1 /* 2 * Copyright (c) 2016, 2023, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2016, 2023 SAP SE. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "c1/c1_Compilation.hpp" 29 #include "c1/c1_LIRAssembler.hpp" 30 #include "c1/c1_MacroAssembler.hpp" 31 #include "c1/c1_Runtime1.hpp" 32 #include "c1/c1_ValueStack.hpp" 33 #include "ci/ciArrayKlass.hpp" 34 #include "ci/ciInstance.hpp" 35 #include "gc/shared/collectedHeap.hpp" 36 #include "memory/universe.hpp" 37 #include "nativeInst_s390.hpp" 38 #include "oops/objArrayKlass.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/safepointMechanism.inline.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "runtime/stubRoutines.hpp" 43 #include "utilities/macros.hpp" 44 #include "utilities/powerOfTwo.hpp" 45 #include "vmreg_s390.inline.hpp" 46 47 #define __ _masm-> 48 49 #ifndef PRODUCT 50 #undef __ 51 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)-> 52 #endif 53 54 //------------------------------------------------------------ 55 56 bool LIR_Assembler::is_small_constant(LIR_Opr opr) { 57 // Not used on ZARCH_64 58 ShouldNotCallThis(); 59 return false; 60 } 61 62 LIR_Opr LIR_Assembler::receiverOpr() { 63 return FrameMap::Z_R2_oop_opr; 64 } 65 66 LIR_Opr LIR_Assembler::osrBufferPointer() { 67 return FrameMap::Z_R2_opr; 68 } 69 70 int LIR_Assembler::initial_frame_size_in_bytes() const { 71 return in_bytes(frame_map()->framesize_in_bytes()); 72 } 73 74 // Inline cache check: done before the frame is built. 75 // The inline cached class is in Z_inline_cache(Z_R9). 76 // We fetch the class of the receiver and compare it with the cached class. 77 // If they do not match we jump to the slow case. 78 int LIR_Assembler::check_icache() { 79 Register receiver = receiverOpr()->as_register(); 80 int offset = __ offset(); 81 __ inline_cache_check(receiver, Z_inline_cache); 82 return offset; 83 } 84 85 void LIR_Assembler::clinit_barrier(ciMethod* method) { 86 assert(!method->holder()->is_not_initialized(), "initialization should have been started"); 87 88 Label L_skip_barrier; 89 Register klass = Z_R1_scratch; 90 91 metadata2reg(method->holder()->constant_encoding(), klass); 92 __ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/); 93 94 __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub()); 95 __ z_br(klass); 96 97 __ bind(L_skip_barrier); 98 } 99 100 void LIR_Assembler::osr_entry() { 101 // On-stack-replacement entry sequence (interpreter frame layout described in frame_s390.hpp): 102 // 103 // 1. Create a new compiled activation. 104 // 2. Initialize local variables in the compiled activation. The expression stack must be empty 105 // at the osr_bci; it is not initialized. 106 // 3. Jump to the continuation address in compiled code to resume execution. 107 108 // OSR entry point 109 offsets()->set_value(CodeOffsets::OSR_Entry, code_offset()); 110 BlockBegin* osr_entry = compilation()->hir()->osr_entry(); 111 ValueStack* entry_state = osr_entry->end()->state(); 112 int number_of_locks = entry_state->locks_size(); 113 114 // Create a frame for the compiled activation. 115 __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes()); 116 117 // OSR buffer is 118 // 119 // locals[nlocals-1..0] 120 // monitors[number_of_locks-1..0] 121 // 122 // Locals is a direct copy of the interpreter frame so in the osr buffer 123 // the first slot in the local array is the last local from the interpreter 124 // and the last slot is local[0] (receiver) from the interpreter 125 // 126 // Similarly with locks. The first lock slot in the osr buffer is the nth lock 127 // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock 128 // in the interpreter frame (the method lock if a sync method) 129 130 // Initialize monitors in the compiled activation. 131 // I0: pointer to osr buffer 132 // 133 // All other registers are dead at this point and the locals will be 134 // copied into place by code emitted in the IR. 135 136 Register OSR_buf = osrBufferPointer()->as_register(); 137 { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below"); 138 int monitor_offset = BytesPerWord * method()->max_locals() + 139 (2 * BytesPerWord) * (number_of_locks - 1); 140 // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in 141 // the OSR buffer using 2 word entries: first the lock and then 142 // the oop. 143 for (int i = 0; i < number_of_locks; i++) { 144 int slot_offset = monitor_offset - ((i * 2) * BytesPerWord); 145 // Verify the interpreter's monitor has a non-null object. 146 __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is null", __LINE__); 147 // Copy the lock field into the compiled activation. 148 __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf); 149 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i)); 150 __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf); 151 __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i)); 152 } 153 } 154 } 155 156 // -------------------------------------------------------------------------------------------- 157 158 address LIR_Assembler::emit_call_c(address a) { 159 __ align_call_far_patchable(__ pc()); 160 address call_addr = __ call_c_opt(a); 161 if (call_addr == nullptr) { 162 bailout("const section overflow"); 163 } 164 return call_addr; 165 } 166 167 int LIR_Assembler::emit_exception_handler() { 168 // Generate code for exception handler. 169 address handler_base = __ start_a_stub(exception_handler_size()); 170 if (handler_base == nullptr) { 171 // Not enough space left for the handler. 172 bailout("exception handler overflow"); 173 return -1; 174 } 175 176 int offset = code_offset(); 177 178 address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id); 179 address call_addr = emit_call_c(a); 180 CHECK_BAILOUT_(-1); 181 __ should_not_reach_here(); 182 guarantee(code_offset() - offset <= exception_handler_size(), "overflow"); 183 __ end_a_stub(); 184 185 return offset; 186 } 187 188 // Emit the code to remove the frame from the stack in the exception 189 // unwind path. 190 int LIR_Assembler::emit_unwind_handler() { 191 #ifndef PRODUCT 192 if (CommentedAssembly) { 193 _masm->block_comment("Unwind handler"); 194 } 195 #endif 196 197 int offset = code_offset(); 198 Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved. 199 Register Rtmp1 = Z_R11; 200 Register Rtmp2 = Z_R12; 201 202 // Fetch the exception from TLS and clear out exception related thread state. 203 Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset()); 204 Address exc_pc_addr = Address(Z_thread, JavaThread::exception_pc_offset()); 205 __ z_lg(Z_EXC_OOP, exc_oop_addr); 206 __ clear_mem(exc_oop_addr, sizeof(oop)); 207 __ clear_mem(exc_pc_addr, sizeof(intptr_t)); 208 209 __ bind(_unwind_handler_entry); 210 __ verify_not_null_oop(Z_EXC_OOP); 211 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 212 __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception. 213 } 214 215 // Perform needed unlocking. 216 MonitorExitStub* stub = nullptr; 217 if (method()->is_synchronized()) { 218 // Runtime1::monitorexit_id expects lock address in Z_R1_scratch. 219 LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch); 220 monitor_address(0, lock); 221 stub = new MonitorExitStub(lock, true, 0); 222 __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry()); 223 __ bind(*stub->continuation()); 224 } 225 226 if (compilation()->env()->dtrace_method_probes()) { 227 ShouldNotReachHere(); // Not supported. 228 #if 0 229 __ mov(rdi, r15_thread); 230 __ mov_metadata(rsi, method()->constant_encoding()); 231 __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit))); 232 #endif 233 } 234 235 if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) { 236 __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved); // Restore the exception. 237 } 238 239 // Remove the activation and dispatch to the unwind handler. 240 __ pop_frame(); 241 __ z_lg(Z_EXC_PC, _z_common_abi(return_pc), Z_SP); 242 243 // Z_EXC_OOP: exception oop 244 // Z_EXC_PC: exception pc 245 246 // Dispatch to the unwind logic. 247 __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id)); 248 __ z_br(Z_R5); 249 250 // Emit the slow path assembly. 251 if (stub != nullptr) { 252 stub->emit_code(this); 253 } 254 255 return offset; 256 } 257 258 int LIR_Assembler::emit_deopt_handler() { 259 // Generate code for exception handler. 260 address handler_base = __ start_a_stub(deopt_handler_size()); 261 if (handler_base == nullptr) { 262 // Not enough space left for the handler. 263 bailout("deopt handler overflow"); 264 return -1; 265 } int offset = code_offset(); 266 // Size must be constant (see HandlerImpl::emit_deopt_handler). 267 __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack()); 268 __ call(Z_R1_scratch); 269 guarantee(code_offset() - offset <= deopt_handler_size(), "overflow"); 270 __ end_a_stub(); 271 272 return offset; 273 } 274 275 void LIR_Assembler::jobject2reg(jobject o, Register reg) { 276 if (o == nullptr) { 277 __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove. 278 } else { 279 AddressLiteral a = __ allocate_oop_address(o); 280 bool success = __ load_oop_from_toc(reg, a, reg); 281 if (!success) { 282 bailout("const section overflow"); 283 } 284 } 285 } 286 287 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) { 288 // Allocate a new index in table to hold the object once it's been patched. 289 int oop_index = __ oop_recorder()->allocate_oop_index(nullptr); 290 PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index); 291 292 AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index)); 293 assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc"); 294 // The null will be dynamically patched later so the sequence to 295 // load the address literal must not be optimized. 296 __ load_const(reg, addrlit); 297 298 patching_epilog(patch, lir_patch_normal, reg, info); 299 } 300 301 void LIR_Assembler::metadata2reg(Metadata* md, Register reg) { 302 bool success = __ set_metadata_constant(md, reg); 303 if (!success) { 304 bailout("const section overflow"); 305 return; 306 } 307 } 308 309 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) { 310 // Allocate a new index in table to hold the klass once it's been patched. 311 int index = __ oop_recorder()->allocate_metadata_index(nullptr); 312 PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index); 313 AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index)); 314 assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc"); 315 // The null will be dynamically patched later so the sequence to 316 // load the address literal must not be optimized. 317 __ load_const(reg, addrlit); 318 319 patching_epilog(patch, lir_patch_normal, reg, info); 320 } 321 322 void LIR_Assembler::emit_op3(LIR_Op3* op) { 323 switch (op->code()) { 324 case lir_idiv: 325 case lir_irem: 326 arithmetic_idiv(op->code(), 327 op->in_opr1(), 328 op->in_opr2(), 329 op->in_opr3(), 330 op->result_opr(), 331 op->info()); 332 break; 333 case lir_fmad: { 334 const FloatRegister opr1 = op->in_opr1()->as_double_reg(), 335 opr2 = op->in_opr2()->as_double_reg(), 336 opr3 = op->in_opr3()->as_double_reg(), 337 res = op->result_opr()->as_double_reg(); 338 __ z_madbr(opr3, opr1, opr2); 339 if (res != opr3) { __ z_ldr(res, opr3); } 340 } break; 341 case lir_fmaf: { 342 const FloatRegister opr1 = op->in_opr1()->as_float_reg(), 343 opr2 = op->in_opr2()->as_float_reg(), 344 opr3 = op->in_opr3()->as_float_reg(), 345 res = op->result_opr()->as_float_reg(); 346 __ z_maebr(opr3, opr1, opr2); 347 if (res != opr3) { __ z_ler(res, opr3); } 348 } break; 349 default: ShouldNotReachHere(); break; 350 } 351 } 352 353 354 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) { 355 #ifdef ASSERT 356 assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label"); 357 if (op->block() != nullptr) { _branch_target_blocks.append(op->block()); } 358 if (op->ublock() != nullptr) { _branch_target_blocks.append(op->ublock()); } 359 #endif 360 361 if (op->cond() == lir_cond_always) { 362 if (op->info() != nullptr) { add_debug_info_for_branch(op->info()); } 363 __ branch_optimized(Assembler::bcondAlways, *(op->label())); 364 } else { 365 Assembler::branch_condition acond = Assembler::bcondZero; 366 if (op->code() == lir_cond_float_branch) { 367 assert(op->ublock() != nullptr, "must have unordered successor"); 368 __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label())); 369 } 370 switch (op->cond()) { 371 case lir_cond_equal: acond = Assembler::bcondEqual; break; 372 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; break; 373 case lir_cond_less: acond = Assembler::bcondLow; break; 374 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; break; 375 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; break; 376 case lir_cond_greater: acond = Assembler::bcondHigh; break; 377 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; break; 378 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; break; 379 default: ShouldNotReachHere(); 380 } 381 __ branch_optimized(acond,*(op->label())); 382 } 383 } 384 385 386 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) { 387 LIR_Opr src = op->in_opr(); 388 LIR_Opr dest = op->result_opr(); 389 390 switch (op->bytecode()) { 391 case Bytecodes::_i2l: 392 __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT); 393 break; 394 395 case Bytecodes::_l2i: 396 __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG); 