakpoint_trap();
2706 }
2707
2708 void LIR_Assembler::push(LIR_Opr opr) {
2709 ShouldNotCallThis(); // unused
2710 }
2711
2712 void LIR_Assembler::pop(LIR_Opr opr) {
2713 ShouldNotCallThis(); // unused
2714 }
2715
2716 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2717 Address addr = frame_map()->address_for_monitor_lock(monitor_no);
2718 __ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
2719 }
2720
2721 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2722 Register obj = op->obj_opr()->as_register(); // May not be an oop.
2723 Register hdr = op->hdr_opr()->as_register();
2724 Register lock = op->lock_opr()->as_register();
2725 if (LockingMode == LM_MONITOR) {
2726 if (op->info() != nullptr) {
2727 add_debug_info_for_null_check_here(op->info());
2728 __ null_check(obj);
2729 }
2730 __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
2731 } else if (op->code() == lir_lock) {
2732 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2733 // Add debug info for NullPointerException only if one is possible.
2734 if (op->info() != nullptr) {
2735 add_debug_info_for_null_check_here(op->info());
2736 }
2737 __ lock_object(hdr, obj, lock, *op->stub()->entry());
2738 // done
2739 } else if (op->code() == lir_unlock) {
2740 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2741 __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2742 } else {
2743 ShouldNotReachHere();
2744 }
2745 __ bind(*op->stub()->continuation());
2746 }
2747
2748 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
2749 Register obj = op->obj()->as_pointer_register();
2750 Register result = op->result_opr()->as_pointer_register();
2751
2752 CodeEmitInfo* info = op->info();
2753 if (info != nullptr) {
2754 add_debug_info_for_null_check_here(info);
2755 }
2756
2757 if (UseCompressedClassPointers) {
2758 __ z_llgf(result, Address(obj, oopDesc::klass_offset_in_bytes()));
2759 __ decode_klass_not_null(result);
2760 } else {
2761 __ z_lg(result, Address(obj, oopDesc::klass_offset_in_bytes()));
2762 }
2763 }
2764 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2765 ciMethod* method = op->profiled_method();
2766 int bci = op->profiled_bci();
2767 ciMethod* callee = op->profiled_callee();
2768
2769 // Update counter for all call types.
2770 ciMethodData* md = method->method_data_or_null();
2771 assert(md != nullptr, "Sanity");
2772 ciProfileData* data = md->bci_to_data(bci);
2773 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
2774 assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
2775 Register mdo = op->mdo()->as_register();
2776 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2777 Register tmp1 = op->tmp1()->as_register_lo();
2778 metadata2reg(md->constant_encoding(), mdo);
2779
2780 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2781 // Perform additional virtual call profiling for invokevirtual and
2782 // invokeinterface bytecodes
2783 if (op->should_profile_receiver_type()) {
2784 assert(op->recv()->is_single_cpu(), "recv must be allocated");
2785 Register recv = op->recv()->as_register();
2786 assert_different_registers(mdo, tmp1, recv);
2787 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2788 ciKlass* known_klass = op->known_holder();
2789 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
2790 // We know the type that will be seen at this call site; we can
2791 // statically update the MethodData* rather than needing to do
2792 // dynamic tests on the receiver type.
2793
2794 // NOTE: we should probably put a lock around this search to
2795 // avoid collisions by concurrent compilations.
2796 ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2797 uint i;
2798 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2799 ciKlass* receiver = vc_data->receiver(i);
2800 if (known_klass->equals(receiver)) {
2801 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2802 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2803 return;
2804 }
2805 }
2806
2807 // Receiver type not found in profile data. Select an empty slot.
2808
2809 // Note that this is less efficient than it should be because it
2810 // always does a write to the receiver part of the
2811 // VirtualCallData rather than just the first time.
2812 for (i = 0; i < VirtualCallData::row_limit(); i++) {
2813 ciKlass* receiver = vc_data->receiver(i);
2814 if (receiver == nullptr) {
2815 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2816 metadata2reg(known_klass->constant_encoding(), tmp1);
2817 __ z_stg(tmp1, recv_addr);
2818 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2819 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2820 return;
2821 }
2822 }
2823 } else {
2824 __ load_klass(recv, recv);
2825 NearLabel update_done;
2826 type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
2827 // Receiver did not match any saved receiver and there is no empty row for it.
