1 /*
2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "compiler/compiler_globals.hpp"
27 #include "interp_masm_x86.hpp"
28 #include "interpreter/interpreter.hpp"
29 #include "interpreter/interpreterRuntime.hpp"
30 #include "logging/log.hpp"
31 #include "oops/arrayOop.hpp"
32 #include "oops/markWord.hpp"
33 #include "oops/methodData.hpp"
34 #include "oops/method.hpp"
35 #include "prims/jvmtiExport.hpp"
36 #include "prims/jvmtiThreadState.hpp"
37 #include "runtime/basicLock.hpp"
38 #include "runtime/frame.inline.hpp"
39 #include "runtime/javaThread.hpp"
40 #include "runtime/safepointMechanism.hpp"
41 #include "runtime/sharedRuntime.hpp"
42 #include "utilities/powerOfTwo.hpp"
43
44 // Implementation of InterpreterMacroAssembler
45
46 void InterpreterMacroAssembler::jump_to_entry(address entry) {
47 assert(entry, "Entry must have been generated by now");
48 jump(RuntimeAddress(entry));
49 }
50
51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
52 Label update, next, none;
53
54 #ifdef _LP64
55 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
56 #else
57 assert_different_registers(obj, mdo_addr.base(), mdo_addr.index());
58 #endif
59
60 interp_verify_oop(obj, atos);
61
62 testptr(obj, obj);
63 jccb(Assembler::notZero, update);
64 testptr(mdo_addr, TypeEntries::null_seen);
65 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore.
66 // atomic update to prevent overwriting Klass* with 0
67 lock();
68 orptr(mdo_addr, TypeEntries::null_seen);
69 jmpb(next);
70
71 bind(update);
72 load_klass(obj, obj, rscratch1);
73 #ifdef _LP64
74 mov(rscratch1, obj);
75 #endif
76
77 xorptr(obj, mdo_addr);
78 testptr(obj, TypeEntries::type_klass_mask);
79 jccb(Assembler::zero, next); // klass seen before, nothing to
80 // do. The unknown bit may have been
81 // set already but no need to check.
82
83 testptr(obj, TypeEntries::type_unknown);
84 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
85
86 cmpptr(mdo_addr, 0);
87 jccb(Assembler::equal, none);
88 cmpptr(mdo_addr, TypeEntries::null_seen);
89 jccb(Assembler::equal, none);
90 #ifdef _LP64
91 // There is a chance that the checks above (re-reading profiling
92 // data from memory) fail if another thread has just set the
93 // profiling to this obj's klass
94 mov(obj, rscratch1);
95 xorptr(obj, mdo_addr);
96 testptr(obj, TypeEntries::type_klass_mask);
97 jccb(Assembler::zero, next);
98 #endif
99
100 // different than before. Cannot keep accurate profile.
101 orptr(mdo_addr, TypeEntries::type_unknown);
102 jmpb(next);
103
104 bind(none);
105 // first time here. Set profile type.
106 movptr(mdo_addr, obj);
107 #ifdef ASSERT
108 andptr(obj, TypeEntries::type_klass_mask);
109 verify_klass_ptr(obj);
110 #endif
111
112 bind(next);
113 }
114
115 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
116 if (!ProfileInterpreter) {
117 return;
118 }
119
120 if (MethodData::profile_arguments() || MethodData::profile_return()) {
121 Label profile_continue;
122
123 test_method_data_pointer(mdp, profile_continue);
124
125 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
126
127 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
128 jcc(Assembler::notEqual, profile_continue);
129
130 if (MethodData::profile_arguments()) {
131 Label done;
132 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
133 addptr(mdp, off_to_args);
134
135 for (int i = 0; i < TypeProfileArgsLimit; i++) {
136 if (i > 0 || MethodData::profile_return()) {
137 // If return value type is profiled we may have no argument to profile
138 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
139 subl(tmp, i*TypeStackSlotEntries::per_arg_count());
140 cmpl(tmp, TypeStackSlotEntries::per_arg_count());
141 jcc(Assembler::less, done);
142 }
143 movptr(tmp, Address(callee, Method::const_offset()));
144 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
145 // stack offset o (zero based) from the start of the argument
146 // list, for n arguments translates into offset n - o - 1 from
147 // the end of the argument list
148 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
149 subl(tmp, 1);
150 Address arg_addr = argument_address(tmp);
151 movptr(tmp, arg_addr);
152
153 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
154 profile_obj_type(tmp, mdo_arg_addr);
155
156 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
157 addptr(mdp, to_add);
158 off_to_args += to_add;
159 }
160
161 if (MethodData::profile_return()) {
162 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args));
163 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
164 }
165
166 bind(done);
167
168 if (MethodData::profile_return()) {
169 // We're right after the type profile for the last
170 // argument. tmp is the number of cells left in the
171 // CallTypeData/VirtualCallTypeData to reach its end. Non null
172 // if there's a return to profile.
173 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
174 shll(tmp, log2i_exact((int)DataLayout::cell_size));
175 addptr(mdp, tmp);
176 }
177 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp);
178 } else {
179 assert(MethodData::profile_return(), "either profile call args or call ret");
180 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
181 }
182
183 // mdp points right after the end of the
184 // CallTypeData/VirtualCallTypeData, right after the cells for the
185 // return value type if there's one
186
187 bind(profile_continue);
188 }
189 }
190
191 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
192 assert_different_registers(mdp, ret, tmp, _bcp_register);
193 if (ProfileInterpreter && MethodData::profile_return()) {
194 Label profile_continue;
195
196 test_method_data_pointer(mdp, profile_continue);
197
198 if (MethodData::profile_return_jsr292_only()) {
199 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
200
201 // If we don't profile all invoke bytecodes we must make sure
202 // it's a bytecode we indeed profile. We can't go back to the
203 // beginning of the ProfileData we intend to update to check its
204 // type because we're right after it and we don't known its
205 // length
206 Label do_profile;
207 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic);
208 jcc(Assembler::equal, do_profile);
209 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle);
210 jcc(Assembler::equal, do_profile);
211 get_method(tmp);
212 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm));
213 jcc(Assembler::notEqual, profile_continue);
214
215 bind(do_profile);
216 }
217
218 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
219 mov(tmp, ret);
220 profile_obj_type(tmp, mdo_ret_addr);
221
222 bind(profile_continue);
223 }
224 }
225
226 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
227 if (ProfileInterpreter && MethodData::profile_parameters()) {
228 Label profile_continue;
229
230 test_method_data_pointer(mdp, profile_continue);
231
232 // Load the offset of the area within the MDO used for
233 // parameters. If it's negative we're not profiling any parameters
234 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
235 testl(tmp1, tmp1);
236 jcc(Assembler::negative, profile_continue);
237
238 // Compute a pointer to the area for parameters from the offset
239 // and move the pointer to the slot for the last
240 // parameters. Collect profiling from last parameter down.
241 // mdo start + parameters offset + array length - 1
242 addptr(mdp, tmp1);
243 movptr(tmp1, Address(mdp, ArrayData::array_len_offset()));
244 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
245
246 Label loop;
247 bind(loop);
248
249 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
250 int type_base = in_bytes(ParametersTypeData::type_offset(0));
251 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size);
252 Address arg_off(mdp, tmp1, per_arg_scale, off_base);
253 Address arg_type(mdp, tmp1, per_arg_scale, type_base);
254
255 // load offset on the stack from the slot for this parameter
256 movptr(tmp2, arg_off);
257 negptr(tmp2);
258 // read the parameter from the local area
259 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale()));
260
261 // profile the parameter
262 profile_obj_type(tmp2, arg_type);
263
264 // go to next parameter
265 decrement(tmp1, TypeStackSlotEntries::per_arg_count());
266 jcc(Assembler::positive, loop);
267
268 bind(profile_continue);
269 }
270 }
271
272 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
273 int number_of_arguments) {
274 // interpreter specific
275 //
276 // Note: No need to save/restore bcp & locals registers
277 // since these are callee saved registers and no blocking/
278 // GC can happen in leaf calls.
