1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "compiler/compiler_globals.hpp" 29 #include "compiler/disassembler.hpp" 30 #include "crc32c.h" 31 #include "gc/shared/barrierSet.hpp" 32 #include "gc/shared/barrierSetAssembler.hpp" 33 #include "gc/shared/collectedHeap.inline.hpp" 34 #include "gc/shared/tlab_globals.hpp" 35 #include "interpreter/bytecodeHistogram.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "jvm.h" 38 #include "memory/resourceArea.hpp" 39 #include "memory/universe.hpp" 40 #include "oops/accessDecorators.hpp" 41 #include "oops/compressedOops.inline.hpp" 42 #include "oops/klass.inline.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/continuation.hpp" 45 #include "runtime/interfaceSupport.inline.hpp" 46 #include "runtime/javaThread.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/os.hpp" 50 #include "runtime/safepoint.hpp" 51 #include "runtime/safepointMechanism.hpp" 52 #include "runtime/sharedRuntime.hpp" 53 #include "runtime/stubRoutines.hpp" 54 #include "utilities/macros.hpp" 55 56 #ifdef PRODUCT 57 #define BLOCK_COMMENT(str) /* nothing */ 58 #define STOP(error) stop(error) 59 #else 60 #define BLOCK_COMMENT(str) block_comment(str) 61 #define STOP(error) block_comment(error); stop(error) 62 #endif 63 64 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 65 66 #ifdef ASSERT 67 bool AbstractAssembler::pd_check_instruction_mark() { return true; } 68 #endif 69 70 static const Assembler::Condition reverse[] = { 71 Assembler::noOverflow /* overflow = 0x0 */ , 72 Assembler::overflow /* noOverflow = 0x1 */ , 73 Assembler::aboveEqual /* carrySet = 0x2, below = 0x2 */ , 74 Assembler::below /* aboveEqual = 0x3, carryClear = 0x3 */ , 75 Assembler::notZero /* zero = 0x4, equal = 0x4 */ , 76 Assembler::zero /* notZero = 0x5, notEqual = 0x5 */ , 77 Assembler::above /* belowEqual = 0x6 */ , 78 Assembler::belowEqual /* above = 0x7 */ , 79 Assembler::positive /* negative = 0x8 */ , 80 Assembler::negative /* positive = 0x9 */ , 81 Assembler::noParity /* parity = 0xa */ , 82 Assembler::parity /* noParity = 0xb */ , 83 Assembler::greaterEqual /* less = 0xc */ , 84 Assembler::less /* greaterEqual = 0xd */ , 85 Assembler::greater /* lessEqual = 0xe */ , 86 Assembler::lessEqual /* greater = 0xf, */ 87 88 }; 89 90 91 // Implementation of MacroAssembler 92 93 // First all the versions that have distinct versions depending on 32/64 bit 94 // Unless the difference is trivial (1 line or so). 95 96 #ifndef _LP64 97 98 // 32bit versions 99 100 Address MacroAssembler::as_Address(AddressLiteral adr) { 101 return Address(adr.target(), adr.rspec()); 102 } 103 104 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 105 assert(rscratch == noreg, ""); 106 return Address::make_array(adr); 107 } 108 109 void MacroAssembler::call_VM_leaf_base(address entry_point, 110 int number_of_arguments) { 111 call(RuntimeAddress(entry_point)); 112 increment(rsp, number_of_arguments * wordSize); 113 } 114 115 void MacroAssembler::cmpklass(Address src1, Metadata* obj) { 116 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 117 } 118 119 120 void MacroAssembler::cmpklass(Register src1, Metadata* obj) { 121 cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 122 } 123 124 void MacroAssembler::cmpoop(Address src1, jobject obj) { 125 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 126 } 127 128 void MacroAssembler::cmpoop(Register src1, jobject obj, Register rscratch) { 129 assert(rscratch == noreg, "redundant"); 130 cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate()); 131 } 132 133 void MacroAssembler::extend_sign(Register hi, Register lo) { 134 // According to Intel Doc. AP-526, "Integer Divide", p.18. 135 if (VM_Version::is_P6() && hi == rdx && lo == rax) { 136 cdql(); 137 } else { 138 movl(hi, lo); 139 sarl(hi, 31); 140 } 141 } 142 143 void MacroAssembler::jC2(Register tmp, Label& L) { 144 // set parity bit if FPU flag C2 is set (via rax) 145 save_rax(tmp); 146 fwait(); fnstsw_ax(); 147 sahf(); 148 restore_rax(tmp); 149 // branch 150 jcc(Assembler::parity, L); 151 } 152 153 void MacroAssembler::jnC2(Register tmp, Label& L) { 154 // set parity bit if FPU flag C2 is set (via rax) 155 save_rax(tmp); 156 fwait(); fnstsw_ax(); 157 sahf(); 158 restore_rax(tmp); 159 // branch 160 jcc(Assembler::noParity, L); 161 } 162 163 // 32bit can do a case table jump in one instruction but we no longer allow the base 164 // to be installed in the Address class 165 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 166 assert(rscratch == noreg, "not needed"); 167 jmp(as_Address(entry, noreg)); 168 } 169 170 // Note: y_lo will be destroyed 171 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 172 // Long compare for Java (semantics as described in JVM spec.) 173 Label high, low, done; 174 175 cmpl(x_hi, y_hi); 176 jcc(Assembler::less, low); 177 jcc(Assembler::greater, high); 178 // x_hi is the return register 179 xorl(x_hi, x_hi); 180 cmpl(x_lo, y_lo); 181 jcc(Assembler::below, low); 182 jcc(Assembler::equal, done); 183 184 bind(high); 185 xorl(x_hi, x_hi); 186 increment(x_hi); 187 jmp(done); 188 189 bind(low); 190 xorl(x_hi, x_hi); 191 decrementl(x_hi); 192 193 bind(done); 194 } 195 196 void MacroAssembler::lea(Register dst, AddressLiteral src) { 197 mov_literal32(dst, (int32_t)src.target(), src.rspec()); 198 } 199 200 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 201 assert(rscratch == noreg, "not needed"); 202 203 // leal(dst, as_Address(adr)); 204 // see note in movl as to why we must use a move 205 mov_literal32(dst, (int32_t)adr.target(), adr.rspec()); 206 } 207 208 void MacroAssembler::leave() { 209 mov(rsp, rbp); 210 pop(rbp); 211 } 212 213 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) { 214 // Multiplication of two Java long values stored on the stack 215 // as illustrated below. Result is in rdx:rax. 216 // 217 // rsp ---> [ ?? ] \ \ 218 // .... | y_rsp_offset | 219 // [ y_lo ] / (in bytes) | x_rsp_offset 220 // [ y_hi ] | (in bytes) 221 // .... | 222 // [ x_lo ] / 223 // [ x_hi ] 224 // .... 225 // 226 // Basic idea: lo(result) = lo(x_lo * y_lo) 227 // hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi) 228 Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset); 229 Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset); 230 Label quick; 231 // load x_hi, y_hi and check if quick 232 // multiplication is possible 233 movl(rbx, x_hi); 234 movl(rcx, y_hi); 235 movl(rax, rbx); 236 orl(rbx, rcx); // rbx, = 0 <=> x_hi = 0 and y_hi = 0 237 jcc(Assembler::zero, quick); // if rbx, = 0 do quick multiply 238 // do full multiplication 239 // 1st step 240 mull(y_lo); // x_hi * y_lo 241 movl(rbx, rax); // save lo(x_hi * y_lo) in rbx, 242 // 2nd step 243 movl(rax, x_lo); 244 mull(rcx); // x_lo * y_hi 245 addl(rbx, rax); // add lo(x_lo * y_hi) to rbx, 246 // 3rd step 247 bind(quick); // note: rbx, = 0 if quick multiply! 248 movl(rax, x_lo); 249 mull(y_lo); // x_lo * y_lo 250 addl(rdx, rbx); // correct hi(x_lo * y_lo) 251 } 252 253 void MacroAssembler::lneg(Register hi, Register lo) { 254 negl(lo); 255 adcl(hi, 0); 256 negl(hi); 257 } 258 259 void MacroAssembler::lshl(Register hi, Register lo) { 260 // Java shift left long support (semantics as described in JVM spec., p.305) 261 // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n)) 262 // shift value is in rcx ! 263 assert(hi != rcx, "must not use rcx"); 264 assert(lo != rcx, "must not use rcx"); 265 const Register s = rcx; // shift count 266 const int n = BitsPerWord; 267 Label L; 268 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 269 cmpl(s, n); // if (s < n) 270 jcc(Assembler::less, L); // else (s >= n) 271 movl(hi, lo); // x := x << n 272 xorl(lo, lo); 273 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 274 bind(L); // s (mod n) < n 275 shldl(hi, lo); // x := x << s 276 shll(lo); 277 } 278 279 280 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) { 281 // Java shift right long support (semantics as described in JVM spec., p.306 & p.310) 282 // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n)) 283 assert(hi != rcx, "must not use rcx"); 284 assert(lo != rcx, "must not use rcx"); 285 const Register s = rcx; // shift count 286 const int n = BitsPerWord; 287 Label L; 288 andl(s, 0x3f); // s := s & 0x3f (s < 0x40) 289 cmpl(s, n); // if (s < n) 290 jcc(Assembler::less, L); // else (s >= n) 291 movl(lo, hi); // x := x >> n 292 if (sign_extension) sarl(hi, 31); 293 else xorl(hi, hi); 294 // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n! 295 bind(L); // s (mod n) < n 296 shrdl(lo, hi); // x := x >> s 297 if (sign_extension) sarl(hi); 298 else shrl(hi); 299 } 300 301 void MacroAssembler::movoop(Register dst, jobject obj) { 302 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 303 } 304 305 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 306 assert(rscratch == noreg, "redundant"); 307 mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate()); 308 } 309 310 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 311 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 312 } 313 314 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 315 assert(rscratch == noreg, "redundant"); 316 mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate()); 317 } 318 319 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 320 if (src.is_lval()) { 321 mov_literal32(dst, (intptr_t)src.target(), src.rspec()); 322 } else { 323 movl(dst, as_Address(src)); 324 } 325 } 326 327 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 328 assert(rscratch == noreg, "redundant"); 329 movl(as_Address(dst, noreg), src); 330 } 331 332 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 333 movl(dst, as_Address(src, noreg)); 334 } 335 336 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 337 assert(rscratch == noreg, "redundant"); 338 movl(dst, src); 339 } 340 341 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 342 assert(rscratch == noreg, "redundant"); 343 push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate()); 344 } 345 346 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 347 assert(rscratch == noreg, "redundant"); 348 push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate()); 349 } 350 351 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 352 assert(rscratch == noreg, "redundant"); 353 if (src.is_lval()) { 354 push_literal32((int32_t)src.target(), src.rspec()); 355 } else { 356 pushl(as_Address(src)); 357 } 358 } 359 360 static void pass_arg0(MacroAssembler* masm, Register arg) { 361 masm->push(arg); 362 } 363 364 static void pass_arg1(MacroAssembler* masm, Register arg) { 365 masm->push(arg); 366 } 367 368 static void pass_arg2(MacroAssembler* masm, Register arg) { 369 masm->push(arg); 370 } 371 372 static void pass_arg3(MacroAssembler* masm, Register arg) { 373 masm->push(arg); 374 } 375 376 #ifndef PRODUCT 377 extern "C" void findpc(intptr_t x); 378 #endif 379 380 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) { 381 // In order to get locks to work, we need to fake a in_VM state 382 JavaThread* thread = JavaThread::current(); 383 JavaThreadState saved_state = thread->thread_state(); 384 thread->set_thread_state(_thread_in_vm); 385 if (ShowMessageBoxOnError) { 386 JavaThread* thread = JavaThread::current(); 387 JavaThreadState saved_state = thread->thread_state(); 388 thread->set_thread_state(_thread_in_vm); 389 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 390 ttyLocker ttyl; 391 BytecodeCounter::print(); 392 } 393 // To see where a verify_oop failed, get $ebx+40/X for this frame. 394 // This is the value of eip which points to where verify_oop will return. 395 if (os::message_box(msg, "Execution stopped, print registers?")) { 396 print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip); 397 BREAKPOINT; 398 } 399 } 400 fatal("DEBUG MESSAGE: %s", msg); 401 } 402 403 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) { 404 ttyLocker ttyl; 405 DebuggingContext debugging{}; 406 tty->print_cr("eip = 0x%08x", eip); 407 #ifndef PRODUCT 408 if ((WizardMode || Verbose) && PrintMiscellaneous) { 409 tty->cr(); 410 findpc(eip); 411 tty->cr(); 412 } 413 #endif 414 #define PRINT_REG(rax) \ 415 { tty->print("%s = ", #rax); os::print_location(tty, rax); } 416 PRINT_REG(rax); 417 PRINT_REG(rbx); 418 PRINT_REG(rcx); 419 PRINT_REG(rdx); 420 PRINT_REG(rdi); 421 PRINT_REG(rsi); 422 PRINT_REG(rbp); 423 PRINT_REG(rsp); 424 #undef PRINT_REG 425 // Print some words near top of staack. 426 int* dump_sp = (int*) rsp; 427 for (int col1 = 0; col1 < 8; col1++) { 428 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 429 os::print_location(tty, *dump_sp++); 430 } 431 for (int row = 0; row < 16; row++) { 432 tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 433 for (int col = 0; col < 8; col++) { 434 tty->print(" 0x%08x", *dump_sp++); 435 } 436 tty->cr(); 437 } 438 // Print some instructions around pc: 439 Disassembler::decode((address)eip-64, (address)eip); 440 tty->print_cr("--------"); 441 Disassembler::decode((address)eip, (address)eip+32); 442 } 443 444 void MacroAssembler::stop(const char* msg) { 445 // push address of message 446 ExternalAddress message((address)msg); 447 pushptr(message.addr(), noreg); 448 { Label L; call(L, relocInfo::none); bind(L); } // push eip 449 pusha(); // push registers 450 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32))); 451 hlt(); 452 } 453 454 void MacroAssembler::warn(const char* msg) { 455 push_CPU_state(); 456 457 // push address of message 458 ExternalAddress message((address)msg); 459 pushptr(message.addr(), noreg); 460 461 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 462 addl(rsp, wordSize); // discard argument 463 pop_CPU_state(); 464 } 465 466 void MacroAssembler::print_state() { 467 { Label L; call(L, relocInfo::none); bind(L); } // push eip 468 pusha(); // push registers 469 470 push_CPU_state(); 471 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32))); 472 pop_CPU_state(); 473 474 popa(); 475 addl(rsp, wordSize); 476 } 477 478 #else // _LP64 479 480 // 64 bit versions 481 482 Address MacroAssembler::as_Address(AddressLiteral adr) { 483 // amd64 always does this as a pc-rel 484 // we can be absolute or disp based on the instruction type 485 // jmp/call are displacements others are absolute 486 assert(!adr.is_lval(), "must be rval"); 487 assert(reachable(adr), "must be"); 488 return Address(checked_cast<int32_t>(adr.target() - pc()), adr.target(), adr.reloc()); 489 490 } 491 492 Address MacroAssembler::as_Address(ArrayAddress adr, Register rscratch) { 493 AddressLiteral base = adr.base(); 494 lea(rscratch, base); 495 Address index = adr.index(); 496 assert(index._disp == 0, "must not have disp"); // maybe it can? 497 Address array(rscratch, index._index, index._scale, index._disp); 498 return array; 499 } 500 501 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) { 502 Label L, E; 503 504 #ifdef _WIN64 505 // Windows always allocates space for it's register args 506 assert(num_args <= 4, "only register arguments supported"); 507 subq(rsp, frame::arg_reg_save_area_bytes); 508 #endif 509 510 // Align stack if necessary 511 testl(rsp, 15); 512 jcc(Assembler::zero, L); 513 514 subq(rsp, 8); 515 call(RuntimeAddress(entry_point)); 516 addq(rsp, 8); 517 jmp(E); 518 519 bind(L); 520 call(RuntimeAddress(entry_point)); 521 522 bind(E); 523 524 #ifdef _WIN64 525 // restore stack pointer 526 addq(rsp, frame::arg_reg_save_area_bytes); 527 #endif 528 529 } 530 531 void MacroAssembler::cmp64(Register src1, AddressLiteral src2, Register rscratch) { 532 assert(!src2.is_lval(), "should use cmpptr"); 533 assert(rscratch != noreg || always_reachable(src2), "missing"); 534 535 if (reachable(src2)) { 536 cmpq(src1, as_Address(src2)); 537 } else { 538 lea(rscratch, src2); 539 Assembler::cmpq(src1, Address(rscratch, 0)); 540 } 541 } 542 543 int MacroAssembler::corrected_idivq(Register reg) { 544 // Full implementation of Java ldiv and lrem; checks for special 545 // case as described in JVM spec., p.243 & p.271. The function 546 // returns the (pc) offset of the idivl instruction - may be needed 547 // for implicit exceptions. 548 // 549 // normal case special case 550 // 551 // input : rax: dividend min_long 552 // reg: divisor (may not be eax/edx) -1 553 // 554 // output: rax: quotient (= rax idiv reg) min_long 555 // rdx: remainder (= rax irem reg) 0 556 assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register"); 557 static const int64_t min_long = 0x8000000000000000; 558 Label normal_case, special_case; 559 560 // check for special case 561 cmp64(rax, ExternalAddress((address) &min_long), rdx /*rscratch*/); 562 jcc(Assembler::notEqual, normal_case); 563 xorl(rdx, rdx); // prepare rdx for possible special case (where 564 // remainder = 0) 565 cmpq(reg, -1); 566 jcc(Assembler::equal, special_case); 567 568 // handle normal case 569 bind(normal_case); 570 cdqq(); 571 int idivq_offset = offset(); 572 idivq(reg); 573 574 // normal and special case exit 575 bind(special_case); 576 577 return idivq_offset; 578 } 579 580 void MacroAssembler::decrementq(Register reg, int value) { 581 if (value == min_jint) { subq(reg, value); return; } 582 if (value < 0) { incrementq(reg, -value); return; } 583 if (value == 0) { ; return; } 584 if (value == 1 && UseIncDec) { decq(reg) ; return; } 585 /* else */ { subq(reg, value) ; return; } 586 } 587 588 void MacroAssembler::decrementq(Address dst, int value) { 589 if (value == min_jint) { subq(dst, value); return; } 590 if (value < 0) { incrementq(dst, -value); return; } 591 if (value == 0) { ; return; } 592 if (value == 1 && UseIncDec) { decq(dst) ; return; } 593 /* else */ { subq(dst, value) ; return; } 594 } 595 596 void MacroAssembler::incrementq(AddressLiteral dst, Register rscratch) { 597 assert(rscratch != noreg || always_reachable(dst), "missing"); 598 599 if (reachable(dst)) { 600 incrementq(as_Address(dst)); 601 } else { 602 lea(rscratch, dst); 603 incrementq(Address(rscratch, 0)); 604 } 605 } 606 607 void MacroAssembler::incrementq(Register reg, int value) { 608 if (value == min_jint) { addq(reg, value); return; } 609 if (value < 0) { decrementq(reg, -value); return; } 610 if (value == 0) { ; return; } 611 if (value == 1 && UseIncDec) { incq(reg) ; return; } 612 /* else */ { addq(reg, value) ; return; } 613 } 614 615 void MacroAssembler::incrementq(Address dst, int value) { 616 if (value == min_jint) { addq(dst, value); return; } 617 if (value < 0) { decrementq(dst, -value); return; } 618 if (value == 0) { ; return; } 619 if (value == 1 && UseIncDec) { incq(dst) ; return; } 620 /* else */ { addq(dst, value) ; return; } 621 } 622 623 // 32bit can do a case table jump in one instruction but we no longer allow the base 624 // to be installed in the Address class 625 void MacroAssembler::jump(ArrayAddress entry, Register rscratch) { 626 lea(rscratch, entry.base()); 627 Address dispatch = entry.index(); 628 assert(dispatch._base == noreg, "must be"); 629 dispatch._base = rscratch; 630 jmp(dispatch); 631 } 632 633 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) { 634 ShouldNotReachHere(); // 64bit doesn't use two regs 635 cmpq(x_lo, y_lo); 636 } 637 638 void MacroAssembler::lea(Register dst, AddressLiteral src) { 639 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 640 } 641 642 void MacroAssembler::lea(Address dst, AddressLiteral adr, Register rscratch) { 643 lea(rscratch, adr); 644 movptr(dst, rscratch); 645 } 646 647 void MacroAssembler::leave() { 648 // %%% is this really better? Why not on 32bit too? 649 emit_int8((unsigned char)0xC9); // LEAVE 650 } 651 652 void MacroAssembler::lneg(Register hi, Register lo) { 653 ShouldNotReachHere(); // 64bit doesn't use two regs 654 negq(lo); 655 } 656 657 void MacroAssembler::movoop(Register dst, jobject obj) { 658 mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 659 } 660 661 void MacroAssembler::movoop(Address dst, jobject obj, Register rscratch) { 662 mov_literal64(rscratch, (intptr_t)obj, oop_Relocation::spec_for_immediate()); 663 movq(dst, rscratch); 664 } 665 666 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 667 mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 668 } 669 670 void MacroAssembler::mov_metadata(Address dst, Metadata* obj, Register rscratch) { 671 mov_literal64(rscratch, (intptr_t)obj, metadata_Relocation::spec_for_immediate()); 672 movq(dst, rscratch); 673 } 674 675 void MacroAssembler::movptr(Register dst, AddressLiteral src) { 676 if (src.is_lval()) { 677 mov_literal64(dst, (intptr_t)src.target(), src.rspec()); 678 } else { 679 if (reachable(src)) { 680 movq(dst, as_Address(src)); 681 } else { 682 lea(dst, src); 683 movq(dst, Address(dst, 0)); 684 } 685 } 686 } 687 688 void MacroAssembler::movptr(ArrayAddress dst, Register src, Register rscratch) { 689 movq(as_Address(dst, rscratch), src); 690 } 691 692 void MacroAssembler::movptr(Register dst, ArrayAddress src) { 693 movq(dst, as_Address(src, dst /*rscratch*/)); 694 } 695 696 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 697 void MacroAssembler::movptr(Address dst, intptr_t src, Register rscratch) { 698 if (is_simm32(src)) { 699 movptr(dst, checked_cast<int32_t>(src)); 700 } else { 701 mov64(rscratch, src); 702 movq(dst, rscratch); 703 } 704 } 705 706 void MacroAssembler::pushoop(jobject obj, Register rscratch) { 707 movoop(rscratch, obj); 708 push(rscratch); 709 } 710 711 void MacroAssembler::pushklass(Metadata* obj, Register rscratch) { 712 mov_metadata(rscratch, obj); 713 push(rscratch); 714 } 715 716 void MacroAssembler::pushptr(AddressLiteral src, Register rscratch) { 717 lea(rscratch, src); 718 if (src.is_lval()) { 719 push(rscratch); 720 } else { 721 pushq(Address(rscratch, 0)); 722 } 723 } 724 725 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 726 reset_last_Java_frame(r15_thread, clear_fp); 727 } 728 729 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 730 Register last_java_fp, 731 address last_java_pc, 732 Register rscratch) { 733 set_last_Java_frame(r15_thread, last_java_sp, last_java_fp, last_java_pc, rscratch); 734 } 735 736 static void pass_arg0(MacroAssembler* masm, Register arg) { 737 if (c_rarg0 != arg ) { 738 masm->mov(c_rarg0, arg); 739 } 740 } 741 742 static void pass_arg1(MacroAssembler* masm, Register arg) { 743 if (c_rarg1 != arg ) { 744 masm->mov(c_rarg1, arg); 745 } 746 } 747 748 static void pass_arg2(MacroAssembler* masm, Register arg) { 749 if (c_rarg2 != arg ) { 750 masm->mov(c_rarg2, arg); 751 } 752 } 753 754 static void pass_arg3(MacroAssembler* masm, Register arg) { 755 if (c_rarg3 != arg ) { 756 masm->mov(c_rarg3, arg); 757 } 758 } 759 760 void MacroAssembler::stop(const char* msg) { 761 if (ShowMessageBoxOnError) { 762 address rip = pc(); 763 pusha(); // get regs on stack 764 lea(c_rarg1, InternalAddress(rip)); 765 movq(c_rarg2, rsp); // pass pointer to regs array 766 } 767 lea(c_rarg0, ExternalAddress((address) msg)); 768 andq(rsp, -16); // align stack as required by ABI 769 call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64))); 770 hlt(); 771 } 772 773 void MacroAssembler::warn(const char* msg) { 774 push(rbp); 775 movq(rbp, rsp); 776 andq(rsp, -16); // align stack as required by push_CPU_state and call 777 push_CPU_state(); // keeps alignment at 16 bytes 778 779 lea(c_rarg0, ExternalAddress((address) msg)); 780 call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning))); 781 782 pop_CPU_state(); 783 mov(rsp, rbp); 784 pop(rbp); 785 } 786 787 void MacroAssembler::print_state() { 788 address rip = pc(); 789 pusha(); // get regs on stack 790 push(rbp); 791 movq(rbp, rsp); 792 andq(rsp, -16); // align stack as required by push_CPU_state and call 793 push_CPU_state(); // keeps alignment at 16 bytes 794 795 lea(c_rarg0, InternalAddress(rip)); 796 lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array 797 call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1); 798 799 pop_CPU_state(); 800 mov(rsp, rbp); 801 pop(rbp); 802 popa(); 803 } 804 805 #ifndef PRODUCT 806 extern "C" void findpc(intptr_t x); 807 #endif 808 809 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) { 810 // In order to get locks to work, we need to fake a in_VM state 811 if (ShowMessageBoxOnError) { 812 JavaThread* thread = JavaThread::current(); 813 JavaThreadState saved_state = thread->thread_state(); 814 thread->set_thread_state(_thread_in_vm); 815 #ifndef PRODUCT 816 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 817 ttyLocker ttyl; 818 BytecodeCounter::print(); 819 } 820 #endif 821 // To see where a verify_oop failed, get $ebx+40/X for this frame. 822 // XXX correct this offset for amd64 823 // This is the value of eip which points to where verify_oop will return. 824 if (os::message_box(msg, "Execution stopped, print registers?")) { 825 print_state64(pc, regs); 826 BREAKPOINT; 827 } 828 } 829 fatal("DEBUG MESSAGE: %s", msg); 830 } 831 832 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) { 833 ttyLocker ttyl; 834 DebuggingContext debugging{}; 835 tty->print_cr("rip = 0x%016lx", (intptr_t)pc); 836 #ifndef PRODUCT 837 tty->cr(); 838 findpc(pc); 839 tty->cr(); 840 #endif 841 #define PRINT_REG(rax, value) \ 842 { tty->print("%s = ", #rax); os::print_location(tty, value); } 843 PRINT_REG(rax, regs[15]); 844 PRINT_REG(rbx, regs[12]); 845 PRINT_REG(rcx, regs[14]); 846 PRINT_REG(rdx, regs[13]); 847 PRINT_REG(rdi, regs[8]); 848 PRINT_REG(rsi, regs[9]); 849 PRINT_REG(rbp, regs[10]); 850 // rsp is actually not stored by pusha(), compute the old rsp from regs (rsp after pusha): regs + 16 = old rsp 851 PRINT_REG(rsp, (intptr_t)(®s[16])); 852 PRINT_REG(r8 , regs[7]); 853 PRINT_REG(r9 , regs[6]); 854 PRINT_REG(r10, regs[5]); 855 PRINT_REG(r11, regs[4]); 856 PRINT_REG(r12, regs[3]); 857 PRINT_REG(r13, regs[2]); 858 PRINT_REG(r14, regs[1]); 859 PRINT_REG(r15, regs[0]); 860 #undef PRINT_REG 861 // Print some words near the top of the stack. 862 int64_t* rsp = ®s[16]; 863 int64_t* dump_sp = rsp; 864 for (int col1 = 0; col1 < 8; col1++) { 865 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 866 os::print_location(tty, *dump_sp++); 867 } 868 for (int row = 0; row < 25; row++) { 869 tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp); 870 for (int col = 0; col < 4; col++) { 871 tty->print(" 0x%016lx", (intptr_t)*dump_sp++); 872 } 873 tty->cr(); 874 } 875 // Print some instructions around pc: 876 Disassembler::decode((address)pc-64, (address)pc); 877 tty->print_cr("--------"); 878 Disassembler::decode((address)pc, (address)pc+32); 879 } 880 881 // The java_calling_convention describes stack locations as ideal slots on 882 // a frame with no abi restrictions. Since we must observe abi restrictions 883 // (like the placement of the register window) the slots must be biased by 884 // the following value. 885 static int reg2offset_in(VMReg r) { 886 // Account for saved rbp and return address 887 // This should really be in_preserve_stack_slots 888 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 889 } 890 891 static int reg2offset_out(VMReg r) { 892 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 893 } 894 895 // A long move 896 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 897 898 // The calling conventions assures us that each VMregpair is either 899 // all really one physical register or adjacent stack slots. 900 901 if (src.is_single_phys_reg() ) { 902 if (dst.is_single_phys_reg()) { 903 if (dst.first() != src.first()) { 904 mov(dst.first()->as_Register(), src.first()->as_Register()); 905 } 906 } else { 907 assert(dst.is_single_reg(), "not a stack pair: (%s, %s), (%s, %s)", 908 src.first()->name(), src.second()->name(), dst.first()->name(), dst.second()->name()); 909 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 910 } 911 } else if (dst.is_single_phys_reg()) { 912 assert(src.is_single_reg(), "not a stack pair"); 913 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 914 } else { 915 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 916 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 917 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 918 } 919 } 920 921 // A double move 922 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 923 924 // The calling conventions assures us that each VMregpair is either 925 // all really one physical register or adjacent stack slots. 926 927 if (src.is_single_phys_reg() ) { 928 if (dst.is_single_phys_reg()) { 929 // In theory these overlap but the ordering is such that this is likely a nop 930 if ( src.first() != dst.first()) { 931 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 932 } 933 } else { 934 assert(dst.is_single_reg(), "not a stack pair"); 935 movdbl(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 936 } 937 } else if (dst.is_single_phys_reg()) { 938 assert(src.is_single_reg(), "not a stack pair"); 939 movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 940 } else { 941 assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs"); 942 movq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 943 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 944 } 945 } 946 947 948 // A float arg may have to do float reg int reg conversion 949 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 950 assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move"); 951 952 // The calling conventions assures us that each VMregpair is either 953 // all really one physical register or adjacent stack slots. 954 955 if (src.first()->is_stack()) { 956 if (dst.first()->is_stack()) { 957 movl(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 958 movptr(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 959 } else { 960 // stack to reg 961 assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 962 movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 963 } 964 } else if (dst.first()->is_stack()) { 965 // reg to stack 966 assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters"); 967 movflt(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_XMMRegister()); 968 } else { 969 // reg to reg 970 // In theory these overlap but the ordering is such that this is likely a nop 971 if ( src.first() != dst.first()) { 972 movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister()); 973 } 974 } 975 } 976 977 // On 64 bit we will store integer like items to the stack as 978 // 64 bits items (x86_32/64 abi) even though java would only store 979 // 32bits for a parameter. On 32bit it will simply be 32 bits 980 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 981 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp, int in_stk_bias, int out_stk_bias) { 982 if (src.first()->is_stack()) { 983 if (dst.first()->is_stack()) { 984 // stack to stack 985 movslq(tmp, Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 986 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), tmp); 987 } else { 988 // stack to reg 989 movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()) + in_stk_bias)); 990 } 991 } else if (dst.first()->is_stack()) { 992 // reg to stack 993 // Do we really have to sign extend??? 994 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 995 movq(Address(rsp, reg2offset_out(dst.first()) + out_stk_bias), src.first()->as_Register()); 996 } else { 997 // Do we really have to sign extend??? 998 // __ movslq(dst.first()->as_Register(), src.first()->as_Register()); 999 if (dst.first() != src.first()) { 1000 movq(dst.first()->as_Register(), src.first()->as_Register()); 1001 } 1002 } 1003 } 1004 1005 void MacroAssembler::move_ptr(VMRegPair src, VMRegPair dst) { 1006 if (src.first()->is_stack()) { 1007 if (dst.first()->is_stack()) { 1008 // stack to stack 1009 movq(rax, Address(rbp, reg2offset_in(src.first()))); 1010 movq(Address(rsp, reg2offset_out(dst.first())), rax); 1011 } else { 1012 // stack to reg 1013 movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first()))); 1014 } 1015 } else if (dst.first()->is_stack()) { 1016 // reg to stack 1017 movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register()); 1018 } else { 1019 if (dst.first() != src.first()) { 1020 movq(dst.first()->as_Register(), src.first()->as_Register()); 1021 } 1022 } 1023 } 1024 1025 // An oop arg. Must pass a handle not the oop itself 1026 void MacroAssembler::object_move(OopMap* map, 1027 int oop_handle_offset, 1028 int framesize_in_slots, 1029 VMRegPair src, 1030 VMRegPair dst, 1031 bool is_receiver, 1032 int* receiver_offset) { 1033 1034 // must pass a handle. First figure out the location we use as a handle 1035 1036 Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register(); 1037 1038 // See if oop is null if it is we need no handle 1039 1040 if (src.first()->is_stack()) { 1041 1042 // Oop is already on the stack as an argument 1043 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 1044 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 1045 if (is_receiver) { 1046 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 1047 } 1048 1049 cmpptr(Address(rbp, reg2offset_in(src.first())), NULL_WORD); 1050 lea(rHandle, Address(rbp, reg2offset_in(src.first()))); 1051 // conditionally move a null 1052 cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first()))); 1053 } else { 1054 1055 // Oop is in a register we must store it to the space we reserve 1056 // on the stack for oop_handles and pass a handle if oop is non-null 1057 1058 const Register rOop = src.first()->as_Register(); 1059 int oop_slot; 1060 if (rOop == j_rarg0) 1061 oop_slot = 0; 1062 else if (rOop == j_rarg1) 1063 oop_slot = 1; 1064 else if (rOop == j_rarg2) 1065 oop_slot = 2; 1066 else if (rOop == j_rarg3) 1067 oop_slot = 3; 1068 else if (rOop == j_rarg4) 1069 oop_slot = 4; 1070 else { 1071 assert(rOop == j_rarg5, "wrong register"); 1072 oop_slot = 5; 1073 } 1074 1075 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 1076 int offset = oop_slot*VMRegImpl::stack_slot_size; 1077 1078 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 1079 // Store oop in handle area, may be null 1080 movptr(Address(rsp, offset), rOop); 1081 if (is_receiver) { 1082 *receiver_offset = offset; 1083 } 1084 1085 cmpptr(rOop, NULL_WORD); 1086 lea(rHandle, Address(rsp, offset)); 1087 // conditionally move a null from the handle area where it was just stored 1088 cmovptr(Assembler::equal, rHandle, Address(rsp, offset)); 1089 } 1090 1091 // If arg is on the stack then place it otherwise it is already in correct reg. 1092 if (dst.first()->is_stack()) { 1093 movptr(Address(rsp, reg2offset_out(dst.first())), rHandle); 1094 } 1095 } 1096 1097 #endif // _LP64 1098 1099 // Now versions that are common to 32/64 bit 1100 1101 void MacroAssembler::addptr(Register dst, int32_t imm32) { 1102 LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32)); 1103 } 1104 1105 void MacroAssembler::addptr(Register dst, Register src) { 1106 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1107 } 1108 1109 void MacroAssembler::addptr(Address dst, Register src) { 1110 LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); 1111 } 1112 1113 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1114 assert(rscratch != noreg || always_reachable(src), "missing"); 1115 1116 if (reachable(src)) { 1117 Assembler::addsd(dst, as_Address(src)); 1118 } else { 1119 lea(rscratch, src); 1120 Assembler::addsd(dst, Address(rscratch, 0)); 1121 } 1122 } 1123 1124 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1125 assert(rscratch != noreg || always_reachable(src), "missing"); 1126 1127 if (reachable(src)) { 1128 addss(dst, as_Address(src)); 1129 } else { 1130 lea(rscratch, src); 1131 addss(dst, Address(rscratch, 0)); 1132 } 1133 } 1134 1135 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1136 assert(rscratch != noreg || always_reachable(src), "missing"); 1137 1138 if (reachable(src)) { 1139 Assembler::addpd(dst, as_Address(src)); 1140 } else { 1141 lea(rscratch, src); 1142 Assembler::addpd(dst, Address(rscratch, 0)); 1143 } 1144 } 1145 1146 // See 8273459. Function for ensuring 64-byte alignment, intended for stubs only. 1147 // Stub code is generated once and never copied. 1148 // NMethods can't use this because they get copied and we can't force alignment > 32 bytes. 1149 void MacroAssembler::align64() { 1150 align(64, (unsigned long long) pc()); 1151 } 1152 1153 void MacroAssembler::align32() { 1154 align(32, (unsigned long long) pc()); 1155 } 1156 1157 void MacroAssembler::align(int modulus) { 1158 // 8273459: Ensure alignment is possible with current segment alignment 1159 assert(modulus <= CodeEntryAlignment, "Alignment must be <= CodeEntryAlignment"); 1160 align(modulus, offset()); 1161 } 1162 1163 void MacroAssembler::align(int modulus, int target) { 1164 if (target % modulus != 0) { 1165 nop(modulus - (target % modulus)); 1166 } 1167 } 1168 1169 void MacroAssembler::push_f(XMMRegister r) { 1170 subptr(rsp, wordSize); 1171 movflt(Address(rsp, 0), r); 1172 } 1173 1174 void MacroAssembler::pop_f(XMMRegister r) { 1175 movflt(r, Address(rsp, 0)); 1176 addptr(rsp, wordSize); 1177 } 1178 1179 void MacroAssembler::push_d(XMMRegister r) { 1180 subptr(rsp, 2 * wordSize); 1181 movdbl(Address(rsp, 0), r); 1182 } 1183 1184 void MacroAssembler::pop_d(XMMRegister r) { 1185 movdbl(r, Address(rsp, 0)); 1186 addptr(rsp, 2 * Interpreter::stackElementSize); 1187 } 1188 1189 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1190 // Used in sign-masking with aligned address. 1191 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1192 assert(rscratch != noreg || always_reachable(src), "missing"); 1193 1194 if (reachable(src)) { 1195 Assembler::andpd(dst, as_Address(src)); 1196 } else { 1197 lea(rscratch, src); 1198 Assembler::andpd(dst, Address(rscratch, 0)); 1199 } 1200 } 1201 1202 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src, Register rscratch) { 1203 // Used in sign-masking with aligned address. 1204 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 1205 assert(rscratch != noreg || always_reachable(src), "missing"); 1206 1207 if (reachable(src)) { 1208 Assembler::andps(dst, as_Address(src)); 1209 } else { 1210 lea(rscratch, src); 1211 Assembler::andps(dst, Address(rscratch, 0)); 1212 } 1213 } 1214 1215 void MacroAssembler::andptr(Register dst, int32_t imm32) { 1216 LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32)); 1217 } 1218 1219 #ifdef _LP64 1220 void MacroAssembler::andq(Register dst, AddressLiteral src, Register rscratch) { 1221 assert(rscratch != noreg || always_reachable(src), "missing"); 1222 1223 if (reachable(src)) { 1224 andq(dst, as_Address(src)); 1225 } else { 1226 lea(rscratch, src); 1227 andq(dst, Address(rscratch, 0)); 1228 } 1229 } 1230 #endif 1231 1232 void MacroAssembler::atomic_incl(Address counter_addr) { 1233 lock(); 1234 incrementl(counter_addr); 1235 } 1236 1237 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register rscratch) { 1238 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1239 1240 if (reachable(counter_addr)) { 1241 atomic_incl(as_Address(counter_addr)); 1242 } else { 1243 lea(rscratch, counter_addr); 1244 atomic_incl(Address(rscratch, 0)); 1245 } 1246 } 1247 1248 #ifdef _LP64 1249 void MacroAssembler::atomic_incq(Address counter_addr) { 1250 lock(); 1251 incrementq(counter_addr); 1252 } 1253 1254 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register rscratch) { 1255 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1256 1257 if (reachable(counter_addr)) { 1258 atomic_incq(as_Address(counter_addr)); 1259 } else { 1260 lea(rscratch, counter_addr); 1261 atomic_incq(Address(rscratch, 0)); 1262 } 1263 } 1264 #endif 1265 1266 // Writes to stack successive pages until offset reached to check for 1267 // stack overflow + shadow pages. This clobbers tmp. 1268 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 1269 movptr(tmp, rsp); 1270 // Bang stack for total size given plus shadow page size. 1271 // Bang one page at a time because large size can bang beyond yellow and 1272 // red zones. 