1 /*
   2  * Copyright (c) 2000, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_CodeStubs.hpp"
  29 #include "c1/c1_Compilation.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "ci/ciArrayKlass.hpp"
  35 #include "ci/ciInstance.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/gc_globals.hpp"
  39 #include "nativeInst_x86.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/safepointMechanism.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "runtime/stubRoutines.hpp"
  45 #include "utilities/powerOfTwo.hpp"
  46 #include "vmreg_x86.inline.hpp"
  47 
  48 
  49 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  50 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  51 // fast versions of NegF/NegD and AbsF/AbsD.
  52 
  53 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  54 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  55   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  56   // of 128-bits operands for SSE instructions.
  57   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  58   // Store the value to a 128-bits operand.
  59   operand[0] = lo;
  60   operand[1] = hi;
  61   return operand;
  62 }
  63 
  64 // Buffer for 128-bits masks used by SSE instructions.
  65 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  66 
  67 // Static initialization during VM startup.
  68 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  69 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  70 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  71 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  72 
  73 
  74 NEEDS_CLEANUP // remove this definitions ?
  75 const Register IC_Klass    = rax;   // where the IC klass is cached
  76 const Register SYNC_header = rax;   // synchronization header
  77 const Register SHIFT_count = rcx;   // where count for shift operations must be
  78 
  79 #define __ _masm->
  80 
  81 
  82 static void select_different_registers(Register preserve,
  83                                        Register extra,
  84                                        Register &tmp1,
  85                                        Register &tmp2) {
  86   if (tmp1 == preserve) {
  87     assert_different_registers(tmp1, tmp2, extra);
  88     tmp1 = extra;
  89   } else if (tmp2 == preserve) {
  90     assert_different_registers(tmp1, tmp2, extra);
  91     tmp2 = extra;
  92   }
  93   assert_different_registers(preserve, tmp1, tmp2);
  94 }
  95 
  96 
  97 
  98 static void select_different_registers(Register preserve,
  99                                        Register extra,
 100                                        Register &tmp1,
 101                                        Register &tmp2,
 102                                        Register &tmp3) {
 103   if (tmp1 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp1 = extra;
 106   } else if (tmp2 == preserve) {
 107     assert_different_registers(tmp1, tmp2, tmp3, extra);
 108     tmp2 = extra;
 109   } else if (tmp3 == preserve) {
 110     assert_different_registers(tmp1, tmp2, tmp3, extra);
 111     tmp3 = extra;
 112   }
 113   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 114 }
 115 
 116 
 117 
 118 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 119   if (opr->is_constant()) {
 120     LIR_Const* constant = opr->as_constant_ptr();
 121     switch (constant->type()) {
 122       case T_INT: {
 123         return true;
 124       }
 125 
 126       default:
 127         return false;
 128     }
 129   }
 130   return false;
 131 }
 132 
 133 
 134 LIR_Opr LIR_Assembler::receiverOpr() {
 135   return FrameMap::receiver_opr;
 136 }
 137 
 138 LIR_Opr LIR_Assembler::osrBufferPointer() {
 139   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 140 }
 141 
 142 //--------------fpu register translations-----------------------
 143 
 144 
 145 address LIR_Assembler::float_constant(float f) {
 146   address const_addr = __ float_constant(f);
 147   if (const_addr == nullptr) {
 148     bailout("const section overflow");
 149     return __ code()->consts()->start();
 150   } else {
 151     return const_addr;
 152   }
 153 }
 154 
 155 
 156 address LIR_Assembler::double_constant(double d) {
 157   address const_addr = __ double_constant(d);
 158   if (const_addr == nullptr) {
 159     bailout("const section overflow");
 160     return __ code()->consts()->start();
 161   } else {
 162     return const_addr;
 163   }
 164 }
 165 
 166 #ifndef _LP64
 167 void LIR_Assembler::fpop() {
 168   __ fpop();
 169 }
 170 
 171 void LIR_Assembler::fxch(int i) {
 172   __ fxch(i);
 173 }
 174 
 175 void LIR_Assembler::fld(int i) {
 176   __ fld_s(i);
 177 }
 178 
 179 void LIR_Assembler::ffree(int i) {
 180   __ ffree(i);
 181 }
 182 #endif // !_LP64
 183 
 184 void LIR_Assembler::breakpoint() {
 185   __ int3();
 186 }
 187 
 188 void LIR_Assembler::push(LIR_Opr opr) {
 189   if (opr->is_single_cpu()) {
 190     __ push_reg(opr->as_register());
 191   } else if (opr->is_double_cpu()) {
 192     NOT_LP64(__ push_reg(opr->as_register_hi()));
 193     __ push_reg(opr->as_register_lo());
 194   } else if (opr->is_stack()) {
 195     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 196   } else if (opr->is_constant()) {
 197     LIR_Const* const_opr = opr->as_constant_ptr();
 198     if (const_opr->type() == T_OBJECT) {
 199       __ push_oop(const_opr->as_jobject(), rscratch1);
 200     } else if (const_opr->type() == T_INT) {
 201       __ push_jint(const_opr->as_jint());
 202     } else {
 203       ShouldNotReachHere();
 204     }
 205 
 206   } else {
 207     ShouldNotReachHere();
 208   }
 209 }
 210 
 211 void LIR_Assembler::pop(LIR_Opr opr) {
 212   if (opr->is_single_cpu()) {
 213     __ pop_reg(opr->as_register());
 214   } else {
 215     ShouldNotReachHere();
 216   }
 217 }
 218 
 219 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 220   return addr->base()->is_illegal() && addr->index()->is_illegal();
 221 }
 222 
 223 //-------------------------------------------
 224 
 225 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 226   return as_Address(addr, rscratch1);
 227 }
 228 
 229 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 230   if (addr->base()->is_illegal()) {
 231     assert(addr->index()->is_illegal(), "must be illegal too");
 232     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 233     if (! __ reachable(laddr)) {
 234       __ movptr(tmp, laddr.addr());
 235       Address res(tmp, 0);
 236       return res;
 237     } else {
 238       return __ as_Address(laddr);
 239     }
 240   }
 241 
 242   Register base = addr->base()->as_pointer_register();
 243 
 244   if (addr->index()->is_illegal()) {
 245     return Address( base, addr->disp());
 246   } else if (addr->index()->is_cpu_register()) {
 247     Register index = addr->index()->as_pointer_register();
 248     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 249   } else if (addr->index()->is_constant()) {
 250     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 251     assert(Assembler::is_simm32(addr_offset), "must be");
 252 
 253     return Address(base, addr_offset);
 254   } else {
 255     Unimplemented();
 256     return Address();
 257   }
 258 }
 259 
 260 
 261 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 262   Address base = as_Address(addr);
 263   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 264 }
 265 
 266 
 267 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 268   return as_Address(addr);
 269 }
 270 
 271 
 272 void LIR_Assembler::osr_entry() {
 273   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 274   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 275   ValueStack* entry_state = osr_entry->state();
 276   int number_of_locks = entry_state->locks_size();
 277 
 278   // we jump here if osr happens with the interpreter
 279   // state set up to continue at the beginning of the
 280   // loop that triggered osr - in particular, we have
 281   // the following registers setup:
 282   //
 283   // rcx: osr buffer
 284   //
 285 
 286   // build frame
 287   ciMethod* m = compilation()->method();
 288   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 289 
 290   // OSR buffer is
 291   //
 292   // locals[nlocals-1..0]
 293   // monitors[0..number_of_locks]
 294   //
 295   // locals is a direct copy of the interpreter frame so in the osr buffer
 296   // so first slot in the local array is the last local from the interpreter
 297   // and last slot is local[0] (receiver) from the interpreter
 298   //
 299   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 300   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 301   // in the interpreter frame (the method lock if a sync method)
 302 
 303   // Initialize monitors in the compiled activation.
 304   //   rcx: pointer to osr buffer
 305   //
 306   // All other registers are dead at this point and the locals will be
 307   // copied into place by code emitted in the IR.
 308 
 309   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 310   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 311     int monitor_offset = BytesPerWord * method()->max_locals() +
 312       (BasicObjectLock::size() * BytesPerWord) * (number_of_locks - 1);
 313     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 314     // the OSR buffer using 2 word entries: first the lock and then
 315     // the oop.
 316     for (int i = 0; i < number_of_locks; i++) {
 317       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 318 #ifdef ASSERT
 319       // verify the interpreter's monitor has a non-null object
 320       {
 321         Label L;
 322         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), NULL_WORD);
 323         __ jcc(Assembler::notZero, L);
 324         __ stop("locked object is null");
 325         __ bind(L);
 326       }
 327 #endif
 328       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 329       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 330       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 331       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 332     }
 333   }
 334 }
 335 
 336 
 337 // inline cache check; done before the frame is built.
 338 int LIR_Assembler::check_icache() {
 339   Register receiver = FrameMap::receiver_opr->as_register();
 340   Register ic_klass = IC_Klass;
 341   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 342   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 343   if (!do_post_padding) {
 344     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 345     __ align(CodeEntryAlignment, __ offset() + ic_cmp_size);
 346   }
 347   int offset = __ offset();
 348   __ inline_cache_check(receiver, IC_Klass);
 349   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 350   if (do_post_padding) {
 351     // force alignment after the cache check.
 352     // It's been verified to be aligned if !VerifyOops
 353     __ align(CodeEntryAlignment);
 354   }
 355   return offset;
 356 }
 357 
 358 void LIR_Assembler::clinit_barrier(ciMethod* method) {
 359   assert(VM_Version::supports_fast_class_init_checks(), "sanity");
 360   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
 361 
 362   Label L_skip_barrier;
 363   Register klass = rscratch1;
 364   Register thread = LP64_ONLY( r15_thread ) NOT_LP64( noreg );
 365   assert(thread != noreg, "x86_32 not implemented");
 366 
 367   __ mov_metadata(klass, method->holder()->constant_encoding());
 368   __ clinit_barrier(klass, thread, &L_skip_barrier /*L_fast_path*/);
 369 
 370   __ jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
 371 
 372   __ bind(L_skip_barrier);
 373 }
 374 
 375 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 376   jobject o = nullptr;
 377   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 378   __ movoop(reg, o);
 379   patching_epilog(patch, lir_patch_normal, reg, info);
 380 }
 381 
 382 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 383   Metadata* o = nullptr;
 384   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 385   __ mov_metadata(reg, o);
 386   patching_epilog(patch, lir_patch_normal, reg, info);
 387 }
 388 
 389 // This specifies the rsp decrement needed to build the frame
 390 int LIR_Assembler::initial_frame_size_in_bytes() const {
 391   // if rounding, must let FrameMap know!
 392 
 393   // The frame_map records size in slots (32bit word)
 394 
 395   // subtract two words to account for return address and link
 396   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 397 }
 398 
 399 
 400 int LIR_Assembler::emit_exception_handler() {
 401   // generate code for exception handler
 402   address handler_base = __ start_a_stub(exception_handler_size());
 403   if (handler_base == nullptr) {
 404     // not enough space left for the handler
 405     bailout("exception handler overflow");
 406     return -1;
 407   }
 408 
 409   int offset = code_offset();
 410 
 411   // the exception oop and pc are in rax, and rdx
 412   // no other registers need to be preserved, so invalidate them
 413   __ invalidate_registers(false, true, true, false, true, true);
 414 
 415   // check that there is really an exception
 416   __ verify_not_null_oop(rax);
 417 
 418   // search an exception handler (rax: exception oop, rdx: throwing pc)
 419   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 420   __ should_not_reach_here();
 421   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 422   __ end_a_stub();
 423 
 424   return offset;
 425 }
 426 
 427 
 428 // Emit the code to remove the frame from the stack in the exception
 429 // unwind path.