279 // Further Note: DO NOT save/restore bcp/locals. If a caller has
280 // already saved them so that it can use rsi/rdi as temporaries
281 // then a save/restore here will DESTROY the copy the caller
282 // saved! There used to be a save_bcp() that only happened in
283 // the ASSERT path (no restore_bcp). Which caused bizarre failures
284 // when jvm built with ASSERTs.
285 #ifdef ASSERT
286 {
287 Label L;
288 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
289 jcc(Assembler::equal, L);
290 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
291 " last_sp != null");
292 bind(L);
293 }
294 #endif
295 // super call
296 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
297 // interpreter specific
298 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals
299 // but since they may not have been saved (and we don't want to
300 // save them here (see note above) the assert is invalid.
301 }
302
303 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
304 Register java_thread,
305 Register last_java_sp,
306 address entry_point,
307 int number_of_arguments,
308 bool check_exceptions) {
309 // interpreter specific
310 //
311 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
312 // really make a difference for these runtime calls, since they are
313 // slow anyway. Btw., bcp must be saved/restored since it may change
314 // due to GC.
315 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");)
316 save_bcp();
317 #ifdef ASSERT
318 {
319 Label L;
320 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD);
321 jcc(Assembler::equal, L);
322 stop("InterpreterMacroAssembler::call_VM_base:"
323 " last_sp isn't null");
324 bind(L);
325 }
326 #endif /* ASSERT */
327 // super call
328 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
329 entry_point, number_of_arguments,
330 check_exceptions);
331 // interpreter specific
332 restore_bcp();
333 restore_locals();
334 }
335
336 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
337 if (JvmtiExport::can_pop_frame()) {
338 Label L;
339 // Initiate popframe handling only if it is not already being
340 // processed. If the flag has the popframe_processing bit set, it
341 // means that this code is called *during* popframe handling - we
342 // don't want to reenter.
343 // This method is only called just after the call into the vm in
344 // call_VM_base, so the arg registers are available.
345 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit
346 LP64_ONLY(c_rarg0);
347 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset()));
348 testl(pop_cond, JavaThread::popframe_pending_bit);
349 jcc(Assembler::zero, L);
350 testl(pop_cond, JavaThread::popframe_processing_bit);
351 jcc(Assembler::notZero, L);
352 // Call Interpreter::remove_activation_preserving_args_entry() to get the
353 // address of the same-named entrypoint in the generated interpreter code.
354 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
355 jmp(rax);
356 bind(L);
357 NOT_LP64(get_thread(java_thread);)
358 }
359 }
360
361 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
362 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
363 NOT_LP64(get_thread(thread);)
364 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset()));
365 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
366 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
367 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
368 #ifdef _LP64
369 switch (state) {
370 case atos: movptr(rax, oop_addr);
371 movptr(oop_addr, NULL_WORD);
372 interp_verify_oop(rax, state); break;
373 case ltos: movptr(rax, val_addr); break;
374 case btos: // fall through
375 case ztos: // fall through
376 case ctos: // fall through
377 case stos: // fall through
378 case itos: movl(rax, val_addr); break;
379 case ftos: load_float(val_addr); break;
380 case dtos: load_double(val_addr); break;
381 case vtos: /* nothing to do */ break;
382 default : ShouldNotReachHere();
383 }
384 // Clean up tos value in the thread object
385 movl(tos_addr, ilgl);
386 movl(val_addr, NULL_WORD);
387 #else
388 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset()
389 + in_ByteSize(wordSize));
390 switch (state) {
391 case atos: movptr(rax, oop_addr);
392 movptr(oop_addr, NULL_WORD);
393 interp_verify_oop(rax, state); break;
394 case ltos:
395 movl(rdx, val_addr1); // fall through
396 case btos: // fall through
397 case ztos: // fall through
398 case ctos: // fall through
399 case stos: // fall through
400 case itos: movl(rax, val_addr); break;
401 case ftos: load_float(val_addr); break;
402 case dtos: load_double(val_addr); break;
403 case vtos: /* nothing to do */ break;
404 default : ShouldNotReachHere();
405 }
406 #endif // _LP64
407 // Clean up tos value in the thread object
408 movl(tos_addr, ilgl);
409 movptr(val_addr, NULL_WORD);
410 NOT_LP64(movptr(val_addr1, NULL_WORD);)
411 }
412
413
414 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
415 if (JvmtiExport::can_force_early_return()) {
416 Label L;
417 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread);
418 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread);
419
420 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
421 testptr(tmp, tmp);
422 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit;
423
424 // Initiate earlyret handling only if it is not already being processed.
425 // If the flag has the earlyret_processing bit set, it means that this code
426 // is called *during* earlyret handling - we don't want to reenter.
427 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset()));
428 cmpl(tmp, JvmtiThreadState::earlyret_pending);
429 jcc(Assembler::notEqual, L);
430
431 // Call Interpreter::remove_activation_early_entry() to get the address of the
432 // same-named entrypoint in the generated interpreter code.
433 NOT_LP64(get_thread(java_thread);)
434 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset()));
435 #ifdef _LP64
436 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
437 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp);
438 #else
439 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset()));
440 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1);
441 #endif // _LP64
442 jmp(rax);
443 bind(L);
444 NOT_LP64(get_thread(java_thread);)
445 }
446 }
447
448 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
449 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
450 load_unsigned_short(reg, Address(_bcp_register, bcp_offset));
451 bswapl(reg);
452 shrl(reg, 16);
453 }
454
455 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
456 int bcp_offset,
457 size_t index_size) {
458 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
459 if (index_size == sizeof(u2)) {
460 load_unsigned_short(index, Address(_bcp_register, bcp_offset));
461 } else if (index_size == sizeof(u4)) {
462 movl(index, Address(_bcp_register, bcp_offset));
463 // Check if the secondary index definition is still ~x, otherwise
464 // we have to change the following assembler code to calculate the
465 // plain index.
466 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
467 notl(index); // convert to plain index
468 } else if (index_size == sizeof(u1)) {
469 load_unsigned_byte(index, Address(_bcp_register, bcp_offset));
470 } else {
471 ShouldNotReachHere();
472 }
473 }
474
475 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
476 Register index,
477 int bcp_offset,
478 size_t index_size) {
479 assert_different_registers(cache, index);
480 get_cache_index_at_bcp(index, bcp_offset, index_size);
481 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
482 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
483 // convert from field index to ConstantPoolCacheEntry index
484 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
485 shll(index, 2);
486 }
487
488 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
489 Register index,
490 Register bytecode,
491 int byte_no,
492 int bcp_offset,
493 size_t index_size) {
494 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
495 // We use a 32-bit load here since the layout of 64-bit words on
496 // little-endian machines allow us that.
497 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
498 const int shift_count = (1 + byte_no) * BitsPerByte;
499 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
500 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
501 "correct shift count");
502 shrl(bytecode, shift_count);
503 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
504 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
505 }
506
507 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
508 Register tmp,
509 int bcp_offset,
510 size_t index_size) {
511 assert_different_registers(cache, tmp);
512
513 get_cache_index_at_bcp(tmp, bcp_offset, index_size);
514 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
515 // convert from field index to ConstantPoolCacheEntry index
516 // and from word offset to byte offset
517 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
518 shll(tmp, 2 + LogBytesPerWord);
519 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
520 // skip past the header
521 addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
522 addptr(cache, tmp); // construct pointer to cache entry
523 }
524
525 // Load object from cpool->resolved_references(index)
526 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result,
527 Register index,
528 Register tmp) {
529 assert_different_registers(result, index);
530
531 get_constant_pool(result);
532 // load pointer for resolved_references[] objArray
533 movptr(result, Address(result, ConstantPool::cache_offset()));
534 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
535 resolve_oop_handle(result, tmp);
536 load_heap_oop(result, Address(result, index,
537 UseCompressedOops ? Address::times_4 : Address::times_ptr,
538 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp);
539 }
540
541 // load cpool->resolved_klass_at(index)
542 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass,
543 Register cpool,
544 Register index) {
545 assert_different_registers(cpool, index);
546
547 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool)));
548 Register resolved_klasses = cpool;
549 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset()));
550 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes()));
551 }
552
553 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
554 Register method,
555 Register cache,
556 Register index) {
557 assert_different_registers(cache, index);
558
559 const int method_offset = in_bytes(
560 ConstantPoolCache::base_offset() +
561 ((byte_no == TemplateTable::f2_byte)
562 ? ConstantPoolCacheEntry::f2_offset()
563 : ConstantPoolCacheEntry::f1_offset()));
564
565 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method*
566 }
567
568 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
569 // subtype of super_klass.