397 break; 398 399 case Bytecodes::_i2b: 400 __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT); 401 break; 402 403 case Bytecodes::_i2c: 404 __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT); 405 break; 406 407 case Bytecodes::_i2s: 408 __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT); 409 break; 410 411 case Bytecodes::_f2d: 412 assert(dest->is_double_fpu(), "check"); 413 __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT); 414 break; 415 416 case Bytecodes::_d2f: 417 assert(dest->is_single_fpu(), "check"); 418 __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE); 419 break; 420 421 case Bytecodes::_i2f: 422 __ z_cefbr(dest->as_float_reg(), src->as_register()); 423 break; 424 425 case Bytecodes::_i2d: 426 __ z_cdfbr(dest->as_double_reg(), src->as_register()); 427 break; 428 429 case Bytecodes::_l2f: 430 __ z_cegbr(dest->as_float_reg(), src->as_register_lo()); 431 break; 432 case Bytecodes::_l2d: 433 __ z_cdgbr(dest->as_double_reg(), src->as_register_lo()); 434 break; 435 436 case Bytecodes::_f2i: 437 case Bytecodes::_f2l: { 438 Label done; 439 FloatRegister Rsrc = src->as_float_reg(); 440 Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo()); 441 __ clear_reg(Rdst, true, false); 442 __ z_cebr(Rsrc, Rsrc); 443 __ z_brno(done); // NaN -> 0 444 if (op->bytecode() == Bytecodes::_f2i) { 445 __ z_cfebr(Rdst, Rsrc, Assembler::to_zero); 446 } else { // op->bytecode() == Bytecodes::_f2l 447 __ z_cgebr(Rdst, Rsrc, Assembler::to_zero); 448 } 449 __ bind(done); 450 } 451 break; 452 453 case Bytecodes::_d2i: 454 case Bytecodes::_d2l: { 455 Label done; 456 FloatRegister Rsrc = src->as_double_reg(); 457 Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo()); 458 __ clear_reg(Rdst, true, false); // Don't set CC. 459 __ z_cdbr(Rsrc, Rsrc); 460 __ z_brno(done); // NaN -> 0 461 if (op->bytecode() == Bytecodes::_d2i) { 462 __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero); 463 } else { // Bytecodes::_d2l 464 __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero); 465 } 466 __ bind(done); 467 } 468 break; 469 470 default: ShouldNotReachHere(); 471 } 472 } 473 474 void LIR_Assembler::align_call(LIR_Code code) { 475 // End of call instruction must be 4 byte aligned. 476 int offset = __ offset(); 477 switch (code) { 478 case lir_icvirtual_call: 479 offset += MacroAssembler::load_const_from_toc_size(); 480 // no break 481 case lir_static_call: 482 case lir_optvirtual_call: 483 case lir_dynamic_call: 484 offset += NativeCall::call_far_pcrelative_displacement_offset; 485 break; 486 default: ShouldNotReachHere(); 487 } 488 if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) { 489 __ nop(); 490 } 491 } 492 493 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) { 494 assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0, 495 "must be aligned (offset=%d)", __ offset()); 496 assert(rtype == relocInfo::none || 497 rtype == relocInfo::opt_virtual_call_type || 498 rtype == relocInfo::static_call_type, "unexpected rtype"); 499 // Prepend each BRASL with a nop. 500 __ relocate(rtype); 501 __ z_nop(); 502 __ z_brasl(Z_R14, op->addr()); 503 add_call_info(code_offset(), op->info()); 504 } 505 506 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) { 507 address virtual_call_oop_addr = nullptr; 508 AddressLiteral empty_ic((address) Universe::non_oop_word()); 509 virtual_call_oop_addr = __ pc(); 510 bool success = __ load_const_from_toc(Z_inline_cache, empty_ic); 511 if (!success) { 512 bailout("const section overflow"); 513 return; 514 } 515 516 // CALL to fixup routine. Fixup routine uses ScopeDesc info 517 // to determine who we intended to call. 518 __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr)); 519 call(op, relocInfo::none); 520 } 521 522 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) { 523 if (from_reg != to_reg) __ z_lgr(to_reg, from_reg); 524 } 525 526 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) { 527 assert(src->is_constant(), "should not call otherwise"); 528 assert(dest->is_stack(), "should not call otherwise"); 529 LIR_Const* c = src->as_constant_ptr(); 530 531 unsigned int lmem = 0; 532 unsigned int lcon = 0; 533 int64_t cbits = 0; 534 Address dest_addr; 535 switch (c->type()) { 536 case T_INT: // fall through 537 case T_FLOAT: 538 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 539 lmem = 4; lcon = 4; cbits = c->as_jint_bits(); 540 break; 541 542 case T_ADDRESS: 543 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 544 lmem = 8; lcon = 4; cbits = c->as_jint_bits(); 545 break; 546 547 case T_OBJECT: 548 dest_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 549 if (c->as_jobject() == nullptr) { 550 __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8); 551 } else { 552 jobject2reg(c->as_jobject(), Z_R1_scratch); 553 __ reg2mem_opt(Z_R1_scratch, dest_addr, true); 554 } 555 return; 556 557 case T_LONG: // fall through 558 case T_DOUBLE: 559 dest_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 560 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); 561 break; 562 563 default: 564 ShouldNotReachHere(); 565 } 566 567 __ store_const(dest_addr, cbits, lmem, lcon); 568 } 569 570 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) { 571 assert(src->is_constant(), "should not call otherwise"); 572 assert(dest->is_address(), "should not call otherwise"); 573 574 LIR_Const* c = src->as_constant_ptr(); 575 Address addr = as_Address(dest->as_address_ptr()); 576 577 int store_offset = -1; 578 579 if (dest->as_address_ptr()->index()->is_valid()) { 580 switch (type) { 581 case T_INT: // fall through 582 case T_FLOAT: 583 __ load_const_optimized(Z_R0_scratch, c->as_jint_bits()); 584 store_offset = __ offset(); 585 if (Immediate::is_uimm12(addr.disp())) { 586 __ z_st(Z_R0_scratch, addr); 587 } else { 588 __ z_sty(Z_R0_scratch, addr); 589 } 590 break; 591 592 case T_ADDRESS: 593 __ load_const_optimized(Z_R1_scratch, c->as_jint_bits()); 594 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 595 break; 596 597 case T_OBJECT: // fall through 598 case T_ARRAY: 599 if (c->as_jobject() == nullptr) { 600 if (UseCompressedOops && !wide) { 601 __ clear_reg(Z_R1_scratch, false); 602 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 603 } else { 604 __ clear_reg(Z_R1_scratch, true); 605 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 606 } 607 } else { 608 jobject2reg(c->as_jobject(), Z_R1_scratch); 609 if (UseCompressedOops && !wide) { 610 __ encode_heap_oop(Z_R1_scratch); 611 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 612 } else { 613 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 614 } 615 } 616 assert(store_offset >= 0, "check"); 617 break; 618 619 case T_LONG: // fall through 620 case T_DOUBLE: 621 __ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits())); 622 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 623 break; 624 625 case T_BOOLEAN: // fall through 626 case T_BYTE: 627 __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint())); 628 store_offset = __ offset(); 629 if (Immediate::is_uimm12(addr.disp())) { 630 __ z_stc(Z_R0_scratch, addr); 631 } else { 632 __ z_stcy(Z_R0_scratch, addr); 633 } 634 break; 635 636 case T_CHAR: // fall through 637 case T_SHORT: 638 __ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint())); 639 store_offset = __ offset(); 640 if (Immediate::is_uimm12(addr.disp())) { 641 __ z_sth(Z_R0_scratch, addr); 642 } else { 643 __ z_sthy(Z_R0_scratch, addr); 644 } 645 break; 646 647 default: 648 ShouldNotReachHere(); 649 } 650 651 } else { // no index 652 653 unsigned int lmem = 0; 654 unsigned int lcon = 0; 655 int64_t cbits = 0; 656 657 switch (type) { 658 case T_INT: // fall through 659 case T_FLOAT: 660 lmem = 4; lcon = 4; cbits = c->as_jint_bits(); 661 break; 662 663 case T_ADDRESS: 664 lmem = 8; lcon = 4; cbits = c->as_jint_bits(); 665 break; 666 667 case T_OBJECT: // fall through 668 case T_ARRAY: 669 if (c->as_jobject() == nullptr) { 670 if (UseCompressedOops && !wide) { 671 store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4); 672 } else { 673 store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8); 674 } 675 } else { 676 jobject2reg(c->as_jobject(), Z_R1_scratch); 677 if (UseCompressedOops && !wide) { 678 __ encode_heap_oop(Z_R1_scratch); 679 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false); 680 } else { 681 store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true); 682 } 683 } 684 assert(store_offset >= 0, "check"); 685 break; 686 687 case T_LONG: // fall through 688 case T_DOUBLE: 689 lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits()); 690 break; 691 692 case T_BOOLEAN: // fall through 693 case T_BYTE: 694 lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint()); 695 break; 696 697 case T_CHAR: // fall through 698 case T_SHORT: 699 lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint()); 700 break; 701 702 default: 703 ShouldNotReachHere(); 704 } 705 706 if (store_offset == -1) { 707 store_offset = __ store_const(addr, cbits, lmem, lcon); 708 assert(store_offset >= 0, "check"); 709 } 710 } 711 712 if (info != nullptr) { 713 add_debug_info_for_null_check(store_offset, info); 714 } 715 } 716 717 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 718 assert(src->is_constant(), "should not call otherwise"); 719 assert(dest->is_register(), "should not call otherwise"); 720 LIR_Const* c = src->as_constant_ptr(); 721 722 switch (c->type()) { 723 case T_INT: { 724 assert(patch_code == lir_patch_none, "no patching handled here"); 725 __ load_const_optimized(dest->as_register(), c->as_jint()); 726 break; 727 } 728 729 case T_ADDRESS: { 730 assert(patch_code == lir_patch_none, "no patching handled here"); 731 __ load_const_optimized(dest->as_register(), c->as_jint()); 732 break; 733 } 734 735 case T_LONG: { 736 assert(patch_code == lir_patch_none, "no patching handled here"); 737 __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong()); 738 break; 739 } 740 741 case T_OBJECT: { 742 if (patch_code != lir_patch_none) { 743 jobject2reg_with_patching(dest->as_register(), info); 744 } else { 745 jobject2reg(c->as_jobject(), dest->as_register()); 746 } 747 break; 748 } 749 750 case T_METADATA: { 751 if (patch_code != lir_patch_none) { 752 klass2reg_with_patching(dest->as_register(), info); 753 } else { 754 metadata2reg(c->as_metadata(), dest->as_register()); 755 } 756 break; 757 } 758 759 case T_FLOAT: { 760 Register toc_reg = Z_R1_scratch; 761 __ load_toc(toc_reg); 762 address const_addr = __ float_constant(c->as_jfloat()); 763 if (const_addr == nullptr) { 764 bailout("const section overflow"); 765 break; 766 } 767 int displ = const_addr - _masm->code()->consts()->start(); 768 if (dest->is_single_fpu()) { 769 __ z_ley(dest->as_float_reg(), displ, toc_reg); 770 } else { 771 assert(dest->is_single_cpu(), "Must be a cpu register."); 772 __ z_ly(dest->as_register(), displ, toc_reg); 773 } 774 } 775 break; 776 777 case T_DOUBLE: { 778 Register toc_reg = Z_R1_scratch; 779 __ load_toc(toc_reg); 780 address const_addr = __ double_constant(c->as_jdouble()); 781 if (const_addr == nullptr) { 782 bailout("const section overflow"); 783 break; 784 } 785 int displ = const_addr - _masm->code()->consts()->start(); 786 if (dest->is_double_fpu()) { 787 __ z_ldy(dest->as_double_reg(), displ, toc_reg); 788 } else { 789 assert(dest->is_double_cpu(), "Must be a long register."); 790 __ z_lg(dest->as_register_lo(), displ, toc_reg); 791 } 792 } 793 break; 794 795 default: 796 ShouldNotReachHere(); 797 } 798 } 799 800 Address LIR_Assembler::as_Address(LIR_Address* addr) { 801 if (addr->base()->is_illegal()) { 802 Unimplemented(); 803 } 804 805 Register base = addr->base()->as_pointer_register(); 806 807 if (addr->index()->is_illegal()) { 808 return Address(base, addr->disp()); 809 } else if (addr->index()->is_cpu_register()) { 810 Register index = addr->index()->as_pointer_register(); 811 return Address(base, index, addr->disp()); 812 } else if (addr->index()->is_constant()) { 813 intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp(); 814 return Address(base, addr_offset); 815 } else { 816 ShouldNotReachHere(); 817 return Address(); 818 } 819 } 820 821 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) { 822 switch (type) { 823 case T_INT: 824 case T_FLOAT: { 825 Register tmp = Z_R1_scratch; 826 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 827 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 828 __ mem2reg_opt(tmp, from, false); 829 __ reg2mem_opt(tmp, to, false); 830 break; 831 } 832 case T_ADDRESS: 833 case T_OBJECT: { 834 Register tmp = Z_R1_scratch; 835 Address from = frame_map()->address_for_slot(src->single_stack_ix()); 836 Address to = frame_map()->address_for_slot(dest->single_stack_ix()); 837 __ mem2reg_opt(tmp, from, true); 838 __ reg2mem_opt(tmp, to, true); 839 break; 840 } 841 case T_LONG: 842 case T_DOUBLE: { 843 Register tmp = Z_R1_scratch; 844 Address from = frame_map()->address_for_double_slot(src->double_stack_ix()); 845 Address to = frame_map()->address_for_double_slot(dest->double_stack_ix()); 846 __ mem2reg_opt(tmp, from, true); 847 __ reg2mem_opt(tmp, to, true); 848 break; 849 } 850 851 default: 852 ShouldNotReachHere(); 853 } 854 } 855 856 // 4-byte accesses only! Don't use it to access 8 bytes! 