 430 int LIR_Assembler::emit_unwind_handler() {
 431 #ifndef PRODUCT
 432   if (CommentedAssembly) {
 433     _masm->block_comment("Unwind handler");
 434   }
 435 #endif
 436 
 437   int offset = code_offset();
 438 
 439   // Fetch the exception from TLS and clear out exception related thread state
 440   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 441   NOT_LP64(__ get_thread(thread));
 442   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 443   __ movptr(Address(thread, JavaThread::exception_oop_offset()), NULL_WORD);
 444   __ movptr(Address(thread, JavaThread::exception_pc_offset()), NULL_WORD);
 445 
 446   __ bind(_unwind_handler_entry);
 447   __ verify_not_null_oop(rax);
 448   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 449     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 450   }
 451 
 452   // Perform needed unlocking
 453   MonitorExitStub* stub = nullptr;
 454   if (method()->is_synchronized()) {
 455     monitor_address(0, FrameMap::rax_opr);
 456     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 457     if (LockingMode == LM_MONITOR) {
 458       __ jmp(*stub->entry());
 459     } else {
 460       __ unlock_object(rdi, rsi, rax, *stub->entry());
 461     }
 462     __ bind(*stub->continuation());
 463   }
 464 
 465   if (compilation()->env()->dtrace_method_probes()) {
 466 #ifdef _LP64
 467     __ mov(rdi, r15_thread);
 468     __ mov_metadata(rsi, method()->constant_encoding());
 469 #else
 470     __ get_thread(rax);
 471     __ movptr(Address(rsp, 0), rax);
 472     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding(), noreg);
 473 #endif
 474     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 475   }
 476 
 477   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 478     __ mov(rax, rbx);  // Restore the exception
 479   }
 480 
 481   // remove the activation and dispatch to the unwind handler
 482   __ remove_frame(initial_frame_size_in_bytes());
 483   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 484 
 485   // Emit the slow path assembly
 486   if (stub != nullptr) {
 487     stub->emit_code(this);
 488   }
 489 
 490   return offset;
 491 }
 492 
 493 
 494 int LIR_Assembler::emit_deopt_handler() {
 495   // generate code for exception handler
 496   address handler_base = __ start_a_stub(deopt_handler_size());
 497   if (handler_base == nullptr) {
 498     // not enough space left for the handler
 499     bailout("deopt handler overflow");
 500     return -1;
 501   }
 502 
 503   int offset = code_offset();
 504   InternalAddress here(__ pc());
 505 
 506   __ pushptr(here.addr(), rscratch1);
 507   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 508   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 509   __ end_a_stub();
 510 
 511   return offset;
 512 }
 513 
 514 void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
 515   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 516   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 517     assert(result->fpu() == 0, "result must already be on TOS");
 518   }
 519 
 520   // Pop the stack before the safepoint code
 521   __ remove_frame(initial_frame_size_in_bytes());
 522 
 523   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
 524     __ reserved_stack_check();
 525   }
 526 
 527   // Note: we do not need to round double result; float result has the right precision
 528   // the poll sets the condition code, but no data registers
 529 
 530 #ifdef _LP64
 531   const Register thread = r15_thread;
 532 #else
 533   const Register thread = rbx;
 534   __ get_thread(thread);
 535 #endif
 536   code_stub->set_safepoint_offset(__ offset());
 537   __ relocate(relocInfo::poll_return_type);
 538   __ safepoint_poll(*code_stub->entry(), thread, true /* at_return */, true /* in_nmethod */);
 539   __ ret(0);
 540 }
 541 
 542 
 543 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 544   guarantee(info != nullptr, "Shouldn't be null");
 545   int offset = __ offset();
 546 #ifdef _LP64
 547   const Register poll_addr = rscratch1;
 548   __ movptr(poll_addr, Address(r15_thread, JavaThread::polling_page_offset()));
 549 #else
 550   assert(tmp->is_cpu_register(), "needed");
 551   const Register poll_addr = tmp->as_register();
 552   __ get_thread(poll_addr);
 553   __ movptr(poll_addr, Address(poll_addr, in_bytes(JavaThread::polling_page_offset())));
 554 #endif
 555   add_debug_info_for_branch(info);
 556   __ relocate(relocInfo::poll_type);
 557   address pre_pc = __ pc();
 558   __ testl(rax, Address(poll_addr, 0));
 559   address post_pc = __ pc();
 560   guarantee(pointer_delta(post_pc, pre_pc, 1) == 2 LP64_ONLY(+1), "must be exact length");
 561   return offset;
 562 }
 563 
 564 
 565 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 566   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 567 }
 568 
 569 void LIR_Assembler::swap_reg(Register a, Register b) {
 570   __ xchgptr(a, b);
 571 }
 572 
 573 
 574 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 575   assert(src->is_constant(), "should not call otherwise");
 576   assert(dest->is_register(), "should not call otherwise");
 577   LIR_Const* c = src->as_constant_ptr();
 578 
 579   switch (c->type()) {
 580     case T_INT: {
 581       assert(patch_code == lir_patch_none, "no patching handled here");
 582       __ movl(dest->as_register(), c->as_jint());
 583       break;
 584     }
 585 
 586     case T_ADDRESS: {
 587       assert(patch_code == lir_patch_none, "no patching handled here");
 588       __ movptr(dest->as_register(), c->as_jint());
 589       break;
 590     }
 591 
 592     case T_LONG: {
 593       assert(patch_code == lir_patch_none, "no patching handled here");
 594 #ifdef _LP64
 595       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 596 #else
 597       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 598       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 599 #endif // _LP64
 600       break;
 601     }
 602 
 603     case T_OBJECT: {
 604       if (patch_code != lir_patch_none) {
 605         jobject2reg_with_patching(dest->as_register(), info);
 606       } else {
 607         __ movoop(dest->as_register(), c->as_jobject());
 608       }
 609       break;
 610     }
 611 
 612     case T_METADATA: {
 613       if (patch_code != lir_patch_none) {
 614         klass2reg_with_patching(dest->as_register(), info);
 615       } else {
 616         __ mov_metadata(dest->as_register(), c->as_metadata());
 617       }
 618       break;
 619     }
 620 
 621     case T_FLOAT: {
 622       if (dest->is_single_xmm()) {
 623         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_float()) {
 624           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 625         } else {
 626           __ movflt(dest->as_xmm_float_reg(),
 627                    InternalAddress(float_constant(c->as_jfloat())));
 628         }
 629       } else {
 630 #ifndef _LP64
 631         assert(dest->is_single_fpu(), "must be");
 632         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 633         if (c->is_zero_float()) {
 634           __ fldz();
 635         } else if (c->is_one_float()) {
 636           __ fld1();
 637         } else {
 638           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 639         }
 640 #else
 641         ShouldNotReachHere();
 642 #endif // !_LP64
 643       }
 644       break;
 645     }
 646 
 647     case T_DOUBLE: {
 648       if (dest->is_double_xmm()) {
 649         if (LP64_ONLY(UseAVX <= 2 &&) c->is_zero_double()) {
 650           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 651         } else {
 652           __ movdbl(dest->as_xmm_double_reg(),
 653                     InternalAddress(double_constant(c->as_jdouble())));
 654         }
 655       } else {
 656 #ifndef _LP64
 657         assert(dest->is_double_fpu(), "must be");
 658         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 659         if (c->is_zero_double()) {
 660           __ fldz();
 661         } else if (c->is_one_double()) {
 662           __ fld1();
 663         } else {
 664           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 665         }
 666 #else
 667         ShouldNotReachHere();
 668 #endif // !_LP64
 669       }
 670       break;
 671     }
 672 
 673     default:
 674       ShouldNotReachHere();
 675   }
 676 }
 677 
 678 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 679   assert(src->is_constant(), "should not call otherwise");
 680   assert(dest->is_stack(), "should not call otherwise");
 681   LIR_Const* c = src->as_constant_ptr();
 682 
 683   switch (c->type()) {
 684     case T_INT:  // fall through
 685     case T_FLOAT:
 686       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 687       break;
 688 
 689     case T_ADDRESS:
 690       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 691       break;
 692 
 693     case T_OBJECT:
 694       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject(), rscratch1);
 695       break;
 696 
 697     case T_LONG:  // fall through
 698     case T_DOUBLE:
 699 #ifdef _LP64
 700       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 701                                               lo_word_offset_in_bytes),
 702                 (intptr_t)c->as_jlong_bits(),
 703                 rscratch1);
 704 #else
 705       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 706                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 707       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 708                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 709 #endif // _LP64
 710       break;
 711 
 712     default:
 713       ShouldNotReachHere();
 714   }
 715 }
 716 
 717 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 718   assert(src->is_constant(), "should not call otherwise");
 719   assert(dest->is_address(), "should not call otherwise");
 720   LIR_Const* c = src->as_constant_ptr();
 721   LIR_Address* addr = dest->as_address_ptr();
 722 
 723   int null_check_here = code_offset();
 724   switch (type) {
 725     case T_INT:    // fall through
 726     case T_FLOAT:
 727       __ movl(as_Address(addr), c->as_jint_bits());
 728       break;
 729 
 730     case T_ADDRESS:
 731       __ movptr(as_Address(addr), c->as_jint_bits());
 732       break;
 733 
 734     case T_OBJECT:  // fall through
 735     case T_ARRAY:
 736       if (c->as_jobject() == nullptr) {
 737         if (UseCompressedOops && !wide) {
 738           __ movl(as_Address(addr), NULL_WORD);
 739         } else {
 740 #ifdef _LP64
 741           __ xorptr(rscratch1, rscratch1);
 742           null_check_here = code_offset();
 743           __ movptr(as_Address(addr), rscratch1);
 744 #else
 745           __ movptr(as_Address(addr), NULL_WORD);
 746 #endif
 747         }
 748       } else {
 749         if (is_literal_address(addr)) {
 750           ShouldNotReachHere();
 751           __ movoop(as_Address(addr, noreg), c->as_jobject(), rscratch1);
 752         } else {
 753 #ifdef _LP64
 754           __ movoop(rscratch1, c->as_jobject());
 755           if (UseCompressedOops && !wide) {
 756             __ encode_heap_oop(rscratch1);
 757             null_check_here = code_offset();
 758             __ movl(as_Address_lo(addr), rscratch1);
 759           } else {
 760             null_check_here = code_offset();
 761             __ movptr(as_Address_lo(addr), rscratch1);
 762           }
 763 #else
 764           __ movoop(as_Address(addr), c->as_jobject(), noreg);
 765 #endif
 766         }
 767       }
 768       break;
 769 
 770     case T_LONG:    // fall through
 771     case T_DOUBLE:
 772 #ifdef _LP64
 773       if (is_literal_address(addr)) {
 774         ShouldNotReachHere();
 775         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 776       } else {
 777         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 778         null_check_here = code_offset();
 779         __ movptr(as_Address_lo(addr), r10);
 780       }
 781 #else
 782       // Always reachable in 32bit so this doesn't produce useless move literal
 783       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 784       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 785 #endif // _LP64
 786       break;
 787 
 788     case T_BOOLEAN: // fall through
 789     case T_BYTE:
 790       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 791       break;
 792 
 793     case T_CHAR:    // fall through
 794     case T_SHORT:
 795       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 796       break;
 797 
 798     default:
 799       ShouldNotReachHere();
 800   };
 801 
 802   if (info != nullptr) {
 803     add_debug_info_for_null_check(null_check_here, info);
 804   }
 805 }
 806 
 807 
 808 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 809   assert(src->is_register(), "should not call otherwise");
 810   assert(dest->is_register(), "should not call otherwise");
 811 
 812   // move between cpu-registers
 813   if (dest->is_single_cpu()) {
 814 #ifdef _LP64
 815     if (src->type() == T_LONG) {
 816       // Can do LONG -> OBJECT
 817       move_regs(src->as_register_lo(), dest->as_register());
 818       return;
 819     }
 820 #endif
 821     assert(src->is_single_cpu(), "must match");
 822     if (src->type() == T_OBJECT) {
 823       __ verify_oop(src->as_register());
 824     }
 825     move_regs(src->as_register(), dest->as_register());
 826 
 827   } else if (dest->is_double_cpu()) {
 828 #ifdef _LP64
 829     if (is_reference_type(src->type())) {
 830       // Surprising to me but we can see move of a long to t_object
 831       __ verify_oop(src->as_register());
 832       move_regs(src->as_register(), dest->as_register_lo());
 833       return;
 834     }
 835 #endif
 836     assert(src->is_double_cpu(), "must match");
 837     Register f_lo = src->as_register_lo();
 838     Register f_hi = src->as_register_hi();
 839     Register t_lo = dest->as_register_lo();
 840     Register t_hi = dest->as_register_hi();
 841 #ifdef _LP64
 842     assert(f_hi == f_lo, "must be same");
 843     assert(t_hi == t_lo, "must be same");
 844     move_regs(f_lo, t_lo);
 845 #else
 846     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 847 
 848 
 849     if (f_lo == t_hi && f_hi == t_lo) {
 850       swap_reg(f_lo, f_hi);
 851     } else if (f_hi == t_lo) {
 852       assert(f_lo != t_hi, "overwriting register");
 853       move_regs(f_hi, t_hi);
 854       move_regs(f_lo, t_lo);
 855     } else {
 856       assert(f_hi != t_lo, "overwriting register");
 857       move_regs(f_lo, t_lo);
 858       move_regs(f_hi, t_hi);
 859     }
 860 #endif // LP64
 861 
 862 #ifndef _LP64
 863     // special moves from fpu-register to xmm-register
 864     // necessary for method results
 865   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 866     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 867     __ fld_s(Address(rsp, 0));
 868   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 869     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 870     __ fld_d(Address(rsp, 0));
 871   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 872     __ fstp_s(Address(rsp, 0));
 873     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 874   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 875     __ fstp_d(Address(rsp, 0));
 876     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 877 #endif // !_LP64
 878 
 879     // move between xmm-registers
 880   } else if (dest->is_single_xmm()) {
 881     assert(src->is_single_xmm(), "must match");
 882     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 883   } else if (dest->is_double_xmm()) {
 884     assert(src->is_double_xmm(), "must match");
 885     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 886 
 887 #ifndef _LP64
 888     // move between fpu-registers (no instruction necessary because of fpu-stack)
 889   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 890     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 891     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 892 #endif // !_LP64
 893 
 894   } else {
 895     ShouldNotReachHere();
 896   }
 897 }
 898 
 899 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 900   assert(src->is_register(), "should not call otherwise");
 901   assert(dest->is_stack(), "should not call otherwise");
 902 
 903   if (src->is_single_cpu()) {
 904     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 905     if (is_reference_type(type)) {
 906       __ verify_oop(src->as_register());
 907       __ movptr (dst, src->as_register());
 908     } else if (type == T_METADATA || type == T_ADDRESS) {
 909       __ movptr (dst, src->as_register());
 910     } else {
 911       __ movl (dst, src->as_register());
 912     }
 913 
 914   } else if (src->is_double_cpu()) {
 915     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 916     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 917     __ movptr (dstLO, src->as_register_lo());
 918     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 919 
 920   } else if (src->is_single_xmm()) {
 921     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 922     __ movflt(dst_addr, src->as_xmm_float_reg());
 923 
 924   } else if (src->is_double_xmm()) {
 925     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 926     __ movdbl(dst_addr, src->as_xmm_double_reg());
 927 
 928 #ifndef _LP64
 929   } else if (src->is_single_fpu()) {
 930     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 931     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 932     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 933     else                   __ fst_s  (dst_addr);
 934 
 935   } else if (src->is_double_fpu()) {
 936     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 937     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 938     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 939     else                   __ fst_d  (dst_addr);
 940 #endif // !_LP64
 941 
 942   } else {
 943     ShouldNotReachHere();
 944   }
 945 }
 946 
 947 
 948 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide) {
 949   LIR_Address* to_addr = dest->as_address_ptr();
 950   PatchingStub* patch = nullptr;
 951   Register compressed_src = rscratch1;
 952 
 953   if (is_reference_type(type)) {
 954     __ verify_oop(src->as_register());
 955 #ifdef _LP64
 956     if (UseCompressedOops && !wide) {
 957       __ movptr(compressed_src, src->as_register());
 958       __ encode_heap_oop(compressed_src);
 959       if (patch_code != lir_patch_none) {
 960         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
 961       }
 962     }
 963 #endif
 964   }
 965 
 966   if (patch_code != lir_patch_none) {
 967     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 968     Address toa = as_Address(to_addr);
 969     assert(toa.disp() != 0, "must have");
 970   }
 971 
 972   int null_check_here = code_offset();
 973   switch (type) {
 974     case T_FLOAT: {
 975 #ifdef _LP64
 976       assert(src->is_single_xmm(), "not a float");
 977       __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 978 #else
 979       if (src->is_single_xmm()) {
 980         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
 981       } else {
 982         assert(src->is_single_fpu(), "must be");
 983         assert(src->fpu_regnr() == 0, "argument must be on TOS");
 984         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
 985         else                    __ fst_s (as_Address(to_addr));
 986       }
 987 #endif // _LP64
 988       break;
 989     }
 990 
 991     case T_DOUBLE: {
 992 #ifdef _LP64
 993       assert(src->is_double_xmm(), "not a double");
 994       __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 995 #else
 996       if (src->is_double_xmm()) {
 997         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
 998       } else {
 999         assert(src->is_double_fpu(), "must be");
1000         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1001         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1002         else                    __ fst_d (as_Address(to_addr));
1003       }
1004 #endif // _LP64
1005       break;
1006     }
1007 
1008     case T_ARRAY:   // fall through
1009     case T_OBJECT:  // fall through
1010       if (UseCompressedOops && !wide) {
1011         __ movl(as_Address(to_addr), compressed_src);
1012       } else {
1013         __ movptr(as_Address(to_addr), src->as_register());
1014       }
1015       break;
1016     case T_METADATA:
1017       // We get here to store a method pointer to the stack to pass to
1018       // a dtrace runtime call. This can't work on 64 bit with
1019       // compressed klass ptrs: T_METADATA can be a compressed klass
1020       // ptr or a 64 bit method pointer.
1021       LP64_ONLY(ShouldNotReachHere());
1022       __ movptr(as_Address(to_addr), src->as_register());
1023       break;
1024     case T_ADDRESS:
1025       __ movptr(as_Address(to_addr), src->as_register());
1026       break;
1027     case T_INT:
1028       __ movl(as_Address(to_addr), src->as_register());
1029       break;
1030 
1031     case T_LONG: {
1032       Register from_lo = src->as_register_lo();
1033       Register from_hi = src->as_register_hi();
1034 #ifdef _LP64
1035       __ movptr(as_Address_lo(to_addr), from_lo);
1036 #else
1037       Register base = to_addr->base()->as_register();
1038       Register index = noreg;
1039       if (to_addr->index()->is_register()) {
1040         index = to_addr->index()->as_register();
1041       }
1042       if (base == from_lo || index == from_lo) {
1043         assert(base != from_hi, "can't be");
1044         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1045         __ movl(as_Address_hi(to_addr), from_hi);
1046         if (patch != nullptr) {
1047           patching_epilog(patch, lir_patch_high, base, info);
1048           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1049           patch_code = lir_patch_low;
1050         }
1051         __ movl(as_Address_lo(to_addr), from_lo);
1052       } else {
1053         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1054         __ movl(as_Address_lo(to_addr), from_lo);
1055         if (patch != nullptr) {
1056           patching_epilog(patch, lir_patch_low, base, info);
1057           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1058           patch_code = lir_patch_high;
1059         }
1060         __ movl(as_Address_hi(to_addr), from_hi);
1061       }
1062 #endif // _LP64
1063       break;
1064     }
1065 
1066     case T_BYTE:    // fall through
1067     case T_BOOLEAN: {
1068       Register src_reg = src->as_register();
1069       Address dst_addr = as_Address(to_addr);
1070       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1071       __ movb(dst_addr, src_reg);
1072       break;
1073     }
1074 
1075     case T_CHAR:    // fall through
1076     case T_SHORT:
1077       __ movw(as_Address(to_addr), src->as_register());
1078       break;
1079 
1080     default:
1081       ShouldNotReachHere();
1082   }
1083   if (info != nullptr) {
1084     add_debug_info_for_null_check(null_check_here, info);
1085   }
1086 
1087   if (patch_code != lir_patch_none) {
1088     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1089   }
1090 }
1091 
1092 
1093 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1094   assert(src->is_stack(), "should not call otherwise");
1095   assert(dest->is_register(), "should not call otherwise");
1096 
1097   if (dest->is_single_cpu()) {
1098     if (is_reference_type(type)) {
1099       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1100       __ verify_oop(dest->as_register());
1101     } else if (type == T_METADATA || type == T_ADDRESS) {
1102       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1103     } else {
1104       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1105     }
1106 
1107   } else if (dest->is_double_cpu()) {
1108     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1109     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1110     __ movptr(dest->as_register_lo(), src_addr_LO);
1111     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1112 
1113   } else if (dest->is_single_xmm()) {
1114     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1115     __ movflt(dest->as_xmm_float_reg(), src_addr);
1116 
1117   } else if (dest->is_double_xmm()) {
1118     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1119     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1120 
1121 #ifndef _LP64
1122   } else if (dest->is_single_fpu()) {
1123     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1124     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1125     __ fld_s(src_addr);
1126 
1127   } else if (dest->is_double_fpu()) {
1128     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1129     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1130     __ fld_d(src_addr);
1131 #endif // _LP64
1132 
1133   } else {
1134     ShouldNotReachHere();
1135   }
1136 }
1137 
1138 
1139 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1140   if (src->is_single_stack()) {
1141     if (is_reference_type(type)) {
1142       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1143       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1144     } else {
1145 #ifndef _LP64
1146       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1147       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1148 #else
1149       //no pushl on 64bits
1150       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1151       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1152 #endif
1153     }
1154 
1155   } else if (src->is_double_stack()) {
1156 #ifdef _LP64
1157     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1158     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1159 #else
1160     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1161     // push and pop the part at src + wordSize, adding wordSize for the previous push
1162     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1163     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1165 #endif // _LP64
1166 
1167   } else {
1168     ShouldNotReachHere();
1169   }
1170 }
1171 
1172 
1173 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide) {
1174   assert(src->is_address(), "should not call otherwise");
1175   assert(dest->is_register(), "should not call otherwise");
1176 
1177   LIR_Address* addr = src->as_address_ptr();
1178   Address from_addr = as_Address(addr);
1179 
1180   if (addr->base()->type() == T_OBJECT) {
1181     __ verify_oop(addr->base()->as_pointer_register());
1182   }
1183 
1184   switch (type) {
1185     case T_BOOLEAN: // fall through
1186     case T_BYTE:    // fall through
1187     case T_CHAR:    // fall through
1188     case T_SHORT:
1189       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1190         // on pre P6 processors we may get partial register stalls
1191         // so blow away the value of to_rinfo before loading a
1192         // partial word into it.  Do it here so that it precedes
1193         // the potential patch point below.