570 //
571 // Args:
572 // rax: superklass
573 // Rsub_klass: subklass
574 //
575 // Kills:
576 // rcx, rdi
577 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
578 Label& ok_is_subtype) {
579 assert(Rsub_klass != rax, "rax holds superklass");
580 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");)
581 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");)
582 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
583 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
584
585 // Profile the not-null value's klass.
586 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
587
588 // Do the check.
589 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
590
591 // Profile the failure of the check.
592 profile_typecheck_failed(rcx); // blows rcx
593 }
594
595
596 #ifndef _LP64
597 void InterpreterMacroAssembler::f2ieee() {
598 if (IEEEPrecision) {
599 fstp_s(Address(rsp, 0));
600 fld_s(Address(rsp, 0));
601 }
602 }
603
604
605 void InterpreterMacroAssembler::d2ieee() {
606 if (IEEEPrecision) {
607 fstp_d(Address(rsp, 0));
608 fld_d(Address(rsp, 0));
609 }
610 }
611 #endif // _LP64
612
613 // Java Expression Stack
614
615 void InterpreterMacroAssembler::pop_ptr(Register r) {
616 pop(r);
617 }
618
619 void InterpreterMacroAssembler::push_ptr(Register r) {
620 push(r);
621 }
622
623 void InterpreterMacroAssembler::push_i(Register r) {
624 push(r);
625 }
626
627 void InterpreterMacroAssembler::push_i_or_ptr(Register r) {
628 push(r);
629 }
630
631 void InterpreterMacroAssembler::push_f(XMMRegister r) {
632 subptr(rsp, wordSize);
633 movflt(Address(rsp, 0), r);
634 }
635
636 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
637 movflt(r, Address(rsp, 0));
638 addptr(rsp, wordSize);
639 }
640
641 void InterpreterMacroAssembler::push_d(XMMRegister r) {
642 subptr(rsp, 2 * wordSize);
643 movdbl(Address(rsp, 0), r);
644 }
645
646 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
647 movdbl(r, Address(rsp, 0));
648 addptr(rsp, 2 * Interpreter::stackElementSize);
649 }
650
651 #ifdef _LP64
652 void InterpreterMacroAssembler::pop_i(Register r) {
653 // XXX can't use pop currently, upper half non clean
654 movl(r, Address(rsp, 0));
655 addptr(rsp, wordSize);
656 }
657
658 void InterpreterMacroAssembler::pop_l(Register r) {
659 movq(r, Address(rsp, 0));
660 addptr(rsp, 2 * Interpreter::stackElementSize);
661 }
662
663 void InterpreterMacroAssembler::push_l(Register r) {
664 subptr(rsp, 2 * wordSize);
665 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r );
666 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD );
667 }
668
669 void InterpreterMacroAssembler::pop(TosState state) {
670 switch (state) {
671 case atos: pop_ptr(); break;
672 case btos:
673 case ztos:
674 case ctos:
675 case stos:
676 case itos: pop_i(); break;
677 case ltos: pop_l(); break;
678 case ftos: pop_f(xmm0); break;
679 case dtos: pop_d(xmm0); break;
680 case vtos: /* nothing to do */ break;
681 default: ShouldNotReachHere();
682 }
683 interp_verify_oop(rax, state);
684 }
685
686 void InterpreterMacroAssembler::push(TosState state) {
687 interp_verify_oop(rax, state);
688 switch (state) {
689 case atos: push_ptr(); break;
690 case btos:
691 case ztos:
692 case ctos:
693 case stos:
694 case itos: push_i(); break;
695 case ltos: push_l(); break;
696 case ftos: push_f(xmm0); break;
697 case dtos: push_d(xmm0); break;
698 case vtos: /* nothing to do */ break;
699 default : ShouldNotReachHere();
700 }
701 }
702 #else
703 void InterpreterMacroAssembler::pop_i(Register r) {
704 pop(r);
705 }
706
707 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) {
708 pop(lo);
709 pop(hi);
710 }
711
712 void InterpreterMacroAssembler::pop_f() {
713 fld_s(Address(rsp, 0));
714 addptr(rsp, 1 * wordSize);
715 }
716
717 void InterpreterMacroAssembler::pop_d() {
718 fld_d(Address(rsp, 0));
719 addptr(rsp, 2 * wordSize);
720 }
721
722
723 void InterpreterMacroAssembler::pop(TosState state) {
724 switch (state) {
725 case atos: pop_ptr(rax); break;
726 case btos: // fall through
727 case ztos: // fall through
728 case ctos: // fall through
729 case stos: // fall through
730 case itos: pop_i(rax); break;
731 case ltos: pop_l(rax, rdx); break;
732 case ftos:
733 if (UseSSE >= 1) {
734 pop_f(xmm0);
735 } else {
736 pop_f();
737 }
738 break;
739 case dtos:
740 if (UseSSE >= 2) {
741 pop_d(xmm0);
742 } else {
743 pop_d();
744 }
745 break;
746 case vtos: /* nothing to do */ break;
747 default : ShouldNotReachHere();
748 }
749 interp_verify_oop(rax, state);
750 }
751
752
753 void InterpreterMacroAssembler::push_l(Register lo, Register hi) {
754 push(hi);
755 push(lo);
756 }
757
758 void InterpreterMacroAssembler::push_f() {
759 // Do not schedule for no AGI! Never write beyond rsp!
760 subptr(rsp, 1 * wordSize);
761 fstp_s(Address(rsp, 0));
762 }
763
764 void InterpreterMacroAssembler::push_d() {
765 // Do not schedule for no AGI! Never write beyond rsp!
766 subptr(rsp, 2 * wordSize);
767 fstp_d(Address(rsp, 0));
768 }
769
770
771 void InterpreterMacroAssembler::push(TosState state) {
772 interp_verify_oop(rax, state);
773 switch (state) {
774 case atos: push_ptr(rax); break;
775 case btos: // fall through
776 case ztos: // fall through
777 case ctos: // fall through
778 case stos: // fall through
779 case itos: push_i(rax); break;
780 case ltos: push_l(rax, rdx); break;
781 case ftos:
782 if (UseSSE >= 1) {
783 push_f(xmm0);
784 } else {
785 push_f();
786 }
787 break;
788 case dtos:
789 if (UseSSE >= 2) {
790 push_d(xmm0);
791 } else {
792 push_d();
793 }
794 break;
795 case vtos: /* nothing to do */ break;
796 default : ShouldNotReachHere();
797 }
798 }
799 #endif // _LP64
800
801
802 // Helpers for swap and dup
803 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
804 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
805 }
806
807 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
808 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
809 }
810
811
812 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
813 // set sender sp
814 lea(_bcp_register, Address(rsp, wordSize));
815 // record last_sp
816 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register);
817 }
818
819
820 // Jump to from_interpreted entry of a call unless single stepping is possible
821 // in this thread in which case we must call the i2i entry
822 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
823 prepare_to_jump_from_interpreted();
824
825 if (JvmtiExport::can_post_interpreter_events()) {
826 Label run_compiled_code;
827 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
828 // compiled code in threads for which the event is enabled. Check here for
829 // interp_only_mode if these events CAN be enabled.
830 // interp_only is an int, on little endian it is sufficient to test the byte only
831 // Is a cmpl faster?
832 LP64_ONLY(temp = r15_thread;)
833 NOT_LP64(get_thread(temp);)
834 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0);
835 jccb(Assembler::zero, run_compiled_code);
836 jmp(Address(method, Method::interpreter_entry_offset()));
837 bind(run_compiled_code);
838 }
839
840 jmp(Address(method, Method::from_interpreted_offset()));
841 }
842
843 // The following two routines provide a hook so that an implementation
844 // can schedule the dispatch in two parts. x86 does not do this.