857 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) { 858 ShouldNotCallThis(); 859 return Address(); // unused 860 } 861 862 // 4-byte accesses only! Don't use it to access 8 bytes! 863 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) { 864 ShouldNotCallThis(); 865 return Address(); // unused 866 } 867 868 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, 869 CodeEmitInfo* info, bool wide) { 870 871 assert(type != T_METADATA, "load of metadata ptr not supported"); 872 LIR_Address* addr = src_opr->as_address_ptr(); 873 LIR_Opr to_reg = dest; 874 875 Register src = addr->base()->as_pointer_register(); 876 Register disp_reg = Z_R0; 877 int disp_value = addr->disp(); 878 bool needs_patching = (patch_code != lir_patch_none); 879 880 if (addr->base()->type() == T_OBJECT) { 881 __ verify_oop(src, FILE_AND_LINE); 882 } 883 884 PatchingStub* patch = nullptr; 885 if (needs_patching) { 886 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 887 assert(!to_reg->is_double_cpu() || 888 patch_code == lir_patch_none || 889 patch_code == lir_patch_normal, "patching doesn't match register"); 890 } 891 892 if (addr->index()->is_illegal()) { 893 if (!Immediate::is_simm20(disp_value)) { 894 if (needs_patching) { 895 __ load_const(Z_R1_scratch, (intptr_t)0); 896 } else { 897 __ load_const_optimized(Z_R1_scratch, disp_value); 898 } 899 disp_reg = Z_R1_scratch; 900 disp_value = 0; 901 } 902 } else { 903 if (!Immediate::is_simm20(disp_value)) { 904 __ load_const_optimized(Z_R1_scratch, disp_value); 905 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); 906 disp_reg = Z_R1_scratch; 907 disp_value = 0; 908 } 909 disp_reg = addr->index()->as_pointer_register(); 910 } 911 912 // Remember the offset of the load. The patching_epilog must be done 913 // before the call to add_debug_info, otherwise the PcDescs don't get 914 // entered in increasing order. 915 int offset = code_offset(); 916 917 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); 918 919 bool short_disp = Immediate::is_uimm12(disp_value); 920 921 switch (type) { 922 case T_BOOLEAN: // fall through 923 case T_BYTE : __ z_lb(dest->as_register(), disp_value, disp_reg, src); break; 924 case T_CHAR : __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break; 925 case T_SHORT : 926 if (short_disp) { 927 __ z_lh(dest->as_register(), disp_value, disp_reg, src); 928 } else { 929 __ z_lhy(dest->as_register(), disp_value, disp_reg, src); 930 } 931 break; 932 case T_INT : 933 if (short_disp) { 934 __ z_l(dest->as_register(), disp_value, disp_reg, src); 935 } else { 936 __ z_ly(dest->as_register(), disp_value, disp_reg, src); 937 } 938 break; 939 case T_ADDRESS: 940 __ z_lg(dest->as_register(), disp_value, disp_reg, src); 941 break; 942 case T_ARRAY : // fall through 943 case T_OBJECT: 944 { 945 if (UseCompressedOops && !wide) { 946 __ z_llgf(dest->as_register(), disp_value, disp_reg, src); 947 __ oop_decoder(dest->as_register(), dest->as_register(), true); 948 } else { 949 __ z_lg(dest->as_register(), disp_value, disp_reg, src); 950 } 951 __ verify_oop(dest->as_register(), FILE_AND_LINE); 952 break; 953 } 954 case T_FLOAT: 955 if (short_disp) { 956 __ z_le(dest->as_float_reg(), disp_value, disp_reg, src); 957 } else { 958 __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src); 959 } 960 break; 961 case T_DOUBLE: 962 if (short_disp) { 963 __ z_ld(dest->as_double_reg(), disp_value, disp_reg, src); 964 } else { 965 __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src); 966 } 967 break; 968 case T_LONG : __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break; 969 default : ShouldNotReachHere(); 970 } 971 972 if (patch != nullptr) { 973 patching_epilog(patch, patch_code, src, info); 974 } 975 if (info != nullptr) add_debug_info_for_null_check(offset, info); 976 } 977 978 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) { 979 assert(src->is_stack(), "should not call otherwise"); 980 assert(dest->is_register(), "should not call otherwise"); 981 982 if (dest->is_single_cpu()) { 983 if (is_reference_type(type)) { 984 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); 985 __ verify_oop(dest->as_register(), FILE_AND_LINE); 986 } else if (type == T_METADATA || type == T_ADDRESS) { 987 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true); 988 } else { 989 __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false); 990 } 991 } else if (dest->is_double_cpu()) { 992 Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix()); 993 __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true); 994 } else if (dest->is_single_fpu()) { 995 Address src_addr = frame_map()->address_for_slot(src->single_stack_ix()); 996 __ mem2freg_opt(dest->as_float_reg(), src_addr, false); 997 } else if (dest->is_double_fpu()) { 998 Address src_addr = frame_map()->address_for_slot(src->double_stack_ix()); 999 __ mem2freg_opt(dest->as_double_reg(), src_addr, true); 1000 } else { 1001 ShouldNotReachHere(); 1002 } 1003 } 1004 1005 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) { 1006 assert(src->is_register(), "should not call otherwise"); 1007 assert(dest->is_stack(), "should not call otherwise"); 1008 1009 if (src->is_single_cpu()) { 1010 const Address dst = frame_map()->address_for_slot(dest->single_stack_ix()); 1011 if (is_reference_type(type)) { 1012 __ verify_oop(src->as_register(), FILE_AND_LINE); 1013 __ reg2mem_opt(src->as_register(), dst, true); 1014 } else if (type == T_METADATA || type == T_ADDRESS) { 1015 __ reg2mem_opt(src->as_register(), dst, true); 1016 } else { 1017 __ reg2mem_opt(src->as_register(), dst, false); 1018 } 1019 } else if (src->is_double_cpu()) { 1020 Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix()); 1021 __ reg2mem_opt(src->as_register_lo(), dstLO, true); 1022 } else if (src->is_single_fpu()) { 1023 Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix()); 1024 __ freg2mem_opt(src->as_float_reg(), dst_addr, false); 1025 } else if (src->is_double_fpu()) { 1026 Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix()); 1027 __ freg2mem_opt(src->as_double_reg(), dst_addr, true); 1028 } else { 1029 ShouldNotReachHere(); 1030 } 1031 } 1032 1033 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) { 1034 if (from_reg->is_float_kind() && to_reg->is_float_kind()) { 1035 if (from_reg->is_double_fpu()) { 1036 // double to double moves 1037 assert(to_reg->is_double_fpu(), "should match"); 1038 __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg()); 1039 } else { 1040 // float to float moves 1041 assert(to_reg->is_single_fpu(), "should match"); 1042 __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg()); 1043 } 1044 } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) { 1045 if (from_reg->is_double_cpu()) { 1046 __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register()); 1047 } else if (to_reg->is_double_cpu()) { 1048 // int to int moves 1049 __ z_lgr(to_reg->as_register_lo(), from_reg->as_register()); 1050 } else { 1051 // int to int moves 1052 __ z_lgr(to_reg->as_register(), from_reg->as_register()); 1053 } 1054 } else { 1055 ShouldNotReachHere(); 1056 } 1057 if (is_reference_type(to_reg->type())) { 1058 __ verify_oop(to_reg->as_register(), FILE_AND_LINE); 1059 } 1060 } 1061 1062 void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type, 1063 LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, 1064 bool wide) { 1065 assert(type != T_METADATA, "store of metadata ptr not supported"); 1066 LIR_Address* addr = dest_opr->as_address_ptr(); 1067 1068 Register dest = addr->base()->as_pointer_register(); 1069 Register disp_reg = Z_R0; 1070 int disp_value = addr->disp(); 1071 bool needs_patching = (patch_code != lir_patch_none); 1072 1073 if (addr->base()->is_oop_register()) { 1074 __ verify_oop(dest, FILE_AND_LINE); 1075 } 1076 1077 PatchingStub* patch = nullptr; 1078 if (needs_patching) { 1079 patch = new PatchingStub(_masm, PatchingStub::access_field_id); 1080 assert(!from->is_double_cpu() || 1081 patch_code == lir_patch_none || 1082 patch_code == lir_patch_normal, "patching doesn't match register"); 1083 } 1084 1085 assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption"); 1086 if (addr->index()->is_illegal()) { 1087 if (!Immediate::is_simm20(disp_value)) { 1088 if (needs_patching) { 1089 __ load_const(Z_R1_scratch, (intptr_t)0); 1090 } else { 1091 __ load_const_optimized(Z_R1_scratch, disp_value); 1092 } 1093 disp_reg = Z_R1_scratch; 1094 disp_value = 0; 1095 } 1096 } else { 1097 if (!Immediate::is_simm20(disp_value)) { 1098 __ load_const_optimized(Z_R1_scratch, disp_value); 1099 __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register()); 1100 disp_reg = Z_R1_scratch; 1101 disp_value = 0; 1102 } 1103 disp_reg = addr->index()->as_pointer_register(); 1104 } 1105 1106 assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up"); 1107 1108 if (is_reference_type(type)) { 1109 __ verify_oop(from->as_register(), FILE_AND_LINE); 1110 } 1111 1112 bool short_disp = Immediate::is_uimm12(disp_value); 1113 1114 // Remember the offset of the store. The patching_epilog must be done 1115 // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get 1116 // entered in increasing order. 1117 int offset = code_offset(); 1118 switch (type) { 1119 case T_BOOLEAN: // fall through 1120 case T_BYTE : 1121 if (short_disp) { 1122 __ z_stc(from->as_register(), disp_value, disp_reg, dest); 1123 } else { 1124 __ z_stcy(from->as_register(), disp_value, disp_reg, dest); 1125 } 1126 break; 1127 case T_CHAR : // fall through 1128 case T_SHORT : 1129 if (short_disp) { 1130 __ z_sth(from->as_register(), disp_value, disp_reg, dest); 1131 } else { 1132 __ z_sthy(from->as_register(), disp_value, disp_reg, dest); 1133 } 1134 break; 1135 case T_INT : 1136 if (short_disp) { 1137 __ z_st(from->as_register(), disp_value, disp_reg, dest); 1138 } else { 1139 __ z_sty(from->as_register(), disp_value, disp_reg, dest); 1140 } 1141 break; 1142 case T_LONG : __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break; 1143 case T_ADDRESS: __ z_stg(from->as_register(), disp_value, disp_reg, dest); break; 1144 break; 1145 case T_ARRAY : // fall through 1146 case T_OBJECT: 1147 { 1148 if (UseCompressedOops && !wide) { 1149 Register compressed_src = Z_R14; 1150 __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true); 1151 offset = code_offset(); 1152 if (short_disp) { 1153 __ z_st(compressed_src, disp_value, disp_reg, dest); 1154 } else { 1155 __ z_sty(compressed_src, disp_value, disp_reg, dest); 1156 } 1157 } else { 1158 __ z_stg(from->as_register(), disp_value, disp_reg, dest); 1159 } 1160 break; 1161 } 1162 case T_FLOAT : 1163 if (short_disp) { 1164 __ z_ste(from->as_float_reg(), disp_value, disp_reg, dest); 1165 } else { 1166 __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest); 1167 } 1168 break; 1169 case T_DOUBLE: 1170 if (short_disp) { 1171 __ z_std(from->as_double_reg(), disp_value, disp_reg, dest); 1172 } else { 1173 __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest); 1174 } 1175 break; 1176 default: ShouldNotReachHere(); 1177 } 1178 1179 if (patch != nullptr) { 1180 patching_epilog(patch, patch_code, dest, info); 1181 } 1182 1183 if (info != nullptr) add_debug_info_for_null_check(offset, info); 1184 } 1185 1186 1187 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) { 1188 assert(result->is_illegal() || 1189 (result->is_single_cpu() && result->as_register() == Z_R2) || 1190 (result->is_double_cpu() && result->as_register_lo() == Z_R2) || 1191 (result->is_single_fpu() && result->as_float_reg() == Z_F0) || 1192 (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention"); 1193 1194 __ z_lg(Z_R1_scratch, Address(Z_thread, JavaThread::polling_page_offset())); 1195 1196 // Pop the frame before the safepoint code. 1197 __ pop_frame_restore_retPC(initial_frame_size_in_bytes()); 1198 1199 if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) { 1200 __ reserved_stack_check(Z_R14); 1201 } 1202 1203 // We need to mark the code position where the load from the safepoint 1204 // polling page was emitted as relocInfo::poll_return_type here. 1205 __ relocate(relocInfo::poll_return_type); 1206 __ load_from_polling_page(Z_R1_scratch); 1207 1208 __ z_br(Z_R14); // Return to caller. 1209 } 1210 1211 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) { 1212 const Register poll_addr = tmp->as_register_lo(); 1213 __ z_lg(poll_addr, Address(Z_thread, JavaThread::polling_page_offset())); 1214 guarantee(info != nullptr, "Shouldn't be null"); 1215 add_debug_info_for_branch(info); 1216 int offset = __ offset(); 1217 __ relocate(relocInfo::poll_type); 1218 __ load_from_polling_page(poll_addr); 1219 return offset; 1220 } 1221 1222 void LIR_Assembler::emit_static_call_stub() { 1223 1224 // Stub is fixed up when the corresponding call is converted from calling 1225 // compiled code to calling interpreted code. 1226 1227 address call_pc = __ pc(); 1228 address stub = __ start_a_stub(call_stub_size()); 1229 if (stub == nullptr) { 1230 bailout("static call stub overflow"); 1231 return; 1232 } 1233 1234 int start = __ offset(); 1235 1236 __ relocate(static_stub_Relocation::spec(call_pc)); 1237 1238 // See also Matcher::interpreter_method_reg(). 