1194         __ xorptr(dest->as_register(), dest->as_register());
1195       }
1196       break;
1197    default:
1198      break;
1199   }
1200 
1201   PatchingStub* patch = nullptr;
1202   if (patch_code != lir_patch_none) {
1203     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1204     assert(from_addr.disp() != 0, "must have");
1205   }
1206   if (info != nullptr) {
1207     add_debug_info_for_null_check_here(info);
1208   }
1209 
1210   switch (type) {
1211     case T_FLOAT: {
1212       if (dest->is_single_xmm()) {
1213         __ movflt(dest->as_xmm_float_reg(), from_addr);
1214       } else {
1215 #ifndef _LP64
1216         assert(dest->is_single_fpu(), "must be");
1217         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1218         __ fld_s(from_addr);
1219 #else
1220         ShouldNotReachHere();
1221 #endif // !LP64
1222       }
1223       break;
1224     }
1225 
1226     case T_DOUBLE: {
1227       if (dest->is_double_xmm()) {
1228         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1229       } else {
1230 #ifndef _LP64
1231         assert(dest->is_double_fpu(), "must be");
1232         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1233         __ fld_d(from_addr);
1234 #else
1235         ShouldNotReachHere();
1236 #endif // !LP64
1237       }
1238       break;
1239     }
1240 
1241     case T_OBJECT:  // fall through
1242     case T_ARRAY:   // fall through
1243       if (UseCompressedOops && !wide) {
1244         __ movl(dest->as_register(), from_addr);
1245       } else {
1246         __ movptr(dest->as_register(), from_addr);
1247       }
1248       break;
1249 
1250     case T_ADDRESS:
1251       __ movptr(dest->as_register(), from_addr);
1252       break;
1253     case T_INT:
1254       __ movl(dest->as_register(), from_addr);
1255       break;
1256 
1257     case T_LONG: {
1258       Register to_lo = dest->as_register_lo();
1259       Register to_hi = dest->as_register_hi();
1260 #ifdef _LP64
1261       __ movptr(to_lo, as_Address_lo(addr));
1262 #else
1263       Register base = addr->base()->as_register();
1264       Register index = noreg;
1265       if (addr->index()->is_register()) {
1266         index = addr->index()->as_register();
1267       }
1268       if ((base == to_lo && index == to_hi) ||
1269           (base == to_hi && index == to_lo)) {
1270         // addresses with 2 registers are only formed as a result of
1271         // array access so this code will never have to deal with
1272         // patches or null checks.
1273         assert(info == nullptr && patch == nullptr, "must be");
1274         __ lea(to_hi, as_Address(addr));
1275         __ movl(to_lo, Address(to_hi, 0));
1276         __ movl(to_hi, Address(to_hi, BytesPerWord));
1277       } else if (base == to_lo || index == to_lo) {
1278         assert(base != to_hi, "can't be");
1279         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1280         __ movl(to_hi, as_Address_hi(addr));
1281         if (patch != nullptr) {
1282           patching_epilog(patch, lir_patch_high, base, info);
1283           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1284           patch_code = lir_patch_low;
1285         }
1286         __ movl(to_lo, as_Address_lo(addr));
1287       } else {
1288         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1289         __ movl(to_lo, as_Address_lo(addr));
1290         if (patch != nullptr) {
1291           patching_epilog(patch, lir_patch_low, base, info);
1292           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1293           patch_code = lir_patch_high;
1294         }
1295         __ movl(to_hi, as_Address_hi(addr));
1296       }
1297 #endif // _LP64
1298       break;
1299     }
1300 
1301     case T_BOOLEAN: // fall through
1302     case T_BYTE: {
1303       Register dest_reg = dest->as_register();
1304       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1305       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1306         __ movsbl(dest_reg, from_addr);
1307       } else {
1308         __ movb(dest_reg, from_addr);
1309         __ shll(dest_reg, 24);
1310         __ sarl(dest_reg, 24);
1311       }
1312       break;
1313     }
1314 
1315     case T_CHAR: {
1316       Register dest_reg = dest->as_register();
1317       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1318       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1319         __ movzwl(dest_reg, from_addr);
1320       } else {
1321         __ movw(dest_reg, from_addr);
1322       }
1323       break;
1324     }
1325 
1326     case T_SHORT: {
1327       Register dest_reg = dest->as_register();
1328       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1329         __ movswl(dest_reg, from_addr);
1330       } else {
1331         __ movw(dest_reg, from_addr);
1332         __ shll(dest_reg, 16);
1333         __ sarl(dest_reg, 16);
1334       }
1335       break;
1336     }
1337 
1338     default:
1339       ShouldNotReachHere();
1340   }
1341 
1342   if (patch != nullptr) {
1343     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1344   }
1345 
1346   if (is_reference_type(type)) {
1347 #ifdef _LP64
1348     if (UseCompressedOops && !wide) {
1349       __ decode_heap_oop(dest->as_register());
1350     }
1351 #endif
1352 
1353     if (!(UseZGC && !ZGenerational)) {
1354       // Load barrier has not yet been applied, so ZGC can't verify the oop here
1355       __ verify_oop(dest->as_register());
1356     }
1357   }
1358 }
1359 
1360 
1361 NEEDS_CLEANUP; // This could be static?
1362 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1363   int elem_size = type2aelembytes(type);
1364   switch (elem_size) {
1365     case 1: return Address::times_1;
1366     case 2: return Address::times_2;
1367     case 4: return Address::times_4;
1368     case 8: return Address::times_8;
1369   }
1370   ShouldNotReachHere();
1371   return Address::no_scale;
1372 }
1373 
1374 
1375 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1376   switch (op->code()) {
1377     case lir_idiv:
1378     case lir_irem:
1379       arithmetic_idiv(op->code(),
1380                       op->in_opr1(),
1381                       op->in_opr2(),
1382                       op->in_opr3(),
1383                       op->result_opr(),
1384                       op->info());
1385       break;
1386     case lir_fmad:
1387       __ fmad(op->result_opr()->as_xmm_double_reg(),
1388               op->in_opr1()->as_xmm_double_reg(),
1389               op->in_opr2()->as_xmm_double_reg(),
1390               op->in_opr3()->as_xmm_double_reg());
1391       break;
1392     case lir_fmaf:
1393       __ fmaf(op->result_opr()->as_xmm_float_reg(),
1394               op->in_opr1()->as_xmm_float_reg(),
1395               op->in_opr2()->as_xmm_float_reg(),
1396               op->in_opr3()->as_xmm_float_reg());
1397       break;
1398     default:      ShouldNotReachHere(); break;
1399   }
1400 }
1401 
1402 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1403 #ifdef ASSERT
1404   assert(op->block() == nullptr || op->block()->label() == op->label(), "wrong label");
1405   if (op->block() != nullptr)  _branch_target_blocks.append(op->block());
1406   if (op->ublock() != nullptr) _branch_target_blocks.append(op->ublock());
1407 #endif
1408 
1409   if (op->cond() == lir_cond_always) {
1410     if (op->info() != nullptr) add_debug_info_for_branch(op->info());
1411     __ jmp (*(op->label()));
1412   } else {
1413     Assembler::Condition acond = Assembler::zero;
1414     if (op->code() == lir_cond_float_branch) {
1415       assert(op->ublock() != nullptr, "must have unordered successor");
1416       __ jcc(Assembler::parity, *(op->ublock()->label()));
1417       switch(op->cond()) {
1418         case lir_cond_equal:        acond = Assembler::equal;      break;
1419         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1420         case lir_cond_less:         acond = Assembler::below;      break;
1421         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1422         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1423         case lir_cond_greater:      acond = Assembler::above;      break;
1424         default:                         ShouldNotReachHere();
1425       }
1426     } else {
1427       switch (op->cond()) {
1428         case lir_cond_equal:        acond = Assembler::equal;       break;
1429         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1430         case lir_cond_less:         acond = Assembler::less;        break;
1431         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1432         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1433         case lir_cond_greater:      acond = Assembler::greater;     break;
1434         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1435         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1436         default:                         ShouldNotReachHere();
1437       }
1438     }
1439     __ jcc(acond,*(op->label()));
1440   }
1441 }
1442 
1443 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1444   LIR_Opr src  = op->in_opr();
1445   LIR_Opr dest = op->result_opr();
1446 
1447   switch (op->bytecode()) {
1448     case Bytecodes::_i2l:
1449 #ifdef _LP64
1450       __ movl2ptr(dest->as_register_lo(), src->as_register());
1451 #else
1452       move_regs(src->as_register(), dest->as_register_lo());
1453       move_regs(src->as_register(), dest->as_register_hi());
1454       __ sarl(dest->as_register_hi(), 31);
1455 #endif // LP64
1456       break;
1457 
1458     case Bytecodes::_l2i:
1459 #ifdef _LP64
1460       __ movl(dest->as_register(), src->as_register_lo());
1461 #else
1462       move_regs(src->as_register_lo(), dest->as_register());
1463 #endif
1464       break;
1465 
1466     case Bytecodes::_i2b:
1467       move_regs(src->as_register(), dest->as_register());
1468       __ sign_extend_byte(dest->as_register());
1469       break;
1470 
1471     case Bytecodes::_i2c:
1472       move_regs(src->as_register(), dest->as_register());
1473       __ andl(dest->as_register(), 0xFFFF);
1474       break;
1475 
1476     case Bytecodes::_i2s:
1477       move_regs(src->as_register(), dest->as_register());
1478       __ sign_extend_short(dest->as_register());
1479       break;
1480 
1481 
1482 #ifdef _LP64
1483     case Bytecodes::_f2d:
1484       __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1485       break;
1486 
1487     case Bytecodes::_d2f:
1488       __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1489       break;
1490 
1491     case Bytecodes::_i2f:
1492       __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1493       break;
1494 
1495     case Bytecodes::_i2d:
1496       __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1497       break;
1498 
1499     case Bytecodes::_l2f:
1500       __ cvtsi2ssq(dest->as_xmm_float_reg(), src->as_register_lo());
1501       break;
1502 
1503     case Bytecodes::_l2d:
1504       __ cvtsi2sdq(dest->as_xmm_double_reg(), src->as_register_lo());
1505       break;
1506 
1507     case Bytecodes::_f2i:
1508       __ convert_f2i(dest->as_register(), src->as_xmm_float_reg());
1509       break;
1510 
1511     case Bytecodes::_d2i:
1512       __ convert_d2i(dest->as_register(), src->as_xmm_double_reg());
1513       break;
1514 
1515     case Bytecodes::_f2l:
1516       __ convert_f2l(dest->as_register_lo(), src->as_xmm_float_reg());
1517       break;
1518 
1519     case Bytecodes::_d2l:
1520       __ convert_d2l(dest->as_register_lo(), src->as_xmm_double_reg());
1521       break;
1522 #else
1523     case Bytecodes::_f2d:
1524     case Bytecodes::_d2f:
1525       if (dest->is_single_xmm()) {
1526         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1527       } else if (dest->is_double_xmm()) {
1528         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1529       } else {
1530         assert(src->fpu() == dest->fpu(), "register must be equal");
1531         // do nothing (float result is rounded later through spilling)
1532       }
1533       break;
1534 
1535     case Bytecodes::_i2f:
1536     case Bytecodes::_i2d:
1537       if (dest->is_single_xmm()) {
1538         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1539       } else if (dest->is_double_xmm()) {
1540         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1541       } else {
1542         assert(dest->fpu() == 0, "result must be on TOS");
1543         __ movl(Address(rsp, 0), src->as_register());
1544         __ fild_s(Address(rsp, 0));
1545       }
1546       break;
1547 
1548     case Bytecodes::_l2f:
1549     case Bytecodes::_l2d:
1550       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1551       assert(dest->fpu() == 0, "result must be on TOS");
1552       __ movptr(Address(rsp, 0),          src->as_register_lo());
1553       __ movl(Address(rsp, BytesPerWord), src->as_register_hi());
1554       __ fild_d(Address(rsp, 0));
1555       // float result is rounded later through spilling
1556       break;
1557 
1558     case Bytecodes::_f2i:
1559     case Bytecodes::_d2i:
1560       if (src->is_single_xmm()) {
1561         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1562       } else if (src->is_double_xmm()) {
1563         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1564       } else {
1565         assert(src->fpu() == 0, "input must be on TOS");
1566         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_trunc()));
1567         __ fist_s(Address(rsp, 0));
1568         __ movl(dest->as_register(), Address(rsp, 0));
1569         __ fldcw(ExternalAddress(StubRoutines::x86::addr_fpu_cntrl_wrd_std()));
1570       }
1571       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1572       assert(op->stub() != nullptr, "stub required");
1573       __ cmpl(dest->as_register(), 0x80000000);
1574       __ jcc(Assembler::equal, *op->stub()->entry());
1575       __ bind(*op->stub()->continuation());
1576       break;
1577 
1578     case Bytecodes::_f2l:
1579     case Bytecodes::_d2l:
1580       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1581       assert(src->fpu() == 0, "input must be on TOS");
1582       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1583 
1584       // instruction sequence too long to inline it here
1585       {
1586         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1587       }
1588       break;
1589 #endif // _LP64
1590 
1591     default: ShouldNotReachHere();
1592   }
1593 }
1594 
1595 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1596   if (op->init_check()) {
1597     add_debug_info_for_null_check_here(op->stub()->info());
1598     __ cmpb(Address(op->klass()->as_register(),
1599                     InstanceKlass::init_state_offset()),
1600                     InstanceKlass::fully_initialized);
1601     __ jcc(Assembler::notEqual, *op->stub()->entry());
1602   }
1603   __ allocate_object(op->obj()->as_register(),
1604                      op->tmp1()->as_register(),
1605                      op->tmp2()->as_register(),
1606                      op->header_size(),
1607                      op->object_size(),
1608                      op->klass()->as_register(),
1609                      *op->stub()->entry());
1610   __ bind(*op->stub()->continuation());
1611 }
1612 
1613 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1614   Register len =  op->len()->as_register();
1615   LP64_ONLY( __ movslq(len, len); )
1616 
1617   if (UseSlowPath ||
1618       (!UseFastNewObjectArray && is_reference_type(op->type())) ||
1619       (!UseFastNewTypeArray   && !is_reference_type(op->type()))) {
1620     __ jmp(*op->stub()->entry());
1621   } else {
1622     Register tmp1 = op->tmp1()->as_register();
1623     Register tmp2 = op->tmp2()->as_register();
1624     Register tmp3 = op->tmp3()->as_register();
1625     if (len == tmp1) {
1626       tmp1 = tmp3;
1627     } else if (len == tmp2) {
1628       tmp2 = tmp3;
1629     } else if (len == tmp3) {
1630       // everything is ok
1631     } else {
1632       __ mov(tmp3, len);
1633     }
1634     __ allocate_array(op->obj()->as_register(),
1635                       len,
1636                       tmp1,
1637                       tmp2,
1638                       arrayOopDesc::base_offset_in_bytes(op->type()),
1639                       array_element_size(op->type()),
1640                       op->klass()->as_register(),
1641                       *op->stub()->entry());
1642   }
1643   __ bind(*op->stub()->continuation());
1644 }
1645 
1646 void LIR_Assembler::type_profile_helper(Register mdo,
1647                                         ciMethodData *md, ciProfileData *data,
1648                                         Register recv, Label* update_done) {
1649   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1650     Label next_test;
1651     // See if the receiver is receiver[n].