845 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
846 // Nothing x86 specific to be done here
847 }
848
849 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
850 dispatch_next(state, step);
851 }
852
853 void InterpreterMacroAssembler::dispatch_base(TosState state,
854 address* table,
855 bool verifyoop,
856 bool generate_poll) {
857 verify_FPU(1, state);
858 if (VerifyActivationFrameSize) {
859 Label L;
860 mov(rcx, rbp);
861 subptr(rcx, rsp);
862 int32_t min_frame_size =
863 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
864 wordSize;
865 cmpptr(rcx, min_frame_size);
866 jcc(Assembler::greaterEqual, L);
867 stop("broken stack frame");
868 bind(L);
869 }
870 if (verifyoop) {
871 interp_verify_oop(rax, state);
872 }
873
874 address* const safepoint_table = Interpreter::safept_table(state);
875 #ifdef _LP64
876 Label no_safepoint, dispatch;
877 if (table != safepoint_table && generate_poll) {
878 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
879 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
880
881 jccb(Assembler::zero, no_safepoint);
882 lea(rscratch1, ExternalAddress((address)safepoint_table));
883 jmpb(dispatch);
884 }
885
886 bind(no_safepoint);
887 lea(rscratch1, ExternalAddress((address)table));
888 bind(dispatch);
889 jmp(Address(rscratch1, rbx, Address::times_8));
890
891 #else
892 Address index(noreg, rbx, Address::times_ptr);
893 if (table != safepoint_table && generate_poll) {
894 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
895 Label no_safepoint;
896 const Register thread = rcx;
897 get_thread(thread);
898 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit());
899
900 jccb(Assembler::zero, no_safepoint);
901 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index);
902 jump(dispatch_addr, noreg);
903 bind(no_safepoint);
904 }
905
906 {
907 ArrayAddress dispatch_addr(ExternalAddress((address)table), index);
908 jump(dispatch_addr, noreg);
909 }
910 #endif // _LP64
911 }
912
913 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
914 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
915 }
916
917 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
918 dispatch_base(state, Interpreter::normal_table(state));
919 }
920
921 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
922 dispatch_base(state, Interpreter::normal_table(state), false);
923 }
924
925
926 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
927 // load next bytecode (load before advancing _bcp_register to prevent AGI)
928 load_unsigned_byte(rbx, Address(_bcp_register, step));
929 // advance _bcp_register
930 increment(_bcp_register, step);
931 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
932 }
933
934 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
935 // load current bytecode
936 load_unsigned_byte(rbx, Address(_bcp_register, 0));
937 dispatch_base(state, table);
938 }
939
940 void InterpreterMacroAssembler::narrow(Register result) {
941
942 // Get method->_constMethod->_result_type
943 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
944 movptr(rcx, Address(rcx, Method::const_offset()));
945 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset()));
946
947 Label done, notBool, notByte, notChar;
948
949 // common case first
950 cmpl(rcx, T_INT);
951 jcc(Assembler::equal, done);
952
953 // mask integer result to narrower return type.
954 cmpl(rcx, T_BOOLEAN);
955 jcc(Assembler::notEqual, notBool);
956 andl(result, 0x1);
957 jmp(done);
958
959 bind(notBool);
960 cmpl(rcx, T_BYTE);
961 jcc(Assembler::notEqual, notByte);
962 LP64_ONLY(movsbl(result, result);)
963 NOT_LP64(shll(result, 24);) // truncate upper 24 bits
964 NOT_LP64(sarl(result, 24);) // and sign-extend byte
965 jmp(done);
966
967 bind(notByte);
968 cmpl(rcx, T_CHAR);
969 jcc(Assembler::notEqual, notChar);
970 LP64_ONLY(movzwl(result, result);)
971 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits
972 jmp(done);
973
974 bind(notChar);
975 // cmpl(rcx, T_SHORT); // all that's left
976 // jcc(Assembler::notEqual, done);
977 LP64_ONLY(movswl(result, result);)
978 NOT_LP64(shll(result, 16);) // truncate upper 16 bits
979 NOT_LP64(sarl(result, 16);) // and sign-extend short
980
981 // Nothing to do for T_INT
982 bind(done);
983 }
984
985 // remove activation
986 //
987 // Apply stack watermark barrier.
988 // Unlock the receiver if this is a synchronized method.
989 // Unlock any Java monitors from synchronized blocks.
990 // Remove the activation from the stack.
991 //
992 // If there are locked Java monitors
993 // If throw_monitor_exception
994 // throws IllegalMonitorStateException
995 // Else if install_monitor_exception
996 // installs IllegalMonitorStateException
997 // Else
998 // no error processing
999 void InterpreterMacroAssembler::remove_activation(
1000 TosState state,
1001 Register ret_addr,
1002 bool throw_monitor_exception,
1003 bool install_monitor_exception,
1004 bool notify_jvmdi) {
1005 // Note: Registers rdx xmm0 may be in use for the
1006 // result check if synchronized method
1007 Label unlocked, unlock, no_unlock;
1008
1009 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1010 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx);
1011 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx);
1012 // monitor pointers need different register
1013 // because rdx may have the result in it
1014 NOT_LP64(get_thread(rthread);)
1015
1016 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
1017 // that would normally not be safe to use. Such bad returns into unsafe territory of
1018 // the stack, will call InterpreterRuntime::at_unwind.
1019 Label slow_path;
1020 Label fast_path;
1021 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */);
1022 jmp(fast_path);
1023 bind(slow_path);
1024 push(state);
1025 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1);
1026 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
1027 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore
1028 reset_last_Java_frame(rthread, true);
1029 pop(state);
1030 bind(fast_path);
1031
1032 // get the value of _do_not_unlock_if_synchronized into rdx
1033 const Address do_not_unlock_if_synchronized(rthread,
1034 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
1035 movbool(rbx, do_not_unlock_if_synchronized);
1036 movbool(do_not_unlock_if_synchronized, false); // reset the flag
1037
1038 // get method access flags
1039 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
1040 movl(rcx, Address(rcx, Method::access_flags_offset()));
1041 testl(rcx, JVM_ACC_SYNCHRONIZED);
1042 jcc(Assembler::zero, unlocked);
1043
1044 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
1045 // is set.
1046 testbool(rbx);
1047 jcc(Assembler::notZero, no_unlock);
1048
1049 // unlock monitor
1050 push(state); // save result
1051
1052 // BasicObjectLock will be first in list, since this is a
1053 // synchronized method. However, need to check that the object has
1054 // not been unlocked by an explicit monitorexit bytecode.
1055 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
1056 wordSize - (int) sizeof(BasicObjectLock));
1057 // We use c_rarg1/rdx so that if we go slow path it will be the correct
1058 // register for unlock_object to pass to VM directly
1059 lea(robj, monitor); // address of first monitor
1060
1061 movptr(rax, Address(robj, BasicObjectLock::obj_offset()));
1062 testptr(rax, rax);
1063 jcc(Assembler::notZero, unlock);
1064
1065 pop(state);
1066 if (throw_monitor_exception) {
1067 // Entry already unlocked, need to throw exception
1068 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow
1069 call_VM(noreg, CAST_FROM_FN_PTR(address,
1070 InterpreterRuntime::throw_illegal_monitor_state_exception));
1071 should_not_reach_here();
1072 } else {
1073 // Monitor already unlocked during a stack unroll. If requested,
1074 // install an illegal_monitor_state_exception. Continue with
1075 // stack unrolling.
1076 if (install_monitor_exception) {
1077 NOT_LP64(empty_FPU_stack();)
1078 call_VM(noreg, CAST_FROM_FN_PTR(address,
1079 InterpreterRuntime::new_illegal_monitor_state_exception));
1080 }
1081 jmp(unlocked);
1082 }
1083
1084 bind(unlock);
1085 unlock_object(robj);
1086 pop(state);
1087
1088 // Check that for block-structured locking (i.e., that all locked
1089 // objects has been unlocked)
1090 bind(unlocked);
1091
1092 // rax, rdx: Might contain return value
1093
1094 // Check that all monitors are unlocked
1095 {
1096 Label loop, exception, entry, restart;
1097 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
1098 const Address monitor_block_top(
1099 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
1100 const Address monitor_block_bot(
1101 rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
1102
1103 bind(restart);
1104 // We use c_rarg1 so that if we go slow path it will be the correct
1105 // register for unlock_object to pass to VM directly
1106 movptr(rmon, monitor_block_top); // points to current entry, starting
1107 // with top-most entry
1108 lea(rbx, monitor_block_bot); // points to word before bottom of
1109 // monitor block
1110 jmp(entry);
1111
1112 // Entry already locked, need to throw exception
1113 bind(exception);
1114
1115 if (throw_monitor_exception) {
1116 // Throw exception
1117 NOT_LP64(empty_FPU_stack();)
1118 MacroAssembler::call_VM(noreg,
1119 CAST_FROM_FN_PTR(address, InterpreterRuntime::
1120 throw_illegal_monitor_state_exception));
1121 should_not_reach_here();
1122 } else {
1123 // Stack unrolling. Unlock object and install illegal_monitor_exception.
