1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compiler_globals.hpp" 27 #include "interp_masm_x86.hpp" 28 #include "interpreter/interpreter.hpp" 29 #include "interpreter/interpreterRuntime.hpp" 30 #include "logging/log.hpp" 31 #include "oops/arrayOop.hpp" 32 #include "oops/markWord.hpp" 33 #include "oops/methodData.hpp" 34 #include "oops/method.hpp" 35 #include "prims/jvmtiExport.hpp" 36 #include "prims/jvmtiThreadState.hpp" 37 #include "runtime/basicLock.hpp" 38 #include "runtime/frame.inline.hpp" 39 #include "runtime/javaThread.hpp" 40 #include "runtime/safepointMechanism.hpp" 41 #include "runtime/sharedRuntime.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 44 // Implementation of InterpreterMacroAssembler 45 46 void InterpreterMacroAssembler::jump_to_entry(address entry) { 47 assert(entry, "Entry must have been generated by now"); 48 jump(RuntimeAddress(entry)); 49 } 50 51 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) { 52 Label update, next, none; 53 54 #ifdef _LP64 55 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index()); 56 #else 57 assert_different_registers(obj, mdo_addr.base(), mdo_addr.index()); 58 #endif 59 60 interp_verify_oop(obj, atos); 61 62 testptr(obj, obj); 63 jccb(Assembler::notZero, update); 64 testptr(mdo_addr, TypeEntries::null_seen); 65 jccb(Assembler::notZero, next); // null already seen. Nothing to do anymore. 66 // atomic update to prevent overwriting Klass* with 0 67 lock(); 68 orptr(mdo_addr, TypeEntries::null_seen); 69 jmpb(next); 70 71 bind(update); 72 load_klass(obj, obj, rscratch1); 73 #ifdef _LP64 74 mov(rscratch1, obj); 75 #endif 76 77 xorptr(obj, mdo_addr); 78 testptr(obj, TypeEntries::type_klass_mask); 79 jccb(Assembler::zero, next); // klass seen before, nothing to 80 // do. The unknown bit may have been 81 // set already but no need to check. 82 83 testptr(obj, TypeEntries::type_unknown); 84 jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore. 85 86 cmpptr(mdo_addr, 0); 87 jccb(Assembler::equal, none); 88 cmpptr(mdo_addr, TypeEntries::null_seen); 89 jccb(Assembler::equal, none); 90 #ifdef _LP64 91 // There is a chance that the checks above (re-reading profiling 92 // data from memory) fail if another thread has just set the 93 // profiling to this obj's klass 94 mov(obj, rscratch1); 95 xorptr(obj, mdo_addr); 96 testptr(obj, TypeEntries::type_klass_mask); 97 jccb(Assembler::zero, next); 98 #endif 99 100 // different than before. Cannot keep accurate profile. 101 orptr(mdo_addr, TypeEntries::type_unknown); 102 jmpb(next); 103 104 bind(none); 105 // first time here. Set profile type. 106 movptr(mdo_addr, obj); 107 #ifdef ASSERT 108 andptr(obj, TypeEntries::type_klass_mask); 109 verify_klass_ptr(obj); 110 #endif 111 112 bind(next); 113 } 114 115 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) { 116 if (!ProfileInterpreter) { 117 return; 118 } 119 120 if (MethodData::profile_arguments() || MethodData::profile_return()) { 121 Label profile_continue; 122 123 test_method_data_pointer(mdp, profile_continue); 124 125 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size()); 126 127 cmpb(Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start), is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag); 128 jcc(Assembler::notEqual, profile_continue); 129 130 if (MethodData::profile_arguments()) { 131 Label done; 132 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset()); 133 addptr(mdp, off_to_args); 134 135 for (int i = 0; i < TypeProfileArgsLimit; i++) { 136 if (i > 0 || MethodData::profile_return()) { 137 // If return value type is profiled we may have no argument to profile 138 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 139 subl(tmp, i*TypeStackSlotEntries::per_arg_count()); 140 cmpl(tmp, TypeStackSlotEntries::per_arg_count()); 141 jcc(Assembler::less, done); 142 } 143 movptr(tmp, Address(callee, Method::const_offset())); 144 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset())); 145 // stack offset o (zero based) from the start of the argument 146 // list, for n arguments translates into offset n - o - 1 from 147 // the end of the argument list 148 subptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args)); 149 subl(tmp, 1); 150 Address arg_addr = argument_address(tmp); 151 movptr(tmp, arg_addr); 152 153 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args); 154 profile_obj_type(tmp, mdo_arg_addr); 155 156 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size()); 157 addptr(mdp, to_add); 158 off_to_args += to_add; 159 } 160 161 if (MethodData::profile_return()) { 162 movptr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args)); 163 subl(tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count()); 164 } 165 166 bind(done); 167 168 if (MethodData::profile_return()) { 169 // We're right after the type profile for the last 170 // argument. tmp is the number of cells left in the 171 // CallTypeData/VirtualCallTypeData to reach its end. Non null 172 // if there's a return to profile. 173 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type"); 174 shll(tmp, log2i_exact((int)DataLayout::cell_size)); 175 addptr(mdp, tmp); 176 } 177 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp); 178 } else { 179 assert(MethodData::profile_return(), "either profile call args or call ret"); 180 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size())); 181 } 182 183 // mdp points right after the end of the 184 // CallTypeData/VirtualCallTypeData, right after the cells for the 185 // return value type if there's one 186 187 bind(profile_continue); 188 } 189 } 190 191 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) { 192 assert_different_registers(mdp, ret, tmp, _bcp_register); 193 if (ProfileInterpreter && MethodData::profile_return()) { 194 Label profile_continue; 195 196 test_method_data_pointer(mdp, profile_continue); 197 198 if (MethodData::profile_return_jsr292_only()) { 199 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2"); 200 201 // If we don't profile all invoke bytecodes we must make sure 202 // it's a bytecode we indeed profile. We can't go back to the 203 // beginning of the ProfileData we intend to update to check its 204 // type because we're right after it and we don't known its 205 // length 206 Label do_profile; 207 cmpb(Address(_bcp_register, 0), Bytecodes::_invokedynamic); 208 jcc(Assembler::equal, do_profile); 209 cmpb(Address(_bcp_register, 0), Bytecodes::_invokehandle); 210 jcc(Assembler::equal, do_profile); 211 get_method(tmp); 212 cmpw(Address(tmp, Method::intrinsic_id_offset()), static_cast<int>(vmIntrinsics::_compiledLambdaForm)); 213 jcc(Assembler::notEqual, profile_continue); 214 215 bind(do_profile); 216 } 217 218 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size())); 219 mov(tmp, ret); 220 profile_obj_type(tmp, mdo_ret_addr); 221 222 bind(profile_continue); 223 } 224 } 225 226 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) { 227 if (ProfileInterpreter && MethodData::profile_parameters()) { 228 Label profile_continue; 229 230 test_method_data_pointer(mdp, profile_continue); 231 232 // Load the offset of the area within the MDO used for 233 // parameters. If it's negative we're not profiling any parameters 234 movl(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()))); 235 testl(tmp1, tmp1); 236 jcc(Assembler::negative, profile_continue); 237 238 // Compute a pointer to the area for parameters from the offset 239 // and move the pointer to the slot for the last 240 // parameters. Collect profiling from last parameter down. 241 // mdo start + parameters offset + array length - 1 242 addptr(mdp, tmp1); 243 movptr(tmp1, Address(mdp, ArrayData::array_len_offset())); 244 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 245 246 Label loop; 247 bind(loop); 248 249 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0)); 250 int type_base = in_bytes(ParametersTypeData::type_offset(0)); 251 Address::ScaleFactor per_arg_scale = Address::times(DataLayout::cell_size); 252 Address arg_off(mdp, tmp1, per_arg_scale, off_base); 253 Address arg_type(mdp, tmp1, per_arg_scale, type_base); 254 255 // load offset on the stack from the slot for this parameter 256 movptr(tmp2, arg_off); 257 negptr(tmp2); 258 // read the parameter from the local area 259 movptr(tmp2, Address(_locals_register, tmp2, Interpreter::stackElementScale())); 260 261 // profile the parameter 262 profile_obj_type(tmp2, arg_type); 263 264 // go to next parameter 265 decrement(tmp1, TypeStackSlotEntries::per_arg_count()); 266 jcc(Assembler::positive, loop); 267 268 bind(profile_continue); 269 } 270 } 271 272 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, 273 int number_of_arguments) { 274 // interpreter specific 275 // 276 // Note: No need to save/restore bcp & locals registers 277 // since these are callee saved registers and no blocking/ 278 // GC can happen in leaf calls. 279 // Further Note: DO NOT save/restore bcp/locals. If a caller has 280 // already saved them so that it can use rsi/rdi as temporaries 281 // then a save/restore here will DESTROY the copy the caller 282 // saved! There used to be a save_bcp() that only happened in 283 // the ASSERT path (no restore_bcp). Which caused bizarre failures 284 // when jvm built with ASSERTs. 