1652     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1653     __ jccb(Assembler::notEqual, next_test);
1654     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1655     __ addptr(data_addr, DataLayout::counter_increment);
1656     __ jmp(*update_done);
1657     __ bind(next_test);
1658   }
1659 
1660   // Didn't find receiver; find next empty slot and fill it in
1661   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1662     Label next_test;
1663     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1664     __ cmpptr(recv_addr, NULL_WORD);
1665     __ jccb(Assembler::notEqual, next_test);
1666     __ movptr(recv_addr, recv);
1667     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1668     __ jmp(*update_done);
1669     __ bind(next_test);
1670   }
1671 }
1672 
1673 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1674   // we always need a stub for the failure case.
1675   CodeStub* stub = op->stub();
1676   Register obj = op->object()->as_register();
1677   Register k_RInfo = op->tmp1()->as_register();
1678   Register klass_RInfo = op->tmp2()->as_register();
1679   Register dst = op->result_opr()->as_register();
1680   ciKlass* k = op->klass();
1681   Register Rtmp1 = noreg;
1682   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1683 
1684   // check if it needs to be profiled
1685   ciMethodData* md = nullptr;
1686   ciProfileData* data = nullptr;
1687 
1688   if (op->should_profile()) {
1689     ciMethod* method = op->profiled_method();
1690     assert(method != nullptr, "Should have method");
1691     int bci = op->profiled_bci();
1692     md = method->method_data_or_null();
1693     assert(md != nullptr, "Sanity");
1694     data = md->bci_to_data(bci);
1695     assert(data != nullptr,                "need data for type check");
1696     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1697   }
1698   Label profile_cast_success, profile_cast_failure;
1699   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1700   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1701 
1702   if (obj == k_RInfo) {
1703     k_RInfo = dst;
1704   } else if (obj == klass_RInfo) {
1705     klass_RInfo = dst;
1706   }
1707   if (k->is_loaded() && !UseCompressedClassPointers) {
1708     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1709   } else {
1710     Rtmp1 = op->tmp3()->as_register();
1711     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1712   }
1713 
1714   assert_different_registers(obj, k_RInfo, klass_RInfo);
1715 
1716   __ testptr(obj, obj);
1717   if (op->should_profile()) {
1718     Label not_null;
1719     __ jccb(Assembler::notEqual, not_null);
1720     // Object is null; update MDO and exit
1721     Register mdo  = klass_RInfo;
1722     __ mov_metadata(mdo, md->constant_encoding());
1723     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1724     int header_bits = BitData::null_seen_byte_constant();
1725     __ orb(data_addr, header_bits);
1726     __ jmp(*obj_is_null);
1727     __ bind(not_null);
1728   } else {
1729     __ jcc(Assembler::equal, *obj_is_null);
1730   }
1731 
1732   if (!k->is_loaded()) {
1733     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1734   } else {
1735 #ifdef _LP64
1736     __ mov_metadata(k_RInfo, k->constant_encoding());
1737 #endif // _LP64
1738   }
1739   __ verify_oop(obj);
1740 
1741   if (op->fast_check()) {
1742     // get object class
1743     // not a safepoint as obj null check happens earlier
1744 #ifdef _LP64
1745     if (UseCompressedClassPointers) {
1746       __ load_klass(Rtmp1, obj, tmp_load_klass);
1747       __ cmpptr(k_RInfo, Rtmp1);
1748     } else {
1749       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1750     }
1751 #else
1752     if (k->is_loaded()) {
1753       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1754     } else {
1755       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1756     }
1757 #endif
1758     __ jcc(Assembler::notEqual, *failure_target);
1759     // successful cast, fall through to profile or jump
1760   } else {
1761     // get object class
1762     // not a safepoint as obj null check happens earlier
1763     __ load_klass(klass_RInfo, obj, tmp_load_klass);
1764     if (k->is_loaded()) {
1765       // See if we get an immediate positive hit
1766 #ifdef _LP64
1767       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1768 #else
1769       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1770 #endif // _LP64
1771       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1772         __ jcc(Assembler::notEqual, *failure_target);
1773         // successful cast, fall through to profile or jump
1774       } else {
1775         // See if we get an immediate positive hit
1776         __ jcc(Assembler::equal, *success_target);
1777         // check for self
1778 #ifdef _LP64
1779         __ cmpptr(klass_RInfo, k_RInfo);
1780 #else
1781         __ cmpklass(klass_RInfo, k->constant_encoding());
1782 #endif // _LP64
1783         __ jcc(Assembler::equal, *success_target);
1784 
1785         __ push(klass_RInfo);
1786 #ifdef _LP64
1787         __ push(k_RInfo);
1788 #else
1789         __ pushklass(k->constant_encoding(), noreg);
1790 #endif // _LP64
1791         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1792         __ pop(klass_RInfo);
1793         __ pop(klass_RInfo);
1794         // result is a boolean
1795         __ testl(klass_RInfo, klass_RInfo);
1796         __ jcc(Assembler::equal, *failure_target);
1797         // successful cast, fall through to profile or jump
1798       }
1799     } else {
1800       // perform the fast part of the checking logic
1801       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1802       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1803       __ push(klass_RInfo);
1804       __ push(k_RInfo);
1805       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1806       __ pop(klass_RInfo);
1807       __ pop(k_RInfo);
1808       // result is a boolean
1809       __ testl(k_RInfo, k_RInfo);
1810       __ jcc(Assembler::equal, *failure_target);
1811       // successful cast, fall through to profile or jump
1812     }
1813   }
1814   if (op->should_profile()) {
1815     Register mdo  = klass_RInfo, recv = k_RInfo;
1816     __ bind(profile_cast_success);
1817     __ mov_metadata(mdo, md->constant_encoding());
1818     __ load_klass(recv, obj, tmp_load_klass);
1819     type_profile_helper(mdo, md, data, recv, success);
1820     __ jmp(*success);
1821 
1822     __ bind(profile_cast_failure);
1823     __ mov_metadata(mdo, md->constant_encoding());
1824     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1825     __ subptr(counter_addr, DataLayout::counter_increment);
1826     __ jmp(*failure);
1827   }
1828   __ jmp(*success);
1829 }
1830 
1831 
1832 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1833   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
1834   LIR_Code code = op->code();
1835   if (code == lir_store_check) {
1836     Register value = op->object()->as_register();
1837     Register array = op->array()->as_register();
1838     Register k_RInfo = op->tmp1()->as_register();
1839     Register klass_RInfo = op->tmp2()->as_register();
1840     Register Rtmp1 = op->tmp3()->as_register();
1841 
1842     CodeStub* stub = op->stub();
1843 
1844     // check if it needs to be profiled
1845     ciMethodData* md = nullptr;
1846     ciProfileData* data = nullptr;
1847 
1848     if (op->should_profile()) {
1849       ciMethod* method = op->profiled_method();
1850       assert(method != nullptr, "Should have method");
1851       int bci = op->profiled_bci();
1852       md = method->method_data_or_null();
1853       assert(md != nullptr, "Sanity");
1854       data = md->bci_to_data(bci);
1855       assert(data != nullptr,                "need data for type check");
1856       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1857     }
1858     Label profile_cast_success, profile_cast_failure, done;
1859     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1860     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1861 
1862     __ testptr(value, value);
1863     if (op->should_profile()) {
1864       Label not_null;
1865       __ jccb(Assembler::notEqual, not_null);
1866       // Object is null; update MDO and exit
1867       Register mdo  = klass_RInfo;
1868       __ mov_metadata(mdo, md->constant_encoding());
1869       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
1870       int header_bits = BitData::null_seen_byte_constant();
1871       __ orb(data_addr, header_bits);
1872       __ jmp(done);
1873       __ bind(not_null);
1874     } else {
1875       __ jcc(Assembler::equal, done);
1876     }
1877 
1878     add_debug_info_for_null_check_here(op->info_for_exception());
1879     __ load_klass(k_RInfo, array, tmp_load_klass);
1880     __ load_klass(klass_RInfo, value, tmp_load_klass);
1881 
1882     // get instance klass (it's already uncompressed)
1883     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1884     // perform the fast part of the checking logic
1885     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, nullptr);
1886     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1887     __ push(klass_RInfo);
1888     __ push(k_RInfo);
1889     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1890     __ pop(klass_RInfo);
1891     __ pop(k_RInfo);
1892     // result is a boolean
1893     __ testl(k_RInfo, k_RInfo);
1894     __ jcc(Assembler::equal, *failure_target);
1895     // fall through to the success case
1896 
1897     if (op->should_profile()) {
1898       Register mdo  = klass_RInfo, recv = k_RInfo;
1899       __ bind(profile_cast_success);
1900       __ mov_metadata(mdo, md->constant_encoding());
1901       __ load_klass(recv, value, tmp_load_klass);
1902       type_profile_helper(mdo, md, data, recv, &done);
1903       __ jmpb(done);
1904 
1905       __ bind(profile_cast_failure);
1906       __ mov_metadata(mdo, md->constant_encoding());
1907       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1908       __ subptr(counter_addr, DataLayout::counter_increment);
1909       __ jmp(*stub->entry());
1910     }
1911 
1912     __ bind(done);
1913   } else
1914     if (code == lir_checkcast) {
1915       Register obj = op->object()->as_register();
1916       Register dst = op->result_opr()->as_register();
1917       Label success;
1918       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1919       __ bind(success);
1920       if (dst != obj) {
1921         __ mov(dst, obj);
1922       }
1923     } else
1924       if (code == lir_instanceof) {
1925         Register obj = op->object()->as_register();
1926         Register dst = op->result_opr()->as_register();
1927         Label success, failure, done;
1928         emit_typecheck_helper(op, &success, &failure, &failure);
1929         __ bind(failure);
1930         __ xorptr(dst, dst);
1931         __ jmpb(done);
1932         __ bind(success);
1933         __ movptr(dst, 1);
1934         __ bind(done);
1935       } else {
1936         ShouldNotReachHere();
1937       }
1938 
1939 }
1940 
1941 
1942 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1943   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1944     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1945     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1946     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1947     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1948     Register addr = op->addr()->as_register();
1949     __ lock();
1950     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1951 
1952   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1953     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1954     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1955     Register newval = op->new_value()->as_register();
1956     Register cmpval = op->cmp_value()->as_register();
1957     assert(cmpval == rax, "wrong register");
1958     assert(newval != noreg, "new val must be register");
1959     assert(cmpval != newval, "cmp and new values must be in different registers");
1960     assert(cmpval != addr, "cmp and addr must be in different registers");
1961     assert(newval != addr, "new value and addr must be in different registers");
1962 
1963     if ( op->code() == lir_cas_obj) {
1964 #ifdef _LP64
1965       if (UseCompressedOops) {
1966         __ encode_heap_oop(cmpval);
1967         __ mov(rscratch1, newval);
1968         __ encode_heap_oop(rscratch1);
1969         __ lock();
1970         // cmpval (rax) is implicitly used by this instruction
1971         __ cmpxchgl(rscratch1, Address(addr, 0));
1972       } else
1973 #endif
1974       {
1975         __ lock();
1976         __ cmpxchgptr(newval, Address(addr, 0));
1977       }
1978     } else {
1979       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1980       __ lock();
1981       __ cmpxchgl(newval, Address(addr, 0));
1982     }
1983 #ifdef _LP64
1984   } else if (op->code() == lir_cas_long) {
1985     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1986     Register newval = op->new_value()->as_register_lo();
1987     Register cmpval = op->cmp_value()->as_register_lo();
1988     assert(cmpval == rax, "wrong register");
1989     assert(newval != noreg, "new val must be register");
1990     assert(cmpval != newval, "cmp and new values must be in different registers");
1991     assert(cmpval != addr, "cmp and addr must be in different registers");
1992     assert(newval != addr, "new value and addr must be in different registers");
1993     __ lock();
1994     __ cmpxchgq(newval, Address(addr, 0));
1995 #endif // _LP64
1996   } else {
1997     Unimplemented();
1998   }
1999 }
2000 
2001 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
2002                           LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
2003   assert(cmp_opr1 == LIR_OprFact::illegalOpr && cmp_opr2 == LIR_OprFact::illegalOpr, "unnecessary cmp oprs on x86");
2004 
2005   Assembler::Condition acond, ncond;
2006   switch (condition) {
2007     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2008     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2009     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2010     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2011     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2012     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2013     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2014     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2015     default:                    acond = Assembler::equal;        ncond = Assembler::notEqual;
2016                                 ShouldNotReachHere();
2017   }
2018 
2019   if (opr1->is_cpu_register()) {
2020     reg2reg(opr1, result);
2021   } else if (opr1->is_stack()) {
2022     stack2reg(opr1, result, result->type());
2023   } else if (opr1->is_constant()) {
2024     const2reg(opr1, result, lir_patch_none, nullptr);
2025   } else {
2026     ShouldNotReachHere();
2027   }
2028 
2029   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2030     // optimized version that does not require a branch
2031     if (opr2->is_single_cpu()) {
2032       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2033       __ cmov(ncond, result->as_register(), opr2->as_register());
2034     } else if (opr2->is_double_cpu()) {
2035       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2036       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2037       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2038       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2039     } else if (opr2->is_single_stack()) {
2040       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2041     } else if (opr2->is_double_stack()) {
2042       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2043       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2044     } else {
2045       ShouldNotReachHere();
2046     }
2047 
2048   } else {
2049     Label skip;
2050     __ jccb(acond, skip);
2051     if (opr2->is_cpu_register()) {
2052       reg2reg(opr2, result);
2053     } else if (opr2->is_stack()) {
2054       stack2reg(opr2, result, result->type());
2055     } else if (opr2->is_constant()) {
2056       const2reg(opr2, result, lir_patch_none, nullptr);
2057     } else {
2058       ShouldNotReachHere();
2059     }
2060     __ bind(skip);
2061   }
2062 }
2063 
2064 
2065 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2066   assert(info == nullptr, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2067 
2068   if (left->is_single_cpu()) {
2069     assert(left == dest, "left and dest must be equal");
2070     Register lreg = left->as_register();
2071 
2072     if (right->is_single_cpu()) {
2073       // cpu register - cpu register
2074       Register rreg = right->as_register();
2075       switch (code) {
2076         case lir_add: __ addl (lreg, rreg); break;
2077         case lir_sub: __ subl (lreg, rreg); break;
2078         case lir_mul: __ imull(lreg, rreg); break;
2079         default:      ShouldNotReachHere();
2080       }
2081 
2082     } else if (right->is_stack()) {
2083       // cpu register - stack
2084       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2085       switch (code) {
2086         case lir_add: __ addl(lreg, raddr); break;
2087         case lir_sub: __ subl(lreg, raddr); break;
2088         default:      ShouldNotReachHere();
2089       }
2090 
2091     } else if (right->is_constant()) {
2092       // cpu register - constant
2093       jint c = right->as_constant_ptr()->as_jint();
2094       switch (code) {
2095         case lir_add: {
2096           __ incrementl(lreg, c);
2097           break;
2098         }
2099         case lir_sub: {
2100           __ decrementl(lreg, c);
2101           break;
2102         }
2103         default: ShouldNotReachHere();
2104       }
2105 
2106     } else {
2107       ShouldNotReachHere();
2108     }
2109 
2110   } else if (left->is_double_cpu()) {
2111     assert(left == dest, "left and dest must be equal");
2112     Register lreg_lo = left->as_register_lo();
2113     Register lreg_hi = left->as_register_hi();
2114 
2115     if (right->is_double_cpu()) {
2116       // cpu register - cpu register
2117       Register rreg_lo = right->as_register_lo();
2118       Register rreg_hi = right->as_register_hi();
2119       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2120       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2121       switch (code) {
2122         case lir_add:
2123           __ addptr(lreg_lo, rreg_lo);
2124           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2125           break;
2126         case lir_sub:
2127           __ subptr(lreg_lo, rreg_lo);
2128           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2129           break;
2130         case lir_mul:
2131 #ifdef _LP64
2132           __ imulq(lreg_lo, rreg_lo);
2133 #else
2134           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2135           __ imull(lreg_hi, rreg_lo);
2136           __ imull(rreg_hi, lreg_lo);
2137           __ addl (rreg_hi, lreg_hi);
2138           __ mull (rreg_lo);