1124 // Unlock does not block, so don't have to worry about the frame.
1125 // We don't have to preserve c_rarg1 since we are going to throw an exception.
1126
1127 push(state);
1128 mov(robj, rmon); // nop if robj and rmon are the same
1129 unlock_object(robj);
1130 pop(state);
1131
1132 if (install_monitor_exception) {
1133 NOT_LP64(empty_FPU_stack();)
1134 call_VM(noreg, CAST_FROM_FN_PTR(address,
1135 InterpreterRuntime::
1136 new_illegal_monitor_state_exception));
1137 }
1138
1139 jmp(restart);
1140 }
1141
1142 bind(loop);
1143 // check if current entry is used
1144 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD);
1145 jcc(Assembler::notEqual, exception);
1146
1147 addptr(rmon, entry_size); // otherwise advance to next entry
1148 bind(entry);
1149 cmpptr(rmon, rbx); // check if bottom reached
1150 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
1151 }
1152
1153 bind(no_unlock);
1154
1155 // jvmti support
1156 if (notify_jvmdi) {
1157 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
1158 } else {
1159 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
1160 }
1161
1162 // remove activation
1163 // get sender sp
1164 movptr(rbx,
1165 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
1166 if (StackReservedPages > 0) {
1167 // testing if reserved zone needs to be re-enabled
1168 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
1169 Label no_reserved_zone_enabling;
1170
1171 NOT_LP64(get_thread(rthread);)
1172
1173 // check if already enabled - if so no re-enabling needed
1174 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
1175 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled);
1176 jcc(Assembler::equal, no_reserved_zone_enabling);
1177
1178 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset()));
1179 jcc(Assembler::lessEqual, no_reserved_zone_enabling);
1180
1181 call_VM_leaf(
1182 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
1183 call_VM(noreg, CAST_FROM_FN_PTR(address,
1184 InterpreterRuntime::throw_delayed_StackOverflowError));
1185 should_not_reach_here();
1186
1187 bind(no_reserved_zone_enabling);
1188 }
1189 leave(); // remove frame anchor
1190 pop(ret_addr); // get return address
1191 mov(rsp, rbx); // set sp to sender sp
1192 pop_cont_fastpath();
1193 }
1194
1195 void InterpreterMacroAssembler::get_method_counters(Register method,
1196 Register mcs, Label& skip) {
1197 Label has_counters;
1198 movptr(mcs, Address(method, Method::method_counters_offset()));
1199 testptr(mcs, mcs);
1200 jcc(Assembler::notZero, has_counters);
1201 call_VM(noreg, CAST_FROM_FN_PTR(address,
1202 InterpreterRuntime::build_method_counters), method);
1203 movptr(mcs, Address(method,Method::method_counters_offset()));
1204 testptr(mcs, mcs);
1205 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
1206 bind(has_counters);
1207 }
1208
1209
1210 // Lock object
1211 //
1212 // Args:
1213 // rdx, c_rarg1: BasicObjectLock to be used for locking
1214 //
1215 // Kills:
1216 // rax, rbx
1217 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
1218 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1219 "The argument is only for looks. It must be c_rarg1");
1220
1221 if (LockingMode == LM_MONITOR) {
1222 call_VM(noreg,
1223 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1224 lock_reg);
1225 } else {
1226 Label count_locking, done, slow_case;
1227
1228 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1229 const Register tmp_reg = rbx;
1230 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1231 const Register rklass_decode_tmp = rscratch1;
1232
1233 const int obj_offset = in_bytes(BasicObjectLock::obj_offset());
1234 const int lock_offset = in_bytes(BasicObjectLock::lock_offset());
1235 const int mark_offset = lock_offset +
1236 BasicLock::displaced_header_offset_in_bytes();
1237
1238 // Load object pointer into obj_reg
1239 movptr(obj_reg, Address(lock_reg, obj_offset));
1240
1241 if (DiagnoseSyncOnValueBasedClasses != 0) {
1242 load_klass(tmp_reg, obj_reg, rklass_decode_tmp);
1243 movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset()));
1244 testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS);
1245 jcc(Assembler::notZero, slow_case);
1246 }
1247
1248 if (LockingMode == LM_LIGHTWEIGHT) {
1249 #ifdef _LP64
1250 const Register thread = r15_thread;
1251 #else
1252 const Register thread = lock_reg;
1253 get_thread(thread);
1254 #endif
1255 lightweight_lock(obj_reg, swap_reg, thread, tmp_reg, slow_case);
1256 } else if (LockingMode == LM_LEGACY) {
1257 // Load immediate 1 into swap_reg %rax
1258 movl(swap_reg, 1);
1259
1260 // Load (object->mark() | 1) into swap_reg %rax
1261 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1262
1263 // Save (object->mark() | 1) into BasicLock's displaced header
1264 movptr(Address(lock_reg, mark_offset), swap_reg);
1265
1266 assert(lock_offset == 0,
1267 "displaced header must be first word in BasicObjectLock");
1268
1269 lock();
1270 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1271 jcc(Assembler::zero, count_locking);
1272
1273 const int zero_bits = LP64_ONLY(7) NOT_LP64(3);
1274
1275 // Fast check for recursive lock.
1276 //
1277 // Can apply the optimization only if this is a stack lock
1278 // allocated in this thread. For efficiency, we can focus on
1279 // recently allocated stack locks (instead of reading the stack
1280 // base and checking whether 'mark' points inside the current
1281 // thread stack):
1282 // 1) (mark & zero_bits) == 0, and
1283 // 2) rsp <= mark < mark + os::pagesize()
1284 //
1285 // Warning: rsp + os::pagesize can overflow the stack base. We must
1286 // neither apply the optimization for an inflated lock allocated
1287 // just above the thread stack (this is why condition 1 matters)
1288 // nor apply the optimization if the stack lock is inside the stack
1289 // of another thread. The latter is avoided even in case of overflow
1290 // because we have guard pages at the end of all stacks. Hence, if
1291 // we go over the stack base and hit the stack of another thread,
1292 // this should not be in a writeable area that could contain a
1293 // stack lock allocated by that thread. As a consequence, a stack
1294 // lock less than page size away from rsp is guaranteed to be
1295 // owned by the current thread.
1296 //
1297 // These 3 tests can be done by evaluating the following
1298 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())),
1299 // assuming both stack pointer and pagesize have their
1300 // least significant bits clear.
1301 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg
1302 subptr(swap_reg, rsp);
1303 andptr(swap_reg, zero_bits - (int)os::vm_page_size());
1304
1305 // Save the test result, for recursive case, the result is zero
1306 movptr(Address(lock_reg, mark_offset), swap_reg);
1307 jcc(Assembler::notZero, slow_case);
1308
1309 bind(count_locking);
1310 }
1311 inc_held_monitor_count();
1312 jmp(done);
1313
1314 bind(slow_case);
1315
1316 // Call the runtime routine for slow case
1317 if (LockingMode == LM_LIGHTWEIGHT) {
1318 call_VM(noreg,
1319 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj),
1320 obj_reg);
1321 } else {
1322 call_VM(noreg,
1323 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
1324 lock_reg);
1325 }
1326 bind(done);
1327 }
1328 }
1329
1330
1331 // Unlocks an object. Used in monitorexit bytecode and
1332 // remove_activation. Throws an IllegalMonitorException if object is
1333 // not locked by current thread.