1239 AddressLiteral meta = __ allocate_metadata_address(nullptr); 1240 bool success = __ load_const_from_toc(Z_method, meta); 1241 1242 __ set_inst_mark(); 1243 AddressLiteral a((address)-1); 1244 success = success && __ load_const_from_toc(Z_R1, a); 1245 if (!success) { 1246 bailout("const section overflow"); 1247 return; 1248 } 1249 1250 __ z_br(Z_R1); 1251 assert(__ offset() - start <= call_stub_size(), "stub too big"); 1252 __ end_a_stub(); // Update current stubs pointer and restore insts_end. 1253 } 1254 1255 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) { 1256 bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual; 1257 if (opr1->is_single_cpu()) { 1258 Register reg1 = opr1->as_register(); 1259 if (opr2->is_single_cpu()) { 1260 // cpu register - cpu register 1261 if (is_reference_type(opr1->type())) { 1262 __ z_clgr(reg1, opr2->as_register()); 1263 } else { 1264 assert(!is_reference_type(opr2->type()), "cmp int, oop?"); 1265 if (unsigned_comp) { 1266 __ z_clr(reg1, opr2->as_register()); 1267 } else { 1268 __ z_cr(reg1, opr2->as_register()); 1269 } 1270 } 1271 } else if (opr2->is_stack()) { 1272 // cpu register - stack 1273 if (is_reference_type(opr1->type())) { 1274 __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1275 } else { 1276 if (unsigned_comp) { 1277 __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1278 } else { 1279 __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix())); 1280 } 1281 } 1282 } else if (opr2->is_constant()) { 1283 // cpu register - constant 1284 LIR_Const* c = opr2->as_constant_ptr(); 1285 if (c->type() == T_INT) { 1286 if (unsigned_comp) { 1287 __ z_clfi(reg1, c->as_jint()); 1288 } else { 1289 __ z_cfi(reg1, c->as_jint()); 1290 } 1291 } else if (c->type() == T_METADATA) { 1292 // We only need, for now, comparison with null for metadata. 1293 assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops"); 1294 Metadata* m = c->as_metadata(); 1295 if (m == nullptr) { 1296 __ z_cghi(reg1, 0); 1297 } else { 1298 ShouldNotReachHere(); 1299 } 1300 } else if (is_reference_type(c->type())) { 1301 // In 64bit oops are single register. 1302 jobject o = c->as_jobject(); 1303 if (o == nullptr) { 1304 __ z_ltgr(reg1, reg1); 1305 } else { 1306 jobject2reg(o, Z_R1_scratch); 1307 __ z_cgr(reg1, Z_R1_scratch); 1308 } 1309 } else { 1310 fatal("unexpected type: %s", basictype_to_str(c->type())); 1311 } 1312 // cpu register - address 1313 } else if (opr2->is_address()) { 1314 if (op->info() != nullptr) { 1315 add_debug_info_for_null_check_here(op->info()); 1316 } 1317 if (unsigned_comp) { 1318 __ z_cly(reg1, as_Address(opr2->as_address_ptr())); 1319 } else { 1320 __ z_cy(reg1, as_Address(opr2->as_address_ptr())); 1321 } 1322 } else { 1323 ShouldNotReachHere(); 1324 } 1325 1326 } else if (opr1->is_double_cpu()) { 1327 assert(!unsigned_comp, "unexpected"); 1328 Register xlo = opr1->as_register_lo(); 1329 Register xhi = opr1->as_register_hi(); 1330 if (opr2->is_double_cpu()) { 1331 __ z_cgr(xlo, opr2->as_register_lo()); 1332 } else if (opr2->is_constant()) { 1333 // cpu register - constant 0 1334 assert(opr2->as_jlong() == (jlong)0, "only handles zero"); 1335 __ z_ltgr(xlo, xlo); 1336 } else { 1337 ShouldNotReachHere(); 1338 } 1339 1340 } else if (opr1->is_single_fpu()) { 1341 if (opr2->is_single_fpu()) { 1342 __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg()); 1343 } else { 1344 // stack slot 1345 Address addr = frame_map()->address_for_slot(opr2->single_stack_ix()); 1346 if (Immediate::is_uimm12(addr.disp())) { 1347 __ z_ceb(opr1->as_float_reg(), addr); 1348 } else { 1349 __ z_ley(Z_fscratch_1, addr); 1350 __ z_cebr(opr1->as_float_reg(), Z_fscratch_1); 1351 } 1352 } 1353 } else if (opr1->is_double_fpu()) { 1354 if (opr2->is_double_fpu()) { 1355 __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg()); 1356 } else { 1357 // stack slot 1358 Address addr = frame_map()->address_for_slot(opr2->double_stack_ix()); 1359 if (Immediate::is_uimm12(addr.disp())) { 1360 __ z_cdb(opr1->as_double_reg(), addr); 1361 } else { 1362 __ z_ldy(Z_fscratch_1, addr); 1363 __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1); 1364 } 1365 } 1366 } else { 1367 ShouldNotReachHere(); 1368 } 1369 } 1370 1371 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) { 1372 Label done; 1373 Register dreg = dst->as_register(); 1374 1375 if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) { 1376 assert((left->is_single_fpu() && right->is_single_fpu()) || 1377 (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types"); 1378 bool is_single = left->is_single_fpu(); 1379 bool is_unordered_less = (code == lir_ucmp_fd2i); 1380 FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg(); 1381 FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg(); 1382 if (is_single) { 1383 __ z_cebr(lreg, rreg); 1384 } else { 1385 __ z_cdbr(lreg, rreg); 1386 } 1387 if (VM_Version::has_LoadStoreConditional()) { 1388 Register one = Z_R0_scratch; 1389 Register minus_one = Z_R1_scratch; 1390 __ z_lghi(minus_one, -1); 1391 __ z_lghi(one, 1); 1392 __ z_lghi(dreg, 0); 1393 __ z_locgr(dreg, one, is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered); 1394 __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow); 1395 } else { 1396 __ clear_reg(dreg, true, false); 1397 __ z_bre(done); // if (left == right) dst = 0 1398 1399 // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1 1400 __ z_lhi(dreg, 1); 1401 __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done); 1402 1403 // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1 1404 __ z_lhi(dreg, -1); 1405 } 1406 } else { 1407 assert(code == lir_cmp_l2i, "check"); 1408 if (VM_Version::has_LoadStoreConditional()) { 1409 Register one = Z_R0_scratch; 1410 Register minus_one = Z_R1_scratch; 1411 __ z_cgr(left->as_register_lo(), right->as_register_lo()); 1412 __ z_lghi(minus_one, -1); 1413 __ z_lghi(one, 1); 1414 __ z_lghi(dreg, 0); 1415 __ z_locgr(dreg, one, Assembler::bcondHigh); 1416 __ z_locgr(dreg, minus_one, Assembler::bcondLow); 1417 } else { 1418 __ z_cgr(left->as_register_lo(), right->as_register_lo()); 1419 __ z_lghi(dreg, 0); // eq value 1420 __ z_bre(done); 1421 __ z_lghi(dreg, 1); // gt value 1422 __ z_brh(done); 1423 __ z_lghi(dreg, -1); // lt value 1424 } 1425 } 1426 __ bind(done); 1427 } 1428 1429 // result = condition ? opr1 : opr2 1430 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type, 1431 LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) { 1432 assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on s390"); 1433 1434 Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual; 1435 switch (condition) { 1436 case lir_cond_equal: acond = Assembler::bcondEqual; ncond = Assembler::bcondNotEqual; break; 1437 case lir_cond_notEqual: acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual; break; 1438 case lir_cond_less: acond = Assembler::bcondLow; ncond = Assembler::bcondNotLow; break; 1439 case lir_cond_lessEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; 1440 case lir_cond_greaterEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; 1441 case lir_cond_greater: acond = Assembler::bcondHigh; ncond = Assembler::bcondNotHigh; break; 1442 case lir_cond_belowEqual: acond = Assembler::bcondNotHigh; ncond = Assembler::bcondHigh; break; 1443 case lir_cond_aboveEqual: acond = Assembler::bcondNotLow; ncond = Assembler::bcondLow; break; 1444 default: ShouldNotReachHere(); 1445 } 1446 1447 if (opr1->is_cpu_register()) { 1448 reg2reg(opr1, result); 1449 } else if (opr1->is_stack()) { 1450 stack2reg(opr1, result, result->type()); 1451 } else if (opr1->is_constant()) { 1452 const2reg(opr1, result, lir_patch_none, nullptr); 1453 } else { 1454 ShouldNotReachHere(); 1455 } 1456 1457 if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) { 1458 // Optimized version that does not require a branch. 1459 if (opr2->is_single_cpu()) { 1460 assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move"); 1461 __ z_locgr(result->as_register(), opr2->as_register(), ncond); 1462 } else if (opr2->is_double_cpu()) { 1463 assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1464 assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move"); 1465 __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond); 1466 } else if (opr2->is_single_stack()) { 1467 __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond); 1468 } else if (opr2->is_double_stack()) { 1469 __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond); 1470 } else { 1471 ShouldNotReachHere(); 1472 } 1473 } else { 1474 Label skip; 1475 __ z_brc(acond, skip); 1476 if (opr2->is_cpu_register()) { 1477 reg2reg(opr2, result); 1478 } else if (opr2->is_stack()) { 1479 stack2reg(opr2, result, result->type()); 1480 } else if (opr2->is_constant()) { 1481 const2reg(opr2, result, lir_patch_none, nullptr); 1482 } else { 1483 ShouldNotReachHere(); 1484 } 1485 __ bind(skip); 1486 } 1487 } 1488 1489 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, 1490 CodeEmitInfo* info, bool pop_fpu_stack) { 1491 assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method"); 1492 1493 if (left->is_single_cpu()) { 1494 assert(left == dest, "left and dest must be equal"); 1495 Register lreg = left->as_register(); 1496 1497 if (right->is_single_cpu()) { 1498 // cpu register - cpu register 1499 Register rreg = right->as_register(); 1500 switch (code) { 1501 case lir_add: __ z_ar (lreg, rreg); break; 1502 case lir_sub: __ z_sr (lreg, rreg); break; 1503 case lir_mul: __ z_msr(lreg, rreg); break; 1504 default: ShouldNotReachHere(); 1505 } 1506 1507 } else if (right->is_stack()) { 1508 // cpu register - stack 1509 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1510 switch (code) { 1511 case lir_add: __ z_ay(lreg, raddr); break; 1512 case lir_sub: __ z_sy(lreg, raddr); break; 1513 default: ShouldNotReachHere(); 1514 } 1515 1516 } else if (right->is_constant()) { 1517 // cpu register - constant 1518 jint c = right->as_constant_ptr()->as_jint(); 1519 switch (code) { 1520 case lir_add: __ z_agfi(lreg, c); break; 1521 case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint 1522 case lir_mul: __ z_msfi(lreg, c); break; 1523 default: ShouldNotReachHere(); 1524 } 1525 1526 } else { 1527 ShouldNotReachHere(); 1528 } 1529 1530 } else if (left->is_double_cpu()) { 1531 assert(left == dest, "left and dest must be equal"); 1532 Register lreg_lo = left->as_register_lo(); 1533 Register lreg_hi = left->as_register_hi(); 1534 1535 if (right->is_double_cpu()) { 1536 // cpu register - cpu register 1537 Register rreg_lo = right->as_register_lo(); 1538 Register rreg_hi = right->as_register_hi(); 1539 assert_different_registers(lreg_lo, rreg_lo); 1540 switch (code) { 1541 case lir_add: 1542 __ z_agr(lreg_lo, rreg_lo); 1543 break; 1544 case lir_sub: 1545 __ z_sgr(lreg_lo, rreg_lo); 1546 break; 1547 case lir_mul: 1548 __ z_msgr(lreg_lo, rreg_lo); 1549 break; 1550 default: 1551 ShouldNotReachHere(); 1552 } 1553 1554 } else if (right->is_constant()) { 1555 // cpu register - constant 1556 jlong c = right->as_constant_ptr()->as_jlong_bits(); 1557 switch (code) { 1558 case lir_add: __ z_agfi(lreg_lo, c); break; 1559 case lir_sub: 1560 if (c != min_jint) { 1561 __ z_agfi(lreg_lo, -c); 1562 } else { 1563 // -min_jint cannot be represented as simm32 in z_agfi 1564 // min_jint sign extended: 0xffffffff80000000 1565 // -min_jint as 64 bit integer: 0x0000000080000000 1566 // 0x80000000 can be represented as uimm32 in z_algfi 1567 // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000 1568 __ z_algfi(lreg_lo, UCONST64(0x80000000)); 1569 } 1570 break; 1571 case lir_mul: __ z_msgfi(lreg_lo, c); break; 1572 default: 1573 ShouldNotReachHere(); 1574 } 1575 1576 } else { 1577 ShouldNotReachHere(); 1578 } 1579 1580 } else if (left->is_single_fpu()) { 1581 assert(left == dest, "left and dest must be equal"); 1582 FloatRegister lreg = left->as_float_reg(); 1583 FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg; 1584 Address raddr; 1585 1586 if (rreg == fnoreg) { 1587 assert(right->is_single_stack(), "constants should be loaded into register"); 1588 raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1589 if (!Immediate::is_uimm12(raddr.disp())) { 1590 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false); 1591 } 1592 } 1593 1594 if (rreg != fnoreg) { 1595 switch (code) { 1596 case lir_add: __ z_aebr(lreg, rreg); break; 1597 case lir_sub: __ z_sebr(lreg, rreg); break; 1598 case lir_mul: __ z_meebr(lreg, rreg); break; 1599 case lir_div: __ z_debr(lreg, rreg); break; 1600 default: ShouldNotReachHere(); 1601 } 1602 } else { 1603 switch (code) { 1604 case lir_add: __ z_aeb(lreg, raddr); break; 1605 case lir_sub: __ z_seb(lreg, raddr); break; 1606 case lir_mul: __ z_meeb(lreg, raddr); break; 1607 case lir_div: __ z_deb(lreg, raddr); break; 1608 default: ShouldNotReachHere(); 1609 } 1610 } 1611 } else if (left->is_double_fpu()) { 1612 assert(left == dest, "left and dest must be equal"); 1613 FloatRegister lreg = left->as_double_reg(); 1614 FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg; 1615 Address raddr; 1616 1617 if (rreg == fnoreg) { 1618 assert(right->is_double_stack(), "constants should be loaded into register"); 1619 raddr = frame_map()->address_for_slot(right->double_stack_ix()); 1620 if (!Immediate::is_uimm12(raddr.disp())) { 1621 __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true); 1622 } 1623 } 1624 1625 if (rreg != fnoreg) { 1626 switch (code) { 1627 case lir_add: __ z_adbr(lreg, rreg); break; 1628 case lir_sub: __ z_sdbr(lreg, rreg); break; 1629 case lir_mul: __ z_mdbr(lreg, rreg); break; 1630 