1273 Label loop; 1274 bind(loop); 1275 movl(Address(tmp, (-(int)os::vm_page_size())), size ); 1276 subptr(tmp, (int)os::vm_page_size()); 1277 subl(size, (int)os::vm_page_size()); 1278 jcc(Assembler::greater, loop); 1279 1280 // Bang down shadow pages too. 1281 // At this point, (tmp-0) is the last address touched, so don't 1282 // touch it again. (It was touched as (tmp-pagesize) but then tmp 1283 // was post-decremented.) Skip this address by starting at i=1, and 1284 // touch a few more pages below. N.B. It is important to touch all 1285 // the way down including all pages in the shadow zone. 1286 for (int i = 1; i < ((int)StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()); i++) { 1287 // this could be any sized move but this is can be a debugging crumb 1288 // so the bigger the better. 1289 movptr(Address(tmp, (-i*(int)os::vm_page_size())), size ); 1290 } 1291 } 1292 1293 void MacroAssembler::reserved_stack_check() { 1294 // testing if reserved zone needs to be enabled 1295 Label no_reserved_zone_enabling; 1296 Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread); 1297 NOT_LP64(get_thread(rsi);) 1298 1299 cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset())); 1300 jcc(Assembler::below, no_reserved_zone_enabling); 1301 1302 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread); 1303 jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry())); 1304 should_not_reach_here(); 1305 1306 bind(no_reserved_zone_enabling); 1307 } 1308 1309 void MacroAssembler::c2bool(Register x) { 1310 // implements x == 0 ? 0 : 1 1311 // note: must only look at least-significant byte of x 1312 // since C-style booleans are stored in one byte 1313 // only! (was bug) 1314 andl(x, 0xFF); 1315 setb(Assembler::notZero, x); 1316 } 1317 1318 // Wouldn't need if AddressLiteral version had new name 1319 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) { 1320 Assembler::call(L, rtype); 1321 } 1322 1323 void MacroAssembler::call(Register entry) { 1324 Assembler::call(entry); 1325 } 1326 1327 void MacroAssembler::call(AddressLiteral entry, Register rscratch) { 1328 assert(rscratch != noreg || always_reachable(entry), "missing"); 1329 1330 if (reachable(entry)) { 1331 Assembler::call_literal(entry.target(), entry.rspec()); 1332 } else { 1333 lea(rscratch, entry); 1334 Assembler::call(rscratch); 1335 } 1336 } 1337 1338 void MacroAssembler::ic_call(address entry, jint method_index) { 1339 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1340 #ifdef _LP64 1341 // Needs full 64-bit immediate for later patching. 1342 mov64(rax, (intptr_t)Universe::non_oop_word()); 1343 #else 1344 movptr(rax, (intptr_t)Universe::non_oop_word()); 1345 #endif 1346 call(AddressLiteral(entry, rh)); 1347 } 1348 1349 void MacroAssembler::emit_static_call_stub() { 1350 // Static stub relocation also tags the Method* in the code-stream. 1351 mov_metadata(rbx, (Metadata*) nullptr); // Method is zapped till fixup time. 1352 // This is recognized as unresolved by relocs/nativeinst/ic code. 1353 jump(RuntimeAddress(pc())); 1354 } 1355 1356 // Implementation of call_VM versions 1357 1358 void MacroAssembler::call_VM(Register oop_result, 1359 address entry_point, 1360 bool check_exceptions) { 1361 Label C, E; 1362 call(C, relocInfo::none); 1363 jmp(E); 1364 1365 bind(C); 1366 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1367 ret(0); 1368 1369 bind(E); 1370 } 1371 1372 void MacroAssembler::call_VM(Register oop_result, 1373 address entry_point, 1374 Register arg_1, 1375 bool check_exceptions) { 1376 Label C, E; 1377 call(C, relocInfo::none); 1378 jmp(E); 1379 1380 bind(C); 1381 pass_arg1(this, arg_1); 1382 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1383 ret(0); 1384 1385 bind(E); 1386 } 1387 1388 void MacroAssembler::call_VM(Register oop_result, 1389 address entry_point, 1390 Register arg_1, 1391 Register arg_2, 1392 bool check_exceptions) { 1393 Label C, E; 1394 call(C, relocInfo::none); 1395 jmp(E); 1396 1397 bind(C); 1398 1399 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1400 1401 pass_arg2(this, arg_2); 1402 pass_arg1(this, arg_1); 1403 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1404 ret(0); 1405 1406 bind(E); 1407 } 1408 1409 void MacroAssembler::call_VM(Register oop_result, 1410 address entry_point, 1411 Register arg_1, 1412 Register arg_2, 1413 Register arg_3, 1414 bool check_exceptions) { 1415 Label C, E; 1416 call(C, relocInfo::none); 1417 jmp(E); 1418 1419 bind(C); 1420 1421 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1422 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1423 pass_arg3(this, arg_3); 1424 1425 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1426 pass_arg2(this, arg_2); 1427 1428 pass_arg1(this, arg_1); 1429 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1430 ret(0); 1431 1432 bind(E); 1433 } 1434 1435 void MacroAssembler::call_VM(Register oop_result, 1436 Register last_java_sp, 1437 address entry_point, 1438 int number_of_arguments, 1439 bool check_exceptions) { 1440 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1441 call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1442 } 1443 1444 void MacroAssembler::call_VM(Register oop_result, 1445 Register last_java_sp, 1446 address entry_point, 1447 Register arg_1, 1448 bool check_exceptions) { 1449 pass_arg1(this, arg_1); 1450 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1451 } 1452 1453 void MacroAssembler::call_VM(Register oop_result, 1454 Register last_java_sp, 1455 address entry_point, 1456 Register arg_1, 1457 Register arg_2, 1458 bool check_exceptions) { 1459 1460 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1461 pass_arg2(this, arg_2); 1462 pass_arg1(this, arg_1); 1463 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1464 } 1465 1466 void MacroAssembler::call_VM(Register oop_result, 1467 Register last_java_sp, 1468 address entry_point, 1469 Register arg_1, 1470 Register arg_2, 1471 Register arg_3, 1472 bool check_exceptions) { 1473 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1474 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1475 pass_arg3(this, arg_3); 1476 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1477 pass_arg2(this, arg_2); 1478 pass_arg1(this, arg_1); 1479 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1480 } 1481 1482 void MacroAssembler::super_call_VM(Register oop_result, 1483 Register last_java_sp, 1484 address entry_point, 1485 int number_of_arguments, 1486 bool check_exceptions) { 1487 Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg); 1488 MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1489 } 1490 1491 void MacroAssembler::super_call_VM(Register oop_result, 1492 Register last_java_sp, 1493 address entry_point, 1494 Register arg_1, 1495 bool check_exceptions) { 1496 pass_arg1(this, arg_1); 1497 super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1498 } 1499 1500 void MacroAssembler::super_call_VM(Register oop_result, 1501 Register last_java_sp, 1502 address entry_point, 1503 Register arg_1, 1504 Register arg_2, 1505 bool check_exceptions) { 1506 1507 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1508 pass_arg2(this, arg_2); 1509 pass_arg1(this, arg_1); 1510 super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1511 } 1512 1513 void MacroAssembler::super_call_VM(Register oop_result, 1514 Register last_java_sp, 1515 address entry_point, 1516 Register arg_1, 1517 Register arg_2, 1518 Register arg_3, 1519 bool check_exceptions) { 1520 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1521 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1522 pass_arg3(this, arg_3); 1523 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1524 pass_arg2(this, arg_2); 1525 pass_arg1(this, arg_1); 1526 super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1527 } 1528 1529 void MacroAssembler::call_VM_base(Register oop_result, 1530 Register java_thread, 1531 Register last_java_sp, 1532 address entry_point, 1533 int number_of_arguments, 1534 bool check_exceptions) { 1535 // determine java_thread register 1536 if (!java_thread->is_valid()) { 1537 #ifdef _LP64 1538 java_thread = r15_thread; 1539 #else 1540 java_thread = rdi; 1541 get_thread(java_thread); 1542 #endif // LP64 1543 } 1544 // determine last_java_sp register 1545 if (!last_java_sp->is_valid()) { 1546 last_java_sp = rsp; 1547 } 1548 // debugging support 1549 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 1550 LP64_ONLY(assert(java_thread == r15_thread, "unexpected register")); 1551 #ifdef ASSERT 1552 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 1553 // r12 is the heapbase. 1554 LP64_ONLY(if (UseCompressedOops && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");) 1555 #endif // ASSERT 1556 1557 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 1558 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 1559 1560 // push java thread (becomes first argument of C function) 1561 1562 NOT_LP64(push(java_thread); number_of_arguments++); 1563 LP64_ONLY(mov(c_rarg0, r15_thread)); 1564 1565 // set last Java frame before call 1566 assert(last_java_sp != rbp, "can't use ebp/rbp"); 1567 1568 // Only interpreter should have to set fp 1569 set_last_Java_frame(java_thread, last_java_sp, rbp, nullptr, rscratch1); 1570 1571 // do the call, remove parameters 1572 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments); 1573 1574 // restore the thread (cannot use the pushed argument since arguments 1575 // may be overwritten by C code generated by an optimizing compiler); 1576 // however can use the register value directly if it is callee saved. 1577 if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) { 1578 // rdi & rsi (also r15) are callee saved -> nothing to do 1579 #ifdef ASSERT 1580 guarantee(java_thread != rax, "change this code"); 1581 push(rax); 1582 { Label L; 1583 get_thread(rax); 1584 cmpptr(java_thread, rax); 1585 jcc(Assembler::equal, L); 1586 STOP("MacroAssembler::call_VM_base: rdi not callee saved?"); 1587 bind(L); 1588 } 1589 pop(rax); 1590 #endif 1591 } else { 1592 get_thread(java_thread); 1593 } 1594 // reset last Java frame 1595 // Only interpreter should have to clear fp 1596 reset_last_Java_frame(java_thread, true); 1597 1598 // C++ interp handles this in the interpreter 1599 check_and_handle_popframe(java_thread); 1600 check_and_handle_earlyret(java_thread); 1601 1602 if (check_exceptions) { 1603 // check for pending exceptions (java_thread is set upon return) 1604 cmpptr(Address(java_thread, Thread::pending_exception_offset()), NULL_WORD); 1605 #ifndef _LP64 1606 jump_cc(Assembler::notEqual, 1607 RuntimeAddress(StubRoutines::forward_exception_entry())); 1608 #else 1609 // This used to conditionally jump to forward_exception however it is 1610 // possible if we relocate that the branch will not reach. So we must jump 1611 // around so we can always reach 1612 1613 Label ok; 1614 jcc(Assembler::equal, ok); 1615 jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1616 bind(ok); 1617 #endif // LP64 1618 } 1619 1620 // get oop result if there is one and reset the value in the thread 1621 if (oop_result->is_valid()) { 1622 get_vm_result(oop_result, java_thread); 1623 } 1624 } 1625 1626 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 1627 1628 // Calculate the value for last_Java_sp 1629 // somewhat subtle. call_VM does an intermediate call 1630 // which places a return address on the stack just under the 1631 // stack pointer as the user finished with it. This allows 1632 // use to retrieve last_Java_pc from last_Java_sp[-1]. 1633 // On 32bit we then have to push additional args on the stack to accomplish 1634 // the actual requested call. On 64bit call_VM only can use register args 1635 // so the only extra space is the return address that call_VM created. 1636 // This hopefully explains the calculations here. 1637 1638 #ifdef _LP64 1639 // We've pushed one address, correct last_Java_sp 1640 lea(rax, Address(rsp, wordSize)); 1641 #else 1642 lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize)); 1643 #endif // LP64 1644 1645 call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions); 1646 1647 } 1648 1649 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter. 1650 void MacroAssembler::call_VM_leaf0(address entry_point) { 1651 MacroAssembler::call_VM_leaf_base(entry_point, 0); 1652 } 1653 1654 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 1655 call_VM_leaf_base(entry_point, number_of_arguments); 1656 } 1657 1658 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 1659 pass_arg0(this, arg_0); 1660 call_VM_leaf(entry_point, 1); 1661 } 1662 1663 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1664 1665 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1666 pass_arg1(this, arg_1); 1667 pass_arg0(this, arg_0); 1668 call_VM_leaf(entry_point, 2); 1669 } 1670 1671 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1672 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1673 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1674 pass_arg2(this, arg_2); 1675 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1676 pass_arg1(this, arg_1); 1677 pass_arg0(this, arg_0); 1678 call_VM_leaf(entry_point, 3); 1679 } 1680 1681 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1682 LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg")); 1683 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1684 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1685 pass_arg3(this, arg_3); 1686 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1687 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1688 pass_arg2(this, arg_2); 1689 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1690 pass_arg1(this, arg_1); 1691 pass_arg0(this, arg_0); 1692 call_VM_leaf(entry_point, 3); 1693 } 1694 1695 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 1696 pass_arg0(this, arg_0); 1697 MacroAssembler::call_VM_leaf_base(entry_point, 1); 1698 } 1699 1700 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 1701 1702 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1703 pass_arg1(this, arg_1); 1704 pass_arg0(this, arg_0); 1705 MacroAssembler::call_VM_leaf_base(entry_point, 2); 1706 } 1707 1708 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 1709 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1710 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1711 pass_arg2(this, arg_2); 1712 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1713 pass_arg1(this, arg_1); 1714 pass_arg0(this, arg_0); 1715 MacroAssembler::call_VM_leaf_base(entry_point, 3); 1716 } 1717 1718 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 1719 LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg")); 1720 LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg")); 1721 LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg")); 1722 pass_arg3(this, arg_3); 1723 LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg")); 1724 LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg")); 1725 pass_arg2(this, arg_2); 1726 LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg")); 1727 pass_arg1(this, arg_1); 1728 pass_arg0(this, arg_0); 1729 MacroAssembler::call_VM_leaf_base(entry_point, 4); 1730 } 1731 1732 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) { 1733 movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset())); 1734 movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD); 1735 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1736 } 1737 1738 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) { 1739 movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset())); 1740 movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD); 1741 } 1742 1743 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { 1744 } 1745 1746 void MacroAssembler::check_and_handle_popframe(Register java_thread) { 1747 } 1748 1749 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm, Register rscratch) { 1750 assert(rscratch != noreg || always_reachable(src1), "missing"); 1751 1752 if (reachable(src1)) { 1753 cmpl(as_Address(src1), imm); 1754 } else { 1755 lea(rscratch, src1); 1756 cmpl(Address(rscratch, 0), imm); 1757 } 1758 } 1759 1760 void MacroAssembler::cmp32(Register src1, AddressLiteral src2, Register rscratch) { 1761 assert(!src2.is_lval(), "use cmpptr"); 1762 assert(rscratch != noreg || always_reachable(src2), "missing"); 1763 1764 if (reachable(src2)) { 1765 cmpl(src1, as_Address(src2)); 1766 } else { 1767 lea(rscratch, src2); 1768 cmpl(src1, Address(rscratch, 0)); 1769 } 1770 } 1771 1772 void MacroAssembler::cmp32(Register src1, int32_t imm) { 1773 Assembler::cmpl(src1, imm); 1774 } 1775 1776 void MacroAssembler::cmp32(Register src1, Address src2) { 1777 Assembler::cmpl(src1, src2); 1778 } 1779 1780 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1781 ucomisd(opr1, opr2); 1782 1783 Label L; 1784 if (unordered_is_less) { 1785 movl(dst, -1); 1786 jcc(Assembler::parity, L); 1787 jcc(Assembler::below , L); 1788 movl(dst, 0); 1789 jcc(Assembler::equal , L); 1790 increment(dst); 1791 } else { // unordered is greater 1792 movl(dst, 1); 1793 jcc(Assembler::parity, L); 1794 jcc(Assembler::above , L); 1795 movl(dst, 0); 1796 jcc(Assembler::equal , L); 1797 decrementl(dst); 1798 } 1799 bind(L); 1800 } 1801 1802 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) { 1803 ucomiss(opr1, opr2); 1804 1805 Label L; 1806 if (unordered_is_less) { 1807 movl(dst, -1); 1808 jcc(Assembler::parity, L); 1809 jcc(Assembler::below , L); 1810 movl(dst, 0); 1811 jcc(Assembler::equal , L); 1812 increment(dst); 1813 } else { // unordered is greater 1814 movl(dst, 1); 1815 jcc(Assembler::parity, L); 1816 jcc(Assembler::above , L); 1817 movl(dst, 0); 1818 jcc(Assembler::equal , L); 1819 decrementl(dst); 1820 } 1821 bind(L); 1822 } 1823 1824 1825 void MacroAssembler::cmp8(AddressLiteral src1, int imm, Register rscratch) { 1826 assert(rscratch != noreg || always_reachable(src1), "missing"); 1827 1828 if (reachable(src1)) { 1829 cmpb(as_Address(src1), imm); 1830 } else { 1831 lea(rscratch, src1); 1832 cmpb(Address(rscratch, 0), imm); 1833 } 1834 } 1835 1836 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2, Register rscratch) { 1837 #ifdef _LP64 1838 assert(rscratch != noreg || always_reachable(src2), "missing"); 1839 1840 if (src2.is_lval()) { 1841 movptr(rscratch, src2); 1842 Assembler::cmpq(src1, rscratch); 1843 } else if (reachable(src2)) { 1844 cmpq(src1, as_Address(src2)); 1845 } else { 1846 lea(rscratch, src2); 1847 Assembler::cmpq(src1, Address(rscratch, 0)); 1848 } 1849 #else 1850 assert(rscratch == noreg, "not needed"); 1851 if (src2.is_lval()) { 1852 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1853 } else { 1854 cmpl(src1, as_Address(src2)); 1855 } 1856 #endif // _LP64 1857 } 1858 1859 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2, Register rscratch) { 1860 assert(src2.is_lval(), "not a mem-mem compare"); 1861 #ifdef _LP64 1862 // moves src2's literal address 1863 movptr(rscratch, src2); 1864 Assembler::cmpq(src1, rscratch); 1865 #else 1866 assert(rscratch == noreg, "not needed"); 1867 cmp_literal32(src1, (int32_t)src2.target(), src2.rspec()); 1868 #endif // _LP64 1869 } 1870 1871 void MacroAssembler::cmpoop(Register src1, Register src2) { 1872 cmpptr(src1, src2); 1873 } 1874 1875 void MacroAssembler::cmpoop(Register src1, Address src2) { 1876 cmpptr(src1, src2); 1877 } 1878 1879 #ifdef _LP64 1880 void MacroAssembler::cmpoop(Register src1, jobject src2, Register rscratch) { 1881 movoop(rscratch, src2); 1882 cmpptr(src1, rscratch); 1883 } 1884 #endif 1885 1886 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr, Register rscratch) { 1887 assert(rscratch != noreg || always_reachable(adr), "missing"); 1888 1889 if (reachable(adr)) { 1890 lock(); 1891 cmpxchgptr(reg, as_Address(adr)); 1892 } else { 1893 lea(rscratch, adr); 1894 lock(); 1895 cmpxchgptr(reg, Address(rscratch, 0)); 1896 } 1897 } 1898 1899 void MacroAssembler::cmpxchgptr(Register reg, Address adr) { 1900 LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr)); 1901 } 1902 1903 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 1904 assert(rscratch != noreg || always_reachable(src), "missing"); 1905 1906 if (reachable(src)) { 1907 Assembler::comisd(dst, as_Address(src)); 1908 } else { 1909 lea(rscratch, src); 1910 Assembler::comisd(dst, Address(rscratch, 0)); 1911 } 1912 } 1913 1914 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 1915 assert(rscratch != noreg || always_reachable(src), "missing"); 1916 1917 if (reachable(src)) { 1918 Assembler::comiss(dst, as_Address(src)); 1919 } else { 1920 lea(rscratch, src); 1921 Assembler::comiss(dst, Address(rscratch, 0)); 1922 } 1923 } 1924 1925 1926 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr, Register rscratch) { 1927 assert(rscratch != noreg || always_reachable(counter_addr), "missing"); 1928 1929 Condition negated_cond = negate_condition(cond); 1930 Label L; 1931 jcc(negated_cond, L); 1932 pushf(); // Preserve flags 1933 atomic_incl(counter_addr, rscratch); 1934 popf(); 1935 bind(L); 1936 } 1937 1938 int MacroAssembler::corrected_idivl(Register reg) { 1939 // Full implementation of Java idiv and irem; checks for 1940 // special case as described in JVM spec., p.243 & p.271. 1941 // The function returns the (pc) offset of the idivl 1942 // instruction - may be needed for implicit exceptions. 1943 // 1944 // normal case special case 1945 // 1946 // input : rax,: dividend min_int 1947 // reg: divisor (may not be rax,/rdx) -1 1948 // 1949 // output: rax,: quotient (= rax, idiv reg) min_int 1950 // rdx: remainder (= rax, irem reg) 0 1951 assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register"); 1952 const int min_int = 0x80000000; 1953 Label normal_case, special_case; 1954 1955 // check for special case 1956 cmpl(rax, min_int); 1957 jcc(Assembler::notEqual, normal_case); 1958 xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0) 1959 cmpl(reg, -1); 1960 jcc(Assembler::equal, special_case); 1961 1962 // handle normal case 1963 bind(normal_case); 1964 cdql(); 1965 int idivl_offset = offset(); 1966 idivl(reg); 1967 1968 // normal and special case exit 1969 bind(special_case); 1970 1971 return idivl_offset; 1972 } 1973 1974 1975 1976 void MacroAssembler::decrementl(Register reg, int value) { 1977 if (value == min_jint) {subl(reg, value) ; return; } 1978 if (value < 0) { incrementl(reg, -value); return; } 1979 if (value == 0) { ; return; } 1980 if (value == 1 && UseIncDec) { decl(reg) ; return; } 1981 /* else */ { subl(reg, value) ; return; } 1982 } 1983 1984 void MacroAssembler::decrementl(Address dst, int value) { 1985 if (value == min_jint) {subl(dst, value) ; return; } 1986 if (value < 0) { incrementl(dst, -value); return; } 1987 if (value == 0) { ; return; } 1988 if (value == 1 && UseIncDec) { decl(dst) ; return; } 1989 /* else */ { subl(dst, value) ; return; } 1990 } 1991 1992 void MacroAssembler::division_with_shift (Register reg, int shift_value) { 1993 assert(shift_value > 0, "illegal shift value"); 1994 Label _is_positive; 1995 testl (reg, reg); 1996 jcc (Assembler::positive, _is_positive); 1997 int offset = (1 << shift_value) - 1 ; 1998 1999 if (offset == 1) { 2000 incrementl(reg); 2001 } else { 2002 addl(reg, offset); 2003 } 2004 2005 bind (_is_positive); 2006 sarl(reg, shift_value); 2007 } 2008 2009 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2010 assert(rscratch != noreg || always_reachable(src), "missing"); 2011 2012 if (reachable(src)) { 2013 Assembler::divsd(dst, as_Address(src)); 2014 } else { 2015 lea(rscratch, src); 2016 Assembler::divsd(dst, Address(rscratch, 0)); 2017 } 2018 } 2019 2020 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2021 assert(rscratch != noreg || always_reachable(src), "missing"); 2022 2023 if (reachable(src)) { 2024 Assembler::divss(dst, as_Address(src)); 2025 } else { 2026 lea(rscratch, src); 2027 Assembler::divss(dst, Address(rscratch, 0)); 2028 } 2029 } 2030 2031 void MacroAssembler::enter() { 2032 push(rbp); 2033 mov(rbp, rsp); 2034 } 2035 2036 void MacroAssembler::post_call_nop() { 2037 if (!Continuations::enabled()) { 2038 return; 2039 } 2040 InstructionMark im(this); 2041 relocate(post_call_nop_Relocation::spec()); 2042 InlineSkippedInstructionsCounter skipCounter(this); 2043 emit_int8((uint8_t)0x0f); 2044 emit_int8((uint8_t)0x1f); 2045 emit_int8((uint8_t)0x84); 2046 emit_int8((uint8_t)0x00); 2047 emit_int32(0x00); 2048 } 2049 2050 // A 5 byte nop that is safe for patching (see patch_verified_entry) 2051 void MacroAssembler::fat_nop() { 2052 if (UseAddressNop) { 2053 addr_nop_5(); 2054 } else { 2055 emit_int8((uint8_t)0x26); // es: 2056 emit_int8((uint8_t)0x2e); // cs: 2057 emit_int8((uint8_t)0x64); // fs: 2058 emit_int8((uint8_t)0x65); // gs: 2059 emit_int8((uint8_t)0x90); 2060 } 2061 } 2062 2063 #ifndef _LP64 2064 void MacroAssembler::fcmp(Register tmp) { 2065 fcmp(tmp, 1, true, true); 2066 } 2067 2068 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) { 2069 assert(!pop_right || pop_left, "usage error"); 2070 if (VM_Version::supports_cmov()) { 2071 assert(tmp == noreg, "unneeded temp"); 2072 if (pop_left) { 2073 fucomip(index); 2074 } else { 2075 fucomi(index); 2076 } 2077 if (pop_right) { 2078 fpop(); 2079 } 2080 } else { 2081 assert(tmp != noreg, "need temp"); 2082 if (pop_left) { 2083 if (pop_right) { 2084 fcompp(); 2085 } else { 2086 fcomp(index); 2087 } 2088 } else { 2089 fcom(index); 2090 } 2091 // convert FPU condition into eflags condition via rax, 2092 save_rax(tmp); 2093 fwait(); fnstsw_ax(); 2094 sahf(); 2095 restore_rax(tmp); 2096 } 2097 // condition codes set as follows: 2098 // 2099 // CF (corresponds to C0) if x < y 2100 // PF (corresponds to C2) if unordered 2101 // ZF (corresponds to C3) if x = y 2102 } 2103 2104 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) { 2105 fcmp2int(dst, unordered_is_less, 1, true, true); 2106 } 2107 2108 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) { 2109 fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right); 2110 Label L; 2111 if (unordered_is_less) { 2112 movl(dst, -1); 2113 jcc(Assembler::parity, L); 2114 jcc(Assembler::below , L); 2115 movl(dst, 0); 2116 jcc(Assembler::equal , L); 2117 increment(dst); 2118 } else { // unordered is greater 2119 movl(dst, 1); 2120 jcc(Assembler::parity, L); 2121 jcc(Assembler::above , L); 2122 movl(dst, 0); 2123 jcc(Assembler::equal , L); 2124 decrementl(dst); 2125 } 2126 bind(L); 2127 } 2128 2129 void MacroAssembler::fld_d(AddressLiteral src) { 2130 fld_d(as_Address(src)); 2131 } 2132 2133 void MacroAssembler::fld_s(AddressLiteral src) { 2134 fld_s(as_Address(src)); 2135 } 2136 2137 void MacroAssembler::fldcw(AddressLiteral src) { 2138 fldcw(as_Address(src)); 2139 } 2140 2141 void MacroAssembler::fpop() { 2142 ffree(); 2143 fincstp(); 2144 } 2145 2146 void MacroAssembler::fremr(Register tmp) { 2147 save_rax(tmp); 2148 { Label L; 2149 bind(L); 2150 fprem(); 2151 fwait(); fnstsw_ax(); 2152 sahf(); 2153 jcc(Assembler::parity, L); 2154 } 2155 restore_rax(tmp); 2156 // Result is in ST0. 2157 // Note: fxch & fpop to get rid of ST1 2158 // (otherwise FPU stack could overflow eventually) 2159 fxch(1); 2160 fpop(); 2161 } 2162 2163 void MacroAssembler::empty_FPU_stack() { 2164 if (VM_Version::supports_mmx()) { 2165 emms(); 2166 } else { 2167 for (int i = 8; i-- > 0; ) ffree(i); 2168 } 2169 } 2170 #endif // !LP64 2171 2172 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2173 assert(rscratch != noreg || always_reachable(src), "missing"); 2174 if (reachable(src)) { 2175 Assembler::mulpd(dst, as_Address(src)); 2176 } else { 2177 lea(rscratch, src); 2178 Assembler::mulpd(dst, Address(rscratch, 0)); 2179 } 2180 } 2181 2182 void MacroAssembler::load_float(Address src) { 2183 #ifdef _LP64 2184 movflt(xmm0, src); 2185 #else 2186 if (UseSSE >= 1) { 2187 movflt(xmm0, src); 2188 } else { 2189 fld_s(src); 2190 } 2191 #endif // LP64 2192 } 2193 2194 void MacroAssembler::store_float(Address dst) { 2195 #ifdef _LP64 2196 movflt(dst, xmm0); 2197 #else 2198 if (UseSSE >= 1) { 2199 movflt(dst, xmm0); 2200 } else { 2201 fstp_s(dst); 2202 } 2203 #endif // LP64 2204 } 2205 2206 void MacroAssembler::load_double(Address src) { 2207 #ifdef _LP64 2208 movdbl(xmm0, src); 2209 #else 2210 if (UseSSE >= 2) { 2211 movdbl(xmm0, src); 2212 } else { 2213 fld_d(src); 2214 } 2215 #endif // LP64 2216 } 2217 2218 void MacroAssembler::store_double(Address dst) { 2219 #ifdef _LP64 2220 movdbl(dst, xmm0); 2221 #else 2222 if (UseSSE >= 2) { 2223 movdbl(dst, xmm0); 2224 } else { 2225 fstp_d(dst); 2226 } 2227 #endif // LP64 2228 } 2229 2230 // dst = c = a * b + c 2231 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2232 Assembler::vfmadd231sd(c, a, b); 2233 if (dst != c) { 2234 movdbl(dst, c); 2235 } 2236 } 2237 2238 // dst = c = a * b + c 2239 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) { 2240 Assembler::vfmadd231ss(c, a, b); 2241 if (dst != c) { 2242 movflt(dst, c); 2243 } 2244 } 2245 2246 // dst = c = a * b + c 2247 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2248 Assembler::vfmadd231pd(c, a, b, vector_len); 2249 if (dst != c) { 2250 vmovdqu(dst, c); 2251 } 2252 } 2253 2254 // dst = c = a * b + c 2255 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len) { 2256 Assembler::vfmadd231ps(c, a, b, vector_len); 2257 if (dst != c) { 2258 vmovdqu(dst, c); 2259 } 2260 } 2261 2262 // dst = c = a * b + c 2263 void MacroAssembler::vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2264 Assembler::vfmadd231pd(c, a, b, vector_len); 2265 if (dst != c) { 2266 vmovdqu(dst, c); 2267 } 2268 } 2269 2270 // dst = c = a * b + c 2271 void MacroAssembler::vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len) { 2272 Assembler::vfmadd231ps(c, a, b, vector_len); 2273 if (dst != c) { 2274 vmovdqu(dst, c); 2275 } 2276 } 2277 2278 void MacroAssembler::incrementl(AddressLiteral dst, Register rscratch) { 2279 assert(rscratch != noreg || always_reachable(dst), "missing"); 2280 2281 if (reachable(dst)) { 2282 incrementl(as_Address(dst)); 2283 } else { 2284 lea(rscratch, dst); 2285 incrementl(Address(rscratch, 0)); 2286 } 2287 } 2288 2289 void MacroAssembler::incrementl(ArrayAddress dst, Register rscratch) { 2290 incrementl(as_Address(dst, rscratch)); 2291 } 2292 2293 void MacroAssembler::incrementl(Register reg, int value) { 2294 if (value == min_jint) {addl(reg, value) ; return; } 2295 if (value < 0) { decrementl(reg, -value); return; } 2296 if (value == 0) { ; return; } 2297 if (value == 1 && UseIncDec) { incl(reg) ; return; } 2298 /* else */ { addl(reg, value) ; return; } 2299 } 2300 2301 void MacroAssembler::incrementl(Address dst, int value) { 2302 if (value == min_jint) {addl(dst, value) ; return; } 2303 if (value < 0) { decrementl(dst, -value); return; } 2304 if (value == 0) { ; return; } 2305 if (value == 1 && UseIncDec) { incl(dst) ; return; } 2306 /* else */ { addl(dst, value) ; return; } 2307 } 2308 2309 void MacroAssembler::jump(AddressLiteral dst, Register rscratch) { 2310 assert(rscratch != noreg || always_reachable(dst), "missing"); 2311 2312 if (reachable(dst)) { 2313 jmp_literal(dst.target(), dst.rspec()); 2314 } else { 2315 lea(rscratch, dst); 2316 jmp(rscratch); 2317 } 2318 } 2319 2320 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst, Register rscratch) { 2321 assert(rscratch != noreg || always_reachable(dst), "missing"); 2322 2323 if (reachable(dst)) { 2324 InstructionMark im(this); 2325 relocate(dst.reloc()); 2326 const int short_size = 2; 2327 const int long_size = 6; 2328 int offs = (intptr_t)dst.target() - ((intptr_t)pc()); 2329 if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) { 2330 // 0111 tttn #8-bit disp 2331 emit_int8(0x70 | cc); 2332 emit_int8((offs - short_size) & 0xFF); 2333 } else { 2334 // 0000 1111 1000 tttn #32-bit disp 2335 emit_int8(0x0F); 2336 emit_int8((unsigned char)(0x80 | cc)); 2337 emit_int32(offs - long_size); 2338 } 2339 } else { 2340 #ifdef ASSERT 2341 warning("reversing conditional branch"); 2342 #endif /* ASSERT */ 2343 Label skip; 2344 jccb(reverse[cc], skip); 2345 lea(rscratch, dst); 2346 Assembler::jmp(rscratch); 2347 bind(skip); 2348 } 2349 } 2350 2351 void MacroAssembler::ldmxcsr(AddressLiteral src, Register rscratch) { 2352 assert(rscratch != noreg || always_reachable(src), "missing"); 2353 2354 if (reachable(src)) { 2355 Assembler::ldmxcsr(as_Address(src)); 2356 } else { 2357 lea(rscratch, src); 2358 Assembler::ldmxcsr(Address(rscratch, 0)); 2359 } 2360 } 2361 2362 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2363 int off; 2364 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2365 off = offset(); 2366 movsbl(dst, src); // movsxb 2367 } else { 2368 off = load_unsigned_byte(dst, src); 2369 shll(dst, 24); 2370 sarl(dst, 24); 2371 } 2372 return off; 2373 } 2374 2375 // Note: load_signed_short used to be called load_signed_word. 2376 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler 2377 // manual, which means 16 bits, that usage is found nowhere in HotSpot code. 2378 // The term "word" in HotSpot means a 32- or 64-bit machine word. 2379 int MacroAssembler::load_signed_short(Register dst, Address src) { 2380 int off; 2381 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 2382 // This is dubious to me since it seems safe to do a signed 16 => 64 bit 2383 // version but this is what 64bit has always done. This seems to imply 2384 // that users are only using 32bits worth. 2385 off = offset(); 2386 movswl(dst, src); // movsxw 2387 } else { 2388 off = load_unsigned_short(dst, src); 2389 shll(dst, 16); 2390 sarl(dst, 16); 2391 } 2392 return off; 2393 } 2394 2395 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2396 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2397 // and "3.9 Partial Register Penalties", p. 22). 2398 int off; 2399 if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) { 2400 off = offset(); 2401 movzbl(dst, src); // movzxb 2402 } else { 2403 xorl(dst, dst); 2404 off = offset(); 2405 movb(dst, src); 2406 } 2407 return off; 2408 } 2409 2410 // Note: load_unsigned_short used to be called load_unsigned_word. 2411 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2412 // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16, 2413 // and "3.9 Partial Register Penalties", p. 22). 