1334 //
1335 // Args:
1336 // rdx, c_rarg1: BasicObjectLock for lock
1337 //
1338 // Kills:
1339 // rax
1340 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
1341 // rscratch1 (scratch reg)
1342 // rax, rbx, rcx, rdx
1343 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
1344 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx),
1345 "The argument is only for looks. It must be c_rarg1");
1346
1347 if (LockingMode == LM_MONITOR) {
1348 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1349 } else {
1350 Label count_locking, done, slow_case;
1351
1352 const Register swap_reg = rax; // Must use rax for cmpxchg instruction
1353 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark
1354 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop
1355
1356 save_bcp(); // Save in case of exception
1357
1358 if (LockingMode != LM_LIGHTWEIGHT) {
1359 // Convert from BasicObjectLock structure to object and BasicLock
1360 // structure Store the BasicLock address into %rax
1361 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset()));
1362 }
1363
1364 // Load oop into obj_reg(%c_rarg3)
1365 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
1366
1367 // Free entry
1368 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD);
1369
1370 if (LockingMode == LM_LIGHTWEIGHT) {
1371 #ifdef _LP64
1372 lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case);
1373 #else
1374 // This relies on the implementation of lightweight_unlock being able to handle
1375 // that the reg_rax and thread Register parameters may alias each other.
1376 get_thread(swap_reg);
1377 lightweight_unlock(obj_reg, swap_reg, swap_reg, header_reg, slow_case);
1378 #endif
1379 } else if (LockingMode == LM_LEGACY) {
1380 // Load the old header from BasicLock structure
1381 movptr(header_reg, Address(swap_reg,
1382 BasicLock::displaced_header_offset_in_bytes()));
1383
1384 // Test for recursion
1385 testptr(header_reg, header_reg);
1386
1387 // zero for recursive case
1388 jcc(Assembler::zero, count_locking);
1389
1390 // Atomic swap back the old header
1391 lock();
1392 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1393
1394 // zero for simple unlock of a stack-lock case
1395 jcc(Assembler::notZero, slow_case);
1396
1397 bind(count_locking);
1398 }
1399 dec_held_monitor_count();
1400 jmp(done);
1401
1402 bind(slow_case);
1403 // Call the runtime routine for slow case.
1404 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj
1405 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
1406
1407 bind(done);
1408
1409 restore_bcp();
1410 }
1411 }
1412
1413 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
1414 Label& zero_continue) {
1415 assert(ProfileInterpreter, "must be profiling interpreter");
1416 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize));
1417 testptr(mdp, mdp);
1418 jcc(Assembler::zero, zero_continue);
1419 }
1420
1421
1422 // Set the method data pointer for the current bcp.
1423 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
1424 assert(ProfileInterpreter, "must be profiling interpreter");
1425 Label set_mdp;
1426 push(rax);
1427 push(rbx);
1428
1429 get_method(rbx);
1430 // Test MDO to avoid the call if it is null.
1431 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
1432 testptr(rax, rax);
1433 jcc(Assembler::zero, set_mdp);
1434 // rbx: method
1435 // _bcp_register: bcp
1436 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register);
1437 // rax: mdi
1438 // mdo is guaranteed to be non-zero here, we checked for it before the call.
1439 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
1440 addptr(rbx, in_bytes(MethodData::data_offset()));
1441 addptr(rax, rbx);
1442 bind(set_mdp);
1443 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax);
1444 pop(rbx);
1445 pop(rax);
1446 }
1447
1448 void InterpreterMacroAssembler::verify_method_data_pointer() {
1449 assert(ProfileInterpreter, "must be profiling interpreter");
1450 #ifdef ASSERT
1451 Label verify_continue;
1452 push(rax);
1453 push(rbx);
1454 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx);
1455 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx);
1456 push(arg3_reg);
1457 push(arg2_reg);
1458 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue
1459 get_method(rbx);
1460
1461 // If the mdp is valid, it will point to a DataLayout header which is
1462 // consistent with the bcp. The converse is highly probable also.
1463 load_unsigned_short(arg2_reg,
1464 Address(arg3_reg, in_bytes(DataLayout::bci_offset())));
1465 addptr(arg2_reg, Address(rbx, Method::const_offset()));
1466 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset()));
1467 cmpptr(arg2_reg, _bcp_register);
1468 jcc(Assembler::equal, verify_continue);
1469 // rbx: method
1470 // _bcp_register: bcp
1471 // c_rarg3: mdp
1472 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
1473 rbx, _bcp_register, arg3_reg);
1474 bind(verify_continue);
1475 pop(arg2_reg);
1476 pop(arg3_reg);
1477 pop(rbx);
1478 pop(rax);
1479 #endif // ASSERT
1480 }
1481
1482
1483 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
1484 int constant,
1485 Register value) {
1486 assert(ProfileInterpreter, "must be profiling interpreter");
1487 Address data(mdp_in, constant);
1488 movptr(data, value);
1489 }
1490
1491
1492 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1493 int constant,
1494 bool decrement) {
1495 // Counter address
1496 Address data(mdp_in, constant);
1497
1498 increment_mdp_data_at(data, decrement);
1499 }
1500
1501 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
1502 bool decrement) {
1503 assert(ProfileInterpreter, "must be profiling interpreter");
1504 // %%% this does 64bit counters at best it is wasting space
1505 // at worst it is a rare bug when counters overflow
1506
1507 if (decrement) {
1508 // Decrement the register. Set condition codes.
1509 addptr(data, -DataLayout::counter_increment);
1510 // If the decrement causes the counter to overflow, stay negative
1511 Label L;
1512 jcc(Assembler::negative, L);
1513 addptr(data, DataLayout::counter_increment);
1514 bind(L);
1515 } else {
1516 assert(DataLayout::counter_increment == 1,
1517 "flow-free idiom only works with 1");
1518 // Increment the register. Set carry flag.
1519 addptr(data, DataLayout::counter_increment);
1520 // If the increment causes the counter to overflow, pull back by 1.
1521 sbbptr(data, 0);
1522 }
1523 }
1524
1525
1526 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
1527 Register reg,
1528 int constant,
1529 bool decrement) {
1530 Address data(mdp_in, reg, Address::times_1, constant);
1531
1532 increment_mdp_data_at(data, decrement);
1533 }
1534
1535 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
1536 int flag_byte_constant) {
1537 assert(ProfileInterpreter, "must be profiling interpreter");
1538 int header_offset = in_bytes(DataLayout::flags_offset());
1539 int header_bits = flag_byte_constant;
1540 // Set the flag
1541 orb(Address(mdp_in, header_offset), header_bits);
1542 }
1543
1544
1545
1546 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
1547 int offset,
1548 Register value,
1549 Register test_value_out,
1550 Label& not_equal_continue) {
1551 assert(ProfileInterpreter, "must be profiling interpreter");
1552 if (test_value_out == noreg) {
1553 cmpptr(value, Address(mdp_in, offset));
1554 } else {
1555 // Put the test value into a register, so caller can use it:
1556 movptr(test_value_out, Address(mdp_in, offset));
1557 cmpptr(test_value_out, value);
1558 }
1559 jcc(Assembler::notEqual, not_equal_continue);
1560 }
1561
1562
1563 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1564 int offset_of_disp) {
1565 assert(ProfileInterpreter, "must be profiling interpreter");
1566 Address disp_address(mdp_in, offset_of_disp);
1567 addptr(mdp_in, disp_address);
1568 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1569 }
1570
1571
1572 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1573 Register reg,
1574 int offset_of_disp) {
1575 assert(ProfileInterpreter, "must be profiling interpreter");
1576 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1577 addptr(mdp_in, disp_address);
1578 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1579 }
1580
1581
1582 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1583 int constant) {
1584 assert(ProfileInterpreter, "must be profiling interpreter");
1585 addptr(mdp_in, constant);
1586 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in);
1587 }
1588
1589
1590 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1591 assert(ProfileInterpreter, "must be profiling interpreter");
1592 push(return_bci); // save/restore across call_VM
1593 call_VM(noreg,
1594 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1595 return_bci);
1596 pop(return_bci);
1597 }
1598
1599
1600 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1601 Register bumped_count) {
1602 if (ProfileInterpreter) {
1603 Label profile_continue;
1604
1605 // If no method data exists, go to profile_continue.