2139           __ addl (lreg_hi, rreg_hi);
2140 #endif // _LP64
2141           break;
2142         default:
2143           ShouldNotReachHere();
2144       }
2145 
2146     } else if (right->is_constant()) {
2147       // cpu register - constant
2148 #ifdef _LP64
2149       jlong c = right->as_constant_ptr()->as_jlong_bits();
2150       __ movptr(r10, (intptr_t) c);
2151       switch (code) {
2152         case lir_add:
2153           __ addptr(lreg_lo, r10);
2154           break;
2155         case lir_sub:
2156           __ subptr(lreg_lo, r10);
2157           break;
2158         default:
2159           ShouldNotReachHere();
2160       }
2161 #else
2162       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2163       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2164       switch (code) {
2165         case lir_add:
2166           __ addptr(lreg_lo, c_lo);
2167           __ adcl(lreg_hi, c_hi);
2168           break;
2169         case lir_sub:
2170           __ subptr(lreg_lo, c_lo);
2171           __ sbbl(lreg_hi, c_hi);
2172           break;
2173         default:
2174           ShouldNotReachHere();
2175       }
2176 #endif // _LP64
2177 
2178     } else {
2179       ShouldNotReachHere();
2180     }
2181 
2182   } else if (left->is_single_xmm()) {
2183     assert(left == dest, "left and dest must be equal");
2184     XMMRegister lreg = left->as_xmm_float_reg();
2185 
2186     if (right->is_single_xmm()) {
2187       XMMRegister rreg = right->as_xmm_float_reg();
2188       switch (code) {
2189         case lir_add: __ addss(lreg, rreg);  break;
2190         case lir_sub: __ subss(lreg, rreg);  break;
2191         case lir_mul: __ mulss(lreg, rreg);  break;
2192         case lir_div: __ divss(lreg, rreg);  break;
2193         default: ShouldNotReachHere();
2194       }
2195     } else {
2196       Address raddr;
2197       if (right->is_single_stack()) {
2198         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2199       } else if (right->is_constant()) {
2200         // hack for now
2201         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2202       } else {
2203         ShouldNotReachHere();
2204       }
2205       switch (code) {
2206         case lir_add: __ addss(lreg, raddr);  break;
2207         case lir_sub: __ subss(lreg, raddr);  break;
2208         case lir_mul: __ mulss(lreg, raddr);  break;
2209         case lir_div: __ divss(lreg, raddr);  break;
2210         default: ShouldNotReachHere();
2211       }
2212     }
2213 
2214   } else if (left->is_double_xmm()) {
2215     assert(left == dest, "left and dest must be equal");
2216 
2217     XMMRegister lreg = left->as_xmm_double_reg();
2218     if (right->is_double_xmm()) {
2219       XMMRegister rreg = right->as_xmm_double_reg();
2220       switch (code) {
2221         case lir_add: __ addsd(lreg, rreg);  break;
2222         case lir_sub: __ subsd(lreg, rreg);  break;
2223         case lir_mul: __ mulsd(lreg, rreg);  break;
2224         case lir_div: __ divsd(lreg, rreg);  break;
2225         default: ShouldNotReachHere();
2226       }
2227     } else {
2228       Address raddr;
2229       if (right->is_double_stack()) {
2230         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2231       } else if (right->is_constant()) {
2232         // hack for now
2233         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2234       } else {
2235         ShouldNotReachHere();
2236       }
2237       switch (code) {
2238         case lir_add: __ addsd(lreg, raddr);  break;
2239         case lir_sub: __ subsd(lreg, raddr);  break;
2240         case lir_mul: __ mulsd(lreg, raddr);  break;
2241         case lir_div: __ divsd(lreg, raddr);  break;
2242         default: ShouldNotReachHere();
2243       }
2244     }
2245 
2246 #ifndef _LP64
2247   } else if (left->is_single_fpu()) {
2248     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2249 
2250     if (right->is_single_fpu()) {
2251       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2252 
2253     } else {
2254       assert(left->fpu_regnr() == 0, "left must be on TOS");
2255       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2256 
2257       Address raddr;
2258       if (right->is_single_stack()) {
2259         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2260       } else if (right->is_constant()) {
2261         address const_addr = float_constant(right->as_jfloat());
2262         assert(const_addr != nullptr, "incorrect float/double constant maintenance");
2263         // hack for now
2264         raddr = __ as_Address(InternalAddress(const_addr));
2265       } else {
2266         ShouldNotReachHere();
2267       }
2268 
2269       switch (code) {
2270         case lir_add: __ fadd_s(raddr); break;
2271         case lir_sub: __ fsub_s(raddr); break;
2272         case lir_mul: __ fmul_s(raddr); break;
2273         case lir_div: __ fdiv_s(raddr); break;
2274         default:      ShouldNotReachHere();
2275       }
2276     }
2277 
2278   } else if (left->is_double_fpu()) {
2279     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2280 
2281     if (code == lir_mul || code == lir_div) {
2282       // Double values require special handling for strictfp mul/div on x86
2283       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias1()));
2284       __ fmulp(left->fpu_regnrLo() + 1);
2285     }
2286 
2287     if (right->is_double_fpu()) {
2288       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2289 
2290     } else {
2291       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2292       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2293 
2294       Address raddr;
2295       if (right->is_double_stack()) {
2296         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2297       } else if (right->is_constant()) {
2298         // hack for now
2299         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2300       } else {
2301         ShouldNotReachHere();
2302       }
2303 
2304       switch (code) {
2305         case lir_add: __ fadd_d(raddr); break;
2306         case lir_sub: __ fsub_d(raddr); break;
2307         case lir_mul: __ fmul_d(raddr); break;
2308         case lir_div: __ fdiv_d(raddr); break;
2309         default: ShouldNotReachHere();
2310       }
2311     }
2312 
2313     if (code == lir_mul || code == lir_div) {
2314       // Double values require special handling for strictfp mul/div on x86
2315       __ fld_x(ExternalAddress(StubRoutines::x86::addr_fpu_subnormal_bias2()));
2316       __ fmulp(dest->fpu_regnrLo() + 1);
2317     }
2318 #endif // !_LP64
2319 
2320   } else if (left->is_single_stack() || left->is_address()) {
2321     assert(left == dest, "left and dest must be equal");
2322 
2323     Address laddr;
2324     if (left->is_single_stack()) {
2325       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2326     } else if (left->is_address()) {
2327       laddr = as_Address(left->as_address_ptr());
2328     } else {
2329       ShouldNotReachHere();
2330     }
2331 
2332     if (right->is_single_cpu()) {
2333       Register rreg = right->as_register();
2334       switch (code) {
2335         case lir_add: __ addl(laddr, rreg); break;
2336         case lir_sub: __ subl(laddr, rreg); break;
2337         default:      ShouldNotReachHere();
2338       }
2339     } else if (right->is_constant()) {
2340       jint c = right->as_constant_ptr()->as_jint();
2341       switch (code) {
2342         case lir_add: {
2343           __ incrementl(laddr, c);
2344           break;
2345         }
2346         case lir_sub: {
2347           __ decrementl(laddr, c);
2348           break;
2349         }
2350         default: ShouldNotReachHere();
2351       }
2352     } else {
2353       ShouldNotReachHere();
2354     }
2355 
2356   } else {
2357     ShouldNotReachHere();
2358   }
2359 }
2360 
2361 #ifndef _LP64
2362 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2363   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2364   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2365   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2366 
2367   bool left_is_tos = (left_index == 0);
2368   bool dest_is_tos = (dest_index == 0);
2369   int non_tos_index = (left_is_tos ? right_index : left_index);
2370 
2371   switch (code) {
2372     case lir_add:
2373       if (pop_fpu_stack)       __ faddp(non_tos_index);
2374       else if (dest_is_tos)    __ fadd (non_tos_index);
2375       else                     __ fadda(non_tos_index);
2376       break;
2377 
2378     case lir_sub:
2379       if (left_is_tos) {
2380         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2381         else if (dest_is_tos)  __ fsub  (non_tos_index);
2382         else                   __ fsubra(non_tos_index);
2383       } else {
2384         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2385         else if (dest_is_tos)  __ fsubr (non_tos_index);
2386         else                   __ fsuba (non_tos_index);
2387       }
2388       break;
2389 
2390     case lir_mul:
2391       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2392       else if (dest_is_tos)    __ fmul (non_tos_index);
2393       else                     __ fmula(non_tos_index);
2394       break;
2395 
2396     case lir_div:
2397       if (left_is_tos) {
2398         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2399         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2400         else                   __ fdivra(non_tos_index);
2401       } else {
2402         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2403         else if (dest_is_tos)  __ fdivr (non_tos_index);
2404         else                   __ fdiva (non_tos_index);
2405       }
2406       break;
2407 
2408     case lir_rem:
2409       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2410       __ fremr(noreg);
2411       break;
2412 
2413     default:
2414       ShouldNotReachHere();
2415   }
2416 }
2417 #endif // _LP64
2418 
2419 
2420 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr tmp, LIR_Opr dest, LIR_Op* op) {
2421   if (value->is_double_xmm()) {
2422     switch(code) {
2423       case lir_abs :
2424         {
2425 #ifdef _LP64
2426           if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
2427             assert(tmp->is_valid(), "need temporary");
2428             __ vpandn(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), value->as_xmm_double_reg(), 2);
2429           } else
2430 #endif
2431           {
2432             if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2433               __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2434             }
2435             assert(!tmp->is_valid(), "do not need temporary");
2436             __ andpd(dest->as_xmm_double_reg(),
2437                      ExternalAddress((address)double_signmask_pool),
2438                      rscratch1);
2439           }
2440         }
2441         break;
2442 
2443       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2444       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2445       default      : ShouldNotReachHere();
2446     }
2447 
2448 #ifndef _LP64
2449   } else if (value->is_double_fpu()) {
2450     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2451     switch(code) {
2452       case lir_abs   : __ fabs() ; break;
2453       case lir_sqrt  : __ fsqrt(); break;
2454       default      : ShouldNotReachHere();
2455     }
2456 #endif // !_LP64
2457   } else if (code == lir_f2hf) {
2458     __ flt_to_flt16(dest->as_register(), value->as_xmm_float_reg(), tmp->as_xmm_float_reg());
2459   } else if (code == lir_hf2f) {
2460     __ flt16_to_flt(dest->as_xmm_float_reg(), value->as_register());
2461   } else {
2462     Unimplemented();
2463   }
2464 }
2465 
2466 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2467   // assert(left->destroys_register(), "check");
2468   if (left->is_single_cpu()) {
2469     Register reg = left->as_register();
2470     if (right->is_constant()) {
2471       int val = right->as_constant_ptr()->as_jint();
2472       switch (code) {
2473         case lir_logic_and: __ andl (reg, val); break;
2474         case lir_logic_or:  __ orl  (reg, val); break;
2475         case lir_logic_xor: __ xorl (reg, val); break;
2476         default: ShouldNotReachHere();
2477       }
2478     } else if (right->is_stack()) {
2479       // added support for stack operands
2480       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2481       switch (code) {
2482         case lir_logic_and: __ andl (reg, raddr); break;
2483         case lir_logic_or:  __ orl  (reg, raddr); break;
2484         case lir_logic_xor: __ xorl (reg, raddr); break;
2485         default: ShouldNotReachHere();
2486       }
2487     } else {
2488       Register rright = right->as_register();
2489       switch (code) {
2490         case lir_logic_and: __ andptr (reg, rright); break;
2491         case lir_logic_or : __ orptr  (reg, rright); break;
2492         case lir_logic_xor: __ xorptr (reg, rright); break;
2493         default: ShouldNotReachHere();
2494       }
2495     }
2496     move_regs(reg, dst->as_register());
2497   } else {
2498     Register l_lo = left->as_register_lo();
2499     Register l_hi = left->as_register_hi();
2500     if (right->is_constant()) {
2501 #ifdef _LP64
2502       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2503       switch (code) {
2504         case lir_logic_and:
2505           __ andq(l_lo, rscratch1);
2506           break;
2507         case lir_logic_or:
2508           __ orq(l_lo, rscratch1);
2509           break;
2510         case lir_logic_xor:
2511           __ xorq(l_lo, rscratch1);
2512           break;
2513         default: ShouldNotReachHere();
2514       }
2515 #else
2516       int r_lo = right->as_constant_ptr()->as_jint_lo();
2517       int r_hi = right->as_constant_ptr()->as_jint_hi();
2518       switch (code) {
2519         case lir_logic_and:
2520           __ andl(l_lo, r_lo);
2521           __ andl(l_hi, r_hi);
2522           break;
2523         case lir_logic_or:
2524           __ orl(l_lo, r_lo);
2525           __ orl(l_hi, r_hi);
2526           break;
2527         case lir_logic_xor:
2528           __ xorl(l_lo, r_lo);
2529           __ xorl(l_hi, r_hi);
2530           break;
2531         default: ShouldNotReachHere();
2532       }
2533 #endif // _LP64
2534     } else {
2535 #ifdef _LP64
2536       Register r_lo;
2537       if (is_reference_type(right->type())) {
2538         r_lo = right->as_register();
2539       } else {
2540         r_lo = right->as_register_lo();
2541       }
2542 #else
2543       Register r_lo = right->as_register_lo();
2544       Register r_hi = right->as_register_hi();
2545       assert(l_lo != r_hi, "overwriting registers");
2546 #endif
2547       switch (code) {
2548         case lir_logic_and:
2549           __ andptr(l_lo, r_lo);
2550           NOT_LP64(__ andptr(l_hi, r_hi);)
2551           break;
2552         case lir_logic_or:
2553           __ orptr(l_lo, r_lo);
2554           NOT_LP64(__ orptr(l_hi, r_hi);)
2555           break;
2556         case lir_logic_xor:
2557           __ xorptr(l_lo, r_lo);
2558           NOT_LP64(__ xorptr(l_hi, r_hi);)
2559           break;
2560         default: ShouldNotReachHere();
2561       }
2562     }
2563 
2564     Register dst_lo = dst->as_register_lo();
2565     Register dst_hi = dst->as_register_hi();
2566 
2567 #ifdef _LP64
2568     move_regs(l_lo, dst_lo);
2569 #else
2570     if (dst_lo == l_hi) {
2571       assert(dst_hi != l_lo, "overwriting registers");
2572       move_regs(l_hi, dst_hi);
2573       move_regs(l_lo, dst_lo);
2574     } else {
2575       assert(dst_lo != l_hi, "overwriting registers");
2576       move_regs(l_lo, dst_lo);
2577       move_regs(l_hi, dst_hi);
2578     }
2579 #endif // _LP64
2580   }
2581 }
2582 
2583 
2584 // we assume that rax, and rdx can be overwritten
2585 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2586 
2587   assert(left->is_single_cpu(),   "left must be register");
2588   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2589   assert(result->is_single_cpu(), "result must be register");
2590 
2591   //  assert(left->destroys_register(), "check");
2592   //  assert(right->destroys_register(), "check");
2593 
2594   Register lreg = left->as_register();
2595   Register dreg = result->as_register();
2596 
2597   if (right->is_constant()) {
2598     jint divisor = right->as_constant_ptr()->as_jint();
2599     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2600     if (code == lir_idiv) {
2601       assert(lreg == rax, "must be rax,");
2602       assert(temp->as_register() == rdx, "tmp register must be rdx");
2603       __ cdql(); // sign extend into rdx:rax
2604       if (divisor == 2) {
2605         __ subl(lreg, rdx);
2606       } else {
2607         __ andl(rdx, divisor - 1);
2608         __ addl(lreg, rdx);
2609       }
2610       __ sarl(lreg, log2i_exact(divisor));
2611       move_regs(lreg, dreg);
2612     } else if (code == lir_irem) {
2613       Label done;
2614       __ mov(dreg, lreg);
2615       __ andl(dreg, 0x80000000 | (divisor - 1));
2616       __ jcc(Assembler::positive, done);
2617       __ decrement(dreg);
2618       __ orl(dreg, ~(divisor - 1));
2619       __ increment(dreg);
2620       __ bind(done);
2621     } else {
2622       ShouldNotReachHere();
2623     }
2624   } else {
2625     Register rreg = right->as_register();
2626     assert(lreg == rax, "left register must be rax,");
2627     assert(rreg != rdx, "right register must not be rdx");
2628     assert(temp->as_register() == rdx, "tmp register must be rdx");
2629 
2630     move_regs(lreg, rax);
2631 
2632     int idivl_offset = __ corrected_idivl(rreg);
2633     if (ImplicitDiv0Checks) {
2634       add_debug_info_for_div0(idivl_offset, info);
2635     }
2636     if (code == lir_irem) {
2637       move_regs(rdx, dreg); // result is in rdx
2638     } else {
2639       move_regs(rax, dreg);
2640     }
2641   }
2642 }
2643 
2644 
2645 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2646   if (opr1->is_single_cpu()) {
2647     Register reg1 = opr1->as_register();
2648     if (opr2->is_single_cpu()) {
2649       // cpu register - cpu register
2650       if (is_reference_type(opr1->type())) {
2651         __ cmpoop(reg1, opr2->as_register());
2652       } else {
2653         assert(!is_reference_type(opr2->type()), "cmp int, oop?");
2654         __ cmpl(reg1, opr2->as_register());
2655       }
2656     } else if (opr2->is_stack()) {
2657       // cpu register - stack
2658       if (is_reference_type(opr1->type())) {
2659         __ cmpoop(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2660       } else {
2661         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2662       }
2663     } else if (opr2->is_constant()) {
2664       // cpu register - constant
2665       LIR_Const* c = opr2->as_constant_ptr();
2666       if (c->type() == T_INT) {
2667         jint i = c->as_jint();
2668         if (i == 0) {
2669           __ testl(reg1, reg1);
2670         } else {
2671           __ cmpl(reg1, i);
2672         }
2673       } else if (c->type() == T_METADATA) {
2674         // All we need for now is a comparison with null for equality.