2414 int off; 2415 if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) { 2416 off = offset(); 2417 movzwl(dst, src); // movzxw 2418 } else { 2419 xorl(dst, dst); 2420 off = offset(); 2421 movw(dst, src); 2422 } 2423 return off; 2424 } 2425 2426 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) { 2427 switch (size_in_bytes) { 2428 #ifndef _LP64 2429 case 8: 2430 assert(dst2 != noreg, "second dest register required"); 2431 movl(dst, src); 2432 movl(dst2, src.plus_disp(BytesPerInt)); 2433 break; 2434 #else 2435 case 8: movq(dst, src); break; 2436 #endif 2437 case 4: movl(dst, src); break; 2438 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2439 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2440 default: ShouldNotReachHere(); 2441 } 2442 } 2443 2444 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) { 2445 switch (size_in_bytes) { 2446 #ifndef _LP64 2447 case 8: 2448 assert(src2 != noreg, "second source register required"); 2449 movl(dst, src); 2450 movl(dst.plus_disp(BytesPerInt), src2); 2451 break; 2452 #else 2453 case 8: movq(dst, src); break; 2454 #endif 2455 case 4: movl(dst, src); break; 2456 case 2: movw(dst, src); break; 2457 case 1: movb(dst, src); break; 2458 default: ShouldNotReachHere(); 2459 } 2460 } 2461 2462 void MacroAssembler::mov32(AddressLiteral dst, Register src, Register rscratch) { 2463 assert(rscratch != noreg || always_reachable(dst), "missing"); 2464 2465 if (reachable(dst)) { 2466 movl(as_Address(dst), src); 2467 } else { 2468 lea(rscratch, dst); 2469 movl(Address(rscratch, 0), src); 2470 } 2471 } 2472 2473 void MacroAssembler::mov32(Register dst, AddressLiteral src) { 2474 if (reachable(src)) { 2475 movl(dst, as_Address(src)); 2476 } else { 2477 lea(dst, src); 2478 movl(dst, Address(dst, 0)); 2479 } 2480 } 2481 2482 // C++ bool manipulation 2483 2484 void MacroAssembler::movbool(Register dst, Address src) { 2485 if(sizeof(bool) == 1) 2486 movb(dst, src); 2487 else if(sizeof(bool) == 2) 2488 movw(dst, src); 2489 else if(sizeof(bool) == 4) 2490 movl(dst, src); 2491 else 2492 // unsupported 2493 ShouldNotReachHere(); 2494 } 2495 2496 void MacroAssembler::movbool(Address dst, bool boolconst) { 2497 if(sizeof(bool) == 1) 2498 movb(dst, (int) boolconst); 2499 else if(sizeof(bool) == 2) 2500 movw(dst, (int) boolconst); 2501 else if(sizeof(bool) == 4) 2502 movl(dst, (int) boolconst); 2503 else 2504 // unsupported 2505 ShouldNotReachHere(); 2506 } 2507 2508 void MacroAssembler::movbool(Address dst, Register src) { 2509 if(sizeof(bool) == 1) 2510 movb(dst, src); 2511 else if(sizeof(bool) == 2) 2512 movw(dst, src); 2513 else if(sizeof(bool) == 4) 2514 movl(dst, src); 2515 else 2516 // unsupported 2517 ShouldNotReachHere(); 2518 } 2519 2520 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2521 assert(rscratch != noreg || always_reachable(src), "missing"); 2522 2523 if (reachable(src)) { 2524 movdl(dst, as_Address(src)); 2525 } else { 2526 lea(rscratch, src); 2527 movdl(dst, Address(rscratch, 0)); 2528 } 2529 } 2530 2531 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src, Register rscratch) { 2532 assert(rscratch != noreg || always_reachable(src), "missing"); 2533 2534 if (reachable(src)) { 2535 movq(dst, as_Address(src)); 2536 } else { 2537 lea(rscratch, src); 2538 movq(dst, Address(rscratch, 0)); 2539 } 2540 } 2541 2542 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src, Register rscratch) { 2543 assert(rscratch != noreg || always_reachable(src), "missing"); 2544 2545 if (reachable(src)) { 2546 if (UseXmmLoadAndClearUpper) { 2547 movsd (dst, as_Address(src)); 2548 } else { 2549 movlpd(dst, as_Address(src)); 2550 } 2551 } else { 2552 lea(rscratch, src); 2553 if (UseXmmLoadAndClearUpper) { 2554 movsd (dst, Address(rscratch, 0)); 2555 } else { 2556 movlpd(dst, Address(rscratch, 0)); 2557 } 2558 } 2559 } 2560 2561 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src, Register rscratch) { 2562 assert(rscratch != noreg || always_reachable(src), "missing"); 2563 2564 if (reachable(src)) { 2565 movss(dst, as_Address(src)); 2566 } else { 2567 lea(rscratch, src); 2568 movss(dst, Address(rscratch, 0)); 2569 } 2570 } 2571 2572 void MacroAssembler::movptr(Register dst, Register src) { 2573 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2574 } 2575 2576 void MacroAssembler::movptr(Register dst, Address src) { 2577 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2578 } 2579 2580 // src should NEVER be a real pointer. Use AddressLiteral for true pointers 2581 void MacroAssembler::movptr(Register dst, intptr_t src) { 2582 #ifdef _LP64 2583 if (is_simm32(src)) { 2584 movq(dst, checked_cast<int32_t>(src)); 2585 } else { 2586 mov64(dst, src); 2587 } 2588 #else 2589 movl(dst, src); 2590 #endif 2591 } 2592 2593 void MacroAssembler::movptr(Address dst, Register src) { 2594 LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src)); 2595 } 2596 2597 void MacroAssembler::movptr(Address dst, int32_t src) { 2598 LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); 2599 } 2600 2601 void MacroAssembler::movdqu(Address dst, XMMRegister src) { 2602 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2603 Assembler::movdqu(dst, src); 2604 } 2605 2606 void MacroAssembler::movdqu(XMMRegister dst, Address src) { 2607 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2608 Assembler::movdqu(dst, src); 2609 } 2610 2611 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) { 2612 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2613 Assembler::movdqu(dst, src); 2614 } 2615 2616 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2617 assert(rscratch != noreg || always_reachable(src), "missing"); 2618 2619 if (reachable(src)) { 2620 movdqu(dst, as_Address(src)); 2621 } else { 2622 lea(rscratch, src); 2623 movdqu(dst, Address(rscratch, 0)); 2624 } 2625 } 2626 2627 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) { 2628 assert(((src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2629 Assembler::vmovdqu(dst, src); 2630 } 2631 2632 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) { 2633 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2634 Assembler::vmovdqu(dst, src); 2635 } 2636 2637 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) { 2638 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 2639 Assembler::vmovdqu(dst, src); 2640 } 2641 2642 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, Register rscratch) { 2643 assert(rscratch != noreg || always_reachable(src), "missing"); 2644 2645 if (reachable(src)) { 2646 vmovdqu(dst, as_Address(src)); 2647 } 2648 else { 2649 lea(rscratch, src); 2650 vmovdqu(dst, Address(rscratch, 0)); 2651 } 2652 } 2653 2654 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2655 assert(rscratch != noreg || always_reachable(src), "missing"); 2656 2657 if (vector_len == AVX_512bit) { 2658 evmovdquq(dst, src, AVX_512bit, rscratch); 2659 } else if (vector_len == AVX_256bit) { 2660 vmovdqu(dst, src, rscratch); 2661 } else { 2662 movdqu(dst, src, rscratch); 2663 } 2664 } 2665 2666 void MacroAssembler::kmov(KRegister dst, Address src) { 2667 if (VM_Version::supports_avx512bw()) { 2668 kmovql(dst, src); 2669 } else { 2670 assert(VM_Version::supports_evex(), ""); 2671 kmovwl(dst, src); 2672 } 2673 } 2674 2675 void MacroAssembler::kmov(Address dst, KRegister src) { 2676 if (VM_Version::supports_avx512bw()) { 2677 kmovql(dst, src); 2678 } else { 2679 assert(VM_Version::supports_evex(), ""); 2680 kmovwl(dst, src); 2681 } 2682 } 2683 2684 void MacroAssembler::kmov(KRegister dst, KRegister src) { 2685 if (VM_Version::supports_avx512bw()) { 2686 kmovql(dst, src); 2687 } else { 2688 assert(VM_Version::supports_evex(), ""); 2689 kmovwl(dst, src); 2690 } 2691 } 2692 2693 void MacroAssembler::kmov(Register dst, KRegister src) { 2694 if (VM_Version::supports_avx512bw()) { 2695 kmovql(dst, src); 2696 } else { 2697 assert(VM_Version::supports_evex(), ""); 2698 kmovwl(dst, src); 2699 } 2700 } 2701 2702 void MacroAssembler::kmov(KRegister dst, Register src) { 2703 if (VM_Version::supports_avx512bw()) { 2704 kmovql(dst, src); 2705 } else { 2706 assert(VM_Version::supports_evex(), ""); 2707 kmovwl(dst, src); 2708 } 2709 } 2710 2711 void MacroAssembler::kmovql(KRegister dst, AddressLiteral src, Register rscratch) { 2712 assert(rscratch != noreg || always_reachable(src), "missing"); 2713 2714 if (reachable(src)) { 2715 kmovql(dst, as_Address(src)); 2716 } else { 2717 lea(rscratch, src); 2718 kmovql(dst, Address(rscratch, 0)); 2719 } 2720 } 2721 2722 void MacroAssembler::kmovwl(KRegister dst, AddressLiteral src, Register rscratch) { 2723 assert(rscratch != noreg || always_reachable(src), "missing"); 2724 2725 if (reachable(src)) { 2726 kmovwl(dst, as_Address(src)); 2727 } else { 2728 lea(rscratch, src); 2729 kmovwl(dst, Address(rscratch, 0)); 2730 } 2731 } 2732 2733 void MacroAssembler::evmovdqub(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2734 int vector_len, Register rscratch) { 2735 assert(rscratch != noreg || always_reachable(src), "missing"); 2736 2737 if (reachable(src)) { 2738 Assembler::evmovdqub(dst, mask, as_Address(src), merge, vector_len); 2739 } else { 2740 lea(rscratch, src); 2741 Assembler::evmovdqub(dst, mask, Address(rscratch, 0), merge, vector_len); 2742 } 2743 } 2744 2745 void MacroAssembler::evmovdquw(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, 2746 int vector_len, Register rscratch) { 2747 assert(rscratch != noreg || always_reachable(src), "missing"); 2748 2749 if (reachable(src)) { 2750 Assembler::evmovdquw(dst, mask, as_Address(src), merge, vector_len); 2751 } else { 2752 lea(rscratch, src); 2753 Assembler::evmovdquw(dst, mask, Address(rscratch, 0), merge, vector_len); 2754 } 2755 } 2756 2757 void MacroAssembler::evmovdqul(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2758 assert(rscratch != noreg || always_reachable(src), "missing"); 2759 2760 if (reachable(src)) { 2761 Assembler::evmovdqul(dst, mask, as_Address(src), merge, vector_len); 2762 } else { 2763 lea(rscratch, src); 2764 Assembler::evmovdqul(dst, mask, Address(rscratch, 0), merge, vector_len); 2765 } 2766 } 2767 2768 void MacroAssembler::evmovdquq(XMMRegister dst, KRegister mask, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 2769 assert(rscratch != noreg || always_reachable(src), "missing"); 2770 2771 if (reachable(src)) { 2772 Assembler::evmovdquq(dst, mask, as_Address(src), merge, vector_len); 2773 } else { 2774 lea(rscratch, src); 2775 Assembler::evmovdquq(dst, mask, Address(rscratch, 0), merge, vector_len); 2776 } 2777 } 2778 2779 void MacroAssembler::evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2780 assert(rscratch != noreg || always_reachable(src), "missing"); 2781 2782 if (reachable(src)) { 2783 Assembler::evmovdquq(dst, as_Address(src), vector_len); 2784 } else { 2785 lea(rscratch, src); 2786 Assembler::evmovdquq(dst, Address(rscratch, 0), vector_len); 2787 } 2788 } 2789 2790 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src, Register rscratch) { 2791 assert(rscratch != noreg || always_reachable(src), "missing"); 2792 2793 if (reachable(src)) { 2794 Assembler::movdqa(dst, as_Address(src)); 2795 } else { 2796 lea(rscratch, src); 2797 Assembler::movdqa(dst, Address(rscratch, 0)); 2798 } 2799 } 2800 2801 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2802 assert(rscratch != noreg || always_reachable(src), "missing"); 2803 2804 if (reachable(src)) { 2805 Assembler::movsd(dst, as_Address(src)); 2806 } else { 2807 lea(rscratch, src); 2808 Assembler::movsd(dst, Address(rscratch, 0)); 2809 } 2810 } 2811 2812 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2813 assert(rscratch != noreg || always_reachable(src), "missing"); 2814 2815 if (reachable(src)) { 2816 Assembler::movss(dst, as_Address(src)); 2817 } else { 2818 lea(rscratch, src); 2819 Assembler::movss(dst, Address(rscratch, 0)); 2820 } 2821 } 2822 2823 void MacroAssembler::movddup(XMMRegister dst, AddressLiteral src, Register rscratch) { 2824 assert(rscratch != noreg || always_reachable(src), "missing"); 2825 2826 if (reachable(src)) { 2827 Assembler::movddup(dst, as_Address(src)); 2828 } else { 2829 lea(rscratch, src); 2830 Assembler::movddup(dst, Address(rscratch, 0)); 2831 } 2832 } 2833 2834 void MacroAssembler::vmovddup(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 2835 assert(rscratch != noreg || always_reachable(src), "missing"); 2836 2837 if (reachable(src)) { 2838 Assembler::vmovddup(dst, as_Address(src), vector_len); 2839 } else { 2840 lea(rscratch, src); 2841 Assembler::vmovddup(dst, Address(rscratch, 0), vector_len); 2842 } 2843 } 2844 2845 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 2846 assert(rscratch != noreg || always_reachable(src), "missing"); 2847 2848 if (reachable(src)) { 2849 Assembler::mulsd(dst, as_Address(src)); 2850 } else { 2851 lea(rscratch, src); 2852 Assembler::mulsd(dst, Address(rscratch, 0)); 2853 } 2854 } 2855 2856 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src, Register rscratch) { 2857 assert(rscratch != noreg || always_reachable(src), "missing"); 2858 2859 if (reachable(src)) { 2860 Assembler::mulss(dst, as_Address(src)); 2861 } else { 2862 lea(rscratch, src); 2863 Assembler::mulss(dst, Address(rscratch, 0)); 2864 } 2865 } 2866 2867 void MacroAssembler::null_check(Register reg, int offset) { 2868 if (needs_explicit_null_check(offset)) { 2869 // provoke OS null exception if reg is null by 2870 // accessing M[reg] w/o changing any (non-CC) registers 2871 // NOTE: cmpl is plenty here to provoke a segv 2872 cmpptr(rax, Address(reg, 0)); 2873 // Note: should probably use testl(rax, Address(reg, 0)); 2874 // may be shorter code (however, this version of 2875 // testl needs to be implemented first) 2876 } else { 2877 // nothing to do, (later) access of M[reg + offset] 2878 // will provoke OS null exception if reg is null 2879 } 2880 } 2881 2882 void MacroAssembler::os_breakpoint() { 2883 // instead of directly emitting a breakpoint, call os:breakpoint for better debugability 2884 // (e.g., MSVC can't call ps() otherwise) 2885 call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint))); 2886 } 2887 2888 void MacroAssembler::unimplemented(const char* what) { 2889 const char* buf = nullptr; 2890 { 2891 ResourceMark rm; 2892 stringStream ss; 2893 ss.print("unimplemented: %s", what); 2894 buf = code_string(ss.as_string()); 2895 } 2896 stop(buf); 2897 } 2898 2899 #ifdef _LP64 2900 #define XSTATE_BV 0x200 2901 #endif 2902 2903 void MacroAssembler::pop_CPU_state() { 2904 pop_FPU_state(); 2905 pop_IU_state(); 2906 } 2907 2908 void MacroAssembler::pop_FPU_state() { 2909 #ifndef _LP64 2910 frstor(Address(rsp, 0)); 2911 #else 2912 fxrstor(Address(rsp, 0)); 2913 #endif 2914 addptr(rsp, FPUStateSizeInWords * wordSize); 2915 } 2916 2917 void MacroAssembler::pop_IU_state() { 2918 popa(); 2919 LP64_ONLY(addq(rsp, 8)); 2920 popf(); 2921 } 2922 2923 // Save Integer and Float state 2924 // Warning: Stack must be 16 byte aligned (64bit) 2925 void MacroAssembler::push_CPU_state() { 2926 push_IU_state(); 2927 push_FPU_state(); 2928 } 2929 2930 void MacroAssembler::push_FPU_state() { 2931 subptr(rsp, FPUStateSizeInWords * wordSize); 2932 #ifndef _LP64 2933 fnsave(Address(rsp, 0)); 2934 fwait(); 2935 #else 2936 fxsave(Address(rsp, 0)); 2937 #endif // LP64 2938 } 2939 2940 void MacroAssembler::push_IU_state() { 2941 // Push flags first because pusha kills them 2942 pushf(); 2943 // Make sure rsp stays 16-byte aligned 2944 LP64_ONLY(subq(rsp, 8)); 2945 pusha(); 2946 } 2947 2948 void MacroAssembler::push_cont_fastpath() { 2949 if (!Continuations::enabled()) return; 2950 2951 #ifndef _LP64 2952 Register rthread = rax; 2953 Register rrealsp = rbx; 2954 push(rthread); 2955 push(rrealsp); 2956 2957 get_thread(rthread); 2958 2959 // The code below wants the original RSP. 2960 // Move it back after the pushes above. 2961 movptr(rrealsp, rsp); 2962 addptr(rrealsp, 2*wordSize); 2963 #else 2964 Register rthread = r15_thread; 2965 Register rrealsp = rsp; 2966 #endif 2967 2968 Label done; 2969 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 2970 jccb(Assembler::belowEqual, done); 2971 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), rrealsp); 2972 bind(done); 2973 2974 #ifndef _LP64 2975 pop(rrealsp); 2976 pop(rthread); 2977 #endif 2978 } 2979 2980 void MacroAssembler::pop_cont_fastpath() { 2981 if (!Continuations::enabled()) return; 2982 2983 #ifndef _LP64 2984 Register rthread = rax; 2985 Register rrealsp = rbx; 2986 push(rthread); 2987 push(rrealsp); 2988 2989 get_thread(rthread); 2990 2991 // The code below wants the original RSP. 2992 // Move it back after the pushes above. 2993 movptr(rrealsp, rsp); 2994 addptr(rrealsp, 2*wordSize); 2995 #else 2996 Register rthread = r15_thread; 2997 Register rrealsp = rsp; 2998 #endif 2999 3000 Label done; 3001 cmpptr(rrealsp, Address(rthread, JavaThread::cont_fastpath_offset())); 3002 jccb(Assembler::below, done); 3003 movptr(Address(rthread, JavaThread::cont_fastpath_offset()), 0); 3004 bind(done); 3005 3006 #ifndef _LP64 3007 pop(rrealsp); 3008 pop(rthread); 3009 #endif 3010 } 3011 3012 void MacroAssembler::inc_held_monitor_count() { 3013 #ifndef _LP64 3014 Register thread = rax; 3015 push(thread); 3016 get_thread(thread); 3017 incrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3018 pop(thread); 3019 #else // LP64 3020 incrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3021 #endif 3022 } 3023 3024 void MacroAssembler::dec_held_monitor_count() { 3025 #ifndef _LP64 3026 Register thread = rax; 3027 push(thread); 3028 get_thread(thread); 3029 decrementl(Address(thread, JavaThread::held_monitor_count_offset())); 3030 pop(thread); 3031 #else // LP64 3032 decrementq(Address(r15_thread, JavaThread::held_monitor_count_offset())); 3033 #endif 3034 } 3035 3036 #ifdef ASSERT 3037 void MacroAssembler::stop_if_in_cont(Register cont, const char* name) { 3038 #ifdef _LP64 3039 Label no_cont; 3040 movptr(cont, Address(r15_thread, JavaThread::cont_entry_offset())); 3041 testl(cont, cont); 3042 jcc(Assembler::zero, no_cont); 3043 stop(name); 3044 bind(no_cont); 3045 #else 3046 Unimplemented(); 3047 #endif 3048 } 3049 #endif 3050 3051 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register 3052 if (!java_thread->is_valid()) { 3053 java_thread = rdi; 3054 get_thread(java_thread); 3055 } 3056 // we must set sp to zero to clear frame 3057 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD); 3058 // must clear fp, so that compiled frames are not confused; it is 3059 // possible that we need it only for debugging 3060 if (clear_fp) { 3061 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD); 3062 } 3063 // Always clear the pc because it could have been set by make_walkable() 3064 movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD); 3065 vzeroupper(); 3066 } 3067 3068 void MacroAssembler::restore_rax(Register tmp) { 3069 if (tmp == noreg) pop(rax); 3070 else if (tmp != rax) mov(rax, tmp); 3071 } 3072 3073 void MacroAssembler::round_to(Register reg, int modulus) { 3074 addptr(reg, modulus - 1); 3075 andptr(reg, -modulus); 3076 } 3077 3078 void MacroAssembler::save_rax(Register tmp) { 3079 if (tmp == noreg) push(rax); 3080 else if (tmp != rax) mov(tmp, rax); 3081 } 3082 3083 void MacroAssembler::safepoint_poll(Label& slow_path, Register thread_reg, bool at_return, bool in_nmethod) { 3084 if (at_return) { 3085 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 3086 // we may safely use rsp instead to perform the stack watermark check. 3087 cmpptr(in_nmethod ? rsp : rbp, Address(thread_reg, JavaThread::polling_word_offset())); 3088 jcc(Assembler::above, slow_path); 3089 return; 3090 } 3091 testb(Address(thread_reg, JavaThread::polling_word_offset()), SafepointMechanism::poll_bit()); 3092 jcc(Assembler::notZero, slow_path); // handshake bit set implies poll 3093 } 3094 3095 // Calls to C land 3096 // 3097 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded 3098 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 3099 // has to be reset to 0. This is required to allow proper stack traversal. 3100 void MacroAssembler::set_last_Java_frame(Register java_thread, 3101 Register last_java_sp, 3102 Register last_java_fp, 3103 address last_java_pc, 3104 Register rscratch) { 3105 vzeroupper(); 3106 // determine java_thread register 3107 if (!java_thread->is_valid()) { 3108 java_thread = rdi; 3109 get_thread(java_thread); 3110 } 3111 // determine last_java_sp register 3112 if (!last_java_sp->is_valid()) { 3113 last_java_sp = rsp; 3114 } 3115 // last_java_fp is optional 3116 if (last_java_fp->is_valid()) { 3117 movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp); 3118 } 3119 // last_java_pc is optional 3120 if (last_java_pc != nullptr) { 3121 Address java_pc(java_thread, 3122 JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()); 3123 lea(java_pc, InternalAddress(last_java_pc), rscratch); 3124 } 3125 movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp); 3126 } 3127 3128 void MacroAssembler::shlptr(Register dst, int imm8) { 3129 LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8)); 3130 } 3131 3132 void MacroAssembler::shrptr(Register dst, int imm8) { 3133 LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8)); 3134 } 3135 3136 void MacroAssembler::sign_extend_byte(Register reg) { 3137 if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) { 3138 movsbl(reg, reg); // movsxb 3139 } else { 3140 shll(reg, 24); 3141 sarl(reg, 24); 3142 } 3143 } 3144 3145 void MacroAssembler::sign_extend_short(Register reg) { 3146 if (LP64_ONLY(true ||) VM_Version::is_P6()) { 3147 movswl(reg, reg); // movsxw 3148 } else { 3149 shll(reg, 16); 3150 sarl(reg, 16); 3151 } 3152 } 3153 3154 void MacroAssembler::testl(Address dst, int32_t imm32) { 3155 if (imm32 >= 0 && is8bit(imm32)) { 3156 testb(dst, imm32); 3157 } else { 3158 Assembler::testl(dst, imm32); 3159 } 3160 } 3161 3162 void MacroAssembler::testl(Register dst, int32_t imm32) { 3163 if (imm32 >= 0 && is8bit(imm32) && dst->has_byte_register()) { 3164 testb(dst, imm32); 3165 } else { 3166 Assembler::testl(dst, imm32); 3167 } 3168 } 3169 3170 void MacroAssembler::testl(Register dst, AddressLiteral src) { 3171 assert(always_reachable(src), "Address should be reachable"); 3172 testl(dst, as_Address(src)); 3173 } 3174 3175 #ifdef _LP64 3176 3177 void MacroAssembler::testq(Address dst, int32_t imm32) { 3178 if (imm32 >= 0) { 3179 testl(dst, imm32); 3180 } else { 3181 Assembler::testq(dst, imm32); 3182 } 3183 } 3184 3185 void MacroAssembler::testq(Register dst, int32_t imm32) { 3186 if (imm32 >= 0) { 3187 testl(dst, imm32); 3188 } else { 3189 Assembler::testq(dst, imm32); 3190 } 3191 } 3192 3193 #endif 3194 3195 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) { 3196 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3197 Assembler::pcmpeqb(dst, src); 3198 } 3199 3200 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) { 3201 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3202 Assembler::pcmpeqw(dst, src); 3203 } 3204 3205 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) { 3206 assert((dst->encoding() < 16),"XMM register should be 0-15"); 3207 Assembler::pcmpestri(dst, src, imm8); 3208 } 3209 3210 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) { 3211 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3212 Assembler::pcmpestri(dst, src, imm8); 3213 } 3214 3215 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) { 3216 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3217 Assembler::pmovzxbw(dst, src); 3218 } 3219 3220 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) { 3221 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3222 Assembler::pmovzxbw(dst, src); 3223 } 3224 3225 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) { 3226 assert((src->encoding() < 16),"XMM register should be 0-15"); 3227 Assembler::pmovmskb(dst, src); 3228 } 3229 3230 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) { 3231 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3232 Assembler::ptest(dst, src); 3233 } 3234 3235 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3236 assert(rscratch != noreg || always_reachable(src), "missing"); 3237 3238 if (reachable(src)) { 3239 Assembler::sqrtss(dst, as_Address(src)); 3240 } else { 3241 lea(rscratch, src); 3242 Assembler::sqrtss(dst, Address(rscratch, 0)); 3243 } 3244 } 3245 3246 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3247 assert(rscratch != noreg || always_reachable(src), "missing"); 3248 3249 if (reachable(src)) { 3250 Assembler::subsd(dst, as_Address(src)); 3251 } else { 3252 lea(rscratch, src); 3253 Assembler::subsd(dst, Address(rscratch, 0)); 3254 } 3255 } 3256 3257 void MacroAssembler::roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register rscratch) { 3258 assert(rscratch != noreg || always_reachable(src), "missing"); 3259 3260 if (reachable(src)) { 3261 Assembler::roundsd(dst, as_Address(src), rmode); 3262 } else { 3263 lea(rscratch, src); 3264 Assembler::roundsd(dst, Address(rscratch, 0), rmode); 3265 } 3266 } 3267 3268 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3269 assert(rscratch != noreg || always_reachable(src), "missing"); 3270 3271 if (reachable(src)) { 3272 Assembler::subss(dst, as_Address(src)); 3273 } else { 3274 lea(rscratch, src); 3275 Assembler::subss(dst, Address(rscratch, 0)); 3276 } 3277 } 3278 3279 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3280 assert(rscratch != noreg || always_reachable(src), "missing"); 3281 3282 if (reachable(src)) { 3283 Assembler::ucomisd(dst, as_Address(src)); 3284 } else { 3285 lea(rscratch, src); 3286 Assembler::ucomisd(dst, Address(rscratch, 0)); 3287 } 3288 } 3289 3290 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src, Register rscratch) { 3291 assert(rscratch != noreg || always_reachable(src), "missing"); 3292 3293 if (reachable(src)) { 3294 Assembler::ucomiss(dst, as_Address(src)); 3295 } else { 3296 lea(rscratch, src); 3297 Assembler::ucomiss(dst, Address(rscratch, 0)); 3298 } 3299 } 3300 3301 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src, Register rscratch) { 3302 assert(rscratch != noreg || always_reachable(src), "missing"); 3303 3304 // Used in sign-bit flipping with aligned address. 3305 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3306 if (reachable(src)) { 3307 Assembler::xorpd(dst, as_Address(src)); 3308 } else { 3309 lea(rscratch, src); 3310 Assembler::xorpd(dst, Address(rscratch, 0)); 3311 } 3312 } 3313 3314 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) { 3315 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3316 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3317 } 3318 else { 3319 Assembler::xorpd(dst, src); 3320 } 3321 } 3322 3323 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) { 3324 if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) { 3325 Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit); 3326 } else { 3327 Assembler::xorps(dst, src); 3328 } 3329 } 3330 3331 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src, Register rscratch) { 3332 assert(rscratch != noreg || always_reachable(src), "missing"); 3333 3334 // Used in sign-bit flipping with aligned address. 3335 assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes"); 3336 if (reachable(src)) { 3337 Assembler::xorps(dst, as_Address(src)); 3338 } else { 3339 lea(rscratch, src); 3340 Assembler::xorps(dst, Address(rscratch, 0)); 3341 } 3342 } 3343 3344 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src, Register rscratch) { 3345 assert(rscratch != noreg || always_reachable(src), "missing"); 3346 3347 // Used in sign-bit flipping with aligned address. 3348 bool aligned_adr = (((intptr_t)src.target() & 15) == 0); 3349 assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes"); 3350 if (reachable(src)) { 3351 Assembler::pshufb(dst, as_Address(src)); 3352 } else { 3353 lea(rscratch, src); 3354 Assembler::pshufb(dst, Address(rscratch, 0)); 3355 } 3356 } 3357 3358 // AVX 3-operands instructions 3359 3360 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3361 assert(rscratch != noreg || always_reachable(src), "missing"); 3362 3363 if (reachable(src)) { 3364 vaddsd(dst, nds, as_Address(src)); 3365 } else { 3366 lea(rscratch, src); 3367 vaddsd(dst, nds, Address(rscratch, 0)); 3368 } 3369 } 3370 3371 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3372 assert(rscratch != noreg || always_reachable(src), "missing"); 3373 3374 if (reachable(src)) { 3375 vaddss(dst, nds, as_Address(src)); 3376 } else { 3377 lea(rscratch, src); 3378 vaddss(dst, nds, Address(rscratch, 0)); 3379 } 3380 } 3381 3382 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3383 assert(UseAVX > 0, "requires some form of AVX"); 3384 assert(rscratch != noreg || always_reachable(src), "missing"); 3385 3386 if (reachable(src)) { 3387 Assembler::vpaddb(dst, nds, as_Address(src), vector_len); 3388 } else { 3389 lea(rscratch, src); 3390 Assembler::vpaddb(dst, nds, Address(rscratch, 0), vector_len); 3391 } 3392 } 3393 3394 void MacroAssembler::vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3395 assert(UseAVX > 0, "requires some form of AVX"); 3396 assert(rscratch != noreg || always_reachable(src), "missing"); 3397 3398 if (reachable(src)) { 3399 Assembler::vpaddd(dst, nds, as_Address(src), vector_len); 3400 } else { 3401 lea(rscratch, src); 3402 Assembler::vpaddd(dst, nds, Address(rscratch, 0), vector_len); 3403 } 3404 } 3405 3406 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3407 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3408 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3409 3410 vandps(dst, nds, negate_field, vector_len, rscratch); 3411 } 3412 3413 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len, Register rscratch) { 3414 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3415 assert(rscratch != noreg || always_reachable(negate_field), "missing"); 3416 3417 vandpd(dst, nds, negate_field, vector_len, rscratch); 3418 } 3419 3420 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3421 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3422 Assembler::vpaddb(dst, nds, src, vector_len); 3423 } 3424 3425 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3426 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3427 Assembler::vpaddb(dst, nds, src, vector_len); 3428 } 3429 3430 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3431 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3432 Assembler::vpaddw(dst, nds, src, vector_len); 3433 } 3434 3435 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3436 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3437 Assembler::vpaddw(dst, nds, src, vector_len); 3438 } 3439 3440 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3441 assert(rscratch != noreg || always_reachable(src), "missing"); 3442 3443 if (reachable(src)) { 3444 Assembler::vpand(dst, nds, as_Address(src), vector_len); 3445 } else { 3446 lea(rscratch, src); 3447 Assembler::vpand(dst, nds, Address(rscratch, 0), vector_len); 3448 } 3449 } 3450 3451 void MacroAssembler::vpbroadcastd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3452 assert(rscratch != noreg || always_reachable(src), "missing"); 3453 3454 if (reachable(src)) { 3455 Assembler::vpbroadcastd(dst, as_Address(src), vector_len); 3456 } else { 3457 lea(rscratch, src); 3458 Assembler::vpbroadcastd(dst, Address(rscratch, 0), vector_len); 3459 } 3460 } 3461 3462 void MacroAssembler::vpbroadcastq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3463 assert(rscratch != noreg || always_reachable(src), "missing"); 3464 3465 if (reachable(src)) { 3466 Assembler::vpbroadcastq(dst, as_Address(src), vector_len); 3467 } else { 3468 lea(rscratch, src); 3469 Assembler::vpbroadcastq(dst, Address(rscratch, 0), vector_len); 3470 } 3471 } 3472 3473 void MacroAssembler::vbroadcastsd(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3474 assert(rscratch != noreg || always_reachable(src), "missing"); 3475 3476 if (reachable(src)) { 3477 Assembler::vbroadcastsd(dst, as_Address(src), vector_len); 3478 } else { 3479 lea(rscratch, src); 3480 Assembler::vbroadcastsd(dst, Address(rscratch, 0), vector_len); 3481 } 3482 } 3483 3484 void MacroAssembler::vbroadcastss(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch) { 3485 assert(rscratch != noreg || always_reachable(src), "missing"); 3486 3487 if (reachable(src)) { 3488 Assembler::vbroadcastss(dst, as_Address(src), vector_len); 3489 } else { 3490 lea(rscratch, src); 3491 Assembler::vbroadcastss(dst, Address(rscratch, 0), vector_len); 3492 } 3493 } 3494 3495 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3496 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3497 Assembler::vpcmpeqb(dst, nds, src, vector_len); 3498 } 3499 3500 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3501 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3502 Assembler::vpcmpeqw(dst, nds, src, vector_len); 3503 } 3504 3505 void MacroAssembler::evpcmpeqd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3506 assert(rscratch != noreg || always_reachable(src), "missing"); 3507 3508 if (reachable(src)) { 3509 Assembler::evpcmpeqd(kdst, mask, nds, as_Address(src), vector_len); 3510 } else { 3511 lea(rscratch, src); 3512 Assembler::evpcmpeqd(kdst, mask, nds, Address(rscratch, 0), vector_len); 3513 } 3514 } 3515 3516 void MacroAssembler::evpcmpd(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3517 int comparison, bool is_signed, int vector_len, Register rscratch) { 3518 assert(rscratch != noreg || always_reachable(src), "missing"); 3519 3520 if (reachable(src)) { 3521 Assembler::evpcmpd(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3522 } else { 3523 lea(rscratch, src); 3524 Assembler::evpcmpd(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3525 } 3526 } 3527 3528 void MacroAssembler::evpcmpq(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3529 int comparison, bool is_signed, int vector_len, Register rscratch) { 3530 assert(rscratch != noreg || always_reachable(src), "missing"); 3531 3532 if (reachable(src)) { 3533 Assembler::evpcmpq(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3534 } else { 3535 lea(rscratch, src); 3536 Assembler::evpcmpq(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3537 } 3538 } 3539 3540 void MacroAssembler::evpcmpb(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3541 int comparison, bool is_signed, int vector_len, Register rscratch) { 3542 assert(rscratch != noreg || always_reachable(src), "missing"); 3543 3544 if (reachable(src)) { 3545 Assembler::evpcmpb(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3546 } else { 3547 lea(rscratch, src); 3548 Assembler::evpcmpb(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3549 } 3550 } 3551 3552 void MacroAssembler::evpcmpw(KRegister kdst, KRegister mask, XMMRegister nds, AddressLiteral src, 3553 int comparison, bool is_signed, int vector_len, Register rscratch) { 3554 assert(rscratch != noreg || always_reachable(src), "missing"); 3555 3556 if (reachable(src)) { 3557 Assembler::evpcmpw(kdst, mask, nds, as_Address(src), comparison, is_signed, vector_len); 3558 } else { 3559 lea(rscratch, src); 3560 Assembler::evpcmpw(kdst, mask, nds, Address(rscratch, 0), comparison, is_signed, vector_len); 3561 } 3562 } 3563 3564 void MacroAssembler::vpcmpCC(XMMRegister dst, XMMRegister nds, XMMRegister src, int cond_encoding, Width width, int vector_len) { 3565 if (width == Assembler::Q) { 3566 Assembler::vpcmpCCq(dst, nds, src, cond_encoding, vector_len); 3567 } else { 3568 Assembler::vpcmpCCbwd(dst, nds, src, cond_encoding, vector_len); 3569 } 3570 } 3571 3572 void MacroAssembler::vpcmpCCW(XMMRegister dst, XMMRegister nds, XMMRegister src, XMMRegister xtmp, ComparisonPredicate cond, Width width, int vector_len) { 3573 int eq_cond_enc = 0x29; 3574 int gt_cond_enc = 0x37; 3575 if (width != Assembler::Q) { 3576 eq_cond_enc = 0x74 + width; 3577 gt_cond_enc = 0x64 + width; 3578 } 3579 switch (cond) { 3580 case eq: 3581 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3582 break; 3583 case neq: 3584 vpcmpCC(dst, nds, src, eq_cond_enc, width, vector_len); 3585 vallones(xtmp, vector_len); 3586 vpxor(dst, xtmp, dst, vector_len); 3587 break; 3588 case le: 3589 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3590 vallones(xtmp, vector_len); 3591 vpxor(dst, xtmp, dst, vector_len); 3592 break; 3593 case nlt: 3594 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3595 vallones(xtmp, vector_len); 3596 vpxor(dst, xtmp, dst, vector_len); 3597 break; 3598 case lt: 3599 vpcmpCC(dst, src, nds, gt_cond_enc, width, vector_len); 3600 break; 3601 case nle: 3602 vpcmpCC(dst, nds, src, gt_cond_enc, width, vector_len); 3603 break; 3604 default: 3605 assert(false, "Should not reach here"); 3606 } 3607 } 3608 3609 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) { 3610 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3611 Assembler::vpmovzxbw(dst, src, vector_len); 3612 } 3613 3614 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src, int vector_len) { 3615 assert((src->encoding() < 16),"XMM register should be 0-15"); 3616 Assembler::vpmovmskb(dst, src, vector_len); 3617 } 3618 3619 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3620 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3621 Assembler::vpmullw(dst, nds, src, vector_len); 3622 } 3623 3624 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3625 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3626 Assembler::vpmullw(dst, nds, src, vector_len); 3627 } 3628 3629 void MacroAssembler::vpmulld(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3630 assert((UseAVX > 0), "AVX support is needed"); 3631 assert(rscratch != noreg || always_reachable(src), "missing"); 3632 3633 if (reachable(src)) { 3634 Assembler::vpmulld(dst, nds, as_Address(src), vector_len); 3635 } else { 3636 lea(rscratch, src); 3637 Assembler::vpmulld(dst, nds, Address(rscratch, 0), vector_len); 3638 } 3639 } 3640 3641 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3642 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3643 Assembler::vpsubb(dst, nds, src, vector_len); 3644 } 3645 3646 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3647 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3648 Assembler::vpsubb(dst, nds, src, vector_len); 3649 } 3650 3651 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { 3652 assert(((dst->encoding() < 16 && src->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3653 Assembler::vpsubw(dst, nds, src, vector_len); 3654 } 3655 3656 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { 3657 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3658 Assembler::vpsubw(dst, nds, src, vector_len); 3659 } 3660 3661 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3662 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3663 Assembler::vpsraw(dst, nds, shift, vector_len); 3664 } 3665 3666 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3667 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3668 Assembler::vpsraw(dst, nds, shift, vector_len); 3669 } 3670 3671 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3672 assert(UseAVX > 2,""); 3673 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3674 vector_len = 2; 3675 } 3676 Assembler::evpsraq(dst, nds, shift, vector_len); 3677 } 3678 3679 void MacroAssembler::evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3680 assert(UseAVX > 2,""); 3681 if (!VM_Version::supports_avx512vl() && vector_len < 2) { 3682 vector_len = 2; 3683 } 3684 Assembler::evpsraq(dst, nds, shift, vector_len); 3685 } 3686 3687 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3688 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3689 Assembler::vpsrlw(dst, nds, shift, vector_len); 3690 } 3691 3692 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3693 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3694 Assembler::vpsrlw(dst, nds, shift, vector_len); 3695 } 3696 3697 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) { 3698 assert(((dst->encoding() < 16 && shift->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3699 Assembler::vpsllw(dst, nds, shift, vector_len); 3700 } 3701 3702 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) { 3703 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3704 Assembler::vpsllw(dst, nds, shift, vector_len); 3705 } 3706 3707 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) { 3708 assert((dst->encoding() < 16 && src->encoding() < 16),"XMM register should be 0-15"); 3709 Assembler::vptest(dst, src); 3710 } 3711 3712 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) { 3713 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3714 Assembler::punpcklbw(dst, src); 3715 } 3716 3717 void MacroAssembler::pshufd(XMMRegister dst, Address src, int mode) { 3718 assert(((dst->encoding() < 16) || VM_Version::supports_avx512vl()),"XMM register should be 0-15"); 3719 Assembler::pshufd(dst, src, mode); 3720 } 3721 3722 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) { 3723 assert(((dst->encoding() < 16 && src->encoding() < 16) || VM_Version::supports_avx512vlbw()),"XMM register should be 0-15"); 3724 Assembler::pshuflw(dst, src, mode); 3725 } 3726 3727 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3728 assert(rscratch != noreg || always_reachable(src), "missing"); 3729 3730 if (reachable(src)) { 3731 vandpd(dst, nds, as_Address(src), vector_len); 3732 } else { 3733 lea(rscratch, src); 3734 vandpd(dst, nds, Address(rscratch, 0), vector_len); 3735 } 3736 } 3737 3738 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3739 assert(rscratch != noreg || always_reachable(src), "missing"); 3740 3741 if (reachable(src)) { 3742 vandps(dst, nds, as_Address(src), vector_len); 3743 } else { 3744 lea(rscratch, src); 3745 vandps(dst, nds, Address(rscratch, 0), vector_len); 3746 } 3747 } 3748 3749 void MacroAssembler::evpord(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, 3750 bool merge, int vector_len, Register rscratch) { 3751 assert(rscratch != noreg || always_reachable(src), "missing"); 3752 3753 if (reachable(src)) { 3754 Assembler::evpord(dst, mask, nds, as_Address(src), merge, vector_len); 3755 } else { 3756 lea(rscratch, src); 3757 Assembler::evpord(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 3758 } 3759 } 3760 3761 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3762 assert(rscratch != noreg || always_reachable(src), "missing"); 3763 3764 if (reachable(src)) { 3765 vdivsd(dst, nds, as_Address(src)); 3766 } else { 3767 lea(rscratch, src); 3768 vdivsd(dst, nds, Address(rscratch, 0)); 3769 } 3770 } 3771 3772 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3773 assert(rscratch != noreg || always_reachable(src), "missing"); 3774 3775 if (reachable(src)) { 3776 vdivss(dst, nds, as_Address(src)); 3777 } else { 3778 lea(rscratch, src); 3779 vdivss(dst, nds, Address(rscratch, 0)); 3780 } 3781 } 3782 3783 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3784 assert(rscratch != noreg || always_reachable(src), "missing"); 3785 3786 if (reachable(src)) { 3787 vmulsd(dst, nds, as_Address(src)); 3788 } else { 3789 lea(rscratch, src); 3790 vmulsd(dst, nds, Address(rscratch, 0)); 3791 } 3792 } 3793 3794 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3795 assert(rscratch != noreg || always_reachable(src), "missing"); 3796 3797 if (reachable(src)) { 3798 vmulss(dst, nds, as_Address(src)); 3799 } else { 3800 lea(rscratch, src); 3801 vmulss(dst, nds, Address(rscratch, 0)); 3802 } 3803 } 3804 3805 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3806 assert(rscratch != noreg || always_reachable(src), "missing"); 3807 3808 if (reachable(src)) { 3809 vsubsd(dst, nds, as_Address(src)); 3810 } else { 3811 lea(rscratch, src); 3812 vsubsd(dst, nds, Address(rscratch, 0)); 3813 } 3814 } 3815 3816 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3817 assert(rscratch != noreg || always_reachable(src), "missing"); 3818 3819 if (reachable(src)) { 3820 vsubss(dst, nds, as_Address(src)); 3821 } else { 3822 lea(rscratch, src); 3823 vsubss(dst, nds, Address(rscratch, 0)); 3824 } 3825 } 3826 3827 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3828 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3829 assert(rscratch != noreg || always_reachable(src), "missing"); 3830 3831 vxorps(dst, nds, src, Assembler::AVX_128bit, rscratch); 3832 } 3833 3834 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src, Register rscratch) { 3835 assert(((dst->encoding() < 16 && nds->encoding() < 16) || VM_Version::supports_avx512vldq()),"XMM register should be 0-15"); 3836 assert(rscratch != noreg || always_reachable(src), "missing"); 3837 3838 vxorpd(dst, nds, src, Assembler::AVX_128bit, rscratch); 3839 } 3840 3841 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3842 assert(rscratch != noreg || always_reachable(src), "missing"); 3843 3844 if (reachable(src)) { 3845 vxorpd(dst, nds, as_Address(src), vector_len); 3846 } else { 3847 lea(rscratch, src); 3848 vxorpd(dst, nds, Address(rscratch, 0), vector_len); 3849 } 3850 } 3851 3852 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3853 assert(rscratch != noreg || always_reachable(src), "missing"); 3854 3855 if (reachable(src)) { 3856 vxorps(dst, nds, as_Address(src), vector_len); 3857 } else { 3858 lea(rscratch, src); 3859 vxorps(dst, nds, Address(rscratch, 0), vector_len); 3860 } 3861 } 3862 3863 void MacroAssembler::vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3864 assert(rscratch != noreg || always_reachable(src), "missing"); 3865 3866 if (UseAVX > 1 || (vector_len < 1)) { 3867 if (reachable(src)) { 3868 Assembler::vpxor(dst, nds, as_Address(src), vector_len); 3869 } else { 3870 lea(rscratch, src); 3871 Assembler::vpxor(dst, nds, Address(rscratch, 0), vector_len); 3872 } 3873 } else { 3874 MacroAssembler::vxorpd(dst, nds, src, vector_len, rscratch); 3875 } 3876 } 3877 3878 void MacroAssembler::vpermd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 3879 assert(rscratch != noreg || always_reachable(src), "missing"); 3880 3881 if (reachable(src)) { 3882 Assembler::vpermd(dst, nds, as_Address(src), vector_len); 3883 } else { 3884 lea(rscratch, src); 3885 Assembler::vpermd(dst, nds, Address(rscratch, 0), vector_len); 3886 } 3887 } 3888 3889 void MacroAssembler::clear_jobject_tag(Register possibly_non_local) { 3890 const int32_t inverted_mask = ~static_cast<int32_t>(JNIHandles::tag_mask); 3891 STATIC_ASSERT(inverted_mask == -4); // otherwise check this code 3892 // The inverted mask is sign-extended 3893 andptr(possibly_non_local, inverted_mask); 3894 } 3895 3896 void MacroAssembler::resolve_jobject(Register value, 3897 Register thread, 3898 Register tmp) { 3899 assert_different_registers(value, thread, tmp); 3900 Label done, tagged, weak_tagged; 3901 testptr(value, value); 3902 jcc(Assembler::zero, done); // Use null as-is. 3903 testptr(value, JNIHandles::tag_mask); // Test for tag. 3904 jcc(Assembler::notZero, tagged); 3905 3906 // Resolve local handle 3907 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp, thread); 3908 verify_oop(value); 3909 jmp(done); 3910 3911 bind(tagged); 3912 testptr(value, JNIHandles::TypeTag::weak_global); // Test for weak tag. 3913 jcc(Assembler::notZero, weak_tagged); 3914 3915 // Resolve global handle 3916 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 3917 verify_oop(value); 3918 jmp(done); 3919 3920 bind(weak_tagged); 3921 // Resolve jweak. 