case lir_div: __ z_ddbr(lreg, rreg); break; 1631 default: ShouldNotReachHere(); 1632 } 1633 } else { 1634 switch (code) { 1635 case lir_add: __ z_adb(lreg, raddr); break; 1636 case lir_sub: __ z_sdb(lreg, raddr); break; 1637 case lir_mul: __ z_mdb(lreg, raddr); break; 1638 case lir_div: __ z_ddb(lreg, raddr); break; 1639 default: ShouldNotReachHere(); 1640 } 1641 } 1642 } else if (left->is_address()) { 1643 assert(left == dest, "left and dest must be equal"); 1644 assert(code == lir_add, "unsupported operation"); 1645 assert(right->is_constant(), "unsupported operand"); 1646 jint c = right->as_constant_ptr()->as_jint(); 1647 LIR_Address* lir_addr = left->as_address_ptr(); 1648 Address addr = as_Address(lir_addr); 1649 switch (lir_addr->type()) { 1650 case T_INT: 1651 __ add2mem_32(addr, c, Z_R1_scratch); 1652 break; 1653 case T_LONG: 1654 __ add2mem_64(addr, c, Z_R1_scratch); 1655 break; 1656 default: 1657 ShouldNotReachHere(); 1658 } 1659 } else { 1660 ShouldNotReachHere(); 1661 } 1662 } 1663 1664 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) { 1665 switch (code) { 1666 case lir_sqrt: { 1667 assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt"); 1668 FloatRegister src_reg = value->as_double_reg(); 1669 FloatRegister dst_reg = dest->as_double_reg(); 1670 __ z_sqdbr(dst_reg, src_reg); 1671 break; 1672 } 1673 case lir_abs: { 1674 assert(!thread->is_valid(), "there is no need for a thread_reg for fabs"); 1675 FloatRegister src_reg = value->as_double_reg(); 1676 FloatRegister dst_reg = dest->as_double_reg(); 1677 __ z_lpdbr(dst_reg, src_reg); 1678 break; 1679 } 1680 default: { 1681 ShouldNotReachHere(); 1682 break; 1683 } 1684 } 1685 } 1686 1687 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) { 1688 if (left->is_single_cpu()) { 1689 Register reg = left->as_register(); 1690 if (right->is_constant()) { 1691 int val = right->as_constant_ptr()->as_jint(); 1692 switch (code) { 1693 case lir_logic_and: __ z_nilf(reg, val); break; 1694 case lir_logic_or: __ z_oilf(reg, val); break; 1695 case lir_logic_xor: __ z_xilf(reg, val); break; 1696 default: ShouldNotReachHere(); 1697 } 1698 } else if (right->is_stack()) { 1699 Address raddr = frame_map()->address_for_slot(right->single_stack_ix()); 1700 switch (code) { 1701 case lir_logic_and: __ z_ny(reg, raddr); break; 1702 case lir_logic_or: __ z_oy(reg, raddr); break; 1703 case lir_logic_xor: __ z_xy(reg, raddr); break; 1704 default: ShouldNotReachHere(); 1705 } 1706 } else { 1707 Register rright = right->as_register(); 1708 switch (code) { 1709 case lir_logic_and: __ z_nr(reg, rright); break; 1710 case lir_logic_or : __ z_or(reg, rright); break; 1711 case lir_logic_xor: __ z_xr(reg, rright); break; 1712 default: ShouldNotReachHere(); 1713 } 1714 } 1715 move_regs(reg, dst->as_register()); 1716 } else { 1717 Register l_lo = left->as_register_lo(); 1718 if (right->is_constant()) { 1719 __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong()); 1720 switch (code) { 1721 case lir_logic_and: 1722 __ z_ngr(l_lo, Z_R1_scratch); 1723 break; 1724 case lir_logic_or: 1725 __ z_ogr(l_lo, Z_R1_scratch); 1726 break; 1727 case lir_logic_xor: 1728 __ z_xgr(l_lo, Z_R1_scratch); 1729 break; 1730 default: ShouldNotReachHere(); 1731 } 1732 } else { 1733 Register r_lo; 1734 if (is_reference_type(right->type())) { 1735 r_lo = right->as_register(); 1736 } else { 1737 r_lo = right->as_register_lo(); 1738 } 1739 switch (code) { 1740 case lir_logic_and: 1741 __ z_ngr(l_lo, r_lo); 1742 break; 1743 case lir_logic_or: 1744 __ z_ogr(l_lo, r_lo); 1745 break; 1746 case lir_logic_xor: 1747 __ z_xgr(l_lo, r_lo); 1748 break; 1749 default: ShouldNotReachHere(); 1750 } 1751 } 1752 1753 Register dst_lo = dst->as_register_lo(); 1754 1755 move_regs(l_lo, dst_lo); 1756 } 1757 } 1758 1759 // See operand selection in LIRGenerator::do_ArithmeticOp_Int(). 1760 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) { 1761 if (left->is_double_cpu()) { 1762 // 64 bit integer case 1763 assert(left->is_double_cpu(), "left must be register"); 1764 assert(right->is_double_cpu() || is_power_of_2(right->as_jlong()), 1765 "right must be register or power of 2 constant"); 1766 assert(result->is_double_cpu(), "result must be register"); 1767 1768 Register lreg = left->as_register_lo(); 1769 Register dreg = result->as_register_lo(); 1770 1771 if (right->is_constant()) { 1772 // Convert division by a power of two into some shifts and logical operations. 1773 Register treg1 = Z_R0_scratch; 1774 Register treg2 = Z_R1_scratch; 1775 jlong divisor = right->as_jlong(); 1776 jlong log_divisor = log2i_exact(right->as_jlong()); 1777 1778 if (divisor == min_jlong) { 1779 // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1. 1780 if (dreg == lreg) { 1781 NearLabel done; 1782 __ load_const_optimized(treg2, min_jlong); 1783 __ z_cgr(lreg, treg2); 1784 __ z_lghi(dreg, 0); // Preserves condition code. 1785 __ z_brne(done); 1786 __ z_lghi(dreg, 1); // min_jlong / min_jlong = 1 1787 __ bind(done); 1788 } else { 1789 assert_different_registers(dreg, lreg); 1790 NearLabel done; 1791 __ z_lghi(dreg, 0); 1792 __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done); 1793 __ z_lghi(dreg, 1); 1794 __ bind(done); 1795 } 1796 return; 1797 } 1798 __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG); 1799 if (divisor == 2) { 1800 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 1801 } else { 1802 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 1803 __ and_imm(treg2, divisor - 1, treg1, true); 1804 } 1805 if (code == lir_idiv) { 1806 __ z_agr(dreg, treg2); 1807 __ z_srag(dreg, dreg, log_divisor); 1808 } else { 1809 assert(code == lir_irem, "check"); 1810 __ z_agr(treg2, dreg); 1811 __ and_imm(treg2, ~(divisor - 1), treg1, true); 1812 __ z_sgr(dreg, treg2); 1813 } 1814 return; 1815 } 1816 1817 // Divisor is not a power of 2 constant. 1818 Register rreg = right->as_register_lo(); 1819 Register treg = temp->as_register_lo(); 1820 assert(right->is_double_cpu(), "right must be register"); 1821 assert(lreg == Z_R11, "see ldivInOpr()"); 1822 assert(rreg != lreg, "right register must not be same as left register"); 1823 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) || 1824 (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()"); 1825 1826 Register R1 = lreg->predecessor(); 1827 Register R2 = rreg; 1828 assert(code != lir_idiv || lreg==dreg, "see code below"); 1829 if (code == lir_idiv) { 1830 __ z_lcgr(lreg, lreg); 1831 } else { 1832 __ clear_reg(dreg, true, false); 1833 } 1834 NearLabel done; 1835 __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done); 1836 if (code == lir_idiv) { 1837 __ z_lcgr(lreg, lreg); // Revert lcgr above. 1838 } 1839 if (ImplicitDiv0Checks) { 1840 // No debug info because the idiv won't trap. 1841 // Add_debug_info_for_div0 would instantiate another DivByZeroStub, 1842 // which is unnecessary, too. 1843 add_debug_info_for_div0(__ offset(), info); 1844 } 1845 __ z_dsgr(R1, R2); 1846 __ bind(done); 1847 return; 1848 } 1849 1850 // 32 bit integer case 1851 1852 assert(left->is_single_cpu(), "left must be register"); 1853 assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant"); 1854 assert(result->is_single_cpu(), "result must be register"); 1855 1856 Register lreg = left->as_register(); 1857 Register dreg = result->as_register(); 1858 1859 if (right->is_constant()) { 1860 // Convert division by a power of two into some shifts and logical operations. 1861 Register treg1 = Z_R0_scratch; 1862 Register treg2 = Z_R1_scratch; 1863 jlong divisor = right->as_jint(); 1864 jlong log_divisor = log2i_exact(right->as_jint()); 1865 __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend 1866 if (divisor == 2) { 1867 __ z_srlg(treg2, dreg, 63); // dividend < 0 ? 1 : 0 1868 } else { 1869 __ z_srag(treg2, dreg, 63); // dividend < 0 ? -1 : 0 1870 __ and_imm(treg2, divisor - 1, treg1, true); 1871 } 1872 if (code == lir_idiv) { 1873 __ z_agr(dreg, treg2); 1874 __ z_srag(dreg, dreg, log_divisor); 1875 } else { 1876 assert(code == lir_irem, "check"); 1877 __ z_agr(treg2, dreg); 1878 __ and_imm(treg2, ~(divisor - 1), treg1, true); 1879 __ z_sgr(dreg, treg2); 1880 } 1881 return; 1882 } 1883 1884 // Divisor is not a power of 2 constant. 1885 Register rreg = right->as_register(); 1886 Register treg = temp->as_register(); 1887 assert(right->is_single_cpu(), "right must be register"); 1888 assert(lreg == Z_R11, "left register must be rax,"); 1889 assert(rreg != lreg, "right register must not be same as left register"); 1890 assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) 1891 || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()"); 1892 1893 Register R1 = lreg->predecessor(); 1894 Register R2 = rreg; 1895 __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend 1896 if (ImplicitDiv0Checks) { 1897 // No debug info because the idiv won't trap. 1898 // Add_debug_info_for_div0 would instantiate another DivByZeroStub, 1899 // which is unnecessary, too. 1900 add_debug_info_for_div0(__ offset(), info); 1901 } 1902 __ z_dsgfr(R1, R2); 1903 } 1904 1905 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) { 1906 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); 1907 assert(exceptionPC->as_register() == Z_EXC_PC, "should match"); 1908 1909 // Exception object is not added to oop map by LinearScan 1910 // (LinearScan assumes that no oops are in fixed registers). 1911 info->add_register_oop(exceptionOop); 1912 1913 // Reuse the debug info from the safepoint poll for the throw op itself. 1914 __ get_PC(Z_EXC_PC); 1915 add_call_info(__ offset(), info); // for exception handler 1916 address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id 1917 : Runtime1::handle_exception_nofpu_id); 1918 emit_call_c(stub); 1919 } 1920 1921 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) { 1922 assert(exceptionOop->as_register() == Z_EXC_OOP, "should match"); 1923 1924 __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry); 1925 } 1926 1927 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) { 1928 ciArrayKlass* default_type = op->expected_type(); 1929 Register src = op->src()->as_register(); 1930 Register dst = op->dst()->as_register(); 1931 Register src_pos = op->src_pos()->as_register(); 1932 Register dst_pos = op->dst_pos()->as_register(); 1933 Register length = op->length()->as_register(); 1934 Register tmp = op->tmp()->as_register(); 1935 1936 CodeStub* stub = op->stub(); 1937 int flags = op->flags(); 1938 BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL; 1939 if (basic_type == T_ARRAY) basic_type = T_OBJECT; 1940 1941 // If we don't know anything, just go through the generic arraycopy. 1942 if (default_type == nullptr) { 1943 address copyfunc_addr = StubRoutines::generic_arraycopy(); 1944 1945 if (copyfunc_addr == nullptr) { 1946 // Take a slow path for generic arraycopy. 1947 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 1948 __ bind(*stub->continuation()); 1949 return; 1950 } 1951 1952 // Save outgoing arguments in callee saved registers (C convention) in case 1953 // a call to System.arraycopy is needed. 1954 Register callee_saved_src = Z_R10; 1955 Register callee_saved_src_pos = Z_R11; 1956 Register callee_saved_dst = Z_R12; 1957 Register callee_saved_dst_pos = Z_R13; 1958 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. 1959 1960 __ lgr_if_needed(callee_saved_src, src); 1961 __ lgr_if_needed(callee_saved_src_pos, src_pos); 1962 __ lgr_if_needed(callee_saved_dst, dst); 1963 __ lgr_if_needed(callee_saved_dst_pos, dst_pos); 1964 __ lgr_if_needed(callee_saved_length, length); 1965 1966 // C function requires 64 bit values. 1967 __ z_lgfr(src_pos, src_pos); 1968 __ z_lgfr(dst_pos, dst_pos); 1969 __ z_lgfr(length, length); 1970 1971 // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint. 1972 1973 // The arguments are in the corresponding registers. 1974 assert(Z_ARG1 == src, "assumption"); 1975 assert(Z_ARG2 == src_pos, "assumption"); 1976 assert(Z_ARG3 == dst, "assumption"); 1977 assert(Z_ARG4 == dst_pos, "assumption"); 1978 assert(Z_ARG5 == length, "assumption"); 1979 #ifndef PRODUCT 1980 if (PrintC1Statistics) { 1981 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt); 1982 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 1983 } 1984 #endif 1985 emit_call_c(copyfunc_addr); 1986 CHECK_BAILOUT(); 1987 1988 __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); 1989 1990 __ z_lgr(tmp, Z_RET); 1991 __ z_xilf(tmp, -1); 1992 1993 // Restore values from callee saved registers so they are where the stub 1994 // expects them. 1995 __ lgr_if_needed(src, callee_saved_src); 1996 __ lgr_if_needed(src_pos, callee_saved_src_pos); 1997 __ lgr_if_needed(dst, callee_saved_dst); 1998 __ lgr_if_needed(dst_pos, callee_saved_dst_pos); 1999 __ lgr_if_needed(length, callee_saved_length); 2000 2001 __ z_sr(length, tmp); 2002 __ z_ar(src_pos, tmp); 2003 __ z_ar(dst_pos, tmp); 2004 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2005 2006 __ bind(*stub->continuation()); 2007 return; 2008 } 2009 2010 assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point"); 2011 2012 int elem_size = type2aelembytes(basic_type); 2013 int shift_amount; 2014 2015 switch (elem_size) { 2016 case 1 : 2017 shift_amount = 0; 2018 break; 2019 case 2 : 2020 shift_amount = 1; 2021 break; 2022 case 4 : 2023 shift_amount = 2; 2024 break; 2025 case 8 : 2026 shift_amount = 3; 2027 break; 2028 default: 2029 shift_amount = -1; 2030 ShouldNotReachHere(); 2031 } 2032 2033 Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes()); 2034 Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes()); 2035 Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes()); 2036 Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes()); 2037 2038 // Length and pos's are all sign extended at this point on 64bit. 2039 2040 // test for null 2041 if (flags & LIR_OpArrayCopy::src_null_check) { 2042 __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry()); 2043 } 2044 if (flags & LIR_OpArrayCopy::dst_null_check) { 2045 __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry()); 2046 } 2047 2048 // Check if negative. 