285 #ifdef ASSERT 286 { 287 Label L; 288 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 289 jcc(Assembler::equal, L); 290 stop("InterpreterMacroAssembler::call_VM_leaf_base:" 291 " last_sp != null"); 292 bind(L); 293 } 294 #endif 295 // super call 296 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 297 // interpreter specific 298 // LP64: Used to ASSERT that r13/r14 were equal to frame's bcp/locals 299 // but since they may not have been saved (and we don't want to 300 // save them here (see note above) the assert is invalid. 301 } 302 303 void InterpreterMacroAssembler::call_VM_base(Register oop_result, 304 Register java_thread, 305 Register last_java_sp, 306 address entry_point, 307 int number_of_arguments, 308 bool check_exceptions) { 309 // interpreter specific 310 // 311 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't 312 // really make a difference for these runtime calls, since they are 313 // slow anyway. Btw., bcp must be saved/restored since it may change 314 // due to GC. 315 NOT_LP64(assert(java_thread == noreg , "not expecting a precomputed java thread");) 316 save_bcp(); 317 #ifdef ASSERT 318 { 319 Label L; 320 cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), NULL_WORD); 321 jcc(Assembler::equal, L); 322 stop("InterpreterMacroAssembler::call_VM_base:" 323 " last_sp isn't null"); 324 bind(L); 325 } 326 #endif /* ASSERT */ 327 // super call 328 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp, 329 entry_point, number_of_arguments, 330 check_exceptions); 331 // interpreter specific 332 restore_bcp(); 333 restore_locals(); 334 } 335 336 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) { 337 if (JvmtiExport::can_pop_frame()) { 338 Label L; 339 // Initiate popframe handling only if it is not already being 340 // processed. If the flag has the popframe_processing bit set, it 341 // means that this code is called *during* popframe handling - we 342 // don't want to reenter. 343 // This method is only called just after the call into the vm in 344 // call_VM_base, so the arg registers are available. 345 Register pop_cond = NOT_LP64(java_thread) // Not clear if any other register is available on 32 bit 346 LP64_ONLY(c_rarg0); 347 movl(pop_cond, Address(java_thread, JavaThread::popframe_condition_offset())); 348 testl(pop_cond, JavaThread::popframe_pending_bit); 349 jcc(Assembler::zero, L); 350 testl(pop_cond, JavaThread::popframe_processing_bit); 351 jcc(Assembler::notZero, L); 352 // Call Interpreter::remove_activation_preserving_args_entry() to get the 353 // address of the same-named entrypoint in the generated interpreter code. 354 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry)); 355 jmp(rax); 356 bind(L); 357 NOT_LP64(get_thread(java_thread);) 358 } 359 } 360 361 void InterpreterMacroAssembler::load_earlyret_value(TosState state) { 362 Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 363 NOT_LP64(get_thread(thread);) 364 movptr(rcx, Address(thread, JavaThread::jvmti_thread_state_offset())); 365 const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset()); 366 const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset()); 367 const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset()); 368 #ifdef _LP64 369 switch (state) { 370 case atos: movptr(rax, oop_addr); 371 movptr(oop_addr, NULL_WORD); 372 interp_verify_oop(rax, state); break; 373 case ltos: movptr(rax, val_addr); break; 374 case btos: // fall through 375 case ztos: // fall through 376 case ctos: // fall through 377 case stos: // fall through 378 case itos: movl(rax, val_addr); break; 379 case ftos: load_float(val_addr); break; 380 case dtos: load_double(val_addr); break; 381 case vtos: /* nothing to do */ break; 382 default : ShouldNotReachHere(); 383 } 384 // Clean up tos value in the thread object 385 movl(tos_addr, ilgl); 386 movl(val_addr, NULL_WORD); 387 #else 388 const Address val_addr1(rcx, JvmtiThreadState::earlyret_value_offset() 389 + in_ByteSize(wordSize)); 390 switch (state) { 391 case atos: movptr(rax, oop_addr); 392 movptr(oop_addr, NULL_WORD); 393 interp_verify_oop(rax, state); break; 394 case ltos: 395 movl(rdx, val_addr1); // fall through 396 case btos: // fall through 397 case ztos: // fall through 398 case ctos: // fall through 399 case stos: // fall through 400 case itos: movl(rax, val_addr); break; 401 case ftos: load_float(val_addr); break; 402 case dtos: load_double(val_addr); break; 403 case vtos: /* nothing to do */ break; 404 default : ShouldNotReachHere(); 405 } 406 #endif // _LP64 407 // Clean up tos value in the thread object 408 movl(tos_addr, ilgl); 409 movptr(val_addr, NULL_WORD); 410 NOT_LP64(movptr(val_addr1, NULL_WORD);) 411 } 412 413 414 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) { 415 if (JvmtiExport::can_force_early_return()) { 416 Label L; 417 Register tmp = LP64_ONLY(c_rarg0) NOT_LP64(java_thread); 418 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(java_thread); 419 420 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 421 testptr(tmp, tmp); 422 jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == nullptr) exit; 423 424 // Initiate earlyret handling only if it is not already being processed. 425 // If the flag has the earlyret_processing bit set, it means that this code 426 // is called *during* earlyret handling - we don't want to reenter. 427 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_state_offset())); 428 cmpl(tmp, JvmtiThreadState::earlyret_pending); 429 jcc(Assembler::notEqual, L); 430 431 // Call Interpreter::remove_activation_early_entry() to get the address of the 432 // same-named entrypoint in the generated interpreter code. 433 NOT_LP64(get_thread(java_thread);) 434 movptr(tmp, Address(rthread, JavaThread::jvmti_thread_state_offset())); 435 #ifdef _LP64 436 movl(tmp, Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 437 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), tmp); 438 #else 439 pushl(Address(tmp, JvmtiThreadState::earlyret_tos_offset())); 440 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), 1); 441 #endif // _LP64 442 jmp(rax); 443 bind(L); 444 NOT_LP64(get_thread(java_thread);) 445 } 446 } 447 448 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) { 449 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode"); 450 load_unsigned_short(reg, Address(_bcp_register, bcp_offset)); 451 bswapl(reg); 452 shrl(reg, 16); 453 } 454 455 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, 456 int bcp_offset, 457 size_t index_size) { 458 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode"); 459 if (index_size == sizeof(u2)) { 460 load_unsigned_short(index, Address(_bcp_register, bcp_offset)); 461 } else if (index_size == sizeof(u4)) { 462 movl(index, Address(_bcp_register, bcp_offset)); 463 // Check if the secondary index definition is still ~x, otherwise 464 // we have to change the following assembler code to calculate the 465 // plain index. 466 assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line"); 467 notl(index); // convert to plain index 468 } else if (index_size == sizeof(u1)) { 469 load_unsigned_byte(index, Address(_bcp_register, bcp_offset)); 470 } else { 471 ShouldNotReachHere(); 472 } 473 } 474 475 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, 476 Register index, 477 int bcp_offset, 478 size_t index_size) { 479 assert_different_registers(cache, index); 480 get_cache_index_at_bcp(index, bcp_offset, index_size); 481 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 482 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 483 // convert from field index to ConstantPoolCacheEntry index 484 assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line"); 485 shll(index, 2); 486 } 487 488 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache, 489 Register index, 490 Register bytecode, 491 int byte_no, 492 int bcp_offset, 493 size_t index_size) { 494 get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size); 495 // We use a 32-bit load here since the layout of 64-bit words on 496 // little-endian machines allow us that. 497 movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset())); 498 const int shift_count = (1 + byte_no) * BitsPerByte; 499 assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) || 500 (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift), 501 "correct shift count"); 502 shrl(bytecode, shift_count); 503 assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask"); 504 andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask); 505 } 506 507 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache, 508 Register tmp, 509 int bcp_offset, 510 size_t index_size) { 511 assert_different_registers(cache, tmp); 512 513 get_cache_index_at_bcp(tmp, bcp_offset, index_size); 514 assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below"); 515 // convert from field index to ConstantPoolCacheEntry index 516 // and from word offset to byte offset 517 assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line"); 518 shll(tmp, 