3922 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3923 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp, thread); 3924 verify_oop(value); 3925 3926 bind(done); 3927 } 3928 3929 void MacroAssembler::resolve_global_jobject(Register value, 3930 Register thread, 3931 Register tmp) { 3932 assert_different_registers(value, thread, tmp); 3933 Label done; 3934 3935 testptr(value, value); 3936 jcc(Assembler::zero, done); // Use null as-is. 3937 3938 #ifdef ASSERT 3939 { 3940 Label valid_global_tag; 3941 testptr(value, JNIHandles::TypeTag::global); // Test for global tag. 3942 jcc(Assembler::notZero, valid_global_tag); 3943 stop("non global jobject using resolve_global_jobject"); 3944 bind(valid_global_tag); 3945 } 3946 #endif 3947 3948 // Resolve global handle 3949 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp, thread); 3950 verify_oop(value); 3951 3952 bind(done); 3953 } 3954 3955 void MacroAssembler::subptr(Register dst, int32_t imm32) { 3956 LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32)); 3957 } 3958 3959 // Force generation of a 4 byte immediate value even if it fits into 8bit 3960 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) { 3961 LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32)); 3962 } 3963 3964 void MacroAssembler::subptr(Register dst, Register src) { 3965 LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); 3966 } 3967 3968 // C++ bool manipulation 3969 void MacroAssembler::testbool(Register dst) { 3970 if(sizeof(bool) == 1) 3971 testb(dst, 0xff); 3972 else if(sizeof(bool) == 2) { 3973 // testw implementation needed for two byte bools 3974 ShouldNotReachHere(); 3975 } else if(sizeof(bool) == 4) 3976 testl(dst, dst); 3977 else 3978 // unsupported 3979 ShouldNotReachHere(); 3980 } 3981 3982 void MacroAssembler::testptr(Register dst, Register src) { 3983 LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src)); 3984 } 3985 3986 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 3987 void MacroAssembler::tlab_allocate(Register thread, Register obj, 3988 Register var_size_in_bytes, 3989 int con_size_in_bytes, 3990 Register t1, 3991 Register t2, 3992 Label& slow_case) { 3993 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 3994 bs->tlab_allocate(this, thread, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 3995 } 3996 3997 RegSet MacroAssembler::call_clobbered_gp_registers() { 3998 RegSet regs; 3999 #ifdef _LP64 4000 regs += RegSet::of(rax, rcx, rdx); 4001 #ifndef WINDOWS 4002 regs += RegSet::of(rsi, rdi); 4003 #endif 4004 regs += RegSet::range(r8, r11); 4005 #else 4006 regs += RegSet::of(rax, rcx, rdx); 4007 #endif 4008 return regs; 4009 } 4010 4011 XMMRegSet MacroAssembler::call_clobbered_xmm_registers() { 4012 int num_xmm_registers = XMMRegister::available_xmm_registers(); 4013 #if defined(WINDOWS) && defined(_LP64) 4014 XMMRegSet result = XMMRegSet::range(xmm0, xmm5); 4015 if (num_xmm_registers > 16) { 4016 result += XMMRegSet::range(xmm16, as_XMMRegister(num_xmm_registers - 1)); 4017 } 4018 return result; 4019 #else 4020 return XMMRegSet::range(xmm0, as_XMMRegister(num_xmm_registers - 1)); 4021 #endif 4022 } 4023 4024 static int FPUSaveAreaSize = align_up(108, StackAlignmentInBytes); // 108 bytes needed for FPU state by fsave/frstor 4025 4026 #ifndef _LP64 4027 static bool use_x87_registers() { return UseSSE < 2; } 4028 #endif 4029 static bool use_xmm_registers() { return UseSSE >= 1; } 4030 4031 // C1 only ever uses the first double/float of the XMM register. 4032 static int xmm_save_size() { return UseSSE >= 2 ? sizeof(double) : sizeof(float); } 4033 4034 static void save_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4035 if (UseSSE == 1) { 4036 masm->movflt(Address(rsp, offset), reg); 4037 } else { 4038 masm->movdbl(Address(rsp, offset), reg); 4039 } 4040 } 4041 4042 static void restore_xmm_register(MacroAssembler* masm, int offset, XMMRegister reg) { 4043 if (UseSSE == 1) { 4044 masm->movflt(reg, Address(rsp, offset)); 4045 } else { 4046 masm->movdbl(reg, Address(rsp, offset)); 4047 } 4048 } 4049 4050 int register_section_sizes(RegSet gp_registers, XMMRegSet xmm_registers, bool save_fpu, 4051 int& gp_area_size, int& fp_area_size, int& xmm_area_size) { 4052 4053 gp_area_size = align_up(gp_registers.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size, 4054 StackAlignmentInBytes); 4055 #ifdef _LP64 4056 fp_area_size = 0; 4057 #else 4058 fp_area_size = (save_fpu && use_x87_registers()) ? FPUSaveAreaSize : 0; 4059 #endif 4060 xmm_area_size = (save_fpu && use_xmm_registers()) ? xmm_registers.size() * xmm_save_size() : 0; 4061 4062 return gp_area_size + fp_area_size + xmm_area_size; 4063 } 4064 4065 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude, bool save_fpu) { 4066 block_comment("push_call_clobbered_registers start"); 4067 // Regular registers 4068 RegSet gp_registers_to_push = call_clobbered_gp_registers() - exclude; 4069 4070 int gp_area_size; 4071 int fp_area_size; 4072 int xmm_area_size; 4073 int total_save_size = register_section_sizes(gp_registers_to_push, call_clobbered_xmm_registers(), save_fpu, 4074 gp_area_size, fp_area_size, xmm_area_size); 4075 subptr(rsp, total_save_size); 4076 4077 push_set(gp_registers_to_push, 0); 4078 4079 #ifndef _LP64 4080 if (save_fpu && use_x87_registers()) { 4081 fnsave(Address(rsp, gp_area_size)); 4082 fwait(); 4083 } 4084 #endif 4085 if (save_fpu && use_xmm_registers()) { 4086 push_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4087 } 4088 4089 block_comment("push_call_clobbered_registers end"); 4090 } 4091 4092 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude, bool restore_fpu) { 4093 block_comment("pop_call_clobbered_registers start"); 4094 4095 RegSet gp_registers_to_pop = call_clobbered_gp_registers() - exclude; 4096 4097 int gp_area_size; 4098 int fp_area_size; 4099 int xmm_area_size; 4100 int total_save_size = register_section_sizes(gp_registers_to_pop, call_clobbered_xmm_registers(), restore_fpu, 4101 gp_area_size, fp_area_size, xmm_area_size); 4102 4103 if (restore_fpu && use_xmm_registers()) { 4104 pop_set(call_clobbered_xmm_registers(), gp_area_size + fp_area_size); 4105 } 4106 #ifndef _LP64 4107 if (restore_fpu && use_x87_registers()) { 4108 frstor(Address(rsp, gp_area_size)); 4109 } 4110 #endif 4111 4112 pop_set(gp_registers_to_pop, 0); 4113 4114 addptr(rsp, total_save_size); 4115 4116 vzeroupper(); 4117 4118 block_comment("pop_call_clobbered_registers end"); 4119 } 4120 4121 void MacroAssembler::push_set(XMMRegSet set, int offset) { 4122 assert(is_aligned(set.size() * xmm_save_size(), StackAlignmentInBytes), "must be"); 4123 int spill_offset = offset; 4124 4125 for (RegSetIterator<XMMRegister> it = set.begin(); *it != xnoreg; ++it) { 4126 save_xmm_register(this, spill_offset, *it); 4127 spill_offset += xmm_save_size(); 4128 } 4129 } 4130 4131 void MacroAssembler::pop_set(XMMRegSet set, int offset) { 4132 int restore_size = set.size() * xmm_save_size(); 4133 assert(is_aligned(restore_size, StackAlignmentInBytes), "must be"); 4134 4135 int restore_offset = offset + restore_size - xmm_save_size(); 4136 4137 for (ReverseRegSetIterator<XMMRegister> it = set.rbegin(); *it != xnoreg; ++it) { 4138 restore_xmm_register(this, restore_offset, *it); 4139 restore_offset -= xmm_save_size(); 4140 } 4141 } 4142 4143 void MacroAssembler::push_set(RegSet set, int offset) { 4144 int spill_offset; 4145 if (offset == -1) { 4146 int register_push_size = set.size() * Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4147 int aligned_size = align_up(register_push_size, StackAlignmentInBytes); 4148 subptr(rsp, aligned_size); 4149 spill_offset = 0; 4150 } else { 4151 spill_offset = offset; 4152 } 4153 4154 for (RegSetIterator<Register> it = set.begin(); *it != noreg; ++it) { 4155 movptr(Address(rsp, spill_offset), *it); 4156 spill_offset += Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4157 } 4158 } 4159 4160 void MacroAssembler::pop_set(RegSet set, int offset) { 4161 4162 int gp_reg_size = Register::max_slots_per_register * VMRegImpl::stack_slot_size; 4163 int restore_size = set.size() * gp_reg_size; 4164 int aligned_size = align_up(restore_size, StackAlignmentInBytes); 4165 4166 int restore_offset; 4167 if (offset == -1) { 4168 restore_offset = restore_size - gp_reg_size; 4169 } else { 4170 restore_offset = offset + restore_size - gp_reg_size; 4171 } 4172 for (ReverseRegSetIterator<Register> it = set.rbegin(); *it != noreg; ++it) { 4173 movptr(*it, Address(rsp, restore_offset)); 4174 restore_offset -= gp_reg_size; 4175 } 4176 4177 if (offset == -1) { 4178 addptr(rsp, aligned_size); 4179 } 4180 } 4181 4182 // Preserves the contents of address, destroys the contents length_in_bytes and temp. 4183 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) { 4184 assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different"); 4185 assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord"); 4186 Label done; 4187 4188 testptr(length_in_bytes, length_in_bytes); 4189 jcc(Assembler::zero, done); 4190 4191 // initialize topmost word, divide index by 2, check if odd and test if zero 4192 // note: for the remaining code to work, index must be a multiple of BytesPerWord 4193 #ifdef ASSERT 4194 { 4195 Label L; 4196 testptr(length_in_bytes, BytesPerWord - 1); 4197 jcc(Assembler::zero, L); 4198 stop("length must be a multiple of BytesPerWord"); 4199 bind(L); 4200 } 4201 #endif 4202 Register index = length_in_bytes; 4203 xorptr(temp, temp); // use _zero reg to clear memory (shorter code) 4204 if (UseIncDec) { 4205 shrptr(index, 3); // divide by 8/16 and set carry flag if bit 2 was set 4206 } else { 4207 shrptr(index, 2); // use 2 instructions to avoid partial flag stall 4208 shrptr(index, 1); 4209 } 4210 #ifndef _LP64 4211 // index could have not been a multiple of 8 (i.e., bit 2 was set) 4212 { 4213 Label even; 4214 // note: if index was a multiple of 8, then it cannot 4215 // be 0 now otherwise it must have been 0 before 4216 // => if it is even, we don't need to check for 0 again 4217 jcc(Assembler::carryClear, even); 4218 // clear topmost word (no jump would be needed if conditional assignment worked here) 4219 movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp); 4220 // index could be 0 now, must check again 4221 jcc(Assembler::zero, done); 4222 bind(even); 4223 } 4224 #endif // !_LP64 4225 // initialize remaining object fields: index is a multiple of 2 now 4226 { 4227 Label loop; 4228 bind(loop); 4229 movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp); 4230 NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);) 4231 decrement(index); 4232 jcc(Assembler::notZero, loop); 4233 } 4234 4235 bind(done); 4236 } 4237 4238 // Look up the method for a megamorphic invokeinterface call. 4239 // The target method is determined by <intf_klass, itable_index>. 4240 // The receiver klass is in recv_klass. 4241 // On success, the result will be in method_result, and execution falls through. 4242 // On failure, execution transfers to the given label. 4243 void MacroAssembler::lookup_interface_method(Register recv_klass, 4244 Register intf_klass, 4245 RegisterOrConstant itable_index, 4246 Register method_result, 4247 Register scan_temp, 4248 Label& L_no_such_interface, 4249 bool return_method) { 4250 assert_different_registers(recv_klass, intf_klass, scan_temp); 4251 assert_different_registers(method_result, intf_klass, scan_temp); 4252 assert(recv_klass != method_result || !return_method, 4253 "recv_klass can be destroyed when method isn't needed"); 4254 4255 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 4256 "caller must use same register for non-constant itable index as for method"); 4257 4258 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 4259 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4260 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4261 int scan_step = itableOffsetEntry::size() * wordSize; 4262 int vte_size = vtableEntry::size_in_bytes(); 4263 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4264 assert(vte_size == wordSize, "else adjust times_vte_scale"); 4265 4266 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4267 4268 // %%% Could store the aligned, prescaled offset in the klassoop. 4269 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 4270 4271 if (return_method) { 4272 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 4273 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4274 lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 4275 } 4276 4277 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 4278 // if (scan->interface() == intf) { 4279 // result = (klass + scan->offset() + itable_index); 4280 // } 4281 // } 4282 Label search, found_method; 4283 4284 for (int peel = 1; peel >= 0; peel--) { 4285 movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 4286 cmpptr(intf_klass, method_result); 4287 4288 if (peel) { 4289 jccb(Assembler::equal, found_method); 4290 } else { 4291 jccb(Assembler::notEqual, search); 4292 // (invert the test to fall through to found_method...) 4293 } 4294 4295 if (!peel) break; 4296 4297 bind(search); 4298 4299 // Check that the previous entry is non-null. A null entry means that 4300 // the receiver class doesn't implement the interface, and wasn't the 4301 // same as when the caller was compiled. 4302 testptr(method_result, method_result); 4303 jcc(Assembler::zero, L_no_such_interface); 4304 addptr(scan_temp, scan_step); 4305 } 4306 4307 bind(found_method); 4308 4309 if (return_method) { 4310 // Got a hit. 4311 movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 4312 movptr(method_result, Address(recv_klass, scan_temp, Address::times_1)); 4313 } 4314 } 4315 4316 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 4317 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICHolder 4318 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 4319 // The target method is determined by <holder_klass, itable_index>. 4320 // The receiver klass is in recv_klass. 4321 // On success, the result will be in method_result, and execution falls through. 4322 // On failure, execution transfers to the given label. 4323 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 4324 Register holder_klass, 4325 Register resolved_klass, 4326 Register method_result, 4327 Register scan_temp, 4328 Register temp_reg2, 4329 Register receiver, 4330 int itable_index, 4331 Label& L_no_such_interface) { 4332 assert_different_registers(recv_klass, method_result, holder_klass, resolved_klass, scan_temp, temp_reg2, receiver); 4333 Register temp_itbl_klass = method_result; 4334 Register temp_reg = (temp_reg2 == noreg ? recv_klass : temp_reg2); // reuse recv_klass register on 32-bit x86 impl 4335 4336 int vtable_base = in_bytes(Klass::vtable_start_offset()); 4337 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 4338 int scan_step = itableOffsetEntry::size() * wordSize; 4339 int vte_size = vtableEntry::size_in_bytes(); 4340 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 4341 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 4342 Address::ScaleFactor times_vte_scale = Address::times_ptr; 4343 assert(vte_size == wordSize, "adjust times_vte_scale"); 4344 4345 Label L_loop_scan_resolved_entry, L_resolved_found, L_holder_found; 4346 4347 // temp_itbl_klass = recv_klass.itable[0] 4348 // scan_temp = &recv_klass.itable[0] + step 4349 movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 4350 movptr(temp_itbl_klass, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset)); 4351 lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base + ioffset + scan_step)); 4352 xorptr(temp_reg, temp_reg); 4353 4354 // Initial checks: 4355 // - if (holder_klass != resolved_klass), go to "scan for resolved" 4356 // - if (itable[0] == 0), no such interface 4357 // - if (itable[0] == holder_klass), shortcut to "holder found" 4358 cmpptr(holder_klass, resolved_klass); 4359 jccb(Assembler::notEqual, L_loop_scan_resolved_entry); 4360 testptr(temp_itbl_klass, temp_itbl_klass); 4361 jccb(Assembler::zero, L_no_such_interface); 4362 cmpptr(holder_klass, temp_itbl_klass); 4363 jccb(Assembler::equal, L_holder_found); 4364 4365 // Loop: Look for holder_klass record in itable 4366 // do { 4367 // tmp = itable[index]; 4368 // index += step; 4369 // if (tmp == holder_klass) { 4370 // goto L_holder_found; // Found! 4371 // } 4372 // } while (tmp != 0); 4373 // goto L_no_such_interface // Not found. 4374 Label L_scan_holder; 4375 bind(L_scan_holder); 4376 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4377 addptr(scan_temp, scan_step); 4378 cmpptr(holder_klass, temp_itbl_klass); 4379 jccb(Assembler::equal, L_holder_found); 4380 testptr(temp_itbl_klass, temp_itbl_klass); 4381 jccb(Assembler::notZero, L_scan_holder); 4382 4383 jmpb(L_no_such_interface); 4384 4385 // Loop: Look for resolved_class record in itable 4386 // do { 4387 // tmp = itable[index]; 4388 // index += step; 4389 // if (tmp == holder_klass) { 4390 // // Also check if we have met a holder klass 4391 // holder_tmp = itable[index-step-ioffset]; 4392 // } 4393 // if (tmp == resolved_klass) { 4394 // goto L_resolved_found; // Found! 4395 // } 4396 // } while (tmp != 0); 4397 // goto L_no_such_interface // Not found. 4398 // 4399 Label L_loop_scan_resolved; 4400 bind(L_loop_scan_resolved); 4401 movptr(temp_itbl_klass, Address(scan_temp, 0)); 4402 addptr(scan_temp, scan_step); 4403 bind(L_loop_scan_resolved_entry); 4404 cmpptr(holder_klass, temp_itbl_klass); 4405 cmovl(Assembler::equal, temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4406 cmpptr(resolved_klass, temp_itbl_klass); 4407 jccb(Assembler::equal, L_resolved_found); 4408 testptr(temp_itbl_klass, temp_itbl_klass); 4409 jccb(Assembler::notZero, L_loop_scan_resolved); 4410 4411 jmpb(L_no_such_interface); 4412 4413 Label L_ready; 4414 4415 // See if we already have a holder klass. If not, go and scan for it. 4416 bind(L_resolved_found); 4417 testptr(temp_reg, temp_reg); 4418 jccb(Assembler::zero, L_scan_holder); 4419 jmpb(L_ready); 4420 4421 bind(L_holder_found); 4422 movl(temp_reg, Address(scan_temp, ooffset - ioffset - scan_step)); 4423 4424 // Finally, temp_reg contains holder_klass vtable offset 4425 bind(L_ready); 4426 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 4427 if (temp_reg2 == noreg) { // recv_klass register is clobbered for 32-bit x86 impl 4428 load_klass(scan_temp, receiver, noreg); 4429 movptr(method_result, Address(scan_temp, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4430 } else { 4431 movptr(method_result, Address(recv_klass, temp_reg, Address::times_1, itable_index * wordSize + itentry_off)); 4432 } 4433 } 4434 4435 4436 // virtual method calling 4437 void MacroAssembler::lookup_virtual_method(Register recv_klass, 4438 RegisterOrConstant vtable_index, 4439 Register method_result) { 4440 const ByteSize base = Klass::vtable_start_offset(); 4441 assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below"); 4442 Address vtable_entry_addr(recv_klass, 4443 vtable_index, Address::times_ptr, 4444 base + vtableEntry::method_offset()); 4445 movptr(method_result, vtable_entry_addr); 4446 } 4447 4448 4449 void MacroAssembler::check_klass_subtype(Register sub_klass, 4450 Register super_klass, 4451 Register temp_reg, 4452 Label& L_success) { 4453 Label L_failure; 4454 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 4455 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 4456 bind(L_failure); 4457 } 4458 4459 4460 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 4461 Register super_klass, 4462 Register temp_reg, 4463 Label* L_success, 4464 Label* L_failure, 4465 Label* L_slow_path, 4466 RegisterOrConstant super_check_offset) { 4467 assert_different_registers(sub_klass, super_klass, temp_reg); 4468 bool must_load_sco = (super_check_offset.constant_or_zero() == -1); 4469 if (super_check_offset.is_register()) { 4470 assert_different_registers(sub_klass, super_klass, 4471 super_check_offset.as_register()); 4472 } else if (must_load_sco) { 4473 assert(temp_reg != noreg, "supply either a temp or a register offset"); 4474 } 4475 4476 Label L_fallthrough; 4477 int label_nulls = 0; 4478 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4479 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4480 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 4481 assert(label_nulls <= 1, "at most one null in the batch"); 4482 4483 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4484 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 4485 Address super_check_offset_addr(super_klass, sco_offset); 4486 4487 // Hacked jcc, which "knows" that L_fallthrough, at least, is in 4488 // range of a jccb. If this routine grows larger, reconsider at 4489 // least some of these. 4490 #define local_jcc(assembler_cond, label) \ 4491 if (&(label) == &L_fallthrough) jccb(assembler_cond, label); \ 4492 else jcc( assembler_cond, label) /*omit semi*/ 4493 4494 // Hacked jmp, which may only be used just before L_fallthrough. 4495 #define final_jmp(label) \ 4496 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 4497 else jmp(label) /*omit semi*/ 4498 4499 // If the pointers are equal, we are done (e.g., String[] elements). 4500 // This self-check enables sharing of secondary supertype arrays among 4501 // non-primary types such as array-of-interface. Otherwise, each such 4502 // type would need its own customized SSA. 4503 // We move this check to the front of the fast path because many 4504 // type checks are in fact trivially successful in this manner, 4505 // so we get a nicely predicted branch right at the start of the check. 4506 cmpptr(sub_klass, super_klass); 4507 local_jcc(Assembler::equal, *L_success); 4508 4509 // Check the supertype display: 4510 if (must_load_sco) { 4511 // Positive movl does right thing on LP64. 4512 movl(temp_reg, super_check_offset_addr); 4513 super_check_offset = RegisterOrConstant(temp_reg); 4514 } 4515 Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0); 4516 cmpptr(super_klass, super_check_addr); // load displayed supertype 4517 4518 // This check has worked decisively for primary supers. 4519 // Secondary supers are sought in the super_cache ('super_cache_addr'). 4520 // (Secondary supers are interfaces and very deeply nested subtypes.) 4521 // This works in the same check above because of a tricky aliasing 4522 // between the super_cache and the primary super display elements. 4523 // (The 'super_check_addr' can address either, as the case requires.) 4524 // Note that the cache is updated below if it does not help us find 4525 // what we need immediately. 4526 // So if it was a primary super, we can just fail immediately. 4527 // Otherwise, it's the slow path for us (no success at this point). 4528 4529 if (super_check_offset.is_register()) { 4530 local_jcc(Assembler::equal, *L_success); 4531 cmpl(super_check_offset.as_register(), sc_offset); 4532 if (L_failure == &L_fallthrough) { 4533 local_jcc(Assembler::equal, *L_slow_path); 4534 } else { 4535 local_jcc(Assembler::notEqual, *L_failure); 4536 final_jmp(*L_slow_path); 4537 } 4538 } else if (super_check_offset.as_constant() == sc_offset) { 4539 // Need a slow path; fast failure is impossible. 4540 if (L_slow_path == &L_fallthrough) { 4541 local_jcc(Assembler::equal, *L_success); 4542 } else { 4543 local_jcc(Assembler::notEqual, *L_slow_path); 4544 final_jmp(*L_success); 4545 } 4546 } else { 4547 // No slow path; it's a fast decision. 4548 if (L_failure == &L_fallthrough) { 4549 local_jcc(Assembler::equal, *L_success); 4550 } else { 4551 local_jcc(Assembler::notEqual, *L_failure); 4552 final_jmp(*L_success); 4553 } 4554 } 4555 4556 bind(L_fallthrough); 4557 4558 #undef local_jcc 4559 #undef final_jmp 4560 } 4561 4562 4563 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 4564 Register super_klass, 4565 Register temp_reg, 4566 Register temp2_reg, 4567 Label* L_success, 4568 Label* L_failure, 4569 bool set_cond_codes) { 4570 assert_different_registers(sub_klass, super_klass, temp_reg); 4571 if (temp2_reg != noreg) 4572 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg); 4573 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 4574 4575 Label L_fallthrough; 4576 int label_nulls = 0; 4577 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 4578 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 4579 assert(label_nulls <= 1, "at most one null in the batch"); 4580 4581 // a couple of useful fields in sub_klass: 4582 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 4583 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 4584 Address secondary_supers_addr(sub_klass, ss_offset); 4585 Address super_cache_addr( sub_klass, sc_offset); 4586 4587 // Do a linear scan of the secondary super-klass chain. 4588 // This code is rarely used, so simplicity is a virtue here. 4589 // The repne_scan instruction uses fixed registers, which we must spill. 4590 // Don't worry too much about pre-existing connections with the input regs. 4591 4592 assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super) 4593 assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter) 4594 4595 // Get super_klass value into rax (even if it was in rdi or rcx). 4596 bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false; 4597 if (super_klass != rax) { 4598 if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; } 4599 mov(rax, super_klass); 4600 } 4601 if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; } 4602 if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; } 4603 4604 #ifndef PRODUCT 4605 int* pst_counter = &SharedRuntime::_partial_subtype_ctr; 4606 ExternalAddress pst_counter_addr((address) pst_counter); 4607 NOT_LP64( incrementl(pst_counter_addr) ); 4608 LP64_ONLY( lea(rcx, pst_counter_addr) ); 4609 LP64_ONLY( incrementl(Address(rcx, 0)) ); 4610 #endif //PRODUCT 4611 4612 // We will consult the secondary-super array. 4613 movptr(rdi, secondary_supers_addr); 4614 // Load the array length. (Positive movl does right thing on LP64.) 4615 movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes())); 4616 // Skip to start of data. 4617 addptr(rdi, Array<Klass*>::base_offset_in_bytes()); 4618 4619 // Scan RCX words at [RDI] for an occurrence of RAX. 4620 // Set NZ/Z based on last compare. 4621 // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does 4622 // not change flags (only scas instruction which is repeated sets flags). 4623 // Set Z = 0 (not equal) before 'repne' to indicate that class was not found. 4624 4625 testptr(rax,rax); // Set Z = 0 4626 repne_scan(); 4627 4628 // Unspill the temp. registers: 4629 if (pushed_rdi) pop(rdi); 4630 if (pushed_rcx) pop(rcx); 4631 if (pushed_rax) pop(rax); 4632 4633 if (set_cond_codes) { 4634 // Special hack for the AD files: rdi is guaranteed non-zero. 4635 assert(!pushed_rdi, "rdi must be left non-null"); 4636 // Also, the condition codes are properly set Z/NZ on succeed/failure. 4637 } 4638 4639 if (L_failure == &L_fallthrough) 4640 jccb(Assembler::notEqual, *L_failure); 4641 else jcc(Assembler::notEqual, *L_failure); 4642 4643 // Success. Cache the super we found and proceed in triumph. 4644 movptr(super_cache_addr, super_klass); 4645 4646 if (L_success != &L_fallthrough) { 4647 jmp(*L_success); 4648 } 4649 4650 #undef IS_A_TEMP 4651 4652 bind(L_fallthrough); 4653 } 4654 4655 void MacroAssembler::clinit_barrier(Register klass, Register thread, Label* L_fast_path, Label* L_slow_path) { 4656 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 4657 4658 Label L_fallthrough; 4659 if (L_fast_path == nullptr) { 4660 L_fast_path = &L_fallthrough; 4661 } else if (L_slow_path == nullptr) { 4662 L_slow_path = &L_fallthrough; 4663 } 4664 4665 // Fast path check: class is fully initialized 4666 cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 4667 jcc(Assembler::equal, *L_fast_path); 4668 4669 // Fast path check: current thread is initializer thread 4670 cmpptr(thread, Address(klass, InstanceKlass::init_thread_offset())); 4671 if (L_slow_path == &L_fallthrough) { 4672 jcc(Assembler::equal, *L_fast_path); 4673 bind(*L_slow_path); 4674 } else if (L_fast_path == &L_fallthrough) { 4675 jcc(Assembler::notEqual, *L_slow_path); 4676 bind(*L_fast_path); 4677 } else { 4678 Unimplemented(); 4679 } 4680 } 4681 4682 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) { 4683 if (VM_Version::supports_cmov()) { 4684 cmovl(cc, dst, src); 4685 } else { 4686 Label L; 4687 jccb(negate_condition(cc), L); 4688 movl(dst, src); 4689 bind(L); 4690 } 4691 } 4692 4693 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) { 4694 if (VM_Version::supports_cmov()) { 4695 cmovl(cc, dst, src); 4696 } else { 4697 Label L; 4698 jccb(negate_condition(cc), L); 4699 movl(dst, src); 4700 bind(L); 4701 } 4702 } 4703 4704 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 4705 if (!VerifyOops) return; 4706 4707 BLOCK_COMMENT("verify_oop {"); 4708 #ifdef _LP64 4709 push(rscratch1); 4710 #endif 4711 push(rax); // save rax 4712 push(reg); // pass register argument 4713 4714 // Pass register number to verify_oop_subroutine 4715 const char* b = nullptr; 4716 { 4717 ResourceMark rm; 4718 stringStream ss; 4719 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 4720 b = code_string(ss.as_string()); 4721 } 4722 ExternalAddress buffer((address) b); 4723 pushptr(buffer.addr(), rscratch1); 4724 4725 // call indirectly to solve generation ordering problem 4726 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4727 call(rax); 4728 // Caller pops the arguments (oop, message) and restores rax, r10 4729 BLOCK_COMMENT("} verify_oop"); 4730 } 4731 4732 void MacroAssembler::vallones(XMMRegister dst, int vector_len) { 4733 if (UseAVX > 2 && (vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl())) { 4734 // Only pcmpeq has dependency breaking treatment (i.e the execution can begin without 4735 // waiting for the previous result on dst), not vpcmpeqd, so just use vpternlog 4736 vpternlogd(dst, 0xFF, dst, dst, vector_len); 4737 } else if (VM_Version::supports_avx()) { 4738 vpcmpeqd(dst, dst, dst, vector_len); 4739 } else { 4740 assert(VM_Version::supports_sse2(), ""); 4741 pcmpeqd(dst, dst); 4742 } 4743 } 4744 4745 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 4746 int extra_slot_offset) { 4747 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 4748 int stackElementSize = Interpreter::stackElementSize; 4749 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 4750 #ifdef ASSERT 4751 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 4752 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 4753 #endif 4754 Register scale_reg = noreg; 4755 Address::ScaleFactor scale_factor = Address::no_scale; 4756 if (arg_slot.is_constant()) { 4757 offset += arg_slot.as_constant() * stackElementSize; 4758 } else { 4759 scale_reg = arg_slot.as_register(); 4760 scale_factor = Address::times(stackElementSize); 4761 } 4762 offset += wordSize; // return PC is on stack 4763 return Address(rsp, scale_reg, scale_factor, offset); 4764 } 4765 4766 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 4767 if (!VerifyOops) return; 4768 4769 #ifdef _LP64 4770 push(rscratch1); 4771 #endif 4772 push(rax); // save rax, 4773 // addr may contain rsp so we will have to adjust it based on the push 4774 // we just did (and on 64 bit we do two pushes) 4775 // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which 4776 // stores rax into addr which is backwards of what was intended. 4777 if (addr.uses(rsp)) { 4778 lea(rax, addr); 4779 pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord)); 4780 } else { 4781 pushptr(addr); 4782 } 4783 4784 // Pass register number to verify_oop_subroutine 4785 const char* b = nullptr; 4786 { 4787 ResourceMark rm; 4788 stringStream ss; 4789 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 4790 b = code_string(ss.as_string()); 4791 } 4792 ExternalAddress buffer((address) b); 4793 pushptr(buffer.addr(), rscratch1); 4794 4795 // call indirectly to solve generation ordering problem 4796 movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address())); 4797 call(rax); 4798 // Caller pops the arguments (addr, message) and restores rax, r10. 4799 } 4800 4801 void MacroAssembler::verify_tlab() { 4802 #ifdef ASSERT 4803 if (UseTLAB && VerifyOops) { 4804 Label next, ok; 4805 Register t1 = rsi; 4806 Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread); 4807 4808 push(t1); 4809 NOT_LP64(push(thread_reg)); 4810 NOT_LP64(get_thread(thread_reg)); 4811 4812 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 4813 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset()))); 4814 jcc(Assembler::aboveEqual, next); 4815 STOP("assert(top >= start)"); 4816 should_not_reach_here(); 4817 4818 bind(next); 4819 movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset()))); 4820 cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset()))); 4821 jcc(Assembler::aboveEqual, ok); 4822 STOP("assert(top <= end)"); 4823 should_not_reach_here(); 4824 4825 bind(ok); 4826 NOT_LP64(pop(thread_reg)); 4827 pop(t1); 4828 } 4829 #endif 4830 } 4831 4832 class ControlWord { 4833 public: 4834 int32_t _value; 4835 4836 int rounding_control() const { return (_value >> 10) & 3 ; } 4837 int precision_control() const { return (_value >> 8) & 3 ; } 4838 bool precision() const { return ((_value >> 5) & 1) != 0; } 4839 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4840 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4841 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4842 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4843 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4844 4845 void print() const { 4846 // rounding control 4847 const char* rc; 4848 switch (rounding_control()) { 4849 case 0: rc = "round near"; break; 4850 case 1: rc = "round down"; break; 4851 case 2: rc = "round up "; break; 4852 case 3: rc = "chop "; break; 4853 default: 4854 rc = nullptr; // silence compiler warnings 4855 fatal("Unknown rounding control: %d", rounding_control()); 4856 }; 4857 // precision control 4858 const char* pc; 4859 switch (precision_control()) { 4860 case 0: pc = "24 bits "; break; 4861 case 1: pc = "reserved"; break; 4862 case 2: pc = "53 bits "; break; 4863 case 3: pc = "64 bits "; break; 4864 default: 4865 pc = nullptr; // silence compiler warnings 4866 fatal("Unknown precision control: %d", precision_control()); 4867 }; 4868 // flags 4869 char f[9]; 4870 f[0] = ' '; 4871 f[1] = ' '; 4872 f[2] = (precision ()) ? 'P' : 'p'; 4873 f[3] = (underflow ()) ? 'U' : 'u'; 4874 f[4] = (overflow ()) ? 'O' : 'o'; 4875 f[5] = (zero_divide ()) ? 'Z' : 'z'; 4876 f[6] = (denormalized()) ? 'D' : 'd'; 4877 f[7] = (invalid ()) ? 