1606 // Otherwise, assign to mdp
1607 test_method_data_pointer(mdp, profile_continue);
1608
1609 // We are taking a branch. Increment the taken count.
1610 // We inline increment_mdp_data_at to return bumped_count in a register
1611 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1612 Address data(mdp, in_bytes(JumpData::taken_offset()));
1613 movptr(bumped_count, data);
1614 assert(DataLayout::counter_increment == 1,
1615 "flow-free idiom only works with 1");
1616 addptr(bumped_count, DataLayout::counter_increment);
1617 sbbptr(bumped_count, 0);
1618 movptr(data, bumped_count); // Store back out
1619
1620 // The method data pointer needs to be updated to reflect the new target.
1621 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1622 bind(profile_continue);
1623 }
1624 }
1625
1626
1627 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1628 if (ProfileInterpreter) {
1629 Label profile_continue;
1630
1631 // If no method data exists, go to profile_continue.
1632 test_method_data_pointer(mdp, profile_continue);
1633
1634 // We are taking a branch. Increment the not taken count.
1635 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1636
1637 // The method data pointer needs to be updated to correspond to
1638 // the next bytecode
1639 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1640 bind(profile_continue);
1641 }
1642 }
1643
1644 void InterpreterMacroAssembler::profile_call(Register mdp) {
1645 if (ProfileInterpreter) {
1646 Label profile_continue;
1647
1648 // If no method data exists, go to profile_continue.
1649 test_method_data_pointer(mdp, profile_continue);
1650
1651 // We are making a call. Increment the count.
1652 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1653
1654 // The method data pointer needs to be updated to reflect the new target.
1655 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1656 bind(profile_continue);
1657 }
1658 }
1659
1660
1661 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1662 if (ProfileInterpreter) {
1663 Label profile_continue;
1664
1665 // If no method data exists, go to profile_continue.
1666 test_method_data_pointer(mdp, profile_continue);
1667
1668 // We are making a call. Increment the count.
1669 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1670
1671 // The method data pointer needs to be updated to reflect the new target.
1672 update_mdp_by_constant(mdp,
1673 in_bytes(VirtualCallData::
1674 virtual_call_data_size()));
1675 bind(profile_continue);
1676 }
1677 }
1678
1679
1680 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1681 Register mdp,
1682 Register reg2,
1683 bool receiver_can_be_null) {
1684 if (ProfileInterpreter) {
1685 Label profile_continue;
1686
1687 // If no method data exists, go to profile_continue.
1688 test_method_data_pointer(mdp, profile_continue);
1689
1690 Label skip_receiver_profile;
1691 if (receiver_can_be_null) {
1692 Label not_null;
1693 testptr(receiver, receiver);
1694 jccb(Assembler::notZero, not_null);
1695 // We are making a call. Increment the count for null receiver.
1696 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1697 jmp(skip_receiver_profile);
1698 bind(not_null);
1699 }
1700
1701 // Record the receiver type.
1702 record_klass_in_profile(receiver, mdp, reg2, true);
1703 bind(skip_receiver_profile);
1704
1705 // The method data pointer needs to be updated to reflect the new target.
1706 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1707 bind(profile_continue);
1708 }
1709 }
1710
1711 // This routine creates a state machine for updating the multi-row
1712 // type profile at a virtual call site (or other type-sensitive bytecode).
1713 // The machine visits each row (of receiver/count) until the receiver type
1714 // is found, or until it runs out of rows. At the same time, it remembers
1715 // the location of the first empty row. (An empty row records null for its
1716 // receiver, and can be allocated for a newly-observed receiver type.)
1717 // Because there are two degrees of freedom in the state, a simple linear
1718 // search will not work; it must be a decision tree. Hence this helper
1719 // function is recursive, to generate the required tree structured code.
1720 // It's the interpreter, so we are trading off code space for speed.
1721 // See below for example code.
1722 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1723 Register receiver, Register mdp,
1724 Register reg2, int start_row,
1725 Label& done, bool is_virtual_call) {
1726 if (TypeProfileWidth == 0) {
1727 if (is_virtual_call) {
1728 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1729 }
1730 #if INCLUDE_JVMCI
1731 else if (EnableJVMCI) {
1732 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()));
1733 }
1734 #endif // INCLUDE_JVMCI
1735 } else {
1736 int non_profiled_offset = -1;
1737 if (is_virtual_call) {
1738 non_profiled_offset = in_bytes(CounterData::count_offset());
1739 }
1740 #if INCLUDE_JVMCI
1741 else if (EnableJVMCI) {
1742 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset());
1743 }
1744 #endif // INCLUDE_JVMCI
1745
1746 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1747 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
1748 }
1749 }
1750
1751 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1752 Register reg2, int start_row, Label& done, int total_rows,
1753 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
1754 int non_profiled_offset) {
1755 int last_row = total_rows - 1;
1756 assert(start_row <= last_row, "must be work left to do");
1757 // Test this row for both the item and for null.
1758 // Take any of three different outcomes:
1759 // 1. found item => increment count and goto done
1760 // 2. found null => keep looking for case 1, maybe allocate this cell
1761 // 3. found something else => keep looking for cases 1 and 2
1762 // Case 3 is handled by a recursive call.
1763 for (int row = start_row; row <= last_row; row++) {
1764 Label next_test;
1765 bool test_for_null_also = (row == start_row);
1766
1767 // See if the item is item[n].
1768 int item_offset = in_bytes(item_offset_fn(row));
1769 test_mdp_data_at(mdp, item_offset, item,
1770 (test_for_null_also ? reg2 : noreg),
1771 next_test);
1772 // (Reg2 now contains the item from the CallData.)
1773
1774 // The item is item[n]. Increment count[n].
1775 int count_offset = in_bytes(item_count_offset_fn(row));
1776 increment_mdp_data_at(mdp, count_offset);
1777 jmp(done);
1778 bind(next_test);
1779
1780 if (test_for_null_also) {
1781 // Failed the equality check on item[n]... Test for null.
1782 testptr(reg2, reg2);
1783 if (start_row == last_row) {
1784 // The only thing left to do is handle the null case.
1785 if (non_profiled_offset >= 0) {
1786 Label found_null;
1787 jccb(Assembler::zero, found_null);
1788 // Item did not match any saved item and there is no empty row for it.
1789 // Increment total counter to indicate polymorphic case.
1790 increment_mdp_data_at(mdp, non_profiled_offset);
1791 jmp(done);
1792 bind(found_null);
1793 } else {
1794 jcc(Assembler::notZero, done);
1795 }
1796 break;
1797 }
1798 Label found_null;
1799 // Since null is rare, make it be the branch-taken case.
1800 jcc(Assembler::zero, found_null);
1801
1802 // Put all the "Case 3" tests here.
1803 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1804 item_offset_fn, item_count_offset_fn, non_profiled_offset);
1805
1806 // Found a null. Keep searching for a matching item,
1807 // but remember that this is an empty (unused) slot.
1808 bind(found_null);
1809 }
1810 }
1811
1812 // In the fall-through case, we found no matching item, but we
1813 // observed the item[start_row] is null.
1814
1815 // Fill in the item field and increment the count.
1816 int item_offset = in_bytes(item_offset_fn(start_row));
1817 set_mdp_data_at(mdp, item_offset, item);
1818 int count_offset = in_bytes(item_count_offset_fn(start_row));
1819 movl(reg2, DataLayout::counter_increment);
1820 set_mdp_data_at(mdp, count_offset, reg2);
1821 if (start_row > 0) {
1822 jmp(done);
1823 }
1824 }
1825
1826 // Example state machine code for three profile rows:
1827 // // main copy of decision tree, rooted at row[1]
1828 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1829 // if (row[0].rec != nullptr) {
1830 // // inner copy of decision tree, rooted at row[1]
1831 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1832 // if (row[1].rec != nullptr) {
1833 // // degenerate decision tree, rooted at row[2]
1834 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1835 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1836 // row[2].init(rec); goto done;
1837 // } else {
1838 // // remember row[1] is empty
1839 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1840 // row[1].init(rec); goto done;
1841 // }
1842 // } else {
1843 // // remember row[0] is empty
1844 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1845 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1846 // row[0].init(rec); goto done;
1847 // }
1848 // done:
1849
1850 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1851 Register mdp, Register reg2,
1852 bool is_virtual_call) {
1853 assert(ProfileInterpreter, "must be profiling");
1854 Label done;
1855
1856 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1857
1858 bind (done);
1859 }
1860
1861 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1862 Register mdp) {
1863 if (ProfileInterpreter) {
1864 Label profile_continue;
1865 uint row;
1866
1867 // If no method data exists, go to profile_continue.