2 + LogBytesPerWord); 519 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 520 // skip past the header 521 addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 522 addptr(cache, tmp); // construct pointer to cache entry 523 } 524 525 // Load object from cpool->resolved_references(index) 526 void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, 527 Register index, 528 Register tmp) { 529 assert_different_registers(result, index); 530 531 get_constant_pool(result); 532 // load pointer for resolved_references[] objArray 533 movptr(result, Address(result, ConstantPool::cache_offset())); 534 movptr(result, Address(result, ConstantPoolCache::resolved_references_offset())); 535 resolve_oop_handle(result, tmp); 536 load_heap_oop(result, Address(result, index, 537 UseCompressedOops ? Address::times_4 : Address::times_ptr, 538 arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp); 539 } 540 541 // load cpool->resolved_klass_at(index) 542 void InterpreterMacroAssembler::load_resolved_klass_at_index(Register klass, 543 Register cpool, 544 Register index) { 545 assert_different_registers(cpool, index); 546 547 movw(index, Address(cpool, index, Address::times_ptr, sizeof(ConstantPool))); 548 Register resolved_klasses = cpool; 549 movptr(resolved_klasses, Address(cpool, ConstantPool::resolved_klasses_offset())); 550 movptr(klass, Address(resolved_klasses, index, Address::times_ptr, Array<Klass*>::base_offset_in_bytes())); 551 } 552 553 void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no, 554 Register method, 555 Register cache, 556 Register index) { 557 assert_different_registers(cache, index); 558 559 const int method_offset = in_bytes( 560 ConstantPoolCache::base_offset() + 561 ((byte_no == TemplateTable::f2_byte) 562 ? ConstantPoolCacheEntry::f2_offset() 563 : ConstantPoolCacheEntry::f1_offset())); 564 565 movptr(method, Address(cache, index, Address::times_ptr, method_offset)); // get f1 Method* 566 } 567 568 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a 569 // subtype of super_klass. 570 // 571 // Args: 572 // rax: superklass 573 // Rsub_klass: subklass 574 // 575 // Kills: 576 // rcx, rdi 577 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass, 578 Label& ok_is_subtype) { 579 assert(Rsub_klass != rax, "rax holds superklass"); 580 LP64_ONLY(assert(Rsub_klass != r14, "r14 holds locals");) 581 LP64_ONLY(assert(Rsub_klass != r13, "r13 holds bcp");) 582 assert(Rsub_klass != rcx, "rcx holds 2ndary super array length"); 583 assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr"); 584 585 // Profile the not-null value's klass. 586 profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi 587 588 // Do the check. 589 check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx 590 591 // Profile the failure of the check. 592 profile_typecheck_failed(rcx); // blows rcx 593 } 594 595 596 #ifndef _LP64 597 void InterpreterMacroAssembler::f2ieee() { 598 if (IEEEPrecision) { 599 fstp_s(Address(rsp, 0)); 600 fld_s(Address(rsp, 0)); 601 } 602 } 603 604 605 void InterpreterMacroAssembler::d2ieee() { 606 if (IEEEPrecision) { 607 fstp_d(Address(rsp, 0)); 608 fld_d(Address(rsp, 0)); 609 } 610 } 611 #endif // _LP64 612 613 // Java Expression Stack 614 615 void InterpreterMacroAssembler::pop_ptr(Register r) { 616 pop(r); 617 } 618 619 void InterpreterMacroAssembler::push_ptr(Register r) { 620 push(r); 621 } 622 623 void InterpreterMacroAssembler::push_i(Register r) { 624 push(r); 625 } 626 627 void InterpreterMacroAssembler::push_i_or_ptr(Register r) { 628 push(r); 629 } 630 631 void InterpreterMacroAssembler::push_f(XMMRegister r) { 632 subptr(rsp, wordSize); 633 movflt(Address(rsp, 0), r); 634 } 635 636 void InterpreterMacroAssembler::pop_f(XMMRegister r) { 637 movflt(r, Address(rsp, 0)); 638 addptr(rsp, wordSize); 639 } 640 641 void InterpreterMacroAssembler::push_d(XMMRegister r) { 642 subptr(rsp, 2 * wordSize); 643 movdbl(Address(rsp, 0), r); 644 } 645 646 void InterpreterMacroAssembler::pop_d(XMMRegister r) { 647 movdbl(r, Address(rsp, 0)); 648 addptr(rsp, 2 * Interpreter::stackElementSize); 649 } 650 651 #ifdef _LP64 652 void InterpreterMacroAssembler::pop_i(Register r) { 653 // XXX can't use pop currently, upper half non clean 654 movl(r, Address(rsp, 0)); 655 addptr(rsp, wordSize); 656 } 657 658 void InterpreterMacroAssembler::pop_l(Register r) { 659 movq(r, Address(rsp, 0)); 660 addptr(rsp, 2 * Interpreter::stackElementSize); 661 } 662 663 void InterpreterMacroAssembler::push_l(Register r) { 664 subptr(rsp, 2 * wordSize); 665 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(0)), r ); 666 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(1)), NULL_WORD ); 667 } 668 669 void InterpreterMacroAssembler::pop(TosState state) { 670 switch (state) { 671 case atos: pop_ptr(); break; 672 case btos: 673 case ztos: 674 case ctos: 675 case stos: 676 case itos: pop_i(); break; 677 case ltos: pop_l(); break; 678 case ftos: pop_f(xmm0); break; 679 case dtos: pop_d(xmm0); break; 680 case vtos: /* nothing to do */ break; 681 default: ShouldNotReachHere(); 682 } 683 interp_verify_oop(rax, state); 684 } 685 686 void InterpreterMacroAssembler::push(TosState state) { 687 interp_verify_oop(rax, state); 688 switch (state) { 689 case atos: push_ptr(); break; 690 case btos: 691 case ztos: 692 case ctos: 693 case stos: 694 case itos: push_i(); break; 695 case ltos: push_l(); break; 696 case ftos: push_f(xmm0); break; 697 case dtos: push_d(xmm0); break; 698 case vtos: /* nothing to do */ break; 699 default : ShouldNotReachHere(); 700 } 701 } 702 #else 703 void InterpreterMacroAssembler::pop_i(Register r) { 704 pop(r); 705 } 706 707 void InterpreterMacroAssembler::pop_l(Register lo, Register hi) { 708 pop(lo); 709 pop(hi); 710 } 711 712 void InterpreterMacroAssembler::pop_f() { 713 fld_s(Address(rsp, 0)); 714 addptr(rsp, 1 * wordSize); 715 } 716 717 void InterpreterMacroAssembler::pop_d() { 718 fld_d(Address(rsp, 0)); 719 addptr(rsp, 2 * wordSize); 720 } 721 722 723 void InterpreterMacroAssembler::pop(TosState state) { 724 switch (state) { 725 case atos: pop_ptr(rax); break; 726 case btos: // fall through 727 case ztos: // fall through 728 case ctos: // fall through 729 case stos: // fall through 730 case itos: pop_i(rax); break; 731 case ltos: pop_l(rax, rdx); break; 732 case ftos: 733 if (UseSSE >= 1) { 734 pop_f(xmm0); 735 } else { 736 pop_f(); 737 } 738 break; 739 case dtos: 740 if (UseSSE >= 2) { 741 pop_d(xmm0); 742 } else { 743 pop_d(); 744 } 745 break; 746 case vtos: /* nothing to do */ break; 747 default : ShouldNotReachHere(); 748 } 749 interp_verify_oop(rax, state); 750 } 751 752 753 void InterpreterMacroAssembler::push_l(Register lo, Register hi) { 754 push(hi); 755 push(lo); 756 } 757 758 void InterpreterMacroAssembler::push_f() { 759 // Do not schedule for no AGI! Never write beyond rsp! 760 subptr(rsp, 1 * wordSize); 761 fstp_s(Address(rsp, 0)); 762 } 763 764 void InterpreterMacroAssembler::push_d() { 765 // Do not schedule for no AGI! Never write beyond rsp! 766 subptr(rsp, 2 * wordSize); 767 fstp_d(Address(rsp, 0)); 768 } 769 770 771 void InterpreterMacroAssembler::push(TosState state) { 772 interp_verify_oop(rax, state); 773 switch (state) { 774 case atos: push_ptr(rax); break; 775 case btos: // fall through 776 case ztos: // fall through 777 case ctos: // fall through 778 case stos: // fall through 779 case itos: push_i(rax); break; 780 case ltos: push_l(rax, rdx); break; 781 case ftos: 782 if (UseSSE >= 1) { 783 push_f(xmm0); 784 } else { 785 push_f(); 786 } 787 break; 788 case dtos: 789 if (UseSSE >= 2) { 790 push_d(xmm0); 791 } else { 792 push_d(); 793 } 794 break; 795 case vtos: /* nothing to do */ break; 796 default : ShouldNotReachHere(); 797 } 798 } 799 #endif // _LP64 800 801 802 // Helpers for swap and dup 803 void InterpreterMacroAssembler::load_ptr(int n, Register val) { 804 movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n))); 805 } 806 807 void InterpreterMacroAssembler::store_ptr(int n, Register val) { 808 movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val); 809 } 810 811 812 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() { 813 // set sender sp 814 lea(_bcp_register, Address(rsp, wordSize)); 815 // record last_sp 816 movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), _bcp_register); 817 } 818 819 820 // Jump to from_interpreted entry of a call unless single stepping is possible 821 // in this thread in which case we must call the i2i entry 822 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) { 823 prepare_to_jump_from_interpreted(); 824 825 if (JvmtiExport::can_post_interpreter_events()) { 826 Label run_compiled_code; 827 // JVMTI events, such as single-stepping, are implemented partly by avoiding running 828 // compiled code in threads for which the event is enabled. Check here for 829 // interp_only_mode if these events CAN be enabled. 830 // interp_only is an int, on little endian it is sufficient to test the byte only 831 // Is a cmpl faster? 