2049 if (flags & LIR_OpArrayCopy::src_pos_positive_check) { 2050 __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); 2051 } 2052 if (flags & LIR_OpArrayCopy::dst_pos_positive_check) { 2053 __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry()); 2054 } 2055 2056 // If the compiler was not able to prove that exact type of the source or the destination 2057 // of the arraycopy is an array type, check at runtime if the source or the destination is 2058 // an instance type. 2059 if (flags & LIR_OpArrayCopy::type_check) { 2060 assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions"); 2061 2062 if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2063 __ load_klass(tmp, dst); 2064 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2065 __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); 2066 } 2067 2068 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2069 __ load_klass(tmp, src); 2070 __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset()))); 2071 __ branch_optimized(Assembler::bcondNotLow, *stub->entry()); 2072 } 2073 } 2074 2075 if (flags & LIR_OpArrayCopy::src_range_check) { 2076 __ z_la(tmp, Address(src_pos, length)); 2077 __ z_cl(tmp, src_length_addr); 2078 __ branch_optimized(Assembler::bcondHigh, *stub->entry()); 2079 } 2080 if (flags & LIR_OpArrayCopy::dst_range_check) { 2081 __ z_la(tmp, Address(dst_pos, length)); 2082 __ z_cl(tmp, dst_length_addr); 2083 __ branch_optimized(Assembler::bcondHigh, *stub->entry()); 2084 } 2085 2086 if (flags & LIR_OpArrayCopy::length_positive_check) { 2087 __ z_ltr(length, length); 2088 __ branch_optimized(Assembler::bcondNegative, *stub->entry()); 2089 } 2090 2091 // Stubs require 64 bit values. 2092 __ z_lgfr(src_pos, src_pos); // int -> long 2093 __ z_lgfr(dst_pos, dst_pos); // int -> long 2094 __ z_lgfr(length, length); // int -> long 2095 2096 if (flags & LIR_OpArrayCopy::type_check) { 2097 // We don't know the array types are compatible. 2098 if (basic_type != T_OBJECT) { 2099 // Simple test for basic type arrays. 2100 if (UseCompressedClassPointers) { 2101 __ z_l(tmp, src_klass_addr); 2102 __ z_c(tmp, dst_klass_addr); 2103 } else { 2104 __ z_lg(tmp, src_klass_addr); 2105 __ z_cg(tmp, dst_klass_addr); 2106 } 2107 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); 2108 } else { 2109 // For object arrays, if src is a sub class of dst then we can 2110 // safely do the copy. 2111 NearLabel cont, slow; 2112 Register src_klass = Z_R1_scratch; 2113 Register dst_klass = Z_R10; 2114 2115 __ load_klass(src_klass, src); 2116 __ load_klass(dst_klass, dst); 2117 2118 __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, nullptr); 2119 2120 store_parameter(src_klass, 0); // sub 2121 store_parameter(dst_klass, 1); // super 2122 emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id)); 2123 CHECK_BAILOUT2(cont, slow); 2124 // Sets condition code 0 for match (2 otherwise). 2125 __ branch_optimized(Assembler::bcondEqual, cont); 2126 2127 __ bind(slow); 2128 2129 address copyfunc_addr = StubRoutines::checkcast_arraycopy(); 2130 if (copyfunc_addr != nullptr) { // use stub if available 2131 // Src is not a sub class of dst so we have to do a 2132 // per-element check. 2133 2134 int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray; 2135 if ((flags & mask) != mask) { 2136 // Check that at least both of them object arrays. 2137 assert(flags & mask, "one of the two should be known to be an object array"); 2138 2139 if (!(flags & LIR_OpArrayCopy::src_objarray)) { 2140 __ load_klass(tmp, src); 2141 } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) { 2142 __ load_klass(tmp, dst); 2143 } 2144 Address klass_lh_addr(tmp, Klass::layout_helper_offset()); 2145 jint objArray_lh = Klass::array_layout_helper(T_OBJECT); 2146 __ load_const_optimized(Z_R1_scratch, objArray_lh); 2147 __ z_c(Z_R1_scratch, klass_lh_addr); 2148 __ branch_optimized(Assembler::bcondNotEqual, *stub->entry()); 2149 } 2150 2151 // Save outgoing arguments in callee saved registers (C convention) in case 2152 // a call to System.arraycopy is needed. 2153 Register callee_saved_src = Z_R10; 2154 Register callee_saved_src_pos = Z_R11; 2155 Register callee_saved_dst = Z_R12; 2156 Register callee_saved_dst_pos = Z_R13; 2157 Register callee_saved_length = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved. 2158 2159 __ lgr_if_needed(callee_saved_src, src); 2160 __ lgr_if_needed(callee_saved_src_pos, src_pos); 2161 __ lgr_if_needed(callee_saved_dst, dst); 2162 __ lgr_if_needed(callee_saved_dst_pos, dst_pos); 2163 __ lgr_if_needed(callee_saved_length, length); 2164 2165 __ z_llgfr(length, length); // Higher 32bits must be null. 2166 2167 __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset 2168 __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset 2169 2170 __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type))); 2171 assert_different_registers(Z_ARG1, dst, dst_pos, length); 2172 __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type))); 2173 assert_different_registers(Z_ARG2, dst, length); 2174 2175 __ z_lgr(Z_ARG3, length); 2176 assert_different_registers(Z_ARG3, dst); 2177 2178 __ load_klass(Z_ARG5, dst); 2179 __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset())); 2180 __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset())); 2181 emit_call_c(copyfunc_addr); 2182 CHECK_BAILOUT2(cont, slow); 2183 2184 #ifndef PRODUCT 2185 if (PrintC1Statistics) { 2186 NearLabel failed; 2187 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed); 2188 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt); 2189 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2190 __ bind(failed); 2191 } 2192 #endif 2193 2194 __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation()); 2195 2196 #ifndef PRODUCT 2197 if (PrintC1Statistics) { 2198 __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt); 2199 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2200 } 2201 #endif 2202 2203 __ z_lgr(tmp, Z_RET); 2204 __ z_xilf(tmp, -1); 2205 2206 // Restore previously spilled arguments 2207 __ lgr_if_needed(src, callee_saved_src); 2208 __ lgr_if_needed(src_pos, callee_saved_src_pos); 2209 __ lgr_if_needed(dst, callee_saved_dst); 2210 __ lgr_if_needed(dst_pos, callee_saved_dst_pos); 2211 __ lgr_if_needed(length, callee_saved_length); 2212 2213 __ z_sr(length, tmp); 2214 __ z_ar(src_pos, tmp); 2215 __ z_ar(dst_pos, tmp); 2216 } 2217 2218 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2219 2220 __ bind(cont); 2221 } 2222 } 2223 2224 #ifdef ASSERT 2225 if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) { 2226 // Sanity check the known type with the incoming class. For the 2227 // primitive case the types must match exactly with src.klass and 2228 // dst.klass each exactly matching the default type. For the 2229 // object array case, if no type check is needed then either the 2230 // dst type is exactly the expected type and the src type is a 2231 // subtype which we can't check or src is the same array as dst 2232 // but not necessarily exactly of type default_type. 2233 NearLabel known_ok, halt; 2234 metadata2reg(default_type->constant_encoding(), tmp); 2235 if (UseCompressedClassPointers) { 2236 __ encode_klass_not_null(tmp); 2237 } 2238 2239 if (basic_type != T_OBJECT) { 2240 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } 2241 else { __ z_cg(tmp, dst_klass_addr); } 2242 __ branch_optimized(Assembler::bcondNotEqual, halt); 2243 if (UseCompressedClassPointers) { __ z_c (tmp, src_klass_addr); } 2244 else { __ z_cg(tmp, src_klass_addr); } 2245 __ branch_optimized(Assembler::bcondEqual, known_ok); 2246 } else { 2247 if (UseCompressedClassPointers) { __ z_c (tmp, dst_klass_addr); } 2248 else { __ z_cg(tmp, dst_klass_addr); } 2249 __ branch_optimized(Assembler::bcondEqual, known_ok); 2250 __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok); 2251 } 2252 __ bind(halt); 2253 __ stop("incorrect type information in arraycopy"); 2254 __ bind(known_ok); 2255 } 2256 #endif 2257 2258 #ifndef PRODUCT 2259 if (PrintC1Statistics) { 2260 __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type)); 2261 __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch); 2262 } 2263 #endif 2264 2265 __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset 2266 __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset 2267 2268 assert_different_registers(Z_ARG1, dst, dst_pos, length); 2269 __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type))); 2270 assert_different_registers(Z_ARG2, length); 2271 __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type))); 2272 __ lgr_if_needed(Z_ARG3, length); 2273 2274 bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0; 2275 bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0; 2276 const char *name; 2277 address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false); 2278 __ call_VM_leaf(entry); 2279 2280 __ bind(*stub->continuation()); 2281 } 2282 2283 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) { 2284 if (dest->is_single_cpu()) { 2285 if (left->type() == T_OBJECT) { 2286 switch (code) { 2287 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2288 case lir_shr: __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2289 case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break; 2290 default: ShouldNotReachHere(); 2291 } 2292 } else { 2293 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); 2294 Register masked_count = Z_R1_scratch; 2295 __ z_lr(masked_count, count->as_register()); 2296 __ z_nill(masked_count, 31); 2297 switch (code) { 2298 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break; 2299 case lir_shr: __ z_sra (dest->as_register(), 0, masked_count); break; 2300 case lir_ushr: __ z_srl (dest->as_register(), 0, masked_count); break; 2301 default: ShouldNotReachHere(); 2302 } 2303 } 2304 } else { 2305 switch (code) { 2306 case lir_shl: __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2307 case lir_shr: __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2308 case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break; 2309 default: ShouldNotReachHere(); 2310 } 2311 } 2312 } 2313 2314 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) { 2315 if (left->type() == T_OBJECT) { 2316 count = count & 63; // Shouldn't shift by more than sizeof(intptr_t). 2317 Register l = left->as_register(); 2318 Register d = dest->as_register_lo(); 2319 switch (code) { 2320 case lir_shl: __ z_sllg (d, l, count); break; 2321 case lir_shr: __ z_srag (d, l, count); break; 2322 case lir_ushr: __ z_srlg (d, l, count); break; 2323 default: ShouldNotReachHere(); 2324 } 2325 return; 2326 } 2327 if (dest->is_single_cpu()) { 2328 assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts"); 2329 count = count & 0x1F; // Java spec 2330 switch (code) { 2331 case lir_shl: __ z_sllg (dest->as_register(), left->as_register(), count); break; 2332 case lir_shr: __ z_sra (dest->as_register(), count); break; 2333 case lir_ushr: __ z_srl (dest->as_register(), count); break; 2334 default: ShouldNotReachHere(); 2335 } 2336 } else if (dest->is_double_cpu()) { 2337 count = count & 63; // Java spec 2338 Register l = left->as_pointer_register(); 2339 Register d = dest->as_pointer_register(); 2340 switch (code) { 2341 case lir_shl: __ z_sllg (d, l, count); break; 2342 case lir_shr: __ z_srag (d, l, count); break; 2343 case lir_ushr: __ z_srlg (d, l, count); break; 2344 default: ShouldNotReachHere(); 2345 } 2346 } else { 2347 ShouldNotReachHere(); 2348 } 2349 } 2350 2351 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) { 2352 if (op->init_check()) { 2353 // Make sure klass is initialized & doesn't have finalizer. 2354 const int state_offset = in_bytes(InstanceKlass::init_state_offset()); 2355 Register iklass = op->klass()->as_register(); 2356 add_debug_info_for_null_check_here(op->stub()->info()); 2357 if (Immediate::is_uimm12(state_offset)) { 2358 __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized); 2359 } else { 2360 __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized); 2361 } 2362 __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far. 2363 } 2364 __ allocate_object(op->obj()->as_register(), 2365 op->tmp1()->as_register(), 2366 op->tmp2()->as_register(), 2367 op->header_size(), 2368 op->object_size(), 2369 op->klass()->as_register(), 2370 *op->stub()->entry()); 2371 __ bind(*op->stub()->continuation()); 2372 __ verify_oop(op->obj()->as_register(), FILE_AND_LINE); 2373 } 2374 2375 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) { 2376 Register len = op->len()->as_register(); 2377 __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend 2378 2379 if (UseSlowPath || 2380 (!UseFastNewObjectArray && (is_reference_type(op->type()))) || 2381 (!UseFastNewTypeArray && (!is_reference_type(op->type())))) { 2382 __ z_brul(*op->stub()->entry()); 2383 } else { 2384 __ allocate_array(op->obj()->as_register(), 2385 op->len()->as_register(), 2386 op->tmp1()->as_register(), 2387 op->tmp2()->as_register(), 2388 arrayOopDesc::base_offset_in_bytes(op->type()), 2389 type2aelembytes(op->type()), 2390 op->klass()->as_register(), 2391 *op->stub()->entry()); 2392 } 2393 __ bind(*op->stub()->continuation()); 2394 } 2395 2396 void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data, 2397 Register recv, Register tmp1, Label* update_done) { 2398 uint i; 2399 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2400 Label next_test; 2401 // See if the receiver is receiver[n]. 