'I' : 'i'; 4878 f[8] = '\x0'; 4879 // output 4880 printf("%04x masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc); 4881 } 4882 4883 }; 4884 4885 class StatusWord { 4886 public: 4887 int32_t _value; 4888 4889 bool busy() const { return ((_value >> 15) & 1) != 0; } 4890 bool C3() const { return ((_value >> 14) & 1) != 0; } 4891 bool C2() const { return ((_value >> 10) & 1) != 0; } 4892 bool C1() const { return ((_value >> 9) & 1) != 0; } 4893 bool C0() const { return ((_value >> 8) & 1) != 0; } 4894 int top() const { return (_value >> 11) & 7 ; } 4895 bool error_status() const { return ((_value >> 7) & 1) != 0; } 4896 bool stack_fault() const { return ((_value >> 6) & 1) != 0; } 4897 bool precision() const { return ((_value >> 5) & 1) != 0; } 4898 bool underflow() const { return ((_value >> 4) & 1) != 0; } 4899 bool overflow() const { return ((_value >> 3) & 1) != 0; } 4900 bool zero_divide() const { return ((_value >> 2) & 1) != 0; } 4901 bool denormalized() const { return ((_value >> 1) & 1) != 0; } 4902 bool invalid() const { return ((_value >> 0) & 1) != 0; } 4903 4904 void print() const { 4905 // condition codes 4906 char c[5]; 4907 c[0] = (C3()) ? '3' : '-'; 4908 c[1] = (C2()) ? '2' : '-'; 4909 c[2] = (C1()) ? '1' : '-'; 4910 c[3] = (C0()) ? '0' : '-'; 4911 c[4] = '\x0'; 4912 // flags 4913 char f[9]; 4914 f[0] = (error_status()) ? 'E' : '-'; 4915 f[1] = (stack_fault ()) ? 'S' : '-'; 4916 f[2] = (precision ()) ? 'P' : '-'; 4917 f[3] = (underflow ()) ? 'U' : '-'; 4918 f[4] = (overflow ()) ? 'O' : '-'; 4919 f[5] = (zero_divide ()) ? 'Z' : '-'; 4920 f[6] = (denormalized()) ? 'D' : '-'; 4921 f[7] = (invalid ()) ? 'I' : '-'; 4922 f[8] = '\x0'; 4923 // output 4924 printf("%04x flags = %s, cc = %s, top = %d", _value & 0xFFFF, f, c, top()); 4925 } 4926 4927 }; 4928 4929 class TagWord { 4930 public: 4931 int32_t _value; 4932 4933 int tag_at(int i) const { return (_value >> (i*2)) & 3; } 4934 4935 void print() const { 4936 printf("%04x", _value & 0xFFFF); 4937 } 4938 4939 }; 4940 4941 class FPU_Register { 4942 public: 4943 int32_t _m0; 4944 int32_t _m1; 4945 int16_t _ex; 4946 4947 bool is_indefinite() const { 4948 return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0; 4949 } 4950 4951 void print() const { 4952 char sign = (_ex < 0) ? '-' : '+'; 4953 const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : " "; 4954 printf("%c%04hx.%08x%08x %s", sign, _ex, _m1, _m0, kind); 4955 }; 4956 4957 }; 4958 4959 class FPU_State { 4960 public: 4961 enum { 4962 register_size = 10, 4963 number_of_registers = 8, 4964 register_mask = 7 4965 }; 4966 4967 ControlWord _control_word; 4968 StatusWord _status_word; 4969 TagWord _tag_word; 4970 int32_t _error_offset; 4971 int32_t _error_selector; 4972 int32_t _data_offset; 4973 int32_t _data_selector; 4974 int8_t _register[register_size * number_of_registers]; 4975 4976 int tag_for_st(int i) const { return _tag_word.tag_at((_status_word.top() + i) & register_mask); } 4977 FPU_Register* st(int i) const { return (FPU_Register*)&_register[register_size * i]; } 4978 4979 const char* tag_as_string(int tag) const { 4980 switch (tag) { 4981 case 0: return "valid"; 4982 case 1: return "zero"; 4983 case 2: return "special"; 4984 case 3: return "empty"; 4985 } 4986 ShouldNotReachHere(); 4987 return nullptr; 4988 } 4989 4990 void print() const { 4991 // print computation registers 4992 { int t = _status_word.top(); 4993 for (int i = 0; i < number_of_registers; i++) { 4994 int j = (i - t) & register_mask; 4995 printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j); 4996 st(j)->print(); 4997 printf(" %s\n", tag_as_string(_tag_word.tag_at(i))); 4998 } 4999 } 5000 printf("\n"); 5001 // print control registers 5002 printf("ctrl = "); _control_word.print(); printf("\n"); 5003 printf("stat = "); _status_word .print(); printf("\n"); 5004 printf("tags = "); _tag_word .print(); printf("\n"); 5005 } 5006 5007 }; 5008 5009 class Flag_Register { 5010 public: 5011 int32_t _value; 5012 5013 bool overflow() const { return ((_value >> 11) & 1) != 0; } 5014 bool direction() const { return ((_value >> 10) & 1) != 0; } 5015 bool sign() const { return ((_value >> 7) & 1) != 0; } 5016 bool zero() const { return ((_value >> 6) & 1) != 0; } 5017 bool auxiliary_carry() const { return ((_value >> 4) & 1) != 0; } 5018 bool parity() const { return ((_value >> 2) & 1) != 0; } 5019 bool carry() const { return ((_value >> 0) & 1) != 0; } 5020 5021 void print() const { 5022 // flags 5023 char f[8]; 5024 f[0] = (overflow ()) ? 'O' : '-'; 5025 f[1] = (direction ()) ? 'D' : '-'; 5026 f[2] = (sign ()) ? 'S' : '-'; 5027 f[3] = (zero ()) ? 'Z' : '-'; 5028 f[4] = (auxiliary_carry()) ? 'A' : '-'; 5029 f[5] = (parity ()) ? 'P' : '-'; 5030 f[6] = (carry ()) ? 'C' : '-'; 5031 f[7] = '\x0'; 5032 // output 5033 printf("%08x flags = %s", _value, f); 5034 } 5035 5036 }; 5037 5038 class IU_Register { 5039 public: 5040 int32_t _value; 5041 5042 void print() const { 5043 printf("%08x %11d", _value, _value); 5044 } 5045 5046 }; 5047 5048 class IU_State { 5049 public: 5050 Flag_Register _eflags; 5051 IU_Register _rdi; 5052 IU_Register _rsi; 5053 IU_Register _rbp; 5054 IU_Register _rsp; 5055 IU_Register _rbx; 5056 IU_Register _rdx; 5057 IU_Register _rcx; 5058 IU_Register _rax; 5059 5060 void print() const { 5061 // computation registers 5062 printf("rax, = "); _rax.print(); printf("\n"); 5063 printf("rbx, = "); _rbx.print(); printf("\n"); 5064 printf("rcx = "); _rcx.print(); printf("\n"); 5065 printf("rdx = "); _rdx.print(); printf("\n"); 5066 printf("rdi = "); _rdi.print(); printf("\n"); 5067 printf("rsi = "); _rsi.print(); printf("\n"); 5068 printf("rbp, = "); _rbp.print(); printf("\n"); 5069 printf("rsp = "); _rsp.print(); printf("\n"); 5070 printf("\n"); 5071 // control registers 5072 printf("flgs = "); _eflags.print(); printf("\n"); 5073 } 5074 }; 5075 5076 5077 class CPU_State { 5078 public: 5079 FPU_State _fpu_state; 5080 IU_State _iu_state; 5081 5082 void print() const { 5083 printf("--------------------------------------------------\n"); 5084 _iu_state .print(); 5085 printf("\n"); 5086 _fpu_state.print(); 5087 printf("--------------------------------------------------\n"); 5088 } 5089 5090 }; 5091 5092 5093 static void _print_CPU_state(CPU_State* state) { 5094 state->print(); 5095 }; 5096 5097 5098 void MacroAssembler::print_CPU_state() { 5099 push_CPU_state(); 5100 push(rsp); // pass CPU state 5101 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state))); 5102 addptr(rsp, wordSize); // discard argument 5103 pop_CPU_state(); 5104 } 5105 5106 5107 #ifndef _LP64 5108 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) { 5109 static int counter = 0; 5110 FPU_State* fs = &state->_fpu_state; 5111 counter++; 5112 // For leaf calls, only verify that the top few elements remain empty. 5113 // We only need 1 empty at the top for C2 code. 5114 if( stack_depth < 0 ) { 5115 if( fs->tag_for_st(7) != 3 ) { 5116 printf("FPR7 not empty\n"); 5117 state->print(); 5118 assert(false, "error"); 5119 return false; 5120 } 5121 return true; // All other stack states do not matter 5122 } 5123 5124 assert((fs->_control_word._value & 0xffff) == StubRoutines::x86::fpu_cntrl_wrd_std(), 5125 "bad FPU control word"); 5126 5127 // compute stack depth 5128 int i = 0; 5129 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) < 3) i++; 5130 int d = i; 5131 while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++; 5132 // verify findings 5133 if (i != FPU_State::number_of_registers) { 5134 // stack not contiguous 5135 printf("%s: stack not contiguous at ST%d\n", s, i); 5136 state->print(); 5137 assert(false, "error"); 5138 return false; 5139 } 5140 // check if computed stack depth corresponds to expected stack depth 5141 if (stack_depth < 0) { 5142 // expected stack depth is -stack_depth or less 5143 if (d > -stack_depth) { 5144 // too many elements on the stack 5145 printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d); 5146 state->print(); 5147 assert(false, "error"); 5148 return false; 5149 } 5150 } else { 5151 // expected stack depth is stack_depth 5152 if (d != stack_depth) { 5153 // wrong stack depth 5154 printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d); 5155 state->print(); 5156 assert(false, "error"); 5157 return false; 5158 } 5159 } 5160 // everything is cool 5161 return true; 5162 } 5163 5164 void MacroAssembler::verify_FPU(int stack_depth, const char* s) { 5165 if (!VerifyFPU) return; 5166 push_CPU_state(); 5167 push(rsp); // pass CPU state 5168 ExternalAddress msg((address) s); 5169 // pass message string s 5170 pushptr(msg.addr(), noreg); 5171 push(stack_depth); // pass stack depth 5172 call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU))); 5173 addptr(rsp, 3 * wordSize); // discard arguments 5174 // check for error 5175 { Label L; 5176 testl(rax, rax); 5177 jcc(Assembler::notZero, L); 5178 int3(); // break if error condition 5179 bind(L); 5180 } 5181 pop_CPU_state(); 5182 } 5183 #endif // _LP64 5184 5185 void MacroAssembler::restore_cpu_control_state_after_jni(Register rscratch) { 5186 // Either restore the MXCSR register after returning from the JNI Call 5187 // or verify that it wasn't changed (with -Xcheck:jni flag). 5188 if (VM_Version::supports_sse()) { 5189 if (RestoreMXCSROnJNICalls) { 5190 ldmxcsr(ExternalAddress(StubRoutines::x86::addr_mxcsr_std()), rscratch); 5191 } else if (CheckJNICalls) { 5192 call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry())); 5193 } 5194 } 5195 // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty. 5196 vzeroupper(); 5197 5198 #ifndef _LP64 5199 // Either restore the x87 floating pointer control word after returning 5200 // from the JNI call or verify that it wasn't changed. 5201 if (CheckJNICalls) { 5202 call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry())); 5203 } 5204 #endif // _LP64 5205 } 5206 5207 // ((OopHandle)result).resolve(); 5208 void MacroAssembler::resolve_oop_handle(Register result, Register tmp) { 5209 assert_different_registers(result, tmp); 5210 5211 // Only 64 bit platforms support GCs that require a tmp register 5212 // Only IN_HEAP loads require a thread_tmp register 5213 // OopHandle::resolve is an indirection like jobject. 5214 access_load_at(T_OBJECT, IN_NATIVE, 5215 result, Address(result, 0), tmp, /*tmp_thread*/noreg); 5216 } 5217 5218 // ((WeakHandle)result).resolve(); 5219 void MacroAssembler::resolve_weak_handle(Register rresult, Register rtmp) { 5220 assert_different_registers(rresult, rtmp); 5221 Label resolved; 5222 5223 // A null weak handle resolves to null. 5224 cmpptr(rresult, 0); 5225 jcc(Assembler::equal, resolved); 5226 5227 // Only 64 bit platforms support GCs that require a tmp register 5228 // Only IN_HEAP loads require a thread_tmp register 5229 // WeakHandle::resolve is an indirection like jweak. 5230 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5231 rresult, Address(rresult, 0), rtmp, /*tmp_thread*/noreg); 5232 bind(resolved); 5233 } 5234 5235 void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) { 5236 // get mirror 5237 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5238 load_method_holder(mirror, method); 5239 movptr(mirror, Address(mirror, mirror_offset)); 5240 resolve_oop_handle(mirror, tmp); 5241 } 5242 5243 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5244 load_method_holder(rresult, rmethod); 5245 movptr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5246 } 5247 5248 void MacroAssembler::load_method_holder(Register holder, Register method) { 5249 movptr(holder, Address(method, Method::const_offset())); // ConstMethod* 5250 movptr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5251 movptr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5252 } 5253 5254 void MacroAssembler::load_klass(Register dst, Register src, Register tmp) { 5255 assert_different_registers(src, tmp); 5256 assert_different_registers(dst, tmp); 5257 #ifdef _LP64 5258 if (UseCompressedClassPointers) { 5259 movl(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5260 decode_klass_not_null(dst, tmp); 5261 } else 5262 #endif 5263 movptr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5264 } 5265 5266 void MacroAssembler::store_klass(Register dst, Register src, Register tmp) { 5267 assert_different_registers(src, tmp); 5268 assert_different_registers(dst, tmp); 5269 #ifdef _LP64 5270 if (UseCompressedClassPointers) { 5271 encode_klass_not_null(src, tmp); 5272 movl(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5273 } else 5274 #endif 5275 movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src); 5276 } 5277 5278 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src, 5279 Register tmp1, Register thread_tmp) { 5280 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5281 decorators = AccessInternal::decorator_fixup(decorators, type); 5282 bool as_raw = (decorators & AS_RAW) != 0; 5283 if (as_raw) { 5284 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5285 } else { 5286 bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp); 5287 } 5288 } 5289 5290 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val, 5291 Register tmp1, Register tmp2, Register tmp3) { 5292 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5293 decorators = AccessInternal::decorator_fixup(decorators, type); 5294 bool as_raw = (decorators & AS_RAW) != 0; 5295 if (as_raw) { 5296 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5297 } else { 5298 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5299 } 5300 } 5301 5302 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5303 Register thread_tmp, DecoratorSet decorators) { 5304 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp); 5305 } 5306 5307 // Doesn't do verification, generates fixed size code 5308 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5309 Register thread_tmp, DecoratorSet decorators) { 5310 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, thread_tmp); 5311 } 5312 5313 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5314 Register tmp2, Register tmp3, DecoratorSet decorators) { 5315 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5316 } 5317 5318 // Used for storing nulls. 5319 void MacroAssembler::store_heap_oop_null(Address dst) { 5320 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5321 } 5322 5323 #ifdef _LP64 5324 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5325 if (UseCompressedClassPointers) { 5326 // Store to klass gap in destination 5327 movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src); 5328 } 5329 } 5330 5331 #ifdef ASSERT 5332 void MacroAssembler::verify_heapbase(const char* msg) { 5333 assert (UseCompressedOops, "should be compressed"); 5334 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5335 if (CheckCompressedOops) { 5336 Label ok; 5337 ExternalAddress src2(CompressedOops::ptrs_base_addr()); 5338 const bool is_src2_reachable = reachable(src2); 5339 if (!is_src2_reachable) { 5340 push(rscratch1); // cmpptr trashes rscratch1 5341 } 5342 cmpptr(r12_heapbase, src2, rscratch1); 5343 jcc(Assembler::equal, ok); 5344 STOP(msg); 5345 bind(ok); 5346 if (!is_src2_reachable) { 5347 pop(rscratch1); 5348 } 5349 } 5350 } 5351 #endif 5352 5353 // Algorithm must match oop.inline.hpp encode_heap_oop. 5354 void MacroAssembler::encode_heap_oop(Register r) { 5355 #ifdef ASSERT 5356 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5357 #endif 5358 verify_oop_msg(r, "broken oop in encode_heap_oop"); 5359 if (CompressedOops::base() == nullptr) { 5360 if (CompressedOops::shift() != 0) { 5361 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5362 shrq(r, LogMinObjAlignmentInBytes); 5363 } 5364 return; 5365 } 5366 testq(r, r); 5367 cmovq(Assembler::equal, r, r12_heapbase); 5368 subq(r, r12_heapbase); 5369 shrq(r, LogMinObjAlignmentInBytes); 5370 } 5371 5372 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5373 #ifdef ASSERT 5374 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5375 if (CheckCompressedOops) { 5376 Label ok; 5377 testq(r, r); 5378 jcc(Assembler::notEqual, ok); 5379 STOP("null oop passed to encode_heap_oop_not_null"); 5380 bind(ok); 5381 } 5382 #endif 5383 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5384 if (CompressedOops::base() != nullptr) { 5385 subq(r, r12_heapbase); 5386 } 5387 if (CompressedOops::shift() != 0) { 5388 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5389 shrq(r, LogMinObjAlignmentInBytes); 5390 } 5391 } 5392 5393 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5394 #ifdef ASSERT 5395 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5396 if (CheckCompressedOops) { 5397 Label ok; 5398 testq(src, src); 5399 jcc(Assembler::notEqual, ok); 5400 STOP("null oop passed to encode_heap_oop_not_null2"); 5401 bind(ok); 5402 } 5403 #endif 5404 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5405 if (dst != src) { 5406 movq(dst, src); 5407 } 5408 if (CompressedOops::base() != nullptr) { 5409 subq(dst, r12_heapbase); 5410 } 5411 if (CompressedOops::shift() != 0) { 5412 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5413 shrq(dst, LogMinObjAlignmentInBytes); 5414 } 5415 } 5416 5417 void MacroAssembler::decode_heap_oop(Register r) { 5418 #ifdef ASSERT 5419 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5420 #endif 5421 if (CompressedOops::base() == nullptr) { 5422 if (CompressedOops::shift() != 0) { 5423 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5424 shlq(r, LogMinObjAlignmentInBytes); 5425 } 5426 } else { 5427 Label done; 5428 shlq(r, LogMinObjAlignmentInBytes); 5429 jccb(Assembler::equal, done); 5430 addq(r, r12_heapbase); 5431 bind(done); 5432 } 5433 verify_oop_msg(r, "broken oop in decode_heap_oop"); 5434 } 5435 5436 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5437 // Note: it will change flags 5438 assert (UseCompressedOops, "should only be used for compressed headers"); 5439 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5440 // Cannot assert, unverified entry point counts instructions (see .ad file) 5441 // vtableStubs also counts instructions in pd_code_size_limit. 5442 // Also do not verify_oop as this is called by verify_oop. 5443 if (CompressedOops::shift() != 0) { 5444 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5445 shlq(r, LogMinObjAlignmentInBytes); 5446 if (CompressedOops::base() != nullptr) { 5447 addq(r, r12_heapbase); 5448 } 5449 } else { 5450 assert (CompressedOops::base() == nullptr, "sanity"); 5451 } 5452 } 5453 5454 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5455 // Note: it will change flags 5456 assert (UseCompressedOops, "should only be used for compressed headers"); 5457 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5458 // Cannot assert, unverified entry point counts instructions (see .ad file) 5459 // vtableStubs also counts instructions in pd_code_size_limit. 5460 // Also do not verify_oop as this is called by verify_oop. 5461 if (CompressedOops::shift() != 0) { 5462 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5463 if (LogMinObjAlignmentInBytes == Address::times_8) { 5464 leaq(dst, Address(r12_heapbase, src, Address::times_8, 0)); 5465 } else { 5466 if (dst != src) { 5467 movq(dst, src); 5468 } 5469 shlq(dst, LogMinObjAlignmentInBytes); 5470 if (CompressedOops::base() != nullptr) { 5471 addq(dst, r12_heapbase); 5472 } 5473 } 5474 } else { 5475 assert (CompressedOops::base() == nullptr, "sanity"); 5476 if (dst != src) { 5477 movq(dst, src); 5478 } 5479 } 5480 } 5481 5482 void MacroAssembler::encode_klass_not_null(Register r, Register tmp) { 5483 assert_different_registers(r, tmp); 5484 if (CompressedKlassPointers::base() != nullptr) { 5485 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5486 subq(r, tmp); 5487 } 5488 if (CompressedKlassPointers::shift() != 0) { 5489 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5490 shrq(r, LogKlassAlignmentInBytes); 5491 } 5492 } 5493 5494 void MacroAssembler::encode_and_move_klass_not_null(Register dst, Register src) { 5495 assert_different_registers(src, dst); 5496 if (CompressedKlassPointers::base() != nullptr) { 5497 mov64(dst, -(int64_t)CompressedKlassPointers::base()); 5498 addq(dst, src); 5499 } else { 5500 movptr(dst, src); 5501 } 5502 if (CompressedKlassPointers::shift() != 0) { 5503 assert (LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5504 shrq(dst, LogKlassAlignmentInBytes); 5505 } 5506 } 5507 5508 void MacroAssembler::decode_klass_not_null(Register r, Register tmp) { 5509 assert_different_registers(r, tmp); 5510 // Note: it will change flags 5511 assert(UseCompressedClassPointers, "should only be used for compressed headers"); 5512 // Cannot assert, unverified entry point counts instructions (see .ad file) 5513 // vtableStubs also counts instructions in pd_code_size_limit. 5514 // Also do not verify_oop as this is called by verify_oop. 5515 if (CompressedKlassPointers::shift() != 0) { 5516 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5517 shlq(r, LogKlassAlignmentInBytes); 5518 } 5519 if (CompressedKlassPointers::base() != nullptr) { 5520 mov64(tmp, (int64_t)CompressedKlassPointers::base()); 5521 addq(r, tmp); 5522 } 5523 } 5524 5525 void MacroAssembler::decode_and_move_klass_not_null(Register dst, Register src) { 5526 assert_different_registers(src, dst); 5527 // Note: it will change flags 5528 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5529 // Cannot assert, unverified entry point counts instructions (see .ad file) 5530 // vtableStubs also counts instructions in pd_code_size_limit. 5531 // Also do not verify_oop as this is called by verify_oop. 5532 5533 if (CompressedKlassPointers::base() == nullptr && 5534 CompressedKlassPointers::shift() == 0) { 5535 // The best case scenario is that there is no base or shift. Then it is already 5536 // a pointer that needs nothing but a register rename. 5537 movl(dst, src); 5538 } else { 5539 if (CompressedKlassPointers::base() != nullptr) { 5540 mov64(dst, (int64_t)CompressedKlassPointers::base()); 5541 } else { 5542 xorq(dst, dst); 5543 } 5544 if (CompressedKlassPointers::shift() != 0) { 5545 assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong"); 5546 assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?"); 5547 leaq(dst, Address(dst, src, Address::times_8, 0)); 5548 } else { 5549 addq(dst, src); 5550 } 5551 } 5552 } 5553 5554 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5555 assert (UseCompressedOops, "should only be used for compressed headers"); 5556 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5557 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5558 int oop_index = oop_recorder()->find_index(obj); 5559 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5560 mov_narrow_oop(dst, oop_index, rspec); 5561 } 5562 5563 void MacroAssembler::set_narrow_oop(Address dst, jobject obj) { 5564 assert (UseCompressedOops, "should only be used for compressed headers"); 5565 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5566 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5567 int oop_index = oop_recorder()->find_index(obj); 5568 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5569 mov_narrow_oop(dst, oop_index, rspec); 5570 } 5571 5572 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5573 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5574 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5575 int klass_index = oop_recorder()->find_index(k); 5576 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5577 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5578 } 5579 5580 void MacroAssembler::set_narrow_klass(Address dst, Klass* k) { 5581 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5582 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5583 int klass_index = oop_recorder()->find_index(k); 5584 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5585 mov_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5586 } 5587 5588 void MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) { 5589 assert (UseCompressedOops, "should only be used for compressed headers"); 5590 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5591 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5592 int oop_index = oop_recorder()->find_index(obj); 5593 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5594 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5595 } 5596 5597 void MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) { 5598 assert (UseCompressedOops, "should only be used for compressed headers"); 5599 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5600 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5601 int oop_index = oop_recorder()->find_index(obj); 5602 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5603 Assembler::cmp_narrow_oop(dst, oop_index, rspec); 5604 } 5605 5606 void MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) { 5607 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5608 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5609 int klass_index = oop_recorder()->find_index(k); 5610 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5611 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5612 } 5613 5614 void MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) { 5615 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5616 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5617 int klass_index = oop_recorder()->find_index(k); 5618 RelocationHolder rspec = metadata_Relocation::spec(klass_index); 5619 Assembler::cmp_narrow_oop(dst, CompressedKlassPointers::encode(k), rspec); 5620 } 5621 5622 void MacroAssembler::reinit_heapbase() { 5623 if (UseCompressedOops) { 5624 if (Universe::heap() != nullptr) { 5625 if (CompressedOops::base() == nullptr) { 5626 MacroAssembler::xorptr(r12_heapbase, r12_heapbase); 5627 } else { 5628 mov64(r12_heapbase, (int64_t)CompressedOops::ptrs_base()); 5629 } 5630 } else { 5631 movptr(r12_heapbase, ExternalAddress(CompressedOops::ptrs_base_addr())); 5632 } 5633 } 5634 } 5635 5636 #endif // _LP64 5637 5638 #if COMPILER2_OR_JVMCI 5639 5640 // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM/ZMM registers 5641 void MacroAssembler::xmm_clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5642 // cnt - number of qwords (8-byte words). 5643 // base - start address, qword aligned. 5644 Label L_zero_64_bytes, L_loop, L_sloop, L_tail, L_end; 5645 bool use64byteVector = (MaxVectorSize == 64) && (VM_Version::avx3_threshold() == 0); 5646 if (use64byteVector) { 5647 vpxor(xtmp, xtmp, xtmp, AVX_512bit); 5648 } else if (MaxVectorSize >= 32) { 5649 vpxor(xtmp, xtmp, xtmp, AVX_256bit); 5650 } else { 5651 pxor(xtmp, xtmp); 5652 } 5653 jmp(L_zero_64_bytes); 5654 5655 BIND(L_loop); 5656 if (MaxVectorSize >= 32) { 5657 fill64(base, 0, xtmp, use64byteVector); 5658 } else { 5659 movdqu(Address(base, 0), xtmp); 5660 movdqu(Address(base, 16), xtmp); 5661 movdqu(Address(base, 32), xtmp); 5662 movdqu(Address(base, 48), xtmp); 5663 } 5664 addptr(base, 64); 5665 5666 BIND(L_zero_64_bytes); 5667 subptr(cnt, 8); 5668 jccb(Assembler::greaterEqual, L_loop); 5669 5670 // Copy trailing 64 bytes 5671 if (use64byteVector) { 5672 addptr(cnt, 8); 5673 jccb(Assembler::equal, L_end); 5674 fill64_masked(3, base, 0, xtmp, mask, cnt, rtmp, true); 5675 jmp(L_end); 5676 } else { 5677 addptr(cnt, 4); 5678 jccb(Assembler::less, L_tail); 5679 if (MaxVectorSize >= 32) { 5680 vmovdqu(Address(base, 0), xtmp); 5681 } else { 5682 movdqu(Address(base, 0), xtmp); 5683 movdqu(Address(base, 16), xtmp); 5684 } 5685 } 5686 addptr(base, 32); 5687 subptr(cnt, 4); 5688 5689 BIND(L_tail); 5690 addptr(cnt, 4); 5691 jccb(Assembler::lessEqual, L_end); 5692 if (UseAVX > 2 && MaxVectorSize >= 32 && VM_Version::supports_avx512vl()) { 5693 fill32_masked(3, base, 0, xtmp, mask, cnt, rtmp); 5694 } else { 5695 decrement(cnt); 5696 5697 BIND(L_sloop); 5698 movq(Address(base, 0), xtmp); 5699 addptr(base, 8); 5700 decrement(cnt); 5701 jccb(Assembler::greaterEqual, L_sloop); 5702 } 5703 BIND(L_end); 5704 } 5705 5706 // Clearing constant sized memory using YMM/ZMM registers. 5707 void MacroAssembler::clear_mem(Register base, int cnt, Register rtmp, XMMRegister xtmp, KRegister mask) { 5708 assert(UseAVX > 2 && VM_Version::supports_avx512vlbw(), ""); 5709 bool use64byteVector = (MaxVectorSize > 32) && (VM_Version::avx3_threshold() == 0); 5710 5711 int vector64_count = (cnt & (~0x7)) >> 3; 5712 cnt = cnt & 0x7; 5713 const int fill64_per_loop = 4; 5714 const int max_unrolled_fill64 = 8; 5715 5716 // 64 byte initialization loop. 5717 vpxor(xtmp, xtmp, xtmp, use64byteVector ? AVX_512bit : AVX_256bit); 5718 int start64 = 0; 5719 if (vector64_count > max_unrolled_fill64) { 5720 Label LOOP; 5721 Register index = rtmp; 5722 5723 start64 = vector64_count - (vector64_count % fill64_per_loop); 5724 5725 movl(index, 0); 5726 BIND(LOOP); 5727 for (int i = 0; i < fill64_per_loop; i++) { 5728 fill64(Address(base, index, Address::times_1, i * 64), xtmp, use64byteVector); 5729 } 5730 addl(index, fill64_per_loop * 64); 5731 cmpl(index, start64 * 64); 5732 jccb(Assembler::less, LOOP); 5733 } 5734 for (int i = start64; i < vector64_count; i++) { 5735 fill64(base, i * 64, xtmp, use64byteVector); 5736 } 5737 5738 // Clear remaining 64 byte tail. 5739 int disp = vector64_count * 64; 5740 if (cnt) { 5741 switch (cnt) { 5742 case 1: 5743 movq(Address(base, disp), xtmp); 5744 break; 5745 case 2: 5746 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_128bit); 5747 break; 5748 case 3: 5749 movl(rtmp, 0x7); 5750 kmovwl(mask, rtmp); 5751 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_256bit); 5752 break; 5753 case 4: 5754 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5755 break; 5756 case 5: 5757 if (use64byteVector) { 5758 movl(rtmp, 0x1F); 5759 kmovwl(mask, rtmp); 5760 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5761 } else { 5762 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5763 movq(Address(base, disp + 32), xtmp); 5764 } 5765 break; 5766 case 6: 5767 if (use64byteVector) { 5768 movl(rtmp, 0x3F); 5769 kmovwl(mask, rtmp); 5770 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5771 } else { 5772 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5773 evmovdqu(T_LONG, k0, Address(base, disp + 32), xtmp, false, Assembler::AVX_128bit); 5774 } 5775 break; 5776 case 7: 5777 if (use64byteVector) { 5778 movl(rtmp, 0x7F); 5779 kmovwl(mask, rtmp); 5780 evmovdqu(T_LONG, mask, Address(base, disp), xtmp, true, Assembler::AVX_512bit); 5781 } else { 5782 evmovdqu(T_LONG, k0, Address(base, disp), xtmp, false, Assembler::AVX_256bit); 5783 movl(rtmp, 0x7); 5784 kmovwl(mask, rtmp); 5785 evmovdqu(T_LONG, mask, Address(base, disp + 32), xtmp, true, Assembler::AVX_256bit); 5786 } 5787 break; 5788 default: 5789 fatal("Unexpected length : %d\n",cnt); 5790 break; 5791 } 5792 } 5793 } 5794 5795 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, XMMRegister xtmp, 5796 bool is_large, KRegister mask) { 5797 // cnt - number of qwords (8-byte words). 5798 // base - start address, qword aligned. 5799 // is_large - if optimizers know cnt is larger than InitArrayShortSize 5800 assert(base==rdi, "base register must be edi for rep stos"); 5801 assert(tmp==rax, "tmp register must be eax for rep stos"); 5802 assert(cnt==rcx, "cnt register must be ecx for rep stos"); 5803 assert(InitArrayShortSize % BytesPerLong == 0, 5804 "InitArrayShortSize should be the multiple of BytesPerLong"); 5805 5806 Label DONE; 5807 if (!is_large || !UseXMMForObjInit) { 5808 xorptr(tmp, tmp); 5809 } 5810 5811 if (!is_large) { 5812 Label LOOP, LONG; 5813 cmpptr(cnt, InitArrayShortSize/BytesPerLong); 5814 jccb(Assembler::greater, LONG); 5815 5816 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 5817 5818 decrement(cnt); 5819 jccb(Assembler::negative, DONE); // Zero length 5820 5821 // Use individual pointer-sized stores for small counts: 5822 BIND(LOOP); 5823 movptr(Address(base, cnt, Address::times_ptr), tmp); 5824 decrement(cnt); 5825 jccb(Assembler::greaterEqual, LOOP); 5826 jmpb(DONE); 5827 5828 BIND(LONG); 5829 } 5830 5831 // Use longer rep-prefixed ops for non-small counts: 5832 if (UseFastStosb) { 5833 shlptr(cnt, 3); // convert to number of bytes 5834 rep_stosb(); 5835 } else if (UseXMMForObjInit) { 5836 xmm_clear_mem(base, cnt, tmp, xtmp, mask); 5837 } else { 5838 NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM 5839 rep_stos(); 5840 } 5841 5842 BIND(DONE); 5843 } 5844 5845 #endif //COMPILER2_OR_JVMCI 5846 5847 5848 void MacroAssembler::generate_fill(BasicType t, bool aligned, 5849 Register to, Register value, Register count, 5850 Register rtmp, XMMRegister xtmp) { 5851 ShortBranchVerifier sbv(this); 5852 assert_different_registers(to, value, count, rtmp); 5853 Label L_exit; 5854 Label L_fill_2_bytes, L_fill_4_bytes; 5855 5856 #if defined(COMPILER2) && defined(_LP64) 5857 if(MaxVectorSize >=32 && 5858 VM_Version::supports_avx512vlbw() && 5859 VM_Version::supports_bmi2()) { 5860 generate_fill_avx3(t, to, value, count, rtmp, xtmp); 5861 return; 5862 } 5863 #endif 5864 5865 int shift = -1; 5866 switch (t) { 5867 case T_BYTE: 5868 shift = 2; 5869 break; 5870 case T_SHORT: 5871 shift = 1; 5872 break; 5873 case T_INT: 5874 shift = 0; 5875 break; 5876 default: ShouldNotReachHere(); 5877 } 5878 5879 if (t == T_BYTE) { 5880 andl(value, 0xff); 5881 movl(rtmp, value); 5882 shll(rtmp, 8); 5883 orl(value, rtmp); 5884 } 5885 if (t == T_SHORT) { 5886 andl(value, 0xffff); 5887 } 5888 if (t == T_BYTE || t == T_SHORT) { 5889 movl(rtmp, value); 5890 shll(rtmp, 16); 5891 orl(value, rtmp); 5892 } 5893 5894 cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element 5895 jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp 5896 if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) { 5897 Label L_skip_align2; 5898 // align source address at 4 bytes address boundary 5899 if (t == T_BYTE) { 5900 Label L_skip_align1; 5901 // One byte misalignment happens only for byte arrays 5902 testptr(to, 1); 5903 jccb(Assembler::zero, L_skip_align1); 5904 movb(Address(to, 0), value); 5905 increment(to); 5906 decrement(count); 5907 BIND(L_skip_align1); 5908 } 5909 // Two bytes misalignment happens only for byte and short (char) arrays 5910 testptr(to, 2); 5911 jccb(Assembler::zero, L_skip_align2); 5912 movw(Address(to, 0), value); 5913 addptr(to, 2); 5914 subl(count, 1<<(shift-1)); 5915 BIND(L_skip_align2); 5916 } 5917 if (UseSSE < 2) { 5918 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 5919 // Fill 32-byte chunks 5920 subl(count, 8 << shift); 5921 jcc(Assembler::less, L_check_fill_8_bytes); 5922 align(16); 5923 5924 BIND(L_fill_32_bytes_loop); 5925 5926 for (int i = 0; i < 32; i += 4) { 5927 movl(Address(to, i), value); 5928 } 5929 5930 addptr(to, 32); 5931 subl(count, 8 << shift); 5932 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 5933 BIND(L_check_fill_8_bytes); 5934 addl(count, 8 << shift); 5935 jccb(Assembler::zero, L_exit); 5936 jmpb(L_fill_8_bytes); 5937 5938 // 5939 // length is too short, just fill qwords 5940 // 5941 BIND(L_fill_8_bytes_loop); 5942 movl(Address(to, 0), value); 5943 movl(Address(to, 4), value); 5944 addptr(to, 8); 5945 BIND(L_fill_8_bytes); 5946 subl(count, 1 << (shift + 1)); 5947 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 5948 // fall through to fill 4 bytes 5949 } else { 5950 Label L_fill_32_bytes; 5951 if (!UseUnalignedLoadStores) { 5952 // align to 8 bytes, we know we are 4 byte aligned to start 5953 testptr(to, 4); 5954 jccb(Assembler::zero, L_fill_32_bytes); 5955 movl(Address(to, 0), value); 5956 addptr(to, 4); 5957 subl(count, 1<<shift); 5958 } 5959 BIND(L_fill_32_bytes); 5960 { 5961 assert( UseSSE >= 2, "supported cpu only" ); 5962 Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes; 5963 movdl(xtmp, value); 5964 if (UseAVX >= 2 && UseUnalignedLoadStores) { 5965 Label L_check_fill_32_bytes; 5966 if (UseAVX > 2) { 5967 // Fill 64-byte chunks 5968 Label L_fill_64_bytes_loop_avx3, L_check_fill_64_bytes_avx2; 5969 5970 // If number of bytes to fill < VM_Version::avx3_threshold(), perform fill using AVX2 5971 cmpl(count, VM_Version::avx3_threshold()); 5972 jccb(Assembler::below, L_check_fill_64_bytes_avx2); 5973 5974 vpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit); 5975 5976 subl(count, 16 << shift); 5977 jccb(Assembler::less, L_check_fill_32_bytes); 5978 align(16); 5979 5980 BIND(L_fill_64_bytes_loop_avx3); 5981 evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit); 5982 addptr(to, 64); 5983 subl(count, 16 << shift); 5984 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop_avx3); 5985 jmpb(L_check_fill_32_bytes); 5986 5987 BIND(L_check_fill_64_bytes_avx2); 5988 } 5989 // Fill 64-byte chunks 5990 Label L_fill_64_bytes_loop; 5991 vpbroadcastd(xtmp, xtmp, Assembler::AVX_256bit); 5992 5993 subl(count, 16 << shift); 5994 jcc(Assembler::less, L_check_fill_32_bytes); 5995 align(16); 5996 5997 BIND(L_fill_64_bytes_loop); 5998 vmovdqu(Address(to, 0), xtmp); 5999 vmovdqu(Address(to, 32), xtmp); 6000 addptr(to, 64); 6001 subl(count, 16 << shift); 6002 jcc(Assembler::greaterEqual, L_fill_64_bytes_loop); 6003 6004 BIND(L_check_fill_32_bytes); 6005 addl(count, 8 << shift); 6006 jccb(Assembler::less, L_check_fill_8_bytes); 6007 vmovdqu(Address(to, 0), xtmp); 6008 addptr(to, 32); 6009 subl(count, 8 << shift); 6010 6011 BIND(L_check_fill_8_bytes); 6012 // clean upper bits of YMM registers 6013 movdl(xtmp, value); 6014 pshufd(xtmp, xtmp, 0); 6015 } else { 6016 // Fill 32-byte chunks 6017 pshufd(xtmp, xtmp, 0); 6018 6019 subl(count, 8 << shift); 6020 jcc(Assembler::less, L_check_fill_8_bytes); 6021 align(16); 6022 6023 BIND(L_fill_32_bytes_loop); 6024 6025 if (UseUnalignedLoadStores) { 6026 movdqu(Address(to, 0), xtmp); 6027 movdqu(Address(to, 16), xtmp); 6028 } else { 6029 movq(Address(to, 0), xtmp); 6030 movq(Address(to, 8), xtmp); 6031 movq(Address(to, 16), xtmp); 6032 movq(Address(to, 24), xtmp); 6033 } 6034 6035 addptr(to, 32); 6036 subl(count, 8 << shift); 6037 jcc(Assembler::greaterEqual, L_fill_32_bytes_loop); 6038 6039 BIND(L_check_fill_8_bytes); 6040 } 6041 addl(count, 8 << shift); 6042 jccb(Assembler::zero, L_exit); 6043 jmpb(L_fill_8_bytes); 6044 6045 // 6046 // length is too short, just fill qwords 6047 // 6048 BIND(L_fill_8_bytes_loop); 6049 movq(Address(to, 0), xtmp); 6050 addptr(to, 8); 6051 BIND(L_fill_8_bytes); 6052 subl(count, 1 << (shift + 1)); 6053 jcc(Assembler::greaterEqual, L_fill_8_bytes_loop); 6054 } 6055 } 6056 // fill trailing 4 bytes 6057 BIND(L_fill_4_bytes); 6058 testl(count, 1<<shift); 6059 jccb(Assembler::zero, L_fill_2_bytes); 6060 movl(Address(to, 0), value); 6061 if (t == T_BYTE || t == T_SHORT) { 6062 Label L_fill_byte; 6063 addptr(to, 4); 6064 BIND(L_fill_2_bytes); 6065 // fill trailing 2 bytes 6066 testl(count, 1<<(shift-1)); 6067 jccb(Assembler::zero, L_fill_byte); 6068 movw(Address(to, 0), value); 6069 if (t == T_BYTE) { 6070 addptr(to, 2); 6071 BIND(L_fill_byte); 6072 // fill trailing byte 6073 testl(count, 1); 6074 jccb(Assembler::zero, L_exit); 6075 movb(Address(to, 0), value); 6076 } else { 6077 BIND(L_fill_byte); 6078 } 6079 } else { 6080 BIND(L_fill_2_bytes); 6081 } 6082 BIND(L_exit); 6083 } 6084 6085 void MacroAssembler::evpbroadcast(BasicType type, XMMRegister dst, Register src, int vector_len) { 6086 switch(type) { 6087 case T_BYTE: 6088 case T_BOOLEAN: 6089 evpbroadcastb(dst, src, vector_len); 6090 break; 6091 case T_SHORT: 6092 case T_CHAR: 6093 evpbroadcastw(dst, src, vector_len); 6094 break; 6095 case T_INT: 6096 case T_FLOAT: 6097 evpbroadcastd(dst, src, vector_len); 6098 break; 6099 case T_LONG: 6100 case T_DOUBLE: 6101 evpbroadcastq(dst, src, vector_len); 6102 break; 6103 default: 6104 fatal("Unhandled type : %s", type2name(type)); 6105 break; 6106 } 6107 } 6108 6109 // encode char[] to byte[] in ISO_8859_1 or ASCII 6110 //@IntrinsicCandidate 6111 //private static int implEncodeISOArray(byte[] sa, int sp, 6112 //byte[] da, int dp, int len) { 6113 // int i = 0; 6114 // for (; i < len; i++) { 6115 // char c = StringUTF16.getChar(sa, sp++); 6116 // if (c > '\u00FF') 6117 // break; 6118 // da[dp++] = (byte)c; 6119 // } 6120 // return i; 6121 //} 6122 // 6123 //@IntrinsicCandidate 6124 //private static int implEncodeAsciiArray(char[] sa, int sp, 6125 // byte[] da, int dp, int len) { 6126 // int i = 0; 6127 // for (; i < len; i++) { 6128 // char c = sa[sp++]; 6129 // if (c >= '\u0080') 6130 // break; 6131 // da[dp++] = (byte)c; 6132 // } 6133 // return i; 6134 //} 6135 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len, 6136 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 6137 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 6138 Register tmp5, Register result, bool ascii) { 6139 6140 // rsi: src 6141 // rdi: dst 6142 // rdx: len 6143 // rcx: tmp5 6144 // rax: result 6145 ShortBranchVerifier sbv(this); 6146 assert_different_registers(src, dst, len, tmp5, result); 6147 Label L_done, L_copy_1_char, L_copy_1_char_exit; 6148 6149 int mask = ascii ? 