832 LP64_ONLY(temp = r15_thread;) 833 NOT_LP64(get_thread(temp);) 834 cmpb(Address(temp, JavaThread::interp_only_mode_offset()), 0); 835 jccb(Assembler::zero, run_compiled_code); 836 jmp(Address(method, Method::interpreter_entry_offset())); 837 bind(run_compiled_code); 838 } 839 840 jmp(Address(method, Method::from_interpreted_offset())); 841 } 842 843 // The following two routines provide a hook so that an implementation 844 // can schedule the dispatch in two parts. x86 does not do this. 845 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) { 846 // Nothing x86 specific to be done here 847 } 848 849 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) { 850 dispatch_next(state, step); 851 } 852 853 void InterpreterMacroAssembler::dispatch_base(TosState state, 854 address* table, 855 bool verifyoop, 856 bool generate_poll) { 857 verify_FPU(1, state); 858 if (VerifyActivationFrameSize) { 859 Label L; 860 mov(rcx, rbp); 861 subptr(rcx, rsp); 862 int32_t min_frame_size = 863 (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * 864 wordSize; 865 cmpptr(rcx, min_frame_size); 866 jcc(Assembler::greaterEqual, L); 867 stop("broken stack frame"); 868 bind(L); 869 } 870 if (verifyoop) { 871 interp_verify_oop(rax, state); 872 } 873 874 address* const safepoint_table = Interpreter::safept_table(state); 875 #ifdef _LP64 876 Label no_safepoint, dispatch; 877 if (table != safepoint_table && generate_poll) { 878 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 879 testb(Address(r15_thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 880 881 jccb(Assembler::zero, no_safepoint); 882 lea(rscratch1, ExternalAddress((address)safepoint_table)); 883 jmpb(dispatch); 884 } 885 886 bind(no_safepoint); 887 lea(rscratch1, ExternalAddress((address)table)); 888 bind(dispatch); 889 jmp(Address(rscratch1, rbx, Address::times_8)); 890 891 #else 892 Address index(noreg, rbx, Address::times_ptr); 893 if (table != safepoint_table && generate_poll) { 894 NOT_PRODUCT(block_comment("Thread-local Safepoint poll")); 895 Label no_safepoint; 896 const Register thread = rcx; 897 get_thread(thread); 898 testb(Address(thread, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 899 900 jccb(Assembler::zero, no_safepoint); 901 ArrayAddress dispatch_addr(ExternalAddress((address)safepoint_table), index); 902 jump(dispatch_addr, noreg); 903 bind(no_safepoint); 904 } 905 906 { 907 ArrayAddress dispatch_addr(ExternalAddress((address)table), index); 908 jump(dispatch_addr, noreg); 909 } 910 #endif // _LP64 911 } 912 913 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) { 914 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 915 } 916 917 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) { 918 dispatch_base(state, Interpreter::normal_table(state)); 919 } 920 921 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) { 922 dispatch_base(state, Interpreter::normal_table(state), false); 923 } 924 925 926 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) { 927 // load next bytecode (load before advancing _bcp_register to prevent AGI) 928 load_unsigned_byte(rbx, Address(_bcp_register, step)); 929 // advance _bcp_register 930 increment(_bcp_register, step); 931 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll); 932 } 933 934 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) { 935 // load current bytecode 936 load_unsigned_byte(rbx, Address(_bcp_register, 0)); 937 dispatch_base(state, table); 938 } 939 940 void InterpreterMacroAssembler::narrow(Register result) { 941 942 // Get method->_constMethod->_result_type 943 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 944 movptr(rcx, Address(rcx, Method::const_offset())); 945 load_unsigned_byte(rcx, Address(rcx, ConstMethod::result_type_offset())); 946 947 Label done, notBool, notByte, notChar; 948 949 // common case first 950 cmpl(rcx, T_INT); 951 jcc(Assembler::equal, done); 952 953 // mask integer result to narrower return type. 954 cmpl(rcx, T_BOOLEAN); 955 jcc(Assembler::notEqual, notBool); 956 andl(result, 0x1); 957 jmp(done); 958 959 bind(notBool); 960 cmpl(rcx, T_BYTE); 961 jcc(Assembler::notEqual, notByte); 962 LP64_ONLY(movsbl(result, result);) 963 NOT_LP64(shll(result, 24);) // truncate upper 24 bits 964 NOT_LP64(sarl(result, 24);) // and sign-extend byte 965 jmp(done); 966 967 bind(notByte); 968 cmpl(rcx, T_CHAR); 969 jcc(Assembler::notEqual, notChar); 970 LP64_ONLY(movzwl(result, result);) 971 NOT_LP64(andl(result, 0xFFFF);) // truncate upper 16 bits 972 jmp(done); 973 974 bind(notChar); 975 // cmpl(rcx, T_SHORT); // all that's left 976 // jcc(Assembler::notEqual, done); 977 LP64_ONLY(movswl(result, result);) 978 NOT_LP64(shll(result, 16);) // truncate upper 16 bits 979 NOT_LP64(sarl(result, 16);) // and sign-extend short 980 981 // Nothing to do for T_INT 982 bind(done); 983 } 984 985 // remove activation 986 // 987 // Apply stack watermark barrier. 988 // Unlock the receiver if this is a synchronized method. 989 // Unlock any Java monitors from synchronized blocks. 990 // Remove the activation from the stack. 991 // 992 // If there are locked Java monitors 993 // If throw_monitor_exception 994 // throws IllegalMonitorStateException 995 // Else if install_monitor_exception 996 // installs IllegalMonitorStateException 997 // Else 998 // no error processing 999 void InterpreterMacroAssembler::remove_activation( 1000 TosState state, 1001 Register ret_addr, 1002 bool throw_monitor_exception, 1003 bool install_monitor_exception, 1004 bool notify_jvmdi) { 1005 // Note: Registers rdx xmm0 may be in use for the 1006 // result check if synchronized method 1007 Label unlocked, unlock, no_unlock; 1008 1009 const Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1010 const Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 1011 const Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 1012 // monitor pointers need different register 1013 // because rdx may have the result in it 1014 NOT_LP64(get_thread(rthread);) 1015 1016 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily, 1017 // that would normally not be safe to use. Such bad returns into unsafe territory of 1018 // the stack, will call InterpreterRuntime::at_unwind. 1019 Label slow_path; 1020 Label fast_path; 1021 safepoint_poll(slow_path, rthread, true /* at_return */, false /* in_nmethod */); 1022 jmp(fast_path); 1023 bind(slow_path); 1024 push(state); 1025 set_last_Java_frame(rthread, noreg, rbp, (address)pc(), rscratch1); 1026 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread); 1027 NOT_LP64(get_thread(rthread);) // call_VM clobbered it, restore 1028 reset_last_Java_frame(rthread, true); 1029 pop(state); 1030 bind(fast_path); 1031 1032 // get the value of _do_not_unlock_if_synchronized into rdx 1033 const Address do_not_unlock_if_synchronized(rthread, 1034 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1035 movbool(rbx, do_not_unlock_if_synchronized); 1036 movbool(do_not_unlock_if_synchronized, false); // reset the flag 1037 1038 // get method access flags 1039 movptr(rcx, Address(rbp, frame::interpreter_frame_method_offset * wordSize)); 1040 movl(rcx, Address(rcx, Method::access_flags_offset())); 1041 testl(rcx, JVM_ACC_SYNCHRONIZED); 1042 jcc(Assembler::zero, unlocked); 1043 1044 // Don't unlock anything if the _do_not_unlock_if_synchronized flag 1045 // is set. 1046 testbool(rbx); 1047 jcc(Assembler::notZero, no_unlock); 1048 1049 // unlock monitor 1050 push(state); // save result 1051 1052 // BasicObjectLock will be first in list, since this is a 1053 // synchronized method. However, need to check that the object has 1054 // not been unlocked by an explicit monitorexit bytecode. 1055 const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset * 1056 wordSize - (int) sizeof(BasicObjectLock)); 1057 // We use c_rarg1/rdx so that if we go slow path it will be the correct 1058 // register for unlock_object to pass to VM directly 1059 lea(robj, monitor); // address of first monitor 1060 1061 movptr(rax, Address(robj, BasicObjectLock::obj_offset())); 1062 testptr(rax, rax); 1063 jcc(Assembler::notZero, unlock); 1064 1065 pop(state); 1066 if (throw_monitor_exception) { 1067 // Entry already unlocked, need to throw exception 1068 NOT_LP64(empty_FPU_stack();) // remove possible return value from FPU-stack, otherwise stack could overflow 1069 call_VM(noreg, CAST_FROM_FN_PTR(address, 1070 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1071 should_not_reach_here(); 1072 } else { 1073 // Monitor already unlocked during a stack unroll. If requested, 1074 // install an illegal_monitor_state_exception. Continue with 1075 // stack unrolling. 