2402 Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 2403 __ z_cg(recv, receiver_addr); 2404 __ z_brne(next_test); 2405 Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))); 2406 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2407 __ branch_optimized(Assembler::bcondAlways, *update_done); 2408 __ bind(next_test); 2409 } 2410 2411 // Didn't find receiver; find next empty slot and fill it in. 2412 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2413 Label next_test; 2414 Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))); 2415 __ z_ltg(Z_R0_scratch, recv_addr); 2416 __ z_brne(next_test); 2417 __ z_stg(recv, recv_addr); 2418 __ load_const_optimized(tmp1, DataLayout::counter_increment); 2419 __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo); 2420 __ branch_optimized(Assembler::bcondAlways, *update_done); 2421 __ bind(next_test); 2422 } 2423 } 2424 2425 void LIR_Assembler::setup_md_access(ciMethod* method, int bci, 2426 ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) { 2427 Unimplemented(); 2428 } 2429 2430 void LIR_Assembler::store_parameter(Register r, int param_num) { 2431 assert(param_num >= 0, "invalid num"); 2432 int offset_in_bytes = param_num * BytesPerWord; 2433 check_reserved_argument_area(offset_in_bytes); 2434 offset_in_bytes += FrameMap::first_available_sp_in_frame; 2435 __ z_stg(r, offset_in_bytes, Z_SP); 2436 } 2437 2438 void LIR_Assembler::store_parameter(jint c, int param_num) { 2439 assert(param_num >= 0, "invalid num"); 2440 int offset_in_bytes = param_num * BytesPerWord; 2441 check_reserved_argument_area(offset_in_bytes); 2442 offset_in_bytes += FrameMap::first_available_sp_in_frame; 2443 __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true); 2444 } 2445 2446 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) { 2447 // We always need a stub for the failure case. 2448 CodeStub* stub = op->stub(); 2449 Register obj = op->object()->as_register(); 2450 Register k_RInfo = op->tmp1()->as_register(); 2451 Register klass_RInfo = op->tmp2()->as_register(); 2452 Register dst = op->result_opr()->as_register(); 2453 Register Rtmp1 = Z_R1_scratch; 2454 ciKlass* k = op->klass(); 2455 2456 assert(!op->tmp3()->is_valid(), "tmp3's not needed"); 2457 2458 // Check if it needs to be profiled. 2459 ciMethodData* md = nullptr; 2460 ciProfileData* data = nullptr; 2461 2462 if (op->should_profile()) { 2463 ciMethod* method = op->profiled_method(); 2464 assert(method != nullptr, "Should have method"); 2465 int bci = op->profiled_bci(); 2466 md = method->method_data_or_null(); 2467 assert(md != nullptr, "Sanity"); 2468 data = md->bci_to_data(bci); 2469 assert(data != nullptr, "need data for type check"); 2470 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2471 } 2472 2473 // Temp operands do not overlap with inputs, if this is their last 2474 // use (end of range is exclusive), so a register conflict is possible. 2475 if (obj == k_RInfo) { 2476 k_RInfo = dst; 2477 } else if (obj == klass_RInfo) { 2478 klass_RInfo = dst; 2479 } 2480 assert_different_registers(obj, k_RInfo, klass_RInfo); 2481 2482 if (op->should_profile()) { 2483 NearLabel not_null; 2484 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null); 2485 // Object is null; update MDO and exit. 2486 Register mdo = klass_RInfo; 2487 metadata2reg(md->constant_encoding(), mdo); 2488 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 2489 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 2490 __ or2mem_8(data_addr, header_bits); 2491 __ branch_optimized(Assembler::bcondAlways, *obj_is_null); 2492 __ bind(not_null); 2493 } else { 2494 __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null); 2495 } 2496 2497 NearLabel profile_cast_failure, profile_cast_success; 2498 Label *failure_target = op->should_profile() ? &profile_cast_failure : failure; 2499 Label *success_target = op->should_profile() ? &profile_cast_success : success; 2500 2501 // Patching may screw with our temporaries, 2502 // so let's do it before loading the class. 2503 if (k->is_loaded()) { 2504 metadata2reg(k->constant_encoding(), k_RInfo); 2505 } else { 2506 klass2reg_with_patching(k_RInfo, op->info_for_patch()); 2507 } 2508 assert(obj != k_RInfo, "must be different"); 2509 2510 __ verify_oop(obj, FILE_AND_LINE); 2511 2512 // Get object class. 2513 // Not a safepoint as obj null check happens earlier. 2514 if (op->fast_check()) { 2515 if (UseCompressedClassPointers) { 2516 __ load_klass(klass_RInfo, obj); 2517 __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target); 2518 } else { 2519 __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes())); 2520 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2521 } 2522 // Successful cast, fall through to profile or jump. 2523 } else { 2524 bool need_slow_path = !k->is_loaded() || 2525 ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset())); 2526 intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L; 2527 __ load_klass(klass_RInfo, obj); 2528 // Perform the fast part of the checking logic. 2529 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, 2530 (need_slow_path ? success_target : nullptr), 2531 failure_target, nullptr, 2532 RegisterOrConstant(super_check_offset)); 2533 if (need_slow_path) { 2534 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2535 address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id); 2536 store_parameter(klass_RInfo, 0); // sub 2537 store_parameter(k_RInfo, 1); // super 2538 emit_call_c(a); // Sets condition code 0 for match (2 otherwise). 2539 CHECK_BAILOUT2(profile_cast_failure, profile_cast_success); 2540 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2541 // Fall through to success case. 2542 } 2543 } 2544 2545 if (op->should_profile()) { 2546 Register mdo = klass_RInfo, recv = k_RInfo; 2547 assert_different_registers(obj, mdo, recv); 2548 __ bind(profile_cast_success); 2549 metadata2reg(md->constant_encoding(), mdo); 2550 __ load_klass(recv, obj); 2551 type_profile_helper(mdo, md, data, recv, Rtmp1, success); 2552 __ branch_optimized(Assembler::bcondAlways, *success); 2553 2554 __ bind(profile_cast_failure); 2555 metadata2reg(md->constant_encoding(), mdo); 2556 __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1); 2557 __ branch_optimized(Assembler::bcondAlways, *failure); 2558 } else { 2559 __ branch_optimized(Assembler::bcondAlways, *success); 2560 } 2561 } 2562 2563 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) { 2564 LIR_Code code = op->code(); 2565 if (code == lir_store_check) { 2566 Register value = op->object()->as_register(); 2567 Register array = op->array()->as_register(); 2568 Register k_RInfo = op->tmp1()->as_register(); 2569 Register klass_RInfo = op->tmp2()->as_register(); 2570 Register Rtmp1 = Z_R1_scratch; 2571 2572 CodeStub* stub = op->stub(); 2573 2574 // Check if it needs to be profiled. 2575 ciMethodData* md = nullptr; 2576 ciProfileData* data = nullptr; 2577 2578 assert_different_registers(value, k_RInfo, klass_RInfo); 2579 2580 if (op->should_profile()) { 2581 ciMethod* method = op->profiled_method(); 2582 assert(method != nullptr, "Should have method"); 2583 int bci = op->profiled_bci(); 2584 md = method->method_data_or_null(); 2585 assert(md != nullptr, "Sanity"); 2586 data = md->bci_to_data(bci); 2587 assert(data != nullptr, "need data for type check"); 2588 assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check"); 2589 } 2590 NearLabel profile_cast_success, profile_cast_failure, done; 2591 Label *success_target = op->should_profile() ? &profile_cast_success : &done; 2592 Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry(); 2593 2594 if (op->should_profile()) { 2595 NearLabel not_null; 2596 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null); 2597 // Object is null; update MDO and exit. 2598 Register mdo = klass_RInfo; 2599 metadata2reg(md->constant_encoding(), mdo); 2600 Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset())); 2601 int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant()); 2602 __ or2mem_8(data_addr, header_bits); 2603 __ branch_optimized(Assembler::bcondAlways, done); 2604 __ bind(not_null); 2605 } else { 2606 __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done); 2607 } 2608 2609 add_debug_info_for_null_check_here(op->info_for_exception()); 2610 __ load_klass(k_RInfo, array); 2611 __ load_klass(klass_RInfo, value); 2612 2613 // Get instance klass (it's already uncompressed). 2614 __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset())); 2615 // Perform the fast part of the checking logic. 2616 __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr); 2617 // Call out-of-line instance of __ check_klass_subtype_slow_path(...): 2618 address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id); 2619 store_parameter(klass_RInfo, 0); // sub 2620 store_parameter(k_RInfo, 1); // super 2621 emit_call_c(a); // Sets condition code 0 for match (2 otherwise). 2622 CHECK_BAILOUT3(profile_cast_success, profile_cast_failure, done); 2623 __ branch_optimized(Assembler::bcondNotEqual, *failure_target); 2624 // Fall through to success case. 2625 2626 if (op->should_profile()) { 2627 Register mdo = klass_RInfo, recv = k_RInfo; 2628 assert_different_registers(value, mdo, recv); 2629 __ bind(profile_cast_success); 2630 metadata2reg(md->constant_encoding(), mdo); 2631 __ load_klass(recv, value); 2632 type_profile_helper(mdo, md, data, recv, Rtmp1, &done); 2633 __ branch_optimized(Assembler::bcondAlways, done); 2634 2635 __ bind(profile_cast_failure); 2636 metadata2reg(md->constant_encoding(), mdo); 2637 __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1); 2638 __ branch_optimized(Assembler::bcondAlways, *stub->entry()); 2639 } 2640 2641 __ bind(done); 2642 } else { 2643 if (code == lir_checkcast) { 2644 Register obj = op->object()->as_register(); 2645 Register dst = op->result_opr()->as_register(); 2646 NearLabel success; 2647 emit_typecheck_helper(op, &success, op->stub()->entry(), &success); 2648 __ bind(success); 2649 __ lgr_if_needed(dst, obj); 2650 } else { 2651 if (code == lir_instanceof) { 2652 Register obj = op->object()->as_register(); 2653 Register dst = op->result_opr()->as_register(); 2654 NearLabel success, failure, done; 2655 emit_typecheck_helper(op, &success, &failure, &failure); 2656 __ bind(failure); 2657 __ clear_reg(dst); 2658 __ branch_optimized(Assembler::bcondAlways, done); 2659 __ bind(success); 2660 __ load_const_optimized(dst, 1); 2661 __ bind(done); 2662 } else { 2663 ShouldNotReachHere(); 2664 } 2665 } 2666 } 2667 } 2668 2669 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) { 2670 Register addr = op->addr()->as_pointer_register(); 2671 Register t1_cmp = Z_R1_scratch; 2672 if (op->code() == lir_cas_long) { 2673 assert(VM_Version::supports_cx8(), "wrong machine"); 2674 Register cmp_value_lo = op->cmp_value()->as_register_lo(); 2675 Register new_value_lo = op->new_value()->as_register_lo(); 2676 __ z_lgr(t1_cmp, cmp_value_lo); 2677 // Perform the compare and swap operation. 2678 __ z_csg(t1_cmp, new_value_lo, 0, addr); 2679 } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) { 2680 Register cmp_value = op->cmp_value()->as_register(); 2681 Register new_value = op->new_value()->as_register(); 2682 if (op->code() == lir_cas_obj) { 2683 if (UseCompressedOops) { 2684 t1_cmp = op->tmp1()->as_register(); 2685 Register t2_new = op->tmp2()->as_register(); 2686 assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new); 2687 __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/); 2688 __ oop_encoder(t2_new, new_value, true /*maybe null*/); 2689 __ z_cs(t1_cmp, t2_new, 0, addr); 2690 } else { 2691 __ z_lgr(t1_cmp, cmp_value); 2692 __ z_csg(t1_cmp, new_value, 0, addr); 2693 } 2694 } else { 2695 __ z_lr(t1_cmp, cmp_value); 2696 __ z_cs(t1_cmp, new_value, 0, addr); 2697 } 2698 } else { 2699 ShouldNotReachHere(); // new lir_cas_?? 2700 } 2701 } 2702 2703 void LIR_Assembler::breakpoint() { 2704 Unimplemented(); 2705 // __ breakpoint_trap(); 2706 } 2707 2708 void LIR_Assembler::push(LIR_Opr opr) { 2709 ShouldNotCallThis(); // unused 2710 } 2711 2712 void LIR_Assembler::pop(LIR_Opr opr) { 2713 ShouldNotCallThis(); // unused 2714 } 2715 2716 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) { 2717 Address addr = frame_map()->address_for_monitor_lock(monitor_no); 2718 __ add2reg(dst_opr->as_register(), addr.disp(), addr.base()); 2719 } 2720 2721 void LIR_Assembler::emit_lock(LIR_OpLock* op) { 2722 Register obj = op->obj_opr()->as_register(); // May not be an oop. 2723 Register hdr = op->hdr_opr()->as_register(); 2724 Register lock = op->lock_opr()->as_register(); 2725 if (LockingMode == LM_MONITOR) { 2726 if (op->info() != nullptr) { 2727 add_debug_info_for_null_check_here(op->info()); 2728 __ null_check(obj); 2729 } 2730 __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry()); 2731 } else if (op->code() == lir_lock) { 2732 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2733 // Add debug info for NullPointerException only if one is possible. 