0xff80ff80 : 0xff00ff00; 6150 int short_mask = ascii ? 0xff80 : 0xff00; 6151 6152 // set result 6153 xorl(result, result); 6154 // check for zero length 6155 testl(len, len); 6156 jcc(Assembler::zero, L_done); 6157 6158 movl(result, len); 6159 6160 // Setup pointers 6161 lea(src, Address(src, len, Address::times_2)); // char[] 6162 lea(dst, Address(dst, len, Address::times_1)); // byte[] 6163 negptr(len); 6164 6165 if (UseSSE42Intrinsics || UseAVX >= 2) { 6166 Label L_copy_8_chars, L_copy_8_chars_exit; 6167 Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit; 6168 6169 if (UseAVX >= 2) { 6170 Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit; 6171 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6172 movdl(tmp1Reg, tmp5); 6173 vpbroadcastd(tmp1Reg, tmp1Reg, Assembler::AVX_256bit); 6174 jmp(L_chars_32_check); 6175 6176 bind(L_copy_32_chars); 6177 vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64)); 6178 vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32)); 6179 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6180 vptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6181 jccb(Assembler::notZero, L_copy_32_chars_exit); 6182 vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1); 6183 vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1); 6184 vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg); 6185 6186 bind(L_chars_32_check); 6187 addptr(len, 32); 6188 jcc(Assembler::lessEqual, L_copy_32_chars); 6189 6190 bind(L_copy_32_chars_exit); 6191 subptr(len, 16); 6192 jccb(Assembler::greater, L_copy_16_chars_exit); 6193 6194 } else if (UseSSE42Intrinsics) { 6195 movl(tmp5, mask); // create mask to test for Unicode or non-ASCII chars in vector 6196 movdl(tmp1Reg, tmp5); 6197 pshufd(tmp1Reg, tmp1Reg, 0); 6198 jmpb(L_chars_16_check); 6199 } 6200 6201 bind(L_copy_16_chars); 6202 if (UseAVX >= 2) { 6203 vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32)); 6204 vptest(tmp2Reg, tmp1Reg); 6205 jcc(Assembler::notZero, L_copy_16_chars_exit); 6206 vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1); 6207 vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1); 6208 } else { 6209 if (UseAVX > 0) { 6210 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6211 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6212 vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0); 6213 } else { 6214 movdqu(tmp3Reg, Address(src, len, Address::times_2, -32)); 6215 por(tmp2Reg, tmp3Reg); 6216 movdqu(tmp4Reg, Address(src, len, Address::times_2, -16)); 6217 por(tmp2Reg, tmp4Reg); 6218 } 6219 ptest(tmp2Reg, tmp1Reg); // check for Unicode or non-ASCII chars in vector 6220 jccb(Assembler::notZero, L_copy_16_chars_exit); 6221 packuswb(tmp3Reg, tmp4Reg); 6222 } 6223 movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg); 6224 6225 bind(L_chars_16_check); 6226 addptr(len, 16); 6227 jcc(Assembler::lessEqual, L_copy_16_chars); 6228 6229 bind(L_copy_16_chars_exit); 6230 if (UseAVX >= 2) { 6231 // clean upper bits of YMM registers 6232 vpxor(tmp2Reg, tmp2Reg); 6233 vpxor(tmp3Reg, tmp3Reg); 6234 vpxor(tmp4Reg, tmp4Reg); 6235 movdl(tmp1Reg, tmp5); 6236 pshufd(tmp1Reg, tmp1Reg, 0); 6237 } 6238 subptr(len, 8); 6239 jccb(Assembler::greater, L_copy_8_chars_exit); 6240 6241 bind(L_copy_8_chars); 6242 movdqu(tmp3Reg, Address(src, len, Address::times_2, -16)); 6243 ptest(tmp3Reg, tmp1Reg); 6244 jccb(Assembler::notZero, L_copy_8_chars_exit); 6245 packuswb(tmp3Reg, tmp1Reg); 6246 movq(Address(dst, len, Address::times_1, -8), tmp3Reg); 6247 addptr(len, 8); 6248 jccb(Assembler::lessEqual, L_copy_8_chars); 6249 6250 bind(L_copy_8_chars_exit); 6251 subptr(len, 8); 6252 jccb(Assembler::zero, L_done); 6253 } 6254 6255 bind(L_copy_1_char); 6256 load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0)); 6257 testl(tmp5, short_mask); // check if Unicode or non-ASCII char 6258 jccb(Assembler::notZero, L_copy_1_char_exit); 6259 movb(Address(dst, len, Address::times_1, 0), tmp5); 6260 addptr(len, 1); 6261 jccb(Assembler::less, L_copy_1_char); 6262 6263 bind(L_copy_1_char_exit); 6264 addptr(result, len); // len is negative count of not processed elements 6265 6266 bind(L_done); 6267 } 6268 6269 #ifdef _LP64 6270 /** 6271 * Helper for multiply_to_len(). 6272 */ 6273 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) { 6274 addq(dest_lo, src1); 6275 adcq(dest_hi, 0); 6276 addq(dest_lo, src2); 6277 adcq(dest_hi, 0); 6278 } 6279 6280 /** 6281 * Multiply 64 bit by 64 bit first loop. 6282 */ 6283 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 6284 Register y, Register y_idx, Register z, 6285 Register carry, Register product, 6286 Register idx, Register kdx) { 6287 // 6288 // jlong carry, x[], y[], z[]; 6289 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6290 // huge_128 product = y[idx] * x[xstart] + carry; 6291 // z[kdx] = (jlong)product; 6292 // carry = (jlong)(product >>> 64); 6293 // } 6294 // z[xstart] = carry; 6295 // 6296 6297 Label L_first_loop, L_first_loop_exit; 6298 Label L_one_x, L_one_y, L_multiply; 6299 6300 decrementl(xstart); 6301 jcc(Assembler::negative, L_one_x); 6302 6303 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6304 rorq(x_xstart, 32); // convert big-endian to little-endian 6305 6306 bind(L_first_loop); 6307 decrementl(idx); 6308 jcc(Assembler::negative, L_first_loop_exit); 6309 decrementl(idx); 6310 jcc(Assembler::negative, L_one_y); 6311 movq(y_idx, Address(y, idx, Address::times_4, 0)); 6312 rorq(y_idx, 32); // convert big-endian to little-endian 6313 bind(L_multiply); 6314 movq(product, x_xstart); 6315 mulq(y_idx); // product(rax) * y_idx -> rdx:rax 6316 addq(product, carry); 6317 adcq(rdx, 0); 6318 subl(kdx, 2); 6319 movl(Address(z, kdx, Address::times_4, 4), product); 6320 shrq(product, 32); 6321 movl(Address(z, kdx, Address::times_4, 0), product); 6322 movq(carry, rdx); 6323 jmp(L_first_loop); 6324 6325 bind(L_one_y); 6326 movl(y_idx, Address(y, 0)); 6327 jmp(L_multiply); 6328 6329 bind(L_one_x); 6330 movl(x_xstart, Address(x, 0)); 6331 jmp(L_first_loop); 6332 6333 bind(L_first_loop_exit); 6334 } 6335 6336 /** 6337 * Multiply 64 bit by 64 bit and add 128 bit. 6338 */ 6339 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z, 6340 Register yz_idx, Register idx, 6341 Register carry, Register product, int offset) { 6342 // huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry; 6343 // z[kdx] = (jlong)product; 6344 6345 movq(yz_idx, Address(y, idx, Address::times_4, offset)); 6346 rorq(yz_idx, 32); // convert big-endian to little-endian 6347 movq(product, x_xstart); 6348 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6349 movq(yz_idx, Address(z, idx, Address::times_4, offset)); 6350 rorq(yz_idx, 32); // convert big-endian to little-endian 6351 6352 add2_with_carry(rdx, product, carry, yz_idx); 6353 6354 movl(Address(z, idx, Address::times_4, offset+4), product); 6355 shrq(product, 32); 6356 movl(Address(z, idx, Address::times_4, offset), product); 6357 6358 } 6359 6360 /** 6361 * Multiply 128 bit by 128 bit. Unrolled inner loop. 6362 */ 6363 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z, 6364 Register yz_idx, Register idx, Register jdx, 6365 Register carry, Register product, 6366 Register carry2) { 6367 // jlong carry, x[], y[], z[]; 6368 // int kdx = ystart+1; 6369 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6370 // huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry; 6371 // z[kdx+idx+1] = (jlong)product; 6372 // jlong carry2 = (jlong)(product >>> 64); 6373 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry2; 6374 // z[kdx+idx] = (jlong)product; 6375 // carry = (jlong)(product >>> 64); 6376 // } 6377 // idx += 2; 6378 // if (idx > 0) { 6379 // product = (y[idx] * x_xstart) + z[kdx+idx] + carry; 6380 // z[kdx+idx] = (jlong)product; 6381 // carry = (jlong)(product >>> 64); 6382 // } 6383 // 6384 6385 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6386 6387 movl(jdx, idx); 6388 andl(jdx, 0xFFFFFFFC); 6389 shrl(jdx, 2); 6390 6391 bind(L_third_loop); 6392 subl(jdx, 1); 6393 jcc(Assembler::negative, L_third_loop_exit); 6394 subl(idx, 4); 6395 6396 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8); 6397 movq(carry2, rdx); 6398 6399 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0); 6400 movq(carry, rdx); 6401 jmp(L_third_loop); 6402 6403 bind (L_third_loop_exit); 6404 6405 andl (idx, 0x3); 6406 jcc(Assembler::zero, L_post_third_loop_done); 6407 6408 Label L_check_1; 6409 subl(idx, 2); 6410 jcc(Assembler::negative, L_check_1); 6411 6412 multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0); 6413 movq(carry, rdx); 6414 6415 bind (L_check_1); 6416 addl (idx, 0x2); 6417 andl (idx, 0x1); 6418 subl(idx, 1); 6419 jcc(Assembler::negative, L_post_third_loop_done); 6420 6421 movl(yz_idx, Address(y, idx, Address::times_4, 0)); 6422 movq(product, x_xstart); 6423 mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax) 6424 movl(yz_idx, Address(z, idx, Address::times_4, 0)); 6425 6426 add2_with_carry(rdx, product, yz_idx, carry); 6427 6428 movl(Address(z, idx, Address::times_4, 0), product); 6429 shrq(product, 32); 6430 6431 shlq(rdx, 32); 6432 orq(product, rdx); 6433 movq(carry, product); 6434 6435 bind(L_post_third_loop_done); 6436 } 6437 6438 /** 6439 * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop. 6440 * 6441 */ 6442 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z, 6443 Register carry, Register carry2, 6444 Register idx, Register jdx, 6445 Register yz_idx1, Register yz_idx2, 6446 Register tmp, Register tmp3, Register tmp4) { 6447 assert(UseBMI2Instructions, "should be used only when BMI2 is available"); 6448 6449 // jlong carry, x[], y[], z[]; 6450 // int kdx = ystart+1; 6451 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 6452 // huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry; 6453 // jlong carry2 = (jlong)(tmp3 >>> 64); 6454 // huge_128 tmp4 = (y[idx] * rdx) + z[kdx+idx] + carry2; 6455 // carry = (jlong)(tmp4 >>> 64); 6456 // z[kdx+idx+1] = (jlong)tmp3; 6457 // z[kdx+idx] = (jlong)tmp4; 6458 // } 6459 // idx += 2; 6460 // if (idx > 0) { 6461 // yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry; 6462 // z[kdx+idx] = (jlong)yz_idx1; 6463 // carry = (jlong)(yz_idx1 >>> 64); 6464 // } 6465 // 6466 6467 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 6468 6469 movl(jdx, idx); 6470 andl(jdx, 0xFFFFFFFC); 6471 shrl(jdx, 2); 6472 6473 bind(L_third_loop); 6474 subl(jdx, 1); 6475 jcc(Assembler::negative, L_third_loop_exit); 6476 subl(idx, 4); 6477 6478 movq(yz_idx1, Address(y, idx, Address::times_4, 8)); 6479 rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 6480 movq(yz_idx2, Address(y, idx, Address::times_4, 0)); 6481 rorxq(yz_idx2, yz_idx2, 32); 6482 6483 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6484 mulxq(carry2, tmp, yz_idx2); // yz_idx2 * rdx -> carry2:tmp 6485 6486 movq(yz_idx1, Address(z, idx, Address::times_4, 8)); 6487 rorxq(yz_idx1, yz_idx1, 32); 6488 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6489 rorxq(yz_idx2, yz_idx2, 32); 6490 6491 if (VM_Version::supports_adx()) { 6492 adcxq(tmp3, carry); 6493 adoxq(tmp3, yz_idx1); 6494 6495 adcxq(tmp4, tmp); 6496 adoxq(tmp4, yz_idx2); 6497 6498 movl(carry, 0); // does not affect flags 6499 adcxq(carry2, carry); 6500 adoxq(carry2, carry); 6501 } else { 6502 add2_with_carry(tmp4, tmp3, carry, yz_idx1); 6503 add2_with_carry(carry2, tmp4, tmp, yz_idx2); 6504 } 6505 movq(carry, carry2); 6506 6507 movl(Address(z, idx, Address::times_4, 12), tmp3); 6508 shrq(tmp3, 32); 6509 movl(Address(z, idx, Address::times_4, 8), tmp3); 6510 6511 movl(Address(z, idx, Address::times_4, 4), tmp4); 6512 shrq(tmp4, 32); 6513 movl(Address(z, idx, Address::times_4, 0), tmp4); 6514 6515 jmp(L_third_loop); 6516 6517 bind (L_third_loop_exit); 6518 6519 andl (idx, 0x3); 6520 jcc(Assembler::zero, L_post_third_loop_done); 6521 6522 Label L_check_1; 6523 subl(idx, 2); 6524 jcc(Assembler::negative, L_check_1); 6525 6526 movq(yz_idx1, Address(y, idx, Address::times_4, 0)); 6527 rorxq(yz_idx1, yz_idx1, 32); 6528 mulxq(tmp4, tmp3, yz_idx1); // yz_idx1 * rdx -> tmp4:tmp3 6529 movq(yz_idx2, Address(z, idx, Address::times_4, 0)); 6530 rorxq(yz_idx2, yz_idx2, 32); 6531 6532 add2_with_carry(tmp4, tmp3, carry, yz_idx2); 6533 6534 movl(Address(z, idx, Address::times_4, 4), tmp3); 6535 shrq(tmp3, 32); 6536 movl(Address(z, idx, Address::times_4, 0), tmp3); 6537 movq(carry, tmp4); 6538 6539 bind (L_check_1); 6540 addl (idx, 0x2); 6541 andl (idx, 0x1); 6542 subl(idx, 1); 6543 jcc(Assembler::negative, L_post_third_loop_done); 6544 movl(tmp4, Address(y, idx, Address::times_4, 0)); 6545 mulxq(carry2, tmp3, tmp4); // tmp4 * rdx -> carry2:tmp3 6546 movl(tmp4, Address(z, idx, Address::times_4, 0)); 6547 6548 add2_with_carry(carry2, tmp3, tmp4, carry); 6549 6550 movl(Address(z, idx, Address::times_4, 0), tmp3); 6551 shrq(tmp3, 32); 6552 6553 shlq(carry2, 32); 6554 orq(tmp3, carry2); 6555 movq(carry, tmp3); 6556 6557 bind(L_post_third_loop_done); 6558 } 6559 6560 /** 6561 * Code for BigInteger::multiplyToLen() intrinsic. 6562 * 6563 * rdi: x 6564 * rax: xlen 6565 * rsi: y 6566 * rcx: ylen 6567 * r8: z 6568 * r11: zlen 6569 * r12: tmp1 6570 * r13: tmp2 6571 * r14: tmp3 6572 * r15: tmp4 6573 * rbx: tmp5 6574 * 6575 */ 6576 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen, 6577 Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) { 6578 ShortBranchVerifier sbv(this); 6579 assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx); 6580 6581 push(tmp1); 6582 push(tmp2); 6583 push(tmp3); 6584 push(tmp4); 6585 push(tmp5); 6586 6587 push(xlen); 6588 push(zlen); 6589 6590 const Register idx = tmp1; 6591 const Register kdx = tmp2; 6592 const Register xstart = tmp3; 6593 6594 const Register y_idx = tmp4; 6595 const Register carry = tmp5; 6596 const Register product = xlen; 6597 const Register x_xstart = zlen; // reuse register 6598 6599 // First Loop. 6600 // 6601 // final static long LONG_MASK = 0xffffffffL; 6602 // int xstart = xlen - 1; 6603 // int ystart = ylen - 1; 6604 // long carry = 0; 6605 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 6606 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 6607 // z[kdx] = (int)product; 6608 // carry = product >>> 32; 6609 // } 6610 // z[xstart] = (int)carry; 6611 // 6612 6613 movl(idx, ylen); // idx = ylen; 6614 movl(kdx, zlen); // kdx = xlen+ylen; 6615 xorq(carry, carry); // carry = 0; 6616 6617 Label L_done; 6618 6619 movl(xstart, xlen); 6620 decrementl(xstart); 6621 jcc(Assembler::negative, L_done); 6622 6623 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 6624 6625 Label L_second_loop; 6626 testl(kdx, kdx); 6627 jcc(Assembler::zero, L_second_loop); 6628 6629 Label L_carry; 6630 subl(kdx, 1); 6631 jcc(Assembler::zero, L_carry); 6632 6633 movl(Address(z, kdx, Address::times_4, 0), carry); 6634 shrq(carry, 32); 6635 subl(kdx, 1); 6636 6637 bind(L_carry); 6638 movl(Address(z, kdx, Address::times_4, 0), carry); 6639 6640 // Second and third (nested) loops. 6641 // 6642 // for (int i = xstart-1; i >= 0; i--) { // Second loop 6643 // carry = 0; 6644 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 6645 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 6646 // (z[k] & LONG_MASK) + carry; 6647 // z[k] = (int)product; 6648 // carry = product >>> 32; 6649 // } 6650 // z[i] = (int)carry; 6651 // } 6652 // 6653 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx 6654 6655 const Register jdx = tmp1; 6656 6657 bind(L_second_loop); 6658 xorl(carry, carry); // carry = 0; 6659 movl(jdx, ylen); // j = ystart+1 6660 6661 subl(xstart, 1); // i = xstart-1; 6662 jcc(Assembler::negative, L_done); 6663 6664 push (z); 6665 6666 Label L_last_x; 6667 lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j 6668 subl(xstart, 1); // i = xstart-1; 6669 jcc(Assembler::negative, L_last_x); 6670 6671 if (UseBMI2Instructions) { 6672 movq(rdx, Address(x, xstart, Address::times_4, 0)); 6673 rorxq(rdx, rdx, 32); // convert big-endian to little-endian 6674 } else { 6675 movq(x_xstart, Address(x, xstart, Address::times_4, 0)); 6676 rorq(x_xstart, 32); // convert big-endian to little-endian 6677 } 6678 6679 Label L_third_loop_prologue; 6680 bind(L_third_loop_prologue); 6681 6682 push (x); 6683 push (xstart); 6684 push (ylen); 6685 6686 6687 if (UseBMI2Instructions) { 6688 multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4); 6689 } else { // !UseBMI2Instructions 6690 multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x); 6691 } 6692 6693 pop(ylen); 6694 pop(xlen); 6695 pop(x); 6696 pop(z); 6697 6698 movl(tmp3, xlen); 6699 addl(tmp3, 1); 6700 movl(Address(z, tmp3, Address::times_4, 0), carry); 6701 subl(tmp3, 1); 6702 jccb(Assembler::negative, L_done); 6703 6704 shrq(carry, 32); 6705 movl(Address(z, tmp3, Address::times_4, 0), carry); 6706 jmp(L_second_loop); 6707 6708 // Next infrequent code is moved outside loops. 6709 bind(L_last_x); 6710 if (UseBMI2Instructions) { 6711 movl(rdx, Address(x, 0)); 6712 } else { 6713 movl(x_xstart, Address(x, 0)); 6714 } 6715 jmp(L_third_loop_prologue); 6716 6717 bind(L_done); 6718 6719 pop(zlen); 6720 pop(xlen); 6721 6722 pop(tmp5); 6723 pop(tmp4); 6724 pop(tmp3); 6725 pop(tmp2); 6726 pop(tmp1); 6727 } 6728 6729 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale, 6730 Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){ 6731 assert(UseSSE42Intrinsics, "SSE4.2 must be enabled."); 6732 Label VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP; 6733 Label VECTOR8_TAIL, VECTOR4_TAIL; 6734 Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL; 6735 Label SAME_TILL_END, DONE; 6736 Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL; 6737 6738 //scale is in rcx in both Win64 and Unix 6739 ShortBranchVerifier sbv(this); 6740 6741 shlq(length); 6742 xorq(result, result); 6743 6744 if ((AVX3Threshold == 0) && (UseAVX > 2) && 6745 VM_Version::supports_avx512vlbw()) { 6746 Label VECTOR64_LOOP, VECTOR64_NOT_EQUAL, VECTOR32_TAIL; 6747 6748 cmpq(length, 64); 6749 jcc(Assembler::less, VECTOR32_TAIL); 6750 6751 movq(tmp1, length); 6752 andq(tmp1, 0x3F); // tail count 6753 andq(length, ~(0x3F)); //vector count 6754 6755 bind(VECTOR64_LOOP); 6756 // AVX512 code to compare 64 byte vectors. 6757 evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit); 6758 evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit); 6759 kortestql(k7, k7); 6760 jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL); // mismatch 6761 addq(result, 64); 6762 subq(length, 64); 6763 jccb(Assembler::notZero, VECTOR64_LOOP); 6764 6765 //bind(VECTOR64_TAIL); 6766 testq(tmp1, tmp1); 6767 jcc(Assembler::zero, SAME_TILL_END); 6768 6769 //bind(VECTOR64_TAIL); 6770 // AVX512 code to compare up to 63 byte vectors. 6771 mov64(tmp2, 0xFFFFFFFFFFFFFFFF); 6772 shlxq(tmp2, tmp2, tmp1); 6773 notq(tmp2); 6774 kmovql(k3, tmp2); 6775 6776 evmovdqub(rymm0, k3, Address(obja, result), false, Assembler::AVX_512bit); 6777 evpcmpeqb(k7, k3, rymm0, Address(objb, result), Assembler::AVX_512bit); 6778 6779 ktestql(k7, k3); 6780 jcc(Assembler::below, SAME_TILL_END); // not mismatch 6781 6782 bind(VECTOR64_NOT_EQUAL); 6783 kmovql(tmp1, k7); 6784 notq(tmp1); 6785 tzcntq(tmp1, tmp1); 6786 addq(result, tmp1); 6787 shrq(result); 6788 jmp(DONE); 6789 bind(VECTOR32_TAIL); 6790 } 6791 6792 cmpq(length, 8); 6793 jcc(Assembler::equal, VECTOR8_LOOP); 6794 jcc(Assembler::less, VECTOR4_TAIL); 6795 6796 if (UseAVX >= 2) { 6797 Label VECTOR16_TAIL, VECTOR32_LOOP; 6798 6799 cmpq(length, 16); 6800 jcc(Assembler::equal, VECTOR16_LOOP); 6801 jcc(Assembler::less, VECTOR8_LOOP); 6802 6803 cmpq(length, 32); 6804 jccb(Assembler::less, VECTOR16_TAIL); 6805 6806 subq(length, 32); 6807 bind(VECTOR32_LOOP); 6808 vmovdqu(rymm0, Address(obja, result)); 6809 vmovdqu(rymm1, Address(objb, result)); 6810 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit); 6811 vptest(rymm2, rymm2); 6812 jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found 6813 addq(result, 32); 6814 subq(length, 32); 6815 jcc(Assembler::greaterEqual, VECTOR32_LOOP); 6816 addq(length, 32); 6817 jcc(Assembler::equal, SAME_TILL_END); 6818 //falling through if less than 32 bytes left //close the branch here. 6819 6820 bind(VECTOR16_TAIL); 6821 cmpq(length, 16); 6822 jccb(Assembler::less, VECTOR8_TAIL); 6823 bind(VECTOR16_LOOP); 6824 movdqu(rymm0, Address(obja, result)); 6825 movdqu(rymm1, Address(objb, result)); 6826 vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit); 6827 ptest(rymm2, rymm2); 6828 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6829 addq(result, 16); 6830 subq(length, 16); 6831 jcc(Assembler::equal, SAME_TILL_END); 6832 //falling through if less than 16 bytes left 6833 } else {//regular intrinsics 6834 6835 cmpq(length, 16); 6836 jccb(Assembler::less, VECTOR8_TAIL); 6837 6838 subq(length, 16); 6839 bind(VECTOR16_LOOP); 6840 movdqu(rymm0, Address(obja, result)); 6841 movdqu(rymm1, Address(objb, result)); 6842 pxor(rymm0, rymm1); 6843 ptest(rymm0, rymm0); 6844 jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found 6845 addq(result, 16); 6846 subq(length, 16); 6847 jccb(Assembler::greaterEqual, VECTOR16_LOOP); 6848 addq(length, 16); 6849 jcc(Assembler::equal, SAME_TILL_END); 6850 //falling through if less than 16 bytes left 6851 } 6852 6853 bind(VECTOR8_TAIL); 6854 cmpq(length, 8); 6855 jccb(Assembler::less, VECTOR4_TAIL); 6856 bind(VECTOR8_LOOP); 6857 movq(tmp1, Address(obja, result)); 6858 movq(tmp2, Address(objb, result)); 6859 xorq(tmp1, tmp2); 6860 testq(tmp1, tmp1); 6861 jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found 6862 addq(result, 8); 6863 subq(length, 8); 6864 jcc(Assembler::equal, SAME_TILL_END); 6865 //falling through if less than 8 bytes left 6866 6867 bind(VECTOR4_TAIL); 6868 cmpq(length, 4); 6869 jccb(Assembler::less, BYTES_TAIL); 6870 bind(VECTOR4_LOOP); 6871 movl(tmp1, Address(obja, result)); 6872 xorl(tmp1, Address(objb, result)); 6873 testl(tmp1, tmp1); 6874 jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found 6875 addq(result, 4); 6876 subq(length, 4); 6877 jcc(Assembler::equal, SAME_TILL_END); 6878 //falling through if less than 4 bytes left 6879 6880 bind(BYTES_TAIL); 6881 bind(BYTES_LOOP); 6882 load_unsigned_byte(tmp1, Address(obja, result)); 6883 load_unsigned_byte(tmp2, Address(objb, result)); 6884 xorl(tmp1, tmp2); 6885 testl(tmp1, tmp1); 6886 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6887 decq(length); 6888 jcc(Assembler::zero, SAME_TILL_END); 6889 incq(result); 6890 load_unsigned_byte(tmp1, Address(obja, result)); 6891 load_unsigned_byte(tmp2, Address(objb, result)); 6892 xorl(tmp1, tmp2); 6893 testl(tmp1, tmp1); 6894 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6895 decq(length); 6896 jcc(Assembler::zero, SAME_TILL_END); 6897 incq(result); 6898 load_unsigned_byte(tmp1, Address(obja, result)); 6899 load_unsigned_byte(tmp2, Address(objb, result)); 6900 xorl(tmp1, tmp2); 6901 testl(tmp1, tmp1); 6902 jcc(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found 6903 jmp(SAME_TILL_END); 6904 6905 if (UseAVX >= 2) { 6906 bind(VECTOR32_NOT_EQUAL); 6907 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit); 6908 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit); 6909 vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit); 6910 vpmovmskb(tmp1, rymm0); 6911 bsfq(tmp1, tmp1); 6912 addq(result, tmp1); 6913 shrq(result); 6914 jmp(DONE); 6915 } 6916 6917 bind(VECTOR16_NOT_EQUAL); 6918 if (UseAVX >= 2) { 6919 vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit); 6920 vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit); 6921 pxor(rymm0, rymm2); 6922 } else { 6923 pcmpeqb(rymm2, rymm2); 6924 pxor(rymm0, rymm1); 6925 pcmpeqb(rymm0, rymm1); 6926 pxor(rymm0, rymm2); 6927 } 6928 pmovmskb(tmp1, rymm0); 6929 bsfq(tmp1, tmp1); 6930 addq(result, tmp1); 6931 shrq(result); 6932 jmpb(DONE); 6933 6934 bind(VECTOR8_NOT_EQUAL); 6935 bind(VECTOR4_NOT_EQUAL); 6936 bsfq(tmp1, tmp1); 6937 shrq(tmp1, 3); 6938 addq(result, tmp1); 6939 bind(BYTES_NOT_EQUAL); 6940 shrq(result); 6941 jmpb(DONE); 6942 6943 bind(SAME_TILL_END); 6944 mov64(result, -1); 6945 6946 bind(DONE); 6947 } 6948 6949 //Helper functions for square_to_len() 6950 6951 /** 6952 * Store the squares of x[], right shifted one bit (divided by 2) into z[] 6953 * Preserves x and z and modifies rest of the registers. 6954 */ 6955 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 6956 // Perform square and right shift by 1 6957 // Handle odd xlen case first, then for even xlen do the following 6958 // jlong carry = 0; 6959 // for (int j=0, i=0; j < xlen; j+=2, i+=4) { 6960 // huge_128 product = x[j:j+1] * x[j:j+1]; 6961 // z[i:i+1] = (carry << 63) | (jlong)(product >>> 65); 6962 // z[i+2:i+3] = (jlong)(product >>> 1); 6963 // carry = (jlong)product; 6964 // } 6965 6966 xorq(tmp5, tmp5); // carry 6967 xorq(rdxReg, rdxReg); 6968 xorl(tmp1, tmp1); // index for x 6969 xorl(tmp4, tmp4); // index for z 6970 6971 Label L_first_loop, L_first_loop_exit; 6972 6973 testl(xlen, 1); 6974 jccb(Assembler::zero, L_first_loop); //jump if xlen is even 6975 6976 // Square and right shift by 1 the odd element using 32 bit multiply 6977 movl(raxReg, Address(x, tmp1, Address::times_4, 0)); 6978 imulq(raxReg, raxReg); 6979 shrq(raxReg, 1); 6980 adcq(tmp5, 0); 6981 movq(Address(z, tmp4, Address::times_4, 0), raxReg); 6982 incrementl(tmp1); 6983 addl(tmp4, 2); 6984 6985 // Square and right shift by 1 the rest using 64 bit multiply 6986 bind(L_first_loop); 6987 cmpptr(tmp1, xlen); 6988 jccb(Assembler::equal, L_first_loop_exit); 6989 6990 // Square 6991 movq(raxReg, Address(x, tmp1, Address::times_4, 0)); 6992 rorq(raxReg, 32); // convert big-endian to little-endian 6993 mulq(raxReg); // 64-bit multiply rax * rax -> rdx:rax 6994 6995 // Right shift by 1 and save carry 6996 shrq(tmp5, 1); // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1 6997 rcrq(rdxReg, 1); 6998 rcrq(raxReg, 1); 6999 adcq(tmp5, 0); 7000 7001 // Store result in z 7002 movq(Address(z, tmp4, Address::times_4, 0), rdxReg); 7003 movq(Address(z, tmp4, Address::times_4, 8), raxReg); 7004 7005 // Update indices for x and z 7006 addl(tmp1, 2); 7007 addl(tmp4, 4); 7008 jmp(L_first_loop); 7009 7010 bind(L_first_loop_exit); 7011 } 7012 7013 7014 /** 7015 * Perform the following multiply add operation using BMI2 instructions 7016 * carry:sum = sum + op1*op2 + carry 7017 * op2 should be in rdx 7018 * op2 is preserved, all other registers are modified 7019 */ 7020 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) { 7021 // assert op2 is rdx 7022 mulxq(tmp2, op1, op1); // op1 * op2 -> tmp2:op1 7023 addq(sum, carry); 7024 adcq(tmp2, 0); 7025 addq(sum, op1); 7026 adcq(tmp2, 0); 7027 movq(carry, tmp2); 7028 } 7029 7030 /** 7031 * Perform the following multiply add operation: 7032 * carry:sum = sum + op1*op2 + carry 7033 * Preserves op1, op2 and modifies rest of registers 7034 */ 7035 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) { 7036 // rdx:rax = op1 * op2 7037 movq(raxReg, op2); 7038 mulq(op1); 7039 7040 // rdx:rax = sum + carry + rdx:rax 7041 addq(sum, carry); 7042 adcq(rdxReg, 0); 7043 addq(sum, raxReg); 7044 adcq(rdxReg, 0); 7045 7046 // carry:sum = rdx:sum 7047 movq(carry, rdxReg); 7048 } 7049 7050 /** 7051 * Add 64 bit long carry into z[] with carry propagation. 7052 * Preserves z and carry register values and modifies rest of registers. 7053 * 7054 */ 7055 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) { 7056 Label L_fourth_loop, L_fourth_loop_exit; 7057 7058 movl(tmp1, 1); 7059 subl(zlen, 2); 7060 addq(Address(z, zlen, Address::times_4, 0), carry); 7061 7062 bind(L_fourth_loop); 7063 jccb(Assembler::carryClear, L_fourth_loop_exit); 7064 subl(zlen, 2); 7065 jccb(Assembler::negative, L_fourth_loop_exit); 7066 addq(Address(z, zlen, Address::times_4, 0), tmp1); 7067 jmp(L_fourth_loop); 7068 bind(L_fourth_loop_exit); 7069 } 7070 7071 /** 7072 * Shift z[] left by 1 bit. 7073 * Preserves x, len, z and zlen registers and modifies rest of the registers. 7074 * 7075 */ 7076 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) { 7077 7078 Label L_fifth_loop, L_fifth_loop_exit; 7079 7080 // Fifth loop 7081 // Perform primitiveLeftShift(z, zlen, 1) 7082 7083 const Register prev_carry = tmp1; 7084 const Register new_carry = tmp4; 7085 const Register value = tmp2; 7086 const Register zidx = tmp3; 7087 7088 // int zidx, carry; 7089 // long value; 7090 // carry = 0; 7091 // for (zidx = zlen-2; zidx >=0; zidx -= 2) { 7092 // (carry:value) = (z[i] << 1) | carry ; 7093 // z[i] = value; 7094 // } 7095 7096 movl(zidx, zlen); 7097 xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register 7098 7099 bind(L_fifth_loop); 7100 decl(zidx); // Use decl to preserve carry flag 7101 decl(zidx); 7102 jccb(Assembler::negative, L_fifth_loop_exit); 7103 7104 if (UseBMI2Instructions) { 7105 movq(value, Address(z, zidx, Address::times_4, 0)); 7106 rclq(value, 1); 7107 rorxq(value, value, 32); 7108 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7109 } 7110 else { 7111 // clear new_carry 7112 xorl(new_carry, new_carry); 7113 7114 // Shift z[i] by 1, or in previous carry and save new carry 7115 movq(value, Address(z, zidx, Address::times_4, 0)); 7116 shlq(value, 1); 7117 adcl(new_carry, 0); 7118 7119 orq(value, prev_carry); 7120 rorq(value, 0x20); 7121 movq(Address(z, zidx, Address::times_4, 0), value); // Store back in big endian form 7122 7123 // Set previous carry = new carry 7124 movl(prev_carry, new_carry); 7125 } 7126 jmp(L_fifth_loop); 7127 7128 bind(L_fifth_loop_exit); 7129 } 7130 7131 7132 /** 7133 * Code for BigInteger::squareToLen() intrinsic 7134 * 7135 * rdi: x 7136 * rsi: len 7137 * r8: z 7138 * rcx: zlen 7139 * r12: tmp1 7140 * r13: tmp2 7141 * r14: tmp3 7142 * r15: tmp4 7143 * rbx: tmp5 7144 * 7145 */ 7146 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7147 7148 Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, L_last_x, L_multiply; 7149 push(tmp1); 7150 push(tmp2); 7151 push(tmp3); 7152 push(tmp4); 7153 push(tmp5); 7154 7155 // First loop 7156 // Store the squares, right shifted one bit (i.e., divided by 2). 7157 square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg); 7158 7159 // Add in off-diagonal sums. 7160 // 7161 // Second, third (nested) and fourth loops. 7162 // zlen +=2; 7163 // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) { 7164 // carry = 0; 7165 // long op2 = x[xidx:xidx+1]; 7166 // for (int j=xidx-2,k=zidx; j >= 0; j-=2) { 7167 // k -= 2; 7168 // long op1 = x[j:j+1]; 7169 // long sum = z[k:k+1]; 7170 // carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs); 7171 // z[k:k+1] = sum; 7172 // } 7173 // add_one_64(z, k, carry, tmp_regs); 7174 // } 7175 7176 const Register carry = tmp5; 7177 const Register sum = tmp3; 7178 const Register op1 = tmp4; 7179 Register op2 = tmp2; 7180 7181 push(zlen); 7182 push(len); 7183 addl(zlen,2); 7184 bind(L_second_loop); 7185 xorq(carry, carry); 7186 subl(zlen, 4); 7187 subl(len, 2); 7188 push(zlen); 7189 push(len); 7190 cmpl(len, 0); 7191 jccb(Assembler::lessEqual, L_second_loop_exit); 7192 7193 // Multiply an array by one 64 bit long. 7194 if (UseBMI2Instructions) { 7195 op2 = rdxReg; 7196 movq(op2, Address(x, len, Address::times_4, 0)); 7197 rorxq(op2, op2, 32); 7198 } 7199 else { 7200 movq(op2, Address(x, len, Address::times_4, 0)); 7201 rorq(op2, 32); 7202 } 7203 7204 bind(L_third_loop); 7205 decrementl(len); 7206 jccb(Assembler::negative, L_third_loop_exit); 7207 decrementl(len); 7208 jccb(Assembler::negative, L_last_x); 7209 7210 movq(op1, Address(x, len, Address::times_4, 0)); 7211 rorq(op1, 32); 7212 7213 bind(L_multiply); 7214 subl(zlen, 2); 7215 movq(sum, Address(z, zlen, Address::times_4, 0)); 7216 7217 // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry. 7218 if (UseBMI2Instructions) { 7219 multiply_add_64_bmi2(sum, op1, op2, carry, tmp2); 7220 } 7221 else { 7222 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7223 } 7224 7225 movq(Address(z, zlen, Address::times_4, 0), sum); 7226 7227 jmp(L_third_loop); 7228 bind(L_third_loop_exit); 7229 7230 // Fourth loop 7231 // Add 64 bit long carry into z with carry propagation. 7232 // Uses offsetted zlen. 7233 add_one_64(z, zlen, carry, tmp1); 7234 7235 pop(len); 7236 pop(zlen); 7237 jmp(L_second_loop); 7238 7239 // Next infrequent code is moved outside loops. 7240 bind(L_last_x); 7241 movl(op1, Address(x, 0)); 7242 jmp(L_multiply); 7243 7244 bind(L_second_loop_exit); 7245 pop(len); 7246 pop(zlen); 7247 pop(len); 7248 pop(zlen); 7249 7250 // Fifth loop 7251 // Shift z left 1 bit. 7252 lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4); 7253 7254 // z[zlen-1] |= x[len-1] & 1; 7255 movl(tmp3, Address(x, len, Address::times_4, -4)); 7256 andl(tmp3, 1); 7257 orl(Address(z, zlen, Address::times_4, -4), tmp3); 7258 7259 pop(tmp5); 7260 pop(tmp4); 7261 pop(tmp3); 7262 pop(tmp2); 7263 pop(tmp1); 7264 } 7265 7266 /** 7267 * Helper function for mul_add() 7268 * Multiply the in[] by int k and add to out[] starting at offset offs using 7269 * 128 bit by 32 bit multiply and return the carry in tmp5. 7270 * Only quad int aligned length of in[] is operated on in this function. 7271 * k is in rdxReg for BMI2Instructions, for others it is in tmp2. 7272 * This function preserves out, in and k registers. 7273 * len and offset point to the appropriate index in "in" & "out" correspondingly 7274 * tmp5 has the carry. 7275 * other registers are temporary and are modified. 7276 * 7277 */ 7278 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in, 7279 Register offset, Register len, Register tmp1, Register tmp2, Register tmp3, 7280 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7281 7282 Label L_first_loop, L_first_loop_exit; 7283 7284 movl(tmp1, len); 7285 shrl(tmp1, 2); 7286 7287 bind(L_first_loop); 7288 subl(tmp1, 1); 7289 jccb(Assembler::negative, L_first_loop_exit); 7290 7291 subl(len, 4); 7292 subl(offset, 4); 7293 7294 Register op2 = tmp2; 7295 const Register sum = tmp3; 7296 const Register op1 = tmp4; 7297 const Register carry = tmp5; 7298 7299 if (UseBMI2Instructions) { 7300 op2 = rdxReg; 7301 } 7302 7303 movq(op1, Address(in, len, Address::times_4, 8)); 7304 rorq(op1, 32); 7305 movq(sum, Address(out, offset, Address::times_4, 8)); 7306 rorq(sum, 32); 7307 if (UseBMI2Instructions) { 7308 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7309 } 7310 else { 7311 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7312 } 7313 // Store back in big endian from little endian 7314 rorq(sum, 0x20); 7315 movq(Address(out, offset, Address::times_4, 8), sum); 7316 7317 movq(op1, Address(in, len, Address::times_4, 0)); 7318 rorq(op1, 32); 7319 movq(sum, Address(out, offset, Address::times_4, 0)); 7320 rorq(sum, 32); 7321 if (UseBMI2Instructions) { 7322 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7323 } 7324 else { 7325 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7326 } 7327 // Store back in big endian from little endian 7328 rorq(sum, 0x20); 7329 movq(Address(out, offset, Address::times_4, 0), sum); 7330 7331 jmp(L_first_loop); 7332 bind(L_first_loop_exit); 7333 } 7334 7335 /** 7336 * Code for BigInteger::mulAdd() intrinsic 7337 * 7338 * rdi: out 7339 * rsi: in 7340 * r11: offs (out.length - offset) 7341 * rcx: len 7342 * r8: k 7343 * r12: tmp1 7344 * r13: tmp2 7345 * r14: tmp3 7346 * r15: tmp4 7347 * rbx: tmp5 7348 * Multiply the in[] by word k and add to out[], return the carry in rax 7349 */ 7350 void MacroAssembler::mul_add(Register out, Register in, Register offs, 7351 Register len, Register k, Register tmp1, Register tmp2, Register tmp3, 7352 Register tmp4, Register tmp5, Register rdxReg, Register raxReg) { 7353 7354 Label L_carry, L_last_in, L_done; 7355 7356 // carry = 0; 7357 // for (int j=len-1; j >= 0; j--) { 7358 // long product = (in[j] & LONG_MASK) * kLong + 7359 // (out[offs] & LONG_MASK) + carry; 7360 // out[offs--] = (int)product; 7361 // carry = product >>> 32; 7362 // } 7363 // 7364 push(tmp1); 7365 push(tmp2); 7366 push(tmp3); 7367 push(tmp4); 7368 push(tmp5); 7369 7370 Register op2 = tmp2; 7371 const Register sum = tmp3; 7372 const Register op1 = tmp4; 7373 const Register carry = tmp5; 7374 7375 if (UseBMI2Instructions) { 7376 op2 = rdxReg; 7377 movl(op2, k); 7378 } 7379 else { 7380 movl(op2, k); 7381 } 7382 7383 xorq(carry, carry); 7384 7385 //First loop 7386 7387 //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply 7388 //The carry is in tmp5 7389 mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg); 7390 7391 //Multiply the trailing in[] entry using 64 bit by 32 bit, if any 7392 decrementl(len); 7393 jccb(Assembler::negative, L_carry); 7394 decrementl(len); 7395 jccb(Assembler::negative, L_last_in); 7396 7397 movq(op1, Address(in, len, Address::times_4, 0)); 7398 rorq(op1, 32); 7399 7400 subl(offs, 2); 7401 movq(sum, Address(out, offs, Address::times_4, 0)); 7402 rorq(sum, 32); 7403 7404 if (UseBMI2Instructions) { 7405 multiply_add_64_bmi2(sum, op1, op2, carry, raxReg); 7406 } 7407 else { 7408 multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg); 7409 } 7410 7411 // Store back in big endian from little endian 7412 rorq(sum, 0x20); 7413 movq(Address(out, offs, Address::times_4, 0), sum); 7414 7415 testl(len, len); 7416 jccb(Assembler::zero, L_carry); 7417 7418 //Multiply the last in[] entry, if any 7419 bind(L_last_in); 7420 movl(op1, Address(in, 0)); 7421 movl(sum, Address(out, offs, Address::times_4, -4)); 7422 7423 movl(raxReg, k); 7424 mull(op1); //tmp4 * eax -> edx:eax 7425 addl(sum, carry); 7426 adcl(rdxReg, 0); 7427 addl(sum, raxReg); 7428 adcl(rdxReg, 0); 7429 movl(carry, rdxReg); 7430 7431 movl(Address(out, offs, Address::times_4, -4), sum); 7432 7433 bind(L_carry); 7434 //return tmp5/carry as carry in rax 7435 movl(rax, carry); 7436 7437 bind(L_done); 7438 pop(tmp5); 7439 pop(tmp4); 7440 pop(tmp3); 7441 pop(tmp2); 7442 pop(tmp1); 7443 } 7444 #endif 7445 7446 /** 7447 * Emits code to update CRC-32 with a byte value according to constants in table 7448 * 7449 * @param [in,out]crc Register containing the crc. 7450 * @param [in]val Register containing the byte to fold into the CRC. 7451 * @param [in]table Register containing the table of crc constants. 