1076 if (install_monitor_exception) { 1077 NOT_LP64(empty_FPU_stack();) 1078 call_VM(noreg, CAST_FROM_FN_PTR(address, 1079 InterpreterRuntime::new_illegal_monitor_state_exception)); 1080 } 1081 jmp(unlocked); 1082 } 1083 1084 bind(unlock); 1085 unlock_object(robj); 1086 pop(state); 1087 1088 // Check that for block-structured locking (i.e., that all locked 1089 // objects has been unlocked) 1090 bind(unlocked); 1091 1092 // rax, rdx: Might contain return value 1093 1094 // Check that all monitors are unlocked 1095 { 1096 Label loop, exception, entry, restart; 1097 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 1098 const Address monitor_block_top( 1099 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 1100 const Address monitor_block_bot( 1101 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 1102 1103 bind(restart); 1104 // We use c_rarg1 so that if we go slow path it will be the correct 1105 // register for unlock_object to pass to VM directly 1106 movptr(rmon, monitor_block_top); // points to current entry, starting 1107 // with top-most entry 1108 lea(rbx, monitor_block_bot); // points to word before bottom of 1109 // monitor block 1110 jmp(entry); 1111 1112 // Entry already locked, need to throw exception 1113 bind(exception); 1114 1115 if (throw_monitor_exception) { 1116 // Throw exception 1117 NOT_LP64(empty_FPU_stack();) 1118 MacroAssembler::call_VM(noreg, 1119 CAST_FROM_FN_PTR(address, InterpreterRuntime:: 1120 throw_illegal_monitor_state_exception)); 1121 should_not_reach_here(); 1122 } else { 1123 // Stack unrolling. Unlock object and install illegal_monitor_exception. 1124 // Unlock does not block, so don't have to worry about the frame. 1125 // We don't have to preserve c_rarg1 since we are going to throw an exception. 1126 1127 push(state); 1128 mov(robj, rmon); // nop if robj and rmon are the same 1129 unlock_object(robj); 1130 pop(state); 1131 1132 if (install_monitor_exception) { 1133 NOT_LP64(empty_FPU_stack();) 1134 call_VM(noreg, CAST_FROM_FN_PTR(address, 1135 InterpreterRuntime:: 1136 new_illegal_monitor_state_exception)); 1137 } 1138 1139 jmp(restart); 1140 } 1141 1142 bind(loop); 1143 // check if current entry is used 1144 cmpptr(Address(rmon, BasicObjectLock::obj_offset()), NULL_WORD); 1145 jcc(Assembler::notEqual, exception); 1146 1147 addptr(rmon, entry_size); // otherwise advance to next entry 1148 bind(entry); 1149 cmpptr(rmon, rbx); // check if bottom reached 1150 jcc(Assembler::notEqual, loop); // if not at bottom then check this entry 1151 } 1152 1153 bind(no_unlock); 1154 1155 // jvmti support 1156 if (notify_jvmdi) { 1157 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA 1158 } else { 1159 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA 1160 } 1161 1162 // remove activation 1163 // get sender sp 1164 movptr(rbx, 1165 Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); 1166 if (StackReservedPages > 0) { 1167 // testing if reserved zone needs to be re-enabled 1168 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 1169 Label no_reserved_zone_enabling; 1170 1171 NOT_LP64(get_thread(rthread);) 1172 1173 // check if already enabled - if so no re-enabling needed 1174 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size"); 1175 cmpl(Address(rthread, JavaThread::stack_guard_state_offset()), StackOverflow::stack_guard_enabled); 1176 jcc(Assembler::equal, no_reserved_zone_enabling); 1177 1178 cmpptr(rbx, Address(rthread, JavaThread::reserved_stack_activation_offset())); 1179 jcc(Assembler::lessEqual, no_reserved_zone_enabling); 1180 1181 call_VM_leaf( 1182 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread); 1183 call_VM(noreg, CAST_FROM_FN_PTR(address, 1184 InterpreterRuntime::throw_delayed_StackOverflowError)); 1185 should_not_reach_here(); 1186 1187 bind(no_reserved_zone_enabling); 1188 } 1189 leave(); // remove frame anchor 1190 pop(ret_addr); // get return address 1191 mov(rsp, rbx); // set sp to sender sp 1192 pop_cont_fastpath(); 1193 } 1194 1195 void InterpreterMacroAssembler::get_method_counters(Register method, 1196 Register mcs, Label& skip) { 1197 Label has_counters; 1198 movptr(mcs, Address(method, Method::method_counters_offset())); 1199 testptr(mcs, mcs); 1200 jcc(Assembler::notZero, has_counters); 1201 call_VM(noreg, CAST_FROM_FN_PTR(address, 1202 InterpreterRuntime::build_method_counters), method); 1203 movptr(mcs, Address(method,Method::method_counters_offset())); 1204 testptr(mcs, mcs); 1205 jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory 1206 bind(has_counters); 1207 } 1208 1209 1210 // Lock object 1211 // 1212 // Args: 1213 // rdx, c_rarg1: BasicObjectLock to be used for locking 1214 // 1215 // Kills: 1216 // rax, rbx 1217 void InterpreterMacroAssembler::lock_object(Register lock_reg) { 1218 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1219 "The argument is only for looks. It must be c_rarg1"); 1220 1221 if (LockingMode == LM_MONITOR) { 1222 call_VM(noreg, 1223 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1224 lock_reg); 1225 } else { 1226 Label count_locking, done, slow_case; 1227 1228 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1229 const Register tmp_reg = rbx; 1230 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1231 const Register rklass_decode_tmp = rscratch1; 1232 1233 const int obj_offset = in_bytes(BasicObjectLock::obj_offset()); 1234 const int lock_offset = in_bytes(BasicObjectLock::lock_offset()); 1235 const int mark_offset = lock_offset + 1236 BasicLock::displaced_header_offset_in_bytes(); 1237 1238 // Load object pointer into obj_reg 1239 movptr(obj_reg, Address(lock_reg, obj_offset)); 1240 1241 if (DiagnoseSyncOnValueBasedClasses != 0) { 1242 load_klass(tmp_reg, obj_reg, rklass_decode_tmp); 1243 movl(tmp_reg, Address(tmp_reg, Klass::access_flags_offset())); 1244 testl(tmp_reg, JVM_ACC_IS_VALUE_BASED_CLASS); 1245 jcc(Assembler::notZero, slow_case); 1246 } 1247 1248 if (LockingMode == LM_LIGHTWEIGHT) { 1249 #ifdef _LP64 1250 const Register thread = r15_thread; 1251 #else 1252 const Register thread = lock_reg; 1253 get_thread(thread); 1254 #endif 1255 lightweight_lock(obj_reg, swap_reg, thread, tmp_reg, slow_case); 1256 } else if (LockingMode == LM_LEGACY) { 1257 // Load immediate 1 into swap_reg %rax 1258 movl(swap_reg, 1); 1259 1260 // Load (object->mark() | 1) into swap_reg %rax 1261 orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1262 1263 // Save (object->mark() | 1) into BasicLock's displaced header 1264 movptr(Address(lock_reg, mark_offset), swap_reg); 1265 1266 assert(lock_offset == 0, 1267 "displaced header must be first word in BasicObjectLock"); 1268 1269 lock(); 1270 cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1271 jcc(Assembler::zero, count_locking); 1272 1273 const int zero_bits = LP64_ONLY(7) NOT_LP64(3); 1274 1275 // Fast check for recursive lock. 1276 // 1277 // Can apply the optimization only if this is a stack lock 1278 // allocated in this thread. For efficiency, we can focus on 1279 // recently allocated stack locks (instead of reading the stack 1280 // base and checking whether 'mark' points inside the current 1281 // thread stack): 1282 // 1) (mark & zero_bits) == 0, and 1283 // 2) rsp <= mark < mark + os::pagesize() 1284 // 1285 // Warning: rsp + os::pagesize can overflow the stack base. We must 1286 // neither apply the optimization for an inflated lock allocated 1287 // just above the thread stack (this is why condition 1 matters) 1288 // nor apply the optimization if the stack lock is inside the stack 1289 // of another thread. The latter is avoided even in case of overflow 1290 // because we have guard pages at the end of all stacks. Hence, if 1291 // we go over the stack base and hit the stack of another thread, 1292 // this should not be in a writeable area that could contain a 1293 // stack lock allocated by that thread. As a consequence, a stack 1294 // lock less than page size away from rsp is guaranteed to be 1295 // owned by the current thread. 1296 // 1297 // These 3 tests can be done by evaluating the following 1298 // expression: ((mark - rsp) & (zero_bits - os::vm_page_size())), 1299 // assuming both stack pointer and pagesize have their 1300 // least significant bits clear. 1301 // NOTE: the mark is in swap_reg %rax as the result of cmpxchg 1302 subptr(swap_reg, rsp); 1303 andptr(swap_reg, zero_bits - (int)os::vm_page_size()); 1304 1305 // Save the test result, for recursive case, the result is zero 1306 movptr(Address(lock_reg, mark_offset), swap_reg); 1307 jcc(Assembler::notZero, slow_case); 1308 1309 bind(count_locking); 1310 } 1311 inc_held_monitor_count(); 1312 jmp(done); 1313 1314 bind(slow_case); 1315 1316 // Call the runtime routine for slow case 1317 if (LockingMode == LM_LIGHTWEIGHT) { 1318 call_VM(noreg, 1319 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter_obj), 1320 obj_reg); 1321 } else { 1322 call_VM(noreg, 1323 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), 1324 lock_reg); 1325 } 1326 bind(done); 1327 } 1328 } 1329 1330 1331 // Unlocks an object. Used in monitorexit bytecode and 1332 // remove_activation. Throws an IllegalMonitorException if object is 1333 // not locked by current thread. 