2734 if (op->info() != nullptr) { 2735 add_debug_info_for_null_check_here(op->info()); 2736 } 2737 __ lock_object(hdr, obj, lock, *op->stub()->entry()); 2738 // done 2739 } else if (op->code() == lir_unlock) { 2740 assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header"); 2741 __ unlock_object(hdr, obj, lock, *op->stub()->entry()); 2742 } else { 2743 ShouldNotReachHere(); 2744 } 2745 __ bind(*op->stub()->continuation()); 2746 } 2747 2748 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) { 2749 Register obj = op->obj()->as_pointer_register(); 2750 Register result = op->result_opr()->as_pointer_register(); 2751 2752 CodeEmitInfo* info = op->info(); 2753 if (info != nullptr) { 2754 add_debug_info_for_null_check_here(info); 2755 } 2756 2757 if (UseCompressedClassPointers) { 2758 __ z_llgf(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2759 __ decode_klass_not_null(result); 2760 } else { 2761 __ z_lg(result, Address(obj, oopDesc::klass_offset_in_bytes())); 2762 } 2763 } 2764 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) { 2765 ciMethod* method = op->profiled_method(); 2766 int bci = op->profiled_bci(); 2767 ciMethod* callee = op->profiled_callee(); 2768 2769 // Update counter for all call types. 2770 ciMethodData* md = method->method_data_or_null(); 2771 assert(md != nullptr, "Sanity"); 2772 ciProfileData* data = md->bci_to_data(bci); 2773 assert(data != nullptr && data->is_CounterData(), "need CounterData for calls"); 2774 assert(op->mdo()->is_single_cpu(), "mdo must be allocated"); 2775 Register mdo = op->mdo()->as_register(); 2776 assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated"); 2777 Register tmp1 = op->tmp1()->as_register_lo(); 2778 metadata2reg(md->constant_encoding(), mdo); 2779 2780 Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())); 2781 // Perform additional virtual call profiling for invokevirtual and 2782 // invokeinterface bytecodes 2783 if (op->should_profile_receiver_type()) { 2784 assert(op->recv()->is_single_cpu(), "recv must be allocated"); 2785 Register recv = op->recv()->as_register(); 2786 assert_different_registers(mdo, tmp1, recv); 2787 assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls"); 2788 ciKlass* known_klass = op->known_holder(); 2789 if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) { 2790 // We know the type that will be seen at this call site; we can 2791 // statically update the MethodData* rather than needing to do 2792 // dynamic tests on the receiver type. 2793 2794 // NOTE: we should probably put a lock around this search to 2795 // avoid collisions by concurrent compilations. 2796 ciVirtualCallData* vc_data = (ciVirtualCallData*) data; 2797 uint i; 2798 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2799 ciKlass* receiver = vc_data->receiver(i); 2800 if (known_klass->equals(receiver)) { 2801 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2802 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2803 return; 2804 } 2805 } 2806 2807 // Receiver type not found in profile data. Select an empty slot. 2808 2809 // Note that this is less efficient than it should be because it 2810 // always does a write to the receiver part of the 2811 // VirtualCallData rather than just the first time. 2812 for (i = 0; i < VirtualCallData::row_limit(); i++) { 2813 ciKlass* receiver = vc_data->receiver(i); 2814 if (receiver == nullptr) { 2815 Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i))); 2816 metadata2reg(known_klass->constant_encoding(), tmp1); 2817 __ z_stg(tmp1, recv_addr); 2818 Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i))); 2819 __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1); 2820 return; 2821 } 2822 } 2823 } else { 2824 __ load_klass(recv, recv); 2825 NearLabel update_done; 2826 type_profile_helper(mdo, md, data, recv, tmp1, &update_done); 2827 // Receiver did not match any saved receiver and there is no empty row for it. 2828 // Increment total counter to indicate polymorphic case. 2829 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); 2830 __ bind(update_done); 2831 } 2832 } else { 2833 // static call 2834 __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1); 2835 } 2836 } 2837 2838 void LIR_Assembler::align_backward_branch_target() { 2839 __ align(OptoLoopAlignment); 2840 } 2841 2842 void LIR_Assembler::emit_delay(LIR_OpDelay* op) { 2843 ShouldNotCallThis(); // There are no delay slots on ZARCH_64. 2844 } 2845 2846 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) { 2847 // tmp must be unused 2848 assert(tmp->is_illegal(), "wasting a register if tmp is allocated"); 2849 assert(left->is_register(), "can only handle registers"); 2850 2851 if (left->is_single_cpu()) { 2852 __ z_lcr(dest->as_register(), left->as_register()); 2853 } else if (left->is_single_fpu()) { 2854 __ z_lcebr(dest->as_float_reg(), left->as_float_reg()); 2855 } else if (left->is_double_fpu()) { 2856 __ z_lcdbr(dest->as_double_reg(), left->as_double_reg()); 2857 } else { 2858 assert(left->is_double_cpu(), "Must be a long"); 2859 __ z_lcgr(dest->as_register_lo(), left->as_register_lo()); 2860 } 2861 } 2862 2863 void LIR_Assembler::rt_call(LIR_Opr result, address dest, 2864 const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) { 2865 assert(!tmp->is_valid(), "don't need temporary"); 2866 emit_call_c(dest); 2867 CHECK_BAILOUT(); 2868 if (info != nullptr) { 2869 add_call_info_here(info); 2870 } 2871 } 2872 2873 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) { 2874 ShouldNotCallThis(); // not needed on ZARCH_64 2875 } 2876 2877 void LIR_Assembler::membar() { 2878 __ z_fence(); 2879 } 2880 2881 void LIR_Assembler::membar_acquire() { 2882 __ z_acquire(); 2883 } 2884 2885 void LIR_Assembler::membar_release() { 2886 __ z_release(); 2887 } 2888 2889 void LIR_Assembler::membar_loadload() { 2890 __ z_acquire(); 2891 } 2892 2893 void LIR_Assembler::membar_storestore() { 2894 __ z_release(); 2895 } 2896 2897 void LIR_Assembler::membar_loadstore() { 2898 __ z_acquire(); 2899 } 2900 2901 void LIR_Assembler::membar_storeload() { 2902 __ z_fence(); 2903 } 2904 2905 void LIR_Assembler::on_spin_wait() { 2906 Unimplemented(); 2907 } 2908 2909 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) { 2910 assert(patch_code == lir_patch_none, "Patch code not supported"); 2911 LIR_Address* addr = addr_opr->as_address_ptr(); 2912 assert(addr->scale() == LIR_Address::times_1, "scaling unsupported"); 2913 __ load_address(dest->as_pointer_register(), as_Address(addr)); 2914 } 2915 2916 void LIR_Assembler::get_thread(LIR_Opr result_reg) { 2917 ShouldNotCallThis(); // unused 2918 } 2919 2920 #ifdef ASSERT 2921 // Emit run-time assertion. 2922 void LIR_Assembler::emit_assert(LIR_OpAssert* op) { 2923 Unimplemented(); 2924 } 2925 #endif 2926 2927 void LIR_Assembler::peephole(LIR_List*) { 2928 // Do nothing for now. 2929 } 2930 2931 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) { 2932 assert(code == lir_xadd, "lir_xchg not supported"); 2933 Address src_addr = as_Address(src->as_address_ptr()); 2934 Register base = src_addr.base(); 2935 intptr_t disp = src_addr.disp(); 2936 if (src_addr.index()->is_valid()) { 2937 // LAA and LAAG do not support index register. 2938 __ load_address(Z_R1_scratch, src_addr); 2939 base = Z_R1_scratch; 2940 disp = 0; 2941 } 2942 if (data->type() == T_INT) { 2943 __ z_laa(dest->as_register(), data->as_register(), disp, base); 2944 } else if (data->type() == T_LONG) { 2945 assert(data->as_register_lo() == data->as_register_hi(), "should be a single register"); 2946 __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base); 2947 } else { 2948 ShouldNotReachHere(); 2949 } 2950 } 2951 2952 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) { 2953 Register obj = op->obj()->as_register(); 2954 Register tmp1 = op->tmp()->as_pointer_register(); 2955 Register tmp2 = Z_R1_scratch; 2956 Address mdo_addr = as_Address(op->mdp()->as_address_ptr()); 2957 ciKlass* exact_klass = op->exact_klass(); 2958 intptr_t current_klass = op->current_klass(); 2959 bool not_null = op->not_null(); 2960 bool no_conflict = op->no_conflict(); 2961 2962 Label update, next, none, null_seen, init_klass; 2963 2964 bool do_null = !not_null; 2965 bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass; 2966 bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set; 2967 2968 assert(do_null || do_update, "why are we here?"); 2969 assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?"); 2970 2971 __ verify_oop(obj, FILE_AND_LINE); 2972 2973 if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) { 2974 __ z_ltgr(tmp1, obj); 2975 } 2976 if (do_null) { 2977 __ z_brnz(update); 2978 if (!TypeEntries::was_null_seen(current_klass)) { 2979 __ z_lg(tmp1, mdo_addr); 2980 __ z_oill(tmp1, TypeEntries::null_seen); 2981 __ z_stg(tmp1, mdo_addr); 2982 } 2983 if (do_update) { 2984 __ z_bru(next); 2985 } 2986 } else { 2987 __ asm_assert(Assembler::bcondNotZero, "unexpected null obj", __LINE__); 2988 } 2989 2990 __ bind(update); 2991 2992 if (do_update) { 2993 #ifdef ASSERT 2994 if (exact_klass != nullptr) { 2995 __ load_klass(tmp1, tmp1); 2996 metadata2reg(exact_klass->constant_encoding(), tmp2); 2997 __ z_cgr(tmp1, tmp2); 2998 __ asm_assert(Assembler::bcondEqual, "exact klass and actual klass differ", __LINE__); 2999 } 3000 #endif 3001 3002 Label do_update; 3003 __ z_lg(tmp2, mdo_addr); 3004 3005 if (!no_conflict) { 3006 if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) { 3007 if (exact_klass != nullptr) { 3008 metadata2reg(exact_klass->constant_encoding(), tmp1); 3009 } else { 3010 __ load_klass(tmp1, tmp1); 3011 } 3012 3013 // Klass seen before: nothing to do (regardless of unknown bit). 3014 __ z_lgr(Z_R0_scratch, tmp2); 3015 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 3016 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); 3017 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); 3018 3019 // Already unknown: Nothing to do anymore. 3020 __ z_tmll(tmp2, TypeEntries::type_unknown); 3021 __ z_brc(Assembler::bcondAllOne, next); 3022 3023 if (TypeEntries::is_type_none(current_klass)) { 3024 __ z_lgr(Z_R0_scratch, tmp2); 3025 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 3026 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); 3027 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass); 3028 } 3029 } else { 3030 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3031 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only"); 3032 3033 // Already unknown: Nothing to do anymore. 3034 __ z_tmll(tmp2, TypeEntries::type_unknown); 3035 __ z_brc(Assembler::bcondAllOne, next); 3036 } 3037 3038 // Different than before. Cannot keep accurate profile. 3039 __ z_oill(tmp2, TypeEntries::type_unknown); 3040 __ z_bru(do_update); 3041 } else { 3042 // There's a single possible klass at this profile point. 3043 assert(exact_klass != nullptr, "should be"); 3044 if (TypeEntries::is_type_none(current_klass)) { 3045 metadata2reg(exact_klass->constant_encoding(), tmp1); 3046 __ z_lgr(Z_R0_scratch, tmp2); 3047 assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction"); 3048 __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF); 3049 __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next); 3050 #ifdef ASSERT 3051 { 3052 Label ok; 3053 __ z_lgr(Z_R0_scratch, tmp2); 3054 assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction"); 3055 __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF); 3056 __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok); 3057 __ stop("unexpected profiling mismatch"); 3058 __ bind(ok); 3059 } 3060 #endif 3061 3062 } else { 3063 assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr && 3064 ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent"); 3065 3066 // Already unknown: Nothing to do anymore. 3067 __ z_tmll(tmp2, TypeEntries::type_unknown); 3068 __ z_brc(Assembler::bcondAllOne, next); 3069 __ z_oill(tmp2, TypeEntries::type_unknown); 3070 __ z_bru(do_update); 3071 } 3072 } 3073 3074 __ bind(init_klass); 3075 // Combine klass and null_seen bit (only used if (tmp & type_mask)==0). 3076 __ z_ogr(tmp2, tmp1); 3077 3078 __ bind(do_update); 3079 __ z_stg(tmp2, mdo_addr); 3080 3081 __ bind(next); 3082 } 3083 } 3084 3085 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { 3086 assert(op->crc()->is_single_cpu(), "crc must be register"); 3087 assert(op->val()->is_single_cpu(), "byte value must be register"); 3088 assert(op->result_opr()->is_single_cpu(), "result must be register"); 3089 Register crc = op->crc()->as_register(); 3090 Register val = op->val()->as_register(); 3091 Register res = op->result_opr()->as_register(); 3092 3093 assert_different_registers(val, crc, res); 3094 3095 __ load_const_optimized(res, StubRoutines::crc_table_addr()); 3096 __ kernel_crc32_singleByteReg(crc, val, res, true); 3097 __ z_lgfr(res, crc); 3098 } 3099 3100 #undef __