2675         assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "oops");
2676         Metadata* m = c->as_metadata();
2677         if (m == nullptr) {
2678           __ testptr(reg1, reg1);
2679         } else {
2680           ShouldNotReachHere();
2681         }
2682       } else if (is_reference_type(c->type())) {
2683         // In 64bit oops are single register
2684         jobject o = c->as_jobject();
2685         if (o == nullptr) {
2686           __ testptr(reg1, reg1);
2687         } else {
2688           __ cmpoop(reg1, o, rscratch1);
2689         }
2690       } else {
2691         fatal("unexpected type: %s", basictype_to_str(c->type()));
2692       }
2693       // cpu register - address
2694     } else if (opr2->is_address()) {
2695       if (op->info() != nullptr) {
2696         add_debug_info_for_null_check_here(op->info());
2697       }
2698       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2699     } else {
2700       ShouldNotReachHere();
2701     }
2702 
2703   } else if(opr1->is_double_cpu()) {
2704     Register xlo = opr1->as_register_lo();
2705     Register xhi = opr1->as_register_hi();
2706     if (opr2->is_double_cpu()) {
2707 #ifdef _LP64
2708       __ cmpptr(xlo, opr2->as_register_lo());
2709 #else
2710       // cpu register - cpu register
2711       Register ylo = opr2->as_register_lo();
2712       Register yhi = opr2->as_register_hi();
2713       __ subl(xlo, ylo);
2714       __ sbbl(xhi, yhi);
2715       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2716         __ orl(xhi, xlo);
2717       }
2718 #endif // _LP64
2719     } else if (opr2->is_constant()) {
2720       // cpu register - constant 0
2721       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2722 #ifdef _LP64
2723       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2724 #else
2725       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2726       __ orl(xhi, xlo);
2727 #endif // _LP64
2728     } else {
2729       ShouldNotReachHere();
2730     }
2731 
2732   } else if (opr1->is_single_xmm()) {
2733     XMMRegister reg1 = opr1->as_xmm_float_reg();
2734     if (opr2->is_single_xmm()) {
2735       // xmm register - xmm register
2736       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2737     } else if (opr2->is_stack()) {
2738       // xmm register - stack
2739       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2740     } else if (opr2->is_constant()) {
2741       // xmm register - constant
2742       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2743     } else if (opr2->is_address()) {
2744       // xmm register - address
2745       if (op->info() != nullptr) {
2746         add_debug_info_for_null_check_here(op->info());
2747       }
2748       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2749     } else {
2750       ShouldNotReachHere();
2751     }
2752 
2753   } else if (opr1->is_double_xmm()) {
2754     XMMRegister reg1 = opr1->as_xmm_double_reg();
2755     if (opr2->is_double_xmm()) {
2756       // xmm register - xmm register
2757       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2758     } else if (opr2->is_stack()) {
2759       // xmm register - stack
2760       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2761     } else if (opr2->is_constant()) {
2762       // xmm register - constant
2763       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2764     } else if (opr2->is_address()) {
2765       // xmm register - address
2766       if (op->info() != nullptr) {
2767         add_debug_info_for_null_check_here(op->info());
2768       }
2769       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2770     } else {
2771       ShouldNotReachHere();
2772     }
2773 
2774 #ifndef _LP64
2775   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2776     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2777     assert(opr2->is_fpu_register(), "both must be registers");
2778     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2779 #endif // LP64
2780 
2781   } else if (opr1->is_address() && opr2->is_constant()) {
2782     LIR_Const* c = opr2->as_constant_ptr();
2783 #ifdef _LP64
2784     if (is_reference_type(c->type())) {
2785       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2786       __ movoop(rscratch1, c->as_jobject());
2787     }
2788 #endif // LP64
2789     if (op->info() != nullptr) {
2790       add_debug_info_for_null_check_here(op->info());
2791     }
2792     // special case: address - constant
2793     LIR_Address* addr = opr1->as_address_ptr();
2794     if (c->type() == T_INT) {
2795       __ cmpl(as_Address(addr), c->as_jint());
2796     } else if (is_reference_type(c->type())) {
2797 #ifdef _LP64
2798       // %%% Make this explode if addr isn't reachable until we figure out a
2799       // better strategy by giving noreg as the temp for as_Address
2800       __ cmpoop(rscratch1, as_Address(addr, noreg));
2801 #else
2802       __ cmpoop(as_Address(addr), c->as_jobject());
2803 #endif // _LP64
2804     } else {
2805       ShouldNotReachHere();
2806     }
2807 
2808   } else {
2809     ShouldNotReachHere();
2810   }
2811 }
2812 
2813 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2814   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2815     if (left->is_single_xmm()) {
2816       assert(right->is_single_xmm(), "must match");
2817       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2818     } else if (left->is_double_xmm()) {
2819       assert(right->is_double_xmm(), "must match");
2820       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2821 
2822     } else {
2823 #ifdef _LP64
2824       ShouldNotReachHere();
2825 #else
2826       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2827       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2828 
2829       assert(left->fpu() == 0, "left must be on TOS");
2830       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2831                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2832 #endif // LP64
2833     }
2834   } else {
2835     assert(code == lir_cmp_l2i, "check");
2836 #ifdef _LP64
2837     Label done;
2838     Register dest = dst->as_register();
2839     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2840     __ movl(dest, -1);
2841     __ jccb(Assembler::less, done);
2842     __ setb(Assembler::notZero, dest);
2843     __ movzbl(dest, dest);
2844     __ bind(done);
2845 #else
2846     __ lcmp2int(left->as_register_hi(),
2847                 left->as_register_lo(),
2848                 right->as_register_hi(),
2849                 right->as_register_lo());
2850     move_regs(left->as_register_hi(), dst->as_register());
2851 #endif // _LP64
2852   }
2853 }
2854 
2855 
2856 void LIR_Assembler::align_call(LIR_Code code) {
2857   // make sure that the displacement word of the call ends up word aligned
2858   int offset = __ offset();
2859   switch (code) {
2860   case lir_static_call:
2861   case lir_optvirtual_call:
2862   case lir_dynamic_call:
2863     offset += NativeCall::displacement_offset;
2864     break;
2865   case lir_icvirtual_call:
2866     offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2867     break;
2868   default: ShouldNotReachHere();
2869   }
2870   __ align(BytesPerWord, offset);
2871 }
2872 
2873 
2874 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2875   assert((__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2876          "must be aligned");
2877   __ call(AddressLiteral(op->addr(), rtype));
2878   add_call_info(code_offset(), op->info());
2879   __ post_call_nop();
2880 }
2881 
2882 
2883 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2884   __ ic_call(op->addr());
2885   add_call_info(code_offset(), op->info());
2886   assert((__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2887          "must be aligned");
2888   __ post_call_nop();
2889 }
2890 
2891 
2892 void LIR_Assembler::emit_static_call_stub() {
2893   address call_pc = __ pc();
2894   address stub = __ start_a_stub(call_stub_size());
2895   if (stub == nullptr) {
2896     bailout("static call stub overflow");
2897     return;
2898   }
2899 
2900   int start = __ offset();
2901 
2902   // make sure that the displacement word of the call ends up word aligned
2903   __ align(BytesPerWord, __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset);
2904   __ relocate(static_stub_Relocation::spec(call_pc));
2905   __ mov_metadata(rbx, (Metadata*)nullptr);
2906   // must be set to -1 at code generation time
2907   assert(((__ offset() + 1) % BytesPerWord) == 0, "must be aligned");
2908   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2909   __ jump(RuntimeAddress(__ pc()));
2910 
2911   assert(__ offset() - start <= call_stub_size(), "stub too big");
2912   __ end_a_stub();
2913 }
2914 
2915 
2916 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2917   assert(exceptionOop->as_register() == rax, "must match");
2918   assert(exceptionPC->as_register() == rdx, "must match");
2919 
2920   // exception object is not added to oop map by LinearScan
2921   // (LinearScan assumes that no oops are in fixed registers)
2922   info->add_register_oop(exceptionOop);
2923   Runtime1::StubID unwind_id;
2924 
2925   // get current pc information
2926   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2927   int pc_for_athrow_offset = __ offset();
2928   InternalAddress pc_for_athrow(__ pc());
2929   __ lea(exceptionPC->as_register(), pc_for_athrow);
2930   add_call_info(pc_for_athrow_offset, info); // for exception handler
2931 
2932   __ verify_not_null_oop(rax);
2933   // search an exception handler (rax: exception oop, rdx: throwing pc)
2934   if (compilation()->has_fpu_code()) {
2935     unwind_id = Runtime1::handle_exception_id;
2936   } else {
2937     unwind_id = Runtime1::handle_exception_nofpu_id;
2938   }
2939   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2940 
2941   // enough room for two byte trap
2942   __ nop();
2943 }
2944 
2945 
2946 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2947   assert(exceptionOop->as_register() == rax, "must match");
2948 
2949   __ jmp(_unwind_handler_entry);
2950 }
2951 
2952 
2953 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2954 
2955   // optimized version for linear scan:
2956   // * count must be already in ECX (guaranteed by LinearScan)
2957   // * left and dest must be equal
2958   // * tmp must be unused
2959   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2960   assert(left == dest, "left and dest must be equal");
2961   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2962 
2963   if (left->is_single_cpu()) {
2964     Register value = left->as_register();
2965     assert(value != SHIFT_count, "left cannot be ECX");
2966 
2967     switch (code) {
2968       case lir_shl:  __ shll(value); break;
2969       case lir_shr:  __ sarl(value); break;
2970       case lir_ushr: __ shrl(value); break;
2971       default: ShouldNotReachHere();
2972     }
2973   } else if (left->is_double_cpu()) {
2974     Register lo = left->as_register_lo();
2975     Register hi = left->as_register_hi();
2976     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2977 #ifdef _LP64
2978     switch (code) {
2979       case lir_shl:  __ shlptr(lo);        break;
2980       case lir_shr:  __ sarptr(lo);        break;
2981       case lir_ushr: __ shrptr(lo);        break;
2982       default: ShouldNotReachHere();
2983     }
2984 #else
2985 
2986     switch (code) {
2987       case lir_shl:  __ lshl(hi, lo);        break;
2988       case lir_shr:  __ lshr(hi, lo, true);  break;
2989       case lir_ushr: __ lshr(hi, lo, false); break;
2990       default: ShouldNotReachHere();
2991     }
2992 #endif // LP64
2993   } else {
2994     ShouldNotReachHere();
2995   }
2996 }
2997 
2998 
2999 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3000   if (dest->is_single_cpu()) {
3001     // first move left into dest so that left is not destroyed by the shift
3002     Register value = dest->as_register();
3003     count = count & 0x1F; // Java spec
3004 
3005     move_regs(left->as_register(), value);
3006     switch (code) {
3007       case lir_shl:  __ shll(value, count); break;
3008       case lir_shr:  __ sarl(value, count); break;
3009       case lir_ushr: __ shrl(value, count); break;
3010       default: ShouldNotReachHere();
3011     }
3012   } else if (dest->is_double_cpu()) {
3013 #ifndef _LP64
3014     Unimplemented();
3015 #else
3016     // first move left into dest so that left is not destroyed by the shift
3017     Register value = dest->as_register_lo();
3018     count = count & 0x1F; // Java spec
3019 
3020     move_regs(left->as_register_lo(), value);
3021     switch (code) {
3022       case lir_shl:  __ shlptr(value, count); break;
3023       case lir_shr:  __ sarptr(value, count); break;
3024       case lir_ushr: __ shrptr(value, count); break;
3025       default: ShouldNotReachHere();
3026     }
3027 #endif // _LP64
3028   } else {
3029     ShouldNotReachHere();
3030   }
3031 }
3032 
3033 
3034 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3035   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3036   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3037   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3038   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3039 }
3040 
3041 
3042 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3043   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3044   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3045   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3046   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3047 }
3048 
3049 
3050 void LIR_Assembler::store_parameter(jobject o, int offset_from_rsp_in_words) {
3051   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3052   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3053   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3054   __ movoop(Address(rsp, offset_from_rsp_in_bytes), o, rscratch1);
3055 }
3056 
3057 
3058 void LIR_Assembler::store_parameter(Metadata* m, int offset_from_rsp_in_words) {
3059   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3060   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3061   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3062   __ mov_metadata(Address(rsp, offset_from_rsp_in_bytes), m, rscratch1);
3063 }
3064 
3065 
3066 // This code replaces a call to arraycopy; no exception may
3067 // be thrown in this code, they must be thrown in the System.arraycopy
3068 // activation frame; we could save some checks if this would not be the case
3069 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3070   ciArrayKlass* default_type = op->expected_type();
3071   Register src = op->src()->as_register();
3072   Register dst = op->dst()->as_register();
3073   Register src_pos = op->src_pos()->as_register();
3074   Register dst_pos = op->dst_pos()->as_register();
3075   Register length  = op->length()->as_register();
3076   Register tmp = op->tmp()->as_register();
3077   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3078   Register tmp2 = UseCompactObjectHeaders ? rscratch2 : noreg;
3079 
3080   CodeStub* stub = op->stub();
3081   int flags = op->flags();
3082   BasicType basic_type = default_type != nullptr ? default_type->element_type()->basic_type() : T_ILLEGAL;
3083   if (is_reference_type(basic_type)) basic_type = T_OBJECT;
3084 
3085   // if we don't know anything, just go through the generic arraycopy
3086   if (default_type == nullptr) {
3087     // save outgoing arguments on stack in case call to System.arraycopy is needed
3088     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3089     // for interpreter calling conventions. Now we have to do it in new style conventions.