1334 // 1335 // Args: 1336 // rdx, c_rarg1: BasicObjectLock for lock 1337 // 1338 // Kills: 1339 // rax 1340 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs) 1341 // rscratch1 (scratch reg) 1342 // rax, rbx, rcx, rdx 1343 void InterpreterMacroAssembler::unlock_object(Register lock_reg) { 1344 assert(lock_reg == LP64_ONLY(c_rarg1) NOT_LP64(rdx), 1345 "The argument is only for looks. It must be c_rarg1"); 1346 1347 if (LockingMode == LM_MONITOR) { 1348 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1349 } else { 1350 Label count_locking, done, slow_case; 1351 1352 const Register swap_reg = rax; // Must use rax for cmpxchg instruction 1353 const Register header_reg = LP64_ONLY(c_rarg2) NOT_LP64(rbx); // Will contain the old oopMark 1354 const Register obj_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // Will contain the oop 1355 1356 save_bcp(); // Save in case of exception 1357 1358 if (LockingMode != LM_LIGHTWEIGHT) { 1359 // Convert from BasicObjectLock structure to object and BasicLock 1360 // structure Store the BasicLock address into %rax 1361 lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset())); 1362 } 1363 1364 // Load oop into obj_reg(%c_rarg3) 1365 movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); 1366 1367 // Free entry 1368 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), NULL_WORD); 1369 1370 if (LockingMode == LM_LIGHTWEIGHT) { 1371 #ifdef _LP64 1372 lightweight_unlock(obj_reg, swap_reg, r15_thread, header_reg, slow_case); 1373 #else 1374 // This relies on the implementation of lightweight_unlock being able to handle 1375 // that the reg_rax and thread Register parameters may alias each other. 1376 get_thread(swap_reg); 1377 lightweight_unlock(obj_reg, swap_reg, swap_reg, header_reg, slow_case); 1378 #endif 1379 } else if (LockingMode == LM_LEGACY) { 1380 // Load the old header from BasicLock structure 1381 movptr(header_reg, Address(swap_reg, 1382 BasicLock::displaced_header_offset_in_bytes())); 1383 1384 // Test for recursion 1385 testptr(header_reg, header_reg); 1386 1387 // zero for recursive case 1388 jcc(Assembler::zero, count_locking); 1389 1390 // Atomic swap back the old header 1391 lock(); 1392 cmpxchgptr(header_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes())); 1393 1394 // zero for simple unlock of a stack-lock case 1395 jcc(Assembler::notZero, slow_case); 1396 1397 bind(count_locking); 1398 } 1399 dec_held_monitor_count(); 1400 jmp(done); 1401 1402 bind(slow_case); 1403 // Call the runtime routine for slow case. 1404 movptr(Address(lock_reg, BasicObjectLock::obj_offset()), obj_reg); // restore obj 1405 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg); 1406 1407 bind(done); 1408 1409 restore_bcp(); 1410 } 1411 } 1412 1413 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, 1414 Label& zero_continue) { 1415 assert(ProfileInterpreter, "must be profiling interpreter"); 1416 movptr(mdp, Address(rbp, frame::interpreter_frame_mdp_offset * wordSize)); 1417 testptr(mdp, mdp); 1418 jcc(Assembler::zero, zero_continue); 1419 } 1420 1421 1422 // Set the method data pointer for the current bcp. 1423 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() { 1424 assert(ProfileInterpreter, "must be profiling interpreter"); 1425 Label set_mdp; 1426 push(rax); 1427 push(rbx); 1428 1429 get_method(rbx); 1430 // Test MDO to avoid the call if it is null. 1431 movptr(rax, Address(rbx, in_bytes(Method::method_data_offset()))); 1432 testptr(rax, rax); 1433 jcc(Assembler::zero, set_mdp); 1434 // rbx: method 1435 // _bcp_register: bcp 1436 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, _bcp_register); 1437 // rax: mdi 1438 // mdo is guaranteed to be non-zero here, we checked for it before the call. 1439 movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset()))); 1440 addptr(rbx, in_bytes(MethodData::data_offset())); 1441 addptr(rax, rbx); 1442 bind(set_mdp); 1443 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), rax); 1444 pop(rbx); 1445 pop(rax); 1446 } 1447 1448 void InterpreterMacroAssembler::verify_method_data_pointer() { 1449 assert(ProfileInterpreter, "must be profiling interpreter"); 1450 #ifdef ASSERT 1451 Label verify_continue; 1452 push(rax); 1453 push(rbx); 1454 Register arg3_reg = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 1455 Register arg2_reg = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 1456 push(arg3_reg); 1457 push(arg2_reg); 1458 test_method_data_pointer(arg3_reg, verify_continue); // If mdp is zero, continue 1459 get_method(rbx); 1460 1461 // If the mdp is valid, it will point to a DataLayout header which is 1462 // consistent with the bcp. The converse is highly probable also. 1463 load_unsigned_short(arg2_reg, 1464 Address(arg3_reg, in_bytes(DataLayout::bci_offset()))); 1465 addptr(arg2_reg, Address(rbx, Method::const_offset())); 1466 lea(arg2_reg, Address(arg2_reg, ConstMethod::codes_offset())); 1467 cmpptr(arg2_reg, _bcp_register); 1468 jcc(Assembler::equal, verify_continue); 1469 // rbx: method 1470 // _bcp_register: bcp 1471 // c_rarg3: mdp 1472 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), 1473 rbx, _bcp_register, arg3_reg); 1474 bind(verify_continue); 1475 pop(arg2_reg); 1476 pop(arg3_reg); 1477 pop(rbx); 1478 pop(rax); 1479 #endif // ASSERT 1480 } 1481 1482 1483 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, 1484 int constant, 1485 Register value) { 1486 assert(ProfileInterpreter, "must be profiling interpreter"); 1487 Address data(mdp_in, constant); 1488 movptr(data, value); 1489 } 1490 1491 1492 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1493 int constant, 1494 bool decrement) { 1495 // Counter address 1496 Address data(mdp_in, constant); 1497 1498 increment_mdp_data_at(data, decrement); 1499 } 1500 1501 void InterpreterMacroAssembler::increment_mdp_data_at(Address data, 1502 bool decrement) { 1503 assert(ProfileInterpreter, "must be profiling interpreter"); 1504 // %%% this does 64bit counters at best it is wasting space 1505 // at worst it is a rare bug when counters overflow 1506 1507 if (decrement) { 1508 // Decrement the register. Set condition codes. 1509 addptr(data, -DataLayout::counter_increment); 1510 // If the decrement causes the counter to overflow, stay negative 1511 Label L; 1512 jcc(Assembler::negative, L); 1513 addptr(data, DataLayout::counter_increment); 1514 bind(L); 1515 } else { 1516 assert(DataLayout::counter_increment == 1, 1517 "flow-free idiom only works with 1"); 1518 // Increment the register. Set carry flag. 1519 addptr(data, DataLayout::counter_increment); 1520 // If the increment causes the counter to overflow, pull back by 1. 1521 sbbptr(data, 0); 1522 } 1523 } 1524 1525 1526 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in, 1527 Register reg, 1528 int constant, 1529 bool decrement) { 1530 Address data(mdp_in, reg, Address::times_1, constant); 1531 1532 increment_mdp_data_at(data, decrement); 1533 } 1534 1535 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in, 1536 int flag_byte_constant) { 1537 assert(ProfileInterpreter, "must be profiling interpreter"); 1538 int header_offset = in_bytes(DataLayout::flags_offset()); 1539 int header_bits = flag_byte_constant; 1540 // Set the flag 1541 orb(Address(mdp_in, header_offset), header_bits); 1542 } 1543 1544 1545 1546 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in, 1547 int offset, 1548 Register value, 1549 Register test_value_out, 1550 Label& not_equal_continue) { 1551 assert(ProfileInterpreter, "must be profiling interpreter"); 1552 if (test_value_out == noreg) { 1553 cmpptr(value, Address(mdp_in, offset)); 1554 } else { 1555 // Put the test value into a register, so caller can use it: 1556 movptr(test_value_out, Address(mdp_in, offset)); 1557 cmpptr(test_value_out, value); 1558 } 1559 jcc(Assembler::notEqual, not_equal_continue); 1560 } 1561 1562 1563 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1564 int offset_of_disp) { 1565 assert(ProfileInterpreter, "must be profiling interpreter"); 1566 Address disp_address(mdp_in, offset_of_disp); 1567 addptr(mdp_in, disp_address); 1568 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1569 } 1570 1571 1572 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, 1573 Register reg, 1574 int offset_of_disp) { 1575 assert(ProfileInterpreter, "must be profiling interpreter"); 1576 Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp); 1577 addptr(mdp_in, disp_address); 1578 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1579 } 1580 1581 1582 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, 1583 int constant) { 1584 assert(ProfileInterpreter, "must be profiling interpreter"); 1585 addptr(mdp_in, constant); 1586 movptr(Address(rbp, frame::interpreter_frame_mdp_offset * wordSize), mdp_in); 1587 } 1588 1589 1590 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) { 1591 assert(ProfileInterpreter, "must be profiling interpreter"); 1592 push(return_bci); // save/restore across call_VM 1593 call_VM(noreg, 1594 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret), 1595 return_bci); 1596 pop(return_bci); 1597 } 1598 1599 1600 void InterpreterMacroAssembler::profile_taken_branch(Register mdp, 1601 Register bumped_count) { 1602 if (ProfileInterpreter) { 1603 Label profile_continue; 1604 1605 // If no method data exists, go to profile_continue. 1606 // Otherwise, assign to mdp 1607 test_method_data_pointer(mdp, profile_continue); 1608 1609 // We are taking a branch. Increment the taken count. 