2828 // Increment total counter to indicate polymorphic case.
2829 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2830 __ bind(update_done);
2831 }
2832 } else {
2833 // static call
2834 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2835 }
2836 }
2837
2838 void LIR_Assembler::align_backward_branch_target() {
2839 __ align(OptoLoopAlignment);
2840 }
2841
2842 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2843 ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
2844 }
2845
2846 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2847 // tmp must be unused
2848 assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2849 assert(left->is_register(), "can only handle registers");
2850
2851 if (left->is_single_cpu()) {
2852 __ z_lcr(dest->as_register(), left->as_register());
2853 } else if (left->is_single_fpu()) {
2854 __ z_lcebr(dest->as_float_reg(), left->as_float_reg());
2855 } else if (left->is_double_fpu()) {
2856 __ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
2857 } else {
2858 assert(left->is_double_cpu(), "Must be a long");
2859 __ z_lcgr(dest->as_register_lo(), left->as_register_lo());
2860 }
2861 }
2862
2863 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2864 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2865 assert(!tmp->is_valid(), "don't need temporary");
2866 emit_call_c(dest);
2867 CHECK_BAILOUT();
2868 if (info != nullptr) {
2869 add_call_info_here(info);
2870 }
2871 }
2872
2873 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2874 ShouldNotCallThis(); // not needed on ZARCH_64
2875 }
2876
2877 void LIR_Assembler::membar() {
2878 __ z_fence();
2879 }
2880
2881 void LIR_Assembler::membar_acquire() {
2882 __ z_acquire();
2883 }
2884
2885 void LIR_Assembler::membar_release() {
2886 __ z_release();
2887 }
2888
2889 void LIR_Assembler::membar_loadload() {
2890 __ z_acquire();
2891 }
2892
2893 void LIR_Assembler::membar_storestore() {
2894 __ z_release();
2895 }
2896
2897 void LIR_Assembler::membar_loadstore() {
2898 __ z_acquire();
2899 }
2900
2901 void LIR_Assembler::membar_storeload() {
2902 __ z_fence();
2903 }
2904
2905 void LIR_Assembler::on_spin_wait() {
2906 Unimplemented();
2907 }
2908
2909 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2910 assert(patch_code == lir_patch_none, "Patch code not supported");
2911 LIR_Address* addr = addr_opr->as_address_ptr();
2912 assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
2913 __ load_address(dest->as_pointer_register(), as_Address(addr));
2914 }
2915
2916 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2917 ShouldNotCallThis(); // unused
2918 }
2919
2920 #ifdef ASSERT
2921 // Emit run-time assertion.
2922 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2923 Unimplemented();
2924 }
2925 #endif
2926
2927 void LIR_Assembler::peephole(LIR_List*) {
2928 // Do nothing for now.
2929 }
2930
2931 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2932 assert(code == lir_xadd, "lir_xchg not supported");
2933 Address src_addr = as_Address(src->as_address_ptr());
2934 Register base = src_addr.base();
2935 intptr_t disp = src_addr.disp();
2936 if (src_addr.index()->is_valid()) {
2937 // LAA and LAAG do not support index register.