3090     // For the moment until C1 gets the new register allocator I just force all the
3091     // args to the right place (except the register args) and then on the back side
3092     // reload the register args properly if we go slow path. Yuck
3093 
3094     // These are proper for the calling convention
3095     store_parameter(length, 2);
3096     store_parameter(dst_pos, 1);
3097     store_parameter(dst, 0);
3098 
3099     // these are just temporary placements until we need to reload
3100     store_parameter(src_pos, 3);
3101     store_parameter(src, 4);
3102     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3103 
3104     address copyfunc_addr = StubRoutines::generic_arraycopy();
3105     assert(copyfunc_addr != nullptr, "generic arraycopy stub required");
3106 
3107     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3108 #ifdef _LP64
3109     // The arguments are in java calling convention so we can trivially shift them to C
3110     // convention
3111     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3112     __ mov(c_rarg0, j_rarg0);
3113     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3114     __ mov(c_rarg1, j_rarg1);
3115     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3116     __ mov(c_rarg2, j_rarg2);
3117     assert_different_registers(c_rarg3, j_rarg4);
3118     __ mov(c_rarg3, j_rarg3);
3119 #ifdef _WIN64
3120     // Allocate abi space for args but be sure to keep stack aligned
3121     __ subptr(rsp, 6*wordSize);
3122     store_parameter(j_rarg4, 4);
3123 #ifndef PRODUCT
3124     if (PrintC1Statistics) {
3125       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3126     }
3127 #endif
3128     __ call(RuntimeAddress(copyfunc_addr));
3129     __ addptr(rsp, 6*wordSize);
3130 #else
3131     __ mov(c_rarg4, j_rarg4);
3132 #ifndef PRODUCT
3133     if (PrintC1Statistics) {
3134       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3135     }
3136 #endif
3137     __ call(RuntimeAddress(copyfunc_addr));
3138 #endif // _WIN64
3139 #else
3140     __ push(length);
3141     __ push(dst_pos);
3142     __ push(dst);
3143     __ push(src_pos);
3144     __ push(src);
3145 
3146 #ifndef PRODUCT
3147     if (PrintC1Statistics) {
3148       __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt), rscratch1);
3149     }
3150 #endif
3151     __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3152 
3153 #endif // _LP64
3154 
3155     __ testl(rax, rax);
3156     __ jcc(Assembler::equal, *stub->continuation());
3157 
3158     __ mov(tmp, rax);
3159     __ xorl(tmp, -1);
3160 
3161     // Reload values from the stack so they are where the stub
3162     // expects them.
3163     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3164     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3165     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3166     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3167     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3168 
3169     __ subl(length, tmp);
3170     __ addl(src_pos, tmp);
3171     __ addl(dst_pos, tmp);
3172     __ jmp(*stub->entry());
3173 
3174     __ bind(*stub->continuation());
3175     return;
3176   }
3177 
3178   assert(default_type != nullptr && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3179 
3180   int elem_size = type2aelembytes(basic_type);
3181   Address::ScaleFactor scale;
3182 
3183   switch (elem_size) {
3184     case 1 :
3185       scale = Address::times_1;
3186       break;
3187     case 2 :
3188       scale = Address::times_2;
3189       break;
3190     case 4 :
3191       scale = Address::times_4;
3192       break;
3193     case 8 :
3194       scale = Address::times_8;
3195       break;
3196     default:
3197       scale = Address::no_scale;
3198       ShouldNotReachHere();
3199   }
3200 
3201   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3202   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3203 
3204   // length and pos's are all sign extended at this point on 64bit
3205 
3206   // test for null
3207   if (flags & LIR_OpArrayCopy::src_null_check) {
3208     __ testptr(src, src);
3209     __ jcc(Assembler::zero, *stub->entry());
3210   }
3211   if (flags & LIR_OpArrayCopy::dst_null_check) {
3212     __ testptr(dst, dst);
3213     __ jcc(Assembler::zero, *stub->entry());
3214   }
3215 
3216   // If the compiler was not able to prove that exact type of the source or the destination
3217   // of the arraycopy is an array type, check at runtime if the source or the destination is
3218   // an instance type.
3219   if (flags & LIR_OpArrayCopy::type_check) {
3220     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3221       __ load_klass(tmp, dst, tmp_load_klass);
3222       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3223       __ jcc(Assembler::greaterEqual, *stub->entry());
3224     }
3225 
3226     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3227       __ load_klass(tmp, src, tmp_load_klass);
3228       __ cmpl(Address(tmp, in_bytes(Klass::layout_helper_offset())), Klass::_lh_neutral_value);
3229       __ jcc(Assembler::greaterEqual, *stub->entry());
3230     }
3231   }
3232 
3233   // check if negative
3234   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3235     __ testl(src_pos, src_pos);
3236     __ jcc(Assembler::less, *stub->entry());
3237   }
3238   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3239     __ testl(dst_pos, dst_pos);
3240     __ jcc(Assembler::less, *stub->entry());
3241   }
3242 
3243   if (flags & LIR_OpArrayCopy::src_range_check) {
3244     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3245     __ cmpl(tmp, src_length_addr);
3246     __ jcc(Assembler::above, *stub->entry());
3247   }
3248   if (flags & LIR_OpArrayCopy::dst_range_check) {
3249     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3250     __ cmpl(tmp, dst_length_addr);
3251     __ jcc(Assembler::above, *stub->entry());
3252   }
3253 
3254   if (flags & LIR_OpArrayCopy::length_positive_check) {
3255     __ testl(length, length);
3256     __ jcc(Assembler::less, *stub->entry());
3257   }
3258 
3259 #ifdef _LP64
3260   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3261   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3262 #endif
3263 
3264   if (flags & LIR_OpArrayCopy::type_check) {
3265     // We don't know the array types are compatible
3266     if (basic_type != T_OBJECT) {
3267       // Simple test for basic type arrays
3268       __ cmp_klass(src, dst, tmp, tmp2);
3269       __ jcc(Assembler::notEqual, *stub->entry());
3270     } else {
3271       // For object arrays, if src is a sub class of dst then we can
3272       // safely do the copy.
3273       Label cont, slow;
3274 
3275       __ push(src);
3276       __ push(dst);
3277 
3278       __ load_klass(src, src, tmp_load_klass);
3279       __ load_klass(dst, dst, tmp_load_klass);
3280 
3281       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, nullptr);
3282 
3283       __ push(src);
3284       __ push(dst);
3285       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3286       __ pop(dst);
3287       __ pop(src);
3288 
3289       __ testl(src, src);
3290       __ jcc(Assembler::notEqual, cont);
3291 
3292       __ bind(slow);
3293       __ pop(dst);
3294       __ pop(src);
3295 
3296       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3297       if (copyfunc_addr != nullptr) { // use stub if available
3298         // src is not a sub class of dst so we have to do a
3299         // per-element check.
3300 
3301         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3302         if ((flags & mask) != mask) {
3303           // Check that at least both of them object arrays.
3304           assert(flags & mask, "one of the two should be known to be an object array");
3305 
3306           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3307             __ load_klass(tmp, src, tmp_load_klass);
3308           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3309             __ load_klass(tmp, dst, tmp_load_klass);
3310           }
3311           int lh_offset = in_bytes(Klass::layout_helper_offset());
3312           Address klass_lh_addr(tmp, lh_offset);
3313           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3314           __ cmpl(klass_lh_addr, objArray_lh);
3315           __ jcc(Assembler::notEqual, *stub->entry());
3316         }
3317 
3318        // Spill because stubs can use any register they like and it's
3319        // easier to restore just those that we care about.
3320        store_parameter(dst, 0);
3321        store_parameter(dst_pos, 1);
3322        store_parameter(length, 2);
3323        store_parameter(src_pos, 3);
3324        store_parameter(src, 4);
3325 
3326 #ifndef _LP64
3327        Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3328         __ movptr(tmp, dst_klass_addr);
3329         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3330         __ push(tmp);
3331         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3332         __ push(tmp);
3333         __ push(length);
3334         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3335         __ push(tmp);
3336         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3337         __ push(tmp);
3338 
3339         __ call_VM_leaf(copyfunc_addr, 5);
3340 #else
3341         __ movl2ptr(length, length); //higher 32bits must be null
3342 
3343         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3344         assert_different_registers(c_rarg0, dst, dst_pos, length);
3345         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3346         assert_different_registers(c_rarg1, dst, length);
3347 
3348         __ mov(c_rarg2, length);
3349         assert_different_registers(c_rarg2, dst);
3350 
3351 #ifdef _WIN64
3352         // Allocate abi space for args but be sure to keep stack aligned
3353         __ subptr(rsp, 6*wordSize);
3354         __ load_klass(c_rarg3, dst, tmp_load_klass);
3355         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3356         store_parameter(c_rarg3, 4);
3357         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3358         __ call(RuntimeAddress(copyfunc_addr));
3359         __ addptr(rsp, 6*wordSize);
3360 #else
3361         __ load_klass(c_rarg4, dst, tmp_load_klass);
3362         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3363         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3364         __ call(RuntimeAddress(copyfunc_addr));
3365 #endif
3366 
3367 #endif
3368 
3369 #ifndef PRODUCT
3370         if (PrintC1Statistics) {
3371           Label failed;
3372           __ testl(rax, rax);
3373           __ jcc(Assembler::notZero, failed);
3374           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt), rscratch1);
3375           __ bind(failed);
3376         }
3377 #endif
3378 
3379         __ testl(rax, rax);
3380         __ jcc(Assembler::zero, *stub->continuation());
3381 
3382 #ifndef PRODUCT
3383         if (PrintC1Statistics) {
3384           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt), rscratch1);
3385         }
3386 #endif
3387 
3388         __ mov(tmp, rax);
3389 
3390         __ xorl(tmp, -1);
3391 
3392         // Restore previously spilled arguments
3393         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3394         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3395         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3396         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3397         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3398 
3399 
3400         __ subl(length, tmp);
3401         __ addl(src_pos, tmp);
3402         __ addl(dst_pos, tmp);
3403       }
3404 
3405       __ jmp(*stub->entry());
3406 
3407       __ bind(cont);
3408       __ pop(dst);
3409       __ pop(src);
3410     }
3411   }
3412 
3413 #ifdef ASSERT
3414   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3415     // Sanity check the known type with the incoming class.  For the
3416     // primitive case the types must match exactly with src.klass and
3417     // dst.klass each exactly matching the default type.  For the
3418     // object array case, if no type check is needed then either the
3419     // dst type is exactly the expected type and the src type is a
3420     // subtype which we can't check or src is the same array as dst
3421     // but not necessarily exactly of type default_type.
3422     Label known_ok, halt;
3423     __ mov_metadata(tmp, default_type->constant_encoding());
3424 #ifdef _LP64
3425     if (UseCompressedClassPointers) {
3426       __ encode_klass_not_null(tmp, rscratch1);
3427     }
3428 #endif
3429 
3430     if (basic_type != T_OBJECT) {
3431       __ cmp_klass(tmp, dst, tmp2);
3432       __ jcc(Assembler::notEqual, halt);
3433       __ cmp_klass(tmp, src, tmp2);
3434       __ jcc(Assembler::equal, known_ok);
3435     } else {
3436       __ cmp_klass(tmp, dst, tmp2);
3437       __ jcc(Assembler::equal, known_ok);
3438       __ cmpptr(src, dst);
3439       __ jcc(Assembler::equal, known_ok);
3440     }
3441     __ bind(halt);
3442     __ stop("incorrect type information in arraycopy");
3443     __ bind(known_ok);
3444   }
3445 #endif
3446 
3447 #ifndef PRODUCT
3448   if (PrintC1Statistics) {
3449     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)), rscratch1);
3450   }
3451 #endif
3452 
3453 #ifdef _LP64
3454   assert_different_registers(c_rarg0, dst, dst_pos, length);
3455   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3456   assert_different_registers(c_rarg1, length);
3457   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3458   __ mov(c_rarg2, length);
3459 
3460 #else
3461   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3462   store_parameter(tmp, 0);
3463   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3464   store_parameter(tmp, 1);
3465   store_parameter(length, 2);
3466 #endif // _LP64
3467 
3468   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3469   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3470   const char *name;
3471   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3472   __ call_VM_leaf(entry, 0);
3473 
3474   __ bind(*stub->continuation());
3475 }
3476 
3477 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3478   assert(op->crc()->is_single_cpu(),  "crc must be register");
3479   assert(op->val()->is_single_cpu(),  "byte value must be register");
3480   assert(op->result_opr()->is_single_cpu(), "result must be register");
3481   Register crc = op->crc()->as_register();
3482   Register val = op->val()->as_register();
3483   Register res = op->result_opr()->as_register();
3484 
3485   assert_different_registers(val, crc, res);
3486 
3487   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3488   __ notl(crc); // ~crc
3489   __ update_byte_crc32(crc, val, res);
3490   __ notl(crc); // ~crc
3491   __ mov(res, crc);
3492 }
3493 
3494 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3495   Register obj = op->obj_opr()->as_register();  // may not be an oop
3496   Register hdr = op->hdr_opr()->as_register();
3497   Register lock = op->lock_opr()->as_register();
3498   if (LockingMode == LM_MONITOR) {
3499     if (op->info() != nullptr) {
3500       add_debug_info_for_null_check_here(op->info());
3501       __ null_check(obj);
3502     }
3503     __ jmp(*op->stub()->entry());
3504   } else if (op->code() == lir_lock) {
3505     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3506     Register tmp = LockingMode == LM_LIGHTWEIGHT ? op->scratch_opr()->as_register() : noreg;
3507     // add debug info for NullPointerException only if one is possible
3508     int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
3509     if (op->info() != nullptr) {
3510       add_debug_info_for_null_check(null_check_offset, op->info());
3511     }
3512     // done
3513   } else if (op->code() == lir_unlock) {
3514     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3515     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3516   } else {
3517     Unimplemented();
3518   }
3519   __ bind(*op->stub()->continuation());
3520 }
3521 
3522 void LIR_Assembler::emit_load_klass(LIR_OpLoadKlass* op) {
3523   Register obj = op->obj()->as_pointer_register();
3524   Register result = op->result_opr()->as_pointer_register();
3525 
3526   CodeEmitInfo* info = op->info();
3527   if (info != nullptr) {
3528     add_debug_info_for_null_check_here(info);
3529   }
3530 
3531 #ifdef _LP64
3532   if (UseCompactObjectHeaders) {
3533     Register tmp = rscratch1;
3534     assert_different_registers(tmp, obj);
3535     assert_different_registers(tmp, result);
3536 
3537     // Check if we can take the (common) fast path, if obj is unlocked.
3538     __ movq(result, Address(obj, oopDesc::mark_offset_in_bytes()));
3539     __ testb(result, markWord::monitor_value);
3540     __ jcc(Assembler::notZero, *op->stub()->entry());
3541     __ bind(*op->stub()->continuation());
3542     // Fast-path: shift and decode Klass*.
3543     __ shrq(result, markWord::klass_shift);
3544     __ decode_klass_not_null(result, tmp);
3545   } else if (UseCompressedClassPointers) {
3546     __ movl(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3547     __ decode_klass_not_null(result, rscratch1);
3548   } else
3549 #endif
3550   {
3551     __ movptr(result, Address(obj, oopDesc::klass_offset_in_bytes()));
3552   }
3553 }
3554 
3555 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3556   ciMethod* method = op->profiled_method();
3557   int bci          = op->profiled_bci();
3558   ciMethod* callee = op->profiled_callee();
3559   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3560 
3561   // Update counter for all call types
3562   ciMethodData* md = method->method_data_or_null();
3563   assert(md != nullptr, "Sanity");
3564   ciProfileData* data = md->bci_to_data(bci);
3565   assert(data != nullptr && data->is_CounterData(), "need CounterData for calls");
3566   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3567   Register mdo  = op->mdo()->as_register();
3568   __ mov_metadata(mdo, md->constant_encoding());
3569   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3570   // Perform additional virtual call profiling for invokevirtual and
3571   // invokeinterface bytecodes
3572   if (op->should_profile_receiver_type()) {
3573     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3574     Register recv = op->recv()->as_register();
3575     assert_different_registers(mdo, recv);
3576     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3577     ciKlass* known_klass = op->known_holder();
3578     if (C1OptimizeVirtualCallProfiling && known_klass != nullptr) {
3579       // We know the type that will be seen at this call site; we can
3580       // statically update the MethodData* rather than needing to do
3581       // dynamic tests on the receiver type
3582 
3583       // NOTE: we should probably put a lock around this search to
3584       // avoid collisions by concurrent compilations
3585       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3586       uint i;
3587       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3588         ciKlass* receiver = vc_data->receiver(i);
3589         if (known_klass->equals(receiver)) {
3590           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3591           __ addptr(data_addr, DataLayout::counter_increment);
3592           return;
3593         }
3594       }
3595 
3596       // Receiver type not found in profile data; select an empty slot
3597 
3598       // Note that this is less efficient than it should be because it
3599       // always does a write to the receiver part of the
3600       // VirtualCallData rather than just the first time
3601       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3602         ciKlass* receiver = vc_data->receiver(i);
3603         if (receiver == nullptr) {
3604           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3605           __ mov_metadata(recv_addr, known_klass->constant_encoding(), rscratch1);
3606           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3607           __ addptr(data_addr, DataLayout::counter_increment);
3608           return;
3609         }
3610       }
3611     } else {
3612       __ load_klass(recv, recv, tmp_load_klass);
3613       Label update_done;
3614       type_profile_helper(mdo, md, data, recv, &update_done);
3615       // Receiver did not match any saved receiver and there is no empty row for it.