1610 // We inline increment_mdp_data_at to return bumped_count in a register 1611 //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset())); 1612 Address data(mdp, in_bytes(JumpData::taken_offset())); 1613 movptr(bumped_count, data); 1614 assert(DataLayout::counter_increment == 1, 1615 "flow-free idiom only works with 1"); 1616 addptr(bumped_count, DataLayout::counter_increment); 1617 sbbptr(bumped_count, 0); 1618 movptr(data, bumped_count); // Store back out 1619 1620 // The method data pointer needs to be updated to reflect the new target. 1621 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset())); 1622 bind(profile_continue); 1623 } 1624 } 1625 1626 1627 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) { 1628 if (ProfileInterpreter) { 1629 Label profile_continue; 1630 1631 // If no method data exists, go to profile_continue. 1632 test_method_data_pointer(mdp, profile_continue); 1633 1634 // We are taking a branch. Increment the not taken count. 1635 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset())); 1636 1637 // The method data pointer needs to be updated to correspond to 1638 // the next bytecode 1639 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size())); 1640 bind(profile_continue); 1641 } 1642 } 1643 1644 void InterpreterMacroAssembler::profile_call(Register mdp) { 1645 if (ProfileInterpreter) { 1646 Label profile_continue; 1647 1648 // If no method data exists, go to profile_continue. 1649 test_method_data_pointer(mdp, profile_continue); 1650 1651 // We are making a call. Increment the count. 1652 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1653 1654 // The method data pointer needs to be updated to reflect the new target. 1655 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size())); 1656 bind(profile_continue); 1657 } 1658 } 1659 1660 1661 void InterpreterMacroAssembler::profile_final_call(Register mdp) { 1662 if (ProfileInterpreter) { 1663 Label profile_continue; 1664 1665 // If no method data exists, go to profile_continue. 1666 test_method_data_pointer(mdp, profile_continue); 1667 1668 // We are making a call. Increment the count. 1669 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1670 1671 // The method data pointer needs to be updated to reflect the new target. 1672 update_mdp_by_constant(mdp, 1673 in_bytes(VirtualCallData:: 1674 virtual_call_data_size())); 1675 bind(profile_continue); 1676 } 1677 } 1678 1679 1680 void InterpreterMacroAssembler::profile_virtual_call(Register receiver, 1681 Register mdp, 1682 Register reg2, 1683 bool receiver_can_be_null) { 1684 if (ProfileInterpreter) { 1685 Label profile_continue; 1686 1687 // If no method data exists, go to profile_continue. 1688 test_method_data_pointer(mdp, profile_continue); 1689 1690 Label skip_receiver_profile; 1691 if (receiver_can_be_null) { 1692 Label not_null; 1693 testptr(receiver, receiver); 1694 jccb(Assembler::notZero, not_null); 1695 // We are making a call. Increment the count for null receiver. 1696 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1697 jmp(skip_receiver_profile); 1698 bind(not_null); 1699 } 1700 1701 // Record the receiver type. 1702 record_klass_in_profile(receiver, mdp, reg2, true); 1703 bind(skip_receiver_profile); 1704 1705 // The method data pointer needs to be updated to reflect the new target. 1706 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size())); 1707 bind(profile_continue); 1708 } 1709 } 1710 1711 // This routine creates a state machine for updating the multi-row 1712 // type profile at a virtual call site (or other type-sensitive bytecode). 1713 // The machine visits each row (of receiver/count) until the receiver type 1714 // is found, or until it runs out of rows. At the same time, it remembers 1715 // the location of the first empty row. (An empty row records null for its 1716 // receiver, and can be allocated for a newly-observed receiver type.) 1717 // Because there are two degrees of freedom in the state, a simple linear 1718 // search will not work; it must be a decision tree. Hence this helper 1719 // function is recursive, to generate the required tree structured code. 1720 // It's the interpreter, so we are trading off code space for speed. 1721 // See below for example code. 1722 void InterpreterMacroAssembler::record_klass_in_profile_helper( 1723 Register receiver, Register mdp, 1724 Register reg2, int start_row, 1725 Label& done, bool is_virtual_call) { 1726 if (TypeProfileWidth == 0) { 1727 if (is_virtual_call) { 1728 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1729 } 1730 #if INCLUDE_JVMCI 1731 else if (EnableJVMCI) { 1732 increment_mdp_data_at(mdp, in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset())); 1733 } 1734 #endif // INCLUDE_JVMCI 1735 } else { 1736 int non_profiled_offset = -1; 1737 if (is_virtual_call) { 1738 non_profiled_offset = in_bytes(CounterData::count_offset()); 1739 } 1740 #if INCLUDE_JVMCI 1741 else if (EnableJVMCI) { 1742 non_profiled_offset = in_bytes(ReceiverTypeData::nonprofiled_receiver_count_offset()); 1743 } 1744 #endif // INCLUDE_JVMCI 1745 1746 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth, 1747 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset); 1748 } 1749 } 1750 1751 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp, 1752 Register reg2, int start_row, Label& done, int total_rows, 1753 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, 1754 int non_profiled_offset) { 1755 int last_row = total_rows - 1; 1756 assert(start_row <= last_row, "must be work left to do"); 1757 // Test this row for both the item and for null. 1758 // Take any of three different outcomes: 1759 // 1. found item => increment count and goto done 1760 // 2. found null => keep looking for case 1, maybe allocate this cell 1761 // 3. found something else => keep looking for cases 1 and 2 1762 // Case 3 is handled by a recursive call. 1763 for (int row = start_row; row <= last_row; row++) { 1764 Label next_test; 1765 bool test_for_null_also = (row == start_row); 1766 1767 // See if the item is item[n]. 1768 int item_offset = in_bytes(item_offset_fn(row)); 1769 test_mdp_data_at(mdp, item_offset, item, 1770 (test_for_null_also ? reg2 : noreg), 1771 next_test); 1772 // (Reg2 now contains the item from the CallData.) 1773 1774 // The item is item[n]. Increment count[n]. 1775 int count_offset = in_bytes(item_count_offset_fn(row)); 1776 increment_mdp_data_at(mdp, count_offset); 1777 jmp(done); 1778 bind(next_test); 1779 1780 if (test_for_null_also) { 1781 // Failed the equality check on item[n]... Test for null. 1782 testptr(reg2, reg2); 1783 if (start_row == last_row) { 1784 // The only thing left to do is handle the null case. 1785 if (non_profiled_offset >= 0) { 1786 Label found_null; 1787 jccb(Assembler::zero, found_null); 1788 // Item did not match any saved item and there is no empty row for it. 1789 // Increment total counter to indicate polymorphic case. 1790 increment_mdp_data_at(mdp, non_profiled_offset); 1791 jmp(done); 1792 bind(found_null); 1793 } else { 1794 jcc(Assembler::notZero, done); 1795 } 1796 break; 1797 } 1798 Label found_null; 1799 // Since null is rare, make it be the branch-taken case. 1800 jcc(Assembler::zero, found_null); 1801 1802 // Put all the "Case 3" tests here. 1803 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows, 1804 item_offset_fn, item_count_offset_fn, non_profiled_offset); 1805 1806 // Found a null. Keep searching for a matching item, 1807 // but remember that this is an empty (unused) slot. 1808 bind(found_null); 1809 } 1810 } 1811 1812 // In the fall-through case, we found no matching item, but we 1813 // observed the item[start_row] is null. 1814 1815 // Fill in the item field and increment the count. 1816 int item_offset = in_bytes(item_offset_fn(start_row)); 1817 set_mdp_data_at(mdp, item_offset, item); 1818 int count_offset = in_bytes(item_count_offset_fn(start_row)); 1819 movl(reg2, DataLayout::counter_increment); 1820 set_mdp_data_at(mdp, count_offset, reg2); 1821 if (start_row > 0) { 1822 jmp(done); 1823 } 1824 } 1825 1826 // Example state machine code for three profile rows: 1827 // // main copy of decision tree, rooted at row[1] 1828 // if (row[0].rec == rec) { row[0].incr(); goto done; } 1829 // if (row[0].rec != nullptr) { 1830 // // inner copy of decision tree, rooted at row[1] 1831 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1832 // if (row[1].rec != nullptr) { 1833 // // degenerate decision tree, rooted at row[2] 1834 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1835 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow 1836 // row[2].init(rec); goto done; 1837 // } else { 1838 // // remember row[1] is empty 1839 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1840 // row[1].init(rec); goto done; 1841 // } 1842 // } else { 1843 // // remember row[0] is empty 1844 // if (row[1].rec == rec) { row[1].incr(); goto done; } 1845 // if (row[2].rec == rec) { row[2].incr(); goto done; } 1846 // row[0].init(rec); goto done; 1847 // } 1848 // done: 1849 1850 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver, 1851 Register mdp, Register reg2, 1852 bool is_virtual_call) { 1853 assert(ProfileInterpreter, "must be profiling"); 1854 Label done; 1855 1856 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call); 1857 1858 bind (done); 1859 } 1860 1861 void InterpreterMacroAssembler::profile_ret(Register return_bci, 1862 Register mdp) { 1863 if (ProfileInterpreter) { 1864 Label profile_continue; 1865 uint row; 1866 1867 // If no method data exists, go to profile_continue. 