1868 test_method_data_pointer(mdp, profile_continue);
1869
1870 // Update the total ret count.
1871 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1872
1873 for (row = 0; row < RetData::row_limit(); row++) {
1874 Label next_test;
1875
1876 // See if return_bci is equal to bci[n]:
1877 test_mdp_data_at(mdp,
1878 in_bytes(RetData::bci_offset(row)),
1879 return_bci, noreg,
1880 next_test);
1881
1882 // return_bci is equal to bci[n]. Increment the count.
1883 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1884
1885 // The method data pointer needs to be updated to reflect the new target.
1886 update_mdp_by_offset(mdp,
1887 in_bytes(RetData::bci_displacement_offset(row)));
1888 jmp(profile_continue);
1889 bind(next_test);
1890 }
1891
1892 update_mdp_for_ret(return_bci);
1893
1894 bind(profile_continue);
1895 }
1896 }
1897
1898
1899 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1900 if (ProfileInterpreter) {
1901 Label profile_continue;
1902
1903 // If no method data exists, go to profile_continue.
1904 test_method_data_pointer(mdp, profile_continue);
1905
1906 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1907
1908 // The method data pointer needs to be updated.
1909 int mdp_delta = in_bytes(BitData::bit_data_size());
1910 if (TypeProfileCasts) {
1911 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1912 }
1913 update_mdp_by_constant(mdp, mdp_delta);
1914
1915 bind(profile_continue);
1916 }
1917 }
1918
1919
1920 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1921 if (ProfileInterpreter && TypeProfileCasts) {
1922 Label profile_continue;
1923
1924 // If no method data exists, go to profile_continue.
1925 test_method_data_pointer(mdp, profile_continue);
1926
1927 int count_offset = in_bytes(CounterData::count_offset());
1928 // Back up the address, since we have already bumped the mdp.
1929 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1930
1931 // *Decrement* the counter. We expect to see zero or small negatives.
1932 increment_mdp_data_at(mdp, count_offset, true);
1933
1934 bind (profile_continue);
1935 }
1936 }
1937
1938
1939 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1940 if (ProfileInterpreter) {
1941 Label profile_continue;
1942
1943 // If no method data exists, go to profile_continue.
1944 test_method_data_pointer(mdp, profile_continue);
1945
1946 // The method data pointer needs to be updated.
1947 int mdp_delta = in_bytes(BitData::bit_data_size());
1948 if (TypeProfileCasts) {
1949 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1950
1951 // Record the object type.
1952 record_klass_in_profile(klass, mdp, reg2, false);
1953 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");)
1954 NOT_LP64(restore_locals();) // Restore EDI
1955 }
1956 update_mdp_by_constant(mdp, mdp_delta);
1957
1958 bind(profile_continue);
1959 }
1960 }
1961
1962
1963 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1964 if (ProfileInterpreter) {
1965 Label profile_continue;
1966
1967 // If no method data exists, go to profile_continue.
1968 test_method_data_pointer(mdp, profile_continue);
1969
1970 // Update the default case count
1971 increment_mdp_data_at(mdp,
1972 in_bytes(MultiBranchData::default_count_offset()));
1973
1974 // The method data pointer needs to be updated.
1975 update_mdp_by_offset(mdp,
1976 in_bytes(MultiBranchData::
1977 default_displacement_offset()));
1978
1979 bind(profile_continue);
1980 }
1981 }
1982
1983
1984 void InterpreterMacroAssembler::profile_switch_case(Register index,
1985 Register mdp,
1986 Register reg2) {
1987 if (ProfileInterpreter) {
1988 Label profile_continue;
1989
1990 // If no method data exists, go to profile_continue.
1991 test_method_data_pointer(mdp, profile_continue);
1992
1993 // Build the base (index * per_case_size_in_bytes()) +
1994 // case_array_offset_in_bytes()
1995 movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1996 imulptr(index, reg2); // XXX l ?
1997 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1998
1999 // Update the case count
2000 increment_mdp_data_at(mdp,
2001 index,
2002 in_bytes(MultiBranchData::relative_count_offset()));
2003
2004 // The method data pointer needs to be updated.
2005 update_mdp_by_offset(mdp,
2006 index,
2007 in_bytes(MultiBranchData::
2008 relative_displacement_offset()));
2009
2010 bind(profile_continue);
2011 }
2012 }
2013
2014
2015
2016 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
2017 if (state == atos) {
2018 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
2019 }
2020 }
2021
2022 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
2023 #ifndef _LP64
2024 if ((state == ftos && UseSSE < 1) ||
2025 (state == dtos && UseSSE < 2)) {
2026 MacroAssembler::verify_FPU(stack_depth);
2027 }
2028 #endif
2029 }
2030
2031 // Jump if ((*counter_addr += increment) & mask) == 0
2032 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask,
2033 Register scratch, Label* where) {
2034 // This update is actually not atomic and can lose a number of updates
2035 // under heavy contention, but the alternative of using the (contended)
2036 // atomic update here penalizes profiling paths too much.
2037 movl(scratch, counter_addr);
2038 incrementl(scratch, InvocationCounter::count_increment);
2039 movl(counter_addr, scratch);
2040 andl(scratch, mask);
2041 if (where != nullptr) {
2042 jcc(Assembler::zero, *where);
2043 }
2044 }
2045
2046 void InterpreterMacroAssembler::notify_method_entry() {
2047 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2048 // track stack depth. If it is possible to enter interp_only_mode we add
2049 // the code to check if the event should be sent.
2050 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2051 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2052 if (JvmtiExport::can_post_interpreter_events()) {
2053 Label L;
2054 NOT_LP64(get_thread(rthread);)
2055 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2056 testl(rdx, rdx);
2057 jcc(Assembler::zero, L);
2058 call_VM(noreg, CAST_FROM_FN_PTR(address,
2059 InterpreterRuntime::post_method_entry));
2060 bind(L);
2061 }
2062
2063 {
2064 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1);
2065 NOT_LP64(get_thread(rthread);)
2066 get_method(rarg);
2067 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2068 rthread, rarg);
2069 }
2070
2071 // RedefineClasses() tracing support for obsolete method entry
2072 if (log_is_enabled(Trace, redefine, class, obsolete)) {
2073 NOT_LP64(get_thread(rthread);)
2074 get_method(rarg);
2075 call_VM_leaf(
2076 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2077 rthread, rarg);
2078 }
2079 }
2080
2081
2082 void InterpreterMacroAssembler::notify_method_exit(
2083 TosState state, NotifyMethodExitMode mode) {
2084 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
2085 // track stack depth. If it is possible to enter interp_only_mode we add
2086 // the code to check if the event should be sent.
2087 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx);
2088 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx);
2089 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
2090 Label L;
2091 // Note: frame::interpreter_frame_result has a dependency on how the
2092 // method result is saved across the call to post_method_exit. If this
2093 // is changed then the interpreter_frame_result implementation will
2094 // need to be updated too.
2095
2096 // template interpreter will leave the result on the top of the stack.
2097 push(state);
2098 NOT_LP64(get_thread(rthread);)
2099 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset()));
2100 testl(rdx, rdx);
2101 jcc(Assembler::zero, L);
2102 call_VM(noreg,
2103 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
2104 bind(L);
2105 pop(state);
2106 }
2107
2108 {
2109 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1);
2110 push(state);
2111 NOT_LP64(get_thread(rthread);)
2112 get_method(rarg);
2113 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2114 rthread, rarg);
2115 pop(state);
2116 }
2117 }
2118
2119 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
2120 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
2121 get_cache_index_at_bcp(index, 1, sizeof(u4));
2122 // Get address of invokedynamic array
2123 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
2124 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
2125 if (is_power_of_2(sizeof(ResolvedIndyEntry))) {
2126 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2
2127 } else {
2128 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo)
2129 }
2130 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes()));
2131 }