7452 * 7453 * uint32_t crc; 7454 * val = crc_table[(val ^ crc) & 0xFF]; 7455 * crc = val ^ (crc >> 8); 7456 * 7457 */ 7458 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 7459 xorl(val, crc); 7460 andl(val, 0xFF); 7461 shrl(crc, 8); // unsigned shift 7462 xorl(crc, Address(table, val, Address::times_4, 0)); 7463 } 7464 7465 /** 7466 * Fold 128-bit data chunk 7467 */ 7468 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) { 7469 if (UseAVX > 0) { 7470 vpclmulhdq(xtmp, xK, xcrc); // [123:64] 7471 vpclmulldq(xcrc, xK, xcrc); // [63:0] 7472 vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */); 7473 pxor(xcrc, xtmp); 7474 } else { 7475 movdqa(xtmp, xcrc); 7476 pclmulhdq(xtmp, xK); // [123:64] 7477 pclmulldq(xcrc, xK); // [63:0] 7478 pxor(xcrc, xtmp); 7479 movdqu(xtmp, Address(buf, offset)); 7480 pxor(xcrc, xtmp); 7481 } 7482 } 7483 7484 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) { 7485 if (UseAVX > 0) { 7486 vpclmulhdq(xtmp, xK, xcrc); 7487 vpclmulldq(xcrc, xK, xcrc); 7488 pxor(xcrc, xbuf); 7489 pxor(xcrc, xtmp); 7490 } else { 7491 movdqa(xtmp, xcrc); 7492 pclmulhdq(xtmp, xK); 7493 pclmulldq(xcrc, xK); 7494 pxor(xcrc, xbuf); 7495 pxor(xcrc, xtmp); 7496 } 7497 } 7498 7499 /** 7500 * 8-bit folds to compute 32-bit CRC 7501 * 7502 * uint64_t xcrc; 7503 * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8); 7504 */ 7505 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) { 7506 movdl(tmp, xcrc); 7507 andl(tmp, 0xFF); 7508 movdl(xtmp, Address(table, tmp, Address::times_4, 0)); 7509 psrldq(xcrc, 1); // unsigned shift one byte 7510 pxor(xcrc, xtmp); 7511 } 7512 7513 /** 7514 * uint32_t crc; 7515 * timesXtoThe32[crc & 0xFF] ^ (crc >> 8); 7516 */ 7517 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) { 7518 movl(tmp, crc); 7519 andl(tmp, 0xFF); 7520 shrl(crc, 8); 7521 xorl(crc, Address(table, tmp, Address::times_4, 0)); 7522 } 7523 7524 /** 7525 * @param crc register containing existing CRC (32-bit) 7526 * @param buf register pointing to input byte buffer (byte*) 7527 * @param len register containing number of bytes 7528 * @param table register that will contain address of CRC table 7529 * @param tmp scratch register 7530 */ 7531 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) { 7532 assert_different_registers(crc, buf, len, table, tmp, rax); 7533 7534 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7535 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7536 7537 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7538 // context for the registers used, where all instructions below are using 128-bit mode 7539 // On EVEX without VL and BW, these instructions will all be AVX. 7540 lea(table, ExternalAddress(StubRoutines::crc_table_addr())); 7541 notl(crc); // ~crc 7542 cmpl(len, 16); 7543 jcc(Assembler::less, L_tail); 7544 7545 // Align buffer to 16 bytes 7546 movl(tmp, buf); 7547 andl(tmp, 0xF); 7548 jccb(Assembler::zero, L_aligned); 7549 subl(tmp, 16); 7550 addl(len, tmp); 7551 7552 align(4); 7553 BIND(L_align_loop); 7554 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7555 update_byte_crc32(crc, rax, table); 7556 increment(buf); 7557 incrementl(tmp); 7558 jccb(Assembler::less, L_align_loop); 7559 7560 BIND(L_aligned); 7561 movl(tmp, len); // save 7562 shrl(len, 4); 7563 jcc(Assembler::zero, L_tail_restore); 7564 7565 // Fold crc into first bytes of vector 7566 movdqa(xmm1, Address(buf, 0)); 7567 movdl(rax, xmm1); 7568 xorl(crc, rax); 7569 if (VM_Version::supports_sse4_1()) { 7570 pinsrd(xmm1, crc, 0); 7571 } else { 7572 pinsrw(xmm1, crc, 0); 7573 shrl(crc, 16); 7574 pinsrw(xmm1, crc, 1); 7575 } 7576 addptr(buf, 16); 7577 subl(len, 4); // len > 0 7578 jcc(Assembler::less, L_fold_tail); 7579 7580 movdqa(xmm2, Address(buf, 0)); 7581 movdqa(xmm3, Address(buf, 16)); 7582 movdqa(xmm4, Address(buf, 32)); 7583 addptr(buf, 48); 7584 subl(len, 3); 7585 jcc(Assembler::lessEqual, L_fold_512b); 7586 7587 // Fold total 512 bits of polynomial on each iteration, 7588 // 128 bits per each of 4 parallel streams. 7589 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32), rscratch1); 7590 7591 align32(); 7592 BIND(L_fold_512b_loop); 7593 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7594 fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16); 7595 fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32); 7596 fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48); 7597 addptr(buf, 64); 7598 subl(len, 4); 7599 jcc(Assembler::greater, L_fold_512b_loop); 7600 7601 // Fold 512 bits to 128 bits. 7602 BIND(L_fold_512b); 7603 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7604 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2); 7605 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3); 7606 fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4); 7607 7608 // Fold the rest of 128 bits data chunks 7609 BIND(L_fold_tail); 7610 addl(len, 3); 7611 jccb(Assembler::lessEqual, L_fold_128b); 7612 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16), rscratch1); 7613 7614 BIND(L_fold_tail_loop); 7615 fold_128bit_crc32(xmm1, xmm0, xmm5, buf, 0); 7616 addptr(buf, 16); 7617 decrementl(len); 7618 jccb(Assembler::greater, L_fold_tail_loop); 7619 7620 // Fold 128 bits in xmm1 down into 32 bits in crc register. 7621 BIND(L_fold_128b); 7622 movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()), rscratch1); 7623 if (UseAVX > 0) { 7624 vpclmulqdq(xmm2, xmm0, xmm1, 0x1); 7625 vpand(xmm3, xmm0, xmm2, 0 /* vector_len */); 7626 vpclmulqdq(xmm0, xmm0, xmm3, 0x1); 7627 } else { 7628 movdqa(xmm2, xmm0); 7629 pclmulqdq(xmm2, xmm1, 0x1); 7630 movdqa(xmm3, xmm0); 7631 pand(xmm3, xmm2); 7632 pclmulqdq(xmm0, xmm3, 0x1); 7633 } 7634 psrldq(xmm1, 8); 7635 psrldq(xmm2, 4); 7636 pxor(xmm0, xmm1); 7637 pxor(xmm0, xmm2); 7638 7639 // 8 8-bit folds to compute 32-bit CRC. 7640 for (int j = 0; j < 4; j++) { 7641 fold_8bit_crc32(xmm0, table, xmm1, rax); 7642 } 7643 movdl(crc, xmm0); // mov 32 bits to general register 7644 for (int j = 0; j < 4; j++) { 7645 fold_8bit_crc32(crc, table, rax); 7646 } 7647 7648 BIND(L_tail_restore); 7649 movl(len, tmp); // restore 7650 BIND(L_tail); 7651 andl(len, 0xf); 7652 jccb(Assembler::zero, L_exit); 7653 7654 // Fold the rest of bytes 7655 align(4); 7656 BIND(L_tail_loop); 7657 movsbl(rax, Address(buf, 0)); // load byte with sign extension 7658 update_byte_crc32(crc, rax, table); 7659 increment(buf); 7660 decrementl(len); 7661 jccb(Assembler::greater, L_tail_loop); 7662 7663 BIND(L_exit); 7664 notl(crc); // ~c 7665 } 7666 7667 #ifdef _LP64 7668 // Helper function for AVX 512 CRC32 7669 // Fold 512-bit data chunks 7670 void MacroAssembler::fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, 7671 Register pos, int offset) { 7672 evmovdquq(xmm3, Address(buf, pos, Address::times_1, offset), Assembler::AVX_512bit); 7673 evpclmulqdq(xtmp, xcrc, xK, 0x10, Assembler::AVX_512bit); // [123:64] 7674 evpclmulqdq(xmm2, xcrc, xK, 0x01, Assembler::AVX_512bit); // [63:0] 7675 evpxorq(xcrc, xtmp, xmm2, Assembler::AVX_512bit /* vector_len */); 7676 evpxorq(xcrc, xcrc, xmm3, Assembler::AVX_512bit /* vector_len */); 7677 } 7678 7679 // Helper function for AVX 512 CRC32 7680 // Compute CRC32 for < 256B buffers 7681 void MacroAssembler::kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register table, Register pos, 7682 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop, 7683 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup) { 7684 7685 Label L_less_than_32, L_exact_16_left, L_less_than_16_left; 7686 Label L_less_than_8_left, L_less_than_4_left, L_less_than_2_left, L_zero_left; 7687 Label L_only_less_than_4, L_only_less_than_3, L_only_less_than_2; 7688 7689 // check if there is enough buffer to be able to fold 16B at a time 7690 cmpl(len, 32); 7691 jcc(Assembler::less, L_less_than_32); 7692 7693 // if there is, load the constants 7694 movdqu(xmm10, Address(table, 1 * 16)); //rk1 and rk2 in xmm10 7695 movdl(xmm0, crc); // get the initial crc value 7696 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7697 pxor(xmm7, xmm0); 7698 7699 // update the buffer pointer 7700 addl(pos, 16); 7701 //update the counter.subtract 32 instead of 16 to save one instruction from the loop 7702 subl(len, 32); 7703 jmp(L_16B_reduction_loop); 7704 7705 bind(L_less_than_32); 7706 //mov initial crc to the return value. this is necessary for zero - length buffers. 7707 movl(rax, crc); 7708 testl(len, len); 7709 jcc(Assembler::equal, L_cleanup); 7710 7711 movdl(xmm0, crc); //get the initial crc value 7712 7713 cmpl(len, 16); 7714 jcc(Assembler::equal, L_exact_16_left); 7715 jcc(Assembler::less, L_less_than_16_left); 7716 7717 movdqu(xmm7, Address(buf, pos, Address::times_1, 0 * 16)); //load the plaintext 7718 pxor(xmm7, xmm0); //xor the initial crc value 7719 addl(pos, 16); 7720 subl(len, 16); 7721 movdqu(xmm10, Address(table, 1 * 16)); // rk1 and rk2 in xmm10 7722 jmp(L_get_last_two_xmms); 7723 7724 bind(L_less_than_16_left); 7725 //use stack space to load data less than 16 bytes, zero - out the 16B in memory first. 7726 pxor(xmm1, xmm1); 7727 movptr(tmp1, rsp); 7728 movdqu(Address(tmp1, 0 * 16), xmm1); 7729 7730 cmpl(len, 4); 7731 jcc(Assembler::less, L_only_less_than_4); 7732 7733 //backup the counter value 7734 movl(tmp2, len); 7735 cmpl(len, 8); 7736 jcc(Assembler::less, L_less_than_8_left); 7737 7738 //load 8 Bytes 7739 movq(rax, Address(buf, pos, Address::times_1, 0 * 16)); 7740 movq(Address(tmp1, 0 * 16), rax); 7741 addptr(tmp1, 8); 7742 subl(len, 8); 7743 addl(pos, 8); 7744 7745 bind(L_less_than_8_left); 7746 cmpl(len, 4); 7747 jcc(Assembler::less, L_less_than_4_left); 7748 7749 //load 4 Bytes 7750 movl(rax, Address(buf, pos, Address::times_1, 0)); 7751 movl(Address(tmp1, 0 * 16), rax); 7752 addptr(tmp1, 4); 7753 subl(len, 4); 7754 addl(pos, 4); 7755 7756 bind(L_less_than_4_left); 7757 cmpl(len, 2); 7758 jcc(Assembler::less, L_less_than_2_left); 7759 7760 // load 2 Bytes 7761 movw(rax, Address(buf, pos, Address::times_1, 0)); 7762 movl(Address(tmp1, 0 * 16), rax); 7763 addptr(tmp1, 2); 7764 subl(len, 2); 7765 addl(pos, 2); 7766 7767 bind(L_less_than_2_left); 7768 cmpl(len, 1); 7769 jcc(Assembler::less, L_zero_left); 7770 7771 // load 1 Byte 7772 movb(rax, Address(buf, pos, Address::times_1, 0)); 7773 movb(Address(tmp1, 0 * 16), rax); 7774 7775 bind(L_zero_left); 7776 movdqu(xmm7, Address(rsp, 0)); 7777 pxor(xmm7, xmm0); //xor the initial crc value 7778 7779 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7780 movdqu(xmm0, Address(rax, tmp2)); 7781 pshufb(xmm7, xmm0); 7782 jmp(L_128_done); 7783 7784 bind(L_exact_16_left); 7785 movdqu(xmm7, Address(buf, pos, Address::times_1, 0)); 7786 pxor(xmm7, xmm0); //xor the initial crc value 7787 jmp(L_128_done); 7788 7789 bind(L_only_less_than_4); 7790 cmpl(len, 3); 7791 jcc(Assembler::less, L_only_less_than_3); 7792 7793 // load 3 Bytes 7794 movb(rax, Address(buf, pos, Address::times_1, 0)); 7795 movb(Address(tmp1, 0), rax); 7796 7797 movb(rax, Address(buf, pos, Address::times_1, 1)); 7798 movb(Address(tmp1, 1), rax); 7799 7800 movb(rax, Address(buf, pos, Address::times_1, 2)); 7801 movb(Address(tmp1, 2), rax); 7802 7803 movdqu(xmm7, Address(rsp, 0)); 7804 pxor(xmm7, xmm0); //xor the initial crc value 7805 7806 pslldq(xmm7, 0x5); 7807 jmp(L_barrett); 7808 bind(L_only_less_than_3); 7809 cmpl(len, 2); 7810 jcc(Assembler::less, L_only_less_than_2); 7811 7812 // load 2 Bytes 7813 movb(rax, Address(buf, pos, Address::times_1, 0)); 7814 movb(Address(tmp1, 0), rax); 7815 7816 movb(rax, Address(buf, pos, Address::times_1, 1)); 7817 movb(Address(tmp1, 1), rax); 7818 7819 movdqu(xmm7, Address(rsp, 0)); 7820 pxor(xmm7, xmm0); //xor the initial crc value 7821 7822 pslldq(xmm7, 0x6); 7823 jmp(L_barrett); 7824 7825 bind(L_only_less_than_2); 7826 //load 1 Byte 7827 movb(rax, Address(buf, pos, Address::times_1, 0)); 7828 movb(Address(tmp1, 0), rax); 7829 7830 movdqu(xmm7, Address(rsp, 0)); 7831 pxor(xmm7, xmm0); //xor the initial crc value 7832 7833 pslldq(xmm7, 0x7); 7834 } 7835 7836 /** 7837 * Compute CRC32 using AVX512 instructions 7838 * param crc register containing existing CRC (32-bit) 7839 * param buf register pointing to input byte buffer (byte*) 7840 * param len register containing number of bytes 7841 * param table address of crc or crc32c table 7842 * param tmp1 scratch register 7843 * param tmp2 scratch register 7844 * return rax result register 7845 * 7846 * This routine is identical for crc32c with the exception of the precomputed constant 7847 * table which will be passed as the table argument. The calculation steps are 7848 * the same for both variants. 7849 */ 7850 void MacroAssembler::kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2) { 7851 assert_different_registers(crc, buf, len, table, tmp1, tmp2, rax, r12); 7852 7853 Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned; 7854 Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop; 7855 Label L_less_than_256, L_fold_128_B_loop, L_fold_256_B_loop; 7856 Label L_fold_128_B_register, L_final_reduction_for_128, L_16B_reduction_loop; 7857 Label L_128_done, L_get_last_two_xmms, L_barrett, L_cleanup; 7858 7859 const Register pos = r12; 7860 push(r12); 7861 subptr(rsp, 16 * 2 + 8); 7862 7863 // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge 7864 // context for the registers used, where all instructions below are using 128-bit mode 7865 // On EVEX without VL and BW, these instructions will all be AVX. 7866 movl(pos, 0); 7867 7868 // check if smaller than 256B 7869 cmpl(len, 256); 7870 jcc(Assembler::less, L_less_than_256); 7871 7872 // load the initial crc value 7873 movdl(xmm10, crc); 7874 7875 // receive the initial 64B data, xor the initial crc value 7876 evmovdquq(xmm0, Address(buf, pos, Address::times_1, 0 * 64), Assembler::AVX_512bit); 7877 evmovdquq(xmm4, Address(buf, pos, Address::times_1, 1 * 64), Assembler::AVX_512bit); 7878 evpxorq(xmm0, xmm0, xmm10, Assembler::AVX_512bit); 7879 evbroadcasti32x4(xmm10, Address(table, 2 * 16), Assembler::AVX_512bit); //zmm10 has rk3 and rk4 7880 7881 subl(len, 256); 7882 cmpl(len, 256); 7883 jcc(Assembler::less, L_fold_128_B_loop); 7884 7885 evmovdquq(xmm7, Address(buf, pos, Address::times_1, 2 * 64), Assembler::AVX_512bit); 7886 evmovdquq(xmm8, Address(buf, pos, Address::times_1, 3 * 64), Assembler::AVX_512bit); 7887 evbroadcasti32x4(xmm16, Address(table, 0 * 16), Assembler::AVX_512bit); //zmm16 has rk-1 and rk-2 7888 subl(len, 256); 7889 7890 bind(L_fold_256_B_loop); 7891 addl(pos, 256); 7892 fold512bit_crc32_avx512(xmm0, xmm16, xmm1, buf, pos, 0 * 64); 7893 fold512bit_crc32_avx512(xmm4, xmm16, xmm1, buf, pos, 1 * 64); 7894 fold512bit_crc32_avx512(xmm7, xmm16, xmm1, buf, pos, 2 * 64); 7895 fold512bit_crc32_avx512(xmm8, xmm16, xmm1, buf, pos, 3 * 64); 7896 7897 subl(len, 256); 7898 jcc(Assembler::greaterEqual, L_fold_256_B_loop); 7899 7900 // Fold 256 into 128 7901 addl(pos, 256); 7902 evpclmulqdq(xmm1, xmm0, xmm10, 0x01, Assembler::AVX_512bit); 7903 evpclmulqdq(xmm2, xmm0, xmm10, 0x10, Assembler::AVX_512bit); 7904 vpternlogq(xmm7, 0x96, xmm1, xmm2, Assembler::AVX_512bit); // xor ABC 7905 7906 evpclmulqdq(xmm5, xmm4, xmm10, 0x01, Assembler::AVX_512bit); 7907 evpclmulqdq(xmm6, xmm4, xmm10, 0x10, Assembler::AVX_512bit); 7908 vpternlogq(xmm8, 0x96, xmm5, xmm6, Assembler::AVX_512bit); // xor ABC 7909 7910 evmovdquq(xmm0, xmm7, Assembler::AVX_512bit); 7911 evmovdquq(xmm4, xmm8, Assembler::AVX_512bit); 7912 7913 addl(len, 128); 7914 jmp(L_fold_128_B_register); 7915 7916 // at this section of the code, there is 128 * x + y(0 <= y<128) bytes of buffer.The fold_128_B_loop 7917 // loop will fold 128B at a time until we have 128 + y Bytes of buffer 7918 7919 // fold 128B at a time.This section of the code folds 8 xmm registers in parallel 7920 bind(L_fold_128_B_loop); 7921 addl(pos, 128); 7922 fold512bit_crc32_avx512(xmm0, xmm10, xmm1, buf, pos, 0 * 64); 7923 fold512bit_crc32_avx512(xmm4, xmm10, xmm1, buf, pos, 1 * 64); 7924 7925 subl(len, 128); 7926 jcc(Assembler::greaterEqual, L_fold_128_B_loop); 7927 7928 addl(pos, 128); 7929 7930 // at this point, the buffer pointer is pointing at the last y Bytes of the buffer, where 0 <= y < 128 7931 // the 128B of folded data is in 8 of the xmm registers : xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7 7932 bind(L_fold_128_B_register); 7933 evmovdquq(xmm16, Address(table, 5 * 16), Assembler::AVX_512bit); // multiply by rk9-rk16 7934 evmovdquq(xmm11, Address(table, 9 * 16), Assembler::AVX_512bit); // multiply by rk17-rk20, rk1,rk2, 0,0 7935 evpclmulqdq(xmm1, xmm0, xmm16, 0x01, Assembler::AVX_512bit); 7936 evpclmulqdq(xmm2, xmm0, xmm16, 0x10, Assembler::AVX_512bit); 7937 // save last that has no multiplicand 7938 vextracti64x2(xmm7, xmm4, 3); 7939 7940 evpclmulqdq(xmm5, xmm4, xmm11, 0x01, Assembler::AVX_512bit); 7941 evpclmulqdq(xmm6, xmm4, xmm11, 0x10, Assembler::AVX_512bit); 7942 // Needed later in reduction loop 7943 movdqu(xmm10, Address(table, 1 * 16)); 7944 vpternlogq(xmm1, 0x96, xmm2, xmm5, Assembler::AVX_512bit); // xor ABC 7945 vpternlogq(xmm1, 0x96, xmm6, xmm7, Assembler::AVX_512bit); // xor ABC 7946 7947 // Swap 1,0,3,2 - 01 00 11 10 7948 evshufi64x2(xmm8, xmm1, xmm1, 0x4e, Assembler::AVX_512bit); 7949 evpxorq(xmm8, xmm8, xmm1, Assembler::AVX_256bit); 7950 vextracti128(xmm5, xmm8, 1); 7951 evpxorq(xmm7, xmm5, xmm8, Assembler::AVX_128bit); 7952 7953 // instead of 128, we add 128 - 16 to the loop counter to save 1 instruction from the loop 7954 // instead of a cmp instruction, we use the negative flag with the jl instruction 7955 addl(len, 128 - 16); 7956 jcc(Assembler::less, L_final_reduction_for_128); 7957 7958 bind(L_16B_reduction_loop); 7959 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 7960 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7961 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 7962 movdqu(xmm0, Address(buf, pos, Address::times_1, 0 * 16)); 7963 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7964 addl(pos, 16); 7965 subl(len, 16); 7966 jcc(Assembler::greaterEqual, L_16B_reduction_loop); 7967 7968 bind(L_final_reduction_for_128); 7969 addl(len, 16); 7970 jcc(Assembler::equal, L_128_done); 7971 7972 bind(L_get_last_two_xmms); 7973 movdqu(xmm2, xmm7); 7974 addl(pos, len); 7975 movdqu(xmm1, Address(buf, pos, Address::times_1, -16)); 7976 subl(pos, len); 7977 7978 // get rid of the extra data that was loaded before 7979 // load the shift constant 7980 lea(rax, ExternalAddress(StubRoutines::x86::shuf_table_crc32_avx512_addr())); 7981 movdqu(xmm0, Address(rax, len)); 7982 addl(rax, len); 7983 7984 vpshufb(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 7985 //Change mask to 512 7986 vpxor(xmm0, xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 2 * 16), Assembler::AVX_128bit, tmp2); 7987 vpshufb(xmm2, xmm2, xmm0, Assembler::AVX_128bit); 7988 7989 blendvpb(xmm2, xmm2, xmm1, xmm0, Assembler::AVX_128bit); 7990 vpclmulqdq(xmm8, xmm7, xmm10, 0x01); 7991 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 7992 vpxor(xmm7, xmm7, xmm8, Assembler::AVX_128bit); 7993 vpxor(xmm7, xmm7, xmm2, Assembler::AVX_128bit); 7994 7995 bind(L_128_done); 7996 // compute crc of a 128-bit value 7997 movdqu(xmm10, Address(table, 3 * 16)); 7998 movdqu(xmm0, xmm7); 7999 8000 // 64b fold 8001 vpclmulqdq(xmm7, xmm7, xmm10, 0x0); 8002 vpsrldq(xmm0, xmm0, 0x8, Assembler::AVX_128bit); 8003 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8004 8005 // 32b fold 8006 movdqu(xmm0, xmm7); 8007 vpslldq(xmm7, xmm7, 0x4, Assembler::AVX_128bit); 8008 vpclmulqdq(xmm7, xmm7, xmm10, 0x10); 8009 vpxor(xmm7, xmm7, xmm0, Assembler::AVX_128bit); 8010 jmp(L_barrett); 8011 8012 bind(L_less_than_256); 8013 kernel_crc32_avx512_256B(crc, buf, len, table, pos, tmp1, tmp2, L_barrett, L_16B_reduction_loop, L_get_last_two_xmms, L_128_done, L_cleanup); 8014 8015 //barrett reduction 8016 bind(L_barrett); 8017 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr() + 1 * 16), Assembler::AVX_128bit, tmp2); 8018 movdqu(xmm1, xmm7); 8019 movdqu(xmm2, xmm7); 8020 movdqu(xmm10, Address(table, 4 * 16)); 8021 8022 pclmulqdq(xmm7, xmm10, 0x0); 8023 pxor(xmm7, xmm2); 8024 vpand(xmm7, xmm7, ExternalAddress(StubRoutines::x86::crc_by128_masks_avx512_addr()), Assembler::AVX_128bit, tmp2); 8025 movdqu(xmm2, xmm7); 8026 pclmulqdq(xmm7, xmm10, 0x10); 8027 pxor(xmm7, xmm2); 8028 pxor(xmm7, xmm1); 8029 pextrd(crc, xmm7, 2); 8030 8031 bind(L_cleanup); 8032 addptr(rsp, 16 * 2 + 8); 8033 pop(r12); 8034 } 8035 8036 // S. Gueron / Information Processing Letters 112 (2012) 184 8037 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table. 8038 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0]. 8039 // Output: the 64-bit carry-less product of B * CONST 8040 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n, 8041 Register tmp1, Register tmp2, Register tmp3) { 8042 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8043 if (n > 0) { 8044 addq(tmp3, n * 256 * 8); 8045 } 8046 // Q1 = TABLEExt[n][B & 0xFF]; 8047 movl(tmp1, in); 8048 andl(tmp1, 0x000000FF); 8049 shll(tmp1, 3); 8050 addq(tmp1, tmp3); 8051 movq(tmp1, Address(tmp1, 0)); 8052 8053 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8054 movl(tmp2, in); 8055 shrl(tmp2, 8); 8056 andl(tmp2, 0x000000FF); 8057 shll(tmp2, 3); 8058 addq(tmp2, tmp3); 8059 movq(tmp2, Address(tmp2, 0)); 8060 8061 shlq(tmp2, 8); 8062 xorq(tmp1, tmp2); 8063 8064 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8065 movl(tmp2, in); 8066 shrl(tmp2, 16); 8067 andl(tmp2, 0x000000FF); 8068 shll(tmp2, 3); 8069 addq(tmp2, tmp3); 8070 movq(tmp2, Address(tmp2, 0)); 8071 8072 shlq(tmp2, 16); 8073 xorq(tmp1, tmp2); 8074 8075 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8076 shrl(in, 24); 8077 andl(in, 0x000000FF); 8078 shll(in, 3); 8079 addq(in, tmp3); 8080 movq(in, Address(in, 0)); 8081 8082 shlq(in, 24); 8083 xorq(in, tmp1); 8084 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8085 } 8086 8087 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8088 Register in_out, 8089 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8090 XMMRegister w_xtmp2, 8091 Register tmp1, 8092 Register n_tmp2, Register n_tmp3) { 8093 if (is_pclmulqdq_supported) { 8094 movdl(w_xtmp1, in_out); // modified blindly 8095 8096 movl(tmp1, const_or_pre_comp_const_index); 8097 movdl(w_xtmp2, tmp1); 8098 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8099 8100 movdq(in_out, w_xtmp1); 8101 } else { 8102 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3); 8103 } 8104 } 8105 8106 // Recombination Alternative 2: No bit-reflections 8107 // T1 = (CRC_A * U1) << 1 8108 // T2 = (CRC_B * U2) << 1 8109 // C1 = T1 >> 32 8110 // C2 = T2 >> 32 8111 // T1 = T1 & 0xFFFFFFFF 8112 // T2 = T2 & 0xFFFFFFFF 8113 // T1 = CRC32(0, T1) 8114 // T2 = CRC32(0, T2) 8115 // C1 = C1 ^ T1 8116 // C2 = C2 ^ T2 8117 // CRC = C1 ^ C2 ^ CRC_C 8118 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8119 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8120 Register tmp1, Register tmp2, 8121 Register n_tmp3) { 8122 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8123 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8124 shlq(in_out, 1); 8125 movl(tmp1, in_out); 8126 shrq(in_out, 32); 8127 xorl(tmp2, tmp2); 8128 crc32(tmp2, tmp1, 4); 8129 xorl(in_out, tmp2); // we don't care about upper 32 bit contents here 8130 shlq(in1, 1); 8131 movl(tmp1, in1); 8132 shrq(in1, 32); 8133 xorl(tmp2, tmp2); 8134 crc32(tmp2, tmp1, 4); 8135 xorl(in1, tmp2); 8136 xorl(in_out, in1); 8137 xorl(in_out, in2); 8138 } 8139 8140 // Set N to predefined value 8141 // Subtract from a length of a buffer 8142 // execute in a loop: 8143 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0 8144 // for i = 1 to N do 8145 // CRC_A = CRC32(CRC_A, A[i]) 8146 // CRC_B = CRC32(CRC_B, B[i]) 8147 // CRC_C = CRC32(CRC_C, C[i]) 8148 // end for 8149 // Recombine 8150 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8151 Register in_out1, Register in_out2, Register in_out3, 8152 Register tmp1, Register tmp2, Register tmp3, 8153 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8154 Register tmp4, Register tmp5, 8155 Register n_tmp6) { 8156 Label L_processPartitions; 8157 Label L_processPartition; 8158 Label L_exit; 8159 8160 bind(L_processPartitions); 8161 cmpl(in_out1, 3 * size); 8162 jcc(Assembler::less, L_exit); 8163 xorl(tmp1, tmp1); 8164 xorl(tmp2, tmp2); 8165 movq(tmp3, in_out2); 8166 addq(tmp3, size); 8167 8168 bind(L_processPartition); 8169 crc32(in_out3, Address(in_out2, 0), 8); 8170 crc32(tmp1, Address(in_out2, size), 8); 8171 crc32(tmp2, Address(in_out2, size * 2), 8); 8172 addq(in_out2, 8); 8173 cmpq(in_out2, tmp3); 8174 jcc(Assembler::less, L_processPartition); 8175 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8176 w_xtmp1, w_xtmp2, w_xtmp3, 8177 tmp4, tmp5, 8178 n_tmp6); 8179 addq(in_out2, 2 * size); 8180 subl(in_out1, 3 * size); 8181 jmp(L_processPartitions); 8182 8183 bind(L_exit); 8184 } 8185 #else 8186 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n, 8187 Register tmp1, Register tmp2, Register tmp3, 8188 XMMRegister xtmp1, XMMRegister xtmp2) { 8189 lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr())); 8190 if (n > 0) { 8191 addl(tmp3, n * 256 * 8); 8192 } 8193 // Q1 = TABLEExt[n][B & 0xFF]; 8194 movl(tmp1, in_out); 8195 andl(tmp1, 0x000000FF); 8196 shll(tmp1, 3); 8197 addl(tmp1, tmp3); 8198 movq(xtmp1, Address(tmp1, 0)); 8199 8200 // Q2 = TABLEExt[n][B >> 8 & 0xFF]; 8201 movl(tmp2, in_out); 8202 shrl(tmp2, 8); 8203 andl(tmp2, 0x000000FF); 8204 shll(tmp2, 3); 8205 addl(tmp2, tmp3); 8206 movq(xtmp2, Address(tmp2, 0)); 8207 8208 psllq(xtmp2, 8); 8209 pxor(xtmp1, xtmp2); 8210 8211 // Q3 = TABLEExt[n][B >> 16 & 0xFF]; 8212 movl(tmp2, in_out); 8213 shrl(tmp2, 16); 8214 andl(tmp2, 0x000000FF); 8215 shll(tmp2, 3); 8216 addl(tmp2, tmp3); 8217 movq(xtmp2, Address(tmp2, 0)); 8218 8219 psllq(xtmp2, 16); 8220 pxor(xtmp1, xtmp2); 8221 8222 // Q4 = TABLEExt[n][B >> 24 & 0xFF]; 8223 shrl(in_out, 24); 8224 andl(in_out, 0x000000FF); 8225 shll(in_out, 3); 8226 addl(in_out, tmp3); 8227 movq(xtmp2, Address(in_out, 0)); 8228 8229 psllq(xtmp2, 24); 8230 pxor(xtmp1, xtmp2); // Result in CXMM 8231 // return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24; 8232 } 8233 8234 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1, 8235 Register in_out, 8236 uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported, 8237 XMMRegister w_xtmp2, 8238 Register tmp1, 8239 Register n_tmp2, Register n_tmp3) { 8240 if (is_pclmulqdq_supported) { 8241 movdl(w_xtmp1, in_out); 8242 8243 movl(tmp1, const_or_pre_comp_const_index); 8244 movdl(w_xtmp2, tmp1); 8245 pclmulqdq(w_xtmp1, w_xtmp2, 0); 8246 // Keep result in XMM since GPR is 32 bit in length 8247 } else { 8248 crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2); 8249 } 8250 } 8251 8252 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2, 8253 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8254 Register tmp1, Register tmp2, 8255 Register n_tmp3) { 8256 crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8257 crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3); 8258 8259 psllq(w_xtmp1, 1); 8260 movdl(tmp1, w_xtmp1); 8261 psrlq(w_xtmp1, 32); 8262 movdl(in_out, w_xtmp1); 8263 8264 xorl(tmp2, tmp2); 8265 crc32(tmp2, tmp1, 4); 8266 xorl(in_out, tmp2); 8267 8268 psllq(w_xtmp2, 1); 8269 movdl(tmp1, w_xtmp2); 8270 psrlq(w_xtmp2, 32); 8271 movdl(in1, w_xtmp2); 8272 8273 xorl(tmp2, tmp2); 8274 crc32(tmp2, tmp1, 4); 8275 xorl(in1, tmp2); 8276 xorl(in_out, in1); 8277 xorl(in_out, in2); 8278 } 8279 8280 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, 8281 Register in_out1, Register in_out2, Register in_out3, 8282 Register tmp1, Register tmp2, Register tmp3, 8283 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8284 Register tmp4, Register tmp5, 8285 Register n_tmp6) { 8286 Label L_processPartitions; 8287 Label L_processPartition; 8288 Label L_exit; 8289 8290 bind(L_processPartitions); 8291 cmpl(in_out1, 3 * size); 8292 jcc(Assembler::less, L_exit); 8293 xorl(tmp1, tmp1); 8294 xorl(tmp2, tmp2); 8295 movl(tmp3, in_out2); 8296 addl(tmp3, size); 8297 8298 bind(L_processPartition); 8299 crc32(in_out3, Address(in_out2, 0), 4); 8300 crc32(tmp1, Address(in_out2, size), 4); 8301 crc32(tmp2, Address(in_out2, size*2), 4); 8302 crc32(in_out3, Address(in_out2, 0+4), 4); 8303 crc32(tmp1, Address(in_out2, size+4), 4); 8304 crc32(tmp2, Address(in_out2, size*2+4), 4); 8305 addl(in_out2, 8); 8306 cmpl(in_out2, tmp3); 8307 jcc(Assembler::less, L_processPartition); 8308 8309 push(tmp3); 8310 push(in_out1); 8311 push(in_out2); 8312 tmp4 = tmp3; 8313 tmp5 = in_out1; 8314 n_tmp6 = in_out2; 8315 8316 crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2, 8317 w_xtmp1, w_xtmp2, w_xtmp3, 8318 tmp4, tmp5, 8319 n_tmp6); 8320 8321 pop(in_out2); 8322 pop(in_out1); 8323 pop(tmp3); 8324 8325 addl(in_out2, 2 * size); 8326 subl(in_out1, 3 * size); 8327 jmp(L_processPartitions); 8328 8329 bind(L_exit); 8330 } 8331 #endif //LP64 8332 8333 #ifdef _LP64 8334 // Algorithm 2: Pipelined usage of the CRC32 instruction. 8335 // Input: A buffer I of L bytes. 8336 // Output: the CRC32C value of the buffer. 8337 // Notations: 8338 // Write L = 24N + r, with N = floor (L/24). 8339 // r = L mod 24 (0 <= r < 24). 8340 // Consider I as the concatenation of A|B|C|R, where A, B, C, each, 8341 // N quadwords, and R consists of r bytes. 8342 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1 8343 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1 8344 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1 8345 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1 8346 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8347 Register tmp1, Register tmp2, Register tmp3, 8348 Register tmp4, Register tmp5, Register tmp6, 8349 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8350 bool is_pclmulqdq_supported) { 8351 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8352 Label L_wordByWord; 8353 Label L_byteByByteProlog; 8354 Label L_byteByByte; 8355 Label L_exit; 8356 8357 if (is_pclmulqdq_supported ) { 8358 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8359 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1); 8360 8361 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8362 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8363 8364 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8365 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8366 assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\""); 8367 } else { 8368 const_or_pre_comp_const_index[0] = 1; 8369 const_or_pre_comp_const_index[1] = 0; 8370 8371 const_or_pre_comp_const_index[2] = 3; 8372 const_or_pre_comp_const_index[3] = 2; 8373 8374 const_or_pre_comp_const_index[4] = 5; 8375 const_or_pre_comp_const_index[5] = 4; 8376 } 8377 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8378 in2, in1, in_out, 8379 tmp1, tmp2, tmp3, 8380 w_xtmp1, w_xtmp2, w_xtmp3, 8381 tmp4, tmp5, 8382 tmp6); 8383 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8384 in2, in1, in_out, 8385 tmp1, tmp2, tmp3, 8386 w_xtmp1, w_xtmp2, w_xtmp3, 8387 tmp4, tmp5, 8388 tmp6); 8389 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8390 in2, in1, in_out, 8391 tmp1, tmp2, tmp3, 8392 w_xtmp1, w_xtmp2, w_xtmp3, 8393 tmp4, tmp5, 8394 tmp6); 8395 movl(tmp1, in2); 8396 andl(tmp1, 0x00000007); 8397 negl(tmp1); 8398 addl(tmp1, in2); 8399 addq(tmp1, in1); 8400 8401 cmpq(in1, tmp1); 8402 jccb(Assembler::greaterEqual, L_byteByByteProlog); 8403 align(16); 8404 BIND(L_wordByWord); 8405 crc32(in_out, Address(in1, 0), 8); 8406 addq(in1, 8); 8407 cmpq(in1, tmp1); 8408 jcc(Assembler::less, L_wordByWord); 8409 8410 BIND(L_byteByByteProlog); 8411 andl(in2, 0x00000007); 8412 movl(tmp2, 1); 8413 8414 cmpl(tmp2, in2); 8415 jccb(Assembler::greater, L_exit); 8416 BIND(L_byteByByte); 8417 crc32(in_out, Address(in1, 0), 1); 8418 incq(in1); 8419 incl(tmp2); 8420 cmpl(tmp2, in2); 8421 jcc(Assembler::lessEqual, L_byteByByte); 8422 8423 BIND(L_exit); 8424 } 8425 #else 8426 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2, 8427 Register tmp1, Register tmp2, Register tmp3, 8428 Register tmp4, Register tmp5, Register tmp6, 8429 XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3, 8430 bool is_pclmulqdq_supported) { 8431 uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS]; 8432 Label L_wordByWord; 8433 Label L_byteByByteProlog; 8434 Label L_byteByByte; 8435 Label L_exit; 8436 8437 if (is_pclmulqdq_supported) { 8438 const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr; 8439 const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1); 8440 8441 const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2); 8442 const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3); 8443 8444 const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4); 8445 const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5); 8446 } else { 8447 const_or_pre_comp_const_index[0] = 1; 8448 const_or_pre_comp_const_index[1] = 0; 8449 8450 const_or_pre_comp_const_index[2] = 3; 8451 const_or_pre_comp_const_index[3] = 2; 8452 8453 const_or_pre_comp_const_index[4] = 5; 8454 const_or_pre_comp_const_index[5] = 4; 8455 } 8456 crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported, 8457 in2, in1, in_out, 8458 tmp1, tmp2, tmp3, 8459 w_xtmp1, w_xtmp2, w_xtmp3, 8460 tmp4, tmp5, 8461 tmp6); 8462 crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported, 8463 in2, in1, in_out, 8464 tmp1, tmp2, tmp3, 8465 w_xtmp1, w_xtmp2, w_xtmp3, 8466 tmp4, tmp5, 8467 tmp6); 8468 crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported, 8469 in2, in1, in_out, 8470 tmp1, tmp2, tmp3, 8471 w_xtmp1, w_xtmp2, w_xtmp3, 8472 tmp4, tmp5, 8473 tmp6); 8474 movl(tmp1, in2); 8475 andl(tmp1, 0x00000007); 8476 negl(tmp1); 8477 addl(tmp1, in2); 8478 addl(tmp1, in1); 8479 8480 BIND(L_wordByWord); 8481 cmpl(in1, tmp1); 8482 jcc(Assembler::greaterEqual, L_byteByByteProlog); 8483 crc32(in_out, Address(in1,0), 4); 8484 addl(in1, 4); 8485 jmp(L_wordByWord); 8486 8487 BIND(L_byteByByteProlog); 8488 andl(in2, 0x00000007); 8489 movl(tmp2, 1); 8490 8491 BIND(L_byteByByte); 8492 cmpl(tmp2, in2); 8493 jccb(Assembler::greater, L_exit); 8494 movb(tmp1, Address(in1, 0)); 8495 crc32(in_out, tmp1, 1); 8496 incl(in1); 8497 incl(tmp2); 8498 jmp(L_byteByByte); 8499 8500 BIND(L_exit); 8501 } 8502 #endif // LP64 8503 #undef BIND 8504 #undef BLOCK_COMMENT 8505 8506 // Compress char[] array to byte[]. 8507 // ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java 8508 // @IntrinsicCandidate 8509 // private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) { 8510 // for (int i = 0; i < len; i++) { 8511 // int c = src[srcOff++]; 8512 // if (c >>> 8 != 0) { 8513 // return 0; 8514 // } 8515 // dst[dstOff++] = (byte)c; 8516 // } 8517 // return len; 8518 // } 8519 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 8520 XMMRegister tmp1Reg, XMMRegister tmp2Reg, 8521 XMMRegister tmp3Reg, XMMRegister tmp4Reg, 8522 Register tmp5, Register result, KRegister mask1, KRegister mask2) { 8523 Label copy_chars_loop, return_length, return_zero, done; 8524 8525 // rsi: src 8526 // rdi: dst 8527 // rdx: len 8528 // rcx: tmp5 8529 // rax: result 8530 8531 // rsi holds start addr of source char[] to be compressed 8532 // rdi holds start addr of destination byte[] 8533 // rdx holds length 8534 8535 assert(len != result, ""); 8536 8537 // save length for return 8538 push(len); 8539 8540 if ((AVX3Threshold == 0) && (UseAVX > 2) && // AVX512 8541 VM_Version::supports_avx512vlbw() && 8542 VM_Version::supports_bmi2()) { 8543 8544 Label copy_32_loop, copy_loop_tail, below_threshold; 8545 8546 // alignment 8547 Label post_alignment; 8548 8549 // if length of the string is less than 16, handle it in an old fashioned way 8550 testl(len, -32); 8551 jcc(Assembler::zero, below_threshold); 8552 8553 // First check whether a character is compressible ( <= 0xFF). 8554 // Create mask to test for Unicode chars inside zmm vector 8555 movl(result, 0x00FF); 8556 evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit); 8557 8558 testl(len, -64); 8559 jcc(Assembler::zero, post_alignment); 8560 8561 movl(tmp5, dst); 8562 andl(tmp5, (32 - 1)); 8563 negl(tmp5); 8564 andl(tmp5, (32 - 1)); 8565 8566 // bail out when there is nothing to be done 8567 testl(tmp5, 0xFFFFFFFF); 8568 jcc(Assembler::zero, post_alignment); 8569 8570 // ~(~0 << len), where len is the # of remaining elements to process 8571 movl(result, 0xFFFFFFFF); 8572 shlxl(result, result, tmp5); 8573 notl(result); 8574 kmovdl(mask2, result); 8575 8576 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8577 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8578 ktestd(mask1, mask2); 8579 jcc(Assembler::carryClear, return_zero); 8580 8581 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8582 8583 addptr(src, tmp5); 8584 addptr(src, tmp5); 8585 addptr(dst, tmp5); 8586 subl(len, tmp5); 8587 8588 bind(post_alignment); 8589 // end of alignment 8590 8591 movl(tmp5, len); 8592 andl(tmp5, (32 - 1)); // tail count (in chars) 8593 andl(len, ~(32 - 1)); // vector count (in chars) 8594 jcc(Assembler::zero, copy_loop_tail); 8595 8596 lea(src, Address(src, len, Address::times_2)); 8597 lea(dst, Address(dst, len, Address::times_1)); 8598 negptr(len); 8599 8600 bind(copy_32_loop); 8601 evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit); 8602 evpcmpuw(mask1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit); 8603 kortestdl(mask1, mask1); 8604 jcc(Assembler::carryClear, return_zero); 8605 8606 // All elements in current processed chunk are valid candidates for 8607 // compression. Write a truncated byte elements to the memory. 