2938 __ load_address(Z_R1_scratch, src_addr);
2939 base = Z_R1_scratch;
2940 disp = 0;
2941 }
2942 if (data->type() == T_INT) {
2943 __ z_laa(dest->as_register(), data->as_register(), disp, base);
2944 } else if (data->type() == T_LONG) {
2945 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
2946 __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
2947 } else {
2948 ShouldNotReachHere();
2949 }
2950 }
2951
2952 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2953 Register obj = op->obj()->as_register();
2954 Register tmp1 = op->tmp()->as_pointer_register();
2955 Register tmp2 = Z_R1_scratch;
2956 Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2957 ciKlass* exact_klass = op->exact_klass();
2958 intptr_t current_klass = op->current_klass();
2959 bool not_null = op->not_null();
2960 bool no_conflict = op->no_conflict();
2961
2962 Label update, next, none, null_seen, init_klass;
2963
2964 bool do_null = !not_null;
2965 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2966 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2967
2968 assert(do_null || do_update, "why are we here?");
2969 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2970
2971 __ verify_oop(obj, FILE_AND_LINE);
2972
2973 if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
2974 __ z_ltgr(tmp1, obj);
2975 }
2976 if (do_null) {
2977 __ z_brnz(update);
2978 if (!TypeEntries::was_null_seen(current_klass)) {
2979 __ z_lg(tmp1, mdo_addr);
2980 __ z_oill(tmp1, TypeEntries::null_seen);
2981 __ z_stg(tmp1, mdo_addr);
2982 }
2983 if (do_update) {
2984 __ z_bru(next);
2985 }
2986 } else {
2987 __ asm_assert(Assembler::bcondNotZero, "unexpected null obj", __LINE__);
2988 }
2989
2990 __ bind(update);
2991
2992 if (do_update) {
2993 #ifdef ASSERT
2994 if (exact_klass != nullptr) {
2995 __ load_klass(tmp1, tmp1);
2996 metadata2reg(exact_klass->constant_encoding(), tmp2);
2997 __ z_cgr(tmp1, tmp2);
2998 __ asm_assert(Assembler::bcondEqual, "exact klass and actual klass differ", __LINE__);
2999 }
3000 #endif
3001
3002 Label do_update;
3003 __ z_lg(tmp2, mdo_addr);
3004
3005 if (!no_conflict) {
3006 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3007 if (exact_klass != nullptr) {
3008 metadata2reg(exact_klass->constant_encoding(), tmp1);
3009 } else {
3010 __ load_klass(tmp1, tmp1);
3011 }
3012
3013 // Klass seen before: nothing to do (regardless of unknown bit).
3014 __ z_lgr(Z_R0_scratch, tmp2);
3015 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3016 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3017 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3018
3019 // Already unknown: Nothing to do anymore.
3020 __ z_tmll(tmp2, TypeEntries::type_unknown);
3021 __ z_brc(Assembler::bcondAllOne, next);
3022
3023 if (TypeEntries::is_type_none(current_klass)) {
3024 __ z_lgr(Z_R0_scratch, tmp2);
3025 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3026 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3027 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
3028 }
3029 } else {
3030 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3031 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3032
3033 // Already unknown: Nothing to do anymore.
3034 __ z_tmll(tmp2, TypeEntries::type_unknown);
3035 __ z_brc(Assembler::bcondAllOne, next);
3036 }
3037
3038 // Different than before. Cannot keep accurate profile.
3039 __ z_oill(tmp2, TypeEntries::type_unknown);
3040 __ z_bru(do_update);
3041 } else {
3042 // There's a single possible klass at this profile point.
3043 assert(exact_klass != nullptr, "should be");
3044 if (TypeEntries::is_type_none(current_klass)) {
3045 metadata2reg(exact_klass->constant_encoding(), tmp1);
3046 __ z_lgr(Z_R0_scratch, tmp2);
3047 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3048 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3049 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3050 #ifdef ASSERT
3051 {
3052 Label ok;
3053 __ z_lgr(Z_R0_scratch, tmp2);
3054 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3055 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3056 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
3057 __ stop("unexpected profiling mismatch");
3058 __ bind(ok);
3059 }
3060 #endif
3061
3062 } else {
3063 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3064 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3065
3066 // Already unknown: Nothing to do anymore.
3067 __ z_tmll(tmp2, TypeEntries::type_unknown);
3068 __ z_brc(Assembler::bcondAllOne, next);
3069 __ z_oill(tmp2, TypeEntries::type_unknown);
3070 __ z_bru(do_update);
3071 }
3072 }
3073
3074 __ bind(init_klass);
3075 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3076 __ z_ogr(tmp2, tmp1);
3077
3078 __ bind(do_update);
3079 __ z_stg(tmp2, mdo_addr);
3080
3081 __ bind(next);
3082 }
3083 }
3084
3085 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3086 assert(op->crc()->is_single_cpu(), "crc must be register");
3087 assert(op->val()->is_single_cpu(), "byte value must be register");
3088 assert(op->result_opr()->is_single_cpu(), "result must be register");
3089 Register crc = op->crc()->as_register();
3090 Register val = op->val()->as_register();
3091 Register res = op->result_opr()->as_register();
3092
3093 assert_different_registers(val, crc, res);
3094
3095 __ load_const_optimized(res, StubRoutines::crc_table_addr());
3096 __ kernel_crc32_singleByteReg(crc, val, res, true);
3097 __ z_lgfr(res, crc);
3098 }
3099
3100 #undef __