3616       // Increment total counter to indicate polymorphic case.
3617       __ addptr(counter_addr, DataLayout::counter_increment);
3618 
3619       __ bind(update_done);
3620     }
3621   } else {
3622     // Static call
3623     __ addptr(counter_addr, DataLayout::counter_increment);
3624   }
3625 }
3626 
3627 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3628   Register obj = op->obj()->as_register();
3629   Register tmp = op->tmp()->as_pointer_register();
3630   Register tmp_load_klass = LP64_ONLY(rscratch1) NOT_LP64(noreg);
3631   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3632   ciKlass* exact_klass = op->exact_klass();
3633   intptr_t current_klass = op->current_klass();
3634   bool not_null = op->not_null();
3635   bool no_conflict = op->no_conflict();
3636 
3637   Label update, next, none;
3638 
3639   bool do_null = !not_null;
3640   bool exact_klass_set = exact_klass != nullptr && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3641   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3642 
3643   assert(do_null || do_update, "why are we here?");
3644   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3645 
3646   __ verify_oop(obj);
3647 
3648 #ifdef ASSERT
3649   if (obj == tmp) {
3650 #ifdef _LP64
3651     assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
3652 #else
3653     assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
3654 #endif
3655   } else {
3656 #ifdef _LP64
3657     assert_different_registers(obj, tmp, rscratch1, mdo_addr.base(), mdo_addr.index());
3658 #else
3659     assert_different_registers(obj, tmp, mdo_addr.base(), mdo_addr.index());
3660 #endif
3661   }
3662 #endif
3663   if (do_null) {
3664     __ testptr(obj, obj);
3665     __ jccb(Assembler::notZero, update);
3666     if (!TypeEntries::was_null_seen(current_klass)) {
3667       __ testptr(mdo_addr, TypeEntries::null_seen);
3668 #ifndef ASSERT
3669       __ jccb(Assembler::notZero, next); // already set
3670 #else
3671       __ jcc(Assembler::notZero, next); // already set
3672 #endif
3673       // atomic update to prevent overwriting Klass* with 0
3674       __ lock();
3675       __ orptr(mdo_addr, TypeEntries::null_seen);
3676     }
3677     if (do_update) {
3678 #ifndef ASSERT
3679       __ jmpb(next);
3680     }
3681 #else
3682       __ jmp(next);
3683     }
3684   } else {
3685     __ testptr(obj, obj);
3686     __ jcc(Assembler::notZero, update);
3687     __ stop("unexpected null obj");
3688 #endif
3689   }
3690 
3691   __ bind(update);
3692 
3693   if (do_update) {
3694 #ifdef ASSERT
3695     if (exact_klass != nullptr) {
3696       Label ok;
3697       __ load_klass(tmp, obj, tmp_load_klass);
3698       __ push(tmp);
3699       __ mov_metadata(tmp, exact_klass->constant_encoding());
3700       __ cmpptr(tmp, Address(rsp, 0));
3701       __ jcc(Assembler::equal, ok);
3702       __ stop("exact klass and actual klass differ");
3703       __ bind(ok);
3704       __ pop(tmp);
3705     }
3706 #endif
3707     if (!no_conflict) {
3708       if (exact_klass == nullptr || TypeEntries::is_type_none(current_klass)) {
3709         if (exact_klass != nullptr) {
3710           __ mov_metadata(tmp, exact_klass->constant_encoding());
3711         } else {
3712           __ load_klass(tmp, obj, tmp_load_klass);
3713         }
3714 #ifdef _LP64
3715         __ mov(rscratch1, tmp); // save original value before XOR
3716 #endif
3717         __ xorptr(tmp, mdo_addr);
3718         __ testptr(tmp, TypeEntries::type_klass_mask);
3719         // klass seen before, nothing to do. The unknown bit may have been
3720         // set already but no need to check.
3721         __ jccb(Assembler::zero, next);
3722 
3723         __ testptr(tmp, TypeEntries::type_unknown);
3724         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3725 
3726         if (TypeEntries::is_type_none(current_klass)) {
3727           __ testptr(mdo_addr, TypeEntries::type_mask);
3728           __ jccb(Assembler::zero, none);
3729 #ifdef _LP64
3730           // There is a chance that the checks above (re-reading profiling
3731           // data from memory) fail if another thread has just set the
3732           // profiling to this obj's klass
3733           __ mov(tmp, rscratch1); // get back original value before XOR
3734           __ xorptr(tmp, mdo_addr);
3735           __ testptr(tmp, TypeEntries::type_klass_mask);
3736           __ jccb(Assembler::zero, next);
3737 #endif
3738         }
3739       } else {
3740         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3741                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3742 
3743         __ testptr(mdo_addr, TypeEntries::type_unknown);
3744         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3745       }
3746 
3747       // different than before. Cannot keep accurate profile.
3748       __ orptr(mdo_addr, TypeEntries::type_unknown);
3749 
3750       if (TypeEntries::is_type_none(current_klass)) {
3751         __ jmpb(next);
3752 
3753         __ bind(none);
3754         // first time here. Set profile type.
3755         __ movptr(mdo_addr, tmp);
3756 #ifdef ASSERT
3757         __ andptr(tmp, TypeEntries::type_klass_mask);
3758         __ verify_klass_ptr(tmp);
3759 #endif
3760       }
3761     } else {
3762       // There's a single possible klass at this profile point
3763       assert(exact_klass != nullptr, "should be");
3764       if (TypeEntries::is_type_none(current_klass)) {
3765         __ mov_metadata(tmp, exact_klass->constant_encoding());
3766         __ xorptr(tmp, mdo_addr);
3767         __ testptr(tmp, TypeEntries::type_klass_mask);
3768 #ifdef ASSERT
3769         __ jcc(Assembler::zero, next);
3770 
3771         {
3772           Label ok;
3773           __ push(tmp);
3774           __ testptr(mdo_addr, TypeEntries::type_mask);
3775           __ jcc(Assembler::zero, ok);
3776           // may have been set by another thread
3777           __ mov_metadata(tmp, exact_klass->constant_encoding());
3778           __ xorptr(tmp, mdo_addr);
3779           __ testptr(tmp, TypeEntries::type_mask);
3780           __ jcc(Assembler::zero, ok);
3781 
3782           __ stop("unexpected profiling mismatch");
3783           __ bind(ok);
3784           __ pop(tmp);
3785         }
3786 #else
3787         __ jccb(Assembler::zero, next);
3788 #endif
3789         // first time here. Set profile type.
3790         __ movptr(mdo_addr, tmp);
3791 #ifdef ASSERT
3792         __ andptr(tmp, TypeEntries::type_klass_mask);
3793         __ verify_klass_ptr(tmp);
3794 #endif
3795       } else {
3796         assert(ciTypeEntries::valid_ciklass(current_klass) != nullptr &&
3797                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3798 
3799         __ testptr(mdo_addr, TypeEntries::type_unknown);
3800         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3801 
3802         __ orptr(mdo_addr, TypeEntries::type_unknown);
3803       }
3804     }
3805   }
3806   __ bind(next);
3807 }
3808 
3809 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3810   Unimplemented();
3811 }
3812 
3813 
3814 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3815   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3816 }
3817 
3818 
3819 void LIR_Assembler::align_backward_branch_target() {
3820   __ align(BytesPerWord);
3821 }
3822 
3823 
3824 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
3825   if (left->is_single_cpu()) {
3826     __ negl(left->as_register());
3827     move_regs(left->as_register(), dest->as_register());
3828 
3829   } else if (left->is_double_cpu()) {
3830     Register lo = left->as_register_lo();
3831 #ifdef _LP64
3832     Register dst = dest->as_register_lo();
3833     __ movptr(dst, lo);
3834     __ negptr(dst);
3835 #else
3836     Register hi = left->as_register_hi();
3837     __ lneg(hi, lo);
3838     if (dest->as_register_lo() == hi) {
3839       assert(dest->as_register_hi() != lo, "destroying register");
3840       move_regs(hi, dest->as_register_hi());
3841       move_regs(lo, dest->as_register_lo());
3842     } else {
3843       move_regs(lo, dest->as_register_lo());
3844       move_regs(hi, dest->as_register_hi());
3845     }
3846 #endif // _LP64
3847 
3848   } else if (dest->is_single_xmm()) {
3849 #ifdef _LP64
3850     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3851       assert(tmp->is_valid(), "need temporary");
3852       assert_different_registers(left->as_xmm_float_reg(), tmp->as_xmm_float_reg());
3853       __ vpxor(dest->as_xmm_float_reg(), tmp->as_xmm_float_reg(), left->as_xmm_float_reg(), 2);
3854     }
3855     else
3856 #endif
3857     {
3858       assert(!tmp->is_valid(), "do not need temporary");
3859       if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3860         __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3861       }
3862       __ xorps(dest->as_xmm_float_reg(),
3863                ExternalAddress((address)float_signflip_pool),
3864                rscratch1);
3865     }
3866   } else if (dest->is_double_xmm()) {
3867 #ifdef _LP64
3868     if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3869       assert(tmp->is_valid(), "need temporary");
3870       assert_different_registers(left->as_xmm_double_reg(), tmp->as_xmm_double_reg());
3871       __ vpxor(dest->as_xmm_double_reg(), tmp->as_xmm_double_reg(), left->as_xmm_double_reg(), 2);
3872     }
3873     else
3874 #endif
3875     {
3876       assert(!tmp->is_valid(), "do not need temporary");
3877       if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3878         __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3879       }
3880       __ xorpd(dest->as_xmm_double_reg(),
3881                ExternalAddress((address)double_signflip_pool),
3882                rscratch1);
3883     }
3884 #ifndef _LP64
3885   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3886     assert(left->fpu() == 0, "arg must be on TOS");
3887     assert(dest->fpu() == 0, "dest must be TOS");
3888     __ fchs();
3889 #endif // !_LP64
3890 
3891   } else {
3892     ShouldNotReachHere();
3893   }
3894 }
3895 
3896 
3897 void LIR_Assembler::leal(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3898   assert(src->is_address(), "must be an address");
3899   assert(dest->is_register(), "must be a register");
3900 
3901   PatchingStub* patch = nullptr;
3902   if (patch_code != lir_patch_none) {
3903     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3904   }
3905 
3906   Register reg = dest->as_pointer_register();
3907   LIR_Address* addr = src->as_address_ptr();
3908   __ lea(reg, as_Address(addr));
3909 
3910   if (patch != nullptr) {
3911     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
3912   }
3913 }
3914 
3915 
3916 
3917 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3918   assert(!tmp->is_valid(), "don't need temporary");
3919   __ call(RuntimeAddress(dest));
3920   if (info != nullptr) {
3921     add_call_info_here(info);
3922   }
3923   __ post_call_nop();
3924 }
3925 
3926 
3927 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3928   assert(type == T_LONG, "only for volatile long fields");
3929 
3930   if (info != nullptr) {
3931     add_debug_info_for_null_check_here(info);
3932   }
3933 
3934   if (src->is_double_xmm()) {
3935     if (dest->is_double_cpu()) {
3936 #ifdef _LP64
3937       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3938 #else
3939       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3940       __ psrlq(src->as_xmm_double_reg(), 32);
3941       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3942 #endif // _LP64
3943     } else if (dest->is_double_stack()) {
3944       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3945     } else if (dest->is_address()) {
3946       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3947     } else {
3948       ShouldNotReachHere();
3949     }
3950 
3951   } else if (dest->is_double_xmm()) {
3952     if (src->is_double_stack()) {
3953       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3954     } else if (src->is_address()) {
3955       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3956     } else {
3957       ShouldNotReachHere();
3958     }
3959 
3960 #ifndef _LP64
3961   } else if (src->is_double_fpu()) {
3962     assert(src->fpu_regnrLo() == 0, "must be TOS");
3963     if (dest->is_double_stack()) {
3964       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3965     } else if (dest->is_address()) {
3966       __ fistp_d(as_Address(dest->as_address_ptr()));
3967     } else {
3968       ShouldNotReachHere();
3969     }
3970 
3971   } else if (dest->is_double_fpu()) {
3972     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3973     if (src->is_double_stack()) {
3974       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3975     } else if (src->is_address()) {
3976       __ fild_d(as_Address(src->as_address_ptr()));
3977     } else {
3978       ShouldNotReachHere();
3979     }
3980 #endif // !_LP64
3981 
3982   } else {
3983     ShouldNotReachHere();
3984   }
3985 }
3986 
3987 #ifdef ASSERT
3988 // emit run-time assertion
3989 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3990   assert(op->code() == lir_assert, "must be");
3991 
3992   if (op->in_opr1()->is_valid()) {
3993     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3994     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3995   } else {
3996     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3997     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3998   }
3999 
4000   Label ok;
4001   if (op->condition() != lir_cond_always) {
4002     Assembler::Condition acond = Assembler::zero;
4003     switch (op->condition()) {
4004       case lir_cond_equal:        acond = Assembler::equal;       break;
4005       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
4006       case lir_cond_less:         acond = Assembler::less;        break;
4007       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
4008       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
4009       case lir_cond_greater:      acond = Assembler::greater;     break;
4010       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
4011       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
4012       default:                    ShouldNotReachHere();
4013     }
4014     __ jcc(acond, ok);
4015   }
4016   if (op->halt()) {
4017     const char* str = __ code_string(op->msg());
4018     __ stop(str);
4019   } else {
4020     breakpoint();
4021   }
4022   __ bind(ok);
4023 }
4024 #endif
4025 
4026 void LIR_Assembler::membar() {
4027   // QQQ sparc TSO uses this,
4028   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
4029 }
4030 
4031 void LIR_Assembler::membar_acquire() {
4032   // No x86 machines currently require load fences
4033 }
4034 
4035 void LIR_Assembler::membar_release() {
4036   // No x86 machines currently require store fences
4037 }
4038 
4039 void LIR_Assembler::membar_loadload() {
4040   // no-op
4041   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
4042 }
4043 
4044 void LIR_Assembler::membar_storestore() {
4045   // no-op
4046   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
4047 }
4048 
4049 void LIR_Assembler::membar_loadstore() {
4050   // no-op
4051   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
4052 }
4053 
4054 void LIR_Assembler::membar_storeload() {
4055   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4056 }
4057 
4058 void LIR_Assembler::on_spin_wait() {
4059   __ pause ();
4060 }
4061 
4062 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
4063   assert(result_reg->is_register(), "check");
4064 #ifdef _LP64
4065   // __ get_thread(result_reg->as_register_lo());
4066   __ mov(result_reg->as_register(), r15_thread);
4067 #else
4068   __ get_thread(result_reg->as_register());
4069 #endif // _LP64
4070 }
4071 
4072 
4073 void LIR_Assembler::peephole(LIR_List*) {
4074   // do nothing for now
4075 }
4076 
4077 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
4078   assert(data == dest, "xchg/xadd uses only 2 operands");
4079 
4080   if (data->type() == T_INT) {
4081     if (code == lir_xadd) {
4082       __ lock();
4083       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
4084     } else {
4085       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4086     }
4087   } else if (data->is_oop()) {
4088     assert (code == lir_xchg, "xadd for oops");
4089     Register obj = data->as_register();
4090 #ifdef _LP64
4091     if (UseCompressedOops) {
4092       __ encode_heap_oop(obj);
4093       __ xchgl(obj, as_Address(src->as_address_ptr()));
4094       __ decode_heap_oop(obj);
4095     } else {
4096       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4097     }
4098 #else
4099     __ xchgl(obj, as_Address(src->as_address_ptr()));
4100 #endif
4101   } else if (data->type() == T_LONG) {
4102 #ifdef _LP64
4103     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4104     if (code == lir_xadd) {
4105       __ lock();
4106       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4107     } else {
4108       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4109     }
4110 #else
4111     ShouldNotReachHere();
4112 #endif
4113   } else {
4114     ShouldNotReachHere();
4115   }
4116 }
4117 
4118 #undef __