8608 evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit); 8609 addptr(len, 32); 8610 jcc(Assembler::notZero, copy_32_loop); 8611 8612 bind(copy_loop_tail); 8613 // bail out when there is nothing to be done 8614 testl(tmp5, 0xFFFFFFFF); 8615 jcc(Assembler::zero, return_length); 8616 8617 movl(len, tmp5); 8618 8619 // ~(~0 << len), where len is the # of remaining elements to process 8620 movl(result, 0xFFFFFFFF); 8621 shlxl(result, result, len); 8622 notl(result); 8623 8624 kmovdl(mask2, result); 8625 8626 evmovdquw(tmp1Reg, mask2, Address(src, 0), /*merge*/ false, Assembler::AVX_512bit); 8627 evpcmpw(mask1, mask2, tmp1Reg, tmp2Reg, Assembler::le, /*signed*/ false, Assembler::AVX_512bit); 8628 ktestd(mask1, mask2); 8629 jcc(Assembler::carryClear, return_zero); 8630 8631 evpmovwb(Address(dst, 0), mask2, tmp1Reg, Assembler::AVX_512bit); 8632 jmp(return_length); 8633 8634 bind(below_threshold); 8635 } 8636 8637 if (UseSSE42Intrinsics) { 8638 Label copy_32_loop, copy_16, copy_tail; 8639 8640 movl(result, len); 8641 8642 movl(tmp5, 0xff00ff00); // create mask to test for Unicode chars in vectors 8643 8644 // vectored compression 8645 andl(len, 0xfffffff0); // vector count (in chars) 8646 andl(result, 0x0000000f); // tail count (in chars) 8647 testl(len, len); 8648 jcc(Assembler::zero, copy_16); 8649 8650 // compress 16 chars per iter 8651 movdl(tmp1Reg, tmp5); 8652 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 8653 pxor(tmp4Reg, tmp4Reg); 8654 8655 lea(src, Address(src, len, Address::times_2)); 8656 lea(dst, Address(dst, len, Address::times_1)); 8657 negptr(len); 8658 8659 bind(copy_32_loop); 8660 movdqu(tmp2Reg, Address(src, len, Address::times_2)); // load 1st 8 characters 8661 por(tmp4Reg, tmp2Reg); 8662 movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters 8663 por(tmp4Reg, tmp3Reg); 8664 ptest(tmp4Reg, tmp1Reg); // check for Unicode chars in next vector 8665 jcc(Assembler::notZero, return_zero); 8666 packuswb(tmp2Reg, tmp3Reg); // only ASCII chars; compress each to 1 byte 8667 movdqu(Address(dst, len, Address::times_1), tmp2Reg); 8668 addptr(len, 16); 8669 jcc(Assembler::notZero, copy_32_loop); 8670 8671 // compress next vector of 8 chars (if any) 8672 bind(copy_16); 8673 movl(len, result); 8674 andl(len, 0xfffffff8); // vector count (in chars) 8675 andl(result, 0x00000007); // tail count (in chars) 8676 testl(len, len); 8677 jccb(Assembler::zero, copy_tail); 8678 8679 movdl(tmp1Reg, tmp5); 8680 pshufd(tmp1Reg, tmp1Reg, 0); // store Unicode mask in tmp1Reg 8681 pxor(tmp3Reg, tmp3Reg); 8682 8683 movdqu(tmp2Reg, Address(src, 0)); 8684 ptest(tmp2Reg, tmp1Reg); // check for Unicode chars in vector 8685 jccb(Assembler::notZero, return_zero); 8686 packuswb(tmp2Reg, tmp3Reg); // only LATIN1 chars; compress each to 1 byte 8687 movq(Address(dst, 0), tmp2Reg); 8688 addptr(src, 16); 8689 addptr(dst, 8); 8690 8691 bind(copy_tail); 8692 movl(len, result); 8693 } 8694 // compress 1 char per iter 8695 testl(len, len); 8696 jccb(Assembler::zero, return_length); 8697 lea(src, Address(src, len, Address::times_2)); 8698 lea(dst, Address(dst, len, Address::times_1)); 8699 negptr(len); 8700 8701 bind(copy_chars_loop); 8702 load_unsigned_short(result, Address(src, len, Address::times_2)); 8703 testl(result, 0xff00); // check if Unicode char 8704 jccb(Assembler::notZero, return_zero); 8705 movb(Address(dst, len, Address::times_1), result); // ASCII char; compress to 1 byte 8706 increment(len); 8707 jcc(Assembler::notZero, copy_chars_loop); 8708 8709 // if compression succeeded, return length 8710 bind(return_length); 8711 pop(result); 8712 jmpb(done); 8713 8714 // if compression failed, return 0 8715 bind(return_zero); 8716 xorl(result, result); 8717 addptr(rsp, wordSize); 8718 8719 bind(done); 8720 } 8721 8722 // Inflate byte[] array to char[]. 8723 // ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java 8724 // @IntrinsicCandidate 8725 // private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) { 8726 // for (int i = 0; i < len; i++) { 8727 // dst[dstOff++] = (char)(src[srcOff++] & 0xff); 8728 // } 8729 // } 8730 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 8731 XMMRegister tmp1, Register tmp2, KRegister mask) { 8732 Label copy_chars_loop, done, below_threshold, avx3_threshold; 8733 // rsi: src 8734 // rdi: dst 8735 // rdx: len 8736 // rcx: tmp2 8737 8738 // rsi holds start addr of source byte[] to be inflated 8739 // rdi holds start addr of destination char[] 8740 // rdx holds length 8741 assert_different_registers(src, dst, len, tmp2); 8742 movl(tmp2, len); 8743 if ((UseAVX > 2) && // AVX512 8744 VM_Version::supports_avx512vlbw() && 8745 VM_Version::supports_bmi2()) { 8746 8747 Label copy_32_loop, copy_tail; 8748 Register tmp3_aliased = len; 8749 8750 // if length of the string is less than 16, handle it in an old fashioned way 8751 testl(len, -16); 8752 jcc(Assembler::zero, below_threshold); 8753 8754 testl(len, -1 * AVX3Threshold); 8755 jcc(Assembler::zero, avx3_threshold); 8756 8757 // In order to use only one arithmetic operation for the main loop we use 8758 // this pre-calculation 8759 andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop 8760 andl(len, -32); // vector count 8761 jccb(Assembler::zero, copy_tail); 8762 8763 lea(src, Address(src, len, Address::times_1)); 8764 lea(dst, Address(dst, len, Address::times_2)); 8765 negptr(len); 8766 8767 8768 // inflate 32 chars per iter 8769 bind(copy_32_loop); 8770 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit); 8771 evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit); 8772 addptr(len, 32); 8773 jcc(Assembler::notZero, copy_32_loop); 8774 8775 bind(copy_tail); 8776 // bail out when there is nothing to be done 8777 testl(tmp2, -1); // we don't destroy the contents of tmp2 here 8778 jcc(Assembler::zero, done); 8779 8780 // ~(~0 << length), where length is the # of remaining elements to process 8781 movl(tmp3_aliased, -1); 8782 shlxl(tmp3_aliased, tmp3_aliased, tmp2); 8783 notl(tmp3_aliased); 8784 kmovdl(mask, tmp3_aliased); 8785 evpmovzxbw(tmp1, mask, Address(src, 0), Assembler::AVX_512bit); 8786 evmovdquw(Address(dst, 0), mask, tmp1, /*merge*/ true, Assembler::AVX_512bit); 8787 8788 jmp(done); 8789 bind(avx3_threshold); 8790 } 8791 if (UseSSE42Intrinsics) { 8792 Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail; 8793 8794 if (UseAVX > 1) { 8795 andl(tmp2, (16 - 1)); 8796 andl(len, -16); 8797 jccb(Assembler::zero, copy_new_tail); 8798 } else { 8799 andl(tmp2, 0x00000007); // tail count (in chars) 8800 andl(len, 0xfffffff8); // vector count (in chars) 8801 jccb(Assembler::zero, copy_tail); 8802 } 8803 8804 // vectored inflation 8805 lea(src, Address(src, len, Address::times_1)); 8806 lea(dst, Address(dst, len, Address::times_2)); 8807 negptr(len); 8808 8809 if (UseAVX > 1) { 8810 bind(copy_16_loop); 8811 vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit); 8812 vmovdqu(Address(dst, len, Address::times_2), tmp1); 8813 addptr(len, 16); 8814 jcc(Assembler::notZero, copy_16_loop); 8815 8816 bind(below_threshold); 8817 bind(copy_new_tail); 8818 movl(len, tmp2); 8819 andl(tmp2, 0x00000007); 8820 andl(len, 0xFFFFFFF8); 8821 jccb(Assembler::zero, copy_tail); 8822 8823 pmovzxbw(tmp1, Address(src, 0)); 8824 movdqu(Address(dst, 0), tmp1); 8825 addptr(src, 8); 8826 addptr(dst, 2 * 8); 8827 8828 jmp(copy_tail, true); 8829 } 8830 8831 // inflate 8 chars per iter 8832 bind(copy_8_loop); 8833 pmovzxbw(tmp1, Address(src, len, Address::times_1)); // unpack to 8 words 8834 movdqu(Address(dst, len, Address::times_2), tmp1); 8835 addptr(len, 8); 8836 jcc(Assembler::notZero, copy_8_loop); 8837 8838 bind(copy_tail); 8839 movl(len, tmp2); 8840 8841 cmpl(len, 4); 8842 jccb(Assembler::less, copy_bytes); 8843 8844 movdl(tmp1, Address(src, 0)); // load 4 byte chars 8845 pmovzxbw(tmp1, tmp1); 8846 movq(Address(dst, 0), tmp1); 8847 subptr(len, 4); 8848 addptr(src, 4); 8849 addptr(dst, 8); 8850 8851 bind(copy_bytes); 8852 } else { 8853 bind(below_threshold); 8854 } 8855 8856 testl(len, len); 8857 jccb(Assembler::zero, done); 8858 lea(src, Address(src, len, Address::times_1)); 8859 lea(dst, Address(dst, len, Address::times_2)); 8860 negptr(len); 8861 8862 // inflate 1 char per iter 8863 bind(copy_chars_loop); 8864 load_unsigned_byte(tmp2, Address(src, len, Address::times_1)); // load byte char 8865 movw(Address(dst, len, Address::times_2), tmp2); // inflate byte char to word 8866 increment(len); 8867 jcc(Assembler::notZero, copy_chars_loop); 8868 8869 bind(done); 8870 } 8871 8872 8873 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, XMMRegister dst, Address src, bool merge, int vector_len) { 8874 switch(type) { 8875 case T_BYTE: 8876 case T_BOOLEAN: 8877 evmovdqub(dst, kmask, src, merge, vector_len); 8878 break; 8879 case T_CHAR: 8880 case T_SHORT: 8881 evmovdquw(dst, kmask, src, merge, vector_len); 8882 break; 8883 case T_INT: 8884 case T_FLOAT: 8885 evmovdqul(dst, kmask, src, merge, vector_len); 8886 break; 8887 case T_LONG: 8888 case T_DOUBLE: 8889 evmovdquq(dst, kmask, src, merge, vector_len); 8890 break; 8891 default: 8892 fatal("Unexpected type argument %s", type2name(type)); 8893 break; 8894 } 8895 } 8896 8897 void MacroAssembler::evmovdqu(BasicType type, KRegister kmask, Address dst, XMMRegister src, bool merge, int vector_len) { 8898 switch(type) { 8899 case T_BYTE: 8900 case T_BOOLEAN: 8901 evmovdqub(dst, kmask, src, merge, vector_len); 8902 break; 8903 case T_CHAR: 8904 case T_SHORT: 8905 evmovdquw(dst, kmask, src, merge, vector_len); 8906 break; 8907 case T_INT: 8908 case T_FLOAT: 8909 evmovdqul(dst, kmask, src, merge, vector_len); 8910 break; 8911 case T_LONG: 8912 case T_DOUBLE: 8913 evmovdquq(dst, kmask, src, merge, vector_len); 8914 break; 8915 default: 8916 fatal("Unexpected type argument %s", type2name(type)); 8917 break; 8918 } 8919 } 8920 8921 void MacroAssembler::knot(uint masklen, KRegister dst, KRegister src, KRegister ktmp, Register rtmp) { 8922 switch(masklen) { 8923 case 2: 8924 knotbl(dst, src); 8925 movl(rtmp, 3); 8926 kmovbl(ktmp, rtmp); 8927 kandbl(dst, ktmp, dst); 8928 break; 8929 case 4: 8930 knotbl(dst, src); 8931 movl(rtmp, 15); 8932 kmovbl(ktmp, rtmp); 8933 kandbl(dst, ktmp, dst); 8934 break; 8935 case 8: 8936 knotbl(dst, src); 8937 break; 8938 case 16: 8939 knotwl(dst, src); 8940 break; 8941 case 32: 8942 knotdl(dst, src); 8943 break; 8944 case 64: 8945 knotql(dst, src); 8946 break; 8947 default: 8948 fatal("Unexpected vector length %d", masklen); 8949 break; 8950 } 8951 } 8952 8953 void MacroAssembler::kand(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8954 switch(type) { 8955 case T_BOOLEAN: 8956 case T_BYTE: 8957 kandbl(dst, src1, src2); 8958 break; 8959 case T_CHAR: 8960 case T_SHORT: 8961 kandwl(dst, src1, src2); 8962 break; 8963 case T_INT: 8964 case T_FLOAT: 8965 kanddl(dst, src1, src2); 8966 break; 8967 case T_LONG: 8968 case T_DOUBLE: 8969 kandql(dst, src1, src2); 8970 break; 8971 default: 8972 fatal("Unexpected type argument %s", type2name(type)); 8973 break; 8974 } 8975 } 8976 8977 void MacroAssembler::kor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 8978 switch(type) { 8979 case T_BOOLEAN: 8980 case T_BYTE: 8981 korbl(dst, src1, src2); 8982 break; 8983 case T_CHAR: 8984 case T_SHORT: 8985 korwl(dst, src1, src2); 8986 break; 8987 case T_INT: 8988 case T_FLOAT: 8989 kordl(dst, src1, src2); 8990 break; 8991 case T_LONG: 8992 case T_DOUBLE: 8993 korql(dst, src1, src2); 8994 break; 8995 default: 8996 fatal("Unexpected type argument %s", type2name(type)); 8997 break; 8998 } 8999 } 9000 9001 void MacroAssembler::kxor(BasicType type, KRegister dst, KRegister src1, KRegister src2) { 9002 switch(type) { 9003 case T_BOOLEAN: 9004 case T_BYTE: 9005 kxorbl(dst, src1, src2); 9006 break; 9007 case T_CHAR: 9008 case T_SHORT: 9009 kxorwl(dst, src1, src2); 9010 break; 9011 case T_INT: 9012 case T_FLOAT: 9013 kxordl(dst, src1, src2); 9014 break; 9015 case T_LONG: 9016 case T_DOUBLE: 9017 kxorql(dst, src1, src2); 9018 break; 9019 default: 9020 fatal("Unexpected type argument %s", type2name(type)); 9021 break; 9022 } 9023 } 9024 9025 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9026 switch(type) { 9027 case T_BOOLEAN: 9028 case T_BYTE: 9029 evpermb(dst, mask, nds, src, merge, vector_len); break; 9030 case T_CHAR: 9031 case T_SHORT: 9032 evpermw(dst, mask, nds, src, merge, vector_len); break; 9033 case T_INT: 9034 case T_FLOAT: 9035 evpermd(dst, mask, nds, src, merge, vector_len); break; 9036 case T_LONG: 9037 case T_DOUBLE: 9038 evpermq(dst, mask, nds, src, merge, vector_len); break; 9039 default: 9040 fatal("Unexpected type argument %s", type2name(type)); break; 9041 } 9042 } 9043 9044 void MacroAssembler::evperm(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9045 switch(type) { 9046 case T_BOOLEAN: 9047 case T_BYTE: 9048 evpermb(dst, mask, nds, src, merge, vector_len); break; 9049 case T_CHAR: 9050 case T_SHORT: 9051 evpermw(dst, mask, nds, src, merge, vector_len); break; 9052 case T_INT: 9053 case T_FLOAT: 9054 evpermd(dst, mask, nds, src, merge, vector_len); break; 9055 case T_LONG: 9056 case T_DOUBLE: 9057 evpermq(dst, mask, nds, src, merge, vector_len); break; 9058 default: 9059 fatal("Unexpected type argument %s", type2name(type)); break; 9060 } 9061 } 9062 9063 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9064 switch(type) { 9065 case T_BYTE: 9066 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9067 case T_SHORT: 9068 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9069 case T_INT: 9070 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9071 case T_LONG: 9072 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9073 default: 9074 fatal("Unexpected type argument %s", type2name(type)); break; 9075 } 9076 } 9077 9078 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9079 switch(type) { 9080 case T_BYTE: 9081 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9082 case T_SHORT: 9083 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9084 case T_INT: 9085 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9086 case T_LONG: 9087 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9088 default: 9089 fatal("Unexpected type argument %s", type2name(type)); break; 9090 } 9091 } 9092 9093 void MacroAssembler::evpmins(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9094 switch(type) { 9095 case T_BYTE: 9096 evpminsb(dst, mask, nds, src, merge, vector_len); break; 9097 case T_SHORT: 9098 evpminsw(dst, mask, nds, src, merge, vector_len); break; 9099 case T_INT: 9100 evpminsd(dst, mask, nds, src, merge, vector_len); break; 9101 case T_LONG: 9102 evpminsq(dst, mask, nds, src, merge, vector_len); break; 9103 default: 9104 fatal("Unexpected type argument %s", type2name(type)); break; 9105 } 9106 } 9107 9108 void MacroAssembler::evpmaxs(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9109 switch(type) { 9110 case T_BYTE: 9111 evpmaxsb(dst, mask, nds, src, merge, vector_len); break; 9112 case T_SHORT: 9113 evpmaxsw(dst, mask, nds, src, merge, vector_len); break; 9114 case T_INT: 9115 evpmaxsd(dst, mask, nds, src, merge, vector_len); break; 9116 case T_LONG: 9117 evpmaxsq(dst, mask, nds, src, merge, vector_len); break; 9118 default: 9119 fatal("Unexpected type argument %s", type2name(type)); break; 9120 } 9121 } 9122 9123 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9124 switch(type) { 9125 case T_INT: 9126 evpxord(dst, mask, nds, src, merge, vector_len); break; 9127 case T_LONG: 9128 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9129 default: 9130 fatal("Unexpected type argument %s", type2name(type)); break; 9131 } 9132 } 9133 9134 void MacroAssembler::evxor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9135 switch(type) { 9136 case T_INT: 9137 evpxord(dst, mask, nds, src, merge, vector_len); break; 9138 case T_LONG: 9139 evpxorq(dst, mask, nds, src, merge, vector_len); break; 9140 default: 9141 fatal("Unexpected type argument %s", type2name(type)); break; 9142 } 9143 } 9144 9145 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9146 switch(type) { 9147 case T_INT: 9148 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9149 case T_LONG: 9150 evporq(dst, mask, nds, src, merge, vector_len); break; 9151 default: 9152 fatal("Unexpected type argument %s", type2name(type)); break; 9153 } 9154 } 9155 9156 void MacroAssembler::evor(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9157 switch(type) { 9158 case T_INT: 9159 Assembler::evpord(dst, mask, nds, src, merge, vector_len); break; 9160 case T_LONG: 9161 evporq(dst, mask, nds, src, merge, vector_len); break; 9162 default: 9163 fatal("Unexpected type argument %s", type2name(type)); break; 9164 } 9165 } 9166 9167 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, XMMRegister src, bool merge, int vector_len) { 9168 switch(type) { 9169 case T_INT: 9170 evpandd(dst, mask, nds, src, merge, vector_len); break; 9171 case T_LONG: 9172 evpandq(dst, mask, nds, src, merge, vector_len); break; 9173 default: 9174 fatal("Unexpected type argument %s", type2name(type)); break; 9175 } 9176 } 9177 9178 void MacroAssembler::evand(BasicType type, XMMRegister dst, KRegister mask, XMMRegister nds, Address src, bool merge, int vector_len) { 9179 switch(type) { 9180 case T_INT: 9181 evpandd(dst, mask, nds, src, merge, vector_len); break; 9182 case T_LONG: 9183 evpandq(dst, mask, nds, src, merge, vector_len); break; 9184 default: 9185 fatal("Unexpected type argument %s", type2name(type)); break; 9186 } 9187 } 9188 9189 void MacroAssembler::kortest(uint masklen, KRegister src1, KRegister src2) { 9190 switch(masklen) { 9191 case 8: 9192 kortestbl(src1, src2); 9193 break; 9194 case 16: 9195 kortestwl(src1, src2); 9196 break; 9197 case 32: 9198 kortestdl(src1, src2); 9199 break; 9200 case 64: 9201 kortestql(src1, src2); 9202 break; 9203 default: 9204 fatal("Unexpected mask length %d", masklen); 9205 break; 9206 } 9207 } 9208 9209 9210 void MacroAssembler::ktest(uint masklen, KRegister src1, KRegister src2) { 9211 switch(masklen) { 9212 case 8: 9213 ktestbl(src1, src2); 9214 break; 9215 case 16: 9216 ktestwl(src1, src2); 9217 break; 9218 case 32: 9219 ktestdl(src1, src2); 9220 break; 9221 case 64: 9222 ktestql(src1, src2); 9223 break; 9224 default: 9225 fatal("Unexpected mask length %d", masklen); 9226 break; 9227 } 9228 } 9229 9230 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9231 switch(type) { 9232 case T_INT: 9233 evprold(dst, mask, src, shift, merge, vlen_enc); break; 9234 case T_LONG: 9235 evprolq(dst, mask, src, shift, merge, vlen_enc); break; 9236 default: 9237 fatal("Unexpected type argument %s", type2name(type)); break; 9238 break; 9239 } 9240 } 9241 9242 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src, int shift, bool merge, int vlen_enc) { 9243 switch(type) { 9244 case T_INT: 9245 evprord(dst, mask, src, shift, merge, vlen_enc); break; 9246 case T_LONG: 9247 evprorq(dst, mask, src, shift, merge, vlen_enc); break; 9248 default: 9249 fatal("Unexpected type argument %s", type2name(type)); break; 9250 } 9251 } 9252 9253 void MacroAssembler::evrold(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9254 switch(type) { 9255 case T_INT: 9256 evprolvd(dst, mask, src1, src2, merge, vlen_enc); break; 9257 case T_LONG: 9258 evprolvq(dst, mask, src1, src2, merge, vlen_enc); break; 9259 default: 9260 fatal("Unexpected type argument %s", type2name(type)); break; 9261 } 9262 } 9263 9264 void MacroAssembler::evrord(BasicType type, XMMRegister dst, KRegister mask, XMMRegister src1, XMMRegister src2, bool merge, int vlen_enc) { 9265 switch(type) { 9266 case T_INT: 9267 evprorvd(dst, mask, src1, src2, merge, vlen_enc); break; 9268 case T_LONG: 9269 evprorvq(dst, mask, src1, src2, merge, vlen_enc); break; 9270 default: 9271 fatal("Unexpected type argument %s", type2name(type)); break; 9272 } 9273 } 9274 9275 void MacroAssembler::evpandq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9276 assert(rscratch != noreg || always_reachable(src), "missing"); 9277 9278 if (reachable(src)) { 9279 evpandq(dst, nds, as_Address(src), vector_len); 9280 } else { 9281 lea(rscratch, src); 9282 evpandq(dst, nds, Address(rscratch, 0), vector_len); 9283 } 9284 } 9285 9286 void MacroAssembler::evpaddq(XMMRegister dst, KRegister mask, XMMRegister nds, AddressLiteral src, bool merge, int vector_len, Register rscratch) { 9287 assert(rscratch != noreg || always_reachable(src), "missing"); 9288 9289 if (reachable(src)) { 9290 Assembler::evpaddq(dst, mask, nds, as_Address(src), merge, vector_len); 9291 } else { 9292 lea(rscratch, src); 9293 Assembler::evpaddq(dst, mask, nds, Address(rscratch, 0), merge, vector_len); 9294 } 9295 } 9296 9297 void MacroAssembler::evporq(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch) { 9298 assert(rscratch != noreg || always_reachable(src), "missing"); 9299 9300 if (reachable(src)) { 9301 evporq(dst, nds, as_Address(src), vector_len); 9302 } else { 9303 lea(rscratch, src); 9304 evporq(dst, nds, Address(rscratch, 0), vector_len); 9305 } 9306 } 9307 9308 void MacroAssembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, AddressLiteral src3, int vector_len, Register rscratch) { 9309 assert(rscratch != noreg || always_reachable(src3), "missing"); 9310 9311 if (reachable(src3)) { 9312 vpternlogq(dst, imm8, src2, as_Address(src3), vector_len); 9313 } else { 9314 lea(rscratch, src3); 9315 vpternlogq(dst, imm8, src2, Address(rscratch, 0), vector_len); 9316 } 9317 } 9318 9319 #if COMPILER2_OR_JVMCI 9320 9321 void MacroAssembler::fill_masked(BasicType bt, Address dst, XMMRegister xmm, KRegister mask, 9322 Register length, Register temp, int vec_enc) { 9323 // Computing mask for predicated vector store. 9324 movptr(temp, -1); 9325 bzhiq(temp, temp, length); 9326 kmov(mask, temp); 9327 evmovdqu(bt, mask, dst, xmm, true, vec_enc); 9328 } 9329 9330 // Set memory operation for length "less than" 64 bytes. 9331 void MacroAssembler::fill64_masked(uint shift, Register dst, int disp, 9332 XMMRegister xmm, KRegister mask, Register length, 9333 Register temp, bool use64byteVector) { 9334 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9335 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9336 if (!use64byteVector) { 9337 fill32(dst, disp, xmm); 9338 subptr(length, 32 >> shift); 9339 fill32_masked(shift, dst, disp + 32, xmm, mask, length, temp); 9340 } else { 9341 assert(MaxVectorSize == 64, "vector length != 64"); 9342 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_512bit); 9343 } 9344 } 9345 9346 9347 void MacroAssembler::fill32_masked(uint shift, Register dst, int disp, 9348 XMMRegister xmm, KRegister mask, Register length, 9349 Register temp) { 9350 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9351 const BasicType type[] = { T_BYTE, T_SHORT, T_INT, T_LONG}; 9352 fill_masked(type[shift], Address(dst, disp), xmm, mask, length, temp, Assembler::AVX_256bit); 9353 } 9354 9355 9356 void MacroAssembler::fill32(Address dst, XMMRegister xmm) { 9357 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9358 vmovdqu(dst, xmm); 9359 } 9360 9361 void MacroAssembler::fill32(Register dst, int disp, XMMRegister xmm) { 9362 fill32(Address(dst, disp), xmm); 9363 } 9364 9365 void MacroAssembler::fill64(Address dst, XMMRegister xmm, bool use64byteVector) { 9366 assert(MaxVectorSize >= 32, "vector length should be >= 32"); 9367 if (!use64byteVector) { 9368 fill32(dst, xmm); 9369 fill32(dst.plus_disp(32), xmm); 9370 } else { 9371 evmovdquq(dst, xmm, Assembler::AVX_512bit); 9372 } 9373 } 9374 9375 void MacroAssembler::fill64(Register dst, int disp, XMMRegister xmm, bool use64byteVector) { 9376 fill64(Address(dst, disp), xmm, use64byteVector); 9377 } 9378 9379 #ifdef _LP64 9380 void MacroAssembler::generate_fill_avx3(BasicType type, Register to, Register value, 9381 Register count, Register rtmp, XMMRegister xtmp) { 9382 Label L_exit; 9383 Label L_fill_start; 9384 Label L_fill_64_bytes; 9385 Label L_fill_96_bytes; 9386 Label L_fill_128_bytes; 9387 Label L_fill_128_bytes_loop; 9388 Label L_fill_128_loop_header; 9389 Label L_fill_128_bytes_loop_header; 9390 Label L_fill_128_bytes_loop_pre_header; 9391 Label L_fill_zmm_sequence; 9392 9393 int shift = -1; 9394 int avx3threshold = VM_Version::avx3_threshold(); 9395 switch(type) { 9396 case T_BYTE: shift = 0; 9397 break; 9398 case T_SHORT: shift = 1; 9399 break; 9400 case T_INT: shift = 2; 9401 break; 9402 /* Uncomment when LONG fill stubs are supported. 9403 case T_LONG: shift = 3; 9404 break; 9405 */ 9406 default: 9407 fatal("Unhandled type: %s\n", type2name(type)); 9408 } 9409 9410 if ((avx3threshold != 0) || (MaxVectorSize == 32)) { 9411 9412 if (MaxVectorSize == 64) { 9413 cmpq(count, avx3threshold >> shift); 9414 jcc(Assembler::greater, L_fill_zmm_sequence); 9415 } 9416 9417 evpbroadcast(type, xtmp, value, Assembler::AVX_256bit); 9418 9419 bind(L_fill_start); 9420 9421 cmpq(count, 32 >> shift); 9422 jccb(Assembler::greater, L_fill_64_bytes); 9423 fill32_masked(shift, to, 0, xtmp, k2, count, rtmp); 9424 jmp(L_exit); 9425 9426 bind(L_fill_64_bytes); 9427 cmpq(count, 64 >> shift); 9428 jccb(Assembler::greater, L_fill_96_bytes); 9429 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp); 9430 jmp(L_exit); 9431 9432 bind(L_fill_96_bytes); 9433 cmpq(count, 96 >> shift); 9434 jccb(Assembler::greater, L_fill_128_bytes); 9435 fill64(to, 0, xtmp); 9436 subq(count, 64 >> shift); 9437 fill32_masked(shift, to, 64, xtmp, k2, count, rtmp); 9438 jmp(L_exit); 9439 9440 bind(L_fill_128_bytes); 9441 cmpq(count, 128 >> shift); 9442 jccb(Assembler::greater, L_fill_128_bytes_loop_pre_header); 9443 fill64(to, 0, xtmp); 9444 fill32(to, 64, xtmp); 9445 subq(count, 96 >> shift); 9446 fill32_masked(shift, to, 96, xtmp, k2, count, rtmp); 9447 jmp(L_exit); 9448 9449 bind(L_fill_128_bytes_loop_pre_header); 9450 { 9451 mov(rtmp, to); 9452 andq(rtmp, 31); 9453 jccb(Assembler::zero, L_fill_128_bytes_loop_header); 9454 negq(rtmp); 9455 addq(rtmp, 32); 9456 mov64(r8, -1L); 9457 bzhiq(r8, r8, rtmp); 9458 kmovql(k2, r8); 9459 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_256bit); 9460 addq(to, rtmp); 9461 shrq(rtmp, shift); 9462 subq(count, rtmp); 9463 } 9464 9465 cmpq(count, 128 >> shift); 9466 jcc(Assembler::less, L_fill_start); 9467 9468 bind(L_fill_128_bytes_loop_header); 9469 subq(count, 128 >> shift); 9470 9471 align32(); 9472 bind(L_fill_128_bytes_loop); 9473 fill64(to, 0, xtmp); 9474 fill64(to, 64, xtmp); 9475 addq(to, 128); 9476 subq(count, 128 >> shift); 9477 jccb(Assembler::greaterEqual, L_fill_128_bytes_loop); 9478 9479 addq(count, 128 >> shift); 9480 jcc(Assembler::zero, L_exit); 9481 jmp(L_fill_start); 9482 } 9483 9484 if (MaxVectorSize == 64) { 9485 // Sequence using 64 byte ZMM register. 9486 Label L_fill_128_bytes_zmm; 9487 Label L_fill_192_bytes_zmm; 9488 Label L_fill_192_bytes_loop_zmm; 9489 Label L_fill_192_bytes_loop_header_zmm; 9490 Label L_fill_192_bytes_loop_pre_header_zmm; 9491 Label L_fill_start_zmm_sequence; 9492 9493 bind(L_fill_zmm_sequence); 9494 evpbroadcast(type, xtmp, value, Assembler::AVX_512bit); 9495 9496 bind(L_fill_start_zmm_sequence); 9497 cmpq(count, 64 >> shift); 9498 jccb(Assembler::greater, L_fill_128_bytes_zmm); 9499 fill64_masked(shift, to, 0, xtmp, k2, count, rtmp, true); 9500 jmp(L_exit); 9501 9502 bind(L_fill_128_bytes_zmm); 9503 cmpq(count, 128 >> shift); 9504 jccb(Assembler::greater, L_fill_192_bytes_zmm); 9505 fill64(to, 0, xtmp, true); 9506 subq(count, 64 >> shift); 9507 fill64_masked(shift, to, 64, xtmp, k2, count, rtmp, true); 9508 jmp(L_exit); 9509 9510 bind(L_fill_192_bytes_zmm); 9511 cmpq(count, 192 >> shift); 9512 jccb(Assembler::greater, L_fill_192_bytes_loop_pre_header_zmm); 9513 fill64(to, 0, xtmp, true); 9514 fill64(to, 64, xtmp, true); 9515 subq(count, 128 >> shift); 9516 fill64_masked(shift, to, 128, xtmp, k2, count, rtmp, true); 9517 jmp(L_exit); 9518 9519 bind(L_fill_192_bytes_loop_pre_header_zmm); 9520 { 9521 movq(rtmp, to); 9522 andq(rtmp, 63); 9523 jccb(Assembler::zero, L_fill_192_bytes_loop_header_zmm); 9524 negq(rtmp); 9525 addq(rtmp, 64); 9526 mov64(r8, -1L); 9527 bzhiq(r8, r8, rtmp); 9528 kmovql(k2, r8); 9529 evmovdqu(T_BYTE, k2, Address(to, 0), xtmp, true, Assembler::AVX_512bit); 9530 addq(to, rtmp); 9531 shrq(rtmp, shift); 9532 subq(count, rtmp); 9533 } 9534 9535 cmpq(count, 192 >> shift); 9536 jcc(Assembler::less, L_fill_start_zmm_sequence); 9537 9538 bind(L_fill_192_bytes_loop_header_zmm); 9539 subq(count, 192 >> shift); 9540 9541 align32(); 9542 bind(L_fill_192_bytes_loop_zmm); 9543 fill64(to, 0, xtmp, true); 9544 fill64(to, 64, xtmp, true); 9545 fill64(to, 128, xtmp, true); 9546 addq(to, 192); 9547 subq(count, 192 >> shift); 9548 jccb(Assembler::greaterEqual, L_fill_192_bytes_loop_zmm); 9549 9550 addq(count, 192 >> shift); 9551 jcc(Assembler::zero, L_exit); 9552 jmp(L_fill_start_zmm_sequence); 9553 } 9554 bind(L_exit); 9555 } 9556 #endif 9557 #endif //COMPILER2_OR_JVMCI 9558 9559 9560 #ifdef _LP64 9561 void MacroAssembler::convert_f2i(Register dst, XMMRegister src) { 9562 Label done; 9563 cvttss2sil(dst, src); 9564 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9565 cmpl(dst, 0x80000000); // float_sign_flip 9566 jccb(Assembler::notEqual, done); 9567 subptr(rsp, 8); 9568 movflt(Address(rsp, 0), src); 9569 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2i_fixup()))); 9570 pop(dst); 9571 bind(done); 9572 } 9573 9574 void MacroAssembler::convert_d2i(Register dst, XMMRegister src) { 9575 Label done; 9576 cvttsd2sil(dst, src); 9577 // Conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub 9578 cmpl(dst, 0x80000000); // float_sign_flip 9579 jccb(Assembler::notEqual, done); 9580 subptr(rsp, 8); 9581 movdbl(Address(rsp, 0), src); 9582 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2i_fixup()))); 9583 pop(dst); 9584 bind(done); 9585 } 9586 9587 void MacroAssembler::convert_f2l(Register dst, XMMRegister src) { 9588 Label done; 9589 cvttss2siq(dst, src); 9590 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9591 jccb(Assembler::notEqual, done); 9592 subptr(rsp, 8); 9593 movflt(Address(rsp, 0), src); 9594 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::f2l_fixup()))); 9595 pop(dst); 9596 bind(done); 9597 } 9598 9599 void MacroAssembler::round_float(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9600 // Following code is line by line assembly translation rounding algorithm. 9601 // Please refer to java.lang.Math.round(float) algorithm for details. 9602 const int32_t FloatConsts_EXP_BIT_MASK = 0x7F800000; 9603 const int32_t FloatConsts_SIGNIFICAND_WIDTH = 24; 9604 const int32_t FloatConsts_EXP_BIAS = 127; 9605 const int32_t FloatConsts_SIGNIF_BIT_MASK = 0x007FFFFF; 9606 const int32_t MINUS_32 = 0xFFFFFFE0; 9607 Label L_special_case, L_block1, L_exit; 9608 movl(rtmp, FloatConsts_EXP_BIT_MASK); 9609 movdl(dst, src); 9610 andl(dst, rtmp); 9611 sarl(dst, FloatConsts_SIGNIFICAND_WIDTH - 1); 9612 movl(rtmp, FloatConsts_SIGNIFICAND_WIDTH - 2 + FloatConsts_EXP_BIAS); 9613 subl(rtmp, dst); 9614 movl(rcx, rtmp); 9615 movl(dst, MINUS_32); 9616 testl(rtmp, dst); 9617 jccb(Assembler::notEqual, L_special_case); 9618 movdl(dst, src); 9619 andl(dst, FloatConsts_SIGNIF_BIT_MASK); 9620 orl(dst, FloatConsts_SIGNIF_BIT_MASK + 1); 9621 movdl(rtmp, src); 9622 testl(rtmp, rtmp); 9623 jccb(Assembler::greaterEqual, L_block1); 9624 negl(dst); 9625 bind(L_block1); 9626 sarl(dst); 9627 addl(dst, 0x1); 9628 sarl(dst, 0x1); 9629 jmp(L_exit); 9630 bind(L_special_case); 9631 convert_f2i(dst, src); 9632 bind(L_exit); 9633 } 9634 9635 void MacroAssembler::round_double(Register dst, XMMRegister src, Register rtmp, Register rcx) { 9636 // Following code is line by line assembly translation rounding algorithm. 9637 // Please refer to java.lang.Math.round(double) algorithm for details. 9638 const int64_t DoubleConsts_EXP_BIT_MASK = 0x7FF0000000000000L; 9639 const int64_t DoubleConsts_SIGNIFICAND_WIDTH = 53; 9640 const int64_t DoubleConsts_EXP_BIAS = 1023; 9641 const int64_t DoubleConsts_SIGNIF_BIT_MASK = 0x000FFFFFFFFFFFFFL; 9642 const int64_t MINUS_64 = 0xFFFFFFFFFFFFFFC0L; 9643 Label L_special_case, L_block1, L_exit; 9644 mov64(rtmp, DoubleConsts_EXP_BIT_MASK); 9645 movq(dst, src); 9646 andq(dst, rtmp); 9647 sarq(dst, DoubleConsts_SIGNIFICAND_WIDTH - 1); 9648 mov64(rtmp, DoubleConsts_SIGNIFICAND_WIDTH - 2 + DoubleConsts_EXP_BIAS); 9649 subq(rtmp, dst); 9650 movq(rcx, rtmp); 9651 mov64(dst, MINUS_64); 9652 testq(rtmp, dst); 9653 jccb(Assembler::notEqual, L_special_case); 9654 movq(dst, src); 9655 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK); 9656 andq(dst, rtmp); 9657 mov64(rtmp, DoubleConsts_SIGNIF_BIT_MASK + 1); 9658 orq(dst, rtmp); 9659 movq(rtmp, src); 9660 testq(rtmp, rtmp); 9661 jccb(Assembler::greaterEqual, L_block1); 9662 negq(dst); 9663 bind(L_block1); 9664 sarq(dst); 9665 addq(dst, 0x1); 9666 sarq(dst, 0x1); 9667 jmp(L_exit); 9668 bind(L_special_case); 9669 convert_d2l(dst, src); 9670 bind(L_exit); 9671 } 9672 9673 void MacroAssembler::convert_d2l(Register dst, XMMRegister src) { 9674 Label done; 9675 cvttsd2siq(dst, src); 9676 cmp64(dst, ExternalAddress((address) StubRoutines::x86::double_sign_flip())); 9677 jccb(Assembler::notEqual, done); 9678 subptr(rsp, 8); 9679 movdbl(Address(rsp, 0), src); 9680 call(RuntimeAddress(CAST_FROM_FN_PTR(address, StubRoutines::x86::d2l_fixup()))); 9681 pop(dst); 9682 bind(done); 9683 } 9684 9685 void MacroAssembler::cache_wb(Address line) 9686 { 9687 // 64 bit cpus always support clflush 9688 assert(VM_Version::supports_clflush(), "clflush should be available"); 9689 bool optimized = VM_Version::supports_clflushopt(); 9690 bool no_evict = VM_Version::supports_clwb(); 9691 9692 // prefer clwb (writeback without evict) otherwise 9693 // prefer clflushopt (potentially parallel writeback with evict) 9694 // otherwise fallback on clflush (serial writeback with evict) 9695 9696 if (optimized) { 9697 if (no_evict) { 9698 clwb(line); 9699 } else { 9700 clflushopt(line); 9701 } 9702 } else { 9703 // no need for fence when using CLFLUSH 9704 clflush(line); 9705 } 9706 } 9707 9708 void MacroAssembler::cache_wbsync(bool is_pre) 9709 { 9710 assert(VM_Version::supports_clflush(), "clflush should be available"); 9711 bool optimized = VM_Version::supports_clflushopt(); 9712 bool no_evict = VM_Version::supports_clwb(); 9713 9714 // pick the correct implementation 9715 9716 if (!is_pre && (optimized || no_evict)) { 9717 // need an sfence for post flush when using clflushopt or clwb 9718 // otherwise no no need for any synchroniaztion 9719 9720 sfence(); 9721 } 9722 } 9723 9724 #endif // _LP64 9725 9726 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) { 9727 switch (cond) { 9728 // Note some conditions are synonyms for others 9729 case Assembler::zero: return Assembler::notZero; 9730 case Assembler::notZero: return Assembler::zero; 9731 case Assembler::less: return Assembler::greaterEqual; 9732 case Assembler::lessEqual: return Assembler::greater; 9733 case Assembler::greater: return Assembler::lessEqual; 9734 case Assembler::greaterEqual: return Assembler::less; 9735 case Assembler::below: return Assembler::aboveEqual; 9736 case Assembler::belowEqual: return Assembler::above; 9737 case Assembler::above: return Assembler::belowEqual; 9738 case Assembler::aboveEqual: return Assembler::below; 9739 case Assembler::overflow: return Assembler::noOverflow; 9740 case Assembler::noOverflow: return Assembler::overflow; 9741 case Assembler::negative: return Assembler::positive; 9742 case Assembler::positive: return Assembler::negative; 9743 case Assembler::parity: return Assembler::noParity; 9744 case Assembler::noParity: return Assembler::parity; 9745 } 9746 ShouldNotReachHere(); return Assembler::overflow; 9747 } 9748 9749 SkipIfEqual::SkipIfEqual( 9750 MacroAssembler* masm, const bool* flag_addr, bool value, Register rscratch) { 9751 _masm = masm; 9752 _masm->cmp8(ExternalAddress((address)flag_addr), value, rscratch); 9753 _masm->jcc(Assembler::equal, _label); 9754 } 9755 9756 SkipIfEqual::~SkipIfEqual() { 9757 _masm->bind(_label); 9758 } 9759 9760 // 32-bit Windows has its own fast-path implementation 9761 // of get_thread 9762 #if !defined(WIN32) || defined(_LP64) 9763 9764 // This is simply a call to Thread::current() 9765 void MacroAssembler::get_thread(Register thread) { 9766 if (thread != rax) { 9767 push(rax); 9768 } 9769 LP64_ONLY(push(rdi);) 9770 LP64_ONLY(push(rsi);) 9771 push(rdx); 9772 push(rcx); 9773 #ifdef _LP64 9774 push(r8); 9775 push(r9); 9776 push(r10); 9777 push(r11); 9778 #endif 9779 9780 MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0); 9781 9782 #ifdef _LP64 9783 pop(r11); 9784 pop(r10); 9785 pop(r9); 9786 pop(r8); 9787 #endif 9788 pop(rcx); 9789 pop(rdx); 9790 LP64_ONLY(pop(rsi);) 9791 LP64_ONLY(pop(rdi);) 9792 if (thread != rax) { 9793 mov(thread, rax); 9794 pop(rax); 9795 } 9796 } 9797 9798 9799 #endif // !WIN32 || _LP64 9800 9801 void MacroAssembler::check_stack_alignment(Register sp, const char* msg, unsigned bias, Register tmp) { 9802 Label L_stack_ok; 9803 if (bias == 0) { 9804 testptr(sp, 2 * wordSize - 1); 9805 } else { 9806 // lea(tmp, Address(rsp, bias); 9807 mov(tmp, sp); 9808 addptr(tmp, bias); 9809 testptr(tmp, 2 * wordSize - 1); 9810 } 9811 jcc(Assembler::equal, L_stack_ok); 9812 block_comment(msg); 9813 stop(msg); 9814 bind(L_stack_ok); 9815 } 9816 9817 // Implements lightweight-locking. 9818 // Branches to slow upon failure to lock the object, with ZF cleared. 9819 // Falls through upon success with unspecified ZF. 9820 // 9821 // obj: the object to be locked 9822 // hdr: the (pre-loaded) header of the object, must be rax 9823 // thread: the thread which attempts to lock obj 9824 // tmp: a temporary register 9825 void MacroAssembler::lightweight_lock(Register obj, Register hdr, Register thread, Register tmp, Label& slow) { 9826 assert(hdr == rax, "header must be in rax for cmpxchg"); 9827 assert_different_registers(obj, hdr, thread, tmp); 9828 9829 // First we need to check if the lock-stack has room for pushing the object reference. 9830 // Note: we subtract 1 from the end-offset so that we can do a 'greater' comparison, instead 9831 // of 'greaterEqual' below, which readily clears the ZF. This makes C2 code a little simpler and 9832 // avoids one branch. 9833 cmpl(Address(thread, JavaThread::lock_stack_top_offset()), LockStack::end_offset() - 1); 9834 jcc(Assembler::greater, slow); 9835 9836 // Now we attempt to take the fast-lock. 9837 // Clear lock_mask bits (locked state). 9838 andptr(hdr, ~(int32_t)markWord::lock_mask_in_place); 9839 movptr(tmp, hdr); 9840 // Set unlocked_value bit. 9841 orptr(hdr, markWord::unlocked_value); 9842 lock(); 9843 cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9844 jcc(Assembler::notEqual, slow); 9845 9846 // If successful, push object to lock-stack. 9847 movl(tmp, Address(thread, JavaThread::lock_stack_top_offset())); 9848 movptr(Address(thread, tmp), obj); 9849 incrementl(tmp, oopSize); 9850 movl(Address(thread, JavaThread::lock_stack_top_offset()), tmp); 9851 } 9852 9853 // Implements lightweight-unlocking. 9854 // Branches to slow upon failure, with ZF cleared. 9855 // Falls through upon success, with unspecified ZF. 9856 // 9857 // obj: the object to be unlocked 9858 // hdr: the (pre-loaded) header of the object, must be rax 9859 // tmp: a temporary register 9860 void MacroAssembler::lightweight_unlock(Register obj, Register hdr, Register tmp, Label& slow) { 9861 assert(hdr == rax, "header must be in rax for cmpxchg"); 9862 assert_different_registers(obj, hdr, tmp); 9863 9864 // Mark-word must be lock_mask now, try to swing it back to unlocked_value. 9865 movptr(tmp, hdr); // The expected old value 9866 orptr(tmp, markWord::unlocked_value); 9867 lock(); 9868 cmpxchgptr(tmp, Address(obj, oopDesc::mark_offset_in_bytes())); 9869 jcc(Assembler::notEqual, slow); 9870 // Pop the lock object from the lock-stack. 9871 #ifdef _LP64 9872 const Register thread = r15_thread; 9873 #else 9874 const Register thread = rax; 9875 get_thread(thread); 9876 #endif 9877 subl(Address(thread, JavaThread::lock_stack_top_offset()), oopSize); 9878 #ifdef ASSERT 9879 movl(tmp, Address(thread, JavaThread::lock_stack_top_offset())); 9880 movptr(Address(thread, tmp), 0); 9881 #endif 9882 }