1868 test_method_data_pointer(mdp, profile_continue); 1869 1870 // Update the total ret count. 1871 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset())); 1872 1873 for (row = 0; row < RetData::row_limit(); row++) { 1874 Label next_test; 1875 1876 // See if return_bci is equal to bci[n]: 1877 test_mdp_data_at(mdp, 1878 in_bytes(RetData::bci_offset(row)), 1879 return_bci, noreg, 1880 next_test); 1881 1882 // return_bci is equal to bci[n]. Increment the count. 1883 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row))); 1884 1885 // The method data pointer needs to be updated to reflect the new target. 1886 update_mdp_by_offset(mdp, 1887 in_bytes(RetData::bci_displacement_offset(row))); 1888 jmp(profile_continue); 1889 bind(next_test); 1890 } 1891 1892 update_mdp_for_ret(return_bci); 1893 1894 bind(profile_continue); 1895 } 1896 } 1897 1898 1899 void InterpreterMacroAssembler::profile_null_seen(Register mdp) { 1900 if (ProfileInterpreter) { 1901 Label profile_continue; 1902 1903 // If no method data exists, go to profile_continue. 1904 test_method_data_pointer(mdp, profile_continue); 1905 1906 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant()); 1907 1908 // The method data pointer needs to be updated. 1909 int mdp_delta = in_bytes(BitData::bit_data_size()); 1910 if (TypeProfileCasts) { 1911 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1912 } 1913 update_mdp_by_constant(mdp, mdp_delta); 1914 1915 bind(profile_continue); 1916 } 1917 } 1918 1919 1920 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) { 1921 if (ProfileInterpreter && TypeProfileCasts) { 1922 Label profile_continue; 1923 1924 // If no method data exists, go to profile_continue. 1925 test_method_data_pointer(mdp, profile_continue); 1926 1927 int count_offset = in_bytes(CounterData::count_offset()); 1928 // Back up the address, since we have already bumped the mdp. 1929 count_offset -= in_bytes(VirtualCallData::virtual_call_data_size()); 1930 1931 // *Decrement* the counter. We expect to see zero or small negatives. 1932 increment_mdp_data_at(mdp, count_offset, true); 1933 1934 bind (profile_continue); 1935 } 1936 } 1937 1938 1939 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) { 1940 if (ProfileInterpreter) { 1941 Label profile_continue; 1942 1943 // If no method data exists, go to profile_continue. 1944 test_method_data_pointer(mdp, profile_continue); 1945 1946 // The method data pointer needs to be updated. 1947 int mdp_delta = in_bytes(BitData::bit_data_size()); 1948 if (TypeProfileCasts) { 1949 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size()); 1950 1951 // Record the object type. 1952 record_klass_in_profile(klass, mdp, reg2, false); 1953 NOT_LP64(assert(reg2 == rdi, "we know how to fix this blown reg");) 1954 NOT_LP64(restore_locals();) // Restore EDI 1955 } 1956 update_mdp_by_constant(mdp, mdp_delta); 1957 1958 bind(profile_continue); 1959 } 1960 } 1961 1962 1963 void InterpreterMacroAssembler::profile_switch_default(Register mdp) { 1964 if (ProfileInterpreter) { 1965 Label profile_continue; 1966 1967 // If no method data exists, go to profile_continue. 1968 test_method_data_pointer(mdp, profile_continue); 1969 1970 // Update the default case count 1971 increment_mdp_data_at(mdp, 1972 in_bytes(MultiBranchData::default_count_offset())); 1973 1974 // The method data pointer needs to be updated. 1975 update_mdp_by_offset(mdp, 1976 in_bytes(MultiBranchData:: 1977 default_displacement_offset())); 1978 1979 bind(profile_continue); 1980 } 1981 } 1982 1983 1984 void InterpreterMacroAssembler::profile_switch_case(Register index, 1985 Register mdp, 1986 Register reg2) { 1987 if (ProfileInterpreter) { 1988 Label profile_continue; 1989 1990 // If no method data exists, go to profile_continue. 1991 test_method_data_pointer(mdp, profile_continue); 1992 1993 // Build the base (index * per_case_size_in_bytes()) + 1994 // case_array_offset_in_bytes() 1995 movl(reg2, in_bytes(MultiBranchData::per_case_size())); 1996 imulptr(index, reg2); // XXX l ? 1997 addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ? 1998 1999 // Update the case count 2000 increment_mdp_data_at(mdp, 2001 index, 2002 in_bytes(MultiBranchData::relative_count_offset())); 2003 2004 // The method data pointer needs to be updated. 2005 update_mdp_by_offset(mdp, 2006 index, 2007 in_bytes(MultiBranchData:: 2008 relative_displacement_offset())); 2009 2010 bind(profile_continue); 2011 } 2012 } 2013 2014 2015 2016 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) { 2017 if (state == atos) { 2018 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line); 2019 } 2020 } 2021 2022 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { 2023 #ifndef _LP64 2024 if ((state == ftos && UseSSE < 1) || 2025 (state == dtos && UseSSE < 2)) { 2026 MacroAssembler::verify_FPU(stack_depth); 2027 } 2028 #endif 2029 } 2030 2031 // Jump if ((*counter_addr += increment) & mask) == 0 2032 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr, Address mask, 2033 Register scratch, Label* where) { 2034 // This update is actually not atomic and can lose a number of updates 2035 // under heavy contention, but the alternative of using the (contended) 2036 // atomic update here penalizes profiling paths too much. 2037 movl(scratch, counter_addr); 2038 incrementl(scratch, InvocationCounter::count_increment); 2039 movl(counter_addr, scratch); 2040 andl(scratch, mask); 2041 if (where != nullptr) { 2042 jcc(Assembler::zero, *where); 2043 } 2044 } 2045 2046 void InterpreterMacroAssembler::notify_method_entry() { 2047 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2048 // track stack depth. If it is possible to enter interp_only_mode we add 2049 // the code to check if the event should be sent. 2050 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2051 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2052 if (JvmtiExport::can_post_interpreter_events()) { 2053 Label L; 2054 NOT_LP64(get_thread(rthread);) 2055 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2056 testl(rdx, rdx); 2057 jcc(Assembler::zero, L); 2058 call_VM(noreg, CAST_FROM_FN_PTR(address, 2059 InterpreterRuntime::post_method_entry)); 2060 bind(L); 2061 } 2062 2063 { 2064 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1); 2065 NOT_LP64(get_thread(rthread);) 2066 get_method(rarg); 2067 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2068 rthread, rarg); 2069 } 2070 2071 // RedefineClasses() tracing support for obsolete method entry 2072 if (log_is_enabled(Trace, redefine, class, obsolete)) { 2073 NOT_LP64(get_thread(rthread);) 2074 get_method(rarg); 2075 call_VM_leaf( 2076 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 2077 rthread, rarg); 2078 } 2079 } 2080 2081 2082 void InterpreterMacroAssembler::notify_method_exit( 2083 TosState state, NotifyMethodExitMode mode) { 2084 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to 2085 // track stack depth. If it is possible to enter interp_only_mode we add 2086 // the code to check if the event should be sent. 2087 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 2088 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2089 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) { 2090 Label L; 2091 // Note: frame::interpreter_frame_result has a dependency on how the 2092 // method result is saved across the call to post_method_exit. If this 2093 // is changed then the interpreter_frame_result implementation will 2094 // need to be updated too. 2095 2096 // template interpreter will leave the result on the top of the stack. 2097 push(state); 2098 NOT_LP64(get_thread(rthread);) 2099 movl(rdx, Address(rthread, JavaThread::interp_only_mode_offset())); 2100 testl(rdx, rdx); 2101 jcc(Assembler::zero, L); 2102 call_VM(noreg, 2103 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit)); 2104 bind(L); 2105 pop(state); 2106 } 2107 2108 { 2109 SkipIfEqual skip(this, &DTraceMethodProbes, false, rscratch1); 2110 push(state); 2111 NOT_LP64(get_thread(rthread);) 2112 get_method(rarg); 2113 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2114 rthread, rarg); 2115 pop(state); 2116 } 2117 } 2118 2119 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) { 2120 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp 2121 get_cache_index_at_bcp(index, 1, sizeof(u4)); 2122 // Get address of invokedynamic array 2123 movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize)); 2124 movptr(cache, Address(cache, in_bytes(ConstantPoolCache::invokedynamic_entries_offset()))); 2125 if (is_power_of_2(sizeof(ResolvedIndyEntry))) { 2126 shll(index, log2i_exact(sizeof(ResolvedIndyEntry))); // Scale index by power of 2 2127 } else { 2128 imull(index, index, sizeof(ResolvedIndyEntry)); // Scale the index to be the entry index * sizeof(ResolvedInvokeDynamicInfo) 2129 } 2130 lea(cache, Address(cache, index, Address::times_1, Array<ResolvedIndyEntry>::base_offset_in_bytes())); 2131 }